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Abstract

This article deals with numerical solutions of nonlinear integro-differential
convection-diffusion equations using spectral methods. More specifi-
cally, the spectral vanishing viscosity method is introduced and ana-
lyzed to show that its family of numerical solutions is compact, and
that its solutions converge to the vanishing viscosity solutions. The
method is implemented in code, and numerical results including quali-
tative plots and convergence estimates are given. The article concludes
with a discussion of some important implementation concerns and rec-
ommendations for further work related to the topic.
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Sammendrag

I denne artikkelen behandles numeriske løsninger av ikkelineære integro-
partielle konveksjons-diffusjonsdifferensialikninger ved bruk av spek-
tralmetoder. Mer spesifikt introduseres og analyseres metoder med
spektralt forsvinnende viskositet. Det vises at metodene danner en
kompakt familie av numeriske løsninger, og at disse løsningene konverg-
erer mot løsningene av likningen med forsvinnende viskositet. Metoden
implementeres i kode, og det gis numeriske resultater som viser kvalita-
tive plott av løsninger samt konvergensestimater. Artikkelen avsluttes
med en diskusjon omkring viktige problemstillinger i implementasjonen,
samt anbefalinger for mulig videre arbeid relatert til emnet.
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Chapter 1

Introduction

1.1 Background and motivation for the project

In physics and the applied sciences, the principle of conserved quantities is funda-
mental to modeling a wide class of phenomena, ranging from chemical reactions to
financial asset pricing. Examples of conserved quantities in physics are mass-energy,
linear momentum, angular momentum and probability. Together with constitutive
or empirical laws, a vast class of equations can be derived from the simple princi-
ple of conservation. A couple of well-known examples from fluid dynamics are the
Navier-Stokes’ equation and the Burgers’ equation.

The equations that this project aims at solving numerically belong to a relatively
new class of partial differential equations: conservation laws with nonlinear frac-
tional diffusion. Other types of resemblant equations have been studied previously.
These include equations with linear fractional diffusion and nonfractional nonlinear
equations like the Boussinesq equation and the Burgers’ equation. For these equa-
tions there exists developed theory of different numerical simulation techniques.
For the nonlinear fractional equations, there is not so much literature available. In
[4], Jakobsen and Cifani present a finite volume like scheme. In [2], they develop
spectral methods for equations with linear fractional diffusion, but as far as the
author knows, the general nonlinear diffusion case has not been approached to a
great extent by using spectral methods.

An important goal for the project is to generalize the theory that is presented
in [2] to also include more general diffusion functions, using spectral methods. The
motivation for this is that creating solvers for more complicated models enables
practitioners to describe physical phenomena more accurately. It is therefore also
a goal to implement efficient solvers and as high accuracy as possible, so that there
is also a practical use of the theory that is developed. In [16], we develop spectral
methods for linear fractional option pricing, using spectral methods and obtaining
spectral accuracy, so this project is a natural step in generalizing those results.

Extending to the nonlinear case is interesting both from a theoretical and prac-
tical point of view. In addition to the theoretical aspects of showing properties

1



2 CHAPTER 1. INTRODUCTION

of the method, several implementation concerns arise in the development of the
practical solver. Examples include the calculation of difficult integrals and possible
aliasing effects, both of which are addressed in this project.

1.2 Project overview
The project consists of two parts; one theoretical and one practical.

The theoretical part of the report consists of some background to the equations
that are studied, an introduction to the spectral method where the vanishing and
the spectral vanishing viscosity equations are introduced in Chapter 2, and finally
an analysis that culminates in showing compactness of the family of numerical
solutions of the spectral vanishing viscosity method in Chapter 3. Based on the
a priori estimates that are derived, a convergence estimate is given, which shows
that the spectral vanishing viscosity method converges to the vanishing viscosity
solution.

The practical part consists of a derivation of the equations implemented in
the numerical solvers in Chapter 4, a presentation and discussion of numerical
simulations carried out in the project in Chapter 5, and in Chapter 6 a discussion
of some important implementation concerns that have arisen in the development
of the solvers.

In chapter 7, some concluding remarks and a discussion of possible further
work are given. Appendix A consists of mathematical results that are used in the
analyses, and Appendix B contains some software documentation for the solvers
that were developed.



Chapter 2

Models and general problem

2.1 Analytical equation
The relevant class of equations can in a very general form be written

ut +
d
dx
f(u, x)− L[A(u, x)] = g(x), (2.1)

where L is a Lévy type (nonlocal) operator and f and A are functions of u and
possibly the spatial variable x. In this project, the class of problems under study
is restricted to

ut +
d
dx
f(u) + (−∆)

α
2 A(u) = 0 (2.2)

i.e. L = −(−∆)
α
2 is the fractional Laplacian operator, and f and A are spatially

invariant.
To obtain a well-posed formulation of the above equation, a domain and ini-

tial/boundary values must be specified. One possibility is to pose the Cauchy
problem, seeking solutions on the whole line and specifying initial values only. An-
other option, which is perhaps most relevant for physical applications, is to seek
solutions on a finite domain, specifying both initial values and an appropriate set
of boundary conditions. This project is concerned about numerical solutions of the
equation posed on a finite domain, so the Cauchy problem is not discussed further
in the rest of the article. Theory for the general Cauchy problem in arbitrary di-
mensions is treated by among others Jacobsen and Cifani. For analytical theory
and results concerning the Cauchy problem, the reader is referred to [4].

2.1.1 Fractional Laplacian operator
The fractional Laplacian operator (−∆)

α
2 can be interpreted and defined in sev-

eral ways. One way is to use a probabilistic interpretation and consider it as the
generator of a Lévy process, cf. [1]. The physical interpretation of the operator

3



4 CHAPTER 2. MODELS AND GENERAL PROBLEM

is that it models anomalous diffusion, cf. [10]. Mathematically, the easiest way to
define it is probably using the Fourier transform. Then it is defined through

F
(
(−∆)

α
2 u
)
(ξ) = |ξ|αF(u) ∀u ∈ H α

2 (R), 0 < α < 2 (2.3)

Observe that this definition is consistent in the limit α → 2, where the operator
converges to the standard Laplacian (or at least a constant times ∆ depending on
the definition of the Fourier transform). Another definition is the following:

− (−∆)
α
2 u = cα

(
P.V.

∫
|y|<r

u(x+ y)− u(x)− yux(x)

|y|1+α
dy +

∫
|y|>r

u(x+ y)− u(x)

|y|1+α
dy
)

∀u ∈ H α
2 (R), 0 < α < 2,

(2.4)

where r > 0 can be chosen arbitrarily and P.V. denotes the Cauchy principal value
defined by

P.V.

∫
|y|>0

ϕ(y) dy = lim
b→0

∫
|y|>b

ϕ(y) dy

and

cα =
αΓ
(

1+α
2

)
2π

1
2 +αΓ

(
1− α

2

) .
The above value of cα is used throughout the report. This definition reveals the
nonlocal nature of the operator, since the integration is performed on the whole line.
Note that the integral is singular, hence the principal value. It can be shown that
under certain assumptions, (2.3) and (2.4) are equivalent up to a multiplicative
constant, cf. Theorem 1 in [13]. In the rest of the article, they will be used
interchangeably, depending on which is more convenient to use. By using the last
definition, some properties of the operator can be deduced. These will become
useful in the rest of the article, so we state them in the following

Lemma 1 (Properties of the fractional Laplacian operator). Let L = −(−∆)
α
2 be

defined as in (2.4). Then, the following properties hold:

• i) Splitting

L(u) = cα

(
P.V.

∫
|y|<r

u(x+ y)− u(x)− yux(x)

|y|1+α
dy︸ ︷︷ ︸

=:Lr(u)

+

∫
|y|>r

u(x+ y)− u(x)

|y|1+α
dy︸ ︷︷ ︸

=:Lr(u)

)
,

(2.5)
where Lr(u) is singular and Lr(u) is not.

• ii) Principal value

cαP.V.

∫
|y|<r

u(x+ y)− u(x)− yux(x) dy
|y|1+α

= cαP.V.

∫
|y|<r

u(x+ y)− u(x) dy
|y|1+α

(2.6)
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• iii) Integrability of measure∫
|y|>0

min{1, |y|}dy
|y|1+α

<∞, 0 < α < 1∫
|y|>0

min{1, y2}dy
|y|1+α

<∞, 1 < α < 2.

(2.7)

Proof of iii). Consider∫
|y|>0

min{1, |y|}dy
|y|1+α

=

∫ 1

0

dy
|y|α

+

∫ ∞
1

dy
|y|1+α

=
1

1− α
+

1

α
<∞, 0 < α < 1

and ∫
|y|>0

min{1, y2}dy
|y|1+α

=

∫ 1

0

dy
|y|α−1

+

∫ ∞
1

dy
|y|1+α

=
1

2− α
+

1

α
<∞, 1 < α < 2

Properties i) and ii) in Lemma 1 correspond to Lemma 1 in [9], and a proof can
be found there.

2.2 Numerical formulation

In this section, the analytical equation is casted to a numerical formulation on a
finite domain. Due to the possibly non-linear terms, the analytical equation cannot
be used directly, and a perturbed variety is used instead. The reasons for this are
motivated in the following, and both the perturbed equation in strong form and
the variational form are discussed.

2.2.1 Preliminaries

In the recasting from a Cauchy problem posed on an infinite domain to a numerical
form posed on a compact domain with boundary conditions and a discrete function
space, some modifications of the equation must be made. There are possibly several
ways to overcome these issues. This project focuses on spectral vanishing viscosity
methods with nonlinear interpolation.
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Notation

In the following, two sets of parentheses are used interchangeably to distinguish
between functional and function evaluation. For instance, f(u) means the function
f evaluated at u, which itself is a function of x. The notation f [u](x) however means
the number deriving from a functional fx evaluated at the function u, namely the
function f(u) evaluated at the spatial point x.

Fourier spectral method

For the theoretical analysis that follows, it is necessary to define the method that
is to be analyzed. Since the boundary conditions are periodic for the relevant
problem, and the domain is chosen to Ω = (0, 2π), the method seeks solutions that
can be written

u(x, t) =

N∑
ξ=−N

ûξe
iξx

for an integerN , which is a Fourier spectral method. This choice of method satisfies
the boundary conditions intrinsically and is therefore practical also in terms of
computations. If in contrast other boundary conditions were to be satisfied, a
polynomial basis would be an appropriate choice. Furthermore, with this method,
the numerical solutions are smooth, which is an assumption that is used in the
following.

Nonlinear interpolation

When introducing a discretization of the equation, the associated discrete function
space has a given, finite dimension. By expressing the numerical solution as a
linear combination of its basis functions, one is confined within the boundaries of
this space. In the case of a linear equation, this concept is straightforward.

However, allowing for nonlinear terms, i.e. terms that are nonlinear functions
of the numerical solution, terms of higher order than the discrete space dimension
will inevitably occur in the equation, since these no longer are linear combinations
of the discrete basis functions. One way to remedy this is to introduce nonlinear
interpolation in the equation. Instead of having the (possibly) nonlinear function
A(u), the Nth order interpolation of A(u), PNA(u), is introduced instead. In
Fourier space, this operator can be defined in the following way. Assume that the
Fourier representation of A[u] exists, hence

A[u](x) =

∞∑
ξ=−∞

Aξe
iξx

with

Aξ =
1

2π

∫ 2π

0

A[u](x) · e−iξx dx.
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Then,

PNA(u) :=

N∑
ξ=−N

Aξe
iξx.

The possibly nonlinear convection term is treated in a similar way. The Fourier
representation of f [u] is assumed to exist, and thereby

f [u](x) =

∞∑
ξ=−∞

fξe
iξx

where

fξ =
1

2π

∫ 2π

0

f [u](x) · e−iξx dx,

such that

PNf(u) :=

N∑
ξ=−N

fξe
iξx.

Observe that the interpolation operator PN commutes with the differential operator
∂rx and the nonlocal operator L. This will be utilized extensively throughout the
analysis.

Spectral vanishing viscosity

When changing from physical domain to Fourier domain or vice versa, it can be
convenient to use the well-known properties of convolution in the Fourier domain.
In the following, the equations written in the physical domain will use convolutions
to express sums in the Fourier domain. The high frequency components that are
added as spectral vanishing viscosity terms in Fourier space can thus be expressed
as a convolution in the time domain through the relation

∂2
xQN ∗ u = −

N∑
|ξ|=mN

ξ2Q̂ξ(t)ûξ(t)e
iξx,

where

QN (x, t) =

N∑
p=mN

Q̂p(t) ·
∑
|ξ|=p

eiξx

and the Q̂p satisfy certain requirements.

2.2.2 Strong vanishing viscosity formulation

In one dimension, introduce the spatial compact domain Ω = (0, 2π). The nu-
merical strong equation for the periodic vanishing viscosity formulation of problem
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(2.2) in Ω reads
uεt = − d

dxf(uε) + L[A(uε)] + ε∂2
xu

ε, (x, t) ∈ DT = Ω× [0, T ]

uε(0, t) = uε(2π, t)

uε(x, 0) = u0(x), x ∈ Ω,

(2.8)

2.2.3 Strong spectral vanishing viscosity formulation
The spectral vanishing viscosity approximation of problem (2.2) in Ω reads

ut = − d
dx [PNf(u)] + L[PNA(u)] + εN∂

2
xQN ∗ u, (x, t) ∈ DT = Ω× [0, T ]

u(0, t) = u(2π, t)

u(x, 0) = PNu0(x), x ∈ Ω,

(2.9)

where PN denotes the interpolation operator defined above.

2.2.4 Numerical variational formulation
To obtain a variational formulation of (2.9), one must introduce a function space.
For this problem, the natural space to search for solutions is

V = {v ∈ H α
2 (R) ,

∫ T

0

‖v‖2L2(Ω) dt <∞}.

The space is chosen to ensure that all integrals are well-defined. The nonlocal
Lévy operator L induces the Sobolev norm of order α

2 . Now, multiply (2.9) with
an arbitrary test function v ∈ V and integrate the equation over the whole domain.
The variational formulation reads

For each t > 0, find u ∈ V such that∫ 2π

0

ut · v dx = −
∫ 2π

0

d
dx

[PNf(u)] · v dx+

∫ 2π

0

L[PNA(u)] · v dx

+ εN

∫ 2π

0

(∂2
xQN ∗ u)v dx ∀v ∈ V

(2.10)



Chapter 3

Convergence theory

3.1 Introduction
The aim of this section is to prove that the numerical solutions of the SVV ap-
proximation (3.16) converge towards the vanishing viscosity solutions of (2.8). For
consistency, a brief introduction to the theory framework used in that respect is
given. In the setting of linear equations, there are strong standard results available
to prove existence and uniqueness of numerical solutions. For finite element meth-
ods and spectral methods, the well-known Lax-Milgram lemma is often applied in
that regard, following a standard analysis of coercivity properties of the bilinear
forms involved and so on. This method of analysis is very versatile and follows a
quite standardized procedure.

For nonlinear equations, these tools cannot be used directly however. Instead
there are a variety of different mathematical tools, each suited for special equations
and numerical methods. For example in the case of conservation laws such as (2.1),
a frequently used approach is to construct conservative numerical schemes, like
finite volume methods. Then, one tries to prove that the method is monotone,
i.e. that a maximum principle applies for the numerical solution. This will imply
uniqueness of solutions (see for instance the introduction in [4] and the references
therein).

It can be shown that the spectral vanishing viscosity method (3.16) is non-
monotone, so convergence towards the entropy solution is not obvious without
further analysis. To that end, there is a result available, originally due to Eduard
Helly, and later modified for the purposes of PDE analysis. The theorem is proved
in [12] and in one dimension it reads

Theorem 1 (Theorem A.8 in [12]: Helly compactness of the family of numerical
solutions). Let {uη} : R × [0,∞) → R be a family of functions such that for each
positive T ,

|uη(x, t)| ≤ CT , (x, t) ∈ R× [0, T ]

for a constant CT independent of η. Assume in addition that for all compact B ⊂ R

9
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and for t ∈ [0, T ] that

sup
|ξ|<|ρ|

∫
B

|uη(x+ ξ, t)− uη(x, t)| dx ≤ νB,T (|ρ|)

for a modulus of continuity ν. Furthermore, assume for s and t in [0, T ] that∫
B

|uη(x, t)− uη(x, s)| dx ≤ ωB,T (|t− s|) as η → 0

for some modulus of continuity ωT . Then there exists a sequence ηj → 0 such that
for each t ∈ [0, T ] the function {uηj (t)} converges to a function u(t) in L1

loc(R).
The convergence is in C([0, T ];L1

loc(R)).

To use Theorem 1, we must prove boundedness and time regularity estimates
of the numerical solution. We will apply the practical method that is outlined in
[2] to do this. The estimates we end up with in this article are similar to those in
[2], but some of them will differ slightly. This is both due to the nonlocal term in
the equation, which is different here, and also because we do some different choices
in the analysis. In the derivations, these differences will be elaborated to some
extent. Note that in this article, the analysis is only carried out in one dimension,
but it should be feasible to extend the analysis also to arbitrary dimensions, since
Theorem 1 is valid also in arbitrary dimensions, cf. [12].

The procedure necessitates a series of additional, intermediate a priori estimates
which are derived in the following sections. The chapter concludes with a conver-
gence estimate that utilizes these stability estimates. This estimate establishes the
convergence of the numerical solution of the spectral vanishing viscosity method
towards the solution of the vanishing viscosity equation (2.8). The ultimate goal
would be to prove that this limit function is the unique entropy solution of equation
(2.2). This relies on whether the vanishing viscosity method converges towards the
entropy solution, but showing that is outside the scope of this project. Jakobsen
and Cifani outline a procedure to show this in the linear case in chapter 2, remark
2.6 in [2]. See also [3] for a discussion of the convergence of vanishing viscosity
approximations in the case of nonlinear, possibly degenerate diffusion like here.

3.1.1 Prerequisites, required assumptions and results
The notation and constants that are introduced in [2] are used throughout the rest
of the article if it is not written otherwise and commented in that specific regard.
Also, note that constants may change value throughout an equation or estimate.
This is to ease notation, since the precise value of constants is of less relevance in
the asymptotic estimates of this chapter.

In the following sections, some additional assumptions and results that are
derived or referred to in [2] are required. For the complete derivation of these,
the reader is referred to the article, but a summary or reference is given below and
otherwise where needed. Below, the most central assumptions and technical results
required in the following analysis are stated.
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Assumption 1 (SVV constants and variables).

εN ∝ N−θ, 0 < θ < 1

mN ∝ N
θ
2 (logN)−

1
2

εN >
8K1

N

εNm
2
N logN ≤ C

Qj,kN (x, t) =

N∑
p=mN

Q̂j,kp (t)
∑
|ξ|=p

eiξ·x

with

Q̂j,kp is monotonically increasing with p

Q̂j,kp spherically symmetric

|Q̂j,kp − δij | ≤ Cm2
Np
−2 ∀p ≥ mN ,

where δij is the Kronecker delta.

Assumption 2 (Zero in origin).

A(0) = 0 (3.1)

Assumption 3 (Nondecreasing function).

d
dr
A(r) ≥ 0 ∀r ∈ R (3.2)

Assumption 4 (Regularity of A). Assume that A(u) ∈ Cs(Ω) with

s ≥ 4

1− θ
, (3.3)

where 0 < θ < 1 is the constant used in Assumption 1.

Assumption 5 (Lipschitz continuity of A). Assume that A is locally Lipschitz,
i.e. ∃LA ∈ R such that

|A(r)−A(s)| ≤ LA|r − s| ∀r, s ∈ R (3.4)

Assumption 6 (Zero in origin).

f(0) = 0 (3.5)
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Assumption 7 (Regularity of f). Assume that f(u) ∈ Cs(Ω) with

s ≥ 4

1− θ
, (3.6)

where 0 < θ < 1 is the constant used in Assumption 1.

