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Abstract 

New scientific methods are required in industry to avoid loss of money and human lives and 

provide more profit. The purpose of this paper is to study stochastic models and statistical 

methods for analysis of lifetimes. Different alternatives of sequential continuous-time Markov-

processes and semi-Markov process applied to modeling of technical degradation are considered, 

such as Markov processes similar to non-homogeneous Poisson process and semi-Markov 

process with sojourn time belonging to the Weibull distribution. A case study from an electrical 

network is performed. The object is an analysis of wood poles of power lines where the data 

from the company are panel data which contain observations over multiple time periods for the 

same individual pole. The wood poles are monitored by means of visual inspection techniques 

and their conditions are classified into five states, representing five different technical conditions. 

This paper describes how to predict the remaining lifetime given how long the poles have been in 

use and in which state they are observed. These corresponding Markov models are implemented 

in R-studio, parameters of the models are obtained based on the maximum likelihood methods. 

In order to compare and evaluate the models, likelihood ratio test statistics and hypothesis tests 

are applied. The simulations, based on the Markov models, are used to assess the quality of data 

and evaluate the goodness of models. Results from application of Markov models, discussion 

about advantages and disadvantages of the models, and suggestion are presented. 
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Chapter 1: Introduction 

 

In the last decades, several accidents, like collapse of bridges, breakdown of machines and 

power blackouts, have already become the point of social attention. They have resulted in the 

loss of human lives and extremely high cost. That is why more and more companies pay more 

attention to asset management. However, many kinds of factors make the asset management to 

be a difficult problem. For example, limited cost of maintenance, quality of maintenance and 

different methods of inspection will lead to different results. In recent decades, a large number of 

technical assets are inspected visually, such as pipelines, sewers, bridges and wood poles and the 

visual inspection method is the subjective interpretation of the level of deterioration of assets [1]. 

Such visual inspections are carried out periodically and result in subjective judgments of the 

asset condition. In this proposed research, conditions of components are described by discrete 

states where a transition from one state to the following state represents a degradation of the 

asset condition. The example is shown in Table 1. 

 

Table 1: Description of state 

State code Description 

0 No problems of the asset indicated (as good as new)  

1 Some minor problems indicated (worse than "as good as new") 

2 Serious problems indicated (poor condition) 

3 Critical problems indicated (imminent failure)   

4 Fault state. 
 

 

For the sake of using the information gathered by visual inspections for estimating the 

remaining lifetime of an asset, a mathematical model should be applied to represent the 

deterioration process over time. A number of mathematical methods have been applied in asset 

management in many researches. In the literature, many people would like to use Markov 

process to simulate the process. Chan and Asgarpoor used the Markov process to find the 

optimum maintenance policy for an electric component and its failures due to deterioration are 

taken into consideration [2]. Xueqing and Hui used a discrete-time semi-Markov process to do 

the road maintenance optimization [3], and Kallen and van Noortwijk used a Markov process 

with sequential phases to simulate a deterioration process, which is an application of periodic 

inspection of objects [4].  Thus, the continuous-time Markov-process is often used as stochastic 
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model for mathematical representation of a degradation process, and the uncertainty and possible 

variation related to this process, this is also done in the following sections. 
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Chapter 2: Characteristics of the data 

This chapter presents the characteristics of data gathered by visual inspection. Assuming no 

replacement and maintenance occur after installation of assets, visual inspections are assumed to 

be carried out with fixed time interval such as every 2nd year or every 5th year. In practice, the 

inspection time interval is not fixed, because it is not practical to carry out inspections of all 

assets at the same time, if we have more than hundreds of assets. Then the process of inspection 

would last for a long period. Thus the dataset would be formed with time series and each time 

series contains the technical condition states with an increasing number as presented in Table 2 

which presents the degradation processes and the condition of assets. 

 

Table 2: Example of the several time series with condition monitoring data 

Object no. Time of 

first 

inspection 

State Time of 

second 

inspection 

State Time of 

third 

inspection 

state …… 

1 1985 0 1992 1 2005 1 …… 

2 1988 0 1995 0 2008 1 …… 

3 2000 0 2003 2 2010 3 …… 

4 1992 0 1998 0 2008 1 …… 

5 1990 0 2001 0 2001 1 …… 

6 2000 0 2005 0 2010 0 …… 

7 1987 0 2000 1 2009 1 …… 

…… …… …… …… …… …… …… …… 

 

 

In statistics, the data in Table 2 refer to multi-dimensional data. We call it panel data which 

contain observations on multiple conditions observed over multiple time periods for the same 

individuals [5]. In the literature, Kallen used Markov process to analyze panel data of the bridge 

in Netherlands [1] and Jackson said that “Panel data are observations of a continuous-time 

process at arbitrary times and Multi-state models for such data are generally based on the 

Markov assumption” [5].  

       However, the data we have in this proposed research is incomplete. In application, the 

dataset will include lots of noise. This may be due to typing errors or other kinds of errors made 

during the registration of inspection results. Moreover, the problem we face is that the datasets 

with monitoring data cover so short time period that would hardly contain inspections 

representing the whole lifetime of assets. For example, the construction year (2000) is close to 
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the current date, when the periodic inspections are carried out every 5 years. Then only 2 

observations are available. This means that only a few data are available. Furthermore, the 

assessments of condition are also subject to personal judgments. The visual inspection is carried 

out periodically by different technicians and it would result in subjective judgments of the 

component condition.  

Another problem related to the dataset is censoring. We have to be satisfied with incomplete 

dataset. It is impractical or too expensive to wait until the process moves to the failure state, and 

the inspection data of individual asset was not registered for some reasons (missing entries or 

type errors). That is why it is hard to get all information through the lifetime of assets, and then 

censoring occurs. For example, some of the assets do not reach the final state and the correct 

time of failure is not known at the inspection, because the companies will replace or repair their 

asset before failures and the failure will happen between two inspections. For most of the assets, 

the degradation process is censored, because the inspections are not carried out continuously and 

some of the assets will not reach the end of the lifetime. When a transition happened between 

two inspections, the inspector only knows there must be a transition between two inspections, but 

he does not know the right time when the transitions occurred. Thus, the interval-censoring will 

happen between two observations.  

In summary, the dataset we have is incomplete and heavily censored. What we know is how 

many failures between two consecutive inspections and the time of each inspection. The Markov 

process would be our candidate to describe the deterioration process of assets because of the 

multiple states and continuous time. 
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Chapter 3: Model description 

3.1 General introduction of Markov processes 

In the literature, Markov processes have been applied quite frequently in the engineering [6]-[7]. 

It is suitable to model the random progress through discrete states. A Markov process is a 

mathematical system that undergoes transitions from one state to another, among a finite 

numbers of possible states. With the Markov property, future states are independent of past states 

given the present state. In this section, the theory of Markov chain is based on Ross’s theory [8], 

 

3.1.1 Markov Chain 

A stochastic process {𝑋𝑛, 𝑛 = 0,1,2,3,⋯ }  with a finite number of possible values will be 

discussed. These possible values in the stochastic process are denoted by the corresponding non-

negative values {0,1,2,3,⋯ }. If 𝑋𝑛+1 = 𝑗, it indicates the stochastic process is said to stay in 

state 𝑗 given the time is 𝑛 + 1. That is 

 
Pr⁡(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛, …⁡, 𝑋2 = 𝑖2, 𝑋1 = 𝑖1)

= Pr(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) = 𝑃𝑖𝑗 
(1) 

for all states 𝑗, 𝑖, 𝑖𝑛, … , 𝑖0⁡and⁡all⁡𝑛 ≥ 0. This kind of stochastic process is called as a Markov 

chain [8]. “Equation (1) may be interpreted as stating that, for a Markov chain, the conditional 

distribution of any future state 𝑋𝑛+1, given the past states 𝑋𝑛−1, ⋯ , ⁡𝑋0 and the present state 𝑋𝑛, 

is independent of the past states and depends only on the present state.” [8]. The value 𝑃𝑖𝑗 

represents the probability that the stochastic process will make a transition to the next state 𝑗 

given that the process is in state 𝑖. As is noted in Ross’s theory [8], since all of the probabilities 

are larger or equal to 0 and also the stochastic process must make a transition to the other states, 

so what we have is that  

 𝑃𝑖𝑗 ≥ 0⁡and⁡∑𝑃𝑖𝑗

∝

𝑗=0

= 1, 𝑖 = 0,1,2,⋯ (2) 

The 𝑛 +𝑚-step transition probabilities are denoted by Pr(𝑋𝑛+𝑚 = 𝑗|𝑋0 = 𝑖) = 𝑃𝑖𝑗
𝑛+𝑚  and it 

may be computed by the Chapman-Kolmogorov equation which is show below: 
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 𝑃𝑖𝑗
𝑛+𝑚 = ∑𝑃𝑖𝑘

𝑛

∞

𝑘=0

𝑃𝑘𝑗
𝑚⁡ (3) 

for all⁡𝑛,𝑚 ≥ 0. “It is easily understood by noting that 𝑃𝑖𝑘
𝑛𝑃𝑘𝑗

𝑚  represents the probability that 

starting in i the process will go to state j in n + m transitions through a path which takes it into 

state k at the nth transition” [8]. 

 

3.1.2 Markov process 

Generally speaking, the Markov process is the extension of the Markov chain. Let’s denote the 

state space as ⁡𝑬 = {0,1,2,3,… }  and let (𝑋(𝑡)|𝑡 ≥ 0)with index 𝑡  denote a Markov process. 

According to the definition of Markov chain, the process (𝑋(𝑡)|𝑡 ≥ 0)  is said to be a 

continuous-time Markov chain, if all states 𝑖𝑛, 𝑖, 𝑗𝑬 and 0 ≤ ℎ1 < ℎ2 < ⋯ < ℎ𝑛 < 𝑠 < 𝑠 + 𝑡  

 

𝑃𝑖𝑗(𝑠, 𝑠 + 𝑡)

= Pr(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖, 𝑋(ℎ𝑛) = 𝑖𝑛, 𝑋(ℎ𝑛−1) = 𝑖𝑛−1, 𝑋(ℎ𝑛−2) = 𝑖𝑛−2… ⁡𝑋(ℎ1) = 𝑖1)

= Pr(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖)⁡ 

(4) 

The probability 𝑃𝑖𝑗(𝑠, 𝑠 + 𝑡) of the process, which is called the transition probability of Markov 

process, represents that the process will make a transition into state j at time⁡𝑠 + 𝑡, provided that 

the process is in state⁡𝑖 at time⁡𝑠. Such a Markov process has the Markovian property that the 

conditional distribution of future state is not depending the past state 𝑋(ℎ𝑘) = 𝑖𝑘 , but only 

depending on present state 𝑋(𝑠) = 𝑖 [8]. 

If the equation (4) can be interpreted as the equation below 

 𝑃𝑖𝑗(𝑡) = Pr⁡(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖) (5) 

we call this Markov process as continuous-time homogeneous Markov process and ⁡𝑃𝑖𝑗(𝑡) 

denotes the transition probability of  Markov process in following sections [9]. Since the 

transition probabilities do not depend on the actual time 𝑠 but only depends on the length of time 

interval t.  

If the equation (4) can’t be interpreted as the equation (5), it indicates the transition 

probability depends on the starting time 𝑡 and actual time interval (𝑠, 𝑠⁡ + ⁡𝑡). According the 

definition of stationary or homogeneous transition probabilities [8], such transition probability of 

the Markov process is always changing with time, which is called as continuous-time 
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inhomogeneous Markov process in following sections.  

The Chapman-Kolmogorov equation of the continuous Markov process is the solution of 

transition probabilities within one time period. The equation can be expressed as:                                           

 ⁡𝑃𝑖𝑗(𝑠 + 𝑡) = Pr(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(0) = 𝑖) = ∑𝑃𝑖𝑘(𝑠)𝑃𝑘𝑗(𝑡)

𝑘∈𝐸

⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑖, 𝑗, 𝑘𝐸 (6) 

This equation represents that the process will go to state 𝑗  within time period 𝑠 + 𝑡  starting 

from⁡𝑖 with a path which would lead the process into state 𝑘 at time point s [8]. 

Let the transition probability function equation given by equation (4) denote the elements of 

the corresponding matrix 𝑷(𝑠, 𝑠 + 𝑡) = ‖𝑃𝑖𝑗(𝑠, 𝑠 + 𝑡)‖  of Markov process. Let 𝑸 = ‖𝑄(𝑠 +

𝑡)‖ denotes the intensity matrix of Markov process. The transition probability matrix and 

intensity matrix are the solution of differential equation [10]: 

 
𝑑

𝑑(𝑠 + 𝑡)
𝑷(𝑠, 𝑠 + 𝑡) = 𝑷(𝑠, 𝑠 + 𝑡)𝑸(𝑠 + 𝑡) (7) 

 

3.1.3 Semi-Markov process 

A more general Markov process is semi-Markov process. “Suppose that a process can be in any 

one of N states 1, 2, . . . , N, and that each time it enters state 𝑖 it remains there for a random 

amount of time having mean 𝜇𝑖 and then makes a transition into state j with probability 𝑃𝑖𝑗. Such 

a process is called a semi-Markov process. Note that if the amount of time that the process 

spends in each state before making a transition is identically 1, then the semi-Markov process is 

just a Markov chain.” [8] . 

For semi-Markov process (𝑋𝑡|𝑡 ≥ 0), it is an extension of the Markov chain in which a 

random time is added between each transition, and then the transition probability of semi-

Markov process transiting to state 𝑗  within a time interval less than or equal to t, provided 

starting from state⁡𝑖, is expressed as  

 𝑄𝑖𝑗(𝑡) = 𝑃𝑟(𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡, 𝑋(𝑇𝑛+1) = 𝑗|𝑋(𝑇𝑛) = 𝑖) (8) 

where 𝑇0 < 𝑇1 < ⋯ < 𝑇𝑛 < 𝑇𝑛+1 and they are the times when the process changes its state [1]. 

