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Abstract

In this thesis we look at the NP-hard Prize-Collecting Steiner Tree Problem (PC-
STP). We show an application within biology, where the PCSTP is used to identify
coregulated genes which are differently expressed for diffuse stomach cancer with
and without signet ring cells. Identifying these genes can help to create better
treatment for stomach cancer.

We use Lagrangian relaxation to solve the PCSTP. Two relaxations are tested,
one creating tights bounds and one weak bounds. For the tightest relaxation we test
two heuristic methods for creating primal bounds, and for the unrooted PCSTP
we find the optimal solution for all but one of the instances with both heuristics.

A multiple rooted generalization of the PCSTP is introduced, and shown to be
easily handled by the formulations. We do not obtain as tight bounds as for the
corresponding unrooted instances.
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Sammendrag

I denne oppgaven ser vi p̊a det NP-harde Prize-Collecting Steiner Tree Problem
(PCSTP). Vi viser en anvendelse innen biologi, hvor PCSTP blir brukt for å identi-
fisere koregulerte gener som er forskjellig uttrykt for diffus magekreft med og uten
signet ring celler. Å identifisere disse genene kan bidra til bedre behandling av
magekreft.

Vi bruker Lagrange-relaksering for å løse PCSTP. Vi har relaksert to formu-
leringer, hvor en gir sterke grenser og en gir svake. For den sterkeste har vi testet
to heuristikker. For testproblemene uten rot finner begge heuristikkene optimal
løsning for alle problemene bortsett fra ett.

Vi introduserer en generalisert versjon av PCSTP, med mulighet for å spesifisere
flere røtter, og viser at dette lett lar seg løse med formuleringene. Grensene blir
ikke like sterke som for de tilsvarende problemene uten rot.
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Introduction

Integer programming is a field concerned with identifying the optimal solution from
a set of possible solutions. It is heavily used in finance and economics, but also in
several other fields. In this thesis we show an application within biology, relevant
for cancer research.

We look at the NP-hard Prize-Collecting Steiner Tree Problem (PCSTP). This
problem has applications within, amongst others, design of certain types of dis-
tribution networks. We show different formulations for the PCSTP as an integer
program, and use Lagrangian relaxation and heuristics to obtain bounds. For one
of the formulations the bounds are shown to be strong for most of the test instances.

The formulations are tested against data from stomach cancer research. The
goal is to identify genes which are expressed differently in diffuse cancer with and
without signet ring cells. As a significant amount of signet ring cells are generally
associated with a worse prognosis for the patient, this can potentially lead to better
treatments.

In Chapter 1 we introduce the theory used in this thesis. In Chapter 2 we give
a formal definition of the PCSTP and give an outline of solution methods from
literature. The formulations are described in Chapters 3 - 5. In Chapter 6 we
introduce the test instances used for the problem. In Chapter 7 we show how the
relaxations are implemented, and in Chapter 8 we give computational results and
conclusions.
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2 CONTENTS

Notations and Glossary

δ(u): The set of all edges adjacent to vertex u.
δ+(u): The set of all arcs out of vertex u.
δ−(u): The set of all arcs into vertex u.

BIP: Binary Integer Program, p. 3
GWMP: Göemans-Williamson Minimization Problem, p. 12
IP: Integer Program, p. 3
LP: Linear Program, p. 4
MIP: Mixed Integer Program, p. 3
MST: Minimal Spanning Tree, p. 9
MTZ: Miller-Tucker-Zemlin formulation for the PCSTP, p. 31
NWMP: Net Worth Maximization Problem, p. 11
PCSTP: Prize-Collecting Steiner Tree Problem, p. 11
SPP: Shortest Path Problem, p. 10

Vectors are normally denoted by lowercase letters, and matrices with uppercase
letters. When not specified, vectors and matrices are assumed to be of appropriate
dimensions.

G = (V,E) denotes a graph, with V as the set of vertices or nodes and E as
the set of edges.



Chapter 1

Integer programming

Definition: An integer programming (IP) problem can be stated as

Z = min
x
cx

Ax ≤ b
x ≥ 0

x ∈ Zn

where c ∈ Rn, b ∈ Rm and A ∈ Rm×n. In a mixed integer program (MIP) some of
the components of x may be real numbers. Binary integer programming (BIP) is
often used when x is restricted to be binary.

To solve MIPs a straight forward approach of enumerating all solutions is pos-
sible, but as the number of possible solutions for MIPs grows rapidly, quicker
algorithms are normally needed. A lower (upper) bound of a maximization (min-
imization) problem is from here on referred to as a primal bound, and an upper
(lower) bound of a maximization (minimization) problem is referred to as a dual
bound. The goal is to find good algorithms for the primal and dual bounds.

The branch-and-bound algorithm is built on a systematic way of partial enumer-
ation of solutions, where primal and dual bounds stop the enumeration in certain
regions of the solution space when the optimal solution is guaranteed not to be
there. The LP-relaxation, defined in Section 1.1, is often used, but stronger relax-
ations may also be implemented in a branch-and-bound framework.

1.1 Dual bounds

The standard approach for finding dual bounds is to solve a relaxation of the origi-
nal problem. Good strategies vary from problem to problem. Here we give a formal
definition of relaxation and we give an introduction to Lagrangian Relaxation which
will be used for the PCSTP from [15].

3
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Definition: A problem (P r) Zr = max{f(x) : x ∈ Pr ⊆ Rn} is a relaxation of a
problem (P ) Z = max{c(x) : x ∈ P ⊆ Rn} if

P ⊆ Pr and

f(x) ≥ c(x) ∀x ∈ P.

The reason for looking at a relaxation of a problem is that it will often be an
easier problem to solve, and it will hopefully give some valuable information about
the original problem. The main result here is that the optimal value of a relaxation
is at least as good as the optimal value of the original problem, formally stated in
the next proposition.

Proposition 1.1.1 If P r is a relaxation of P , then Zr ≥ Z.

Proof: Let x be an optimal solution of P . Then x ∈ P ⊆ Pr, so x ∈ Pr. Since
Z = c(x) ≤ f(x), and f(x) is a lower bound for Zr, we have Z ≤ f(x) ≤ Zr. �

An easy relaxation of a MIP is it’s Linear Programming (LP) relaxation. This
is obtained by simply removing the restriction that solutions must be integers.
Thus the relaxation is easily formulated for any given problem, and in most cases
it is considered relatively easy and quick to solve, by for instance the simplex
method. Because of this the LP-relaxation is frequently used in a branch-and-
bound framework in general purpose MIP-solvers. It is however often possible to
find stronger relaxations.

1.1.1 Lagrangian relaxation

In the 1970’s it was observed that many hard integer programming problems could
be viewed as easy problems complicated by a relatively small set of side constraints.
Relaxing or dualizing these side constraints could thus produce easier problems,
giving dual bounds on the original problem. As with the LP-relaxation, these
bounds can then be implemented in a branch-and-bound algorithm to solve the
original problem [3].

Given a combinatorial optimization problem formulated as an integer program,

Z = min cx

Ax ≤ b
Dx ≤ e

(IP) x ∈ Zn+

where Ax ≤ b are ’nice’ in the sense that an integer program with just these
constraints are relatively easy. Then one relaxation to (IP) is given by simply
dropping the complicating constraints Dx ≤ e, and solving the remaining problem.
The resulting bounds for this is often weak, as some constraints are totally ignored,
so Lagrangian relaxation give a way of penalizing breached constraints, without
actually solving the entire (IP).
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Let u ≥ 0 be a vector of Lagrange multipliers, then a relaxation to (IP) is the
Lagrangian relaxation (subproblem) of (IP) with parameter u

ZD(u) = min cx+ u(Dx− e)
Ax ≤ b
u ≥ 0

(IP(u)) x ∈ Zn+.

If the relaxed constraints are equality constraints then u is not restricted to be non-
negative, and if the constraints are on form Dx ≥ e then either one substitutes
u(Dx − e) with u(e − Dx) in the objective function or require u ≤ 0. For the
following theory, we assume the first is done such that u ≥ 0. As the feasible
region of (IP(u)) is obviously at least as great as that of (IP), and

ZD(u) ≤ cx+ u(Dx− e) ≤ Z

for all feasible x of (IP), (IP(u)) is a relaxation of (IP) for all u ≥ 0. Thus solving
(IP(u)) gives a dual bound on the solution of (IP).

To get the best dual bound on (IP), we maximize (IP(u)), giving the Lagrangian
Dual Problem

(LD) ZLD = maxZD(u).

(LD) is commonly solved by a subgradient method, which is introduced in Section
1.1.4. In general it is not possible to guarantee that ZLD = Z, but this frequently
happens for some problems [3]. Also the solution to (LD) often resembles feasible
solutions to (IP) and perturbations can create good feasible solutions, which is
further explained in Section 1.2.

During the solution process of (LD), solutions which are feasible to (IP) can
occur, but are not automatically guaranteed to be optimal solutions of (IP). We
now state the optimality conditions for the Lagrangian relaxation method [15].

Proposition 1.1.2 : Global optimality conditions
If
(i) x(u) is an optimal solution of (IP(u)),
(ii) Dx(u) ≤ e (feasibility of (IP)),
(iii) The element (Dx(u) = d)i whenever ui > 0 (complementarity),
(iv) u ≥ 0,
then x(u) is optimal for (IP).

1.1.2 Lagrangian decomposition

Whenever an integer program contains several ’nice’ bulks of constraints, or several
easy to solve subproblems, Lagrangian decomposition might be effective. Given a
combinatorial optimization problem of form (IP) where Ax ≤ b and Dx ≤ e are
both ’nice’ when the other is not in the formulation, one may duplicate the variables
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to obtain a bound at least as strong as (IP(u)) [4]. Let y = x, then problem (IP)
can be transformed to

Z ′ = min cx

Ax ≤ b
Dy ≤ e
y = x

(IP’) x, y ∈ Zn+

Then the equality of x and y can be relaxed in a Lagrangian fashion, yielding a
Lagrangian Decomposition of (IP’)

Z ′D(u) = min cx− u(y − x)

Ax ≤ b
Dy ≤ e

(IP’(u)) x, y ∈ Zn+, u ∈ Rn

This give the Lagrangian dual problem,

(LD’) Z ′LD = maxZ ′D(u).

In the subgradient method, the solution process for Lagrangian decomposition
is similar to the one of Lagrangian relaxation, with the modification that both
subproblems are solved at each iteration.

1.1.3 Strength of relaxation methods

We here state the theory of when the Lagrangian relaxation give a stronger bound
than the LP-relaxation, and when Lagrangian decomposition give a stronger bound
than Lagrangian relaxation. The theory is based on [4, 6], and will later be used
for a discussion of the PCSTP. Proofs for both lemmas can be found in [4].

