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Abstract. This paper presents a novel HDPS-BPSO maintenance scheduling 
strategy for backlash error compensation in a machining center through binary 
particle swarm optimization (BPSO) and data-driven regression methods. 
During the experiment, a hierarchical diagnosis and prognosis system (HDPS) 
was leveraged to predict the potential backlash error first. Then BPSO is 
applied to provide optimized maintenance strategies through capturing the 
trade-off between several factors such as maintenance cost, machining 
accuracy, and defective percentage. The target of proposed predictive 
maintenance strategy is to minimize the cost of potential failures and relevant 
maintenance performances. The numerical result in this case demonstrates the 
benefit of implementing predictive maintenance compared with preventive one.  
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1 Introduction 

Backlash errors that occur in machining centers may cause a series of changes in 
the geometry of the components and lead to breakdown with serious safety, 
environment, and economic impact. In our previous work [1],a hierarchical diagnosis 
and prognosis system (HDPS) was proposed and proved its advantages in backlash 
error prediction. This paper focuses on the implementation of HDPS-based predictive 
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maintenance. In order to capture the trade-off between several factors such as 
maintenance cost, machining accuracy, and defective percentage, a novel HDPS-
BPSO maintenance implementation strategy driven by binary particle swarm 
optimization (BPSO) is proposed in this paper. After discovering fault information of 
the equipment from HDPS, the next step is to implement predictive maintenance 
according to the prediction of potential failures or degradation, which is usually a 
nondeterministic polynomial time problem. Here, the implementation strategy can be 
regarded as a maintenance scheduling optimization problem. Inspired by particle 
swarm optimization’s (PSO) advantages [2], a novel HDPS-BPSO maintenance 
implementation strategy is proposed to find the optimum solution for predictive 
maintenance implementation. Since PSO is easier to implement with a few parameters 
to tune and is computationally inexpensive [3], it may be a perfect solution in this 
case.  

The remaining part of this paper is organized as follows. Section 2 introduces the 
basis of PSO. Section 3 details the principle of BPSO. Section 4 proposes a novel 
HDPS-BPSO based maintenance scheduling along with the numerical results. 
Conclusion and future work are summarized in the last section of this paper. 

2 Basis of PSO 

As a kind of computational method, the target of particle swarm optimization is to 
solve the optimization problems, by iteratively trying to improve candidate solutions 
with communication within the swarm and randomly search, which is inspired from 
movement of organisms in a bird flock [4]. The current solution  𝑥𝑥𝚤𝚤���⃗   is considered as 
coordinates which could describe a position in space. If the new solution could be 
better than others, the new one would be stored as the personal best solution  𝑝𝑝𝚤𝚤���⃗ . And 
the best result so far will be saved as the global best solution  𝑝𝑝𝑔𝑔����⃗ . The target is to keep 
finding better solutions and updating 𝑝𝑝𝚤𝚤���⃗  and 𝑝𝑝𝑔𝑔����⃗ .  

In optimization process, candidate solutions are produced in the form of particles. 
These particles move around in the solution space of the problem according to some 
simple mathematical formulae over the particle’s positon and velocity. The movement 
of each particle is influenced by the best known personal position and also the best 
known global position in the searching space, which is updated as the best solution 
found so far by the swarm. This update makes the swarm move toward the best 
solutions [5]. During optimization process, each particle would remember own 
previous best ever value together with their neighbourhood best. The general process 
of implementing PSO were shown as follows: 

1.Parameters Initialization, such as iterations, population, velocities 𝑣𝑣𝑖𝑖 , and 
positions 𝑥𝑥𝑖𝑖. 

2. Loop 
3. Check the target optimization fitness according to each particle’s position 𝑥𝑥𝚤𝚤���⃗  
4. Update the optimized personal best solution 𝑝𝑝𝚤𝚤���⃗ until now. 
5. Update the optimized global best solution 𝑝𝑝𝑔𝑔����⃗  so far. 
6. Change the velocity of each particle at tht iteration to ( 1)tht + iteration 

according to: 



 𝑣𝑣𝚤𝚤���⃗ (𝑡𝑡 + 1) = 𝜔𝜔 ∙ 𝑣𝑣𝚤𝚤���⃗ (𝑡𝑡) + 𝑐𝑐1 ∙ 𝑟𝑟1�𝑝𝑝𝚤𝚤���⃗ − 𝑥𝑥𝚤𝚤���⃗ (𝑡𝑡)� + 𝑐𝑐2 ∙ 𝑟𝑟2 �𝑝𝑝𝑔𝑔����⃗ − 𝑥𝑥𝚤𝚤���⃗ (𝑡𝑡)�              (1)     

In which, 𝑤𝑤 is the inertia weight, 𝑐𝑐1and 𝑐𝑐2 are coefficients for acceleration and 
𝑟𝑟1and 𝑟𝑟2 are distribution in [0, 1]. 