Assumption 8 (Regularity of initial data).

u0 ∈ L1(R) ∩ L∞(R) ∩BV (R) (3.7)

Assumption 9 (Bound for initial data). Assume that there is a constant C such
that

ε2sN ‖∂sxu0‖2L2(Ω) ≤ C (3.8)

Lemma 2 (Lemma 3.1 in [2]). For 0 ≤ s ≤ 2,

‖∂sxRN‖L1(Ω) ≤ Cms
N logN, (3.9)

and for 0 ≤ r ≤ s ≤ 2, if cN ≤ CεNm2
N logN ≤ Ĉ, then for all p ≥ 1, ϕ ∈ Lp(Ω),

εN‖∂2
xR ∗ ϕ‖Lp(Ω) ≤ cN‖ϕ‖Lp(Ω). (3.10)

Lemma 3 (Gagliardo-Nirenberg L2 bound for a function g(u) (cf. (4.4) in [2])).
Assume that g ∈ Cs. Then there exists a constant Ks such that

‖∂sxg(u)‖L2(Ω) ≤ Ks‖∂sxu‖L2(Ω), Ks ≤ C
s∑

k=1

|g|Ck‖u‖k−1
L∞(Ω) (3.11)

Lemma 4 (Estimate for projection error of a function g(u)). Assume that g ∈ Cs.
By using the Fourier series expansion of (I −PN )g(u) and lemma 3, the inequality

‖∂rx(I − PN )g(u)‖L2(Ω) ≤
Ks
Ns−r ‖∂

s
xu‖L2(Ω) (3.12)

is obtained for 0 ≤ r ≤ s.

L∞ bound for L2 norm and definition of Br

First note that as in [2], according to Assumption 1, cN = CεNm
2
N logN ≤ Ĉ,

where Ĉ is a constant. For s = 0, B0 is defined through the following relation
using the above mentioned assumption:

cN‖u‖2L2(DT ) ≤ C‖u‖
2
L∞(DT ) =: B0 (3.13)

for some constant C. For r > 0, where r is an integer,

Br := CBr−1 · K2
r , (3.14)

where C is some constant.
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3.2 L2 stability

3.2.1 Energy estimate of numerical solution
In the physical domain, the numerical formulation of the problem reads

ut + ∂xPNf(u)− L[PNA(u)]− εN∂2
xQN ∗ u = 0 (3.15)

The last term on the left hand side is the spectral vanishing viscosity term. This
includes the highest portion of the frequency spectrum, whereas the other part of
an otherwise "full" Laplacian operator is left out. To obtain an expression including
the Laplacian, one can add and subtract terms. This is also convenient to do for
the convection and the fractional diffusion terms. The numerical equation can be
written in the equivalent form

ut + ∂xPNf(u)− L[A(u)]− εN∂2
x(QN ∗ u+RN ∗ u)

= −εN∂2
xRN ∗ u− L

[
(I − PN )A(u)

]
+ ∂x(I − PN )f(u)

⇔ ut + ∂xf(u)− L[A(u)]− εN∂2
xu

= −εN∂2
xRN ∗ u− L

[
(I − PN )A(u)

]
+ ∂x(I − PN )f(u)

(3.16)

By looking at the terms, one can interpret the equation. On the left hand side,
there is the time derivative and the convection and the nonlocal terms. On the right
hand side there is the interpolation errors of the convection and nonlocal operators.
The second term is the residual part of the Laplacian operator, i.e. the lowest part
of the spectrum. The reason for writing the equation like this is that it simplifies
the calculations, as will become clear in the following. One can qualitatively expect
that the right hand side consists of small terms measured in some norm.

Switching to the Fourier domain is often convenient in the analysis of Fourier-
Galerkin methods, but this estimate will be performed in the physical domain.

Lemma 5. The following energy estimate applies for the numerical solution:

‖u‖2L2(Ω)(t) + 2εN‖ux‖2L2(DT ) ≤ B0 + ‖u0‖2L2(Ω), (3.17)

where B0 is the constant defined in (3.13).

Proof. Begin by multiplying (3.16) with the numerical solution u and integrate
over Ω to obtain∫ 2π

0

ut · u dx+

∫ 2π

0

[f(u)]x · u dx− εN
∫ 2π

0

uxx · u dx−
∫ 2π

0

L
[
A(u)

]
u dx

= −εN
∫ 2π

0

(∂2
xRN ∗ u)u dx−

∫ 2π

0

L
[
(I − PN )A(u)

]
u dx+

∫ 2π

0

∂x(I − PN )f(u) · u dx

(3.18)
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Now consider each term separately, starting with the convection term on the left
hand side. Intuitively, this term does not contribute in the energy estimate, and
this is indeed the case. Use the chain rule to obtain [f(u)]x = f ′(u) · ux. Define
the function f̃(u) := f ′(u) · u. This function is continuous from the assumptions
made on f , and therefore has an anti-derivative which is labeled F̃ . Now consider
the contribution from the convection term and use periodicity of u to obtain∫ 2π

0

[f(u)]x · u dx =

∫ 2π

0

f ′(u) · ux · u dx

=

∫ 2π

0

f̃ · ux dx

=

∫ 2π

0

F̃ ′(u) · ux dx

=
[
F̃ [u](x)

]2π
0

= 0

(3.19)

Periodicity is also used to evaluate the diffusion term when integrating by parts,
such that

− εN
∫ 2π

0

uxx · u dx

= −εN
([
ux · u

]2π
0
−
∫ 2π

0

u2
x dx

)

= εN‖ux‖2.

(3.20)

The nonlocal term is now treated. Start by defining a bilinear form B as in Defi-
nition 2 by

B(u, v) := −cα
∫ 2π

0

∫
|y|>0

(
u(x+ y)− u(x)− 1|y|<1ux(x)

)
v(x)

|y|1+α
dydx,

which by Lemma 16 in the appendix can be written as

B(u, v) = cα

∫ 2π

0

∫
|y|>0

(
u(x+ y)− u(x)

)(
v(x+ y)− v(x)

)
|y|1+α

dydx.

Then consider B evaluated at u and A(u), which corresponds to the nonlocal
term in (3.18). Remembering the assumption that A is an increasing function, cf.
Assumption 3, it can be shown that this term is signed. That A is increasing means
mathematically that the quotient of change is positive, i.e. that argument change
and function change have the same sign. But if the quotient of two numbers
is positive, it means that the product also is positive. Hence,

(
A[u(x + y)] −
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A[u(x)]
)(
u(x+ y)− u(x)

)
≥ 0 for all x, y ∈ R. Therefore,

−
∫ 2π

0

u · L[A(u)] dx = B(A(u), u)

= cα

∫ 2π

0

∫
|y|>0

(
A[u(x+ y)]−A[u(x)]

)(
u(x+ y)− u(x)

)
|y|1+α

dx ≥ 0

(3.21)

This means that the nonlocal term on the left hand side can be dropped in the
energy estimate.

Turn to the right hand side, and look at the remainder term for the spectral
vanishing viscosity. Use the Cauchy-Schwartz inequality and Lemma 2 to estimate
the term:

εN

∫ 2π

0

(∂2
xRN ∗ u)u dx ≤ εN‖u‖L2(Ω)‖∂2

xRN ∗ u‖L2(Ω)

≤ cN‖u‖2L2(Ω)

(3.22)

Then consider the two projection error terms for the possibly nonlinear convection
and diffusion fluxes. Now the very properties of the numerical method come into
play. At this point, it should become obvious why it is convenient to write the
equation in the form of (3.16), and it is useful to switch representation to Fourier
space. Consider any function ϕ(x) that has a Fourier representation, and let the
representation be given by ϕ(x) =

∑∞
ξ=−∞ ϕ̂ξe

iξx. The residual from the projection
of ϕ is given by

(I − PN )ϕ(x) = (I − PN )

∞∑
ξ=−∞

ϕ̂ξe
iξx =

∑
|ξ|>N

ϕ̂ξe
iξx.

Define the space XFN := {eiξx}Nξ=−N . If the residual is multiplied with a function
u =

∑N
p=−N ûpe

ipx, the product will be a series of nonconstant modes, since all
modes of (I − PN )ϕ(x) are outside and all modes of u are inside XFN . Therefore,

∫ 2π

0

(I − PN )ϕ(x) · u(x) dx =
∑
|ξ|>N

N∑
p=−N

∫ 2π

0

ϕ̂ξ · ûp · ei(ξ+p)x dx = 0. (3.23)

This fact is valid both in the case ϕ = f(u) and ϕ = L[A(u)]. Therefore, the
contributions integrated against u, of both projection residuals, are zero. Note
that this would not necessarily be the case if the residual were integrated against a
nonlinear function of u or another function with components for higher frequencies
than what is included in XFN . This is important to remember in a more general
setting, like in the estimate in Section 3.3. Note that

∫ 2π

0
ut · u dx = 1

2
d
dt‖u‖

2
L2(Ω).
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By applying (3.19)-(3.23), it is clear from (3.18) that

1

2

d
dt
‖u‖2L2(Ω) + εN‖u2

x‖L2(Ω) =

∫ 2π

0

L
[
A(u)

]
u dx− εN

∫ 2π

0

(∂2
xRN ∗ u)u dx

+

∫ 2π

0

(I − PN )[f(u)]x · u dx−
∫ 2π

0

(I − PN )L[A(u)] · u dx

≤ −εN
∫ 2π

0

(∂2
xRN ∗ u)u dx ≤ cN‖u‖2L2(Ω)

(3.24)

With (3.22) in mind and applying the Cauchy-Schwartz inequality, (3.24) gives
the inequality

1

2

d
dt
‖u‖2L2(Ω) + εN‖ux‖2L2(Ω) ≤ cN‖u‖

2
L2(Ω)

(3.25)

An energy estimate is now derived for the numerical solution by using 3.13 and
integrating (3.25) in time:

1

2

∫ T

0

d
dt
‖u‖2L2(Ω) dt+ εN

∫ T

0

‖ux‖2L2(Ω) dx ≤
∫ T

0

cN‖u‖2L2(Ω) dt

⇔ ‖u‖2L2(Ω) + 2εN‖ux‖2L2(DT ) ≤ B0 + ‖u0‖2L2(Ω)

(3.26)

3.2.2 Energy estimate of derivatives of numerical solution

Lemma 6. The following energy estimate holds for the derivatives of the numerical
solution:

ε2rN ‖∂rxu‖2L2(Ω)(t) + ε2r+1
N ‖∂r+1

x u‖2L2(DT ) ≤ Br + ε2rN ‖∂rxu0‖2L2(Ω), r ≥ 0 (3.27)

for a constant Br as defined in 3.14.

Proof. The base case r = 0 is shown to hold in Lemma 5. Note that in the base
case, the estimate is slightly stronger than what is implied by (3.27), since there is
a factor 2εN in front of the second term on the left hand side of equation (3.17).
Instead of applying u, equation (3.16) is multiplied with ∂2r

x u for an arbitrary
positive integer r and integrated over Ω. The goal is to establish an L2 estimate for
the rth derivative of the numerical solution. In the evaluation of terms, integration
by parts is applied repeatedly together with the periodicity of u to obtain the
desired form. Start with the time derivative on the left hand side:
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∫ 2π

0

∂2r
x u · ut dx =

(
[∂2r−1
x u · ut]2π0︸ ︷︷ ︸

=0

−
∫ 2π

0

∂2r−1
x u · ∂t∂xu dx

)

= ... = (−1)r
∫ 2π

0

∂rxu · ∂t∂rxu dx

= (−1)r
1

2

d
dt

∫ 2π

0

(∂rxu)2 dx

= (−1)r
1

2

d
dt
‖∂rxu‖2L2(Ω).

(3.28)

Further,

−εN
∫ 2π

0

∂2
xu · ∂2r

x u dx = −εN
(

[∂2
xu · ∂2r−1

x u]2π0︸ ︷︷ ︸
=0

−
∫ 2π

0

∂2+1
x u · ∂2r−1

x u dx
)

= ... = −(−1)r−1εN

∫ 2π

0

∂2+r−1
x u · ∂2r−(r−1)

x u dx

= (−1)rεN‖∂r+1
x u‖2L2(Ω)

(3.29)

Moving on to the nonlocal operator, it is now more complex to treat the contribu-
tion than in the case r = 0. Above, it was possible to derive that

−
∫ 2π

0

L[A(u)]u dx = B
(
A(u), u

)
≥ 0.

But in this case, it is not known whether ∂2r
x u increases or decreases, so this

argument cannot be used directly. It seems convenient to switch to the Fourier
representation. Due to Lemma 10, L[A(u)] can be represented by

L[A(u)] = −
∞∑

ξ=−∞

Cα|ξ|αÂξeiξx,

where Cα is some positive constant. Observe that

∂2r
x u = (−1)r

N∑
ξ=−N

|iξ|2rûξeiξx.
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Therefore,∫ 2π

0

−L[A(u)] · ∂2r
x u dx = (−1)r+1(−Cα)

∫ 2π

0

∞∑
p=−∞

N∑
ξ=−N

|p|αÂp · |ξ|2rûξei(p+ξ)x dx

= 2π(−1)r+2Cα

N∑
ξ=−N

|ξ|αÂ−ξ · |ξ|2rûξ

≥
≤ 2π(−1)rCα

N∑
ξ=−N

|ξ|αÂ−ξ · ûξ

= (−1)r
∫ 2π

0

L[A(u)]u dx ≥≤ 0

(3.30)

The convection term gives a contribution∫ 2π

0

∂xf(u) · ∂2r
x u dx = [f(u) · ∂2r

x u]2π0︸ ︷︷ ︸
=0

−
∫ 2π

0

∂2
xf(u) · ∂2r−1

x u dx

= ... =

∫ 2π

0

∂1+(r−1)
x f(u) · ∂2r−(r−1)

x u dx

C-S
≤ ‖∂r+1

x u‖L2(Ω) · ‖∂rxf(u)‖L2(Ω)

3
≤ Kr‖∂r+1

x u‖L2(Ω) · ‖∂rxu‖L2(Ω)

(3.31)

On the right hand side, consider the residual from the SVV term. The term is
integrated repeatedly by parts, and Lemma 2 is used together with the Cauchy-
Schwartz’ inequality to give a bound:

εN

∫ 2π

0

(∂2
xR ∗ u) · ∂2r

x u dx = εN

(
[(∂2

xR ∗ u) · ∂2r−1
x u]︸ ︷︷ ︸

=0

−
∫ 2π

0

(∂2
xR ∗ ∂xu) · ∂2r−1

x u dx
)

= ... = (−1)rεN

∫ 2π

0

(∂2
xR ∗ ∂rxu) · ∂rxu dx

C-S
≥
≤ (−1)rεN‖(∂2

xR ∗ ∂rxu)‖L2(Ω) · ‖∂rxu‖L2(Ω)

2

≥
≤ (−1)rcN‖∂rxu‖2L2(Ω)

≥
≤ C‖∂rxu‖2L2(Ω)

(3.32)

The only terms remaining are the contributions from the projection residuals. Since
the discrete space is closed under differentiation, it follows that ∂2r

x u ∈ XFN .
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Therefore, by using the same argument as in Section 3.2.1, it can be concluded
that ∫ 2π

0

L
[
(I − PN )A(u)

]
· ∂2r
x u dx = 0∫ 2π

0

∂x(I − PN )f(u) · ∂2r
x u dx = 0

(3.33)

Also, assume that C +
K2
r

2εN
≤ K

2
r

εN
. By using this, (3.28)-(3.33), Young’s inequality

and integrating in time, one can obtain an estimate for the derivatives of the
numerical solution by

1

2

d
dt
‖∂rxu‖2L2(Ω) + εN‖∂r+1

x u‖2L2(Ω) ≤ C‖∂
r
xu‖2L2(Ω) +Kr‖∂r+1

x u‖L2(Ω) · ‖∂rxu‖L2(Ω)

⇒ 1

2

d
dt
‖∂rxu‖2L2(Ω) + εN‖∂r+1

x u‖2L2(Ω) ≤ C‖∂
r
xu‖2L2(Ω)

+Kr
( Kr

2εN
‖∂rxu‖2L2(Ω) +

εN
2Kr
‖∂r+1
x u‖2L2(Ω)

)
⇒ 1

2

d
dt
‖∂rxu‖2L2(Ω) +

εN
2
‖∂r+1
x u‖2L2(Ω) ≤

(
C +

K2
r

2εN

)
‖∂rxu‖2L2(Ω) ≤

K2
r

εN
‖∂rxu‖2L2(Ω)

⇒ ‖∂rxu‖2L2(Ω)(t) + εN‖∂r+1
x u‖2L2(DT ) ≤

2K2
r

εN
‖∂rxu‖2L2(DT ) + ‖∂rxu0‖2L2(Ω)

(3.34)

From the induction hypothesis (3.27) one can derive the relation

‖∂sxu‖2L2(DT ) ≤ CBs−1ε
−(2s−1)
N (3.35)

by inserting r = s − 1 into the inequality and using Assumption 9. From (3.35)
and the definition of Br, one can obtain that

2K2
r

εN
‖∂rxu‖2L2(DT ) ≤

2K2
r

εN
· CBr−1ε

−(2r−1)
N = ε−2r

N Br,

which gives the desired result by multiplying the equation with ε2rN

3.3 L∞ estimate

The next step towards proving compactness is to show boundedness of the numer-
ical solutions. In that regard, a stability estimate is given in

Lemma 7 (L∞ stability of numerical solutions). In finite time, more specifically
for t < C lnN ,

‖u‖L∞(Ω) ≤ C‖u0‖L∞(Ω). (3.36)
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Proof. Equation (3.16) is multiplied with a test function as in the energy estimate.
It is convenient to use the function pup−1, where u is the numerical solution from
the method, and p is an even number. Observe that

d
dt
‖u‖pLp(Ω) = p‖u‖p−1

Lp(Ω) ·
d
dt
‖u‖Lp(Ω)

=
d
dt

∫ 2π

0

|u|p dx

=

∫ 2π

0

p|u|p−1 · d
dt
|u| dx

= p

∫ 2π

0

up−1 · ut dx

(3.37)

By performing spatial integration over Ω, the equation reads∫ 2π

0

pup−1 · ut dx− εN
∫ 2π

0

uxx · pup−1 dx+

∫ 2π

0

∂xf(u) · pup−1 dx

−
∫ 2π

0

L[A(u)] · pup−1 dx = εN

∫ 2π

0

(∂2
xRN ∗ u)pup−1 dx

+

∫ 2π

0

∂x(I − PN )f(u) · pup−1 dx−
∫ 2π

0

L[(I − PN )A(u)] · pup−1 dx

Each term on the left hand side is now treated separately, starting with the nonlocal
term. Just as in the energy estimate, the contribution from the nonlocal operator
can be rewritten in terms of the bilinear form. This is justified by using Lemma
16 with A(u) and v = up−1 inserted into the bilinear form:

−
∫ 2π

0

up−1L[A(u)] dx = B(A(u), up−1)

= cα

∫ 2π

0

∫
|y|>0

(
A[u(x+ y)]−A[u(x)]

)(
up−1(x+ y)− up−1(x)

)
|y|1+α

dydx ≥ 0

(3.38)

since both are increasing functions. Thus, this term is non-negative. Proceed to
the convection term on the left hand side and define F (u) to be the antiderivative of
f ′(u)·up−1. This function exists since f ′(u) and up−1 are assumed to be continuous.
Therefore, due to periodicity of u,

p

∫ 2π

0

∂xf(u) · up−1 dx = p

∫ 2π

0

fu(u) · up−1︸ ︷︷ ︸
F (u)

·ux dx

=

∫ 2π

0

F ′(u) · ux dx =
[
F
(
u(x)

)]2π
0

= 0.