It is known that the feasible region of an IP can be replaced with its convex
hull. A partially convexified relaxation of (IP) can then be stated as,

( ˜IP ) min
x
{cx : Dx ≤ e, x ∈ conv(X), x ≥ 0}

where conv(·) denote the convex hull, and X = {Ax ≤ b, x ∈ Zn}.

Lemma 1.1.3 The optimal value of ( ˜IP ) is equal to the optimal value of (LD).

We notice that if Ax ≤ b already have the integrality property, i.e. the solution
of Ax ≤ b is integer, then x ∈ conv(X)⇔ Ax ≤ b in ( ˜IP ) give that the Lagrangian
relaxation yield the same solution as the LP-relaxation. Thus in order for the
Lagrangian relaxation to possibly create a stronger bound than the LP-relaxation,
the constraints Ax ≤ b must not already provide an ’exact’ description of conv(X).
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This said, a Lagrangian relaxation can have other preferable qualities. Infor-
mation about primal solutions is often easily available, and for some problems an
exponential number of constraints may be tackled easily by a subproblem. This
will be shown to be the case for the PCSTP.

For the case of Lagrangian Decomposition, we start by another partial convex-
ified relaxation of (IP),

( ˜IP ′) min
x
{cx : x ∈ conv(Y ) ∩ conv(X)}

where conv(Y ) = {Dx ≤ e, x ∈ Nn}. Then we have the following result,

Lemma 1.1.4 The optimal value of ( ˜IP ′) is equal to the optimal value of (LD’).

Thus if none of the bulks of constraint give the convex hull, the Lagrangian De-
composition can give a strictly better bound than the Lagrangian relaxation of just
one of the bulks. Further if one of the bulks give the convex hull, the Lagrangian
Decomposition give a value equal to the best of the two Lagrangian relaxations,
and if both bulks give the convex hull we get the same value as the LP-relaxation.
An example of this for a generalization of the PCSTP can be found in [6], where
they also generalize these results for decomposition of more than two subproblems.

1.1.4 Subgradient Method

The subgradient method is commonly used in literature to solve the Lagrangian
dual problem [2,6, 11].

Let a Lagrangian dual problem be given by max{ZD(u) : u ∈ Π}, where Π im-
poses nonnegativity restrictions on some components of the Lagrangian multiplier
u. Let Ax ≤ b be the relaxed constraint. The subgradient algorithm can then be
outlined as in Algorithm 1 [6,12]. The form of ZD(u) is given in Figure 1.1.
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Algorithm 1 Subgradient Method for (IP)

Step 0: Initialization. Set u0 = 0, l0 ∈ (0, 2], LB = − inf. Use some heuristic

to find an upper bound UB.

Step 1: Solve the relaxed subproblem given uk to get xk and ZD(uk). Set

LB= max(ZD(uk),LB). If the lower bound has not increased in a set number of

iterations, reset matrices to earlier point and half the step size scalar lk.

Step 2: If xk is feasible for the original problem, set UB = min(UB, Z(xk)). If

not a heuristic can be used to find a feasible solution with value Zheu, and set

UB = min(UB, Zheu).

Step 3: Calculate the subgradient gk = Axk − b, a search direction dk = gk +

σkdk−1 and a step length tk = lk(UB− LB)/||Axk − b||2.

Step 4: Check convergence and stopping criterions, if satisfied then stop.

Step 5: Update Lagrangian multiplier uk+1 = PΠ(uk + tkdk), where PΠ denotes

the projection onto Π, which in this context simply amounts to setting negative-

valued components of non negatively restricted variables to zero. Set k = k + 1

and goto Step 1.

Figure 1.1: The form of ZD(u). Illustration from [3].

For Step 3 we test two different search directions from [6]. The first is the one
of the classic subgradient method, where σk = 0 such that dk = gk. This is denoted
by SG1 in the results section. The second search direction we denote by SG2, and

here σk = ||gk||
||dk−1|| . For SG2 d0 = g0. In [6] they test nine search directions, and
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SG2 is shown computationally to be the strongest for their problems (they denote
it by SG6). As our formulation is based on their formulation, we have chosen to
test this in this thesis.

In Step 4 we output an optimal solution if UB−LB < 10−6, or force stopping
if a predetermined number of iterations have been completed.

1.2 Primal bounds

It is possible to obtain feasible solutions to (IP) during the solution process of
the dual problem. If all the relaxed constraints are equalities, this solution is
optimal. This is however not guaranteed to be the case if the relaxed constraints
are inequalities [3], then we need to fulfill the optimality conditions of Proposition
1.1.2. Any feasible solution may however be used to find a primal bound.

During the solution process of the dual problem we often find close to feasible
solutions. Lagrangian heuristics use this information to create feasible solutions of
the original problem. Most subgradient-based heuristics start with the xk found
at an iteration of the solution process and use a greedy algorithm to make it
feasible. This will thus resemble a multistart to classical heuristics. A refinement
of the obtained feasible solution can also be done by for instance a local search
algorithm [4].

1.3 Graph Theory

In this section we state two famous problems from graph theory, state commonly
used solution algorithms for these, and give MIP formulations for the problems.
These will later be shown to be subproblems of the PCSTP.

Minimum Spanning Tree (MST): Given a connected, undirected edge weighted
graph G = (V,E). The MST problem is to find the least cost tree that spans all
vertices in G. Two commonly used solution methods for the MST is Prim’s and
Kruskal’s algorithm.

A linear programming formulation of MST, with edge costs cij and xij denoting
if an edge is part of the solution, can be stated as

min
∑

(i,j)∈E

cijxij (1.1a)

∑
(i,j)∈E

xij = |V | − 1, (1.1b)

∑
(i,j)∈E:i,j∈S

xij ≤ |S| − 1, ∀S ⊂ V, 2 ≤ |S| ≤ |V | − 2 (1.1c)

0 ≤ xij ≤ 1, ∀(i, j) ∈ E. (1.1d)
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Constraint (1.1b) ensures that the solution contain exactly |V | − 1 edges, and
constraint (1.1c) ensures the chosen edges are cycle-free. The extreme points of
the polyhedron defined by (1.1) are the 0-1 incidence vectors of spanning trees [6].

Shortest Path Problem (SPP): Given a connected, edge weighted graph G =
(V,E), the SPP consist of finding the minimum cost path between sets of vertices.
Commonly used single source algorithms are Dijkstra’s algorithm whenever all edge
costs are non-negative, and Bellman-Ford algorithm when some edge weights are
negative. The Floyd-Warshall algorithm solves the SPP for all pairs of vertices.

Let G = (V,A) be an edge weighted directed graph, with costs cij for arc (i, j).
A linear programming formulation of the single source 0 ∈ V and single sink u ∈ V
SPP is

min
∑

(i,j)∈A

cijfij (1.2a)

∑
j∈δ+(0)

f0j −
∑

j∈δ−(0)

fj0 = 1 (1.2b)

∑
j∈δ+(u)

fuj −
∑

j∈δ−(u)

fju = −1 (1.2c)

∑
j∈δ+(i)

fij =
∑

j∈δ−(i)

fji ∀v ∈ V, v 6= 0, v 6= u (1.2d)

0 ≤ f (1.2e)

where fij is 1 if an arc is part of the solution. Notice also that it is sufficient with
either (1.2b) or (1.2c) in the formulation, as (1.2d) require balance of all vertices
except the source and sink. Then with either (1.2b) or (1.2c) in the formulation,
the other vertex will have to behave as source or sink.



Chapter 2

Prize-Collecting Steiner Tree
Problem

The term Prize-Collecting was introduced by Balas in 1989 for the famous traveling
salesman problem [1], and has since been used in various combinatorial optimization
problems. The common characteristic is paying a cost for including an edge to get
the prize from an adjacent vertex.

In this chapter we will define the PCSTP, give a summary of some earlier
studies, and state some reduction tests which can be used for the PCSTP.

2.1 Definitions

The Prize-Collecting Steiner Tree Problem in Graphs is an NP-hard problem from
graph theory. We now state two optimizationally equivalent definitions commonly
used in literature.

Definition: Prize-Collecting Steiner Tree Problem in Graphs
Given a connected undirected graph G = (V,E) with non-negative weights on the
vertices p(v) ∀v ∈ V , and non-negative weights on the edges c(e) ∀e ∈ E. The
linear Prize-Collecting Steiner Tree Problem in graphs is to find (either a single
vertex or) a connected graph S = (VS , ES) ⊆ G, that maximizes

profit(S) =
∑
v∈VS

p(v)−
∑
e∈ES

c(e)

The PCSTP can be rooted if we require a specific vertex to be part of the
solution, and unrooted if no such requirement is made. We will also look at a
generalization where we require several vertices to be part of the solution, giving a
multiple rooted PCSTP.

As the edges are non-negative solutions may contain cycles if and only if the
cycles have zero cost, otherwise the solution is a tree. Further whenever an optimal

11
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solution contains a cycle there will also exist trees that give the same value. These
trees can be found by simply removing one of the edges in the cycle. Due to this
fact we can restrict the solution to be a tree, which will be done in all of the
MIP-formulations of the PCSTP.

Figure 2.1: Example of a PCSTP, red line illustrates the solution tree. Illustration
from [9]

The definition given above is often called the Net Worth Maximization Problem
(NWMP) in literature, while the optimizationally equivalent Goemans-Williamson
Minimization Problem defined below will give the same optimal solution. We will
use both for arguments and explanations during this thesis.

Definition: The Goemans-Williamson Minimization Problem, (GWMP).
Minimize the cost of edges plus prizes or penalties of not including a vertex in the
tree

GW (S) =
∑
v 6∈VS

p(v) +
∑
e∈ES

c(e)

Proposition 2.1.1 NWMP and GWMP as stated above are equivalent with respect
to optimization.

Proof:

max
∑
v∈VS

p(v)−
∑
e∈ES

c(e) = max
∑
v∈V

p(v)−
∑
v 6∈VS

p(v)−
∑
e∈ES

c(e)

⇔ min−
∑
v∈V

p(v) +
∑
v 6∈VS

p(v) +
∑
e∈ES

c(e)

As
∑
v∈V p(v) is constant for any given problem, NWMP and GWMP have the

same optimal solution. �
The GWMP-definition is most commonly used in literature, and is the basis for

the formulations in this thesis. For the MIP-formulations in this thesis we will use
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the binary variable yv to denote vertex v ∈ V , and xe or xij to denote the edge
e = (i, j). The binary variables are 1 if the vertex or edge is part of a solution, and
0 if not. For those formulation which require a root, we use an artificial root for
unrooted test cases. An artificial root v0 has the following properties [9]:

1. v0 is part of any feasible solution.
2. v0 has a weight of zero, i.e. p(0) = 0.
3. v0 has a zero-weighted edge to every v ∈ V , i.e. c0v = 0 ∀v ∈ V .
4. One of the edges incident to v0 is part of the solution, i.e.