7. Update the position of each particle according to the following Equation (2):   

𝑥𝑥𝚤𝚤���⃗ (𝑡𝑡 + 1) = 𝑥𝑥𝚤𝚤���⃗ (𝑡𝑡) + 𝑣𝑣𝚤𝚤���⃗ (𝑡𝑡 + 1)                                             (2) 

8. If the optimised solution could meet certain criterion, then loop will end. The 
criterion is usually set to be the maximum iterations, the number of iterations in which 
the objective has not been improved, or the fitness is sufficiently good.  

The role of weight w in Equation 1 is considered critical for the convergence 
behaviour of PSO. Some researchers have reported that it is usually better to set the 
inertia to a large value [6], which may promote global exploration, and reduce it to get 
more refined positions according to their experiments [7,8]. The parameters 𝑐𝑐1and 𝑐𝑐2 
in Equation 1 are not critical for the convergence of PSO. Some experiment results 
indicate that 𝑐𝑐1 = 𝑐𝑐2 =1.49 might provide even better results. According to Equation 
1, it is better for local exploration when 𝑐𝑐1 > 𝑐𝑐2, while global exploration would do 
better when 𝑐𝑐1 < 𝑐𝑐2 [9].  

3 BPSO 

PSO was originally developed for continuous valued spaces, however, some 
practical problems require discrete solutions, which shall be defined in discrete 
spaces. Kennedy and Eberhart proposed binary particle swarm optimization  (BPSO) 
to solve this issue in 1997 [10]. In their model, each particle could present the solution 
through a binary value. 

In BPSO, the personal best and global best solution are also updated in a 
continuous version. The difference lies on the improvement of velocity during 
optimization, which is defined as changes of probabilities, which could make the 
change in one state or the other. Therefore, velocity would be limited into [0,1] 
through defining a logistic transformation 𝑆𝑆, usually a sigmoid function as Equation 
(3). 

𝑆𝑆 �𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)� = 1

1+𝑒𝑒−𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)                                           (3) 

Where 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡) means the 𝑗𝑗𝑡𝑡ℎ component of vector 𝑣𝑣𝚤𝚤���⃗ (𝑡𝑡). Then the new solution of 
the particle could be updated through Equation (4). 



𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 < 𝑆𝑆 �𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)�  𝑡𝑡ℎ𝑒𝑒𝑟𝑟 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) =1                     (4) 

𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) =0 

Where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 is a random number selected from a uniform distribution in [0, 1], 
𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) represents the 𝑗𝑗𝑡𝑡ℎ component of vector 𝑥𝑥𝚤𝚤���⃗ (𝑡𝑡 + 1). 

However, raising the positive direction in the BPSO will cause larger probability 
for the particle solution, while raise in the negative direction results in probability of 
zero. When the optimization process has nearly reached to the optimum solution, the 
probability of changing the position of the particle must be near to zero, while at this 
point using sigmoid function, the position will change by taking the value of 1 or 0 
with the probability of 0.5, which would cause the algorithm not to converge well. To 
avoid this situation, hyperbolic tangent (Tanh) function, as shown in Equation (5), is 
leveraged as the transformation function  

𝑆𝑆 �𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)� = �𝑡𝑡𝑟𝑟𝑟𝑟ℎ �𝛼𝛼𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)�� = 𝑒𝑒𝛼𝛼𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)−𝑒𝑒−𝛼𝛼𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑒𝑒𝛼𝛼𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)+𝑒𝑒−𝛼𝛼𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡)                     (5) 

Where 𝛼𝛼 is the weight vector of the transportation. 