The random time between every transition can be interpreted in terms of the distribution 

function:    

 𝐹𝑖𝑗(𝑡) = Pr⁡(𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡|𝑋(𝑇𝑛+1) = 𝑗, 𝑋(𝑇𝑛) = 𝑖) (9) 
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where 𝑇𝑛+1 − 𝑇𝑛 is the waiting time before the process moves to state j given the process has 

already moved to state 𝑖 and 𝑛 is the number of observations [1]. 

So the probability of the process transiting into the state 𝑗 with a fixed time, which is less 

than or equal to⁡𝑡, given that the process already moved into the state⁡𝑖, is shown below [1]: 

       
 𝑄𝑖𝑗(𝑡) = 𝑃𝑟(𝑇𝑛+1 − 𝑇𝑛 ≤ 𝑡, 𝑋(𝑇𝑛) = 𝑗|𝑋(𝑇𝑛−1) = 𝑃𝑖𝑗𝐹𝑖𝑗(𝑡) (10) 

 

  

Equation (10) indicates that the transition of semi-Markov model has two steps, see [1]: 

1. When the process moves into state⁡𝑖, the semi-Markov process will choose the next 

state⁡𝑗 depending on the transition probability⁡𝑃𝑖𝑗. 

2. Before moving into the next state j, the semi-Markov process will wait for an random 

time which belongs to the distribution 𝐹𝑖𝑗(𝑡) 

In fact, deterioration procedure can be interpreted as a Markov process, since the property of 

a Markov process, which is a stochastic process, is that the values of 𝑋(𝑤) with 𝑤 > 𝑡 are not 

dependent on the values of ⁡𝑋(𝑢), 𝑢 < 𝑡 , given the value of ⁡𝑋(𝑡). That is why the Markov 

processes are useful for modeling the stochastic deterioration with independent increments. In 

order to model the deterioration, two kinds of Markov processes would be useful. They are 

shown in Figure 1 and Figure 2. 

   
Figure 1: Markov process with sequential structure 

 

 

 
Figure 2: Markov process with progressive structure 
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For both kinds of Markov process shown in Figure 1 and Figure 2, the total lifetime of 

object is the sum of sojourn times in each state. Thus, in the following sections, we focus on the 

sequential structure of Markov process. Therefore, Markov process should satisfy at least two 

characteristics, see [1]. 

1. Different states have different technical conditions, which should be ordered depending 

on the correct level of the deterioration.  

2. The stochastic process must go through all of the condition states, see Figure 1. 

 

3.2  Nonhomogeneous Poisson Process 

 

Esary and Marshall found out lifetime distribution of the instrument and a sequence of shocks 

were considered as the events occurring randomly in time which is governed by a homogeneous 

Poisson process (HPP) [11]. They calculated the probability of damage which results from the 

shock accumulates until it excesses the threshold results in failure. Abdel-Hameed and Proschan 

extended the shock model to a new shock model governed by nonhomogeneous Poisson process 

(NHPP) rather than HPP [12]. Compared with homogeneous Poisson process, NHPP is more 

flexible and its rate of occurrences of failures changes with time. Here, the theory of NHPP is 

based on the Rausand’s book [13]. The assumption under NHPP is that the system is under the 

minimal maintenance which means that the system continues as if no events had happened after 

a minimal maintenance. In this section, the application of NHPP modulated by a continuous 

Markov process will be discussed. 

The purpose of this section is to review some of the most important mathematical properties 

of the homogeneous and non-homogeneous Poisson process. It includes the definition of the HPP 

and NHPP, as well as methods for parameter estimation and simulation. 

First, let’s have a look at the definition of HPP and NHPP. For homogeneous Poisson 

process, the conditions should be assumed as follows: 

1. 𝑁(0) = 0, where 𝑁(𝑡) denotes the number of failures at time 𝑡 

2. The probability of the event occurring in the interval (𝑡, 𝑡 + 𝛥𝑡] is independent of current 

time and may be written as 𝜆 ∙ ∆𝑡 + 𝑜(∆𝑡), where 𝜆 is a positive constant 

3. 𝑃(𝑋(𝑡 + ∆𝑡) − 𝑋(𝑡) ≥ 2) = 𝑜(∆𝑡)⁡means that more than one event will not happen with 

a very small time interval. So value of 𝑜(∆𝑡) is close to zero 



16 

 

4. The mean number of events happened in the time interval [𝑠, 𝑠 + 𝑡] is 

 𝑊(𝑡 + ∆𝑡) −𝑊(𝑡) = 𝐸(𝑁(𝑡 + ∆𝑡) − 𝑁(𝑡)) = 𝜆∆𝑡 (11) 

The stochastic process {𝑁(𝑡), 𝑡 ≥ 0} is an HPP with intensities 𝜆  which is constant [13]. 

According to the definition of HPP, it is not used to model the process where the failure rate is 

not constant and changing with time such as continuous-time inhomogeneous Markov process. 

Thus, it can be applied to model time homogeneous Markov process. 

For NHPP with the rate 𝜆(𝑡) for⁡𝑡 ≥ 0, the main assumptions of NHPP are shown below,  

1. 𝑋(0) = 0 

2. {𝑋(𝑡), 𝑡 ≥ 0} has independent increments 

3. 𝑃(𝑋(𝑡 + ∆𝑡) − 𝑋(𝑡) ≥ 2) = 𝑜(∆𝑡)  means that more than one failures will not 

happen at the same time. So value of 𝑜(∆𝑡) is close to zero 

4. 𝑃(𝑋(𝑡 + ∆𝑡) − 𝑋(𝑡) = 1) = 𝜆(𝑡)Δ𝑡 + 𝑜(∆𝑡) 

This kind of counting process 𝑋(𝑡), 𝑡 ≥ 0 is called NHPP [13]. For the characteristics of Poisson 

process, since the HPP is special case of non-homogenous Poisson process, let’s start to discuss 

the properties of NHPP. According to the definition of NHPP, the parameter is rate function⁡𝜆(𝑡). 

This function is also called Rate of Occurrence of Failures (ROCOF) function of NHPP [13]. The 

cumulative intensity of the process is  

𝛬(𝑡) = ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0
                                                        (12) 

The number of failures within interval (0, 𝑡) is Poisson distributed according to the reliability 

theory [13] and the distribution of 𝑋(𝑡) = 𝑛 and mean number of failures are shown below  

𝑃(𝑋(𝑡) = 𝑛) =
[𝛬(𝑡)]𝑛

𝑛!
𝑒−𝛬(𝑡)⁡⁡⁡for⁡𝑛 = 0, 1, 2, …                                  (13) 

𝐸(𝑋(𝑡)) = ∫ 𝜆(𝑢)𝑑𝑢 =
𝑡

0
Λ(𝑡)                                               (14) 

According to the equation (14) and (12), the cumulative function  𝛬(𝑡) is the mean number of 

failures and its variance within interval (0, 𝑡]  for NHPP. According to the equation (13), it 

follows  

𝑃(𝑋(𝑡 + 𝑣) − 𝑋(𝑡) = 𝑛) =
[Λ(𝑡+𝑣)−Λ(𝑡)]𝑛

𝑛!
𝑒−[Λ(𝑡+𝑣)−Λ(𝑡)]                           (15) 

for⁡𝑛 = 0, 1, 2⁡ …. The mean number of failures in the interval (𝑡, 𝑡 + ⁡𝑣]⁡is given by Rausand 

and Høyland, and it is shown below  

𝐸(𝑋(𝑡 + 𝑣) − 𝑋(𝑡) = 𝑛) = Λ(𝑡 + 𝑣) − Λ(𝑡) = ∫ λ(𝑢)𝑑𝑢
𝑡+𝑣

𝑡
                     (16) 
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Let⁡𝑇𝑛⁡denote the time until nth failure for 𝑛 = 1, 2, … ，where⁡𝑇0 = 0. The distribution of 𝑇𝑛 is 

given by [13]: 

𝑃(𝑇𝑛 > 𝑡) = 𝑃(𝑋(𝑡) ≤ 𝑛 − 1) = ∑
Λ(𝑡)𝑘

𝑘!
𝑒−Λ(𝑡)𝑛−1

𝑘=0                               (17) 

Let 𝑇1  denote the time of first failure from 𝑡0 = 0  until the first failure. Then, the survival 

function of 𝑇1 is shown below 

 𝑅(𝑇1) = 𝑒−Λ(𝑡) = e−∫ 𝜆(𝑢)𝑑𝑢
𝑇1
0  (18) 

Assuming that there is no failure happen within time interval (𝑇0, 𝑇0 + 𝑡) given that process is 

observed at time ⁡𝑇0  and 𝑡⁡denote the time until the next failure. The equation (18) can be 

expressed as 

𝑃(𝑋(𝑇0 + 𝑡) − 𝑋(𝑇0) = 0) = 𝑒−[Λ(𝑇0+𝑡)−Λ(𝑇0)] = e
−∫ 𝜆(𝑢)𝑑𝑢

𝑇0+𝑡
𝑇0 ⁡                 (19) 

In following sections, the power law model will be used to describe the ROCOF of a NHPP, it is 

defined as below [13]: 

𝜆(𝑡) = 𝑎𝑏𝑡𝑏−1⁡⁡⁡⁡for⁡𝑎 > 0, 𝑏 > 0⁡and⁡𝑡 ≥ 0⁡                                      (20) 

The failure rate function of Weibull distribution is: 

𝑝(𝑡) =
𝛽

𝜂𝛽
𝑡𝛽−1⁡⁡⁡                                                              (21) 

From equation (20), we know the mean number of failures within interval (0, 𝑡] . If ⁡𝛼 =

1

𝜂𝛽
⁡and⁡𝑏 = 𝛽, the failure rate function 𝑝(𝑡) of Weibull distribution can be defined as ⁡𝜆(𝑡) =

𝑎𝑏𝑡𝑏−1⁡. 

Because of the polynomial nature of the ROCOF, this model is very flexible and it can 

model both increasing (𝑏 > 1) and decreasing (0 < 𝑏 < 1) failure rates. When⁡𝑏 = 1, the model 

reduces to the HPP model with constant intensity. 

Probabilities of a given number of failures for the NHPP model are calculated by an 

extension of the formulas for the HPP. Thus, for any NHPP  

𝑃(𝑋(𝑡) − 𝑋(0) = 𝑘) =
Λ(𝑡)𝑘

𝑘!
𝑒−Λ(𝑡)                                             (22) 

With the Power Law model: 

𝑃(𝑋(𝑡) − 𝑋(0) = 𝑘) =
𝛼𝑘𝑡𝑏𝑘

𝑘!
𝑒−𝛼𝑡

𝑏
                                             (23) 

In practice, it has four types of the Markov process with different kinds of intensities according 

to the properties of equation (20), when the NHPP is applied to simulate the continuous Markov 
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process. The four types of Markov processes are called Model A, Model B, Model C, and Model 

D. 

 

3.3 Model description 

3.3.1 Model A and Model B 

One special case in NHPP is that 𝜆(𝑡) is constant all the time, when 𝑏𝑖 = 1⁡𝑎𝑛𝑑⁡𝑎𝑖 = 𝑎 = 𝜆(𝑡). 

Thus the cumulative intensity of the Markov process is only depending on the length of time, so 

this kind of Markov process is called Model A in following sections. The Markov process is 

called Model B in following sections, when 𝑏𝑖 = 𝑏 = 1 and 𝜆𝑖(𝑡) = 𝑎𝑖, which is state-dependent 

and time-independent. Model A and Model B belong to the time homogeneous Markov process, 

since they are all time-independent and the sojourn times in all state are random variables with 

exponential distribution with constant intensities. Their intensity matrices are shown in Table 3. 

 

Table 3: Sample of structure of Time Homogeneous Markov Process 

Model A 

 

 Model B 

−𝜆 𝜆 0 0 0  −𝜆1 𝜆1⁡ 0 0 0 

0 −𝜆 𝜆  0 0 Time Homogeneous  0 −𝜆2 𝜆2 0 0 

0 0  −𝜆 𝜆  0 Markov Process  0 0 −𝜆3 𝜆3 0 

0 0 0 −⁡𝜆 𝜆 0 0 0 −𝜆4 𝜆4 
0 0 0 0 0  0 0 0 0 0 

 

In practice, the time homogeneous Markov process with sequential structure will not always 

stay on the original state and it will move to the different state. The further waiting time is not 

depending on the times spent in the other states because of the properties of exponential 

distribution (memoryless). The structure of Markov process is shown in Figure 1. 

Let the state space as 𝑬 = {0,1,2,3,4}. The CDF and probability density function (PDF) for 

Model A and B, which are illustrated by M. Rausand and A. Høyland [13], are given below 

respectively: 

 𝐹𝑖(𝑡) = 1 − 𝑒−𝜆𝑖𝑡 (24) 

 𝑓𝑖(𝑡) = 𝜆𝑖𝑒
−𝜆𝑖𝑡 (25) 

where the intensity 𝜆𝑖 > 0, and for all 𝑖 ∈ 𝑬. 
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For Model A, its mean number of events and variance of every state within time interval 

(0, 𝑡] is the same. 