∑
e∈δ(0) xe = 1.

For the multiple rooted generalization of the PCSTP, let VT ⊆ V denote the
set of all roots, and let one of the roots be denoted v0.

Let V ∗ = V \ {v0}. All formulations in this thesis will then be a variant of the
following,

min
∑
v∈V

pv(1− yv)+
∑
e∈E

cexe∑
e∈δ(0)

xe = 1, y0 = 1 if artificially rooted

yv = 1 ∀v ∈ VT if multiple roots∑
v∈V ∗

yv ≤ k if maximum vertices in solution is k

x defines a tree

yv, xe ∈ {0, 1} ∀v ∈ V, e ∈ E.

The maximum number of vertices in the solution constraint may be relevant
for problems as network constructions where there is a restriction on how many
commodities one can create due to regulations or time consumption. For simplicity
in the formulations to come we do not count v0. For our stomach cancer case we
have decided to mainly control the number of vertices in the solution by a scaling
of the edge weights.

2.2 Former Studies

The PCSTP has received a lot of attention, both by itself and as a part of bigger
problems. We here give a short introduction to parts of what has been done. The
first two paragraphs describe formulations which we will go further into later in
this thesis, while the rest are included as a reference of other successful solution
methods for the PCSTP.

Dummy point formulation

In 2006 Haouari et al. [5] solved a generalized PCSTP, where the total prize of the
nodes for some subsets VK ⊆ V had to at least equal some preset prize quota qk.
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They introduced a dummy point formulation for their generalization of the PCSTP,
which will be described for the PCSTP in Chapter 3. Lagrangian decomposition
was done for two subproblems, one was the result of their generalized version of
the PCSTP and one was obtained from the PCSTP itself. The dual problem was
solved by the volume algorithm. A simple heuristic was introduced, which relies
on creating a reduced instance during the solution process which can be solved to
find a primal solution.

In 2007 Haourai et al. [6] showed that the PCSTP could be further decomposed
into one more subproblem with this formulation. They showed theoretical and
computational results for the strength of the decompositions, which will be used
as arguments for choices made in this thesis. They also tested several variants
of subgradient algorithms for their version of the PCSTP, where two has been
implemented in this thesis.

MTZ-based formulations

In 2010 Haouari et al. [7] solved a quota version of the problem, where the sum
of prizes in the optimal solution must be over a set threshold,

∑
v∈VS

p(v) ≥ Q.
They gave three distinct MIP formulations, based on the Miller-Tucker-Zemlin
formulation proposed for the TSP in 1960 [13]. These were solved using a general
purpose MIP-solver. This formulation is loosely based on introducing a variable
which counts the number of edges from the root to any other vertex in the solution,
ensuring connectivity.

These formulations were tested during the fall of 2012 as part of a preparation
project for this thesis, using a general purpose MIP-solver. We managed to solve
small instances to optimality. Together with the minimum adjacency reduction
test we have now been able to obtain optimal solutions to more of our test cases.

Cutting plane method

In 2004 Lucena and Resende [10] created a cutting plane algorithm for the PC-
STP. They used the GWMP formulation of the objective function, and solved the
problem on an undirected graph. For any S ⊆ V , let E(S) ⊆ E be the set of edges
with both endpoints in S. Let y(S) =

∑
s∈S ys and x(E(S)) =

∑
e∈E(S) xe. Then

the constraints of the problem can be formulated as,

x(E) = y(V )− 1, (2.1a)

x(E(S)) ≤ y(S\{s}), ∀s ∈ S, ∀S ⊆ V, (2.1b)

xe, yv ∈ {0, 1} ∀e ∈ E, v ∈ V (2.1c)

Equation (2.1a) makes sure the optimal solution has one more vertex than the
number of edges, while (2.1b) make sure it’s cycle free. Equation (2.1b) says that
for any subset S ⊆ V , containing q + 1 vertices in the optimal solution, there are
at most q edges with both endpoints in S in the optimal solution. Together these
constraints guarantees the solution to be a tree. The idea is to add the exponentially
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increasing number of equations from (2.1b) iteratively to the solution. Some new
benchmark instances were solved to optimality.

In 2009 Cunha et al. [2] further exploited the structure of this formulation by
Lagrangian relaxation, giving a relax and cut algorithm. They claimed that their
heuristic outperformed most other heuristics from literature.

Branch and Cut

In 2006 Ljubić et. al [9] presented a branch and cut algorithm for the PCSTP.
They reformulated the problem to a directed arc weighted graph. r is a root of the
problem. The subtour elimination constraints used here are∑

i 6∈S,j∈S

xij ≥ yk ∀k ∈ S, r 6∈ S∀S ⊂ V

Basicly this constraint says that for any proper subset S ⊂ V not containing the
root, if for the optimal solution there is a vertex in it, there has to be at least one
arc into the set. The number of constraints are exponentially increasing, and they
are implemented in a branch and cut framework. They also use other techniques
to strengthen the formulation, not presented here.

Their method solved all test instances from literature to optimality, and they
proposed some new harder problems. They solve large instances with up to 1825
vertices and 214095 edges to optimality within 12 hours. This seems to be the best
exact solution algorithm available.

Reduction Tests

Several preprocessing techniques are presented and commonly used in literature
[2, 9, 10]. The aim is to remove vertices and edges that are guaranteed not to be
in the optimal solution, or to merge elements which are guaranteed to either be in
the optimal solution together or not at all. We have implemented the minimum
adjacency test, which helped us obtain optimal solutions for some test cases using
the MTZ-formulation on a general purpose MIP-solver.

The reduction tests described below has earlier been proposed for the closely
related Steiner Tree Problem in Graphs (STP). The first four was proposed for the
PCSTP by [10], and also used in [2, 9]. The fifth was proposed for the PCSTP
by [9] and also used by [2]. The tests should be run iteratively until none of them
change the input graph.

Shortest path test: If there exist a path from vertex vi to vertex vj , where
the sum of the edge costs dij < cij , where cij is the cost of edge (i, j), then edge
(i, j) can be eliminated.

Cardinality-one test: For a vertex vi of edge cardinality one, if the cost of
that edge cij is greater than the prize pi of the vertex, then vi and (i, j) can be
removed.

Cardinality-two test: For a vertex vi of edge cardinality two, if the cost of the
two incident edges cij and cik is greater than the prize pi of the vertex, i.e. cij > pi
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and cik > pi, then edge (i, j) and (i, k) can be merged into an edge e = (j, k) of
cost cjk = cij + cik − pi, or if e already exist ce = min(cjk, cij + cik − pi). The
reason for this is that either none or both of the edges (i, j) and (j, k) are part of
the solution.

Cardinality-k test: For a vertex vi of edge cardinality k ≥ 3, denote the set
of vertices adjacent to vi by Vadj(vi) = {v1, v2, ..., vk}. Let MST (K) be the cost of
a minimum spanning tree of the distance subgraph of K ⊂ V . If

MST (K) ≤
∑
w∈K

ciw, ∀K ⊆ Vadj(vi), |K| ≥ 3,

then, as in the cardinality-two test, vi must have a cardinality of zero or two in
an optimal solution. Each edge (i, j) and (i, k), where j, k ∈ K, can be replaced
by an edge e = (j, k) with cost cjk = cij + cik − pi, or if this edge already exist
ce = min(cjk, cij + cik − pi).

Minimum adjacency test: If adjacent vertices vi and vj exist such that

min(pi, pj) > cij and cij = min
ip∈E

cip,

then vi and vj may be merged into one vertex of weight pi + pj − cij . If a vertex
vk was adjacent to both vi and vj , the edge of greatest weight is removed.

Net weight gain cardinality two path test: For any three vertices vi, vj
and vk where (i, j), (i, k) and (j, k) exist. If

cik + cjk − pk < cij and cij ≥ max(cik, cjk),

then edge (i, j) can be removed.
The time complexity is O(|E|2|V | + |E||V |2 log |V |) and is dominated by the

shortest path test, but usually it runs much faster [9]. Worst case run time happens
when the entire graph is reduced to one vertex, solving the problem.

In [14] they pose that these tests are not as advanced as their counterparts
for the STP. They show a generalization which yield stronger tests. These tests
are NP-hard, and solved using heuristics. Greater reductions than what has been
obtained in [9] is showed for most instances. Some instances are even solved to
optimality just using the reduction tests.



Chapter 3

Dummy Point Formulation
for the PCSTP

In this Chapter we show an alternative formulation of the PCSTP, based on the
work of Haouari et al. in [5, 6]. This formulation clearly shows some subproblems
that the PCSTP consists of, making Lagrangian relaxation and decomposition
possible.

3.1 Original formulation

It is obvious from the definitions of the PCSTP that if we know which vertices
are part of the optimal solution, say VS , the edges can be found by calculating
the minimal spanning tree of the subgraph GS = (VS , ES) ⊆ G. The following
formulation exploits the MST structure of the problem.

Given a graph G = (V,E). Let 0 denote the root, or if no root exist an artificial
root. Then we let G∗ = (V ∗, E∗) denote the subgraph of G where the root and its
adjacent edges are removed.

In this formulation we add a dummy point d to V , giving V d = V ∪ {d}. This
dummy point is restricted to be connected to the root, with an edge of weight
zero. The dummy point also has an edge to all vertices in V ∗ with weight equal
to the weight of the node, i.e. cdj = pj ∀j ∈ V ∗. Let Ed denote the union of E
and the dummy point edges (d, i) ∀i ∈ V ∗. By restricting that any vertex in V ∗

connected to the dummy point, can not be connected to another vertex in V , and
that the edges define a spanning tree, we get the following

17
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min
∑
e∈Ed

cexe (3.1a)

∑
j∈V ∗

x0j = 1 if artificially rooted (3.1b)

x0d = 1 (3.1c)

xdj + xij ≤ 1 ∀j ∈ V ∗, (i, j) ∈ E (3.1d)

x defines a spanning tree on Gd = (V d, Ed) (3.1e)

xij ∈ {0, 1}, ∀(i, j) ∈ Ed (3.1f)

By comparing this formulation to the PCSTP-formulation, we see that if a
dummy point edge xdv is in the solution it compares to a vertex not being part
of the PCSTP-solution. If xdv = 1 a cost equal to pv is added to the objective
function, in the same way a vertex prize/penalty would be in the GWMP objective
function if the vertex was not part of the solution. Thus this give the same objective
value as the GWMP formulation. Figure 3.1 may be illustrative in understanding
the concept.

