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Abstract
We describe the Verifiable Shuffled Decryption problem, and present five solutions
based on adapting several existing verifiable shuffles. All but one may have poten-
tial for implementation, the choice of which would depend on the required level of
security and computational restrictions given by the available hardware.

Sammendrag
Vi beskriver problemet verifiserbar stokket dekryptering og demonstrer til sammen
fem løsninger, ved åtilpasse eksisterende beviser for korrekt stokking. Alle unntatt
den første har en praktisk gjennomførbar beregningskostnad, og valget mellom vil
avhenge av ønsket sikkerhetsnivå og hvilken begrensninger som blir satt av den
tilgjengelige maskinvaren.
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1 Introduction
This chapter introduces the problem, why we would like to solve it, and gives a
brief overview of our contribution.

1.1 The Problem and Motivation
The theory of mixnets is well developed, and is based on a setup of several com-
puters that take a set of ciphertexts as input, and output a shuffled list of new
ciphertexts, having the same plaintexts as the input. For example, with an ElGa-
mal scheme with k ciphertexts {(gri , hrimi)}, the output would be

{(grπ(i)gti , hrπ(i)htimπ(i))}

where π is a permutation and ti are random numbers. The randomisers makes
it hard to extract the permutation. When composing several such computers, a
single honest player will remove the correlation between the original input and the
final output.
A severe danger of this setup is that one of the shufflers might be an active

cheater, for example by discarding some of the ciphertexts and injecting new ones.
This is commonly countered by requiring the shuffler to prove that everything has
been done correctly, called verifiable shuffle.
This has a variation, shuffle-decryption, where each player has a part of the

decryption key. As long as sufficiently many players are honest, the decryption will
be successful, and there will be no correlation between ciphertexts and plaintexts.
Furukawa [11] has demonstrated an efficient protocol for this, although not zero
knowledge.
In this work, the setting is reduced from a mixnet to a single computer, which

is supposed to both shuffle and decrypt verifiably. It can of course be done in two
separate operations, first a shuffle and a proof of its validity, and then a decryption
with a separate proof. However, this may require too much computation to be
practical, and feels unsatisfactory. We would like to find an algorithm that draws
advantage of the fact that we have full knowledge of some of the data. Hopefully,
this will reduce the number of exponentiations needed to compute the proof, and
hence improve the runtime.
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1 Introduction

In 2001, Neff [27] made a shuffling protocol for the special case where all ex-
ponents were known, and used it as a building block to produce a more general
shuffle. Even though we know the decryption key, the original randomisation ex-
ponents will be hard to find. In the choice between specialising a more general
protocol and to generalising a simple one, we choose the former.

Problem 1 (Verifiable Shuffled Decryption). Let P be the prover and V an honest
verifier. The public input is lists {(xi, yi)} = {(grimi)} and {zi}. The private
input to P is a such that h = ga and π such that zi = mπ(i). P is required to give
a zero knowledge proof of knowledge of π.

In addition, the solution should require fewer exponentiations than separate
shuffling and decryption.
Let p and q be primes, and assume that q|p − 1. The cryptography will take

place in an order q subgroup G of Zp. Let g be a generator for G. The number of
ciphertexts will be k.
A main application of this is electronic voting. In the setting of the Norwegian

system [13], a ballot box will collect all votes along with a name tag, so that
a voter can change her mind. Both the auditor and the ballot box sees these
name tags, and could be able to remember the relation between encrypted votes
and identities. After the election, the name tags are stripped, and the list of
ciphertexts is submitted to the tallier, which in turn outputs the individual votes.
In order to avoid the ballot box and the auditor from being able to relate votes

and identities, the tallier should permute the decrypted votes before outputting.
However, the auditor needs to check that the tallier have decrypted correctly. It’s
therefore imperative that the proof of correct decryption is zero knowledge. If we
are able to prove that a set of votes is a permutation of a decryption of a set of
ciphertext, then we have also proved that the decryption must have been done
correctly.
We have aimed for unconditional soundness when possible. First of all, it makes

it easier to communicate the security to the general public, e.g. “it can’t be done”
vs. “we believe nobody are able to do it”. Also, it may allow somewhat looser
bounds in other parts of a system. However, it may result in weaker performance,
since fewer computational techniques typically will be available. We have not
attempted to achieve stronger privacy than computational zero knowledge, since
the weakest link nonetheless will be the ElGamal encryption.

1.2 Our contribution
We present five ways to solve the above problem. The first is mostly an illustration
that it can be done by applying the original idea while achieving unconditional
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1.3 Outline of the thesis

soundness. The next protocol is a direct adaptation of a shuffle-decryption for
mixnets, and is modified to achieve unconditional soundness.
Next we have two variants of the same idea, with computational and uncondi-

tionally soundness respectively, the latter suffering from somewhat worse efficiency.
The final successful protocol only achieves computational soundness, but may have
good efficiency, depending on the implementation of the underlying primitive.
Proofs of all properties are included, although some of the protocols rely heavily

on other primitives. In those cases, we use the results from the original articles
without proof.

1.3 Outline of the thesis
The thesis consists of three main parts. In the first, we study the general topic.
Next, we study and adapt specific protocols. Finally, we discuss our results.

Chapter 2 This is an introduction to some of the notions and small results that
will be needed later on, the computational model, zero knowledge proofs and
arguments, and variants thereof. We also prove the forking lemma.

Chapter 3 This chapter discusses the general idea of proving a shuffle using roots
of polynomials, and adapts the work of Neff and Groth in order to solve the
problem in four ways.

Chapter 4 Here we present shuffles using permutation matrices, and discuss some
of the work of Furukawa, Peng-Dawson-Bao and Terelius-Wikström. We
note that Furukawa’s shuffle-decryption is readily available, and succeed in
using a vital tool from [33] to create a working protocol.

Chapter 5 This chapter summarises and compares the results from the previous
chapters, and gives an informal discussion of possible limitations.

1.4 Acknowledgements
I am very grateful to my supervisor Kristian Gjøsteen for his excellent guidance
and mild encouragement. Thank you!
Next, my fellow students. By doing such an incredible job with your projects,

you have made me put in a little more effort myself – apart from during the card
breaks, naturally1.