4 HDPS-BPSO based maintenance scheduling 

As introduced above, backlash error that will occur in the equipment at all 
positions and directions could be predicted through proposed HDPS. During the 
scheduling, our target is to minimize the total cost raised by backlash error, including 
the maintenance cost, machining accuracy, and defective percentage in the latest 25 
weeks.  

The main cost function in this case study includes degradation cost 𝐶𝐶𝐺𝐺 , 
maintenance cost 𝐶𝐶𝑀𝑀 , and inspection cost 𝐶𝐶𝐼𝐼. Here, the assumptions and definitions in 
the mathematical model are given: 

Assumption 1: In practical industrial applications, the relationship between 
production and maintenance is usually considered as a conflict in management 
decision. Here, we assume the maintenance scheduling compromises the production 
scheduling, which means the workload of the equipment will not change with 
maintenance decisions.  

Assumption 2: The degradation in specific direction and position completely 
follows the mapping provided by HDPS.  

Assumption 3: Once a maintenance has been performed, the degradations in all 
directions and positions are supposed to return back to the initial values (Week 1). 
Subsequent degradations keep following HDPS according to the distance from the last 
maintenance performance.  

Assumption 4: If maintenance has been scheduled, it is supposed to be performed 
at the beginning of that week. 



Assumption 5: Holidays have been excluded from the mathematical model. 
𝐶𝐶𝐺𝐺: Degradation cost.  
𝐶𝐶𝑀𝑀: Maintenance cost. 
𝐶𝐶𝐼𝐼:  Inspection cost. 
𝑊𝑊: Number of weeks to be scheduled. 
𝐴𝐴: Number of axes inspected. 
𝑃𝑃: Number of axial positions inspected. 
𝑃𝑃𝑟𝑟: Production profit in unit time. 
𝐷𝐷𝑃𝑃: Maximum permissible degradation. 
𝐷𝐷𝑁𝑁: Criterion of normal product. 
𝑀𝑀: Cost of maintenance performance. 
𝐿𝐿𝑜𝑜𝑟𝑟𝑟𝑟𝑖𝑖: Working load in week 𝑖𝑖. 
𝐻𝐻: Maximum working hours per week. 
ℎ: Time of single maintenance performance. 
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖: Degradation in week 𝑖𝑖 along 𝑗𝑗 axis at position 𝑘𝑘 predicated from HDPS.   
𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖′ : Degradation in week 𝑖𝑖  along 𝑗𝑗  axis at position 𝑘𝑘  after maintenance 

scheduling. 
𝛼𝛼: Weighting factor for degradation cost. 
𝛽𝛽: Weighting factor for maintenance cost. 
𝑟𝑟𝑖𝑖: Distance from the last maintenance in week 𝑖𝑖. 
𝑥𝑥𝑖𝑖: Decision variable. 
Decision variable 𝑥𝑥𝑖𝑖  during optimization is defined as:  

𝑖𝑖𝑖𝑖 𝑚𝑚𝑟𝑟𝑖𝑖𝑟𝑟𝑡𝑡𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒 𝑝𝑝𝑒𝑒𝑟𝑟𝑖𝑖𝑜𝑜𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟 𝑖𝑖𝑟𝑟 𝑤𝑤𝑒𝑒𝑒𝑒𝑘𝑘 𝑖𝑖   𝑡𝑡ℎ𝑒𝑒𝑟𝑟  𝑥𝑥𝑖𝑖 =1                          (6) 

                                              𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 𝑥𝑥𝑖𝑖 = 0 

The degradation cost here is caused by the geometrical error from backlash 
directly. It could be estimated as following: 

𝐶𝐶𝐺𝐺 = ∑ ∑ ∑ 𝐿𝐿𝑜𝑜𝑟𝑟𝑟𝑟𝑖𝑖 ∗ 𝐻𝐻 ∗ 𝜑𝜑(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖′ )𝑖𝑖∈𝑃𝑃𝑖𝑖∈𝐷𝐷𝑖𝑖∈𝑊𝑊                                (7) 

                                                  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖′ = 𝐷𝐷𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 
                                                             𝑖𝑖𝑖𝑖    𝑥𝑥𝑖𝑖 = 1          𝑡𝑡ℎ𝑒𝑒𝑟𝑟 𝑟𝑟𝑖𝑖 = 1 
                                                                                𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒 𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖−1 + 1 