Equation (3.1a), (3.1e) and (3.1f) together define a minimal spanning tree prob-
lem, complicated by the other constraints. As an MST is a relatively easy problem,
this leads us to the use of Lagrangian relaxation. Constraint (3.1c) can easily be
handled within the subproblem by initializing with it, so only (3.1b) and (3.1d)
will be relaxed.

In [6] they show that this formulation can be further decomposed into a Maximum-
Weight Stable Set Problem (MWSP) on a bipartite graph, from equation (3.1a),(3.1d)
and (3.1f). Bipartite graphs are known to have totally unimodular incidence matri-
ces, and decomposition will thus give no further gain in optimal value as opposed to
relaxation. Therefore we relax (3.1d), and do not use Lagrangian decomposition.

Throughout the rest of this chapter, when referring to a number of vertices in
the solution, we mean in the PCSTP-sense of Chapter 2 as illustrated in Figure
3.1.

3.2 Multiple root formulation

Some test instances may contain multiple roots. Let T = {vr1, vr2, ..., vrp} denote
the set of all p root vertices except one which is denoted as main root vr0. To
induce a vertex v ∈ T as part of the PCSTP-solution, it is sufficient to ensure that
v is not connected to the dummy node, i.e. xdv = 0. For Figure 3.1 we see that
if we require xd5 = 0, then vertex 5 must connect to the PCSTP-solution, either
directly or it may cause vertex 4 to also become part of the PCSTP-solution.

Ensuring that xdv = 0 can be done by removing xdv from the input graph Gd,
and is thus easily handled. To induce multiple root vertices we thereby remove
edges (d, j) ∀j ∈ T from Ed.
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Figure 3.1: Illustration of a solution of the dummy point formulation. The dummy
point is blue, and the root is green. The PCSTP-solution is found by removing the
edge between the root and dummy point, and keeping only the part connected to
the root vertex. Thus we here have six vertices in the solution, namely 1, 2, 3, 6, 7
and 8.

3.3 Maximum number of vertices

We wish to see how we can include the maximum number of nodes constraint,
normally written as∑

j∈V ∗

yj ≤ m if maximum m nodes of n.

For the dummy point formulation we know that connecting a vertex to the dummy
point is equivalent to saying that the vertex is not part of the solution. Thus
requiring a maximum number of vertices in the solution, is equivalent to requiring
a minimum number of vertices connected to the dummy point, i.e.∑

j∈V ∗

xdj ≥ n−m if maximum m nodes of n. (3.2)

3.4 Lagrangian Relaxation

We perform Lagrangian relaxation of (3.1d), (3.1b) and (3.2), and denote the
Lagrangian multiplier with ujij ≥ 0 for (3.1d), v for (3.1b) and for (3.2) we use w.

To be clear, ujij refer to the constraint that vertex j ∈ V ∗ connected to the dummy
point d, should not include the edge (i, j).
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As (3.1b) is an equality constraint, v is not restricted to be non-negative. Also
constraint (3.2) is of form Ax ≥ b so we let w ≤ 0. Let q = n−m, where n is the
total number of elements in V .

We start by rewriting the objective function to clarify the subproblem,

min
∑

(i,j)∈Ed

cijxij +
∑
j∈V ∗

∑
(i,j)∈E

ujij(xdj + xij − 1) + f(v, x) + g(w, x)

= min
∑

(i,j)∈Ed

c′ijxij −
∑
j∈V ∗

∑
(i,j)∈E

(ujij)− f
v − qgw

= min
∑

(i,j)∈Ed

c′ijxij −K(u, v, w)

Then we get the following Lagrangian relaxation,

= min
∑

(i,j)∈Ed

c′ijxij −K(u, v, w) (3.3a)

subject to

x0d = 1 (3.3b)

x defines a spanning tree (3.3c)

xij ∈ {0, 1}, ∀(i, j) ∈ E′ (3.3d)

where

c′ij = cij + uiij + ujij ∀(i, j) ∈ E, i 6= 0 (3.4a)

c′0j = c0j + uj0j + fv ∀j ∈ V ∗ ∩ δ(0) (3.4b)

c′dj = cdj +
∑

(i,j)∈E

ujij + gw ∀j ∈ V ∗. (3.4c)

and

f(v, x) =

{
v(
∑
j∈V ∗ x0j − 1) if artificially rooted

0, otherwise

fv =

{
v, if artificially rooted

0, otherwise.

g(w, x) =

{
w(

∑
j∈V ∗ xdj − q) if maximum nodes constraint included

0, otherwise

gw =

{
w, if maximum nodes constraint included

0, otherwise.
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For any given Lagrangian multipliers, the relaxation (3.3a)-(3.3d) is obviously
an MST with the small modification that it is initialized with the edge (0, d) already
in the solution.

In practice the subgradient algorithm will make it more expensive to include
the edges which breach the relaxed constraints, until we hopefully end up at a
solution close to the optimal solution of the original formulation. In Figure 3.2 we
see that the edge weight from the artificial root to vertex 7, c′07, has been raised
from its initial value of zero to 1.2423 in the solution. Notice also that we get the
same PCSTP-solution as in Figure 3.1.

Figure 3.2: Illustration of a solution to the relaxed problem, where we get a feasible
solution to the original problem, using an artificial root. The dummy point is blue,
and the root is green. Notice that we here have the same edges and nodes in the
solution as for the rooted instance of Figure 3.1. The edge weights are from the
Lagrangian relaxation, and are therefore not equal to those of Figure 3.1.

3.5 Heuristics

When creating heuristic methods, numerous alternatives are often possible. We
here present ideas for several tactics that make use of the primal information from
the solution process. Two of the heuristics are implemented and results are given
in Chapter 8, one which we have created and one from [5].
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Figure 3.3: Illustration of a solution to the relaxed problem. Blue vertex is dummy
point, green is the artificial root, and red is the vertex where we have a breached
constraint. The breached constraints is: xd4 + x4,6 ≤ 1. We see that the artificial
root constraint is not breached here.

3.5.1 Heuristic based on shortest paths

Suppose we know which vertices are part of the solution beforehand. The PCSTP
then reduces to finding the MST for the subgraph of G induced by these vertices.

The solution at any step of the dummy point formulation is an MST, so a sub-
structure of the solution is likely to be close to a feasible solution. From Figure 3.3
a forest can easily be created by removing the dummy point and the artificial root,
all their incident edges, and all vertices where the dummy point constraint (3.1d)
is not breached. Then any cluster in this forest can be thought of as a PCSTP-
solution, and also any merging of these clusters give a solution. The question then
become how to merge these clusters.

We have tested some strategies based on greedy choices of edges. One strategy
was to add the minimal cost edge between clusters (only applicable for complete
graphs). Another was to add the cheapest edge connected to any of the clusters un-
til they are merged. The positive here was that the structure was highly maintained
so the run time was short, but both showed poor results.

By sacrificing some computational speed compared to the methods just men-
tioned, one can add clusters by the shortest path between them. This heuristic has
four phases.

In the first phase before starting the subgradient algorithm, we calculate all
pairs shortest paths, which can be done in O(n log(n) + nm) time by Johnson’s
algorithm. This could have been done within the algorithm, as all pairs are not
used, but worst case run time would likely be the same.

The rest of the heuristic is run each time we get a new intermediate solution in
the subgradient algorithm. The second phase is a merging phase. Here we identify
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all clusters, and add all vertices of one of them to a set P . Then we find the
shortest path between the vertices of P and another cluster, and add all vertices in
the shortest path and the cluster to P . This continues until no clusters remain. In
the third phase the primal value is calculated by solving the MST on the subgraph
of G induced by P . The last phase is a reduction phase, where we remove the
leaves which have a higher cost than profit, as long as they are not roots.

Algorithm 2 Heuristic based on SPP

Before starting subgradient algorithm, calculate all pairs SPP.

Let xk be an intermediate solution from the subgradient method. Let C be the

set of all clusters obtained from xk when removing the dummy point and the

artificial root, all their incident edges, and all vertices where the dummy point

constraint is not breached. Move all vertices of one of the clusters of C into P .

while C is not empty do

1: Find the shortest path between a cluster c and P .

2: Add all vertices in c and all vertices on the shortest path to P .

3: Delete c from C.

end while

3: Calculate primal value by solving the MST on the subgraph of G induced by

P .

4: Remove leaves of the MST if the cost is greater than its profit, and the leaf is

not a root.

A stronger heuristic might be possible by expressing the merging of clusters as
a PCSTP. This could be done by reducing each cluster to one vertex, with weight
equal to the sum of weights of its vertices minus the weights of its edges. The costs
between these vertices could then be set equal to the shortest path between each
cluster, possibly with the profits of the vertices along each shortest path added.
Our heuristic finds the optimal solution of most of our test instances, and we have
therefore not extended our implementation to do this.

3.5.2 Reduction based heuristic

A heuristic is proposed in [5], based on the observation that the edges of the
optimal solution often will be present some time during the solution process. The
heuristic saves up the edges used during the solution process, together with the
edges of an MST to ensure connectivity, and solves this reduced instance. We use
an Xpress Mosel implementation of the MTZ-formulation from Chapter 5 to solve
this problem. This method requires only a small amount of extra time during the
subgradient algorithm, but another solution method or heuristic is needed to solve
the reduced instance after.
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Chapter 4

Flow formulations

Using a flow-based formulation is a common way to ensure connectivity of a solution
in optimization theory. An intuitive way of understanding a flow formulation is to
think of a commodity being sent from a factory to a customer. If we create new
variables that in some way require some artificial commodity being sent, or to flow,
between all included vertices in the solution, this ensures connectivity.

Flow formulations require a directed graph, so we introduce a modified directed
graph where each edge is replaced with two arcs in opposite directions. Let A(e)
denote the set of the two arcs for each edge e. For the following formulations,
V denote the set of all vertices and V ∗ is the set of all vertices except the root,
possibly an artificial root. E denotes the set of edges.

We here present two flow based formulations for the PCSTP, and show possible
Lagrangian relaxations. The second relaxation has been implemented and results
are given in Chapter 8.

4.1 Formulation 1 - all to all

This formulation is based on a multicommodity flow formulation with a separate
commodity for each pair of nodes. Here we have a separate flow from each vertex
u ∈ V to each vertex w ∈ V,w > u. As stated below it solves the unrooted PCSTP.