 𝐸(𝑋(𝑡)) = ∫ 𝜆(𝑢)𝑑𝑢 = 𝜆𝑡
𝑡

0

 (26) 

According to the equation (13), the number of events happens within time interval(0, 𝑡]  is: 

 𝑃(𝑋(𝑡) = 𝑁) =
[𝜆𝑡]𝑁

𝑁!
𝑒−𝜆𝑡⁡⁡⁡for⁡𝑁 = 0, 1, 2, …… (27) 

Based on equation (16), the mean number of failures in the interval (𝑡, 𝑡 + 𝑣]⁡is  

𝐸(𝑋(𝑡 + 𝑣) − 𝑋(𝑡)) = Λ(𝑡 + 𝑣) − Λ(𝑡) = 𝜆𝑣                             (28) 

which indicates the mean number of events in the time interval (𝑡, 𝑡 + ⁡𝑣] is just dependent on 

the length of time for Model A. Thus the CDF given that no event happens in the time interval 

(𝑡, 𝑡 + ⁡𝑣], is  

 𝑃(𝑋(𝑡 + 𝑣) − 𝑋(𝑡) = 0) = 𝑒−[Λ(𝑡+𝑣)−Λ(𝑡)] = e−𝜆𝑣 (29) 

Assuming ⁡𝑇𝑛⁡denote the time until nth failure for ⁡𝑁 ∈E, where ⁡𝑇0 = 0 . According to the 

equation (17), The distribution of 𝑇𝑛 for Model A is given by [13]: 

𝑃(𝑇𝑛 > 𝑡) = 𝑃(𝑋(𝑡) ≤ 𝑛 − 1) = ∑
𝜆𝑡𝑘

𝑘!
𝑒−𝜆𝑡𝑁−1

𝑘=0                               (30) 

For Model A, let 𝜽 = {𝜆0, 𝜆1, ⋯ } denote the parameter set. If those parameters are known, the 

remaining lifetime of reaching failure state is belonging to Erlang distribution which is shown 

below: 

     𝑓(𝑡; 𝜆𝑖 , 𝑁) = 𝜆𝑖
𝑁𝑡𝑁−1𝑒−𝜆𝑖𝑡/(𝑁 − 1)!                                             (31) 

where 𝑁 is shape parameter and⁡⁡𝜆𝑖 = 𝜆 with⁡𝜆 >0 [8].  

For Model B, the remain lifetime of reaching failure state is belonging to Hypoexponential 

distribution which is  

𝑓(𝑡; 𝜆𝑖) = ∑ 𝜆𝑖𝑖∈𝑬 𝑒−𝜆𝑖𝑡(∏ 𝜆𝑖𝑖,𝑗∈𝑬,i≠j 𝜆𝑗−𝜆𝑖⁄ )                                           (32) 

with 𝜆𝑖 ≠ 𝜆𝑗 ⁡and⁡𝑖, 𝑗 ∈ 𝑬 [1] . 

Because of the property of exponential distribution, the lifetime of Model A and Model B is 

the sum of the sojourn time of each state.  

 𝐸(𝑇lifetime) = 𝐸(𝑆0) + 𝐸(𝑆1) + ⋯ (33) 

with 𝐸(𝑆𝑖) =
1

𝜆𝑖
⁡and 𝐸(𝑆𝑖) denote the sojourn time of each state.  And we can also compute the 
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mean time to failure from state 1, 2 and 3 to state 4 in similar way.  

According to the memoryless of exponential distribution, the remaining lifetime given the 

Markov process stays at state⁡𝑖 is: 

 𝐸(𝑇remaining⁡lifetime) =∑𝐸(𝑆𝑖)⁡

𝑁

𝑖

 (34) 

where 𝑁, 𝑖 ∈ 𝑬 and 𝑇remaining⁡lifetime denotes the remaining lifetime of Markov process. 

 

3.3.2 Model C and Model D 

Compared with characteristics of intensity of Model A and B, if 𝑏𝑖 ≠ 1, 𝑏𝑖 > 0 and 𝑎𝑖 > 0, there 

are two cases for time inhomogeneous Markov process. According the value of 𝑏𝑖⁡and⁡𝑎𝑖, the 

first case is that the first time inhomogeneous Markov process is called as Model C with 

𝜆(𝑡) = 𝑎𝑏𝑡𝑏−1 in following sections, when 𝑏𝑖 = 𝑏 ≠ 1⁡and⁡𝑎𝑖 = 𝑎 > 0. The second case is that 

the time-inhomogeneous Markov process is called Model D with intensity 𝜆𝑖(𝑡) = 𝑎𝑖𝑏𝑖𝑡
𝑏𝑖−1⁡in 

the following sections, when the values of 𝑏𝑖⁡and⁡𝑎𝑖 are not constant. Their intensity matrices are 

shown in Table 4. 

For time inhomogeneous Markov process, the intensities of two time inhomogeneous 

Markov processes are not constant and they change with time. The Hypoexponential distribution 

and Erlang distribution are suitable for finding the joint CDF of time inhomogeneous Markov 

processes. 

For Model C and D, Model C is a standard NHPP, and the equations from equation (12) to 

equation (23) are suitable for Model C and Model D. 

 

Table 4: Sample of structure of time inhomogeneous Markov Process 

Model C  Model D 

−𝜆(𝑡) 𝜆(t) 0 0 0 Time −𝜆1(𝑡) 𝜆1(𝑡) 0 0 0 

0 −𝜆(𝑡) 𝜆(𝑡) 0 0 Inhomogeneous 0 −𝜆2(𝑡) 𝜆2(𝑡) 0 0 

0 0 −𝜆(𝑡) 𝜆(𝑡) 0 Markov Process 0 0 −𝜆3(𝑡) 𝜆3(𝑡) 0 

0 0 0 −⁡𝜆(𝑡) 𝜆(𝑡)  0 0 0 −𝜆4(𝑡) 𝜆4(𝑡) 
0 0 0 0 0  0 0 0 0 0 
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Let 𝑷⁡denote the probability transition matrix of the Markov process. By computing the 

transition probability matrix 𝑷⁡of two time inhomogeneous Markov process depending on the 

equation (7), the cumulative density function of time from state 𝑖 to final state⁡𝑗 is shown below 

[10]: 

 𝑃𝑗(𝑡) =∑𝑃(𝑋(0) = 𝑖) 𝑃𝑖𝑗(0, 𝑡)

4

𝑖=0

 (35) 

 

The CDF of time from state 0, 1, 2, 3 to final state 4, namely absorbing state, can be computed 

based on equation (35), the uncertainty can be expressed as the lifetime distribution, which is 

shown below: 

 𝐹(𝑡) =∑𝑃(𝑋(0) = 𝑖) 𝑃𝑖𝑗(0, 𝑡)

4

𝑖=0

 (36) 

The mean lifetime 𝑇⁡Mean⁡lifetime⁡of the object can be computed as follow: 

 𝑇Mean⁡lifetime = 𝐸(𝑇) = ∫ 1 − 𝐹(𝑡)𝑑𝑡

∞

0

 (37) 

In summary, if the residence time of each state belongs to the exponential distribution with 

constant intensities, it is called time homogeneous Markov process. If the intensities of Markov 

process are changing with time, and then it is called time inhomogeneous Markov process in this 

proposed research. 

For model A, its intensities do not depend on the state and time. The intensities of model B 

do not depend on time but depend on time. The intensity of model C is time-dependent and state-

independent. And finally, the intensity of model D is time-dependent and state-dependent.  

 

3.4 Semi-Markov process with sojourn time belonging to Weibull distribution 

In order to take the problem of censoring data into consideration, survival analysis will be 

applied to data analysis. Assuming that the semi-Markov process with Weibull distributed 

sojourn time, which is called as the Model E in the following sections, has five states given no 

maintenance and replacement carried out, the technical condition of the asset will run all of the 

states and reach at the fifth state finally. The semi-Markov process can be described as the 

deterioration process curve as shown in    
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Figure 1. For the ongoing research, let the residence time S0  S1 , S2  and S3  to be Weibull 

distributed and the lifetime of the object is also sum of sojourn time of each state. 

For analysis, it was assumed that the residence time t in state 𝑖 is Weibull distributed with 

scale parameter 𝛽𝑖 > 0  and shape parameter⁡𝜂𝑖 > 0.The probability density function of Weibull 

distribution is  

𝑓(𝑡;⁡𝛽𝑖 , 𝜂𝑖) = {
𝜂𝑖

𝛽𝑖
(
𝑡

𝛽𝑖
)𝜂𝑖−1exp⁡(−(

𝑡

𝛽𝑖
)𝜂𝑖), 𝑡 ≥ 0)

0, 𝑡 < 0
                                        (38) 

Assume that its parameter set is⁡𝜽 = (𝛽𝑖, 𝜂𝑖) , and its CDF and expectation time in each state are  

𝐹(𝑡;⁡𝛽𝑖 , 𝜂𝑖) = 1 − exp⁡(−(
𝑡

𝛽𝑖
)𝜂𝑖)                                                         (39)                     

 

𝐸(𝑆𝑖) = 𝛽𝑖Γ(1 + 1/𝜂𝑖)                                                                    (40) 

 

𝜆(𝑡) =
𝜂𝑖

𝛽𝑖
(
𝑡

𝛽𝑖
)𝜂𝑖−1                                                                        (41) 

 

where Equation 𝐹(𝑡;⁡𝛽𝑖, 𝜂𝑖) is the CDF, 𝐸(𝑆𝑖) is the mean sojourn time in state⁡𝑖 and 𝜆(𝑡) is the 

hazard function, which are all given in the book of Rausand and Høyland [13], In order to 

estimate the remaining lifetime and the transition probabilities, the research will focus on the 

estimating parameters. 
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Chapter 4: Model application  

In this section, the models described in chapter 3 will be applied to the dataset gathered by visual 

inspections. For the infrastructures in the industrial fields, the remaining lifetime and the 

duration of stay in each state are of interest in this chapter. 

In practice, the most important aspect of inspection is that the technical condition should be 

registered pole by pole and the technical condition will be used as the basics to find the state of 

the wood pole. 

 

4.1  Description of information 

It is difficult to extract the data used for likelihood estimation from the dataset and use it to do 

parameter estimation. There are many reasons why some information in the dataset may mislead 

us or it may not be included.  

1. In practice, the constructing year of the asset may not have been registered in the 

dataset.  

2. The incorrect date of inspection may have been assigned to the dataset due to 

personal factors (typing errors and misclassifications)  

Besides the identifiable faulty data in the dataset, the missing information will happen and 

personal errors are present in the dataset. That is why it is difficult for us to extract the right 

information from dataset. For the original data in this project, the data include 479 poles, the 

original data description is: 

1. 410 poles are still in state 0; 

2. 56 poles moved into state 1; 

3. 9 poles moved into state 2; 

4. 3 poles moved into state 3; 

5. Only one pole failed;  

In order to get more information of the dataset, one of the best ways of summarizing multi-

state data is to build a frequency table of all states. For example, the number of observations and 

the number of transitions from state 𝑖 to state⁡𝑗 should be summarized. Such table is shown in 

Table 5. It calculates a frequency table counting the number of observations. For example, the 
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first row shows that the states of poles start from the state 0 when the inspections were carried 

out. The number of the first row indicates that the poles were found in state 0 for 860 times, in 

state 1 for 59 times , in state 2 for 7 times, in state 3 for 2 times and in state 4 for only one time 

respectively. The second row indicates that the state of pole start from state 1 at the first 

inspection and the numbers of second row show that the poles were found in state 1 for 19 times, 

in state 2 for 2 times and in state 3 for only one time respectively. The same holds the other rows. 

According to the Table 5, most of the observations indicate that poles were found in state 0, and 

only a small proportion of the observations show that the poles were found in state 1. For state 2, 

3 and 4, only a few observations show that the poles were found in state 2, 3 and 4. 

 

 

 

 

 

 

 

 

 

 

Algorithms will be used for extracting data. The original data is not convenient for 

parameter estimation in R computer software. According to the requirement of R computer 

software, the data extracted from the database will be stored in text file as below.  

 

Table 6: sample of data in the text file    

  1        0   0  6  0 NA NA 

⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
100    0 0 9 1 16 1 

⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
200    0 0 44 2 51 2 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮         ⋮          ⋮       ⋮       ⋮       ⋮       ⋮ 
300    0 0 45 3 52 3 

⋮⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
479    0 0 36 4 43 4 

 

 

The first column includes the identifier of different object, the second column and third 

column show the installation date and the beginning state respectively. The fourth column is the 

date of the first inspection, and the fifth column is the state of first inspection, the sixth column is 

Table 5: Table of observations 
 

From\to 0 1 2 3 4 

0 860 59 7 2 1 

1 0 19 2 1 0 

2 0 0 1 0 0 

3 0 0 0 1 0 

4 0 0 0 0 1 
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date of second inspection and the last column is the state of the second inspection. The dataset in 

the Table 6 is suitable for the Model A, B, C and D.  