(3.39)
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As for the viscosity term, because p is even and u and ux are periodic, one can
show that this is non-negative:

−εN
∫ 2π

0

uxx·up−1 dx = −εN
( [
ux · up−1

]2π
0︸ ︷︷ ︸

=0

−(p−1)

∫ 2π

0

u2
x·up−2 dx

)
≥ 0 ∀p ∈ 2N

(3.40)
Observe that in this case, the result (3.23) that was used in the energy estimate,
cannot be applied to the projection errors. The reason is that the function against
which the equation is multiplied, pup−1, is potentially nonlinear. Therefore, the
modes of the test function do not necessarily reside in XFN . Now it is possible
to proceed similarly as in [2], except that in this case there is also the projection
error term from the nonlocal operator. The relations (3.38), (3.39), (3.40) and the
Hölder inequality with p and q = p

p−1 together yield the inequality

d
dt
‖u‖pLp(Ω) ≤ p

∫ 2π

0

up−1
(
∂2
xRN ∗ u+ ∂x(I − PN )f(u) + L[(I − PN )A(u)]

)
dx

≤ p‖up−1‖
L

p
p−1 (Ω)

·
(
‖∂2
xRN ∗ u‖Lp(Ω) + ‖∂x(I − PN )f(u)‖Lp(Ω)+

‖L[(I − PN )A(u)]‖Lp(Ω)

)
(3.41)

Observe that ‖up−1‖
L

p
p−1 (Ω)

= ‖u‖p−1
Lp(Ω). Divide (3.41) by p‖u‖p−1

Lp(Ω), apply (3.37)
and take the limit as p→∞, which gives

⇒
d
dt‖u‖

p
Lp(Ω)

p‖u‖p−1
Lp(Ω)

=
p‖u‖p−1

Lp(Ω) ·
d
dt‖u‖Lp(Ω)

p‖u‖p−1
Lp(Ω)

≤
p‖up−1‖

L
p
p−1 (Ω)

p‖u‖p−1
Lp(Ω)

·
(
‖∂2
xRN ∗ u‖Lp(Ω) + ‖∂x(I − PN )f(u)‖Lp(Ω) + ‖L[(I − PN )A(u)]‖Lp(Ω)

)
⇒ lim

p→∞

d
dt
‖u‖Lp(Ω) ≤ lim

p→∞

(
‖∂2
xRN ∗ u‖Lp(Ω) + ‖∂x(I − PN )f(u)‖Lp(Ω)

+ ‖L[(I − PN )A(u)]‖Lp(Ω)

)
⇒ d

dt
‖u‖L∞(Ω) ≤ ‖∂2

xRN ∗ u‖L∞(Ω) + ‖∂x(I − PN )f(u)‖L∞(Ω) + ‖L[(I − PN )A(u)]‖L∞(Ω)

(3.42)

The projection errors and the residual from the spectral vanishing viscosity term
must be estimated. To estimate the contribution from the nonlocal operator, it
is convenient to rewrite the operator L. For brevity, introduce the function ϕ =
(I − PN )A(u). Let r > 0 be a variable for the moment. Lemma (14) is applied
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to the operator, but there is a natural distinction between the cases 0 < α < 1
and 1 ≤ α < 2 in the following. The estimate of the nonlocal operator will be
performed in both cases. First consider the case 0 < α < 1:

‖L[ϕ(x)]‖L∞(Ω) =
∥∥∥P.V. ∫

|y|<r
ϕ(x+ y)− ϕ(x) dµ(y) +

∫
|y|>r

ϕ(x+ y)− ϕ(x) dµ(y)
∥∥∥
L∞(Ω)

=
∥∥∥P.V. ∫

|y|<r

∫ 1

0

y · ϕx(x+ θy) dθdµ(y) +

∫
|y|>r

ϕ(x+ y)− ϕ(x) dµ(y)
∥∥∥
L∞(Ω)

≤ ‖ϕx‖L∞(Ω) ·
∫
|y|<r

y dµ(y)︸ ︷︷ ︸
=:ψ1(r)

+2‖ϕ‖L∞(Ω) ·
∫
|y|>r

dµ(y)︸ ︷︷ ︸
=:ψ2(r)

≤ C1(r)‖ϕx‖L∞(Ω) + C0(r)‖ϕ‖L∞(Ω)

(3.43)

for some C0(r), C1(r) depending on r. Note that both ψ1 and ψ2 are well-defined
due to Lemma 1, point iii) For 1 ≤ α < 2, the Taylor expansion must be made to
second order, and to do so, Lemma , point ii) is used, and the estimate becomes

‖L[ϕ(x)]‖L∞(Ω)

=
∥∥∥P.V. ∫

|y|<r
ϕ(x+ y)− ϕ(x)− y · ϕx(x) dµ(y) +

∫
|y|>r

ϕ(x+ y)− ϕ(x) dµ(y)
∥∥∥
L∞(Ω)

=
∥∥∥P.V. ∫

|y|<r

∫ 1

0

∫ θ

0

y2 · ϕx(x+ ty) dtdθdµ(y) +

∫
|y|>r

ϕ(x+ y)− ϕ(x) dµ(y)
∥∥∥
L∞(Ω)

≤ ‖ϕxx‖L∞(Ω) ·
∫
|y|<r

y dµ(y)︸ ︷︷ ︸
=:ψ1(r)

+2‖ϕ‖L∞(Ω) ·
∫
|y|>r

dµ(y)︸ ︷︷ ︸
=:ψ2(r)

≤ C2(r)‖ϕxx‖L∞(Ω) + C0(r)‖ϕ‖L∞(Ω)

(3.44)

for some C0(r), C2(r) depending on r. As before, ψ2 is well-defined. ψ1 is well-
defined since α < 2 and

|ψ1(r)| ≤ cα
∫
|y|<r

|y|2

|y|1+α
dy <∞.

This is not an optimal estimate, since r is not tuned to minimize the bound. To
that end, the integrals in (3.43) and (3.44) are calculated:∫

|y|>r
dµ = C

∫ ∞
r

dy
y1+α

=
Cr−α

α∫
|y|<r

|y|dµ = C

∫ r

0

ydy
y1+α

=
Cr1−α

1− α∫
|y|<r

y2dµ = C

∫ r

0

y2dy
y1+α

=
Cr2−α

2− α
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Define f1(r) := Cr−α

α ‖ϕ‖L∞(Ω) + Cr1−α

1−α ‖ϕx‖L∞(Ω) and f2(r) := Cr−α

α ‖ϕ‖L∞(Ω) +
Cr2−α

2−α ‖ϕxx‖L∞(Ω). Minimize these with respect to r to obtain

df1

dr
= 0⇒ rmin =

‖ϕ‖L∞(Ω)

‖ϕx‖L∞(Ω)
,

df2

dr
= 0⇒ rmin =

√
‖ϕ‖L∞(Ω)

‖ϕxx‖L∞(Ω)
.

These minimized expressions can be inserted into the estimate, which gives

f1(rmin) = C
‖ϕx‖L∞(Ω)

1− α
·
‖ϕ‖1−αL∞(Ω)

‖ϕx‖1−αL∞(Ω)

+ C
‖ϕ‖L∞(Ω)

α
·
‖ϕx‖αL∞(Ω)

‖ϕ‖αL∞(Ω)

= C‖ϕ‖1−αL∞(Ω)‖ϕx‖
α
L∞(Ω),

f2(rmin) = C
‖ϕxx‖L∞(Ω)

2− α
·
( ‖ϕ‖L∞(Ω)

‖ϕxx‖L∞(Ω)

) 2−α
2

+ C
‖ϕ‖L∞(Ω)

α
·
(‖ϕx‖L∞(Ω)

‖ϕ‖L∞(Ω)

)α
2

= C‖ϕ‖1−
α
2

L∞(Ω)‖ϕxx‖
α
2

L∞(Ω).

(3.45)

What remains now is to obtain an estimate of the quantities ‖∂x(I−PN )f(u)‖L∞(Ω),
‖(I−PN )A(u)‖L∞(Ω), ‖∂x(I−PN )A(u)‖L∞(Ω) and ‖∂2

x(I−PN )A(u)‖L∞(Ω). These
are estimated using the energy estimate for the derivatives of the solution in Lemma
6, the Gagliardo-Nirenberg Lemma 4, Assumption 1 and the Sobolev inequality
‖∂rxϕ‖L∞(Ω) ≤ ‖ϕr+[ 32 ]‖L2(Ω) = ‖ϕr+2‖L2(Ω) in one dimension (cf. theorem 6,
chapter 5 in [6]). Consider a function g(u) with smoothness s, and let 0 ≤ r ≤ s.
The energy estimate gives

‖∂sxu‖2L2(Ω) ≤ Cε
−2s
N and ‖∂s+1

x u‖2L2(DT ) ≤ Cε
−(2s+1)
N

The Gagliardo-Nirenberg inequality yields

‖∂rx(I − PN )g(u)‖L2(Ω) ≤
Ks
Ns−r ‖∂

s
xu‖L2(Ω)

≤ Ks
Ns−r · Cε

−s
N

≤ Ks
Ns−r · CN

θs = CKsNr−s(1−θ)

≤ BsNr−s(1−θ)

(3.46)

and similarly,

‖∂rx(I − PN )g(u)‖L2(DT ) ≤ BsNr−s(1−θ)− θ2 . (3.47)

Hence in the maximum norm,

‖∂rx(I − PN )g(u)‖L∞(Ω) ≤ BsNr+2−s(1−θ)

‖∂rx(I − PN )g(u)‖L∞(DT ) ≤ BsNr+2−s(1−θ)− θ2 .
(3.48)
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Let sf and sA denote the regularity of f and A respectively, and let the regularity
constants satisfy assumptions (7) and (4). Now apply (3.48), substituting g with
f and A and their respective smoothness constants. The interpolation error of the
convection operator is then bounded by

‖∂x(I − PN )f(u)‖L∞(Ω) ≤ BsfN
−
(

1+2− 2
(1−θ) ·(1−θ)

)
=
Bsf
N

≤ C1

N

sf∏
k=1

Ksf ≤
Ĉ1

N
‖u‖

s2f
2

L∞(Ω).
(3.49)

With the required regularity of A, a bound is obtained for the minimized expres-
sions in (3.45):

0 < α < 1⇒ C‖(I − PN )A(u)‖1−αL∞(Ω)‖∂x(I − PN )A(u)‖αL∞(Ω)

≤ C(BsAN
−sA(1−θ))1−α(BsAN

1−sA(1−θ))α

≤ CA
NsA(1−θ)(1−α)+α(sA(1−θ)−1)

‖u‖
s2A
2

L∞(Ω) =
CA

NsA(1−θ)−α ‖u‖
s2A
2

L∞(Ω),

and

1 < α < 2⇒ C‖(I − PN )A(u)‖1−
α
2

L∞(Ω)‖∂xx(I − PN )A(u)‖
α
2

L∞(Ω)

≤ C(BsAN
−sA(1−θ))1−α2 (BsAN

2−sA(1−θ))
α
2

≤ CA

NsA(1−θ)(1−α2 )+α
2 (sA(1−θ)−2)

‖u‖
s2A
2

L∞(Ω) =
CA

NsA(1−θ)−α ‖u‖
s2A
2

L∞(Ω).

Observe that the estimate turns out to be the same in both cases. To complete the
estimate, apply Lemma 2 to obtain a bound for the residual of the SVV term:

‖∂2
xRN ∗ u‖L∞(Ω)

Lemma2
≤ cN‖u‖L∞(Ω) ≤ C‖u‖L∞(Ω)

(3.50)

Assume for simplicity that sf = sA = s. This assumption, together with the above
results, yield the following inequality, valid for 0 < α < 2:

d
dt
‖u‖L∞(Ω) ≤ cN‖u‖L∞(Ω) +

C1

N
‖u‖

s2

2

L∞(Ω) +
C2

Ns(1−θ)−α ‖u‖
s2

2

L∞(Ω)

= cN‖u‖L∞(Ω) +
(C1

N
+

C2

Ns(1−θ)−α

)
‖u‖

s2

2

L∞(Ω), 0 < α < 2

(3.51)

This is an inhomogeneous nonlinear ordinary differential inequality with initial
condition ‖u‖L∞(Ω)(0) = ‖u0‖L∞(Ω). To solve it, proceed as in [2]: define y :=
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e−cN t‖u‖L∞(Ω) and insert into (3.51). Observe that y ≥ 0 and obtain

(3.51)⇒ dy
dt
≤
(C1

N
+

C2

Ns(1−θ)−α

)
y
s2

2 ecN
(
s2

2 −1
)
t

⇒
∫ y(t)

y(0)

dz

z
s2

2

≤
(C1

N
+

C2

Ns(1−θ)−α

)∫ t

0

ecN ( s
2

2 −1)τ dτ

⇒ y1− s22 (t) ≤ y1− s22 (0)− 1

cN
·
(C1

N
+

C2

Ns(1−θ)−α

)
︸ ︷︷ ︸

=:h(N)

(
ecN ( s

2

2 −1)t − 1
)

= y1− s22 (0)
(

1− h(N)
(
ecN ( s

2

2 −1)t − 1
)
y
s2

2 −1(0)
)

⇒ y(t) ≤ y(0)
(

1− h(N)
(
ecN ( s

2

2 −1)t − 1
)
y
s2

2 −1(0)
)− 1

s2
2
−1

⇒ ‖u‖L∞(Ω)(t) ≤ ecN t
(

1− h(N)
(
ecN
(
s2

2 −1
)
t − 1

)
‖u0‖

s2

2 −1

L∞(Ω)e
cN t
(

1− s22
))− 1

s2
2
−1 ‖u0‖L∞(Ω)

(3.52)

where the complicated factor in front of ‖u0‖L∞(Ω) is bounded for t < c lnN for
some constant c.

3.4 BV estimate

Stability of the numerical solutions measured in the bounded variation norm is
ensured by

Lemma 8. In finite time, the numerical solution of the SVV approximation (3.16)
is bounded in the BV norm by

‖u‖BV (Ω)(t) ≤

ecN t
(
‖u0‖BV (Ω) + C

N2

)
, 0 < α < 1

ecN t
(
‖u0‖BV (Ω) + C1

N2 + C2

N

)
, 1 ≤ α < 2

(3.53)

Proof. The procedure used in [2] can be applied with a modification for the nonlocal
term. Start by differentiating (3.16) spatially, yielding

∂t∂xu+ ∂2
x

(
f(u)

)
− L

[
∂xA(u)

]
− εN∂3

xu

= ∂2
x(I − PN )f(u)− L

[
∂x(I − PN )A(u)

]
+ εN∂

2
xRN ∗ ∂xu

(3.54)

Multiply (3.54) with sgnρ(∂xu), where sgnρ is a smooth approximation of the
signum function, and integrate over Ω. Then, take the limit on each side of the
equation as ρ → 0. This is to obtain the L1 norm. The first term gives the
contribution

lim
ρ→0

∂t

∫ 2π

0

∂xu · sgnρ(∂xu) dx =
d
dt
‖∂xu‖L1(Ω) (3.55)
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The convection term contribution is greater than zero. The argument for that is
as follows. Define η′ρ(ux) := sgnρ(ux) to ease notation. Use Lemma 12 in the
appendix and the fact that (η′ρ(ux) − η′(ux)) = o(1) pointwise almost everywhere
when ρ → 0. This can be shown, but we omit the slightly technical proof here.
For the interested reader, it can be noted that it is shown by applying Lebesgue’s
dominated convergence theorem and that the integral over the difference makes
sense when passing to the limit ρ→ 0. With this in mind, we get

lim
ρ→0

∫ 2π

0

∂2
xf(u) · sgnρ(∂xu) dx = lim

ρ→0

∫ 2π

0

∂xxf(u) · ux · sgnρ(∂xu) dx

= lim
ρ→0

∫ 2π

0

∂xxf(u) · ux
(
η′(ux) + (η′ρ(ux)− η′(ux))︸ ︷︷ ︸

=o(1)

)
dx

=

∫ 2π

0

∂x
(
f ′(u) · η(ux)

)
dx

=
[
f ′(u) · η(ux)

]2π
0

= 0.

(3.56)

The linear term can be shown to be greater than zero. Use the same notation as
above, observe that ηρ is a convex function and use Lemma 11 in the appendix to
realize that

lim
ρ→0
−
∫ 2π

0

∂3
xu · ηρ(∂xu) dx ≥ lim

ρ→0
−
∫ 2π

0

∂2
x(ηρ(ux)) dx

=
[
∂x(ηρ(ux))

]2π
0

= 0.

(3.57)

As in the preceding sections, the nonlocal operator can be eliminated due to its
sign. To see this, we apply Lemma 16 and proceed as follows:

−
∫ 2π

0

L[∂xA(u)] · sgnρ(∂xu) dx = B
(
∂xA(u), sgnρ(∂xu)

)
= cα

∫ 2π

0

∫
|y|>0

(
∂xA(u(x+ y))− ∂xA(u(x))

)(
sgnρ(∂xu(x+ y))− sgnρ(∂xu(x))

)
|y|1+α

dydx

= cα

∫ 2π

0

∫
|y|>0

((
∂A
∂u ux

)
(x+ y)−

(
∂A
∂u ux

)
(x)
)(

sgnρ(∂xu(x+ y))− sgnρ(∂xu(x))
)

|y|1+α
dydx

≥ 0,

(3.58)

sinceA is an increasing function. By using (3.55)-(3.58) and Lemma 2, an inequality
for the time derivative of the norm of ∂xu in L1 is obtained:

d
dt
‖∂xu‖L1(Ω) ≤ cN‖∂xu‖L1(Ω) + C‖∂2

x(I − PN )f(u)‖L1(Ω) + ‖∂x(I − PN )L[A(u)]‖L1(Ω)

⇒ d
dt

(
e−cN t‖∂xu‖L1(Ω)

)
≤ e−cN t

(
C‖∂2

x(I − PN )f(u)‖L1(Ω) + ‖∂x(I − PN )L[A(u)]‖L1(Ω)

)
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But it holds that ‖u‖BV (Ω) ≤ ‖∂xu‖L1(Ω). Therefore,

‖u‖BV (Ω) ≤ ecN t
(
‖u0‖BV (Ω) + C‖∂2

x(I − PN )f(u)‖L1(DT ) + ‖∂x(I − PN )L[A(u)]‖L1(DT )

)
(3.59)

What remains now is to estimate the projection error contributions on the right
hand side. Once again, the energy estimate from Section 3.2 plays an important
role. By using the energy estimate for the derivatives and the Gagliardo-Nirenberg
inequality (3.12), the L2 norm of the convection residual can be bounded gracefully:

‖∂2
x(I − PN )f(u)‖L2(DT ) ≤ BsN2−s(1−θ)

√
T (3.60)

As concerns the nonlocal residual, there are also here two cases of relevance; 0 <
α < 1 and 1 ≤ α < 2. To see how things turn out, it appears to be convenient
to estimate the term in Fourier space. Write A(u) =

∑∞
ξ=−∞ Âξe

iξx such that
(I − PN )A(u) =

∑
|ξ|>N Âξe

iξx. Apply the operators of interest to see that

∂xL[(I − PN )A(u)] =
∑
|ξ|>N

(−Gξ)(iξ)Âξeiξx,

where Gξ = −Cα|ξ|α is the Fourier symbol of L, and Cα is a constant (see [2],
proposition 7.1 and section 4.2 in this article for details). The term can now be
estimated by using Parseval’s identity and going back to the physical domain to
recognize that

‖∂xL[(I − PN )A(u)]‖2L2(Ω) =
∑
|ξ|>N

|(−Gξ)(iξ)Âξ|2

=
∑
|ξ|>N

|GξξÂξ|2

≤

{
Cα
∑
|ξ|>N |ξ|4|Âξ|2, 0 < α < 1

Cα
∑
|ξ|>N |ξ|6|Âξ|2, 1 ≤ α < 2

=

{
Cα‖∂2

x(I − PN )A(u)‖2L2(Ω) 0 < α < 1

Cα‖∂3
x(I − PN )A(u)‖2L2(Ω) 1 ≤ α < 2.

(3.61)

By using the energy estimate obtained previously,

‖∂x(I − PN )L[A(u)]‖L2(DT ) ≤

{
CBsN

2−s(1−θ)
√
T , 0 < α < 1

CBsN
3−s(1−θ)

√
T , 1 ≤ α < 2

alternatively,

‖∂x(I − PN )L[A(u)]‖L2(DT ) ≤

{
CBsN

2−s(1−θ)− θ2 , 0 < α < 1

CBsN
3−s(1−θ)− θ2 , 1 ≤ α < 2.