25
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Original Formulation

min
∑
v∈V

pv(1− yv) +
∑
e∈E

cexe (4.1a)

fu,wa ≤ xe ∀u,w ∈ V, u < w, e ∈ E, a ∈ A(e) (4.1b)

yu + yw − 1 ≤
∑

a∈δ+(u)

fu,wa −
∑

a∈δ−(u)

fu,wa ∀u,w ∈ V, u < w (4.1c)

∑
a∈δ+(v)

fu,wa =
∑

a∈δ−(v)

fu,wa ∀u,w, v ∈ V, v 6= u, v 6= w (4.1d)

∑
v∈V

yv =
∑
e∈E

xe + 1 (4.1e)

0 ≤ fu,wa ≤ 1 (4.1f)

xe ∈ {0, 1}, yv ∈ {0, 1} (4.1g)

For any vertex u to be included in the solution, equation (4.1c) require that u
behave as source for all flows fu,wa , and (4.1d) balances the flow through all other
vertices except w which then behave as sink. Further (4.1b) makes sure there is no
flow if an edge is not included in the solution. Thus including vertices require flow,
and flow require edges. Equation (4.1e) ensures that the solution is a tree. This
is not strictly necessary for the PCSTP, but our results have shown this to give a
much stronger relaxation.

Lagrangian relaxation

By relaxation of (4.1b) and (4.1e), this formulation yield a set of decoupled shortest
path problems (SPP). Let λu,wa denote the Lagrangian multiplier for (4.1b), and β
for (4.1e). We start by rewriting the objective function,
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min
∑
v∈V

pv(1− yv)+
∑
e∈E

cexe +
∑
u∈V

∑
w∈V,u<w

∑
e∈E

∑
a∈A(e)

λu,wa (fu,wa − xe)

+β(
∑
v∈V

yv −
∑
e∈E

xe − 1)

= min
∑
v∈V

pv+
∑
v∈V

(
∑

w∈V,u<w

∑
e∈E

∑
a∈A(e)

λu,wa fu,wa + βyv − pvyv)

+
∑
e∈E

(ce −
∑
u∈V

∑
w∈V,u<w

∑
a∈A(e)

λu,wa − β)xe − β

= min
∑
v∈V

∑
w∈V,u<w

∑
e∈E

∑
a∈A(e)

λu,wa fu,wa +K(y, x, λ, β)

The Lagrangian relaxation then have the following formulation,

= min
∑
v∈V

∑
w∈V,u<w

∑
e∈E

∑
a∈A(e)

λu,wa fu,wa +K(y, x, λ, β) (4.2a)

subjected to

yu + yw − 1 ≤
∑

a∈δ+(u)

fu,wa −
∑

a∈δ−(u)

fu,wa ∀u,w ∈ V, u < w (4.2b)

∑
a∈δ+(v)

fu,wa =
∑

a∈δ−(v)

fu,wa ∀u,w, v ∈ V, v 6= u, v 6= w

(4.2c)

0 ≤ fu,wa ≤ 1, 0 ≤ λu,wa , β free, (4.2d)

xe ∈ {0, 1}, yv ∈ {0, 1} (4.2e)

Subproblem

We see that whenever yu = yw = 1, then (4.2) correspond to an SPP for vertex u
and w. Thus the subproblem corresponds to solving SPPs for all pairs of vertices,
and including vertices and edges if they pay off, i.e. yv = 1 if∑

w∈V,u<w

∑
e∈E

∑
a∈A(e)

λu,wa fu,wa + β ≤ pv

and xe = 1 if

ce ≤
∑
u∈V

∑
w∈V,u<w

∑
a∈A(e)

λu,wa + β.
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For solving this subproblem we need to solve O(n2) one to one SPPs. As the
edges are non negative, Dijkstra’s algorithm can be used, giving a complexity of
O(n2m log(n)) for each iteration of the subgradient algorithm.

4.2 Formulation 2 - root to all

For a rooted instance, or by introduction of an artificial root, the number of SPPs
in the relaxation can be reduced. Let 0 ∈ V denote the root node, and V ∗ = V \{0}
denote the set of all vertices except the root. In this formulation we have a separate
flow from the root node to all other vertices. A generalized rooted version of the
PCSTP is solved in [8] in a similar manner. As the root node is defined to be
included in the solution, we use

∑
v∈V ∗ yv =

∑
e∈E xe to ensure the solution is a

tree.

Original Formulation

min
∑
v∈V ∗

pv(1− yv) +
∑
e∈E

cexe (4.3a)

∑
e∈δ(0)

xe = 1 if artificially rooted, (4.3b)

fua ≤ xe ∀u ∈ V ∗, e ∈ E, a ∈ A(e) (4.3c)

yu ≤
∑

a∈δ−(u)

fua −
∑

a∈δ+(u)

fua ∀u ∈ V ∗ (4.3d)

∑
a∈δ+(v)

fua =
∑

a∈δ−(v)

fua ∀u ∈ V ∗, v 6= u (4.3e)

∑
v∈V ∗

yv =
∑
e∈E

xe (4.3f)

0 ≤ fua ≤ 1 ∀u ∈ V ∗, e ∈ E, a ∈ A(e) (4.3g)

xe ∈ {0, 1}, yv ∈ {0, 1} ∀e ∈ E, v ∈ V (4.3h)

Now constraint (4.3d) and (4.3e) require that there is a flow from the root to any
other vertex in the solution, and (4.3c) require the edges to be included whenever
there is flow. Constraint (4.3f) require the solution to be a tree and is not strictly
necessary, but is included because it gives a stronger relaxation.

Lagrangian relaxation

We perform Lagrangian relaxation of constraints (4.3b) with Lagrangian multiplier
γ, constraint (4.3c) with λua , and constraint (4.3f) with β. We first rewrite the
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objective function,

min
∑
v∈V ∗

pv(1− yv) +
∑
e∈E

cexe +
∑
u∈V ∗

∑
e∈E

∑
a∈A(e)

λua(fua − xe)

+β(
∑
v∈V ∗

yv −
∑
e∈E

xe) + kγ

= min
∑
v∈V ∗

pv +
∑
u∈V ∗

(
∑
e∈E

∑
a∈A(e)

λuaf
u
a + βyu − puyu)

+
∑
e∈E

(ce −
∑
u∈V ∗

∑
a∈A(e)

λua − hγe − β)xe + lγ

= min
∑
u∈V ∗

∑
e∈E

∑
a∈A(e)

λuaf
u
a +K2(y, x, λ, β)

The Lagrangian relaxation is then given as

= min
∑
u∈V ∗

∑
e∈E

∑
a∈A(e)

λuaf
u
a +K2(y, x, λ, β) (4.4a)

subject to

yu ≤
∑

a∈δ−(u)

fua −
∑

a∈δ+(u)

fua ∀u ∈ V ∗ (4.4b)

∑
a∈δ+(v)

fua =
∑

a∈δ−(v)

fua ∀u, v ∈ V ∗, v 6= u (4.4c)

0 ≤ fua ≤ 1 (4.4d)

0 ≤ λua (4.4e)

xe ∈ {0, 1}, yv ∈ {0, 1} (4.4f)

where

kγ =

{
γ(1−

∑
e∈δ(0) xe), if artificially rooted

0, otherwise

lγ =

{
γ, if artificially rooted

0, otherwise

hγe =

{
γ, if artificially rooted and e ∈ δ(0)

0, otherwise.

Subproblem

We see that if yv = 1 in equation (4.4b), then for a given set of Lagrangian mul-
tipliers formulation (4.4) corresponds to a shortest path problem for each u ∈ V ∗,
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with edge costs of λua . After solving the SPP for each u, a node or edge is included
in the solution if it pays off, i.e. yv = 1 if∑

e∈E

∑
a∈A(e)

λvaf
v
a + β ≤ pv

and xe = 1 if

ce ≤
∑
u∈V

∑
a∈A(e)

λua + hγe + β.

The edges are non negative so Dijkstra’s algorithm can be used, giving a complexity
of O(nm log(n)) for each iteration of the subgradient algorithm.

A simple heuristic of creating an MST out of the vertices included in the sub-
problem can be done in an additional O(m log(n)) time.
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MTZ-formulation

The Miller-Tucker-Zemlin (MTZ) formulation was used for the PCSTP in [7]. It
ensures that the solution is a tree, by requiring that a set of bounded variables
uv ∀v ∈ V ∗ increase when we move away from the root node in the solution.

This is a rooted formulation, so for a unrooted instance we use an artificial root.
We create a bidirected graph from G, called GA = (V,A). Denote by δ+(j) the set
of all arcs out of vertex j, and δ−(j) the set of arcs into j. Let the cost of an arc
ca be equal to the cost of the corresponding edge ce. We let xa = xij denote an
arc from i to j. Then the MTZ conditions can be stated as,

min
∑
v∈V ∗

pv(1− yv) +
∑
a∈A

caxa (5.1a)

∑
a∈δ+(0)

xa = 1 if artificially rooted (5.1b)

∑
a∈δ−(j)

xa = yj , ∀j ∈ V ∗ (5.1c)

xij + xji ≤ yj , ∀j ∈ V (5.1d)

ui − uj + yj ≤ n(yi − xij), ∀(i, j) ∈ A (5.1e)

yj ≤ uj ≤ nyj , ∀j ∈ V ∗ (5.1f)

u0 = 0, y0 = 1 (5.1g)

xij , yj ∈ {0, 1}, ∀(i, j) ∈ A,∀j ∈ V (5.1h)

From (5.1e) we notice that when xij = 1, then yi = yj = 1 according to equation
(5.1d), and

uj ≥ ui + 1, ∀(i, j) ∈ A
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Thus whenever an arc xij is part of the solution, the MTZ variables increase by at
least one from i to j. We also see that for (5.1e) xij = 0 give

ui − uj + yj ≤ nyi

which obviously hold for every combination of yi, yj ∈ {0, 1}, remembering that
equation (5.1f) requires uj = 0 whenever yj = 0.

Because it is also bounded from below and above (5.1f), this guarantees a cycle
free solution. Further as (5.1c) require that all vertices except the root has an arc
into it, the solution is connected and a tree.

Figure 5.1: Example of an MTZ solution.

This formulation was implemented in FICO Xpress Mosel in the fall of 2012 as
part of a preparation study for this thesis. In the results chapter we compare the
LP-relaxation of the MTZ-formulation with the Lagrangian relaxations presented
in earlier chapters.



Chapter 6

Test Instances

In this chapter we give an introduction to the test cases which are used in the
remainder of this thesis. Any reference to number of vertices or edges exclude the
artificial root.

6.1 Stomach Cancer

The most common stomach cancer, gastric adenocarcinoma, is histologically (on a
microscopic level) divided into two major types, intestinal and diffuse. Histologi-
cally there are significant differences between intestinal and diffuse cancer, which
have also been seen at a molecular level, proposing that there also is a molecular
difference between intestinal and diffuse cancer. However, Vidar Beisv̊ag is working
on a hypothesis that this molecular difference may not be related to the histolog-
ical classification by itself, but may be caused by the present of so called signet
ring cells. Only a subgroup of the diffuse cancers contain signet ring cells, and
when intestinal and diffuse cancers are compared at a whole genome level, no or
just a little difference is found. But, when diffuse cancers with and without signet
ring cells are compared a large difference is shown. Which may indicate that the
molecular differences previously shown between diffuse and intestinal cancer, may
actually come as a result of those diffuse cancers containing signet ring cells.