1There has been a lot of shuffling involved, at least.
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For my family, thanks for making me able to even take on such a work, in
particular thanks to Håvard for helping out with the proofreading. Finally, I
should really thank Ragnhild for the support and for being so patient with me.
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2 Theory
This chapter gives an introduction to the background necessary and relevant for
the problem. Much of the theory on commitments, indistinguishability and zero
knowledge is based on Damgård and Nielsens instructive text [9].
We assume that the reader is familiar with algorithms. Whenever we use the

word “player”, it will mean a computer performing an algorithm and possibly
submitting data to another computer. The computational model is described
more formally later.

2.1 Indistinguishability
Most players and algorithms in this work will be probabilistic, so the output will
be drawn from a probability distribution. Much of the security analysis is based
on comparisons of distributions, and so we will need precise notions for such com-
parisons.
Let µ1 and µ2 be discrete probability distributions over the same set S, and

denote the distributions with X and Y . We then define the statistical distance as

d(X, Y ) = 1
2
∑
s∈S
|µ1(s)− µ2(s)| .

It is clear that d is a metric.
Algorithms and players will typically be challenged to distinguish two distribu-

tions. That makes it sensible to have notions of success probability in distinguish-
ing the distribution X0 from X1. An algorithm recieves input x selected at random
from Xb where b ∈ {0, 1}, and must output the correct b.

SuccP (A) = Pr[A(x) = b | b r←− {0, 1}, x←− Xb]

A player with a low success probability can easily be converted to one with high
success probability by simply switching the reply. Therefore, we want to know how
much a player’s success rate deviates from simply flipping a coin, the advantage.

AdvP (A) =
∣∣∣∣SuccP (A)− 1

2

∣∣∣∣
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2 Theory

A is subject to a time and resource bound t. If AdvP (A) is greater than some
small ε, then we say that A is an ε-distinguisher for the problem P .
We say that two distributions are indistinguishable if it is hard to distinguish

them. We have three levels of indistingishability, describing how hard the problem
is. Let U and V be distributions.

Perfectly indistinguishable, U ∼p V . U and V is the same probability space.

Statistically ε-indistinguishable, U ∼s V . d(U, V ) < ε.

Computationally (t, ε)-indistinguishable, U ∼c V . No (t, ε)-distinguisher has an
advantage greater than ε over the problem in time t.

At one point, this needs to be connected to the real world to have any practical
use. This is often done by defining what we mean by a negligible probability,
in terms of some security parameter. We will instead state how good a distin-
guisher is, and leave it to the application to decide if the probability is negligible.
Equivalently, we can state how hard we believe a problem to be.
If we had defined negligibility and thus indistinguishability as described above,

then we would have been able to say that indistinguishability is transitive. Gjøs-
teen, Petrides and Steine gives a sufficient although somewhat weaker transitivity
theorem in [14]. The formulation below is adapted to this setting.

Theorem 2.1. If U and V are ε-indistinguishable, and V andW are ε′-indistinguishable,
then U and W are ε+ ε′-indistinguishable.

The proof is a telescope and triangle inequality argument. The result will be
used to do honest verifier zero knowledge arguments in steps.

Example 2.2 (Decisional Diffie-Hellman). We will often use the Decisional Diffie-
Hellman problem (DDH) in the security analysis. Let G be a group with generator
g. We then have two distributions

D =
{

(ga, gb, gab)
}

D′ =
{

(ga, gb, gc) | c random
}
,

and we can then construct the distinguishing problem (D,D′, G × G × G). This
problem is believed to be (t, ε)-hard in certain groups.

6



2.2 Interactive Turing Machines

2.2 Interactive Turing Machines
We use probabilistic and interactive Turing machines as the computational frame-
work in this thesis. Probabilistic refers to the property that the next state and
action is selected from available transitions subject to a probability distribution.
This formal definition is due to [16]:

Definition 2.3 (Interactive Turing Machine). An interactive Turing machine
(ITM) is a Turing machine equipped with a read-only input tape, a work tape,
a random tape, one read-only communication tape, and one write-only communi-
cation tape. The random tape contains an infinite sequence of random bits, and
can be scanned only from left to right. We say that an interactive Turing machine
flips a coin, meaning that it reads the next bit in its own random tape.

2.3 Zero Knowledge
The main tool of this thesis is the concept of zero knowledge proofs. It allows
a prover P to convince a verifier V of knowledge of a value or correctness of a
computation, but without revealing any secrets to the verifier, or anybody else.
Applications include authentication, proving knowledge of the contents of a cipher-
text, correctness of decryption, and so on. This will soon be made more precise.
Zero knowledge proofs were first introduced by Goldwasser, Micali and Rack-

off [15] in 1985. During just a few years, several authors looked into how the
concept could be used in cryptography [10, 32], and made non-interactive [10, 3, 5].

2.3.1 Commitments
The notion of commitments is a central building block for cryptography in general
and zero knowledge proofs in particular. A commitment has two properties:

• it is binding, meaning that it should be hard for P to change the value at a
later stage, and

• it is hiding, meaning that it must be hard for V to extract any additional
information about the commitment.

A secure commitment scheme is always dependent on randomness, since a pow-
erful opponent could simply compute any commitment, and check for matches.
In the following discussion, we consider commitments to bitstrings of length m.
Assume that the random number is a bit string of length n, then we can define

commit : {0, 1}m × {0, 1}n → {0, 1}k

7
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An opening to commitment c is a tuple (m, r) such that c = commit(m, r).
These properties can be either unconditional or computational, but at most one

property can be unconditional at any time.

Unconditional binding and computational hiding This means that not even a
computationally unbounded prover will be able to change his mind, i.e. if
P∗ committed tom using r, then there is no (m′, s) such that commit(m, r) =
commit(m′, s).
For it to be computationally hidden, we need that the distribution of com-
mitments to m is computationally indistinguishable from the distribution of
commitments to m′.

Computational binding and unconditional hiding Let A be any probabilistic al-
gorithm with resource bound t that outputs a two tuples (m, r) and (m′, s).
Then we demand that

Pr [commit(m, r) = commit(m′, s)] < ε

Unconditional hiding means that the distribution of commitments to m is
perfectly indistinguishable from the distribution of commitments tom′. Note
that this means that there for any valid opening (b, r) exists another valid
opening (m′, s).