For Model E, the original dataset should also be transferred for every state. The transferring 

process is shown in the following. We take the No.3 of pole in Table 2 as one example and it is 

shown as one timeline below: 

 

 
Figure 3: Timeline of pole of No. 3 

 

Assuming that the first time is the installation time (2000) of pole, the timeline above 

indicates the range of sojourn time in state 0, 1, 2 and 3. They are shown below: 

  0 < 𝑆0 < 3, 0 < 𝑆1 < 3, 0 < 𝑆2 < 10, 0 < 𝑆3 (42) 

The right form in R should be like the form for first state below: 

 

Table 7: Sample of dataset for Model E 

L R 

6 NA 

6 NA 

NA 12 

6 13 

29 NA 

29 NA 

⋮ ⋮ 

 

L indicates the left side of the time interval and R indicates the right side of time interval for each 

state. For instance, the first row represents the time interval is 𝑆𝑖 > 6 (right censoring), and third 

row indicates the time interval is 𝑆𝑖 < 12 (left censoring) and the fourth row represents the time 

interval is 6 < 𝑆𝑖 < 13⁡(interval censoring). The rest form of data for the other state could be 

deduced for the example above. 
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4.2  Parameter estimation 

4.2.1 Maximum likelihood method for Model A, B, C and D 

For this method, the process in Figure 1 will be discussed. Let 𝜽 denote the vector with all 

parameters, 𝑇0 < 𝑇1 < 𝑇2, … , < 𝑇𝑛 with ⁡𝑇0 = 0  and ⁡𝑥𝑛ϵ𝑬⁡with⁡𝑥𝑛−1 ≤ 𝑥𝑛 , so the probability 

function given in Kallen’s paper [10] of an object is: 

𝑓(𝒙; 𝜽) = Pr⁡(𝑋(𝑇𝑛) = 𝑥𝑛|𝑋(𝑇𝑛−1) = 𝑥𝑛−1, 𝑋(𝑇𝑛−2) = 𝑥𝑛−2, … , 𝑋(𝑇1) = 𝑥1, 𝑋(𝑇0) = 0))   (43)   

with⁡𝑥𝑛 ∈ 𝑬, the equation above can be written as: 

𝑓(𝒙; 𝜽) = 

Pr(𝑋(𝑇𝑛) = 𝑥𝑛|𝑋(𝑇𝑛−1) = 𝑥𝑛−1)…Pr(𝑋(𝑇1) = 𝑥1|𝑋(𝑇0) = 0)                     (44) 

𝑓(𝒙; 𝜽) = ∏ Pr(𝑋(𝑇𝑖) = 𝑥𝑖|(𝑇𝑖−1) = 𝑥𝑖−1)
𝑛
𝑖=0                                    (45) 

As illustrated by Kallen, if there are 𝑚 objects in the dataset, so the likelihood function is the 

product of the probability density function of each asset: 

𝐿(𝜽; 𝑥) = ∏ ∏ Pr𝑗(𝑋(𝑇𝑖) = 𝑥𝑖|(𝑇𝑖−1) = 𝑥𝑖−1)
𝑛𝑗
𝑖=0

𝑚
𝑗=1                               (46) 

with⁡𝑗 = (1,2,3, … ,𝑚)⁡denoting index of objects and 𝑛𝑗  denoting the number of inspections of 

the⁡𝑗𝑡ℎ wood pole. So the likelihood function for non-homogeneous Poisson process is: 

𝐿(𝜽; 𝑥) =∏ ∏ Pr𝑗(𝑋(𝑇𝑖) = 𝑥𝑖|(𝑇𝑖−1) = 𝑥𝑖−1)
𝑛𝑗

𝑖=0

𝑚

𝑗=1
 

= ∏ ∏
[Λ(𝑇𝑖,𝑗)−Λ(𝑇𝑖−1,𝑗)]

(𝑥𝑖,𝑗−𝑥𝑖−1,𝑗)

(𝑥𝑖,𝑗−𝑥𝑖−1,𝑗)!
𝑒−[Λ(𝑇𝑖,𝑗)−Λ(𝑇𝑖−1,𝑗)]

𝑛𝑗
𝑖=0

𝑚
𝑗=1 ⁡                           (47) 

with⁡𝛬(𝑇𝑖,𝑗) = ⁡∫ 𝑎𝑏𝑡𝑏−1⁡𝑑𝑡
𝑇𝑖,𝑗
0

. It is the solution of time inhomogeneous Markov process. The 

procedure of the maximum likelihood method in this paper can be shown in Table 8. 

In this project, it is not easy to do estimation by applying the formula of non-homogeneous 

Poisson process into the maximum likelihood function. Thus the transition probability matrix is 

the solution of equation (46) and the transition probability matrices are shown below [14]: 

 𝑃(𝑠, 𝑠 + 𝑡) = exp(𝑡𝑸) = ∑
𝑡𝑘

𝑘!

∞

𝑘=0

𝑸𝑘 (48) 

where 𝑡⁡and⁡𝑠 denote the two time points and 𝑡, 𝑠 ≥ 0 . This is used to estimate the parameters of 

time homogeneous Markov process with sojourn time belonging to the exponential distribution 

such as Model A and Model B.  
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Table 8: The Procedure of maximum likelihood method 

𝑇1 = 0 𝑋(𝑇1)
= 1 

𝑃(1)  

𝑓(𝒙; 𝜽) =∏Pr⁡(𝑖)

𝑛𝑗

𝑖=0

 
𝑇2 = 0 𝑋(𝑇2)

= 1 

 𝑃(2) 

𝑇3 = 0 𝑋(𝑇3)
= 2 

 𝑃(3) 

𝑇4 = 0 𝑋(𝑇4)
= 3 

 𝑃(4)  

𝐿(𝜽; 𝑥) =∏∏𝑓𝑗(𝒙; 𝜽)

𝑛𝑗

𝑖=0

𝑚

𝑗=1

 
𝑇5 = 0 𝑋(𝑇5)

= 3 

 𝑃(5) 

𝑇6 = 0 𝑋(𝑇6)
= 4 

  

⋯ ⋯ ⋯ where 𝑗 denotes the number of poles and 𝑛𝑗  

denotes the number of inspections of No. 𝑗 
pole. 

 

For time inhomogeneous Markov process, the transition probability matrix is computed by 

using the equation (7) and Euler method, and it can be written as: 

  𝑷(𝑠, 𝑡 + ∆𝑡) = 𝑷(𝑠, 𝑡)(𝑸(𝑡) + 𝑰) (49) 

when 𝑠 = 𝑡, 𝑃(𝑠, 𝑡) = 𝑰 identity matrix [1]. So the equation (49), which is suitable for parameter 

estimation of Model C and Model D, is also one of the solutions of equation (46).  

Now the main challenge is maximizing the likelihood equation and maximizing methods, 

like Quasi-Newton methods, BFGS (Broyden–Fletcher–Goldfarb–Shanno) method, Fisher’s 

method of scoring and Newton’s method, will be applied into the maximization. 

 

4.2.2 Maximum likelihood method for Model E 

For Model E, the maximum likelihood method is also the most suitable parameter estimation 

method. Depending on the characteristics of data from chapter 2, the data set contains three kinds 

of censored information.  

The likelihood function of right-censoring, left-censoring and interval-censoring data is 

shown as below [15]. 

 𝐿(𝜽; 𝐿, 𝐼, 𝑅) =∏𝐹(𝑇𝐿; 𝜽)

𝐿

∏[𝐹(𝑇𝐼,max; 𝜽) − 𝐹(𝑇𝐼,min; 𝜽)]

𝐼

∏(1− 𝐹(𝑇𝑅; 𝜽))

𝑅

 (50) 

with  𝐹(𝑇; 𝜽) is CDF of the residence time distribution, θ is a vector with all parameters. L 

denotes the left-censoring data, I denotes the interval-censoring data and R denotes the right-
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censoring data. 𝑇𝐼,max and 𝑇𝐼,min are the upper and lower limits of interval-censoring information 

for each state.  

In the literature, this suggested method will fail when most of the censored information 

overlaps with each other [16]. If a few inspections are available, this will happen frequently. By 

looking at Figure 3 and the equation (42), the ranges of sojourn time of state 0 and state 1 are the 

same. If most of the ranges of sojourn are the same with each other, the estimate of parameter 

will be not applicable. So this method is suitable for parameter estimation with the enough 

information. This Maximum Likelihood Method in this project is used to estimate the parameters 

of semi-Markov process with sojourn time belonging to the Weibull distribution. By applying 

this method, the statistics software “R” and the package “fitdistrplus” in CRAN (Comprehensive 

R Archive Network) are necessary for estimating the parameters. The results of semi-Markov 

process with sojourn time belonging to the Weibull distribution are shown in Table 13. 

Meanwhile, this maximum likelihood method is also suitable for Model A and Model B, since 

Model A and B are special case of the semi-Markov process. 

 

4.3  Results of parameter estimation 

4.3.1 Results of Model A and Model B 

By applying the maximum likelihood method explained in Table 8, the values of the parameter⁡λi 

in time homogeneous Markov process with sojourn time belonging to the exponential 

distribution are shown in Table 9. The intensities of Model A are all the same and it equals to 

0.0061, since the Markov process is time independent and state-independent. By comparing the 

values of parameter and standard error, the value standard error is larger than the parameter 

which shows that the estimate of parameter is not good. Because the dataset is not large enough, 

that is why this condition happened in Model A. Using 𝐸(𝑆𝑖) =
1

𝜆𝑖
, the total lifetime of the model 

A is 655.74, which is given below:  

 

𝐸(𝑇lifetime) = 𝐸(𝑆0) + 𝐸(𝑆1) + 𝐸(𝑆2) + 𝐸(𝑆3) = 655.74 (51) 
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Table 9: Results of Model A and B 

State Model A Model B 

𝑖 𝜆𝑖  Standard error 𝜆𝑖 Standard error 

0 0.0061 0.04106959 0.00508 0.00061683 

1 0.0061 0.04106959 0.02077 0.00630612 

2 0.0061 0.04106959 0.07573 0.05144133 

3 0.0061 0.04106959 0.03440 0.06703010 

 

By looking at the result of model B, the value of parameter for the state 0 to state 2 is 

increasing from 0.00508 to 0.07351, and the standard errors are all smaller than the values of 

parameters. However, the parameter of the state 3 is 0.0324, and its standard error is larger than 

the value of parameters, which indicates the estimate of the parameter of state 4 is not applicable. 

The intensities are fixed and they do not change with time, but they change with states, since 

time homogeneous Markov process (Model B) is time-independent and state-dependent. The 

trend of the values of the intensities can be explained by the fact that the process will spend more 

time on the good states and the sojourn time for each state will decrease as the condition of poles 

goes from good to bad.  

 Using 𝐸(𝑆𝑖) =
1

𝜆𝑖
 and result of model B and in Table 9, which is computed on R computer 

software by loading the package “msm”, the sojourn time for each state is shown in Table 10. 

The total lifetime (290) of pole is sum of sojourn time in every state and the sojourn times are 

decreasing with the increasing states except the state 3. For state 3, the range of sojourn between 

the low and upper bound is so relatively large compared with real value of estimate of sojourn 

time (29.1) for state 3, which means the estimate of parameter of state 3 may be misfit. 

With analysis in depth, checking the PDF would be necessary. By using the equation (31), 

the plot of the probability density function of Model A below, see Figure 4, indicates that the 

failure probability increases so slow and arrives at mode around 500 years, and then it decreases 

slowly after 500 years. The straight line indicates the mean lifetime of poles that is mean lifetime 

of pole by using result of equation (51). For Figure 5, the median time, when survival function is 

equal to 0.5, is approximately equal to the mean sojourn time for wood poles. The survival 

function of time from initial state (state 0, 1, 2 and 3) to state 4 shows that there is almost 

difficult to see any difference between the cross-over points, and it indicates the mean sojourn 

time for every state is equal to each other. 
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Table 10: The sojourn time of Model B 

                   Estimates        SE                  Low           Upper 

  State 0     197.0              23.73             155.60         249.5 

State 1      48.2               13.97             27.42           85.2 

State 2      13.2               7.78               4.43             41.8 

  State 3      29.1               33.16             3.75             253.7 

 

 
 

Figure 4: Probability density function of Model A 

  

Figure 5: Survival plot of Model A 
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For model B, the probability density function is shown in the Figure 6 by using the equation 

(32). The Figure 6 also indicates that the mean lifetime of pole is 290 and its probability density 

function increases very fast from 0 to 150 years and it decreases slowly after 150 years.  

In order to compare the mean sojourn time spent in different states visually, it is necessary to 

plot the survival function from initial state, such as state 0, 1, 2, and 3, to absorbing state, namely 

state 4, and it is shown in Figure 7. Since the time point, when survival function is equal to 0.5, 

is approximately equal to the mean sojourn time for wood poles. According to the crossover 

points of the Figure 7, it is easy to find that the Markov process spends around 50% of life time 

in state 0, 20% of lifetime in state 1 and the rest in state 2 and 3. 

  
Figure 6: Probability density function of Model B 

 
Figure 7: Survival Function of Model B 
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4.3.2 Result of Model C and Model D 

By applying equation (47), the result of time inhomogeneous continuous Markov process is 

shown in Table 11. According to the table above, it indicates that there is a positive relationship 

between intensity and age of poles, since 𝑏𝑖  is larger than 1. As is known to us, the time 

homogeneous Markov process with sojourn time belonging to exponential distribution is one of 

special case of the time inhomogeneous Markov Process when 𝑏𝑖 = 1. So the comparison of 

Model A and C would give us more information about the characteristics of poles and the 

difference between time-independent Markov process and time-dependent Markov process. By 

applying the equation (14) and result of Table 9, the cumulative intensities of model A and C are 

shown in Figure 8. 

In Figure 8, the red and black lines represents cumulative intensity Λ(𝑇𝑖,𝑗) of Model A and 

Model C respectively. Since the intensity of Model A is constant, the cumulative intensity would 

be linear, but the intensity of Model C is change with time, so the cumulative intensity is non-

linear. The conclusion is that the cumulative failure intensity of Model A is larger than Model C 

before 25 years, but the cumulative failure intensity of Model C increase so fast after 25 years 

and it is larger than Model A. This can be explained by the age of poles since the pole would 

spend more time in the initial state and the failure probability will increase more and much faster 

alongside with the lifetime. By applying the equation (7) and (49), the probability transition 

matrix is a function of time. It is possible to find the remain lifetime given how long it started 

from initial states, such as state 0, 1, 2 and 3, to  final state 4. Its uncertainty of time can be 

explained as lifetime distribution through equation (36), which is displayed in Figure 9. From the 

cross-over point of survival function plot, it indicates that the wood pole would spend 

approximately 20% of lifetime in state 0, 20% of lifetime in state 1, 25% of lifetime in state 2 

and 35% of lifetime in state 3. In application, the Model C will spend less time in good 

conditions compared with the time spent in bad conditions such as the state 3. The result of time 

inhomogeneous Markov process model D is shown in Table 12. 

 

Table 11: Result of Model C 
 

State Time inhomogeneous continuous Markov process (Model C) 

 

𝑖  

 

 𝑎𝑖 

0.001617743 

𝑏𝑖  

1.415699726 
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Figure 8: Comparison between Model A and Model C 

 

 
 

Figure 9: Survival function plot of Model C 
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Table 12: Parameters of Model D 
 

 

State 

 

Time inhomogeneous continuous Markov process with different 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜆𝑖(𝑡) = 𝑎𝑖𝑏𝑖𝑡
𝑏𝑖−1⁡with⁡𝑖 ∈ 𝑬 

Model D 

i 𝑎𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 
0.00537 

0.01519 

0.08541 

0.17817 

𝑏𝑖  
1.00005 

1.04365 

1.03794 

1.00000 

0 

1 

2 

3 

 

According to the Table 12, we can get that the values of parameter 𝑎𝑖 are increasing from 

state 0 to state 3 and the values of parameter 𝑏𝑖 of state 0 and state 3 are equal to 1, which 

indicates the intensities of state 0 and 3 may be independent of the time. Generally speaking, the 

values of parameter 𝑏𝑖 are almost the same with each other. Then the values of 𝑎𝑖 have main 

effects on the intensities of states. It means that the process will stay in state 0 for a longer time 

than the other states and the sojourn time in state 0 is the longest time within all of the sojourn 

times for all states, since the 𝜆1(𝑡) is the smallest.  