We will here define a PCSTP for this case. The goal is to find a subgroup
of genes, which may indicate an important molecular difference between diffuse
cancer with and without signet ring cells. A significant amount of signet ring cells
are generally associated with a worse prognosis for a patient, and therefore finding
these genes could potentially lead to a better treatment.

Our data come from diffuse tumors of 29 operated individuals, 10 with signet
ring cells and 19 without. For the 29 tumors we have the relative amount of mRNA
molecules in a sample for 16110 genes, giving a matrix of size 29 × 16110. All of
the following calculations come from this data set.

Let dgi be the data for individual i and gene g. Let S denote the set of indi-
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viduals with signet ring cells, and D the set without. We let a gene g correspond
to a vertex v in the PCSTP. It’s weight pv is determined by the so called log fold
change between the two cancer types, which here is the difference of the logarithm
of the average value between the groups. Only genes with a higher average in S
than in D is included, giving pv ≥ 0.

pv = log2(

∑
i∈S dgi

|S|
)− log2(

∑
i∈D dgi

|D|
).

Thus a high difference in expression level for a gene between the two groups
will give a high weight, making it more likely to be part of a PCSTP solution. A
normal starting point for a biologist is to start at the top of the log fold change list
to find interesting genes for further exploration.

Biological processes are normally dependent on several genes, and we want to
reward clusters of genes which are dependent of each others. By using correlation
one can identify clusters of coregulated genes. Thus for the edges, let kij be the
Pearson correlation factor between gene i and j obtained from the data set, and
let SF be a positive scaling factor. We then let cij be the weight between vertex i
and j, and calculate the edge weights as,

cij = (1− k2
ij)SF

By doing this a big positive or negative correlation between two genes corre-
spond to a low cost between two vertices in the PCSTP, making it more likely that
these two genes will be part of a solution simultaneously.

By using correlation one can identify clusters of genes, and looking at the log
fold change gives genes which are expressed differently in the two groups. Through
this modeling we hope to do both, finding clusters of coregulated genes which are
expressed differently for the two groups.

Using the log fold change has some weaknesses from a biological point of view.
When a tumor is analyzed, only a slice of the tumor is used and this slice might
not have a representative amount of signet ring cells. Thus the fold change may
be misleading, as it may give an undeserving high or low weight. The correlation
between genes will however not be affected by this, and will smooth out some of
this effect.

More weaknesses exist, but is out of scope for this thesis. We do however note
that solving this problem as a PCSTP, as opposed to using standard statistical
analysis, give a high degree of flexibility. Vertex and edge weights can easily be
adjusted if one wants other relationships between genes to be taken into account.
Further it is easy to impose restrictions on a solution within the optimization
framework, which will in part be done later for the dummy point formulation.

The full data set consist of 16110 genes. This gives a complete graph of 16110
vertices and almost 130 million edges. A trial run have been done on the full set,
giving memory problems and a huge time consumption.

A subset of 187 genes have been picked by Arnar Flatberg. This is a complete
graph, giving 187 vertices and 17391 edges. From this set we also created smaller
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test instances from the first 16, 32, 64 and 128 vertices, with respectively 120, 496,
2016, 8128 edges. In the results chapter we denote these sets with a prefix S16,
S32 etc, and a suffix SF20 or SF200 based on what scaling factor has been used.
The test case S16SF20 then consist of 16 vertices and a scaling of 20 on the edge
weights.

Qualified guesses

For this test instance there is a possibility that the user has a qualified guess of
some genes which are relevant, or the user might wish to see which other genes
seem to be important given a set of genes specified by the user. This can be done
by the generalized multiple roots PCSTP.

Maximum vertices constraint

As we mainly want a small number, m < n, of candidate genes, we also test with
a constraint for the number of vertices included in the solution∑

j∈V ∗

yj ≤ m

Notice that if the scaling factor on the edges is too small, the optimal solution will
only contain the vertices of highest weight, so a sufficiently big scaling factor is
still necessary. Due to this weakness, we have mainly focused on controlling the
number of genes in the solution by adjusting the scaling factor. Further we have
not created a heuristic which incorporates this constraint. Some dual results are
shown in Chapter 8, mainly to show the strength of the formulations when using
the flexibility within optimization.

6.2 Literature instances

We test our formulations against benchmark instances also solved in [9, 10]. Class
P and K are among the easier instances solved in these articles. These instances
can be found at http://homepage.univie.ac.at/ivana.ljubic/research/pcstp/. Notice
that these graphs are sparse compared to the cancer research case.

Vertices Edges
P100.1 100 284
P200 200 587
P400 400 1200
K400 400 1515

Table 6.1: Test instances from literature, with number of vertices and edges.
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Chapter 7

Implementation

In this chapter we show how the different formulations and relaxations have been
implemented. In Section 7.1 we show the implementation of the dummy point
relaxation, in Section 7.2 the relaxation of the second flow formulation, and in
Section 7.3 the implementation in Mosel of the MTZ formulation.

The Lagrangian relaxations are solved by the subgradient method, as outlined
in Section 1.1.4. They are implemented in Matlab R2012a, and built-in algo-
rithms for solving the MST and SPP are used, namely GraphMinSpanTree
and GraphShortestPath. The minimum adjacency reduction test is also imple-
mented in Matlab. Details about this implementation is skipped. For these tests
we use a Dell Optiplex 980, with quad core processor Intel Core i7 CPU 860 @ 2.80
GHz x 4, and 16GB of RAM, with Ubuntu 12.04 64-bit operative system.

Flow formulation 1 and 2, and the MTZ-conditions are implemented in FICO
Xpress Mosel 3.4.1 on a Dell Optiplex 755 with Windows 7 SP1, dual core (2.67GHz)
and 4GB of RAM.

Below we use the notation (i,j) for row i and column j of a 2d-array, and
(i, j) for an edge from vertex i to j. A colon in a 2d-array b(:,i) means the i-th
column, and two colons in a 3d-array c(:,:,i) means the i-th 2d-array. Let n and
m be the number of vertices and edges in the input graph G.

7.1 Dummy Point Formulation

In Algorithm 3 we give the subgradient method for the dummy point formulation,
and we will thereafter explain how we build Axk. Together with Chapter 3 we think
these explanations are sufficient for a basic understanding of our implementation.

For the SPP-heuristic we need to solve all pairs SPP. This has a time complexity
of O(nm + n log(n)) using for instance Johnson’s algorithm. Matlabs implemen-
tation of this algorithm does however not return the paths, only the costs. We
therefore use Dijkstras algorithm with a complexity of O(nm log(n)).

To solve the MST subproblem we have a 2d-array c to store all the original edge
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costs, and a 2d-array Gk to handle the updated costs during the solution process.
GraphMinSpanTree takes Gk as input and outputs a sparse 2d-array xk with n
non zero elements. An element in row (i,j) of xk corresponds to an edge (i, j)
in the current solution, with value equal to the current cost of that edge. Prims
algorithm is used, with run time O(m log(n)).

Algorithm 3 Subgradient method for dummy point formulation

Step 0: Initialize all matrices and variables.

for k=0 to Maximum iterations do

Step 1a: Update Gk according to the costs in Section 3.4.

Step 1b: Input Gk in GraphMinSpanTree to get xk.

Step 1c: Update current dual value zk = sum(xk) - sum(uk) -vk - qwk.

Step 1d: Update lower bound.

Step 1e: If the lower bound has not increased in a set number of iterations,

reset matrices to earlier point and half the step size scalar lk.

Step 2a: Calculate Axk, vk and wk.

Step 2b: Check for feasibility or run heuristic to get a primal value.

Step 2c: Update upper bound.

Step 3a: Calculate the subgradient guk, gvk and gwk.

Step 3b: Calculate the search direction duk, dvk and dwk.

Step 3c: Calculate the step length tk.

Step 4: If the bounds are within an acceptable limit, then stop.

Step 5: Update Lagrangian multipliers uk, vk and wk.

end for

Building Axk

Each element of the relaxed dummy point constraint is handled by a 2d-array Axk

as follows, where d denotes the dummy point,

Axk(i,j)← xdi + xij

The reason for handling Ax, which is actually a vector, as a 2d-array is to easier
let the elements correspond to the edges. For sparse input graphs, some elements
will thus be unused.

Matrix Axk is built from the current solution xk. An edge (i, j) from xk, where
i, j 6= dummy, has two contributions to Axk, namely for the following elements

Axk(i,j)← xdi + xij

Axk(j,i)← xdj + xij
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An edge (d, i) has contributions to all (i, j) ∈ E. Assuming an ordered list
where the first edge is (i, 1) and the last edge is (i, n), it contributes to all of the
following

Axk(i,1)← xdi + xi1

...

Axk(i,n)← xdi + xin

The i-th row of the incidence matrix b gives the indices to update for all (d, i).
This results in Algorithm 4, where xr and xc are arrays with row and column
indices of non zero elements of xk, such that xr(1) and xc(1) give the first edge
of xk in some order. Note that by construction the dummy point will always be in
xr, so we only test if xr(a) 6= dummy.

Algorithm 4 Building Axk

Axk = zeros(n,n);

for a = 1:length(xr) do

if xr(a) 6= dummy then

Axk(xr(a),xc(a)) = Axk(xr(a),xc(a))+1

Axk(xc(a),xr(a)) = Axk(xc(a),xr(a))+1

else

Axk(xc(a),:) = Axk(xc(a),:) + b(xc(a),:)

end if

end for

Axk(root,:) = 0;

7.2 Flow formulation 2

Our implementation for Flow Formulation 2 requires a complete graph, and only
the stomach cancer case is tested. As the results were poor, we have not used time
to generalize the implementation for sparse graphs. We do not outline the entire
solution process for this formulation, but Algorithm 5 shows how we solve the most
interesting part of the subproblem.

For λua and fua , where a = (i, j), we use three dimensional arrays Lk(i,j,u) and
Fk(i,j,u). GraphShortestPath takes as input Lk(:,:,u) with a source (root)
and sink (u) vertex. As Lk≥ 0 Dijkstra is used with a run time of O(m log(n))
for each u. This totals to a run time of O(nm log(n)) for each iteration. The
subgradient method uses most of its time in GraphShortestPath.

In the algorithm below we show how Fk(i,j,u) is built, and how vertices are
chosen. Edges are chosen separately.
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Algorithm 5 Building Fk(i,j,u) and choosing vertices

Let β be the Lagrangian multiplier for
∑
y −

∑
x = 1

for u ∈ V \ {root} do

[COSTu PATHu] = GraphShortestPath(Lk(:,:,u),root,u).

if COSTu + β <= pu then

yu= 1.