From the last remark, we get that it is impossible for a commitment scheme to be
both unconditionally binding and hiding, since unconditional binding implies that
no collision should exists, while unconditional hiding means that any pair should
have a collision that opens to a different value.

Example 2.4 (Pedersen commitments, [29]). Let g and h be generators of G. To
commit to m, select a random r, and compute

commit(m, r) = gmhr.

The commitment is opened by revealing m and r. This scheme is perfectly hiding
and computationally binding. The commitment is uniformly distributed in G as
long as r is chosen uniformly in Zq. In order to prove that it is computationally
binding, assume that there exist two openings (m, r) and (m′, s). We then compute
the logarithm of h as

logg h = r − s
m′ −m

,

which is assumed to be hard.

8



2.3 Zero Knowledge

Example 2.5 (ElGamal commitments). As above, let g and h = ga be generators
of G, and assume that logg h is unknown. One commits by computing (gr, gmhr),
and opens by revealing m and r. This scheme is computationally hiding and
perfectly binding. It is easy to show the binding property. Assume that (x, y) =
(gr, gmhr), and let (m′, s) be a different opening. Then gr = gs, so r = s, and so
m+ ar = m′ + as, so m = m′.
The hiding property is more complicated to prove. The strategy is to make a

reduction to DDH, and show that distinguishing commitments to two different
messages is at least as hard as the DDH problem.

2.3.2 Proofs and arguments
We need to formalise the notion of a conversation between two ITMs.
Definition 2.6. An interactive proof system (P ,V) for a set S is a two party game
between a probabilistic polynomial time verifier V and an unbounded prover P ,
satisfying
Completeness For every x ∈ S, the verifier accepts after interacting with P on

public input x and potentially auxiliary, private input y to P .

Soundness If x 6∈ S, then for any P∗, the verifier accepts with probability at most
ε after interacting with P∗ on public input x.

We use the term argument when the prover is only assumed to be probabilistic
polynomial time, and we will use the word protocol to denote either argument
or proof system. Note that an argument without auxiliary input to the prover
is somewhat meaningless, since the verifier then could do everything the prover
could. The auxiliary input is usually called a witness.
In our case, x ∈ S will mean that a claim is true, for instance that the shuffle

and decryption was done correctly. We also want to prevent V from collecting any
information from the protocol.
Definition 2.7. The protocol (P ,V) is zero knowledge if for any probabilistic
polynomial time V∗ there is a simulatorM running in expected probabilistic poly-
nomial time such thatM∼c (P ,V∗) on public input x.
Sometimes we can trust the verifier to send honest challenges, which gives us a

weaker definition that turns out to be very useful.
Definition 2.8. The protocol (P ,V) is honest verifier zero knowledge if there
exists a probabilistic polynomial time simulatorM running on public input such
that M ∼c (P ,V).
The definition can be strengthened by requiring the indistinguishability to be

either statistical or perfect.
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2.3.3 Σ-protocols
There is a special flavour of zero knowledge arguments called Σ-protocols.

Definition 2.9. Let R be a relation, and let (x,w) ∈ R. Then (P ,V) is a Σ-
protocol if it is of a three round form with commitment α, challenge e and response
z, where x is the public input and w is the private input to P .

Completeness Whenever (x,w) ∈ R, then V must accept.

Special soundness For any two accepting conversations (α, e, z) and (α, e′, z′)
with e 6= e′, then one can efficiently compute w such that (x,w) ∈ R.

Special HVZK There exists a polynomial-time simulatorM , which on input x and
e outputs an accepting conversation of the form (α, e, z), indistinguishable
from a real conversation (P, V ).

The special soundness condition is a special case of proof of knowledge, a notion
that will be introduced shortly. A particularly nice property of Σ-protocols is that
a such can be transformed into a true zero knowledge protocol by using a suitable
commitment scheme and adding one more round.

Example 2.10 (Graph isomorphism). This protocol must be repeated a number
of times with distinct commitments in order to be secure. It is a zero knowledge
proof that the prover knows an isomorphism between two graphs, and hence that
they are isomorphic.

Public input: Graphs G0 and G1.
Private input to P : σ such that σ : G0 → G1 is an isomorphism

Prover Verifier
Pick random iso τ from G1
Compute H = τ(G1) H

b b
r←− {0, 1}

f ←− τ ◦ σ1−b f Gb ' H by f?

Figure 2.1: Isomorphism of graphs.

It is clear that this protocol is complete. In order to cheat, P∗ needs to guess the
challenge in advance, and compute H isomorphic to the correct graph. Clearly,
this has probability 1

2 , so by increasing the number of independent rounds, we can
reach any soundness bound.
This is zero knowledge since it is hard to factor f correctly when none of the

factors are known. We make a simulator by reading b, and then publishing a
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2.4 Knowledge

random isomorphism f from Gb to a graph H. This is perfect special honest
verifier zero knowledge, since H is selected from the same distribution in both the
real and simulated protocol, and hence f is distributed equally.

2.4 Knowledge
We begin with a definition that in some sense is stronger than the soundness
requirement.

Definition 2.11 (Proof of knowledge). Let P∗ be any polynomial time interactive
Turing machine, which on public input, time T and ` moves with V makes V accept
with probability ε. The protocol is a proof of knowledge if there exists a simulator
S depending on P∗ with public input such that S outputs the private input to P
in time f(T ) and chance of success g(ε), where f and g are nice functions.