Where 𝜑𝜑( ) denote the production cost caused by degradation. It can be calculated 
according to Equation 8: 

𝜑𝜑�𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖′ � = �

0                            𝑖𝑖𝑖𝑖  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖′  ≤ 𝐷𝐷𝑁𝑁

       𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖
′ −𝐷𝐷𝑁𝑁
𝐷𝐷𝑃𝑃

∗ 𝑃𝑃𝑟𝑟               𝑖𝑖𝑖𝑖  𝐷𝐷𝑁𝑁 <  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖′  ≤ 𝐷𝐷𝑃𝑃
𝑃𝑃𝑟𝑟                          𝑖𝑖𝑖𝑖  𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖′  > 𝐷𝐷𝑃𝑃

                      (8) 

Here, we consider when the degradation is between the normal and maximum 
permissible degradation, the manufacturing profit decreases with a linear manner with 
degradation. The maintenance cost here is evaluated according to the number of 



maintenance performance.  

𝐶𝐶𝑀𝑀 = 𝑀𝑀 ∗ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖∈𝑊𝑊                                                       (9) 

Then, the total cost 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡can be obtained as: 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼 ∗ 𝐶𝐶𝐺𝐺 + 𝛽𝛽 ∗ 𝐶𝐶𝑀𝑀 + 𝐶𝐶𝐼𝐼                                     (10) 

With constraint ∀𝑥𝑥𝑖𝑖 ∈ 𝑊𝑊:  𝑥𝑥𝑖𝑖 ∗ ℎ + 𝐿𝐿𝑜𝑜𝑟𝑟𝑟𝑟𝑖𝑖 ∗ 𝐻𝐻 ≤ 𝐻𝐻 
Because the equipment is inspected in a continuous manner in this model, the value 

of 𝐶𝐶𝐼𝐼  is fixed. Since some issues such as incidental damage or cost caused by 
maintenance, and the loss in reputation of producing imperfect products. 𝛼𝛼  and  𝛽𝛽 
can be leveraged to weight the effect of degradation and maintenance here, 
respectively. 

The parameters of HDPS-BPSO are set according to the case study as: number of 
population size is 100, maximum iteration is 500, weighting coefficients 𝛼𝛼  and  𝛽𝛽 are 
both set as 1, 𝑊𝑊 is 25 weeks, 𝐴𝐴 is 2 axes, 𝑃𝑃 is 25 positions, 𝑃𝑃𝑟𝑟 is 2,000 Norwegian 
Krone (NOK) /hrs, 𝑀𝑀 is 15,000 NOK, 𝐷𝐷𝑃𝑃 is 16 μm, 𝐷𝐷𝑁𝑁 is 12.5 μm, 𝐻𝐻 is 45 hours, ℎ is 
2 hours. During the test, we leveraged hyperbolic tangent function as logistic 
transformation for optimization. The numerical result of HDPS-BPSO is as following. 
The convergence starts around  200𝑡𝑡ℎ iteration. According the numerical result, the 
best predictive maintenance solution in this case is to perform maintenance in week 9 
and week 18, in which the total cost including the loss from degradation and 
maintenance cost is 33,303 NOK. According to the previous preventive maintenance 
strategy, the maintenance is supposed to be performed every 6 weeks. The cost is also 
calculated based on the preventive maintenance strategy. When maintenance executed 
in week 7, 13 and 19. The total cost is 47,881 NOK. Therefore, through predictive 
maintenance, the maintenance cost of single machine center can be reduced by 14,578 
NOK in this case. 

5 Conclusion and future work 

In this paper, a novel maintenance implementation strategy HDPS-BPSO is 
proposed to illustrate the implementation of predictive maintenance in practical 
application. A maintenance model for backlash error compensation in machining 
centers is also established. With the help of BPSO, we can find the optimized 
maintenance strategy for the machining center to achieve zero-defect production and 
leverage the remaining useful life as long as possible. The numerical result shows the 
benefit of implementing the strategy of predictive maintenance compared with that of 
preventive maintenance. In this research, we assume the maintenance scheduling 
compromises the production scheduling, which removes the issues about joint 
production from this research since maintenance scheduling for a single machine will 
always compromise its planned work. This assumption could separate machining 
centers from each other in maintenance scheduling to fit this case. Future work may 
focus on the application of predictive maintenance in group maintenance scheduling. 
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