 

 
Figure 10: Survival Plot of Model D 
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By applying the results in Table 12, it is possible for us to determine the time to reach the 

absorbing state, namely state 4, when the process starts from the function states, namely state 0, 

1, 2, and 3. So this kind of uncertainty in the time to failure state is shown through the survival 

function of time in Figure 10. 

As is shown in the Figure 10, it indicates the survival function from function states to the 

failure state. The survival plot indicates that the wood pole will spend around 80% of lifetime in 

state 0 and 20% of lifetime in the other states. 

 

4.3.3 Result of semi-Markov process with sojourn time belonging to Weibull distribution 

For semi-Markov process with sojourn time belonging to Weibull distribution, the first maximum 

likelihood estimation is used to do the parameter estimation. According to the property of 

Weibull distribution, the mean time of each state is computed by applying the equation (40). The 

result is shown in Table 13. 

The table above indicates that the Markov process stays in state 0 for a long period 

compared with the state 1 and state 2. As it mentioned above, the total lifetime of the poles is the 

sum of mean time in every state. So the lifetime in semi-Markov process with sojourn time 

belonging to Weibull distribution is 98.07 years. By having a look at the standard error of 

parameters, the standard errors of parameters for state 1, 2 and state 3 are too large which 

indicates few information of latter states results in bad parameter estimates. Because of little 

observations, the estimates of state 1, 2 and 3 are not reasonable according to large standard 

errors.  

 

Table 13: Result of semi-Markov process with sojourn time belonging to Weibull distribution 

State Coefficient Standard error Mean sojourn time 

0 β0  61.8 3.5302595 55.37 

η0  3.23 0.3377198 

1 β1  7.76 12.26334 7.3 

η1  7.96 122.57866 

2 β2  6.93 12.84374 6.56 

η2  9.09 1626.36959 

3 β3  29.62 4938149 28.84 

η3  20.35 10116552 
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4.4 Summary 

Table 14 indicates all of lifetime for 5 models. For time homogeneous Markov processes, the 

difference between Model A and B is large, it may show that the property of state-dependent has 

a large influence on the lifetime of the poles. By comparing the model A and C, the difference 

between 50% of lifetimes of Model A and C may show that the property of time-dependent also 

has large influence on the lifetime of poles. The 50% quantiles of  lifetime of Model B, C and D 

are similar with the result of GompitZ model [17], which shows the lifetime of poles is around 

220 years. However, the quantiles of lifetime of Model B, C and D are so close to each other. 

Thus it is so difficult for us to find the best model from Model B, C and D. By comparing the 

value of quantiles of lifetime of Model A with the other models, its value is too large. On the 

contrary, the lifetime of semi-Markov process with sojourn time belonging Weibull distribution 

is close to 100 years, which is so short compared with the 50% quantile of lifetime of other 

models.  

In order to carry on the depth analysis, the comparisons of the plots are necessary. Figure 11 

shows the comparison of survival plots for Model A, B, C, D and E. The plot indicates the 

lifetime curves of Model B, C and D are similar with each other. The Model A and Model E are 

different with the other models. The approximate lifetime of Model B, C and D are close to each 

other and it is equal to around 230 years according the crossover points, the lifetime of Model E 

is the smallest and the mean lifetime of Model A is the largest compared with the mean lifetime 

of the other models. 

In conclusion, Model B, C and D may be the suitable models according to the comparison 

[17]. Thus, the comparison of models is necessary, which is shown in following sections. The 

time homogeneous Markov models and time inhomogeneous Markov models are nested, and the 

properties of state-dependent and time-independent have a large influence on the lifetime of 

poles. The Model A is not suitable model for the original dataset, since the standard error is 

larger the value of the parameters. The Model E is time independent model and its value is so 

different with the other model. In fact, we can’t ignore the influence of continuous time, which is 

why Model E may be not a good choice. In this paper, Model D is a general model, since it is 

one general model for the Model A, B and C, and it includes the influence of time-dependent and 

state-dependent, which makes it to be more applicable compared with the other models in the 

report.  
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Table 14: Approximate quantiles of lifetime of Markov processes  

Model Approx. quantiles 

25% 50% 75% 

A 415 602 837 

B 143 234 373 

C 181 235 296 

D 125 200 331 

E 84 98 110 

 

 
Figure 11: Comparison of Survival Plots 
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Chapter 5: Evaluation of Markov models 

5.1 Comparison of models 

One way of checking the model is to compare it with the general model maximal number of 

parameters, which is saturated model. As mentioned before, Model A, B, C and D are nested 

model, that is Model A, B and C are one of special case of Model D, so we consider Model D as 

a general model in this paper. Thus, we can use the likelihood ratio test to compare the models 

which are nested. In statistics, the likelihood ratio test is a statistical test, it is frequently used to 

compare the fit of two models. The test is based on the likelihood ratio statistics, and it can be 

used to compute a test statistics and compared to a critical value to decide whether to reject the 

null model in favor of the general model. The likelihood ratio statistics, which is belonging to the 

chi-square distribution, is shown below [18]: 

 
𝐷 = 2 ln (

Likelihood⁡for⁡general⁡model

Likelihood⁡for⁡model⁡under⁡H0
) 

= 2[ln(Likelihood⁡for⁡full⁡model) − ln(Likelihood⁡for⁡model⁡under⁡H0)] 

(52) 

The likelihood ratio statistics has a Chi-Square distribution with 𝐾2 − 𝐾1 degrees of freedom, 

where 𝐾2⁡and⁡𝐾1 denote the number of parameters in the general model and the model under H0 

respectively. If 𝐷 < 𝜒0.05,𝐾2−𝐾1
2 , where 𝜒0.05,𝐾2−𝐾1

2  is the 0.05-quantile of Chi-Square distribution 

with 𝐾2 − 𝐾1 degrees of freedom, H0 should be rejected. By taking model A and model D as an 

example, the hypothesis is shown below: 

H0: Model⁡A⁡is⁡true 

H1: Model⁡D⁡is⁡true 

By insert the negative likelihood value of Table 15 into the likelihood ratio statistics, likelihood 

ratio test statistics is shown below. 

 

Table 15: Negative log likelihood results of models 

Model State-dependent Time-dependent Number of parameters Negative log-likelihood 

Model A No No 1 -328.3538 

Model B Yes No 4 -313.7357 

Model C No Yes 2 -297.3978 

Model D Yes Yes 8 -297.0001 
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 𝐷1 = 2(−297.0001 + 328.3538) = 62.7074 > 14.067 = 𝜒0.05,7
2  (53) 

which indicate that null hypothesis is rejected, that is Model A has a poor description of dataset 

compared with Model D. It is the same for the comparison of Model B and D and comparison of 

Model C and D, the procedures of the test are shown respectively in equation (54) and (55). 

 𝐷2 = 2(−297.0001 + 313.7357) = 33.4712 > 9.488 = 𝜒0.05,4
2  (54) 

 𝐷3 = 2(−297.0001 + 297.3978) = 0.7954 < 12.59 = 𝜒0.05,6
2  (55) 

Finally, Model B has a poor description of dataset compared with the Model D, and Model C is 

better than the model D according to (55), although model D is the general model and has more 

parameters compared with the other models. For model C, it has two parameters in the model, 

maybe this indicates that model D is an overfitting model. Thus, model C is the best model 

compared with Model A, B and D. 

By checking whether Model C is good model or not, it necessary to check the standard error 

and p-value of both parameters. Some of the results are shown in Table 16. First, the standard 

errors of parameters are very small, and they are all far less than the values of the parameters. By 

checking the p-value of parameters, both parameters are significant at the 5% level, which 

indicates Model C has a good the description of dataset. 

 

Table 16: Evaluation of Model C 

Model C Coefficient Standard Error Z p-value 

𝑎  0.001617743 0.0003413179 4.739695 2.140404e-06 

𝑏  1.415699726 0.0507671294 27.886149 0.000000e+00 

 

5.2 Simulation 

In order to evaluate the models, the tools of simulation are useful in practice. There are several 

advantages to carry out a simulation on software rather than actually making the designs of 

project and testing model. As is known to us, building the design, testing and redesigning for 

everything can be a large and expensive project. Simulations can remove the building and 

rebuilding model out of the process by using the model already used in the design process. So it 

would help us save enough time and money.  

According the result of comparison of models by likelihood ratio test, the Model C is the 
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best model compared with the other models in proposed research, the simulation based on the 

Model C will be more useful compared with the simulation based on the other models. In this 

section, the Model C is chosen to do simulation based on the parameters 𝐚 = 𝟎. 𝟎𝟎𝟏𝟔𝟐⁡𝐚𝐧𝐝⁡𝐛 =

𝟏. 𝟒𝟏𝟓𝟕. The mean lifetime of Model C is around 235 years. For simulation process, 300 values 

are sampled from Possion distribution with intensity of different time intervals,  

 Number⁡of⁡failures⁡in⁡(𝑠, 𝑡)~Poisson(∫ 𝜆(𝑢)𝑑𝑢
𝑡

𝑠

) (56) 

where ∫ 𝝀(𝒖)𝒅𝒖
𝒕

𝒔
 represents the intensity of Poisson distribution from 𝒔  to 𝒕 . The sampling 

intensities of each state are shown in Table 17. 

Since most of the poles still stay in the first state after 40 years and the lifetime of poles is 

around 250 years, 4 periodic inspections carried out every 40 years starting from the installation 

date are chosen in this simulation. The sample values are shown in Table 18 by using the code 

“rpois” in R software. In order to use the sample values in R, it is necessary to transfer the 

sample values into the form which can be analyzed by R computer software. By combining 

properties of Poisson distribution, the Markov process will stay in the first state, if the sum of 

value in row is equal to 0. The Markov process will be in final state (state 4), if the sum of 

sample values is no less than 4. Some of the sample values are larger than 2, it indicates that at 

least two failures happened within 40 years. However, the total failure is no larger than 4. The 

same holds the other cases.  

Since the simulation will be carried out on the R computer software, the data should be 

transferred to the correct form which is shown in the Table 19. In order to compare the 

simulation data with the original data, the summarized data frame is shown in Table 20, which 

indicates that more and more transitions happened between four states. By applying the methods 

in chapter 4 and the results of the models are shown in Table 21 and Table 22. 
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Table 17: Sampling mean number of events of different time intervals 

Time⁡interval Intensity 

 
(0,⁡40) 𝜆0 = ∫ 𝑎𝑏𝑡𝑏−1

40

0

𝑑𝑡 = 0.3002972 

(40,⁡80) 
𝜆1 = ∫ 𝑎𝑏𝑡𝑏−1

80

40

𝑑𝑡 = 0.5008632 

(80,120) 
𝜆2 = ∫ 𝑎𝑏𝑡𝑏−1

120

80

𝑑𝑡 = 0.6212073 

(120,160) 
𝜆3 = ∫ 𝑎𝑏𝑡𝑏−1

160

120

𝑑𝑡 = 0.7150414 

 

 

Table 18: Sample value from Poisson distribution with different intensity  

Sample value 
with 𝜆0 

Sample value 
with 𝜆1 

Sample value 
with⁡𝜆2  

Sample value 
with 𝜆3 

Sum of sample 
values  

0 0 0 0 0 

0 0 0 0 0 

⋮  ⋮  ⋮  ⋮  ⋮  

0 0 0 0 1 

0 0 0 0 1 

⋮  ⋮  ⋮  ⋮  ⋮  

0 1 1 0 2 

0 1 1 0 2 

⋮  ⋮  ⋮  ⋮  ⋮  

0 2 0 1 3 

0 0 3 0 3 

⋮  ⋮  ⋮  ⋮  ⋮  

0 2 3 1 6 

0 2 1 1 4 
 

 

Table 19: Input data of R 

Installation state First⁡
inspection⁡
time⁡(year) 

state Second⁡
inspection⁡

time⁡
(year) 

state Third⁡
inspection⁡

time⁡
(year) 

state Fourth⁡
inspection⁡
time⁡(year) 

state 

0 0 40 0 80 0 120 0 160 0 

0 0 40 0 80 0 120 0 160 0 
⋮  ⋮ ⋮  ⋮ ⋮  ⋮ ⋮  ⋮ ⋮  ⋮ 

0 0 40 0 80 0 120 0 160 1 

0 0 40 0 80 0 120 0 160 1 
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⋮  ⋮ ⋮  ⋮ ⋮  ⋮ ⋮  ⋮ ⋮  ⋮ 

0 0 40 0 80 1 120 2 160 2 

0 0 40 0 80 1 120 2 160 2 
⋮  ⋮ ⋮  ⋮ ⋮  ⋮ ⋮  ⋮ ⋮  ⋮ 

0 0 40 0 80 2 120 2 160 3 

0 0 40 0 80 0 120 3 160 3 
⋮  ⋮ ⋮  ⋮ ⋮  ⋮ ⋮  ⋮ ⋮  ⋮ 

0 0 40 0 80 2 120 4 160 4 

0 0 40 0 80 2 120 3 160 4 

 

 

Table 20: Table of transitions of the simulation data 

 

 

 

 

 

 

 

Table 21: Simulation result of Markov models 

State Model 

A 

Model 

B 

Model C Model D Model E 

𝑖⁡ 𝜆⁡ 𝜆𝑖 ⁡ 𝑎⁡ 𝑏⁡ 𝑎𝑖 ⁡ 𝑏𝑖 ⁡ 𝛽𝑖 ⁡ 𝜂𝑖 ⁡ 
0 0.013052 0.010968 0.007447 1.10305 0.007198 1.065937 97.228631 1.596601 
1 0.013052 0.015129 0.007447 1.10305 0.015272 1.000000 57.06482 4.2253002 
2 0.013052 0.015978 0.007447 1.10305 0.009065 1.062756 52.240345 1.295354 
3 0.013052 0.014991 0.007447 1.10305 0.011972 1.075039 49.351623 1.542848 

 

 

Table 22: Approx. quantiles of the simulation for models 

Models of 

simulation 

Approx. quantiles 

25% 50% 75% 

A 194 281 391 

B 181 262 366 

C 198 275 373 

D 189 269 370 

E 177 221 277 

 

By applying the results above, all of the mean sojourn times increase a bit except the Model 

A. For model A, the intensity of simulation is higher than the original intensity of Model A and 

approximate quantiles of the lifetime are all smaller than the original results. For Model B, 

almost all intensities of simulation are smaller than the original results. However, the 

From\to 0 1 2 3 4 

0 483 198 61 6 0 

1 0 139 76 33 8 

2 0 0 69 37 19 

3 0 0 0 27 19 

4 0 0 0 0 25 
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interquartile range is (181, 366) , which is smaller and more reasonable compared with the 

interquartile range of original result (143, 373). It indicates the result of Model B becomes more 

and more applicable, since more and more data are included in the dataset. For Model C, the 

simulation values of parameters are a little different form the original values of parameter, since 

the simulating result of 𝑎 is larger than the original result and the simulating result of 𝑏 is smaller 

than the original result. Meanwhile, the 25% and 50% quantiles of the simulating lifetime are 

close to the original result of Model C, and the reasons of difference between the original results 

and simulation results will be discussed in chapter 6. For Model D, the results of the parameter 

are almost different and all of the quantiles of lifetime are a little larger than the results of Model 

D based on the simulation dataset. For Model E, the simulation of mean lifetime and the scale 

parameters are much larger than the original model (Semi-Markov process with sojourn time 

belonging the Weibull distribution). The mean lifetime of pole is 234.3207 years and 50% 

quantile of lifetime is 221, which are almost the same with simulation model (Model C). 