Proof of knowledge implies soundness if there exists a witness, since a proof of
knowledge of a witness implies its existence. However, proving that an argument
is a proof of knowledge sometimes requires a weaker reduction than a soundness
proof.
The notion of “nice” is somewhat undefined. We require that the work required

should be feasible, and that the chance of success not should be substantially worse
that ε.
The forking lemma is a useful tool for proving that a protocol is sound and a

proof of knowledge. It was first introduced by Pointcheval and Stern in 1996 [31]
and later generalised by Bellare and Neven in 2006 [2]. This formulation and the
proof is by Bellare and Neven.
Fix an integer n ≥ 1 and a set H of size h ≥ 2. Let A be a randomised algorithm

that on input x, h1, . . . , hn returns a pair, the first element of which is an integer in
the range 0, . . . , n and the second element of which we refer to as a side output. Let
IG be a randomised algorithm that we call the input generator. The accepting
probability of A, denoted acc, is defined as the probability that J ≥ 1 in the
experiment

x
r←− IG h1, . . . , hn

r←− H (J, σ)←− A(x, h1, . . . , hn)

The forking algorithm FA associated to A is the randomised algorithm that takes
input x and proceeds as follows:

1. Pick coins ρ for A at random

2. h1, . . . , hn
r←− H

3. (I, σ)←− A(x, h1, . . . , hn; ρ)

11
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4. if I = 0 then return (0, ε, ε)

5. h′I , . . . , h′n
r←− H

6. (I ′, σ′)←− A(x, h1, . . . , hI−1, h
′
I , . . . , h

′
n)

7. if I = I ′ and hI 6= h′I , then return (1, σ, σ′)

8. else, return (0, ε, ε)

Lemma 2.12 (The forking lemma, (Lemma 1, [2])). Let IG and FA be as above,
and let frk be the probability that the above algorithm is successful. Then

frk = Pr
[
b = 1 | x r←− IG, (b, σ, σ′) r←− FA(x)

]
≥ acc ·

(acc
n
− 1
h

)
.

Proof. First, we introduce two new probabilities. Fix x ←− IG, and let acc(x) be
the probability that J ≥ 1 in the experiment

h1, . . . , hn
r←− H (J, σ)←− A(x, h1, . . . , hn)

and let frk(x) be the probability that b = 1 when FA is run on x. Now acc and
frk are the expected values of acc(x) and frk(x) over all x. We claim that the
inequality holds for every x:

frk(x) ≥ acc(x) ·
(

acc(x)
n
− 1
h

)
. (2.1)

Let R be the set of all coins, and for each i, define Xi : R×H i−1 → [0, 1] as

Xi(ρ, h1, . . . , hi−1) = Pr
[
J = i|hi, . . . , hn

r←− H, (J, σ)←− A(x, h1, . . . , hn)
]

Now Xi can be regarded as a uniform random variable over its domain. Let I and
I ′ be the return codes as in the forking algorithm. We then have

Pr [I = I ′ and I ≥ 1] =
n∑
i=1

Pr [I ′ = i | I = i] · Pr [I = i]

=
n∑
i=1

1
|R| |H|i−1

∑
ρ,h1,...,hi−1

Xi(ρ, h1, . . . hi−1)2

=
n∑
i=1

E
[
X2
i

]
≥

n∑
i=

(E [Xi])2

≥ 1
n

(
n∑
i=1

E [Xi]
)2

= acc(x)2

n
,
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2.4 Knowledge

which proves the claim.
Next, we have

frk(x) = Pr [I = I ′ and I ≥ 1 and hI 6= h′I ]
≥ Pr [I = I ′ and I ≥ 1]− Pr [I ≥ 1 and hI = h′I ]

≥ acc(x)2

n
− Pr [I ≥ 1] · Pr [hI = h′I ]

= acc(x)2

n
− acc(x)

h

and we reach the conclusion by computing the expectation:

frk = E (frk(x)) ≥ E
(

acc(x)2

n
− acc(x)

h

)
= E (acc(x)2)

n
− E (acc(x))

h

≥ E (acc(x))2

n
− E (acc(x))

h
= acc2

n
− acc

h

When we use this lemma later, we will refer to it as saving a state and replaying
from it. At first, the lemma does not seem to allow this use, but whenever we refer
to the forking lemma, we will in reality refer to the idea of the proof.
We now introduce a new assumption, namely that all parties share a common

reference string. Then we have a counterpart to proof of knowledge. In [19], this
is called witness-extended emulation, and treats both P∗ and V as blackboxes.

Definition 2.13 (Witness-extended emulation, (Definition 4, [19])). We say that
the public coin argument (P ,V) has witness-extended emulation if for all deter-
ministic polynomial-time P∗ there exists a polynomial-time emulator E such that
for all non-uniform polynomial time adversaries A and a given common reference
string σ, we have

Pr [A(tr) = 1 | (x, s)←− A(σ); tr←− 〈P∗(σ, x, s), V (σ, x)〉] '
Pr[A(tr) = 1 and tr accepting, then (σ, x, w) ∈ R

| (x, s)←− A(σ); (tr, w)←− E(σ, x)]

where E has access to a transcript oracle 〈P∗(σ, x, s),V(σ, x)〉 that can be rewound
to a particular round and run again with the verifier choosing fresh random coins.

The notable advantage of this is that it can be used to improve proofs of compu-
tational soundness. If the first transcript is non-accepting with probability 1− ε,
we can cancel the whole process, with probability 1 − ε. Given that we want to
gather n transcripts using the same commitments, we would usually need to run
the protocol expected n

ε
times, and the work might be comparable to actually
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computing a discrete logarithm. Instead, we first run it once, and only continue if
it was successful. The expected number of runs is then

(1− ε) · 1 + ε ·
(
n− 1
ε

+ 1
)

= n,

which may be feasible.

2.5 Examples
The following are examples of Σ-protocols, but the presentation is varied to high-
light different aspects.

Example 2.14 (Schnorr). This protocol was introduced by Schnorr [32] in 1989,
and has since become the standard example for zero knowledge protocols. It allows
P to prove that he knows a discrete logarithm without revealing any knowledge
about it.

Public input: G = (g), |G| = q and h.
Private input to P : a such that h = ga.

Prover Verifier
r

r←− Zq
α←− gr α

e e
r←− Zq

z ←− ae+ r z gz
?= αhe

Figure 2.2: Schnorr identification protocol.

This is a Σ-protocol. Completeness is clear by writing out z. Special soundness
holds since if two instances are run with the same initial commitment, then one
can compute a = z−z′

e−e′ . For special HVZK, define the simulator as such:

1. Select z at random.

2. Compute α as gz/he.

3. Output (α, e, z).

It is clear that the distributions of real and simulated transcripts are indistin-
guishable, since it is impossible to decide whether α or z was chosen first.