(3.62)
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Also, since the L1 norm is bounded by a constant times the L2 norm in the compact
domain DT due to Lemma 15 in the appendix,

‖∂2
x(I − PN )f(u)‖L1(DT ) ≤ CBsN2−s(1−θ)

√
T

‖∂x(I − PN )L[A(u)]‖L1(DT ) ≤

{
CBsN

2−s(1−θ)
√
T , 0 < α < 1

CBsN
3−s(1−θ)

√
T , 1 ≤ α < 2

alternatively,

‖∂2
x(I − PN )f(u)‖L1(DT ) ≤ CBsN2−s(1−θ)− θ2

‖∂x(I − PN )L[A(u)]‖L1(DT ) ≤

{
CBsN

2−s(1−θ)− θ2 , 0 < α < 1

CBsN
3−s(1−θ)− θ2 , 1 ≤ α < 2.

(3.63)

By merging constants and using Assumptions 4 and 7 for the regularity, the desired
BV stability bound

‖u‖BV (Ω)(t) ≤

ecN t
(
‖u0‖BV (Ω) + CN2−s(1−θ)

)
, 0 < α < 1

ecN t
(
‖u0‖BV (Ω) + C1N

2−s(1−θ) + C2N
3−s(1−θ)

)
, 1 ≤ α < 2

≤

ecN t
(
‖u0‖BV (Ω) + CN−2

)
, 0 < α < 1

ecN t
(
‖u0‖BV (Ω) + C1N

−2 + C2N
−1
)
, 1 ≤ α < 2

is obtained.

3.5 Time regularity estimate

The procedure from lemma 5.3 in [2] is used to derive time regularity estimates.
The nonlocal term must be treated differently however. The estimate is concluded
with

Lemma 9. Let the assumptions in section 3.1 hold and let u be the numerical
solution of the SVV approximation (3.16). Then

‖u(·, t1)− u(·, t2)‖L1(Ω) ≤ C
√
|t1 − t2| (3.64)

Proof. Let ε > 0 initially be undetermined. Introduce the mollifier unit function
ωε(x) = 1

ε · ω(xε ), where ω ∈ C∞c (R) is nonnegative and satisfies

ω(−x) = ω(x), ω(x) = 0 ∀|x| > 1 and
∫
R
ω(x) dx = 1.

Also, introduce uε = u ∗ ωε. Add and subtract terms and use the triangular
inequality to see that

‖u(·, t1)− u(·, t2)‖L1(Ω) ≤ ‖u(·, t1)− uε(·, t1)‖L1(Ω)

+ ‖uε(·, t2)− u(·, t2)‖L1(Ω) + ‖uε(·, t1)− uε(·, t2)‖L1(Ω)

(3.65)
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By using the definition of the convolution, the first and second terms on the right
hand side are bounded in the BV seminorm:

‖u(·, t)− uε(·, t)‖L1(Ω) =

∫ 2π

0

∣∣∣ ∫ ∞
−∞

ωε(y − x)
(
u(x, t)− u(y, t)

)
dy
∣∣∣ dx

≤
∫ 2π

0

∣∣∣ ∫ ∞
−∞

ωε(s)
(
u(x, t)− u(x+ s, t)

)
ds
∣∣∣ dx

≤ |u|BV (Ω)

∫ ∞
−∞
|s| · ωε(s) ds

≤ ε|u|BV (Ω)

The tricky third term is bounded using Taylor’s formula with integral remainder:

‖uε(·, t1)− uε(·, t2)‖L1(Ω)

≤ |t1 − t2|
∫ 2π

0

∫ 1

0

|∂tuε(x, t1 + τ(t2 − t1))| dτdx

It is now obvious that what is needed to conclude the estimate is a bound for
‖∂tu‖L1(Ω). In [2], this is achieved by convolving the numerical equation with
the mollifier ωε and integrating over Ω. The difference is that in this case, there
is also the term from the projection of the nonlocal operator since it is possibly
nonlinear. It seems natural to deal with this in the same manner as the convection
term. Hence, convolve the numerical equation (3.16) with ωε and use the triangle
inequality to obtain

‖∂tu ∗ ωε‖L1(Ω) = ‖∂tuε‖L1(Ω) ≤ ‖∂xf(u) ∗ ωε‖L1(Ω) + ‖∂x(I − PN )f(u) ∗ ωε‖L1(Ω)

+ εN‖∂2
xu ∗ ωε‖L1(Ω) + εN‖(∂2

xRN ∗ u) ∗ ωε‖L1(Ω)

+ ‖L[A(u)] ∗ ωε‖L1(Ω) + ‖L[(I − PN )A(u)] ∗ ωε‖L1(Ω)

The four first terms on the right hand side can be estimated as in [2] using the
triangle inequality, Lemma 2 and Young’s inequality for convolutions to obtain that

‖∂xf(u) ∗ ωε‖L1(Ω) + ‖∂x(I − PN )f(u) ∗ ωε‖L1(Ω) ≤ C
(
|u|BV (Ω) +

1

N

)
εN‖∂2

xu ∗ ωε‖L1(Ω) ≤ ‖∂xu ∗ ∂xωε‖L1(Ω) ≤ ε−1|u|BV (Ω)

εN‖
(
∂2
xRN ∗ u

)
∗ ωε‖L1(Ω) ≤ C‖u‖L1(Ω)

(3.66)

The last two terms are treated in a similar manner, but using an arbitrary function.
Consider ‖L[ϕ] ∗ ωε‖L1(Ω) for a function ϕ(x). Then split the nonlocal operator in
two and use the triangle inequality to obtain

|L[ϕ] ∗ ωε‖L1(Ω) ≤
∫ 2π

0

∣∣∣ ∫ ∞
−∞

(∫
|y|<1

ϕ(x+ y)− ϕ(x)− y∂xϕ(x)dµ(y)
)
ωε(x− p)

∣∣∣dpdx
+

∫ 2π

0

∣∣∣ ∫ ∞
−∞

(∫
|y|>1

ϕ(x+ y)− ϕ(x)dµ(y)
)
ωε(x− p)

∣∣∣dpdx
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The first term is expressed as a Taylor expansion with integral remainder. By using
‖∂xωε‖L1 ≤ Cε−1 and integrating by parts, it can be seen that the first term is
bounded by∫ 2π

0

∣∣∣ ∫ ∞
−∞

(∫
|y|<1

ϕ(x+ y)− ϕ(x)− y∂xϕ(x)dµ(y)
)
ωε(x− p)dp

∣∣∣dx
=

∫ 2π

0

∣∣∣ ∫ ∞
−∞

(∫
|y|<1

∫ 1

0

(1− τ)y2∂xϕ(x) dτdµ(y)
)
ωε(x− p)dp

∣∣∣dx
≤
∫ 2π

0

∫ ∞
−∞

∫
|y|<1

∫ 1

0

(1− τ)y2|∂xϕ(x)||ωε(x− p)| dτdµ(y)dpdx

=

∫ 2π

0

∫ ∞
−∞

∫
|y|<1

∫ 1

0

(1− τ)y2|∂xϕ(x)||∂xωε(x− p)| dτdµ(y)dpdx

≤ Cε−1|ϕ|BV (Ω)

The second term is bounded by∫ 2π

0

∣∣∣ ∫ ∞
−∞

(∫
|y|>1

ϕ(x+ y)− ϕ(x)dµ(y)
)
ωε(x− p)

∣∣∣dpdx ≤ C‖ϕ‖L1(Ω)

So by letting ϕ(x) = A
(
u(x)

)
we get the bound

‖L[A(u)] ∗ ωε‖L1(Ω) ≤ Cε−1|A(u)|BV (Ω) + C‖A(u)‖L1(Ω)

Now is the time to use the properties of A. Firstly, observe that the BV seminorm
of a differentiable function ϕ can be written

|ϕ|BV (Ω) = sup
h6=0

∫ 2π

0

|ϕ(x+ h)− ϕ(x)|
|h|

dx,

cf. Appendix A in [12]. Use Assumption 5 to discover that

|A(u)|BV (Ω) = sup
h6=0

∫ 2π

0

|A[u](x+ h)−A[u](x)|
|h|

dx

≤ sup
h6=0

∫ 2π

0

LA|u(x+ h)− u(x)|
|h|

dx

= LA|u|BV (Ω)

Secondly, use Assumption 2 and consider the second term above:

‖A(u)‖L1(Ω) =

∫ 2π

0

|A[u](x)| dx =

∫ 2π

0

|A[u](x)−A[0](x)︸ ︷︷ ︸
=0

| dx

≤
∫ 2π

0

LA|u(x)− 0(x)| dx

= LA‖u‖L1(Ω)
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In conclusion,

‖L[A(u)] ∗ ωε‖L1(Ω) ≤ LA · C(ε−1|u|BV (Ω) + ‖u‖L1(Ω)).

With ϕ(x) = (I − PN )A(u), observe that the residual is bounded by

‖L[(I − PN )A(u)] ∗ ωε‖L1(Ω) ≤ Cε−1|(I − PN )A(u)|BV (Ω) + C‖(I − PN )A(u)‖L1(Ω)

≤ Cε−1‖∂x(I − PN )A(u)‖L1(Ω) + C‖(I − PN )A(u)‖L1(Ω)

Now we can use (3.46) to obtain

‖(I − PN )A(u)‖L1(Ω) ≤ BsN−s(1−θ),
‖∂x(I − PN )A(u)‖L1(Ω) ≤ BsN1−s(1−θ) (3.67)

such that, when using Assumption 4, we have that

‖L[(I − PN )A(u)] ∗ ωε‖L1(Ω) ≤ Cε−1BsN
1−s(1−θ) + CBsN

−s(1−θ)

≤ C(ε−1N−3 +N−4),

The conclusion we get by using the BV stability proved in Lemma 8, the energy
estimate from Lemma 5, (3.66) and the fact that ‖u‖L1(Ω) ≤ C‖u‖L2(Ω), is that

‖∂tuε‖L1(Ω) ≤ ‖∂tu‖L1(Ω) ≤ C
(
|u|BV (Ω) +

1

N

)
+ C(ε−1N−3 +N−4)

+ C(ε−1|u|BV (Ω) + ‖u‖L1(Ω))

≤ C
(

1 +
1

ε

)
The whole proof is now concluded by inserting the above estimates into (3.65),
yielding

‖u(·, t1)− u(·, t2)‖L1(Ω) ≤ C
(
ε+ |t1 − t2|(1 + ε−1)

)
,

and by taking ε =
√
|t1 − t2|,

‖u(·, t1)− u(·, t2)‖L1(Ω) ≤ C
√
|t1 − t2|,

and the proof is complete.

3.6 Compactness
Due to the compactness theorem discussed in section 3.1 and the results obtained
in sections 3.2 through 3.5, we can conclude that the family of numerical solutions
of the SVV approximation (3.16) is compact with the following theorem:

Theorem 2 (Compactness of SVV approximation). Suppose that Assumptions
2-9 hold, and let uN be the solution of (3.16) for a given space dimension N .
Then there exists a subsequence {uN} converging in C([0, T ];L1(Ω)) to a limit
u ∈ C([0, T ];L1(Ω)) ∩ L∞(DT ) ∩ L∞([0, T ];BV (Ω)).
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3.7 Convergence of the numerical method
By synthesizing the results that are obtained in the previous sections, the conver-
gence analysis can now be concluded with the following

Theorem 3. Let Assumptions 2-9 hold, let uN be the solution of the SVV approxi-
mation (3.16), and let vεN be the solution of (2.8). Then the following convergence
estimate holds:

‖uN (·, T )− vεN (·, T )‖L1(Ω) ≤ C
√
εN (1 +N−3 +N−3+11≤α<2)

Proof. The direct argument used in [2] can be applied. vεN is smooth, so equation
(2.8) can be subtracted from (3.16), such that

∂t(uN − vεN ) + ∂x
(
f(uN )− f(vεN )

)
− L[A(uN )−A(vεN )]− εN∂2

x(uN − vεN )

= −εN∂xR ∗ ∂xuN + ∂x(I − PN )f(uN ) + ∂x(I − PN )A(uN )

(3.68)

Multiply (3.68) with sgnρ(uN − vεN ), a smooth approximation of sgn(uN − vεN ),
integrate over Ω and go to the limit ρ→ 0 to obtain

d
dt
‖un − vεN ‖L1(Ω) ≤ εN‖∂xRN ∗ ∂xuN‖L1(Ω) + ‖∂x(I − PN )f(u)‖L1(Ω)

+ ‖(I − PN )L[A(u)]‖L1(Ω)

The first term on the right hand side is estimated by applying Lemma 8, equation
(3.9) in Lemma 2 with s = 2 and Assumption 1:

‖∂xRN ∗ ∂xu‖L1(Ω) ≤ ‖∂xRN‖L1(Ω)‖∂xu‖L1(Ω) ≤ CmN logN‖u‖BV (Ω)

≤ Cε−
1
2

N

Integrate in time to obtain

‖un − vεN ‖L1(Ω) ≤ C
√
εN + ‖∂x(I − PN )f(u)‖L1(DT ) + ‖(I − PN )L[A(u)]‖L1(DT )

≤ C(
√
εN + ‖∂x(I − PN )f(u)‖L2(DT ) + ‖(I − PN )L[A(u)]‖L2(DT ))

Now perform an estimate as in (3.61) without the derivative to obtain an estimate
like (3.63):

‖L[(I − PN )A(u)]‖L1(DT ) ≤

{
CBsN

1−s(1−θ)− θ2 , 0 < α < 1

CBsN
2−s(1−θ)− θ2 , 1 ≤ α < 2

(3.69)

Use (3.47), (3.69) and Assumptions1, 4 and 7 to estimate the last two terms:

‖∂x(I − PN )f(uN (·, T ))‖L2(Ω) ≤ CKsN1−s(1−θ)− θ2 ≤ CKsN−3− θ2

≤ CN−3√εN



3.7. CONVERGENCE OF THE NUMERICAL METHOD 33

‖(I − PN )L[A(uN (·, T ))]‖L2(Ω) ≤ CKsN1+11≤α<2−s(1−θ)− θ2 ≤ CKsN−3+11≤α<2− θ2

≤ CN−3+11≤α<2
√
εN

such that

‖un(·, T )− vεN (·, T )‖L1(Ω) ≤ C
√
εN (1 +N−3 +N−3+11≤α<2),

which concludes the proof.



Chapter 4

Discretization and numerical
solvers

4.1 Introduction - overview of solvers

One of the goals for the thesis was to generalize the framework of known numerical
methods for fractional conservation laws, by analyzing a new method for solving
the quite general model equation (2.2). When a solver is implemented in practice,
there occur some additional obstacles that one does not think of when analyzing the
problem theoretically. For instance, the nonlinear interpolations require calculation
of integrals that are not known before the equation is determined. That is, the
integrals are not method-specific, but equation-specific.

A generic solver must address this problem in a good way such that the equation
can be specified arbitrarily. However, the cost of making such a generic solver is that
quadrature must be applied, and this can affect the accuracy of the method. This
is because the numerical scheme is then a perturbation of the original equation. For
special cases, like f = up and A = up, the use of quadrature for the interpolations
can be avoided by using convolutions in Fourier space, and thus an "exact" method
is obtained.

We have developed two solvers in this project for comparison; one generic solver
that can process arbitrarily specified f and A, and one which is an exact method for
linear and quadratic f and A. The latter uses convolutions to calculate the nonlin-
ear projections exactly, whereas the former applies the discrete Fourier transform
to approximate the integrals occurring in the interpolations. The two methods also
differ in the choice of discrete space. An elegant feature of both methods is that
they diagonalize all discrete operators, including the discretization of the nonlocal
operator. This greatly reduces computational costs, since the solvers are inherently
matrixless due to this fact.

The derivation of the differential equations that are implemented in code will
be given in the following. For simplicity and clarity, the details are given in one and

34
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two dimensions, and these are also the cases treated in the numerical experiments of
the project. Extension to arbitrary dimensions is a matter of book-keeping, and the
interested reader can therefore easily implement extensions of the discretizations
derived in this report. The notation is kept on a general level so as to include both
solvers in the derivations. Where there are differences between the two solvers, this
is commented particularly.

4.2 Discrete space
In this project, the spatial domain used in the discretizations of the Fourier-
Galerkin method is Ω = (0, 2π)d, where d is the number of dimensions of the
problem. Let p ∈ Zd,x ∈ Rd. The discrete space is defined in terms of a basis as

XFN = span {eip·x}.

The basis is orthogonal with respect to the standard L2 inner product, but it is
not normalized. It is convenient to drop the normalization factor in the basis, since
this will vanish in the discretized equations anyway.

N is assumed to be an even number in the case of the generic solver. For the
generic solver, it is required that min

j
pj ≥ −N2 , max

j
pj ≤ N

2 − 1 and for the exact

solver, that min
j
pj ≥ −N , max

j
pj ≤ N . For generality, introduce the index set I,

which contains all the indices of the discrete space XFN . This eases the notation
in the following, as it covers both solvers, and will be used where it is appropriate.

Choosing −N2 and N
2 − 1 as the lowest and highest frequency components is a

common convention in the Fourier-Galerkin framework to create anNd dimensional
space. The reason for this is that one often uses quadrature to evaluate integrals in
weak formulations, and in particular, the discrete Fourier transform. The generic
solver uses the DFT/FFT as quadrature, and the discrete Fourier transform is de-
fined in such a way that this basis corresponds to the components of the transform.
It is therefore practical to induce the same basis in the discrete solution space. For
the exact solver, it is more convenient to use −N and N as the lowest and highest
frequency components.

4.3 Discretization in one spatial dimension
For each t > 0, the discrete solution is expressed as a linear combination of the trial
functions, i.e. u(x, t) =

∑
p∈I ûp(t)e

ipx. To obtain the semi-discretized system of
ODEs, the solution is inserted into the numerical variational equation (2.10). In
(2.10), let the test function be given by v = e−iξx. In the following, each term is
treated specifically, and the orthogonality of the chosen basis space is utilized to
obtain a decoupled system of ODEs. In the derivation of the terms in the exact
solver below, the equation

ut +
1

2

d
dx
u2 = −(−∆)

α
2 u2
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is implemented, but the reader should easily be able to extend this also to other
equations with f(u), A(u) as for instance up.

Mass term

The mass term is trivial. For both solvers, the contribution is∫ 2π

0

ut · v dx =
∑
p∈I

ûp

∫ 2π

0

eipxe−iξx dx = 2πûξ(t), ξ ∈ I

Convection term - generic solver

The convection term is possibly nonlinear, and its projection onto XFN is

PNf(u) =

N
2 −1∑

p=−N2

f̂pe
ipx,

where

f̂p =
1

2π

∫ 2π

0

f [u](x)e−ipx dx

is the Fourier expansion of f(u). These integrals are approximated numerically
using the discrete Fourier transform (DFT). One can show that the DFT corre-
sponds to the trapezoidal quadrature rule for periodic functions. Although this
modification is a "variational crime", the quadrature error in this approach is of
the same magnitude as the discretization error for periodic functions under certain
conditions, but we do not prove this here (see for instance [7], p. 300). Let f̃
denote the DFT approximation of the Fourier coefficient. The contribution from
the convection term is thus calculated as follows:∫ 2π

0

dPNf(u)

dx
· v dx =

N
2 −1∑

p=−N2

∫ 2π

0

ipf̂pe
ipxe−iξx dx

= 2πiξf̂ξ

≈ 2πiξf̃ξ

Convection term - exact solver

Consider

1

2

d
dx
u2 =

1

2

d
dx

( N∑
p=−N

ûpe
ipx
)( N∑

q=−N
ûqe

iqx
)

=
1

2

N∑
p=−N

N∑
q=−N

i(p+ q)ûpûpe
i(p+q)x
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Integrate against the test function and take the projection to obtain the convection
contribution:

1

2

∫ 2π

0

d
dx
u2 · e−iξx dx =

1

2

N∑
p=−N

N∑
q=−N

i(p+ q)ûpûq

∫ 2π

0

ei(p+q−ξ)x dx

= π

N∑
p=−N

N∑
q=−N

i(p+ q)ûpûq, p+ q = ξ

⇒ 1

2

∫ 2π

0

PN
d
dx
u2 · e−iξx dx = πiξ

N∑
p=−N

ûpûξ−p1−N≤ξ−p≤N , ξ ∈ {−N, ..., N}

Fractional diffusion term - generic solver

In the numerical equation, the projection of the possibly non-linear term onto the
discrete space XFN is calculated as

PNA[u](x) =
∑
p∈I

Âpe
ipx,

where

Âp =
1

2π

∫ 2π

0

A[u](x)e−ipx dx, p ∈ I.