Fk(i,j,u) = 1 for all (i, j) along the path in PATHu.

end if

end for

This can potentially be done in parallel to improve the run time, which with n
cores would be equal to that of the dummy point.

7.3 MTZ and Flow Formulations in Mosel

The MTZ formulation was implemented in FICO Xpress Mosel as part of a spe-
cialization project for this thesis.

Truls Flatberg has implemented the first flow formulation in Mosel, and this has
been altered by the author to apply for the second formulation. Mosel quickly strug-
gle with memory problems when the problem size increases. The implementation
has been used to verify that the Lagrange relaxation is equal to the LP-relaxation
for all instances which we were able to test.



Chapter 8

Results

In this Chapter we give results for the formulations and relaxations. We compare
primal and dual bounds, solution methods and time consumption. A new cost ef-
fective heuristic for the unrooted stomach cancer instances is proposed from these
results.

We give total run time in seconds for most test cases. Parts of our implementa-
tions can be improved, so we also include run times used in GraphMinSpanTree
and GraphShortestPath as these implementations are thought to be fairly ef-
fective.

As the dummy point and flow formulations seem to have duality gaps, the op-
timal solutions zopt come from the Mosel implementation of the MTZ-formulation.
In the tables we use italics on instances where we have not obtained an optimal
solution.

In all the following results we use a maximum of 500 iterations, and halve the
step size if there has been no improvement for 20 iterations. We start with step
length scalar l0 = 2.

8.1 Dummy Point Formulation

In this section we give results for the dummy point formulation. We show results
for unrooted and multiple rooted instances, and by the use of the maximum number
of nodes constraint.

If not otherwise stated, the initial heuristic to obtain a primal bound is based
on the best bound obtained from an MST and the single node of highest weight.
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8.1.1 Unrooted PCSTP

In Table 8.1 we compare different strategies for finding the dual value of the PCSTP.
Table 8.2 shows dual and primal bounds by the use of the SPP-heuristic, and in
Table 8.3 we give primal bounds from the Reduction based heuristic.

In Table 8.1 we see that SG1 finds a slightly tighter bound than SG2 for most
instances. A comparison of convergence is shown in Figure 8.2 for S64SF20, and in
Figure 8.3 for P.100.1 using heuristics. SG1 is also slightly faster than SG2, as the
search direction is equal to the subgradient. We have included the run time used
in GraphMinSpanTree for solving the subproblem. For the complete graphs we
see that most of the run time is used in GraphMinSpanTree, which shows that
our implementation of the subgradient method is fairly efficient. Looping gives
a slightly tighter bound for almost all instances, but the added run time makes
looping a poor alternative for solving the relaxations. There seems to be a duality
gap for most instances, such that for example implementation into a branch-and-
bound framework is necessary if one wants to guarantee optimality.

In Table 8.2 we see that our SPP-heuristic finds the optimal solution for all the
stomach cancer instances in less than 5 iterations. In two out of the three literature
instances that we have optimal values for, it also finds these within 500 iterations.
Bounds for P.100.1 are shown in Figure 8.3. We see that the run time increases
compared to when we used the optimal solution as upper bound. Only a part of
the extra time is used to solve the SPPs, so the implementation of the heuristic
can probably be improved.

Table 8.3 shows the results of the edge reduction heuristic from [5]. It finds
the optimal solution for all but one of the stomach cancer instances, and performs
better than the SPP-heuristic on some of the literature instances. This heuristic
saves up all edges used during the solution process, and to ensure connectivity it
merges them with the edges of an MST. As the number of edges from the MST
is n − 1, we see that for the stomach cancer instances only a small amount of
edges differ from the MST. This leads us to believe that for further work a strong
heuristic could be made independently of the dummy point formulation, by simply
finding the MST of the input graph, and solving the PCSTP over the edges from
this MST.

This is also supported by the SPP-heuristic, as it finds the optimal solution in
the first iteration for several of the instances. In the first iteration of the dummy
point formulation, all Lagrangian multipliers are zero, and thus the cost from the
artificial root to all other vertices is zero. As the edge weights of the input graph
for the stomach cancer instances are in practice greater than zero, the solution in
the first iteration x0 will then be as in Figure 8.1, where all vertices are connected
to the artificial root. We then remove the artificial root and the dummy point, and
merge the remaining vertices. For the stomach cancer instances this will in prac-
tice always be all of the vertices of the input graph. Thus a minimal spanning tree
over all vertices, with removal of non profitable leaves, finds the optimal solution
of seven out of the ten stomach cancer instances.
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Figure 8.1: Illustration of the solution from the first iteration x0, for the artificially
rooted dummy point formulation. Green is the artificial root, and blue is the
dummy point.

Figure 8.2: Dual bound for S187SF200, when using optimal solution as upper
bound (in blue). In green we see the bound using SG1 and in red the bound from
SG2. We have a fairly monotonic increase, as the dual values (in black) are mostly
hidden behind the lower bounds. This is due to the good initial upper bound.
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Figure 8.3: Bounds for P.100.1 using the SPP-heuristic. Upper and lower bounds
when using SG1 is shown in green, and SG2 in red. As the heuristic finds the
optimal solution in the 29th iteration, there seems to be a duality gap.
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Dual values using an artificial root, UB = zopt

SG1 SG2 zopt LB/zopt tSG1 tSG2 tMST

S16SF20 17.9506 17.9154 18.1439 0.9893 0.4 0.4 0.1
S32SF20 31.2822 31.2231 32.0602 0.9757 0.5 0.6 0.2
S64SF20 58.4055 58.2511 59.2132 0.9864 1.1 1.2 0.5
S128SF20 103.4995 103.2695 104.6270 0.9892 2.6 2.7 2.3
S187SF20 140.4932 140.1984 141.8218 0.9906 4.9 5.1 4.8
S16SF200 22.8100 22.8100 22.8100 1 0.1 0.2 0.03
S32SF200 51.9394 51.9392 51.9394 1 0.2 0.3 0.1
S64SF200 108.1637 108.2387 108.7540 0.9953 1.1 1.1 0.6
S128SF200 212.8768 212.8096 213.5898 0.9967 2.6 2.7 2.3
S187SF200 315.4292 315.2925 316.4688 0.9967 5.0 5.1 4.9
P100.1 860216 859194 926238 0.9287 1.1 1.2 0.2
P200 1261298 1253423 1317874 0.9571 2.5 2.7 0.5

Dual values using looping, UB = zopt

SG1 SG2 zopt LB/zopt tSG1 tSG2

S16SF20 17.9797 17.9373 18.1439 0.9910 0.9 1.0
S32SF20 31.2876 31.2253 32.0602 0.9759 11 11
S64SF20 58.4136 58.2559 59.2132 0.9865 58 58
S128SF20 103.6358 103.5844 104.6270 0.9905 333 370
S187SF20 140.8777 140.8462 141.8218 0.9933 1008 1077
S16SF200 22.8100 22.8100 22.8100 1 0.2 0.2
S32SF200 51.9394 51.9394 51.9394 1 0.2 0.2
S64SF200 108.2409 108.2409 108.7540 0.9953 3.2 3.0
S128SF200 212.9285 212.8479 213.5898 0.9969 13.5 13.6
S187SF200 315.4706 315.3660 316.4688 0.9968 40 40
P100.1 860145 859903 926238 0.9286 127 146
P200 1262828 1256964 1317874 0.9582 515 538

Table 8.1: Dual bounds using the dummy point formulation, where the optimal
solution is used as upper bound. Above we use an artificial root, and below we
loop through all vertices as root. For the LB/zopt-column we use the best of the
two values obtained from SG1 and SG2 as LB. For the columns tSG1 and tSG2

we give the total run time in seconds for each of the subgradient methods, and in
the tMST -column the time used in GraphMinSpanTree for the subproblem with
SG1.
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SPP-heuristic, artificial root

UB zopt/UB its t tSPP
S16SF20 18.1439 1 1 0.6 0.02
S32SF20 32.0602 1 3 0.9 0.04
S64SF20 59.2955 1 5 1.7 0.1
S128SF20 104.6270 1 1 4.3 0.6
S187SF20 141.8218 1 1 9.0 1.6
S16SF200 22.8100 1 4 0.3 0.02
S32SF200 51.9394 1 1 0.5 0.04
S64SF200 108.7540 1 1 1.4 0.1
S128SF200 213.5898 1 1 3.2 0.6
S187SF200 316.4688 1 1 6.6 1.6
P100.1 926238 1 29 3.0 0.2
P200 1340946 0.9828 8.0 0.6
P400 2527372 21 4.2
K400 384605 22 4.3

Table 8.2: Primal bounds using the SPP-heuristic. Dual bounds are more of less
equal to those of Table 8.1, and are not given. In the its-column we state how many
iterations are needed before the heuristic finds the optimal solution. The t-column
gives total run time, and tSPP gives time for calculating the shortest paths.

Edge reduction-heuristic, artificial root

Edges UB zopt/UB t
S16SF20 18 18.1439 1 0.1
S32SF20 36 32.0602 1 0.1
S64SF20 69 59.2955 0.9986 0.2
S128SF20 128 104.6270 1 0.4
S187SF20 187 141.8218 1 0.6
S16SF200 15 22.8100 1 0.1
S32SF200 31 51.9394 1 0.1
S64SF200 64 108.7540 1 0.2
S128SF200 128 213.5898 1 0.5
S187SF200 187 316.4688 1 0.6
P100.1 128 926238 1 44
P200 240 1317874 1 54
P400 484 2462863 600
K400 557 385775 600

Table 8.3: Results from the edge reduction-heuristic. Number of edges left is given
in Edges. UB give the best integer bound found. Maximum time is set to 600
seconds. This only includes the time used in Xpress Mosel.
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8.1.2 Multiple rooted PCSTP

To test the multiple rooted PCSTP, we choose to root the five vertices [1 2 3 4 5].
At least one of these vertices is not part of the known optimal solutions for the
corresponding unrooted PCSTPs. SG1 is used for all instances

Results for the SPP-heuristic are given in Table 8.4. We notice that the SPP-
heuristic finds close to optimal solutions, but does not perform as well as for the
unrooted PCSTP. The optimal solution is found by feasibility in two instances and
is thus guaranteed, and by the heuristic in seven of the instances. For four of the
instances where we know the optimal solution, the heuristic does not find it.

In Table 8.5 results from the edge reduction heuristic are given. Also here we
see tight bounds, which are mostly found rapidly. We see that for some instances
the reduced graph only contain the edges of a minimal spanning tree, while for
most instances some extra edges are also included. For K400 no integer solution
was found in Xpress Mosel.