14
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Public input: G = (g), |G| = q, h, y and z.
Private input to P : x such that h = gx and z = yx

Prover Verifier
s

r←− Zq
(a, b)←− (gs, ys) (a, b)

c c
r←− Zq

r ←− s+ cx r gr
?= ahc

yr
?= bzc

Figure 2.3: Chaum-Pedersen.

Example 2.15 (Chaum-Pedersen). In [7], Chaum and Pedersen demonstrated
how to prove that two discrete logarithms, logg h and logy z, are equal without
revealing the logarithm itself.
It is clear that this protocol is complete. As with Schnorr, this is also a Σ-

protocol. Special soundness is similar to Schnorr, and a simulator proving SHVZK
will pick a random r and compute (a, b) as (gr/hc, yr/zc). Chaum-Pedersen is
unconditionally sound [8], meaning that even an all-powerful cheating prover es-
sentially can do no better than guessing the challenge.
Assume that z = hx+∆ and b = ys+δ. Then, since gr = ahc and yr = bzc, we

have that r = s+ cx and r = s+ δ+ c(x+∆). Combining, we get that δ+ c∆ = 0.
This requires the prover to have guessed c in advance, giving a soundness bound
of 1

q
.

Example 2.16 (Proof of Diffie-Hellman triple). This is a proof to demonstrate
that a given triple (A,B,C) is a Diffie-Hellman triple (ga, gb, gab). The structure
is similar to all three above. The protocol is from [26].

Protocol 1. A group G = (g) of prime order q, and group elements (A,B,C). P
also knows a and b, (A,B,C) = (ga, gb, gab).

1. P selects s r←− Zq and computes (X, Y )←− (gs, Bs). The tuple (X, Y ) is then
sent to V .

2. V selects a random challenge c r←− Zq and sends it to P .

3. P responds by sending r ←− s+ ca to V , who accepts if

gr = XAc and Br = Y Cc

15
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In essence, this is only Chaum-Pedersen to prove that logg A = logB C, but we
note it for further reference.
If we consider ga a commitment, then this is a proof that C is a commitment to

the product of the values committed to in A and B. There exist a similar proof for
Pedersen commitments, and it is not too hard to construct for other commitment
schemes as well [26].

2.6 Non-Interactive Zero Knowledge
We often want to avoid the interactivity of the proofs, while maintaining the
same or even better security. One clear advantage with interactive proofs is that
the proof can be verified again at a later stage, for as we have seen, a defining
property for zero knowledge is that a real transcript should be indistinguishable
from a simulated transcript.
Another advantage is that it leaves the verifier unable to cheat actively – i.e. it

is always an honest verifier. It is easier to design protocols to be HVZK rather
than true ZK. The most well-known technique for making a protocol interactive is
the Fiat-Shamir heuristic, but there has also been later development, such as one
by Groth, Ostrovsky and Sahai [20].

2.6.1 The Random Oracle Model
The random oracle model was formalised by Bellare and Rogaway [3] in 1993.
Previously, many practitioners had used some of the same techniques by letting
hash functions represent an honest third party. Bellare and Rogaway show that
some of these may be justified, but not as a rule of thumb.
A random function is a function H : {0, 1}∗ → {0, 1}n such that the output of

H(x) is selected randomly and independent of all other output.
In the Random Oracle Model, there exist a random oracle with access to such

functions for all n, so that two equal queries always have the same response. All
players can query the same random oracle. In the real application, the oracle is
then exchanged for a cryptographic hash function. The last step is in its nature
heuristic, as no function can be truly random. This implies that any security proof
in the random oracle model may fail to hold in the standard model.

2.6.2 Fiat-Shamir Transformation
The idea of the Fiat-Shamir transformation was first used by Fiat and Shamir [10]
in 1986, and later formalised in [3]. Informally, the idea is that since the verifier
only asks random questions, all we really require is the unpredictability of the
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challenges. Hence, that task can be done by a random oracle, which will give
random replies to queries containing the commitment. The random oracle is then
modelled by a family of hash functions.
The following formulation is due to [4].

Definition 2.17. Let Σ = (PΣ,VΣ) be a Σ-protocol, and let H be a hash funtion.
The weak Fiat-Shamir transformation of Σ is the proof system wFS(Σ) = (P ,V)
defined as follows:

P(x,w) Run PΣ(x,w) to obtain a commitment α. Compute e←− H(α), and input
e to PΣ. Get a response z, and output (e, z).

V(x, e, z) Compute α from e and z, then run VΣ(α, e, z).

The strong Fiat-Shamir transformation sFS(Σ) of Σ is obtained as above with
the difference that e is computed as e←− H(x, α).

This idea can be extended to other protocols than Σ-protocols. The unpre-
dictability is maintained by including even more data in the hashes.
The Fiat-Shamir heuristic has received much criticism [4, 22], and it has been

demonstrated that provably secure Σ-protocols can become insecure with any hash
function used in the transformation [22]. Still, Fiat-Shamir remains in use, due to
its efficiency and strong practical security record.
Some of the latest development includes a work by Groth, Ostrovsky and Sahai.

In [21], they develop a perfect and universally composable NIZK argument based
on commitment schemes. In contrast to Fiat-Shamir, this approach is proven
secure in the common reference string model.