Essentially, the nonlinear projection is a truncated Fourier representation of the
nonlinear function A[u].

As with the convection term, these integrals are calculated using the DFT.
The choice can be motivated also from a computational point of view. For the
DFT, there are very efficient algorithms and highly optimized off-the-shelf computer
software. A naïve implementation of the DFT has a complexity of O(n2), whereas
the Fast Fourier Transform (FFT) requires O(n log n) flop. Let Ãp denote the
DFT approximation of Âp. The nonlocal term can now be evaluated using the
(approximate) nonlinear projection:∫ 2π

0

L(PNA[u]) · v dx

=
∑
p∈I

Âp

∫ 2π

0

e−iξx
∫
|y|>0

eip(x+y) − eipx − ipy1|y|<1eipx dµ(y)dx

= 2πÂξ

∫
|y|>0

eipy − 1− ipy1|y|<1 dµ(y)dx︸ ︷︷ ︸
G(ξ)

≈ 2πÃξG(ξ)

(4.1)

Depending on the measure dµ(y), the integralG(ξ) can be calculated (semi-)analytically.
In [2], when L = −(−∆)

α
2 like here, Jakobsen and Cifani give an explicit closed-

form expression for 0 < α ≤ 1 and a semi-analytical expression for 1 < α < 2.
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According to their Proposition 7.1,

G(ξ) = −Cα|ξ|α,
where

Cα =
2cα
α

∫ ∞
0

x−α sinx dx︸ ︷︷ ︸
Θα

(4.2)

For 1 < α < 2, no closed-form expression is known for Θα, and it must be approxi-
mated with numerical quadrature. For 0 < α ≤ 1, it can be calculated analytically
as

Θα =

{
Γ(1− α) sin π(1−α)

2 , 0 < α < 1
π
2 , α = 1

See also Section 6.2 for more details of the implementation in code.

Fractional diffusion term - exact solver

Use the same approach as with the convection term to calculate the square of
u. Then apply the nonlocal operator, multiply with the test function, take the
projection and integrate to obtain∫ 2π

0

L[PNu
2] · e−iξx dx

=

∫ 2π

0

e−iξx
∫
|y|>0

PNu
2(x+ y)− PNu2(x)− y1|y|<1PN

(
u2
)
x
dµ(y)dx

=

∫ 2π

0

N∑
p=−N

N∑
q=−N

ûpûq1|p|,|q|≤Nei(p+q−ξ)x
∫
|y|>0

ei(p+q)y − 1− i(p+ q)1|y|<1y dµ(y)︸ ︷︷ ︸
Gp+q

dx

= 2π

N∑
p=−N

ûpûξ−p1−N≤ξ−p≤NG(ξ), p+ q = ξ, ξ ∈ {−N, ..., N}

SVV term

For both solvers, the spectral vanishing viscosity term gives a contribution∫ 2π

0

(∂2
xQN ∗ u)v dx =

∫ 2π

0

(
−

∑
p∈I,|p|≥mN

ξ2Q̂p(t)ûp(t)e
ipx
)

eiξx dx

= −2πξ2Q̂ξ(t)ûξ(t)
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The viscosity kernels Q̂ξ(t) are chosen according to the following scheme, which is
used by Maday and Tadmor in [5]:

Q̂ξ = 0, |ξ| < m

Q̂ξ = |ξ|−m
m , m ≤ |ξ| ≤ 2m

Q̂ξ = 1, 2m < |ξ| ≤ max I
(4.3)

Source term

In the equation treated theoretically, there is no source term. However, the imple-
mentation in this project was made with the possibility of having a source term on
the right hand side of the equation for comparison and testing. The contribution
from a source term can be calculated as∫ 2π

0

e−iξx · g(x) dx.

In the practical implementation, this integral is calculated using quadrature to allow
for arbitrary source functions g. In the other terms of the variational equation,
there is a geometric factor of 2π due to the choice of basis. This factor does not
appear in the source term contribution. In the final equation, this factor is divided
away, so for notation it is convenient to define

S(ξ) :=
1

2π

∫ 2π

0

e−iξx · g(x) dx.

4.3.1 ODE system

Having evaluated all the terms, the numerical solution can be computed by solving
the following ODE systems. After dividing the equation by 2π, the equation for
the generic solver reads

dûξ
dt

= Ãξ(ûξ)G(ξ)− iξf̃ξ(ûξ)− εNξ2Q̂ξûξ + S(ξ) ∀ξ ∈ {−N
2
, ...,

N

2
− 1}, (4.4)

whereas the equation for the exact solver reads

dûξ
dt

=

N∑
p=−N

ûpûξ−p1−N≤ξ−p≤N
(
G(ξ)− 1

2
iξ
)
− εNξ2Q̂ξûξ + S(ξ) ∀ξ ∈ {−N, ..., N}

(4.5)

Note that the sum on the right hand side is a discrete convolution, and can therefore
be implemented efficiently as such.
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4.4 Discretization in two spatial dimensions

The solution is represented by u(x1, x2, t) =
∑
p1∈I

∑
p2∈I ûp1p2(t)eip·x, where

p = [p1, p2], x = [x1, x2] and I is the one-dimensional index set defined in section
4.2. In two dimensions the test function is v = e−iξ·x with ξ = [ξ1, ξ2]. The
procedure in the following is the same as in one dimension, and orthogonality of
the basis is used in each variable. In the derivation of the terms in the exact solver,
the equation

ut +
1

2
∇ · [u2, u2] = −(−∆)

α
2 u2

is implemented as an example (but as in one dimension, it can easily be generalized
to for instance up in the f and A).

Mass term

The mass contribution for both solvers is

∫ 2π

0

∫ 2π

0

ut · v dx1dx2 =

N
2 −1∑

p1=−N2

N
2 −1∑

p2=−N2

ûp1p2

∫ 2π

0

∫ 2π

0

eip·xe−iξ·x dx1dx2

= (2π)2ûξ1ξ2(t)

Convection term - generic solver

In dimensions higher than one, the convection function is vector-valued. Here it is
therefore denoted by f = [f1, f2]. It is possibly nonlinear, and its component-wise
projection onto XFN is

PNfj(u) =

N
2 −1∑

p1=−N2

N
2 −1∑

p2=−N2

f̂ jp1p2ei(p1x1+p2x2),

where

f̂ jp1p2 =
1

4π2

∫ 2π

0

∫ 2π

0

fj [u](x)e−ip·x dx1dx2, j ∈ {1, 2}

is the two-dimensional Fourier expansion of fj(u). As in one dimension, these inte-
grals are approximated numerically with quadrature, essentially DFT. In Matlab
there is an efficient FFT routine also for higher dimensions. In two dimensions it
is called fft2(). Let f̃ denote the FFT approximation of the Fourier coefficient.



4.4. DISCRETIZATION IN TWO SPATIAL DIMENSIONS 41

The contribution from the convection term is thus calculated as follows:∫ 2π

0

vPN∇ · f [u](x) dx1dx2

=

N
2 −1∑

p1=−N2

N
2 −1∑

p2=−N2

∫ 2π

0

∫ 2π

0

i(p1f̂
1
p1p2 + p2f̂

2
p1p2)ei

(
(p1−ξ1)x1+(p2−ξ2)x2

)
dx1dx2

= 4π2i(ξ1f̂
1
ξ1ξ2 + ξ2f̂

2
ξ1ξ2) = 4π2iξ · f̂ξ1ξ2

≈ 4π2iξ · f̃ξ1ξ2

Convection term - exact solver

Consider

1

2

( ∂

∂x1
+

∂

∂x2

)
u2 =

1

2

( ∂

∂x1
+

∂

∂x2

)( N∑
p1=−N

N∑
p2=−N

ûp1p2eip·x
)( N∑

q1=−N

N∑
q2=−N

ûq1q2eiq·x
)

=
1

2

N∑
p1=−N

N∑
p2=−N

N∑
q1=−N

N∑
q2=−N

i(p1 + p2 + q1 + q2)ûp1p2 ûq1q2ei(p+q)·x

Integrate against the test function and take the projection to obtain the convection
contribution:

1

2

∫ 2π

0

∫ 2π

0

( ∂

∂x1
+

∂

∂x2

)
u2 · e−iξ·x dx1dx2

=
1

2

N∑
p1=−N

N∑
p2=−N

N∑
q1=−N

N∑
q2=−N

i(p1 + p2 + q1 + q2)ûp1p2 ûq1q2

∫ 2π

0

∫ 2π

0

ei(p+q−ξ)·x dx1dx2

= 2π2
N∑

p1=−N

N∑
p2=−N

N∑
q1=−N

N∑
q2=−N

i(p1 + p2 + q1 + q2)ûp1p2 ûq1q2 , p + q = ξ

⇒ 1

2

∫ 2π

0

∫ 2π

0

PN

( ∂

∂x1
+

∂

∂x2

)
u2 · e−iξ·x dx1dx2

= 2π2i(ξ1 + ξ2)

N∑
p1=−N

N∑
p2=−N

ûpûξ−p1−N≤ξ1−p1≤N1−N≤ξ2−p2≤N , ξ1, ξ2 ∈ {−N, ..., N}

Fractional diffusion term - generic solver

The projection of A onto the discrete space is also a two-dimensional Fourier ex-
pansion,

PNA[u](x) =

N
2 −1∑

p1=−N2

N
2 −1∑

p2=−N2

Âp1p2ei(p1x1+p2x2),
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where

Âp1p2 =
1

4π2

∫ 2π

0

∫ 2π

0

A[u](x)e−ip·x dx1dx2, p1, p2 ∈
{
− N

2
, ...,

N

2
− 1
}
.

Let Ã be the FFT approximation. The nonlocal term reads

∫ 2π

0

∫ 2π

0

L(PNA[u]) · v dx1dx2

=

N
2 −1∑

p1=−N2

N
2 −1∑

p2=−N2

Âp

∫ 2π

0

∫ 2π

0

e−iξ·x
∫
|y|>0

eip·(x+y) − eip·x − ip · y1|y|<1eip·x dµ(y)dx1dx2

= 4π2Âξ

∫
|y|>0

eip·y − 1− ip · y1|y|<1 dµ(y)︸ ︷︷ ︸
G(ξ)

≈ 4π2ÃξG(ξ), ξ1, ξ2 ∈ {−
N

2
, ...,

N

2
− 1}

(4.6)

In [2], the semi-closed-form expression for G is given also in higher dimensions.
The general case in d dimensions is given by

G(ξ) = −Cα|ξ|α
∫
|y|=1

dS, (4.7)

where Θα is defined as before,

Cα = 2cαΘα

with

cα = αΓ
(d+ α

2

)(
2π

d
2 +αΓ

(
1− α

2

))−1

,

and the surface integral can be calculated as

∫
|y|=1

dS =
2π

d
2

Γ
(
d
2

) .
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Fractional diffusion term - exact solver

As in one dimension, calculate the square of u, apply the nonlocal operator, mul-
tiply with the test function, take the projection and integrate to obtain∫ 2π

0

L[PNu
2] · e−iξ·x dx

=

∫ 2π

0

e−iξx
∫
|y|>0

PNu
2(x + y)− PNu2(x)− y1|y|<1 · ∇PNu2 dµ(y)dx

=

∫ 2π

0

∫ 2π

0

N∑
p1=−N

N∑
p2=−N

N∑
q1=−N

N∑
q2=−N

ûpûq1|p|,|q|≤Nei(p+q−ξ)·x

·
∫
|y|>0

ei(p+q)·y − 1− i(p + q) · y1|y|<1 dµ(y)︸ ︷︷ ︸
G(p+q)

dx1dx2

= 4π2
N∑

p1=−N

N∑
p2=−N

ûpûξ−p1−N≤ξ1−p1≤N1−N≤ξ2−p2≤NG(ξ),

p + q = ξ, ξ1, ξ2 ∈ {−N, ..., N}.

SVV term

For both solvers, the integral from the spectral vanishing viscosity term becomes∫ 2π

0

∫ 2π

0

(
(∂2
x1

+ ∂2
x2

)QN ∗ u
)
v dx1dx2

=

N
2∑

|p1|=mN

N
2∑

|p2|=mN

∫ 2π

0

∫ 2π

0

(p2
1 + p2

2)Q̂p1p2(t)ûp1p2(t)eip·xeiξ·x dx1dx2

= −4π2(ξ2
1 + ξ2

2)Q̂ξ1ξ2(t)ûξ1ξ2(t)

The viscosity kernels Q̂ξ1ξ2(t) are chosen according to the same scheme as in one
dimension: 

Q̂ξ1ξ2 = 0, |ξ| < m

Q̂ξ1ξ2 = |ξ|−m
m , m ≤ |ξ| ≤ 2m

Q̂ξ1ξ2 = 1, 2m < |ξ| ≤ max I,
where ξ = [ξ1, ξ2]

(4.8)

However, in dimensions greater than one, there is freedom related to the distance
measure. In the simulations performed in this study, the standard Euclidean 2-
norm is used, i.e. |ξ| = ‖ξ‖2 =

√
ξ2
1 + ξ2

2 , but other norms are also possible. The
requirement is that the kernels are spherically symmetric. In the implementation of
the method, the kernel coefficients are gathered in a viscosity matrix Q̂. In figure
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4.1, typical such matrices are shown. The viscosity free spectrum is the white
portion of the matrix.

(a) 2-norm (b) ∞-norm

Figure 4.1: Viscosity matrices with different norms

Source term

The source term contribution becomes a two-dimensional integral:∫ 2π

0

∫ 2π

0

e−iξ1x1e−iξ2x2 · g(x1, x2) dx1dx2.

In two dimensions, the geometric factor in the other terms is 4π2, hence define

S(ξ) :=
1

4π2

∫ 2π

0

∫ 2π

0

e−iξ1x1e−iξ2x2 · g(x1, x2) dx1dx2.

4.4.1 ODE system

Divide the equation by 4π2. The numerical solution is given in terms of the fol-
lowing ODE systems. The equation for the generic solver reads

dûξ1ξ2
dt

= Ãξ1ξ2(ûξ1ξ2)G(ξ1, ξ2)− i(ξ1f̃1
ξ1ξ2 + ξ2f̃

2
ξ1ξ2) + εN (ξ2

1 + ξ2
2)Q̂ξ1ξ2(t)ûξ1ξ2(t)

+ S(ξ1, ξ2)

⇔ dûξ
dt

= Ãξ(ûξ)G(ξ)− iξ · f̃ξ(ûξ) + εN‖ξ‖22Q̂ξûξ + S(ξ)

∀ξ = [ξ1, ξ2] ∈
{
− N

2
, ...,

N

2
− 1
}2

(4.9)



4.4. DISCRETIZATION IN TWO SPATIAL DIMENSIONS 45

while the equation for the exact solver is

dûξ1ξ2
dt

=

N∑
p1=−N

N∑
p2=−N

[
ûp1p2 û(ξ1−p1,ξ2−p2)

(
G(ξ1, ξ2)− 1

2
i(ξ1 + ξ2)

)
1−N≤ξ1−p1≤N

· 1−N≤ξ2−p2≤N
]

+ εN (ξ2
1 + ξ2

2)Q̂ξ1ξ2(t)ûξ1ξ2(t) + S(ξ1, ξ2))

⇔ dûξ
dt

=

N∑
p1=−N

N∑
p2=−N

ûpûξ−p1−N≤ξ1−p1≤N1−N≤ξ2−p2≤N

(
G(ξ)− 1

2
i‖ξ‖1

)
+ εN‖ξ‖22Q̂ξûξ + S(ξ) ∀ξ = [ξ1, ξ2] ∈

{
−N, ..., N

}2

(4.10)



Chapter 5

Numerical experiments

5.1 Introduction

The preceding sections have grounded a theoretical fundament for the Fourier-
Galerkin method. In this project, we have implemented in code and tested the
two different methods mentioned in Chapter 4; both an "exact" convolution solver
for the special quadratic cases and a generic FFT solver where f and A can be
specified arbitrarily.

For both methods, a series of simulations have been conducted to verify con-
vergence and analyze qualitative properties of the numerical solutions. Testing the
code is an important step in any software development process, and in particular for
mathematical software, since small bugs in the code quickly can lead to inaccurate
and unstable results.

The software is written in Matlab for the convenience of easy prototyping,
except a quadrature module for calculating the integrals deriving from the nonlocal
operator. The quadrature module is written in C, and called as a mex plugin in
Matlab (see also Section 6.2 and Appendix B for more details and example code).
All simulations have been carried out on a Windows 8 (64 bit) Lenovo T500 laptop,
with a duo-core processor running at 2.8 GHz and 8 GB of memory.

5.2 Qualitative behavior of solutions

By having a mathematical understanding of the effect of terms involved in the
equation, one has a qualitative feeling of how the numerical solutions should look
like. For instance, the nonlocal operator acts as a smoothing, averaging agent,
which tears down sharp corners and discontinuities. The effect of this however
depends on the parameter α, and it is therefore interesting to run simulations
and see how it affects the smoothing effect of the operator. In the introduction
of [2], Jakobsen and Cifani refer to recent works that show that for nonlinear
fractional conservation laws, solutions are smooth when 1 ≤ α < 2, and that shock

46
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discontinuities can occur, even from regular initial data, when 0 < α < 1.
With many parameters to vary, there are a vast number of interesting cases to

test and simulate. We give some examples of different equations with discontinuous
initial data to illustrate the effect of different types of diffusion. Some of the
test cases presented below are with and some are without convection to highlight
the difference. Also, each equation is simulated with different values of α, with
and without the spectral vanishing viscosity so that the effect of including this
term in the equation becomes clear. The simulations in Section 5.2.4 and the
2D simulations are performed using the generic FFT solver, whereas the others
are performed using the convolution solver. In all simulations in this section, the
dimension of the discrete space is 512 for both the convolution solver and the
generic FFT solver. Also, all simulations are run up to T = 0.5. The function H
denotes the heaviside step function.

5.2.1 Quadratic convection and diffusion
The plots in figure 5.1 show solutions of the problem

ut +
1

2

d
dx
u2 = −(−∆)

α
2 u2, (x, t) ∈ (0, 2π)× [0, T ],

u(x, 0) = H
(
x− π

2

)
−H

(
x− 3π

2

)
− 1

2

(5.1)

for different values of α, with and without SVV added to the equation. The plots
show that for α < 1, the Gibbs oscillations that are caused by the discontinuous
initial data are scattered in the whole solution curve with peaks around the initial
discontinuities, and they do not vanish over time unless SVV is added. Interestingly,
the solution becomes increasingly unstable for increasing α, and diverges rapidly for
α = 1.0 and α = 1.5. Notice that there is a certain under- and overshooting in the
solutions, and hence the maximum principle is violated. This is an indication that
the method is non-monotone, which we should expect for these spectral methods
contrary to finite volume schemes like in [4].

5.2.2 Quadratic convection, linear diffusion
The solutions of the problem

ut +
1

2

d
dx
u2 = −(−∆)

α
2 u, (x, t) ∈ (0, 2π)× [0, T ],

u(x, 0) = H
(
x− π

2

)
−H

(
x− 3π

2

)
− 1

2

(5.2)

displayed in figure 5.2 show more stability than with quadratic diffusion. As ex-
pected, there are nonvanishing Gibbs’ oscillations for α = 0.5, but for α ≥ 1, these
are smoothed out over time. Observe how the solutions behave qualitatively dif-
ferently with and without SVV. The SVV term clearly reduces gradients near the
discontinuities. Solutions of (5.1) and (5.2) with SVV are compared for α = 0.5
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in figure 5.4. With quadratic diffusion, we can see that more of the energy is
conserved, and gradients are steeper.