 In conclusion, the results of models become more and more precise, it is all because of the 

improvement of dataset. By comparing the simulation results of models with the results of 

original models, the differences of the lifetime between the models are becoming smaller and 

smaller, since more and more data are added into the dataset. For example, the results of 

quantiles of lifetime are so different from each other, the 50% quantile of lifetime is ranging 

from 98 to 602 years. However, the 50% quantile of lifetime is ranging from 221 to 281 based on 

the simulation dataset.  

Since Model A, B, C and D are nested models, it is possible to compare the simulation 

results of models by applying the methods in comparison of models. The negative log-likelihood 

values are shown in Table 23. Using equation (52), Model D is one of the best models compared 

with the Model A, B and C. 

 

Table 23: Simulation results of negative log-likelihood 

Model State-dependent Time-dependent Number of parameters Negative log-likelihood 

Model A No No 1 1099.904 

Model B Yes No 4 1091.586 

Model C No Yes 2 819.3681 

Model D Yes Yes 8 509.3265 
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5.3   Verification of Model E 

For Model E, the simulating results of model E are totally different with original Model E but its 

mean lifetime and 50% quantile of lifetime are so close to the simulation model (Model C). 

  In fact, so many kinds of factors result in this condition that the mean lifetime of simulating 

results of model E are close to the mean lifetime and 50% quantile of lifetime of the original 

Model C. For example, maybe more and more data are included in the data sets, which result in 

the more and more applicable estimate of parameter of model E. On the other hand, the method 

of model E may be not correct and it has the appropriate results by coincidence or otherwise. In 

order to check the validity of the method of model E, the second simulation based on the 

simulating results of model E is carried out in following sections. Because the results of model E 

based on the original dataset is not the appropriate choice since the original results of state 2 and 

state 3 are the same which indicates the data is not enough and the estimates of parameter is not 

good. So the results of the model based on the dataset generated from the Model C, which is 

shown in Table 21, are chosen as the simulation model of semi-Markov process.  

 First, 300 random samples are generated on the R studio and the table is shown in Table 24. 

The first column shows the random times generated from the first pair of parameter of the 

simulation model of semi-Markov process for the state 0, the second column shows the random 

time generated from the second pair of parameter of the simulation model of semi-Markov 

process for the state 1. The rest can be deduced from the first column.  

 

Table 24: 300 random sampled from simulation model of semi-Markov process 

T1 T2 T3 T4 

85.042798 60.857911 10.362073 49.295499 

26.197953 27.234497 60.190359 65.396184 

199.08462 54.474931 101.8884 73.885971 

23.207897 175.06266 27.683402 44.913149 

⋮ ⋮ ⋮ ⋮ 

127.27707 20.361248 44.930916 81.466653 

149.04694 37.97433 56.880658 63.345582 

112.24784 41.456171 9.91369 80.257991 

106.42081 197.66188 20.558458 23.210813 
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Second, 40 years is chosen as the fixed inspection of time interval by considering the whole 

row as one sample of the pole. By taking the first pole as an example, the pole stays in the state 0 

at the installation time and the first inspection (40 years) and second inspection (80 years), it 

stays in the state 1 at the third inspection time (120 years), and it stays in the state 2 at the fourth 

inspection time (160 years). And the rest can be deduced from the first row. The rearranged data 

sets are shown in Table 25. Third, the dataset in the Table 25 should be also transferred for each 

state. The process is shown in the following. We take the second pole as one example and it is 

shown as one timeline Figure 12. 

 

Table 25: Data template 

0 0 40 0 80 0 120 1 160 2 

0 0 40 1 80 2 120 3 160 3 

0 0 40 0 80 0 120 0 160 0 

0 0 40 1 80 1 120 1 160 1 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0 0 40 0 80 0 120 0 160 2 

0 0 40 0 80 0 120 0 160 1 

0 0 40 0 80 0 120 1 160 2 

0 0 40 0 80 0 120 1 160 1 

 

 

 
Figure 12: Timeline of pole for simulation 

 

The timeline above indicates the range of sojourn time in state 0, 1, 2 and 3. They are shown 

below: 

 

0 < 𝑆0 < 40,⁡ 

0 < 𝑆1 < 80,⁡ 

0 < 𝑆2 < 80,⁡ 

40 < 𝑆3 

(57) 

We can deduce the rest from this example. The right form in R should be like the form for state 0 

in Table 26: 
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Table 26: Data sample for the state 0 

L R 

80 120 

0 40 

160 Na 

0 40 

 ⁡⋮  ⋮ 

120 160 

120 160 

80 120 

80 120 

 

L indicates the left side of the time interval and R indicates the right side of time interval for 

each state. For instance, the third row represents the time interval is 𝑆𝑖 > 160 (right censoring) 

and the first row represents the time interval is 80 < 𝑆𝑖 < 120 (interval censoring). The rest can 

be deduced as the first state (state 0). 

After estimation of parameter on R studio, the simulating results were compared with first 

simulating result of model E which is shown in Table 27. According to the Table 27, the mean 

lifetimes of two simulating results are so close to each other. The most interesting point is that 

the parameters of first state for estimation model are almost the same with each other and the rest 

of second simulating parameters of model E are all smaller than the parameters of simulation 

model but the values of parameters for estimation model are so close to the parameters of 

simulation model. However, the parameters of final state in the estimation model are so strange 

since the standard errors of both parameters are larger than the value of parameters, which 

indicates the incorrect of parameter estimation.  

 

Table 27: Comparison of simulation model and estimation model 

Simulation model Estimation model 

𝛽𝑖 ⁡ Std.⁡
Error 

𝜂𝑖 ⁡ Std.⁡
Error 

Mean⁡
sojourn⁡
time 

⁡⁡⁡⁡⁡⁡𝛽𝑖  Std. 
Error 

𝜂𝑖 Std.⁡
Error 

Mean⁡
sojourn⁡
time 

97.2286 3.8790 1.5966 0.0909 87.1898 97.7260 3.6291 1.7074 0.0976 87.1698 

57.0648 4.2253 4.2253 0.1262 54.4393 52.2377 3.4115 1.4057 0.1604 47.5803 

52.2403 4.4401 1.2953 0.2064 48.2830 49.5706 3.9166 1.4466 0.2343 44.9613 

49.3516 5.0952 1.5428 0.3873 44.4084 42.2391 47.8518 4.6134 95.9246 38.6019 
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According to the Table 27, although the parameters of final state in the estimation model are 

so strange, the other parameters are very close to the parameters of simulation. Meanwhile, the 

40 years is chosen as the fixed inspection time interval and 4 inspections are assumed to be 

carried out, so only a little information about final state is useful to do the parameter estimation. 

Maybe that is why the standard errors of final state are so large. The conclusion is that the results 

of estimation model are almost the same with the results of simulation model, so the method 

behind the model E may be correct. Thus, the assumption that the method of model E is not 

correct but it has the appropriate results by coincidence or otherwise does not exist.  More and 

more data included in the data set is the reason why the mean lifetime of first simulation of 

model E is so close to the original result of model C. 

 

5.4  Summary 

In conclusion, the Model D maybe one of the best models based on the simulation. By simulation 

of the models, the quantiles of the lifetime are in all models are a little larger than in the original 

models, except the model A. In detail, the simulation results of 50% quantiles of lifetimes are 

similar to the original results of Model B, C and D, but for the other simulation quantiles of 

lifetimes are a little different from the original results of Model B, C and D. The most important 

point is that the results of lifetime of each model are close to each other alongside with the 

improvement of the dataset. This indicates that the models in this project fit data well and that is 

correct to use the Markov process to model the deterioration of wood poles. By applying 

likelihood ratio statistics, Model D is the choice compared with the model A, B and C based on 

the simulation. For model E, the results of the simulation are totally different with the original 

result. The mean lifetime of the simulation is more or less close to the original results of model 

C, since the dataset is improved compared with the heavy censored dataset. However, the model 

E ignores the dependency of the time, which is not correct according to the mathematical theory. 

That is why Model D maybe the best model compared with the Model A, B, C and E based on 

the simulation.  

By applying the intensity matrix of Model D and equation (7), it is possible to compute the 

probability transition matrix from installation date to the end of lifetime. Then the cumulative 

probability function of the remaining lifetime of a pole is easy to compute given the state and the 

time counted from installation date by using equation (15). 
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Chapter 6: Discussion  

For the results using Markov processes above, it is possible to fit all the models to the dataset, 

except Model E, which is illustrated in section 5.4. The model we choose will have a large 

influence on the results of parameters and mean lifetimes, since the dataset in this research is 

heavily censored and new and the models have different conclusions based on two likelihood 

ratio tests based on the different datasets.  

According to the results of 50% quantiles of lifetime, it seems that the estimated lifetime of 

the pole is too large, since it is larger than the actual lifetime of the pole line which consists 

several wood poles. According to the suggestion from the technicians in the power company, the 

actual lifetime of pole line is ranging from 30 to 50 years. According to the theory on the book of 

Statistical methods for reliability data [15], the lifetime of a single wood pole is reasonable 

compared with the lifetime of the pole line. Assume that the lifetime of every pole is belonging 

to the exponential distribution and all of wood poles have the same intensity in a pole line. The 

structure of a pole line is assumed to be series with several wood poles.  

 MTTFp =
1

𝜆𝑝
⁡and⁡MTTFL =

1

𝜆𝐿
 (58) 

where MTTFp and 𝜆𝑝 denote the mean lifetime to failure (MTTF) and intensity of wood pole 

respectively, MTTFL  and 𝜆𝐿  represents mean lifetime to failure and intensity of pole line 

respectively. 

According the definition of survival probability of series system, the formula is  

 𝑅𝐿 =∏𝑅𝑃𝑖 ⁡ (59) 

where 𝑃𝑖 ⁡is the number of pole, 𝑅𝐿⁡and⁡𝑅𝑃𝑖 denote the survival probability of pole line and single 

pole respectively, and 𝑅𝑃𝑖 = 𝑒−𝜆𝑃𝑖𝑡. Thus we can get 

 𝑅𝐿 =∏𝑅𝑃𝑖

𝑁

1

= 𝑒−∑ 𝜆𝑃𝑖
𝑁
1  (60) 

 MTTFL =
1

∑ 𝜆𝑝
𝑁
1

= MTTFp/𝑁 (61) 
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Table 28: Relationship between 𝐌𝐓𝐓𝐅𝐋 and 𝐌𝐓𝐓𝐅𝐩 

MTTFL\No. Poles 10 25 50 100 

5 50 125 250 500 

10 100 250 500 1000 

25 250 625 1250 2500 

50 500 1250 2500 5000 

 

If the lifetime of pole line is from the 5 to 50, Table 28 can be produced. The grey row represents 

the number of wood poles, the grey column represents the different lifetimes from 5 to 50 years 

and the rest represent the lifetime of the single pole. For example, when having a line with 10 

poles and requiring MTTF of 5 years for the line of poles, the pole must have minimum MTTF 

of 50 years when the lifetime of a single pole is exponentially distributed. From the tables, we 

can see that we must require a quite high MTTF of each pole when the line consists of several 

wood poles. Generally speaking, the MTTF of a single pole is larger than the MTTF of a pole 

line.  

In addition, the original result and simulation result of Model C are different from each 

other, which are shown in chapter 5. Generally speaking, it is impossible to get the same result 

with original results based on the simulation in this present research, since the dataset generated 

form R software is changed. For example, the last row but one in Table 17 indicates the total 

failures of a pole is larger than 4, but it is transferred into the row in Table 18 manually, which 

indicates the pole stays in state 4 from third and fourth inspection, according to the procedure of 

simulation in chapter 5. The first change is that the maximum number of failures of pole is 

assumed to be equal to 4, no matter how many failures of a pole is generated within the time 

interval (0, 160), and the second change is that the pole will stay in state 4 all the time when 

more than 4 failures happened before the fourth inspection. However, the total number of data is 

300, maybe it is not enough and this kind of situation that final state is observed frequently does 

not exist in the original dataset, since only two inspections are available and few poles reached 

the final state. Maybe that is why the original result and the simulation result are different. 

Meanwhile, the values of parameters are so small, the difference will be so obviously compared 

with the value of parameters, if the dataset is changed a little.  