2.7 Exponentiation
In order for a cryptographic system to be usable, we need it to be practical as well
as secure. Even low-degree polynomial algorithms may be forbiddingly expensive
so we are typically less interested in asymptotic runtime. Instead, we are interested
in what we can expect with reasonable input, so the big-O notation will be too
wide for us. We will rather count the specific number. Exponentiation is typically
the most expensive operation in cryptography, and it is therefore also the most
interesting measure for how time-consuming an algorithm is.
The most important factors are the length of the exponent and the size of the

group. The latter must be large enough to preserve security, hence it cannot be
sacrificed to improve performance. In certain cases, exponents can be chosen short,
when we don’t need the discrete logarithm problem to be hard. In our case, a short
exponent will be of length `, and can be between 128 and 256 bit, while a long
exponent is about 2000 bit.
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2.7.1 Precomputation

Precomputation is a very efficient technique when the base is known in advance [17],
and the idea is used in numerous algorithms. One such algorithm is [24], where
the authors demonstrate that a computation with a 512 bit exponent can be done
in at most 64 multiplications. To comparison, the square-and-multiply algorithm
will use 1022 multiplications in worst-case.
The idea is to take an exponent x of length n and split it into h blocks of size

a = dn
h
e. Each block is then divided into another v blocks of size b = da

v
e. We

call h × v the configuration of the algorithm. Let g0 = g and for each 0 ≤ i ≤ h,
compute gi = g2a

i−1 = g2ia .
We can then compute

gx =
v−1∏
j=0

h−1∏
i=0

(
g2jb
i

)xi,j

where xi,j is a block of x. Lim-Lee changes the expression further in order to
optimise the execution [24].
The speed-up comes at a cost, as it requires that a number of exponentiations

are computed in advance, and hence storage. Based on formulas given in [24],
we can fill in Table 2.1. For reference, the expected number of multiplications is
3070.5, with worst-case being 4094 for a 2048 bit exponent, when using square-
and-multiply.
The size of the precomputation should be limited so that it can fit in the CPU

cache. Level 2 cache can typically be at most a couple of megabytes, while newer
processors also have a level 3 cache with up to 20 MB capacity.

Configuration Precomp. values Storage Average mult. Worst-case
3× 1 7 1.75 kB 1278.6 1364
4× 4 60 15 kB 606.0 638
6× 3 189 47 kB 448.7 454
8× 7 1 785 446 kB 290.0 291
13× 9 73 719 18 MB 174.0 174
15× 13 425 971 104 MB 146.0 146

Table 2.1: Selected parameters for 2048 bit exponents. The notation is as in [24].

For later reference, we can achieve an efficient speed-up of at least 80 % using
precomputation over ordinary square-and-multiply.
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2.7.2 Multi-exponentiation
The final technique we mention is multi-exponentiation. This is developed to
compute the product of exponents

n−1∏
i=0

geii

more efficiently than ordinary square-and-multiply, and then multiplication. Ac-
cording to an unpublished manuscript of Lim [23], an algorithm based on [6] can
give a 2 to 4 times speed-up compared to square-and-multiply. The idea of the
algorithm is to use sliding windows.
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3 Roots of polynomials
In the introduction, we mentioned that there are two major ideas for shuffling.
One is based on permutation of roots of a polynomial. The fundamental idea in
this chapter is that two polynomials are equal if and only if they always evaluate
to the same. Hence, if two polynomials have the same value at a random point,
then they are with high probability equal.
The idea was introduced by Neff [27, 28], and has in particular been used by

Groth, for instance [18, 19].
In particular, we note the following lemmas.

Lemma 3.1. Let f(x), g(x) ∈ Zq[x] be monic polynominals of degree at most d,
with f 6= g. Then there are at most d − 1 values x1, . . . , xd−1 ∈ Zq for which
f(xi) = g(xi). Furthermore, if t is selected at random from Zq, then

Pr
[
f(t) = g(t) | t r←− Zq

]
≤ d− 1

q

The proof is based on the fact that a polynomial of degree d over a field has at
most d roots.

Lemma 3.2. Let f(x), g(x) ∈ Zq[x] be any two polynomials of degree at most d.
Fix non-zero contants R, γ, δ. Then

Pr
[
f(γt) = Rg(δt) | t r←− Zq

]
≤ d

q

We also note that evaluation of polynomials as product of roots is stable under
permutations. Given a polynomial f over a finite field, with d roots x1, . . . xd and
a permutation π : {1, . . . d} → {1, . . . d}, then

f(x) = a
d∏
i=1

(x− xi) = a
d∏
i=1

(x− xπ(i))

where a is the leading coefficient.
Therefore, we want to come to the situation where the prover can prove that

he has a polynomial which consist of the relevant data, and allow the verifier
to evaluate it at a random point. The lemmas above then guarantee that the
polynomial is correct.
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3 Roots of polynomials

We describe a very simple demonstration of this idea.
Let xi, yi and γ be elements such that yi = γxπ(i). Then γk

∏k
i=1(xi − t) =∏k

i=1(yi−γt). Also, let Xi, Yi and Γ be public commitments to xi, yi and γ respec-
tively.
Now, we construct commitments X̂i and Ŷi such that an evaluation point t,

chosen by the verifier, is included in some way.
Construct (recall Example 2.16) C1 = X̂1, C2 = X̂2C1, . . . , Ck = X̂kCk−1 and

D1, . . . , Dk similarily. Then Ck = ∏k
i=1 X̂i and Dk = ∏k

i=1 Ŷi.
Finally, we produce a proof that Ck and Dk are equal polynomials, and hence

that the roots are equal. Therefore, we have proved that yi = γxπ(i). The prim-
itives provided by Neff and Groth are both more efficient ways of implementing
the above idea.

3.1 Existing verifiable shuffles
This section contains two summaries, one of Neff’s articles [27, 28], and next of
Groth’s improvements.
The first step is to describe a simple k-shuffle protocol. In this setting, the

prover will know everything about the shuffled data. This is unrealistic in most
real applications, but is later used as a building block in the general setting. More
specifically, the protocol works as a commitment to a permutation.
The simple shuffle protocol in turn based on a generalisation of the Chaum-

Pedersen protocol (p. 15), called Iterated Logarithmic Multiplication Proof Protocol
(ILMPP), which is used to prove that given two sets of group elements {Xi} and
{Yi}, then

k∏
i=1

loggXi =
k∏
i=1

logΓ Yi.