Equation (5.2) was also simulated in 2D, and the plots are shown in figure (5.3).
In these simulations, the discrete dimension is 322 = 1024.

5.2.3 No convection, quadratic diffusion

With no convection the problem reads

ut = −(−∆)
α
2 u2, (x, t) ∈ (0, 2π)× [0, T ],

u(x, 0) = H
(
x− π

2

)
−H

(
x− 3π

2

)
− 1

2
,

(5.3)

and the solutions are displayed in figure 5.5. From the figure, we see that the
behavior is similar to that of 5.1 except that the curve is symmetric since the
convection term is missing. Also here, the solutions diverge for α ≥ 1 without
SVV. This indicates that it is the quadratic diffusion which is troublesome, not the
convection term, contrary to the linear diffusion case.

5.2.4 Fully degenerate diffusion

Another interesting case is strongly degenerate diffusion, i.e. A vanishes on a set of
positive measure. To illustrate this case, we apply one of the degenerate functions
used in [4], and the solutions are shown in figure 5.6. Note that this diffusion
function is not covered in the theory that we have derived since it is not smooth,
but it is interesting to try numerical simulations still. Observe that the solutions
are not smoothed out without SVV for α ≥ 1 unlike with linear diffusion.

ut = −(−∆)
α
2 A(u), (x, t) ∈ (0, 2π)× [0, T ],

u(x, 0) = H
(
x− π

2

)
−H

(
x− 3π

2

)
− 1

2
,

A(u) =


0, u ≤ 0.5

5(2.5u− 1.25)(u− 0.5), 0.5 < u ≤ 0.6

1.25 + 2.5(u− 2.6), u > 0.6

(5.4)

5.2.5 Comparison with the standard Laplacian

Although the case α = 2 is not treated theoretically in this project, the numerical
solvers are written to also handle this. Note that according to [9], Section 4.2.2,
when α → 2, the fractional diffusion operator defined in 2.3 converges to ∆

4π2 and
not ∆. The reason for this is related to which definition of the Fourier transform
that is used. We have performed some simulations in the double-quadratic case
5.1 with different values of α approaching 2 and compared them to the numerical
solution when α = 2. The results are shown in figure 5.7. In 5.7b the difference
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between the numerical solution at α = 2 and values of α approaching 2 indicates
that the solver converges to the "standard" Laplacian solution when α→ 2.
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(a) Without SVV (b) With SVV

(c) Without SVV (d) With SVV

(e) Without SVV (f) With SVV

Figure 5.1: Numerical solution of (5.1)
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(a) Without SVV (b) With SVV

(c) Without SVV (d) With SVV

(e) Without SVV (f) With SVV

Figure 5.2: Numerical solution of (5.2)
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(a) Without SVV (b) With SVV

Figure 5.3: Numerical solution of (5.2) in 2 dimensions

Figure 5.4: Comparison between (5.1) and (5.2)



5.2. QUALITATIVE BEHAVIOR OF SOLUTIONS 53

(a) Without SVV (b) With SVV

(c) Without SVV (d) With SVV

(e) Without SVV (f) With SVV

Figure 5.5: Numerical solution of (5.3)
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(a) Without SVV (b) With SVV

(c) Without SVV (d) With SVV

(e) Without SVV (f) With SVV

Figure 5.6: Numerical solution of (5.4)
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(a) Comparison for different α (b) Convergence towards the solution with α = 2

Figure 5.7: Comparison of solutions when α→ 2

5.3 Convergence

A measure of the numerical convergence is the most important verification that
the method is implemented correctly, and also an indication that the theoretical
analyses performed in the previous chapters are valid. We have performed con-
vergence tests for quadratic, linear and degenerated diffusion functions. The new
case is of course the quadratic one, and it is interesting to compare these results to
the linear case. The fully degenerated case is also included, as it is of interest to
see for instance whether it has different convergence properties than other types of
nonlinear, non-degenerated diffusion.

In each case, the numerical convergence has been measured with and without
SVV for both α < 1 and α > 1, for both discontinuous initial data and infinitely
smooth, periodic initial data. The non-smooth initial data used in the simulations
are

u(x, 0) = sgn(π − x), (5.5)

and the smooth initial data are

u(x, 0) = sin(cosx). (5.6)

For linear equations and "standard" spectral methods, the convergence depends on
the regularity of solutions. If the solutions are infinitely smooth and periodic, the
convergence is expected to be exponential, but otherwise not. From the theoretical
analysis in Chapter 3, we should expect exponential convergence with the SVV
method.

There are however some problematic issues related to the measure of conver-
gence. The initial data need to be projected onto the discrete space before the solver
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can start. The projection of these is carried out using the built-in quadrature in
Matlab to calculate the integrals

ûξ0 =

∫ 2π

0

u0(x) · e−iξx dx.

For large ξ, and especially if u0(x) is non-smooth, the quadrature is not able to
integrate the expressions to machine precision and issues warnings about this. The
precision limit was typically approximately 10−3 in these experiments. So when
calculating a reference solution with a high space dimension, the integrals become
inexact. This limits the accuracy which is possible to obtain with the method, and
the effect is that it is not feasible to reach machine precision in the simulations.

Analytic solutions of the problem posed on a finite domain are hard to get
hold of (for the Cauchy problem, there exist for instance Barrenblatt solutions, cf.
[11]). Therefore, a numerical solution with high refinement is used as a reference
point instead. The numerical solutions are computed for increasing dimension of
the discrete space. For each N , the error is measured in the standard discrete
l2 norm for the difference between the coefficients in the test solution and the
appropriate, corresponding Fourier coefficients in the high order numerical solution.
The results are plotted with logarithmic axes and shown in figures 5.8 through 5.13.
A downward bending curve indicates exponential convergence, whereas a straight
line with negative slope indicates polynomial convergence.

The conclusion is that there is strong evidence of numerical convergence for the
SVV method in all cases. The results indicate that the asymptotic convergence of
the method is exponential with linear and quadratic diffusion, but only polynomial
with degenerate diffusion (and nonsmooth data). This result is in line with the
theoretical expectations. The absolute error obtained is however not as small as
one could desire (like machine precision) due to the above mentioned quadrature
inaccuracy. There is also probably considerable room for tuning, for instance with
regard to the choice of εN and mN , to further improve the rate of convergence.

In all cases, the value of α does not affect the convergence when SVV is applied.
However, when the SVV term is dropped, there are some interesting effects occur-
ring. For instance, with quadratic diffusion and smooth initial data, the method
converges for α = 0.5, but not for α = 1.5 and neither with nonsmooth initial
data. With linear diffusion, it converges with smooth and nonsmooth initial data
at least when α = 1.5. With degenerate diffusion, it diverges with nonsmooth data
and appears to converge polynomially with smooth data. Also not that when the
method converges without SVV, the rate is considerably higher than with SVV.
This is probably a part of the price that must be paid to guarantee convergence.
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(a) α = 0.5, without SVV (b) α = 0.5, with SVV

(c) α = 1.5, without SVV (d) α = 1.5, with SVV

Figure 5.8: Convergence plots for equation (5.1) with initial data (5.5)
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(a) α = 0.5, without SVV (b) α = 0.5, with SVV

(c) α = 1.5, without SVV (d) α = 1.5, with SVV

Figure 5.9: Convergence plots for equation (5.1) with initial data (5.6)
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(a) α = 0.5, without SVV (b) α = 0.5, with SVV

(c) α = 1.5, without SVV (d) α = 1.5, with SVV

Figure 5.10: Convergence plots for equation (5.2) with initial data (5.5)
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(a) α = 0.5, without SVV (b) α = 0.5, with SVV

(c) α = 1.5, without SVV (d) α = 1.5, with SVV

Figure 5.11: Convergence plots for equation (5.2) with initial data (5.6)
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(a) α = 0.5, without SVV (b) α = 0.5, with SVV

(c) α = 1.5, without SVV (d) α = 1.5, with SVV

Figure 5.12: Convergence plots for equation (5.4) with initial data (5.5)
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(a) α = 0.5, without SVV (b) α = 0.5, with SVV

(c) α = 1.5, without SVV (d) α = 1.5, with SVV

Figure 5.13: Convergence plots for equation (5.4) with initial data (5.6)

5.4 Computational complexity

Another very important aspect of a numerical solver is the computational costs
that it induces. It is of little practical use to develop a solver which does not have
a reasonable tradeoff between the computational costs and the accuracy that is
possible to obtain. The computation time of both solvers is therefore measured as
a function of the discrete space dimension. Both solvers are tested using the same
test setup, which is the computation of solutions to the problem

ut +
1

2

d
dx
u2 = −(−∆)

1
2u2 + ∂2

xRN ∗ u, (x, t) ∈ Ω× [0, 0.5]

u(x, 0) = sgn(π − x)
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(i.e. using SVV). In addition, the same equation is solved and the computation
time measured in two spatial dimensions using the FFT solver, since this is a priori
expected to be the fastest solver and therefore most interesting to implement in
higher dimensions. The simulations were carried out several times, and the average
of the simulations is used as the measurement. These measurements are plotted
together with least-squares-fits of asymptotic computation time models and the
statistical coefficient of determination, R2.

5.4.1 Exact solver

The results are shown in figure 5.14. Not surprisingly, the linear fit in 5.14a seems
to be inferior to the quadratic fit in 5.14b, with the latter having a coefficient
of determination of around 98%. This is in line with what we can expect when
using naïve convolution products to calculate the quadratic projections. It is pos-
sible to improve this by using fast convolution algorithms, but that has not been
implemented in this project.

(a) Linear fit (b) Loglinear fit

Figure 5.14: Computation time simulations for the exact solver in one dimension

5.4.2 FFT solver

One dimension

The results are shown in figure 5.15. Theoretically, the computational complexity
is expected to be loglinear since the fast fourier transform is used to evaluate
approximations of the quadratic projections. The loglinear fit in 5.15b has the
highest coefficient of determination, as we could expect, but the linear fit in 5.15a
is also very good. This is an indication that the FFT algorithm in Matlab is very
efficient and has low coefficients in the asymptotic expression. Also note that the
absolute computation time in seconds is very low compared to the exact solver.
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In [16], the measurements indicated linear computation time for a similar linear
fractional diffusion equation solver, so the additional costs for computing nonlinear
terms is very low with the FFT approach.

(a) Linear fit (b) Log-linear fit

Figure 5.15: Computation time simulations for the FFT solver in one dimension

Two dimensions

The diagonal structure of the discrete operators and the inherently low compu-
tational complexity makes the FFT solver very attractive to implement in higher
dimensions also. In d dimensions, The theoretical complexity is O

(
Nd log N

)
,

compared to O
(
N2d

)
for a naïve solver. This makes the algorithm almost opti-

mal, in the sense that it requires O
(
log N

)
operations per unknown (an optimal

solver would require a constant amount of work per unknown). The results from
computation time simulations with the 2D solver are shown in 5.16.
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(a) Quadratic fit (b) Log-quadratic fit

Figure 5.16: Computation time simulations for the FFT solver in two dimensions

Somewhat surprisingly perhaps, the quadratic model has a slightly higher value
of R2. In any case, the results show that the complexity is attractively low also in
two dimensions.



Chapter 6

Implementation concerns

6.1 Aliasing errors

6.1.1 Introduction
In the field of numerical solution of nonlinear partial differential equations, it is
often necessary to introduce some kind of linearization of the nonlinear terms to
be able to calculate an approximative solution. One way could be to solve the
linearization of the equation around a known solution, if available. In the case of
finite difference methods, another way is to use iterative optimization algorithms
to search for solutions of the discretized nonlinear equation.

When working with spectral methods, or finite element methods for that matter,
one uses a discrete function space of a certain, finite dimension to approximate the
solution. Any linear combination of the basis functions resides in this space, but
nonlinear combinations of these do not necessarily reside in the approximation
space. Take for instance a quadratic term. In the setting of the FFT solver of this
project, the example term becomes

u2 =
( N

2 −1∑
ξ=−N2

aξe
iξx
)2

=

N−2∑
ξ=−N

Mξe
iξx

for some Mξ depending nonlinearly on the aξ. Hence, the approximation space
needed to represent this term has dimension 2N − 1, not N . To make an approx-
imation within the discrete space, one can use the closest-point projection of the
nonlinear term onto the discrete space. In this project, the L2 inner product is used,
and the projection is hence essentially a truncated Fourier series representation of
the nonlinear term, such that

u2 =

N−2∑
ξ=−N

Mξe
iξx ≈ PNu2 =

N
2 −1∑

ξ=−N2

bξe
iξx

66
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with

bξ =
1

2π

∫ 2π

0

u2(x) · e−iξx dx =
1

2π

∫ 2π

0

( N−2∑
p=−N

Mξe
ipx
)
· e−iξx dx (6.1)

This projection representation is not exact. In this project, the projections are
shown to be spectrally accurate, i.e. the error decays exponentially fast with in-
creasing dimension number N , but it still constitutes a source of error. Generally
speaking, since this type of error is of the same asymptotical order as other error
sources, it needs no special treatment with regard to the convergence properties of
the numerical method. Also, when using quadrature to approximate the projec-
tion, the additional error due to the quadrature is no worse than the quadrature
error committed elsewhere in the method (for instance for source terms). If the
quadrature is spectrally accurate, the method does not lose its asymptotic conver-
gence rate. It should therefore be noted that attempting to diminish this particular
error source is a matter of making the solution look more smooth, and does not
affect the convergence rate of the method. In the solution of some equations, it
turns out that the particular type of error due to the discrete approximation of
nonlinear projections manifests itself as ripples which are not aesthetically pleas-
ing. Hence, using a technique to reduce this phenomenon is of interest to improve
the appearance of the numerical solution.

This particular numerical error is a purely nonlinear phenomenon, since linear
equations do not impose the need for projections. As Rønquist discusses in [15], one
can interpret the error in terms of the frequency components. The nonlinear term
has higher frequency components than what is included in the discrete space of
the numerical method. When calculating the projection of the nonlinear term onto
the discrete space of lower dimension, the higher frequencies do interfere with the
lower frequency components. This is only possible in the nonlinear case, since there
are cross terms and interactions between the frequency components. For linear
combinations of frequencies, there is no interaction between different frequency
components. In a discrete sampling, a high frequency mode can appear to be a
lower frequency mode by having the same sampled values on the chosen grid. This
phenomenon is called aliasing and is illustrated in figure 6.1, where an equidistant
grid is used to sample the functions sinπx and sin−9πx as in [15].
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Figure 6.1: Sampled points are indistinguishable

The FFT is applied in practice to evaluate the integral (6.1). The FFT is a
discrete sampling on an equidistant grid, so for instance the two components used
as an example in figure 6.1 would experience constructive interference, and the low
frequency mode is thus overestimated. This would not be a problem if the integral
in (6.1) is calculated analytically, but with quadrature, the discrete sampling can
cause this phenomenon. The higher frequency components, that ought to have zero
amplitude in the approximation, look like they have lower frequency and therefore
pollute the lower frequency modes, causing ripples in the solution.

6.1.2 Dealiasing
A practical remedy to the aliasing problem is presented in [15]. Historically, the
problem of aliasing was first addressed in numerical methods developed for meteo-
rological models in the 1950s and 1960s, according to [14]. The idea is to calculate
an expanded sample in the time domain by temporarily extending the discrete
space of basis functions with zero modulated higher frequencies. Then, the non-
linear term is calculated at the expanded grid using the larger sample. Lastly the
nonlinear coefficients are obtained from the sampled nonlinear term and truncated
to the original dimension of the discrete space. Let f(u) be the nonlinear function
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of u, N be the original discrete dimension, M > N be the extended discrete di-
mension, aξ be a vector of length N with the coefficients of u as above, and let b̃ξ
be a vector of length N with the numerical (DFT) approximation of (6.1). Using
this notation, the scheme in figure 6.2 illustrates the dealiasing procedure.

Figure 6.2: Dealiasing principle
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It can be shown that the zero-padding procedure in the Fourier domain corre-
sponds to polynomial interpolation in the physical domain. This fact can be seen
in figure 6.2. Here, the square of a function u is calculated directly from u and
sampled on N points. u2 is also calculated using the zero-padding technique, sam-
pling it on M = 3

2 points. The dealiased approximation of u2 has an extra point
between two values of the nondealiased u2, interpolating in between.

Figure 6.3: Interpolation in the time domain

There is freedom related to the choice of M , i.e. the size of the extended, zero-
padded spectrum. This is a tradeoff issue between the computational complexity
and the degree to which ripples in the solution are to be smoothed out. The optimal
size is likely to depend on the nonlinearity of the term to be approximated. If the
nonlinearity is not too strong, several authors report that the so-called 2

3 rule
attributed to Orszag suffices. According to [14], section 11.5. Orszag showed that
M = 3

2N is the optimal choice for a quadratic nonlinearity, i.e. u2, in the sense
that this ensures N alias free coefficients.
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6.1.3 Numerical results
Korteweg-de-Vries’ equation

In [15], Rønquist treats a standard Fourier-Galerkin spectral method for the Korteweg-
de-Vries’ (KdV) equation ut + 1

2
d
dxu

2 − uxxx = 0, posed on a compact domain
with soliton waves as initial data and periodic boundary conditions (u0(x) =

3α2
1sech

2
(
α1

(x−x1)
2 − α3

1t
)

) + 3α2
2sech

2
(
α2

(x−x2)
2 − α3

2t
)
, x1 = π − 2, x2 = π −

1, α1 = 25, α2 = 16). With the given initial data, the analytic solution of the
Cauchy problem are traveling soliton waves, so similar behavior is to be expected
also on a finite domain with periodic boundary conditions. In the project, a solver
was built for the KdV equation to explore the dealiasing technique for an equation
with known behavior, and to compare the results with the effects of the technique
applied to the main equation of study, namely the fractional conservation law.

Figure 6.4: Numerical solution of KdV equation - no dealiasing applied

The aliased numerical solution is shown in figure 6.4, where the aliasing ripples
are quite marked. In figure 6.5 the dealiasing procedure is applied to the solution
at each timestep. The constant k denotes the size of the expanded spectrum by
the relation M = kN , such that there are (k−1)N

2 zeros padded on each side of the
spectrum. One can clearly see how the dealiasing procedure quickly improves the
appearance of the solution. For k = 9

8 the ripples are negligible, and they appear
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to be completely smoothed out for k = 5
4 , since there is no vast improvement

compared to k = 3
2 . Thus it seems that although Orszag’s rule is theoretically

correct, it can suffice with an even smaller spectrum. Heuristically speaking, this
should be tested for the equation, initial data and nonlinearity in question.

(a) k = 17
16

(b) k = 9
8

(c) k = 5
4

(d) k = 3
2

Figure 6.5: Numerical solution of KdV equation - dealiasing applied

Fractional conservation laws

For the fractional conservation law under study, there are possibly nonlinear terms,
projections of these and quadrature approximations of the projections. In the light
of the above analysis, it is therefore a legitimate hypothesis that there could occur
aliasing errors in the numerical method. However, the Korteweg-de-Vries’ equation
has qualitatively different properties compared to the fractional conservation law.
One central difference is the (possible) presence of fractional diffusion in equation
(2.2). In the numerical method, spectral vanishing viscosity (SVV) is also present.
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The qualitatively perhaps most important property of diffusion is that it regularizes
solutions. Sharp corners and discontinuities are smoothed, and eventually solutions
are "smeared" out under regular diffusion, and the fractional diffusion has similar
properties, at least for α > 1. A natural question to ask is then whether the dif-
fusion can remove numerical ripples caused by the aliasing errors by itself, thereby
making the dealiasing procedure redundant in the numerical method.

To test the numerical solver, different equations and initial data were posed.
The solver was then configured with and without spectral viscosity and dealiasing
routines to identify the cases where aliasing ripples occurred and whether fractional
diffusion and/or spectral viscosity could remove these.

(a) No dealiasing (b) Dealiasing applied

Figure 6.6: Numerical solution of ut + 0.5[u2]x = −(−∆)
1
2u+ εN∂

2
xQ ∗ u.