 By comparing the properties of degradation processes and Markov processes, it is good to 

use Markov process to analyze the deterioration of a pole. Although the methods in this report 
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seem to be suitable for the original data, they all have some advantages and disadvantages in 

different applications. 

For Markov process with NHPP, the advantage of using NHPP is that it can be applied to the 

inspection with fixed time interval and inspection of non-fixed time interval. Three Markov 

processes by applying NHPP provide the comparison between models and a good way to find the 

best model. The failures, which are considered as the independent increments, are independent 

and the number of failures in a time interval is independent of the number of failures in any 

earlier time intervals. Meanwhile, it also has some disadvantages. According to the properties of 

Poisson distribution and assuming that the waiting time is exponentially distributed, the number 

of transitions belongs to the Poisson distribution. If more than one transition occurred between 

two inspections, it is difficult to find the right time of each transition and only the number of 

transitions is known, in that case the intensity of NHPP is consistent (HPP). Although NHPP is a 

continuous probability distribution that expresses the probability of a given number of events 

occurring in a time interval, NHPP just counts the number of the events in the time interval and it 

does not count the different types of the event in any time interval. 

 For Model A, it is a special case of NHPP with constant intensity, which is called the time 

homogeneous Markov process. It records the number of transitions in the inspection time 

intervals. Model A is independent of time and state which indicates that Model A does not 

include the information when the transition happened and which kind of event happened. In fact, 

the speed of the deterioration process is changing with time, i.e. the intensity of deterioration is 

time varying. Thus, Model A is time-independent and state-independent. Meanwhile, the 

transition intensity of this model is so small and it ignores the dependency of state and time, 

which indicates that Model A is not the perfect model. Meanwhile, the results of likelihood ratio 

tests also indicated the Model A is not the choice in this presented research.  

For Model B, it is also a special case of a non-homogeneous Poisson process with different 

intensities for each state which is belonging to the time homogeneous Markov process. This 

model includes information such as the number of transition within the inspection time interval 

and the types of events. However, its intensities are independent of time which indicates that this 

model does not include the information when the transition happened. Thus, Model B is state-

dependent and time-independent and the results of likelihood ratio tests also indicated the Model 

A is not the choice in this presented research in present research. 

http://en.wikipedia.org/wiki/Discrete_probability_distribution
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For Model C, it is the standard non-homogeneous Poisson process which is belonging to the 

time inhomogeneous continuous Markov process with time-varying intensities.  It can help us to 

find the number of transitions which happened in the inspection time interval and the time point 

when the transition happened between two inspections. However, the assumption behind this 

model is that all of events are the same, which indicates that Model C is time-dependent and 

state-independent and it does not contain the different types of event in this model. The mean 

lifetime of a pole for this model is around 235 years which is similar with the result of Gompitz 

model [17]. According to results of the hypothesis tests, Model C may be one of the best models 

in this proposed research.  

For model D, it is based on non-homogeneous Poisson process which is belonging to the 

time inhomogeneous Markov process with time-varying and state-varying intensities. It includes 

the information such as the number of transitions happened, the time point when the transition 

happened and the type of the events in the inspection time interval. It seems to be the best model 

according to the mathematical theory since it overcomes all of the disadvantages of Model A, B 

and C. Its 50% quantile of lifetime is 200 years which is also close to the result of the Gompitz 

model [17]. However, Model D may be an overfitting model according to the likelihood ratio 

statistics based on the original dataset. Meanwhile, the Model D may be the best model 

compared with the Model A, B and C according to the likelihood ratio test based on the dataset 

of simulation. Different kinds of results based on the original and simulation datasets do not 

indicate that Model D is not one of best models in this research. 

For Model E (semi-Markov process with Weibull distribution), Weibull distribution is a 

continuous probability distribution and it is also one of the lifetime distributions which is most 

widely used in reliability and survival analysis. Weibull distribution can display the 

characteristics of other types of distributions depending on the value of the shape parameter. In 

this project, Weibull distributions with different parameters are used to simulate the states of a 

pole. The assumption behind this application is that sojourn times in all states are independent. 

For instance, the lifetime of a pole can be divided as five states and how long time the pole stays 

in the first state does not influence the time staying in the other states. Actually, this may be not 

true. It can be explained by quantitative analysis. 

For example, we take the No.3 of pole in Table 2 as one example and it is shown as one 

timeline in Figure 3. Assuming that the first time is the installation time (2000) of pole, the 
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timeline above indicates the range of sojourn time in state 0, 1, 2 and 3. They are shown below: 

 

 

0 < 𝑆3, 
0 < 𝑆0 < 3, 

⁡0 < 𝑆1 + 𝑆0 < 3, 
𝑆3 + 𝑆2 + 𝑆1 + 𝑆0 < 10, 
10 < 𝑆3 + 𝑆2 + 𝑆1 + 𝑆0 

(62) 

 

Assuming that 𝑆3, 𝑆2, 𝑆1⁡and⁡𝑆0  are independent and they are all Weibull distributed, the 

contribution to the likelihood of poles is shown below: 

 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑⁡𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑎⁡𝑝𝑜𝑙𝑒

= ∫ ∫ ∫ ∫ 𝑓0(𝑆0)𝑓1(𝑆1)𝑓2(𝑆2)𝑓3(𝑆3)𝑑𝑆0𝑑𝑆1𝑑𝑆2𝑑𝑆3

∝

10−𝑆0−𝑆1−𝑆2

10−𝑆0−𝑆1

3−𝑆0−𝑆1

3−𝑆0

0

3

0

 
(63) 

 

where 𝑓𝑖(𝑆𝑖) is the probability density function of sojourn time in the states. According to the CDF above 

and equation (62), we know sojourn time staying in one state is depending on the sojourn time 

staying in the other state. So the Markov process with sojourn time belonging to the Weibull 

distribution ignores the dependency of the time spent in each state. 

Meanwhile, overlap of time intervals will happen such as the range of S1⁡and⁡S0 in equation 

(62). The transitions from the good states to state 3 and state 4 are rare, that is the data of states 3 

and 4 is not enough, which would result incorrect estimates of parameters. Although semi-

Markov process contains the censored and non-censored information, the dataset does not 

include the complete and enough non-censored information in the dataset which makes the 

parameter estimations very difficult. 
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Chapter 7: Conclusion 

By comparing the different results of the models, the conclusion is that it is possible to fit all 

models to the dataset except the Model E, and different models have different results in this 

presented research, since the dataset is so new and heavily censored. The lifetime of the poles is 

ranging from 200 to 300 years according to the results of five models. 

The study of estimating parameters based on Markov processes has been discussed in the 

presented research. The information of the original data of wood poles has been displayed in 

chapter 2. It is feasible to use Markov process to model the deterioration process.  

However, the information for the more accurate and more detailed analysis is not available 

in the original data. In order to support the statistical analysis, the dataset should be designed 

depending on the requirements of statistics. Many factors, such as incomplete and wrong data 

registration, personal factors and too few observations for poles, are reasons that why the more 

objective analyses should be conducted. 

According to the discussion above, all of three Markov processes also have some 

disadvantages. There are some evidences that the models in this project have some disadvantages 

and a more applicable time inhomogeneous Markov process should be constructed which can 

provide a better description of the dataset.   

As is known for us, if few observations are available, the maximum likelihood method will 

be not suitable for parameter estimation of all models. In this project, we have sufficient number 

of poles in the data set, but we do not have enough observations for each pole. In detail, the 

dataset has enough information for state 0 and state 1, and it does not include enough 

information of state 2, state 3 and state 4. Thus the models above can describe the beginning of a 

deterioration process such as transitions from state 0 to state 1. The models have a poor 

description of the middle and end of the deterioration process of poles such as transitions from 

state 2 to state 3 and from state 3 to state 4. Thus, it is necessary to update the dataset we have. 

If the data source is not sufficient, we should find alternative information. In the literature, 

some people would like to combine data and expert judgments together to analyze practical 

problems. Welte and Eggen used the Bayesian approach for estimation of parameters of sojourn 

time distribution based on expert opinion and monitoring data, when the data set contains a little 



54 

 

information [19]. Mohammadi, Longinow and Williams described the process of refinement of 

monitoring data and how to do statistical evaluation of models compared with data collection 

from experts opinion [20]. Thus, the expert judgment from related fields will be useful and 

precious. For example, we can get information about expectation of the sojourn time in each 

state, we can measure the value of parameters compared with the expert judgment and evaluate 

the models. Many methods about taking advantage of the expert judgment could be used in this 

research.  
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Appendix 1 

Input for Model A, B, C and D 

 

 

 
Figure 13 
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where t, j and k are installation time, first inspection time and second inspection time 

respectively. Then x, y and z are state of installation, state of first inspection and state of second 

inspection respectively. 

 

Estimation of Model A: 

 

R program of Model A: 

ModelA=function(p,t,j,k,x,y,z){ 
  m=matrix(c(-p[1],p[1],0,0,0, 
             0,-p[1],p[1],0,0, 
             0,0,-p[1],p[1],0, 
             0,0,0,-p[1],p[1], 
             0,0,0,0,0), 
    nrow=5,ncol=5,byrow=TRUE) 
    mle=0 
    for (l in c(1:475)){ 
    m1=expm(m*j[l]) 
    m2=expm(m*(k[l]-j[l])) 
    mle=mle+log(m1[x[l],y[l]])+log(m2[y[l],z[l]])} 
  print(p) 
  return(-mle)} 
parmeter1= optimize(ModelA,c(0.001,0,1),  
               t=data$t, 
               j=data$j, 
               k=data$k, 
               x=data$x+1, 
               y=data$y+1, 
               z=data$z+1) 
Output 
$minimum 
[1] 0.006091755 #### Value of parameter 
  
$objective 
[1] 328.3538 #### log likelihood statistics 
 
Plot of Model A: 

R1=0 
R2=0 
R3=0 
R4=0 
FF1=function(t){lambda^n*t^(n-1)*exp(-lambda*t)/factorial(n-1)} 
FF2=function(t){lambda^3*t^(3-1)*exp(-lambda*t)/factorial(3-1)} 
FF3=function(t){lambda^2*t^(2-1)*exp(-lambda*t)/factorial(2-1)} 
FF4=function(t){lambda^1*t^(1-1)*exp(-lambda*t)/factorial(1-1)} 
for (i in c(1:1000)){ 
  R1[i]=FF1(i) 
  R2[i]=FF2(i) 
  R3[i]=FF3(i) 
  R4[i]=FF4(i)} 
plot(1-cumsum(R1),col="red",,type="l",main="Survival Function of Model 
A",ylab="Probability",xlab="Time")  
lines(1-cumsum(R2),col="blue",type="l") 
lines(1-cumsum(R3),col="yellow",type="l") 
lines(1-cumsum(R4),col="black") 
legend(430,1,c("Survival Function from state 0 to state 4", 
               "Survival Function from state 1 to state 4", 
               "Survival Function from state 2 to state 4", 
               "Survival Function from state 3 to state 4"), 
       cex=0.7,c("red","yellow","blue","black"),pch=20,lty=0) 
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Estimation of Model B: 

 
R program of Model B: 

 
ModelB=function(p,t,j,k,x,y,z){ 
    m=matrix(c(-p[1],p[1],0,0,0, 
             0,-p[2],p[2],0,0, 
             0,0,-p[3],p[3],0, 
             0,0,0,-p[4],p[4], 
             0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE) 
    mle=0 
    for (l in c(1:475)){ 
      m1=expm(m*j[l]) 
      m2=expm(m*(k[l]-j[l])) 
      mle=mle+log(m1[x[l],y[l]])+log(m2[y[l],z[l]])} 
    print(p) 
    return(-mle)} 
par1= optim(c(0.0061,0.0061,0.0061,0.0061),ModelB, 
               t=data$t, 
               j=data$j, 
               k=data$k, 
               x=data$x+1, 
               y=data$y+1, 
               z=data$z+1) 
Output of Model B: 

$par 
[1] 0.005076535 0.020766575 0.075734637 0.034398854 #### Value of parameter 
$value 
[1] 313.7357 #### log likelihood statistics 
$counts 
function gradient  
301       NA  #### Number of iterations 
$convergence 
[1] 0 #### It indicates the convergence 
$message 
NULL 
 
Plot of Model B: 

a1=0.005076      
a2=0.020766      
a3=0.075734637 
a4=0.034398854 
FF4=function(t){ffff=a1*exp(-a1*t)*(a2/(a2-a1))*(a3/(a3-a1))*(a4/(a4-a1))+ 
  a2*exp(-a2*t)*(a1/(a1-a2))*(a3/(a3-a2))*(a4/(a4-a2))+ 
  a3*exp(-a3*t)*(a2/(a2-a3))*(a1/(a1-a3))*(a4/(a4-a3))+ 
  a4*exp(-a4*t)*(a2/(a2-a4))*(a1/(a1-a4))*(a3/(a3-a4))} 
FF3=function(t){ffff= 
  a2*exp(-a2*t)*(a3/(a3-a2))*(a4/(a4-a2))+ 
  a3*exp(-a3*t)*(a2/(a2-a3))*(a4/(a4-a3))+ 
  a4*exp(-a4*t)*(a2/(a2-a4))*(a3/(a3-a4))} 
FF2=function(t){ffff= 
  a3*exp(-a3*t)*(a4/(a4-a3))+ 
  a4*exp(-a4*t)*(a3/(a3-a4))} 
FF1=function(t){ffff= 
  a4*exp(-a4*t)} 
RR1=0 
RR2=0 
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RR3=0 
RR4=0 
for (i in c(1:1000)){ 
  RR1[i]=cumsum(FF1(i)) 
  RR2[i]=cumsum(FF2(i)) 
  RR3[i]=cumsum(FF3(i)) 
  RR4[i]=cumsum(FF4(i))} 
plot(1-cumsum(RR1),col="red",,type="l",main="Survival Function of Model 
B",ylab="Probability",xlab="Time") ###survival function of firth time to 
failure 
lines(1-cumsum(RR2),col="blue",type="l") 
lines(1-cumsum(RR3),col="yellow",type="l") 
lines(1-cumsum(RR4),col="black") 
legend(260,1,c("Survival Function from state 0 to state 4", 
               "Survival Function from state 1 to state 4", 
               "Survival Function from state 2 to state 4", 
               "Survival Function from state 3 to state 4"), 
       cex=0.7, 
       c("red","yellow","blue","black"),pch=20,lty=0) 