The security of the simple k-shuffle is based on unlikely event of picking a zero of
a polynomial at random, and picking two vectors x, y at random such that x·y = 0.
Problem 2 (Simple k-Shuffle Problem, [28]). Suppose that g and Γ, and two se-
quences X1, . . . , Xk, and Y1, . . . , Yk are all publicly known elements of G ⊆ Z∗p.
Suppose also, that the prover P knows γ = logg Γ, xi = loggXi and yi = logg Yi
for all 1 ≤ i ≤ k, where g is some generator of G, but that all these logarithms are
unknown to V .
P is required to convince V that there is some permutation π ∈ Σk with the

property that for all 1 ≤ i ≤ k,
Yi = Xγ

π(i) (3.1)

without revealing any information about xi, yi, γ or π.
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The protocol is quite technical, and is given in Figure 3.1. The main idea is to
set x̂i = xi − t and ŷi = yi − γt. Then the products of all x̂i and ŷi make two
polynomials in t and with the same zeros, since yi = γxπ(i).
The following two sets of equations are used in the protocol,

Θ1 ←− g−θ1ŷ1

Θ2 ←− gθ1x̂2−θ2ŷk

...
Θk ←− gθk−1x̂k−θkŷk

Θk+1 ←− gγθk−θk+1

...
Θ2k ←− gθ2k−1

(3.2)

for the prover, and
X̂c

1 Ŷ
−α1

1 = Θ1

X̂α1
2 Ŷ −α2

2 = Θ2
...

X̂
αk−1
k Ŷ −αkk = Θk

Γαk g−αk+1 = Θk+1
...

Γα2k−1 g−c = Θ2k

(3.3)

for the verifier.
For shorthand, we will refer to the protocol as SS(Yi = Xγ

π(i)).
Neff summarised the properties in a theorem.

Theorem 3.3 (Theorem 1, [28]). The Simple k-Shuffle Proof Protocol satisfies the
following properties:

1. It is a four-move, public coin proof of knowledge for the relationships in
equation (3.1).

2. It is complete.

3. The protocol is sound. If V generates challenges randomly, the unconditional
probability of a forged proof is less than or equal to k/q.

4. It is honest verifier zero knowledge.
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3 Roots of polynomials

Public input: {Xi}, {Yi}, g and Γ.
Private input to P : γ and π such that Γ = gγ and Yi = Xγ

π(i).

Prover Verifier

t t
r←− Zq

x̂i ←− xi − t

ŷi ←− yi − γt

θ1, . . . , θ2k−1
r←− Zq

equations (3.2) Θ1, . . . ,Θ2k

c c
r←− Zq

αi ←− θi + c
i∏

j=1

(
x̂j
ŷj

)
for 1 ≤ i ≤ k

αi ←− θi + cγi−2k for k + 1 ≤ i ≤ 2k − 1

α1, . . . , α2k−1 U ←− g−t

W ←− Γ−t

X̂i ←− XiU

Ŷi ←− YiW

Check equations (3.3)

Figure 3.1: Simple k-Shuffle, SS(Yi = Xγ
π(i)).
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5. The number of exponentiations required to construct the proof is 2k, and the
number of exponentiations required to verify it is 4k + 2.

We note that the 2k exponentiations for the prover is to base g, whereas the 4k
exponentiations for the verifier can be computed using multiexponentiation.
He then proceeds to solve the following problem.

Problem 3 (ElGamal k-Shuffle Problem, [28]). Suppose that two sequences of pairs
(X1, Y1), . . . , (Xk, Yk) (input) and (X̄1, Ȳ1), . . . , (X̄k, Ȳk) (output), as well as en-
cryption parameters, g and h are all publicly known elements of G ⊆ Z∗p. Suppose
also that the prover P knows β1, . . . , βk in Zq and π ∈ Σk such that for all 1 ≤ i ≤ k

(X̄i, Ȳi) = (gβπ(i)Xπ(i), h
βπ(i)Yπ(i)). (3.4)

P is required to convince of V of this fact – that is, convince V of the existence of
βi and π satisfying equation (3.4) – without revealing any information about βi or
π.

Neff’s strategy for solving this problem is to assume that there might be different
reencryption exponents in first and second coordinate, say βi and ξi and prove
that there must exist some permutation such that βi = ξi. This can be proven by
showing that for any random vector s, s · β = s · ξ, where β = (β1, . . . , βk) and
ξ = (ξ1, . . . , ξk). However, since the components of s are permuted using π to form
r, s and r must be kept secret. This is solved using the simple k-shuffle above.
We don’t present the whole protocol here, but give the summarising result.

Theorem 3.4 (Theorem 2, [28]). The ElGamal k-Shuffle Proof Protocol satisfies
the following properties:

1. It is a seven-move, public coin proof of knowledge for the relationship in
equation (3.4).

2. It is complete.

3. The protocol is sound for k < q/2. Specifically, if V generates challenges
randomly, the unconditional probability of a forged proof is less than (2k +
3)/q.

4. Assuming the Diffie-Hellman Decision Problem is hard, it is computationally
zero-knowledge. The number of exponentiations required to construct the
proof is 8k + 4, and the number of exponentiations required to verify it is
12k + 4.
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3.1.1 Groth’s improvements
Groth [19] applies Neff’s main ideas, but is able to move much of the computation
from the exponents into products, saving many exponentiations. In particular,
the shuffle of known contents and the preparations for it is much more efficient in
Groth.
The structure of Groth’s protocol for verifiable shuffle is much the same as Neff’s.

The main building block is a protocol for proving knowledge of a permutation π
such that the shuffle of a known content is correct. The permutation of the real
data is bound to the data used in the shuffle of known content.

Theorem 3.5 (Theorem 1, [19]). The protocol in Figure 3.2 is a 4-move public coin
special honest verifier zero-knowledge argument with witness-extended emulation
for c for being a commitment to a permutation of the messages m1, . . . ,mk. If the
commitment scheme is statistically hiding, then the argument is statistical honest
verifier zero-knowledge. If the commitment scheme is statistically binding, then we
have unconditional soundness, i.e., the protocol is an SHVZK proof.

There are no given soundness bound in the original article. The soundness is
based on P not being able to select an x such that a polynomial evaluates to a
specific point. The probability of guessing such x is by Lemma 3.2 k

2` . Also, P
can guess e, so we get a soundness bound of

k + 1
2` .