Bounds with multiple roots, and SPP-heuristic

LB UB LB/UB zopt/UB t
S16SF20 1 1 1 0.2
S32SF20 34.3297 200 0.9967 1 0.6
S64SF20 59.0131 411 0.9939 1 1.2
S128SF20 104.4092 1 0.9964 1 3.1
S187SF20 141.7066 1 0.9980 1 6.2
S16SF200 59 1 1 0.3
S32SF200 132.9860 14 0.9967 1 0.8
S64SF200 179.7599 189.6171 0.9480 0.9866 2.3
S128SF200 277.5506 293.6851 0.9451 0.9822 4.8
S187SF200 374.9121 390.0514 0.9611 0.9933 8.6
P100.1 1092882 16 0.9818 1 3.4
P200 1342438 132 0.9932 1 6.9
P400 2573965 2626860 0.9798 0.9932 21
K400 280531 502180 0.5586 23.5

Table 8.4: Bounds using multiple rooted dummy point formulation. In the LB-
column italics shows at which iteration a feasible optimal solution was found, while
in the UB-column it shows at which iteration our heuristic found the optimal
solution. The t-column gives total run time.
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Bounds with multiple roots, and edge reduction-heuristic

Edges UB zopt/UB t
S32SF20 31 34.4420 1 0.1
S64SF20 64 59.4580 0.9986 0.1
S128SF20 127 104.7950 1 0.2
S187SF20 186 141.9912 1 0.2
S32SF200 40 133.4277 1 0.1
S64SF200 73 187.52 0.9976 0.1
S128SF200 144 302.117 0.9548 0.2
S187SF200 205 389.497 0.9947 0.3
P100.1 115 1113150 1 0.5
P200 218 1391126 0.9716 0.1
P400 451 2640133 0.9883 64
K400 1026 600

Table 8.5: Results from the edge reduction-heuristic. Number of edges left is given
in Edges. UB give the best integer bound found. Maximum time is set to 600
seconds. This only includes the time used in Xpress Mosel. Mosel did not find an
integer solution for K400.

8.1.3 Maximum number of nodes

In Table 8.6 we give results for the dummy point formulation with the additional
constraint that only 9 nodes may be part of the corresponding PCSTP-solution.
We use the optimal value as initial upper bound, as we have not created a heuristic
approach for this problem. The SF200 instances all have less than 9 nodes in the
solution, and give the same value as in Table 8.1. We get fairly strong bounds.

Bounds with maximum nodes constraint, UB = zopt
LB zopt LB/zopt t

S16SF20 17.9468 18.1439 0.9891 0.4
S32SF20 36.8194 37.2120 0.9894 0.6
S64SF20 88.9775 89.8205 0.9906 1.3
S128SF20 193.7152 194.5636 0.9956 3.7
S187SF20 295.1895 296.1734 0.9967 7.8
P100.1 1217547 1249047 0.9748 1.3
P200 1917469 1958305 0.9791 2.4
P400 3888340 3949160 0.9846 7.1
K400 327202 350093 0.9346 7.4

Table 8.6: Bounds with maximum 9 nodes in the optimal solution. Initial upper
bound equal to optimal value.
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8.2 Flow formulations

In this section we give results for the Lagrangian relaxation of Flow Formulation
2. We give dual values and run time for all the stomach cancer instances in Table
8.7, and show plots of typical dual values during the solution process in Figure 8.4.

We see that we get strong bounds for the stomach cancer test instances when
we have a high scaling factor, and weak bounds with a low scaling factor. The main
difference in these two sets of test instances, is that with SF20 almost all vertices
are part of the optimal solutions, while for SF200 only a small amount of vertices
are part of the optimal solutions. As the subproblem consist of finding shortest
paths between pairs of vertices, it is possible that with fever vertices in an optimal
solution, the shortest paths will easier resemble the optimal solution.

We see that the time needed is significantly higher than for the dummy point
formulation, and that most of this time is spent to solve the subproblem.

From the plots in Figure 8.4 we see the zigzagging behavior of the subgradient
method. Using an MST to give an upper bound gives a much bigger initial step
length for the SF200 instances, and the subgradient method uses more iterations
until convergence.

We have implementations of Flow Formulation 1 and 2 in Mosel, but Mosel
is only able to solve the smallest instances (S16) before running out of computer
memory. No results are given from these implementations.

Dual bounds from Flow Formulation 2, UB = zopt

SG1 SG2 zopt LB/zopt tSG1 tSG2 tGSP
S16SF20 17.5979 17.4017 18.1439 0.9699 4 4 3
S32SF20 24.8960 24.4483 32.0602 0.7765 14 14 8
S64SF20 44.6684 44.3380 59.2132 0.7544 65 66 35
S128SF20 79.6119 79.4804 104.6270 0.7609 430 385 290
S187SF20 106.1831 106.1502 141.8218 0.7487 1200 1100 850
S16SF200 22.8100 22.7011 22.8100 1 4 4 3
S32SF200 51.8576 51.9344 51.9394 0.9999 15 14 8
S64SF200 107.3888 107.3660 108.7540 0.9874 65 66 40
S128SF200 211.4373 211.4117 213.5898 0.9899 385 360 260
S187SF200 312.2848 312.2749 316.4688 0.9868 1190 1120 850

Table 8.7: Dual bounds using Flow Formulation 2, where the optimal solution is
used as upper bound. Total run time for SG1 and SG2 is given in the tSG1- and
tSG2-columns, and the average time between SG1 and SG2 used in GraphShort-
estPath during the solution process is given in the tGSP -column.
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Figure 8.4: Dual bound for S32SF200. On the top we use the optimal solution as
an upper bound, and for the lower one we use an MST to obtain an upper bound.
Red shows lower bound and blue the dual value zk. This shows the importance of
a good initial upper bound. SG1 is used for both plots. SG2 has less zigzagging,
but shows much of the same behavior. Plots for SG2 are not included.
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8.3 Comparison of dual bounds

In this section we compare the dual bounds of our Lagrangian relaxations, with
the LP-relaxation of the MTZ-formulation in Table 8.8-8.10. For all these tables
the MTZ-column gives results for the LP-relaxation of the MTZ-formulation, the
F2-column for Flow Formulation 2, and the Dummy-column for the dummy point
formulation. For cases where the optimal value is known, we give LB/zopt, while
for the others we state LB in italics.

We see that the dummy point formulation is the strongest for the unrooted
stomach cancer instances, while the results vary for the other problems. In all
cases the LP-relaxation of the MTZ-formulation is fairly strong compared to the
dummy point formulation.

MTZ F2 Dummy
S16SF20 0.9665 0.9699 0.9893
S32SF20 0.9459 0.7765 0.9757
S64SF20 0.9716 0.7544 0.9864
S128SF20 0.9845 0.7609 0.9892
S187SF20 0.9878 0.7487 0.9906
S16SF200 1 1 1
S32SF200 1 0.9999 1
S64SF200 0.9926 0.9874 0.9953
S128SF200 0.9962 0.9899 0.9967
S187SF200 0.9962 0.9868 0.9967
P100.1 0.9250 0.9287
P200 0.9644 0.9571
P400 2377694 2370896
K400 244610 246303

Table 8.8: Comparison of dual bounds using an artificial root.

MTZ Dummy
S16SF20 0.9665 0.9891
S32SF20 0.9862 0.9894
S64SF20 0.9861 0.9906
S128SF20 0.9944 0.9956
S187SF20 0.9961 0.9967
P100.1 0.9908 0.9748
P200 0.9867 0.9791
P400 0.9901 0.9846
K400 0.9335 0.9346

Table 8.9: Comparison of dual bounds using maximum 9 nodes in the solution.
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MTZ Dummy
S16SF20 1 1
S32SF20 1 0.9967
S64SF20 0.9964 0.9939
S128SF20 0.9973 0.9964
S187SF20 0.9973 0.9980
S16SF200 1 1
S32SF200 0.9975 0.9967
S64SF200 0.9658 0.9609
S128SF200 0.9837 0.9621
S187SF200 0.9827 0.9677
P100.1 0.9805 0.9818
P200 0.9993 0.9932
P400 0.9912 0.9865
K400 278686 280531

Table 8.10: Comparison of dual bounds using multiple roots.

8.4 Reduction tests

In Table 8.11 we show results of the minimum adjacency test for the stomach cancer
case. We see that when the cost of the edges are relatively small, more reductions
can be made. For a greater scaling factor almost no reductions can be made. We
only report on the number of vertices, as they are all still complete graphs. This
has been used to obtain optimal solutions for the stomach cancer instances with
scaling factor 20. Note that together with the dummy point formulation one can
not use this reduction test.

S16 S32 S64 S128 S187
SF20 11 12 15 17 23
SF250 16 32 64 127 186

Table 8.11: Vertices left after use of the minimum adjacency test.
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8.5 Final remarks

According to Vidar Beisv̊ag, the optimal solution from the unrooted S187SF200
case gave realistic outputs. The set of genes were, with some exceptions, genes
known to be expressed differently for diffuse cancer with signet ring cells. Due
to memory and time consumption we have not been able to solve the full set of
16110 genes. Some medium sized sets have been tested, but the run time quickly
increases. For test instances of 1000 genes, the run time increases to a couple of
hours. Due to this we have not been able to test the multiple rooted PCSTP on
the full set of genes, with interesting genes picked by Beisv̊ag.

The heuristics show that optimal solutions for most of the unrooted stomach
cancer instances can be found by solving the PCSTP over more or less only the
edges from an MST of the input graph. A heuristic simply based on reducing the
edges of an input graph to the edges of its MST, and solving this to optimality
by for instance the MTZ-formulation, could be tried. Together with the fast and
fairly strong LP-relaxation of the MTZ-formulation, one could then quickly get
guarantees on the strength of the solution. If the results of the work done here is
valid for larger instances of the stomach cancer data, then these bounds are likely
to be strong.

8.6 Conclusions

In this thesis we have formulated the PCSTP as several integer programs, shown
Lagrangian relaxations of these IPs, and solved them using the subgradient method.

The flow based formulation required a long run time, and gave weak bounds
for several of the test instances. The dummy point formulation was fairly fast and
tight for most of our test instances, although a duality gap exists. The use of an
artificial root gave slightly weaker bounds than looping, but this might be a result
of the subgradient method. The difference was however so small, that the savings
in run time make the artificial root the best choice.

Two Lagrangian heuristics have been implemented, both finding the optimal
solutions of all but one of the unrooted instances where we know the optimal
solution. The run time of the heuristics can be improved. We have also looked
at a multiple rooted PCSTP, where the heuristics found the optimal solutions for
several instances, and close to optimal solutions for the remaining instances.
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