 

Estimation of ModelC: 

 

R program of ModelC: 

ModelC=function(p,t1,t2,t3,x1,x2,x3){ 
  logl=sum((x3-x2)*log(p[1]*(t3^p[2]) 
                       -p[1]*(t2^p[2])) 
           +(x2-x1)*log(p[1]*(t2^p[2])) 
           -p[1]*(t3^p[2]) 
           +p[1]*(t1^p[2])) 
  print(p) 
  result=c(-logl,sd(p)) 
  return(-logl)} 
 
  parameter3=optim(c(0.003,1),ModelC,method="BFGS", 
                   t1=data$t, 
                   t2=data$j, 
                   t3=data$k, 
                   x1=data$x+1, 
                   x2=data$y+1, 
                   x3=data$z+1) 
Output: 

$par 
[1] 0.00162 1.41576  #### Value of parameters 
$value 

[1] 297.3978 #### log likelihood statistics 
$counts 
function gradient  

52        6    #### Number of iterations 
$convergence 

[1] 0      #### It indicates the convergence 
$message 
NULL 
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Plot of Model C: 

p=c(0.00162,1.4157) 
L = list(diag(5)) 
o3=0 
k3=0 
l3=0 
v3=0 
for (i in c(1:1000)){ 
  t=i-1 
  m=matrix(c(-p[1]*p[2]*t^(p[2]-1),p[1]*p[2]*t^(p[2]-1),0,0,0, 
             0,-p[1]*p[2]*t^(p[2]-1),p[1]*p[2]*t^(p[2]-1),0,0, 
             0,0,-p[1]*p[2]*t^(p[2]-1),p[1]*p[2]*t^(p[2]-1),0, 
             0,0,0,-p[1]*p[2]*t^(p[2]-1),p[1]*p[2]*t^(p[2]-1), 
             0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE) 
  result = matrix(unlist(L[i]),ncol=5)%*%(m+diag(5)) 
  o3[i]=result[1,5] 
  k3[i]=result[2,5] 
  l3[i]=result[3,5] 
  v3[i]=result[4,5] 
  L[[length(L)+1]] = result} 
lines(1-o3,col="blue") 
plot(1-o3,col="red",type="l",main="Survival Function of Model 
C",ylab="Probability",xlab="Time")  
lines(1-k3,col="blue",type="l") 
lines(1-l3,col="yellow",type="l") 
lines(1-v3,col="black") 
legend(260,1,c("Survival Function from state 0 to state 4", 
                  "Survival Function from state 1 to state 4", 
                  "Survival Function from state 2 to state 4", 
                  "Survival Function from state 3 to state 4"), 
       cex=0.7, 
       c("red","blue","yellow","black"),pch=20,lty=0) 

 

Estimation of Model D: 

 

R program of Model D: 

ModelD=function(p,j,k,x,y,z){ 
  L = list(diag(5)) 
  for (i in c(1:160)){ 
    t=i-1 
    m=matrix(c(-p[1]*p[2]*t^(p[2]-1),p[1]*p[2]*t^(p[2]-1),0,0,0, 
               0,-p[3]*p[4]*t^(p[4]-1),p[3]*p[4]*t^(p[4]-1),0,0, 
               0,0,-p[5]*p[6]*t^(p[6]-1),p[5]*p[6]*t^(p[6]-1),0, 
               0,0,0,-p[7]*p[8]*t^(p[8]-1),p[7]*p[8]*t^(p[8]-1), 
               0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE) 
    result = matrix(unlist(L[i]),ncol=5)%*%(m+diag(5)) 
    L[[length(L)+1]] = result 
  } 
  mle = 0 
  for (l in c(1:475)){ 
    o=matrix(unlist(L[j[l]]),ncol=5) 
    h=matrix(unlist(L[k[l]]),ncol=5)%*%solve(o) 
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    mle=mle+log(o[x[l],y[l]])+log(h[y[l],z[l]])} 
  print(p) 
  return(-mle)} 
paramter4=optim(c(0.1,1,0.1,1,0.1,1,0.1,1),ModelD,control=list(maxit=200000), 
      j=data$j, 
      k=data$k, 
      x=data$x+1, 
      y=data$y+1, 
      z=data$z+1  

Output:  

$par 
[1] 0.005367249 1.000000100 0.015193468 1.043649102 0.085412186 1.037940474 
0.178171350     
[8] 1.000004421 #### value of parameters 
$value 

[1] 297.0001 #### log likelihood statistics 
$counts 
function gradient  

2603       NA    #### number of iterations 
$convergence 

[1] 0   #### it indicates the convergence 
$message 
NULL 

 

Plot of Model D: 

p=c(0.005367249, 1.000040100, 0.015193468, 1.043649102, 0.085412186, 
1.037940474, 0.178171350,1.000004421) 
L = list(diag(5)) 
k4=0 
o4=0 
v4=0 
l4=0 
for (i in c(1:1000)){ 
  t=i-1 
  m=matrix(c(-p[1]*p[2]*t^(p[2]-1),p[1]*p[2]*t^(p[2]-1),0,0,0, 
             0,-p[3]*p[4]*t^(p[4]-1),p[3]*p[4]*t^(p[4]-1),0,0, 
             0,0,-p[5]*p[6]*t^(p[6]-1),p[5]*p[6]*t^(p[6]-1),0, 
             0,0,0,-p[7]*p[8]*t^(p[8]-1),p[7]*p[8]*t^(p[8]-1), 
             0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE) 
  result = matrix(unlist(L[i]),ncol=5)%*%(m+diag(5)) 
  print(result) 
  o4[i]=result[1,5] 
  k4[i]=result[2,5] 
  l4[i]=result[3,5] 
  v4[i]=result[4,5] 
  L[[length(L)+1]] = result} 
plot(1-o4,col="red",,type="l",main="Survival plot of Model 
D",ylab="Probability",xlab="Time") ###survival function of firth time to 
failure 
lines(1-k4,col="blue",type="l") 
lines(1-l4,col="yellow",type="l") 
lines(1-v4,col="black") 
abline(h=0.5,col="3") 
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legend(440,1.02,c("Survival plot from state 0 to state 4", 
                  "Survival plot from state 1 to state 4", 
                  "Survival plot from state 2 to state 4", 
                  "Survival plot from state 3 to state 4", 
                  "Probability=0.5"), 
       cex=0.7, 
       c("red","blue","yellow","black","3"),pch=10,lty=0) 

 

Estimation of Model E: 
library(splines) 
library(survival) 
library(fitdistrplus) 
####weibull distribution for state 2 
d1=data.frame( 
  left=state.1$V1, 
  right=state.1$V2) 
weibull1=fitdistcens(d1,"weibull") 
summary(weibull1) 
####weibull distribution for state 2 
d2=data.frame( 
      left=state.2$V1, 
     right=state.2$V2) 
 weibull2=fitdistcens(d2,"weibull") 
 summary(weibull2) 
####weibull distribution for state 3 
d3=data.frame( 
  left=state.3$V1, 
  right=state.3$V2) 
weibull3=fitdistcens(d3,"weibull") 
summary(weibull3) 
####weibull distribution for state 3 
d4=data.frame( 
  left=state.4$V1, 
  right=state.4$V2) 
weibull4=fitdistcens(d4,"weibull") 
summary(weibull4) 
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Appendix 2 

Code of Simulation 
 

Model A: 

 
model1=function(p,t1,t2,t3,t4,t5,s1,s2,s3,s4,s5){ 
  m=matrix(c(-p[1],p[1],0,0,0, 
             0,-p[1],p[1],0,0, 
             0,0,-p[1],p[1],0, 
             0,0,0,-p[1],p[1], 
             0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE) 
  mle=0 
  for (l in c(1:300)){ 
    m1=expm(m*t2[l]) 
    m2=expm(m*(t3[l]-t2[l])) 
    m3=expm(m*(t4[l]-t3[l])) 
    m4=expm(m*(t5[l]-t4[l])) 
    
mle=mle+log(m1[s1[l],s2[l]])+log(m2[s2[l],s3[l]])+log(m3[s3[l],s4[l]])+log(m4
[s4[l],s5[l]])} 
  return(-mle)} 
parameter11= optimize(model1,c(0.000001,1), 
            t1=simulation.data$V1, 
            t2=simulation.data$V3, 
            t3=simulation.data$V5, 
            t4=simulation.data$V7, 
            t5=simulation.data$V9, 
            s1=simulation.data$V2+1, 
            s2=simulation.data$V4+1, 
            s3=simulation.data$V6+1, 
            s4=simulation.data$V8+1, 
            s5=simulation.data$V10+1) 
###output 
$minimum 
[1] 0.01305441 
 
$objective 
[1] 1099.904 
 
Model B: 

 
model2=function(p,t1,t2,t3,t4,t5,s1,s2,s3,s4,s5){ 
  m=matrix(c(-p[1],p[1],0,0,0, 
             0,-p[2],p[2],0,0, 
             0,0,-p[3],p[3],0, 
             0,0,0,-p[4],p[4], 
             0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE) 
  mle=0 
  for (l in c(1:300)){ 
    m1=expm(m*t2[l]) 
    m2=expm(m*(t3[l]-t2[l])) 
    m3=expm(m*(t4[l]-t3[l])) 
    m4=expm(m*(t5[l]-t4[l])) 
    
mle=mle+log(m1[s1[l],s2[l]])+log(m2[s2[l],s3[l]])+log(m3[s3[l],s4[l]])+log(m4
[s4[l],s5[l]])} 
  return(-mle)} 
parameter22= optim(c(0.013052,0.0130521,0.013052,0.013052),model2, 
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            t1=simulation.data$V1, 
            t2=simulation.data$V3, 
            t3=simulation.data$V5, 
            t4=simulation.data$V7, 
            t5=simulation.data$V9, 
            s1=simulation.data$V2+1, 
            s2=simulation.data$V4+1, 
            s3=simulation.data$V6+1, 
            s4=simulation.data$V8+1, 
            s5=simulation.data$V10+1) 
### output 
$par 
[1] 0.01096761 0.01512947 0.01597799 0.01499122 
 
$value 
[1] 1091.586 
 
$counts 
function gradient  
131       NA  
 
$convergence 
[1] 0 
 
$message 
NULL 
 
Model C 
 
model3=function(p,t1,t2,t3,t4,t5,s1,s2,s3,s4,s5) 
{logl=sum((s5-s4)*log(p[1]*(t5^p[2])-p[1]*(t2^p[2])) 
          +(s4-s3)*log(p[1]*(t4^p[2])-p[1]*(t3^p[2])) 
          +(s3-s2)*log(p[1]*(t3^p[2])-p[1]*(t2^p[2])) 
          +(s2-s1)*log(p[1]*(t2^p[2])-p[1]*(t1^p[2])) 
          -p[1]*(t5^p[2]) 
          +p[1]*(t1^p[2])) 
  return(-logl)} 
  parameter33=optim(c(0.003,0.1),model3,method="BFGS", 
               t1=simulation.data$V1, 
               t2=simulation.data$V3, 
               t3=simulation.data$V5, 
               t4=simulation.data$V7, 
               t5=simulation.data$V9, 
               s1=simulation.data$V2, 
               s2=simulation.data$V4, 
               s3=simulation.data$V6, 
               s4=simulation.data$V8, 
               s5=simulation.data$V10) 
### output 
 
$par 
[1] 0.007447071 1.103050950 
 
$value 
[1] 819.3681 
 
$counts 
function gradient  
189       35  
 
$convergence 
[1] 0 
 
$message 
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NULL 
 
 
Model D 
 
model4=function(p,s1,s2,s3,s4,s5){ 
    L = list(diag(5)) 
    for (i in c(1:160)){ 
      t=i-1 
      m=matrix(c(-p[1]*p[2]*t^(p[2]-1),p[1]*p[2]*t^(p[2]-1),0,0,0, 
                 0,-p[3]*p[4]*t^(p[4]-1),p[3]*p[4]*t^(p[4]-1),0,0, 
                 0,0,-p[5]*p[6]*t^(p[6]-1),p[5]*p[6]*t^(p[6]-1),0, 
                 0,0,0,-p[7]*p[8]*t^(p[8]-1),p[7]*p[8]*t^(p[8]-1), 
                 0,0,0,0,0),nrow=5,ncol=5,byrow=TRUE) 
      result = matrix(unlist(L[i]),ncol=5)%*%(m+diag(5)) 
      L[[length(L)+1]] = result 
    } 
    mle = 0 
    for (l in c(1:300)){ 
      o1=matrix(unlist(L[40]),ncol=5) 
      o2=matrix(unlist(L[80]),ncol=5)%*%solve(o1) 
      o3=matrix(unlist(L[120]),ncol=5)%*%solve(o2) 
      o4=matrix(unlist(L[160]),ncol=5)%*%solve(o3) 
        mle=mle+log(o1[s1[l],s2[l]])+log(o2[s2[l],s3[l]]) 
        +log(o3[s3[l],s4[l]]) 
        +log(o4[s4[l],s5[l]])} 
    print(p) 
    return(-mle)} 
paramter44=optim(c(0.1,1,0.1,1,0.1,1,0.1,1),model4,control=list(maxit=20000), 
                s1=simulation.data$V2+1, 
                s2=simulation.data$V4+1, 
                s3=simulation.data$V6+1, 
                s4=simulation.data$V8+1, 
                s5=simulation.data$V10+1) 
 
### output 
 
$par 
[1] 0.007197686 1.065937308 0.015271995 1.000000596 0.009064900 1.062756488 
0.011972459 
[8] 1.075039386 
$value 
[1] 506.5859 
$counts 
function gradient  
1503       NA  
 
$convergence 
[1] 0 
 
$message 
NULL 