In figure 6.6a, weak SVV is applied. In figure 6.6b, the same amount of SVV is
applied, but dealiasing is also enabled, using the Orszag 2

3 rule. In both simulations,
ripples are visibly present in the solution. However, the dealiased solution has
markedly smaller ripples. If the ripples were purely caused by aliasing errors, no
ripples should be present at all, according to Orszag’s rule (since the nonlinearity
is quadratic). This is evidence supporting that the ripples are a combination of
aliasing errors and spurious Gibbs oscillations. The Gibbs oscillations occur when
there are discontinuities in the initial data. The dealiasing technique does not
remove such oscillations, so the remaining ripples in figure 6.6b are caused by the
Gibbs’ phenomenon.
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For continuous initial data with steep gradients, numerical experiments indicate
that the module of SVV term must be fairly strong to stabilize the solution. To
compare the solver to the one developed for the KdV equation, the same, steep
initial data as in figure 6.5 were used.

(a) Strong SVV, no dealiasing (b) Strong SVV, dealiasing

(c) Even stronger SVV, no dealiasing (d) Even stronger SVV, dealiasing

Figure 6.7: Numerical solution of ut + 0.01[u2]x = −(−∆)
1
2u+ εN∂

2
xQ ∗ u

In the experiments shown in figure 6.7, the module of the SVV term is much
stronger than in the experiments in figure 6.6, even in the figures 6.7a and 6.7b.
The difference between the dealiased solution and the other one is very small in
these experiments. This indicates that the relatively strong SVV term smoothes
these ripples fairly well, in contrast with the case of weaker SVV. In any case,
the dealiasing procedure does not seem to destabilize or decrease the accuracy of
the method. To sum up, applying it is useful when the required module of the
SVV term is small, and not so much in the case of strong diffusion (large SVV
term or fractional diffusion with α > 1). So long as it does not constitute a



6.2. COMPUTATION OF FRESNEL INTEGRALS 75

huge computational cost, it should be enabled. Alternatively, one can make some
heuristic or a posteriori algorithm to determine the need for it based on the degree
of diffusion present in the equation and the regularity of the initial data.

6.2 Computation of Fresnel integrals

In the numerical implementation of the method, the integrals deriving from the
nonlocal operator pose a computational challenge. For 1 < α < 2, the generalized
Fresnel integral

∫∞
0
x−α sinx dx has to be evaluated numerically, cf. 4.2. This

is challenging, not only because the integrand is singular in the origin, but also
because it is an improper integral. The built-in quadrature routines in Matlab
are, as far as the author knows, not suited for such integrals (this was also verified
during tests in the project). Therefore, a special quadrature package which is based
on the so-called double exponential formula is applied. This is built to calculate
the improper integral efficiently. The reader is referred to appendix B for further
details about the package. However, it turns out that the singularity in the origin
is problematic for the quadrature as α→ 2. To remedy this, we have to modify the
quadrature slightly, and we therefore developed a routine for calculating the integral
analytically near the origin, and combined this with the quadrature package.

6.2.1 Semi-analytical algorithm

The integrand of the Fresnel integral changes rapidly in a boundary layer due to
the singularity in the origin. As α→ 2, the integrand changes increasingly rapidly.
At a point along this sequence of α, the numerical quadrature breaks down and
diverges, or at least the number of required evaluations becomes infeasible.
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Figure 6.8: Boundary layer for integrand f(x) = x−1.9 sinx

To overcome this issue, we propose a semi-analytical algorithm. The idea is
to Taylor expand the integrand in the origin and integrate a truncated sum in
the boundary layer. The number of terms in the sum is decided based on the
error tolerance requirement, and the end point for the boundary layer is chosen
heuristically. More concretely, the end point is chosen where the integrand equals
some fixed number that is not too large (since the integrand blows off to infinity as
x → 0). The residual of the integral is calculated with the numerical quadrature,
with required precision greater than the tolerance level. Denote the end point of
the boundary layer with b. Then,

I =

∫ ∞
0

x−α sinx dx =

∫ b

0

x−α sinx dx︸ ︷︷ ︸
I1

+

∫ ∞
b

x−α sinx dx︸ ︷︷ ︸
I2

The integral I1 is now treated analytically. Expand the integrand in a truncated
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Taylor series with remainder:

f(x) = x−α sinx = x−α
∞∑
k=1

(−1)k+1x2k−1

(2k − 1)!

=

∞∑
k=1

(−1)k+1x2k−1−α

(2k − 1)!

=

K∑
k=1

(−1)k+1x2k−1

(2k − 1)!
+ rK ,

To calculate I1, integrate the Taylor expansion to obtain∫ b

0

x−α sinx dx =

K∑
k=1

∫ b

0

(−1)k+1x2k−1

(2k − 1)!
dx+RK

=

K∑
k=1

(−1)k+1

(2k − 1)!

[ x2k−α

2k − α

]b
0

+RK

=

K∑
k=1

(−1)k+1b2k−α

(2k − α)(2k − 1)!
+RK

Since this is an alternating series, the remainder term is smaller in magnitude than
the next term of the expansion, i.e.

|RK | ≤
b2K+2−α

(2K + 2)− α)(2K + 1)!

Given an error tolerance ε, K can be determined by solving the inequality ε ≤
b2K+2−α

(2K+2−α)(2K+1)! . Example code in Matlab for implementing the algorithm is
given below. In the code, the parameter alphaLimit denotes the point where the
quadrature breaks down and is set based on experiments. For α < alphaLimit, I
is calculated with quadrature only, but for α > alphaLimit, the semi-analytical ap-
proach is used. The function oscillatorQuadrature(alpha, b, errorTolerance)
is the quadrature routine, which calculates integrals of the type

∫∞
b
x−α sinx dx

numerically upto a precision errorTolerance. This routine is written in C, and is
invoked in Matlab using a so-called Mex file. For details about the implementa-
tion of this, the reader is referred to appendix B.
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1 f unc t i on I = f r e sn e l I n t e g r a lQuad ra tu r e ( alpha , e r ro rTo l e rance )
2 alphaLimit = 1 . 8 5 ;
3 i f ( alpha <= 0 | | alpha >= 2)
4 e r r o r ( ’0<alpha<2 i s r equ i r ed ! ’ ) ;
5 end
6 i f ( alpha<alphaLimit )
7 [ I , e r ro rEst imate ] = o s c i l l a t o rQuad ra tu r e ( alpha ,

e r rorTo le rance , 0) ;
8 e l s e
9 integrandUpperLimit = 1 ;

10 s ea r chSta r t i ngPo in t = 1e−4;
11 f s o l v eFunc t i on = @(x ) abs (x.^(− alpha ) .∗ s i n (x ) ) −

integrandUpperLimit ;
12 a = f s o l v e ( f so lveFunct ion , s ea rchStar t ingPo int , opt imset ( ’

Display ’ , ’ o f f ’ ) ) ;
13 I1 = getBoundaryLayerIntegra l ( alpha , a , e r ro rTo l e rance ) ;
14 [ I2 , e r ro rEst imate ] = o s c i l l a t o rQuad ra tu r e ( alpha ,

e r rorTo le rance , a ) ;
15 I = I1 + I2 ;
16 end
17 end
18

19 f unc t i on I = getBoundaryLayerIntegra l ( alpha , b , t o l )
20 I =0;
21 N=1;
22 upperNBound=1e6 ;
23 res idualBound=b^(2∗N+1−alpha ) / ( ( f a c t o r i a l (2∗ (N+1)−1)∗ (2∗ (N+1)−

alpha ) ) ) ;
24 whi le ( residualBound>t o l && N<upperNBound )
25 N=N+1;
26 res idualBound=b^(2∗N+1−alpha ) / ( ( f a c t o r i a l (2∗ (N+1)−1)∗ (2∗ (N+1)−

alpha ) ) ) ;
27 end
28 f o r n=1:N
29 I=I+((−1)^(n+1)∗b^(2∗n−alpha ) ) / ( ( f a c t o r i a l (2∗n−1)∗(2∗n−alpha ) ) )

;
30 end
31 end
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Discussion and further work

7.1 Conclusions

The main goal of the project was to generalize the theory for spectral vanishing
viscosity solvers to also include nonlinear fractional diffusion. Given the results and
estimates in section 3, this goal has been fulfilled. By enforcing a sufficient set of
assumptions enforced on A, we have shown that the numerical solutions converge
towards the vanishing viscosity solutions and that the convergence is of exponential
order. It remains to show that such a solution is the unique entropy solution of the
problem, but that has not been a goal for this project.

The secondary goal was to develop efficient and versatile solvers in practice. We
have developed and tested solvers in one and two dimensions, where one of them
makes approximate projections, but can take arbitrarily specified convection and
diffusion functions and has an indicated computational complexity ofO(N logN) in
one dimension. The other one makes exact projections with an indicated complexity
of O(N2) in one dimension. The numerical results indicate that the solutions from
the solvers converge exponentially when spectral vanishing viscosity is applied and
sometimes also when it is omitted. This goal must therefore also be said to be
fulfilled, although there is room for improvement both in terms of computational
efficiency and convergence rate.

7.2 Suggestions for further work

In light of the above discussion, an obvious extension of the theoretical results
is to show that the spectral vanishing viscosity method converges to the unique
entropy solution by showing that the vanishing viscosity equation has the entropy
solution as a unique solution. As mentioned in Chapter 3, Jakobsen and Cifani
give some suggestions to how this can be done in [2] for the linear diffusion case,
and the procedure in our case is probably resemblant. They argue that necessary
modifications consist of using interpolation inequalities for the nonlocal term, which
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we already have looked into in this project (see also their remark 2.6).
We have only considered the fractional Laplacian operator in this project. Many

Lévy type operators are resemblant, but have asymmetric measures, like the op-
erator arising from the CGMY model in finance (see also [1] and [16]). A very
natural extension of this project would be to modify the convergence theory to
also incorporating such measures. In [2] this is done for the linear diffusion case
in Chapter 8. Also, the analysis in this article is only performed in one spatial
dimension for simplicity. Extending the arguments to arbitrary dimensions should
be very feasible (but perhaps technical).

Furthermore, the case α = 2 is not treated here, but could definitely be of
interest. The solvers we built can handle this, but we have not shown the theoretical
results for this case. There exists some theory for porous medium type of equations,
see for instance [10], but as far as the author is aware of, not for spectral methods
on bounded domains.

Also other types of related problems could be of interest. In this project, pe-
riodic boundary conditions are considered, and this is convenient for modeling
Cauchy problems by extending to a large domain, or to model system behavior
in the middle of some flow field, for instance. However, these methods are not
suited for modeling behavior at the boundaries of a system. Physical applications
typically require some Dirichlet or Neumann boundary conditions to satisfy flow
conditions and the like. In finance, some option types like barrier options also
require boundary conditions to be specified. In that regard, spectral methods can
also work, but the basis should for instance be some high order polynomial instead
of Fourier components. From a modeling perspective, it is also interesting to de-
velop more sophisticated physical or financial models since the mathematical tools
become available for a wider class of equations.

With a polynomial spectral method, which essentially is a spectral element
method, the theoretical analysis must be modified quite heavily, since for instance
no periodicity can be assumed. It also induces some practical considerations that
must be addressed, for instance the calculation of nonlocal integrals. It will typ-
ically not induce sparse discrete operators either, so computational tuning and
various tricks, like tensor product forms would then have to be considered.

As regards other practical issues that can be studied further, we can mention the
calculation of projections of initial data. As was mentioned in chapter 5, the built-
in quadrature in Matlab fails to produce approximations to arbitrary precision for
high frequency components, so increasing the dimension of the discrete space does
not improve the accuracy of the method beyond some limit. Quadrature issues
were faced also during the calculation of Fresnel integrals in this project, and it
was solved by applying a quadrature that was built especially for this purpose.
Improving the accuracy of the initial data projections should also be feasible, but
one might have to build or find some special quadrature for this purpose.

We conclude this section by mentioning that the computational complexity of
the exact solver probably also can become log-linear by using a fast convolution
algorithm, and the implementation of such should not require too much work.
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Appendix A

Mathematics

A.1 Technical results

Note that in most of the following definitions and results, the nonlocal operator is
written using a measure function m in the representations. This is to keep most of
the results as general as possible. In this project, L = −(−∆)

α
2 , and therefore the

measure function that applies is m(y) = cα
|y|1+α .

Definition 1 (Nonlocal operator). The nonlocal operator L is defined as

L(u) :=

∫
|y|>0

(
u(x+ y)− u(x)− y1|y|<1ux(x)

)
m(y) dy,

i.e. r is chosen as 1 in (2.3).

Definition 2 (Nonlocal bilinear form). The nonlocal bilinear form B is defined as

B(u, v) := −
∫ 2π

0

∫
|y|>0

(
u(x+ y)− u(x)− y1|y|<1ux(x)

)
v(x)m(y) dydx,

Lemma 10 (Representation of diffusion term). Let A(u) be the diffusion function.
Assume that A(u) has a Fourier series representation A(u) =

∑∞
ξ=−∞ Âξe

iξx.
Then,

−(−∆)
α
2 [A(u)] = −Cα

∞∑
ξ=−∞

|ξ|αÂξeiξx,

where Cα is some positive constant.

Proof. Observe that −(−∆)
α
2 is a linear operator and apply it to the representation
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of A(u). Use (4.2) to obtain that

L[A(u)] = −(−∆)
α
2

( ∞∑
ξ=−∞

Âξe
iξx
)

= −
∞∑

ξ=−∞

Âξ(−∆)
α
2 (eiξx)

=

∞∑
ξ=−∞

Âξe
iξx

∫ 2π

0

eiξy − 1− y1|y|<1 dy︸ ︷︷ ︸
=G(ξ)

= −Cα
∞∑

ξ=−∞

|ξ|αÂξeiξx

Lemma 11 (Inequality for convex functions). Let η be a differentiable, convex
function and ux be some differentiable function. Then, η′′ ≥ 0 and

∂2
x(ux) · η′ρ(ux) ≤ ∂2

x(ηρ(ux)).

Proof. Consider(
η(ux)

)
xx

=
(
η′(ux) · uxx

)
x

= η′(ux)uxxx + η′′(ux)u2
xx

⇒ η′(ux)uxxx =
(
η(ux)

)
xx
− η′′(ux)︸ ︷︷ ︸

≥0

u2
x

≤
(
η(ux)

)
xx

Lemma 12 (Divergence equality). Let η′(x) := sgn(x), and let f and u be twice
differentiable functions. The convention sgn(0) = 0 is used to give meaning to
expressions. Then,

∂2
xf(u) · η′(ux) = ∂x

(
f ′(u) · η(ux)

)
Proof. Observe that sη′(s) = η(s) and apply the chain rule in reverse:

∂xxf(u) · η′(ux) =
(
f ′′(u)u2

x + f ′(u)uxx
)
η′(ux)

= f ′′(u)ux︸ ︷︷ ︸
=∂xf ′(u)

·uxη′(ux)︸ ︷︷ ︸
=η(ux)

+f ′(u)uxxη
′(ux)︸ ︷︷ ︸

=∂xη(ux)

= ∂x
(
f ′(u) · η(ux)

)

Note that the property sη′(s) = η(s) is needed, so this is not a trick which is
easy to generalize.
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Lemma 13 (Symmetrization of integration domain for the nonlocal bilinear form).
Let u ∈ C2[0, 2π] be 2π-periodic. Then,

B(u, v) = −
∫ 2π

0

∫
|y|>0

[u(x+ y)− u(x)− y1|y|<1ux(x)]v(x)m(y) dydx

= −
∑
k∈Z

∫ 2π

0

∫ 2π

0

[u(x+ y)− u(x)− (y + 2πk)1|y|<1ux(x)]v(x)m(y) dydx

(A.1)

Proof. Consider the nonlocal operator and use that u(x+y′+2πk) = u(x+y′) ∀k ∈
Z because of periodicity.∫
|y|>0

[u(x+ y)− u(x)− y1|y|<1ux(x)]m(y) dy

=
∑
k∈Z

∫ 2πk+2π

2πk

[u(x+ y)− u(x)− y1|y|<1ux(x)]m(y) dy

y′=y−2πk
=

∑
k∈2Z

∫ 2π

0

[u(x+ y′ + 2πk)− u(x)− (y′ + 2πk)1|y|<1ux(x)]m(y′ + 2πk) dy′

y′→y
=

∑
k∈Z

∫ 2π

0

[u(x+ y)− u(x)− (y + 2πk)1|y|<1ux(x)]m(y + 2πk) dy

Multiply by v(x) and integrate in x to obtain∫ 2π

0

∫
|y|>0

[u(x+ y)− u(x)− y1|y|<1ux(x)]v(x)m(y) dydx

=
∑
k∈Z

∫ 2π

0

∫ 2π

0

[u(x+ y)− u(x)− (y + 2πk)1|y|<1ux(x)]m(y + 2πk)v(x) dydx

(A.2)

Lemma 14 (Taylor expansion of integrals). For any u ∈ C2(R), we have that

u(x+ y)− u(x) =

∫ 1

0

ux(x+ θy)ydθ

and

u(x+ y)−u(x)− yux(x) = y

∫ 1

0

ux(x+ θy)−ux(x)dθ =

∫ 1

0

∫ θ

0

uxx(x+ ty)y2dtdθ.
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Proof. Introduce the new variables z := x+ θy and z′ := x+ ty. By fixing x and y,

dz = ydθ
du
dx

=
du
dz

dz
dx

=
du
dz

⇒
∫ 1

0

ux(x+ θy)ydθ =

∫ x+y

x

uz
1

y
ydz

=
(
u(x+ y)− u(x)

)
(A.3)

and

d2u

dx2
=

d2u

dz2

(d2z

dx2

)2

=
d2u

dz2∫ θ

0

uxx(x+ ty)y2dt =

∫ x+θy

x

uzz
1

y
y2dz

= y
(
ux(x+ θy)− ux(x)

)
(A.4)

Hence, using (A.3) and integrating once more,

∫ 1

0

∫ θ

0

uxx(x+ ty)y2dtdθ = y

∫ 1

0

ux(x+ θy)− ux(x)dθ

=

∫ 1

0

ux(x+ θy)ydθ − yux
∫ 1

0

dθ

=
(
u(x+ y)− u(x)

)
− yux(x),

(A.5)

Corollary 1. The bilinear form B in definition 2 can be written

B(u, v) = −
∫ 2π

0

∫
|y|<1

∫ 1

0

∫ θ

0

uxx(x+ ty)y2dtdθv(x)m(y)dydx

−
∫ 2π

0

∫
|y|≥1

∫ 1

0

ux(x+ θy)ydθv(x)m(y)dydx
(A.6)

Proof. Apply lemma 14 to L(u), multiply with the test function v(x) and integrate
in x from 0 to 2π.

Lemma 15 (L2 bound for L1 norm). In the compact domain Ω = (0, 2π), it is
valid for any function u ∈ L2(Ω) that

‖u‖L1(Ω) ≤
√

2π‖u‖L2(Ω) (A.7)
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Proof. Apply the Cauchy-Schwartz inequality to obtain

‖u‖L1(Ω) =

∫ 2π

0

|u(x)| · 1 dx ≤ ‖|u(x)|‖L2(Ω) · ‖1‖L2(Ω)

=
(∫ 2π

0

12 dx
) 1

2
(∫ 2π

0

|u(x)|2
) 1

2

=
√

2π‖u‖L2(Ω)

(A.8)

Lemma 16 (Symmetrization of B when m(y) = m(−y)). Let B be as defined in
definition 2, and let u, v ∈ C2

per be 2π-periodic functions. Then

B(u, v) = −
∫ 2π

0

∫
|y|>0

u(x+ y)− u(x)− y1|y|<1ux(x)]v(x)m(y) dydx

=
1

2

∫ 2π

0

∫
|y|>0

[u(x+ y)− u(x)][v(x+ y)− v(x)]m(y) dydx
(A.9)

Proof. Introduce the new variable z = x+ y and rewrite the form. Apply Fubini’s
theorem, lemma 13 and interchange variables. These manipulations are justified
by periodicity of u, v and the fact that the integrals in the form are well-defined:

B(u, v) = −
∫ 2π

0

∫
|z|>0

[u(z)− u(x)− (z − x)1|z−x|<1ux(x)]v(x)m(z − x) dzdx

= −
∑
k∈Z

∫ 2π

0

∫ 2π

0

[u(z)− u(x)− (z − x+ 2πk)1|z−x|<1ux(x)]v(x)m(z − x+ 2πk) dzdx

m(z)=m(−z)
= −

∑
k∈Z

∫ 2π

0

∫ 2π

0

[u(z)− u(x)− (z − x+ 2πk)1|z−x|<1ux(x)]v(x)

·m(x− z − 2πk) dzdx

(x,z)→(z,x)
=

∑
k∈Z

∫ 2π

0

∫ 2π

0

[u(x)− u(z)− (x− z − 2πk)1|x−z|<1ux(x)]v(x)

·m(x− z − 2πk) dzdx

=
∑
k∈Z

∫ 2π

0

∫ 2π

0

[u(z)− u(x)− (z − x− 2πk)1|z−x|<1ux(z)]v(z)m(z − x− 2πk) dxdz

Fubini
=

∑
k∈Z

∫ 2π

0

∫ 2π

0

[u(z)− u(x)− (z − x− 2πk)1|z−x|<1ux(z)]v(z)m(z − x− 2πk) dzdx

=

∫ 2π

0

∫
|z|>0

[u(z)− u(x)− (z − x)1|z−x|<1ux(z)]v(z)m(z − x) dzdx.

(A.10)
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Since u, v are assumed to be in C2
per, we can use the above computation to see that

B(u, v) =
1

2

∫ 2π

0

∫
|z|>0

[u(z)− u(x)− (z − x)1|z−x|<1ux(z)]v(z)m(z − x) dzdx

− 1

2

∫ 2π

0

∫
|z|>0

[u(z)− u(x)− (z − x)1|z−x|<1ux(x)]v(x)m(z − x) dzdx

=
1

2

∫ 2π

0

∫
|z|>0

[u(z)− u(x)][v(z)− v(x)]m(z − x) dzdx︸ ︷︷ ︸
B1(u,v)

− 1

2

∫ 2π

0

∫
|z|>0

1|z−x|<1(z − x)[ux(z)v(z)− ux(x)v(x)]m(z − x) dzdx︸ ︷︷ ︸
B2(u,v)

(A.11)

An alternative is to introduce sin y instead of y by adding and subtracting terms.
This would lead to the same conclusion, but perhaps with simpler arguments since
sin y is 2π-periodic. Also note that the splitting of B into B1 +B2 is justified by the
fact that the integrand is O(y2)m(y). This can be verified by using the regularity
assumptions made on u, v:

Integrand in B1 :

[u(x+ y)− u(x)][v(x+ y)− v(x)]m(y)

= [u(x) + yux(x) +O(y2)− u(x)]

· [v(x) + yvx(x) +O(y2)− v(x)]m(y)

=
(
y2ux(x)vx(x) +O(y3)

)
m(y)

= O(y2)m(y)

Integrand in B2 :

y[ux(x+ y)v(x+ y)− ux(x)v(x)]m(y)

= y[
(
ux(x) + yuxx(x) +O(y2)

)
·
(
v(x) + yvx(x) +O(y2)

)
− ux(x)v(x)]m(y)

= y[ux(x)v(x) + yux(x)vx(x) + yuxxv(x) +O(y2)− ux(x)v(x)]m(y)

=
(
y2ux(x)v(x) + y2uxxv(x) +O(y3)

)
m(y)

= O(y2)m(y)

With some intuition and symmetry considerations, one can expectB2 to be zero. To
show this, apply Fubini’s theorem to the double integral. Changing the integration
order and using the periodicity of the functions and their derivatives enables us to
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evaluate the inner integral by translating x by −y:

(−2) ·B2(u, v) =

∫ 2π

0

∫
|z|>0

1|z−x|<1(z − x)[ux(z)v(z)− ux(x)v(x)]m(z − x) dzdx

=
∑
k∈Z

∫ 2π

0

∫ 2π

0

1|z−x|<1(z − x+ 2πk)[ux(z)v(z)− ux(x)v(x)]m(z − x+ 2πk) dzdx

=
∑
k∈Z

∫ 2π

0

∫ 2π

0

1|y|<1(y + 2πk)[ux(x+ y)v(x+ y)− ux(x)v(x)]m(y + 2πk) dydx

=
∑
k∈Z

∫ 2π

0

(∫ 2π

0

[ux(x+ y)v(x+ y)− ux(x)v(x)] dx
)
1|y|<1(y + 2πk)m(y + 2πk)dy

=
∑
k∈Z

∫ 2π

0

(∫ 2π

0

ux(x+ y)v(x+ y) dx−
∫ 2π

0

ux(x)v(x) dx
)
1|y|<1

· (y + 2πk)m(y + 2πk)dy

=
∑
k∈Z

∫ 2π

0

(∫ 2π+y

y

ux(x)v(x) dx−
∫ 2π

0

ux(x)v(x) dx
)
1|y|<1(y + 2πk)m(y + 2πk)dy

=
∑
k∈Z

∫ 2π

0

(∫ 2π

y

ux(x)v(x) dx+

∫ 2π+y

2π

ux(x)v(x) dx

−
∫ 2π

0

ux(x)v(x) dx
)
1|y|<1(y + 2πk)m(y + 2πk)dy

=
∑
k∈Z

∫ 2π

0

(∫ 2π

y

ux(x)v(x) dx+

∫ 2π+y−2π

2π−2π

ux(x)v(x) dx

−
∫ 2π

0

ux(x)v(x) dx
)
1|y|<1(y + 2πk)m(y + 2πk)dy

=
∑
k∈Z

∫ 2π

0

(∫ y

0

ux(x)v(x) dx+

∫ 2π

y

ux(x)v(x) dx

−
∫ 2π

0

ux(x)v(x) dx
)
1|y|<1(y + 2πk)m(y + 2πk)dy

=
∑
k∈Z

∫ 2π

0

(∫ 2π

0

ux(x)v(x) dx−
∫ 2π

0

ux(x)v(x) dx
)

(y + 2πk)m(y + 2πk)dy

=
∑
k∈Z

∫ 2π

0

0 · 1|y|<1(y + 2πk)m(y + 2πk)dy

= 0

(A.12)



Appendix B

Software and implementation

B.1 Numerical quadrature
The numerical quadrature which is used in this project to calculate the Fresnel
integrals Θα in (4.2), is made especially for this purpose. The software package
is written by assistant professor Takuya Ooura at Research Institute for Math-
ematical Sciences at the Kyoto University. It is based on the so-called double
exponential formula for oscillatory functions over the half infinite interval. The
interested reader is referred to the original article on the subject, cf. [8]. See also
the homepage of Ooura for further information and to download the original source
code: http://www.kurims.kyoto-u.ac.jp/∼ooura/index.html.

The software package consists of three methods; intde(), intdei() and intdeo(),
to calculate integrals over finite intervals, half open intervals for non-oscillatory in-
tegrands and half open intervals for oscillatory integrands, respectively. In this
project, only the latter method is of interest. The methods are given as both C
and FORTRAN implementations.

In this project, the C implementation is used, since it is possible to compile,
link and invoke C code from Matlab. This feature makes it easier to prototype
software also in C. The procedure to invoke C code in Matlab requires a bridge
written in C and some extra steps. Since this could be of interest for others wanting
to implement the numerical methods in this project, we give an outline of how to
do this and an excerpt from the code used in this project.

1. Write a C file called for instance "oscillatoryQuadrature.c" where the header
file "mex.h" is referred with an include statement. In this file, there must
be a void function called mexFunction(), which works as the gateway func-
tion, which takes the parameters int nlhs, mxArray *plhs[], int nrhs,
const mxArray *prhs[]. Also, the code that is to be invoked must be writ-
ten in this file. Alternatively, it can be referred to (but then it is necessary
to compile and link the code separately).

2. In mexFunction(), write C code to perform computations and invoke other

90
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code as necessary. The pointers to the output parameters resulting from the
computations, that are supposed to be passed back to Matlab, must be put
in the plhs array. This can be done with the built-in mex function mxGetPr()
(see the example code below for details).

3. In the Matlab command line or window, type "mex coscillatoryQuadra-
ture.c" in the folder where the oscillatoryQuadrature.c file lies. Then the C
code will be compiled, and a .mex∼ file (for instance .mexw64 in Windows
64) will be generated in the same folder.

4. To invoke the code in Matlab, call the function oscillatoryQuadrature()
(must be the same name as the .c file) directly as a Matlab command with
the appropriate set of input and output variables. In the example below, if
the .c file is called "oscillatoryQuadrature.c", the appropriate call would be
[integral, errorEstimate] = oscillatoryQuadrature(alpha, errorLimit,
b).

1 //Example f i l e c a l l e d " o s c i l l a t o ryQuadra tu r e . c"
2 #inc lude <math . h>
3 #inc lude "mex . h"
4

5 double f ( double x , double alpha ) ;
6 void intdeo ( double b , double alpha , double omega , double eps , double ∗

i , double ∗ e r r ) ;
7

8 //The quadrature func t i on .
9 void intdeo ( double b , double alpha , double omega , double eps , double ∗

i , double ∗ e r r )
10 {
11 //See the home page o f the author g iven above f o r the source code
12 }
13

14 //The integrand
15 double f ( double x , double alpha )
16 {
17 r e turn pow(x,−alpha ) ∗ s i n ( x ) ;
18 }
19

20

21 /∗The mex gateway func t i on .
22 nrhs i n d i c a t e s the number o f input v a r i a b l e s
23 nlhs i n d i c a t e s the number o f output v a r i a b l e s
24 prhs cor responds to the input v a r i a b l e s from Matlab
25 plhs corresponds to the input v a r i a b l e s that are passed to the C

func t i on ∗/
26

27 void mexFunction ( i n t nlhs , mxArray ∗ plhs [ ] , i n t nrhs , const mxArray ∗
prhs [ ] )

28 {
29 double alpha , b , e p s i l o n ; // input parameters
30 double ∗ i n t e g r a l ; // output parameters
31 double ∗ e r ro rEst imate ;
32
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33 double omega ; // aux i l i a r y parameter
34

35 /∗ check f o r proper number o f arguments ∗/
36 i f ( nrhs !=3) {
37 mexErrMsgIdAndTxt ( "MyToolbox : arrayProduct : nrhs " , "3 inputs

r equ i r ed . " ) ;
38 }
39 i f ( n lhs !=2) {
40 mexErrMsgIdAndTxt ( "MyToolbox : arrayProduct : n lhs " , "2 outputs

r equ i r ed . " ) ;
41 }
42 /∗ make sure the f i r s t input argument i s r e a l s c a l a r double ∗/
43 i f ( ! mxIsDouble ( prhs [ 0 ] ) | |
44 mxIsComplex ( prhs [ 0 ] ) | |
45 mxGetNumberOfElements ( prhs [ 0 ] ) !=1 ) {
46 mexErrMsgIdAndTxt ( "MyToolbox : arrayProduct : notSca la r " , " Input

mu l t i p l i e r must be a s c a l a r . " ) ;
47 }
48

49 /∗ make sure the second input argument i s r e a l s c a l a r double ∗/
50 i f ( ! mxIsDouble ( prhs [ 1 ] ) | |
51 mxIsComplex ( prhs [ 1 ] ) | |
52 mxGetNumberOfElements ( prhs [ 1 ] ) !=1 ) {
53 mexErrMsgIdAndTxt ( "MyToolbox : arrayProduct : notSca la r " , " Input

mu l t i p l i e r must be a s c a l a r . " ) ;
54 }
55

56 /∗ make sure the th i rd input argument i s r e a l s c a l a r double ∗/
57 i f ( ! mxIsDouble ( prhs [ 2 ] ) | |
58 mxIsComplex ( prhs [ 2 ] ) | |
59 mxGetNumberOfElements ( prhs [ 2 ] ) !=1 ) {
60 mexErrMsgIdAndTxt ( "MyToolbox : arrayProduct : notSca la r " , " Input

mu l t i p l i e r must be a s c a l a r . " ) ;
61 }
62

63 /∗ get the value o f the s c a l a r input ∗/
64 alpha = mxGetScalar ( prhs [ 0 ] ) ; //The f r a c t i o n a l i t y parameter
65 ep s i l o n = mxGetScalar ( prhs [ 1 ] ) ; //The e r r o r t o l e r an c e
66 b=mxGetScalar ( prhs [ 2 ] ) ; //Lower i n t e g r a t i o n l im i t
67 omega=1; //Frequency o f s i n e f a c t o r
68

69 /∗ c r e a t e the output matr i ce s : s c a l a r , 1x1 ∗/
70 plhs [ 0 ] = mxCreateDoubleMatrix (1 , 1 ,mxREAL) ;
71 plhs [ 1 ] = mxCreateDoubleMatrix (1 , 1 ,mxREAL) ;
72

73 /∗ get a po in t e r to the r e a l data in the output matrix ∗/
74 i n t e g r a l = mxGetPr( p lhs [ 0 ] ) ;
75 e r ro rEst imate = mxGetPr( p lhs [ 1 ] ) ;
76

77 /∗ c a l l the computat ional r ou t in e ∗/
78 i n tdeo (b , alpha , omega , ep s i l on , i n t e g r a l , e r ro rEst imate ) ;
79 }
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B.2 Software library documentation
Below follows a brief documentation of the generic FFT solver for 1D that was
developed in Matlab as part of the project. The exact solver is almost identical
in the structure of the code except that there are a few extra parameters, so doc-
umentation of this is omitted. The call structure is not explained in detail since it
is built as a modular solver, and hence the great number of subroutines. The only
thing that needs to be run is the script simulation, in which some parameters
must be set. The functions f , A (and a possible source function g) can be specified
arbitrarily in their respective subroutines.

• simulation:

The very script that runs the simulations. Parameters such as the discrete di-
mension, the simulation time and quadrature error tolerance can be specified
in it. The computed solution is plotted as an animation.

• solver(N, T, alpha, eps, dealiasing, SVV):

Takes parameters for the discrete dimension, simulation end point, alpha= α,
quadrature tolerance eps, and the booleans dealiasing and SVV that indicate
whether or not dealiasing and SVV are to be applied. Returns the solution
computed at all timesteps between 0 and T with a default spacing of dt = 0.01.
The solution is returned as a matrix with columns ordered from left to right
corresponding to the solution vectors.

• initialCondition(N):

Returns the initial condition for an N dimensional discrete space as a column
vector. It is computed using standard Matlab quadrature and may therefore
suffer from instability for very high frequencies (which will induce console
warnings).

• getSpatial_odefunction(alpha, N, eps, dealiasing, SVV):

Takes parameters for the discrete dimension, simulation end point, alpha =
α, quadrature tolerance eps, and the booleans dealiasing and SVV that
indicate whether or not dealiasing and SVV are to be applied. Returns the
function that corresponds to the time derivative ut in the semidiscretization
(4.4). The function is returned as a function handle that takes the solution
and time as parameters like spatial_odefunction(y, t) (which is needed
when using for instance ODE45) and returns the time derivative.

• timeIntegrator(c0, t0, dt, spatial_odefunction):

Takes parameters for an initial condition c0, the starting time t0, the time
leap dt and a function handle spatial_odefunction which should return the
time derivative of the solution and be callable as spatial_odefunction(y, t).
It returns the solution at time t0 + dt as a column vector. It computes the
solution/integrates in time using ode45_solver(), but it is possible to use
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another time integrator by writing a function as ode45_solver but with
another solver (like ODE15s).

• ode45_solver(c0, t0, dt, spatial_odefunction):

Takes parameters for an initial condition c0, the starting time t0, the time
leap dt and a function handle spatial_odefunction which should return the
time derivative of the solution and be callable as spatial_odefunction(y, t).
It returns the computed solution, using ODE45, as a column vector.

• getSourceTermIntegrals(N):

Computes the source integrals corresponding to the term S(ξ) in 4.4 for an N
dimensional discrete space, by using standard Matlab quadrature. Returns
the integrals as a column vector.

• getNonlocalIntegrals(N, alpha, eps):

Computes the integrals from the nonlocal operator corresponding to the fac-
tor G(ξ) in 4.4 for an N dimensional discrete space, by using a semi-analytical
algorithm. Returns the integrals as a column vector.

• getNonlocalOperatorCoefficients(c, dealiasing):

Computes the approximate projection of the nonlocal operator corresponding
to the factor Ãξ in 4.4 for the coefficient vector c by using FFT. Returns the
projections in a column vector. If the boolean dealiasing is set to true,
dealiasing will be applied in the calculations, otherwise not.

• getViscosityCoefficients(N):

Returns the viscosity kernel coefficients Q̂ξ in (4.4) corresponding to the
discrete dimension N. The scheme in 4.3 is used.

• getViscositySpectrumLimit(N):

Returns the viscosity spectrum limitmN in (4.3) corresponding to the discrete
dimension N. The scheme in assumption 1 is used.

• getViscosityModule(N, SVV):

Returns the viscosity module εN in 4.4 corresponding to the discrete dimen-
sion N. The boolean SVV indicates whether SVV is to be used or not. If
SVV is set to true, the module corresponds to the asymptotic scheme given
in assumption 1, otherwise it is set to zero

• getConvectionOperatorCoefficients(c, dealiasing):

Computes the approximate projection of the convection operator correspond-
ing to the factor f̃ξ in 4.4 for the coefficient vector c by using FFT. Returns
the projections in a column vector. If the boolean dealiasing is set to true,
dealiasing will be applied in the calculations, otherwise not.
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• plotSimulationResults(C):

Assumes that C is a matrix consisting of coefficient column vectors and plots
the evolution of the function values corresponding to the coefficients in it in
an animation

• plotFunctionFromCoefficients(c):

Assumes that c is a coefficient vector and plots the function values corre-
sponding to the coefficients in it

• setAxes():

Sets the axes in simulation plots to a view which is suited for the default
initial condition

• getCoefficientsFromFunctionValues(u):

Calculates the coefficients corresponding to the function values u using the
discrete Fourier transform and returns the corresponding coefficients in a
column vector

• getFunctionValuesFromCoefficients(c):

Calculates the function values corresponding to the coefficients c using the
inverse discrete Fourier transform and returns the corresponding function
values in a column vector

• fresnelIntegralQuadrature(alpha, eps):

Calculates the generalized Fresnel integral corresponding to Θα in 4.2 with a
value of alpha for α and an error tolerance of eps using quadrature. Depend-
ing on how close alpha is to two, the integral is calculated using pure quadra-
ture, calling oscillatorQuadrature, or divided in two and calculated us-
ing the functions oscillatorQuadrature and getBoundaryLayerIntegral
oscillatorQuadrature and getBoundaryLayerIntegral

• getBoundaryLayerIntegral(alpha, a, eps):

Evaluates the innermost part, from 0 to a, of the generalized Fresnel integral
corresponding to Θα in 4.2 with a value of alpha for α and an error tolerance
of eps. The integral is calculated analytically using an adaptively truncated
Taylor series

• oscillatorQuadrature(alpha, eps, a):

Calculates the outermost part, from a to∞, of the generalized Fresnel integral
corresponding to Θα in 4.2 with a value of alpha for α and an error tolerance
of eps. The integral is calculated using the numerical quadrature routine
described in section 6.2
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• evaluateSinIntegral(alpha, eps):

Evaluates the generalized Fresnel integral corresponding to Θα in 4.2 with a
value of alpha for α and a quadrature error tolerance of eps. Depending on
the value of alpha, the integral is calculated analytically or semi-analytically
using the function fresnelIntegralQuadrature

• A(u):

Calculates the diffusion function from the function values u and returns a
column vector with the corresponding diffusion function values

• f(u):

Calculates the convection function from the function values u and returns a
column vector with the corresponding diffusion function values

• g(x):

Calculates the value of the source term at the vector x and returns a column
vector with the corresponding source function values
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