3.2 Neff-based solution
In this section we propose a working, although inefficient solution to the Verifiable
Shuffled Decryption problem. The protocol is an adaptation and modification
of [28]. As with Neff, the main idea is to use a linear combination to hide the
permutation, and the Simple k-shuffle to prove knowledge of it. The permutation
is bound to the ciphertexts so that only the correct decryption will open the
commitment.
Although too inefficient to be of any practical use, it is included because it

displays the technique well.
Soundness is based on V picking his challenges randomly. Honest verifier zero

knowledge holds if Computational Diffie-Hellman is hard.
Protocol 2. Let 1 ≤ i ≤ k. Both P and V recieve {(xi, yi)} = {(gri , hrimi)} and
{zi} as public input. In addition P knows the decryption key a and a permutation
π. P must convince V that zi = D(xπ(i), yπ(i)) = mπ(i).
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Public input: c,m1, . . . ,mk.
Private input to P : π and r such that c = commit(mπ(1), . . . ,mπ(k); r).

Prover Verifier

x x
r←− {0, 1}`

d1, . . . , dk, rd, r∆, ra
r←− Zq

∆1 ←− d1,∆2, . . . ,∆k−1 ←− Zq,∆k = 0

ai ←−
i∏

j=1
(mπ(j) − x)

cd ←− commit(d1, . . . , dk; rd)
c∆ ←− commit(−∆1d2, . . . ,−∆k−1dk; r∆)
ca ←− commit(∆2 − (mπ(2) − x)∆1 − a1d2, . . . ,

∆k − (mπ(k)− x)∆k−1 − ak−1dk; ra)
cd, c∆, ca

e e
r←− {0, 1}`

fi ←− emπ(i) + di

z ←− er + rd

f∆i
←− e(∆i+1 − (mπ(i+1) − x)∆i + aidi+1)
−∆idi+1

z∆ ←− era + r∆

f1, . . . , fn, z, f∆1 , . . . , f∆k−1 , z∆

Check group membership

cecd
?= commit(f1, . . . , fn; z)

ceac∆
?= commit(f∆1 , . . . , f∆k−1 ; z∆)

F1 ←− f1 − ex
eFi ←− Fi−1(fi − ex) + f∆i−1

Fk
?= e

k∏
i=1

(mi − x)

Figure 3.2: Shuffle of known content, due to [19].
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1. For each i, P selects ai, ui and wi at random from Zq. He also selects a
random γ ←− Zq, and computes

Λ1 ←−
k∏
i=1

xuii (3.5)

Λ2 ←−
k∏
i=1

z−wii yuii (3.6)

Γ←− gγ

Ai ←− gai

Ci ←− Γaπ(i)

Ui ←− gui

Wi ←− Γwi

P sends Λ1,Λ2, {Ai}, {Ci}, {Ui}, {Wi} and Γ to V .

2. For each i, V selects small ρi at random from Zq, computes

Bi ←− gρiU−1
i

and sends {ρi} to V .

3. P computes

bi ←− ρi − ui
σi ←− wi + bπ(i)

He also computes di ←− γbπ(i) and Di ←− gdi = Bγ
π(i). P then sends Di to V .

4. V selects a small random λ. He sends λ to P , and computes

Ri ←− AiB
λ
i

Si ←− CiD
λ
i

5. P computes ri ←− ai + λbi and si ←− aπ(i) + λbπ(i). He then sends {σi} to the
verifier.

6. V computes

Φ1 ←−
k∏
i=1

x−ρii

Φ2 ←−
k∏
i=1

zσii y
−ρi
i

28



3.2 Neff-based solution

7. P and V execute the Chaum-Pedersen protocol to prove that

logg h = logΦ1Λ1 Φ2Λ2

and the Simple k-shuffle to prove that

Si = Rγ
π(i)

8. V accepts if he accepts the proofs in the previous step and if

Γσi = WiDi

for all i.

The properties of this protocol are given through the following propositions.

Proposition 3.6 (Completeness). Protocol 2 is complete.

Proof. Both Chaum-Pedersen and the Simple k-shuffle are complete. Complete-
ness of the whole protocol is clear from the following computation

Φ2Λ2 =
k∏
i=1

zσii y
−ρi
i z−wii yuii =

k∏
i=1

m
wi+ρπ(i)−uπ(i)−wi
π(i) (hrimi)−ρi+ui

=
k∏
i=1

mρi−ui
i m−ρi+uii (gari)−ρi+ui =

k∏
i=1

xa(−ρi+ui)

= (Φ1Λ1)a

Proposition 3.7 (Soundness). Protocol 2 is unconditionally sound.

Proof. Recall that both the Simple k-shuffle and the Chaum-Pedersen protocol
are unconditionally sound, with probability k

q
and 1

2` . Assume that P∗ cheats,
so that for no permutation τ , zi = mτ(i). This means that P∗ can do anything
from replacing the whole set of ciphertexts, to just modifying a few. Furthermore,
assume that the protocol has been accepted. Especially, this means that

Γσi = WiDi for all i (3.7)
logg h = logΦ1Λ1 Φ2Λ2 (3.8)

Si = Rγ
π(i) for a permutation π (3.9)

The discrete log in (3.8) is known to be a, and the γ in (3.9) is known to be logg Γ
by the input to the Simple k-shuffle. Also, there must exist values {ai}, {ci}, {ui}
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3 Roots of polynomials

Public input: {(xi, yi) = (gri , hrimi)} and {zi}.
Private input to P : π such that zi = mπ(i) and a such that h = ga.

Prover Verifier

γ
r←− Zq Γ←− gγ

ui
r←− Zq Ui ←− gui

wi
r←− Zq Wi ←− Γwi

ai
r←− Zq Ai ←− gai

Ci ←− Γaπ(i)

Λ1 ←−
k∏
i=1

xuii

Λ2 ←−
k∏
i=1

z−wii yuii

Λ1,Λ2, {Ai}, {Ci}, {Ui}, {Wi},Γ ρi
r←− {0, 1}`

Bi ←− gρiU−1
i{ρi}

bi ←− ρi − ui
σi ←− wi + bπ(i)

Di ←− Γbπ(i)

{Di} λ
r←− {0, 1}`

Ri ←− AiB
λ
i

Si ←− CiD
λ
iλ

ri ←− ai + λbi

si ←− aπ(i) + λbπ(i)

{σi} Φ1 ←−
k∏
i=1

x−ρii

Φ2 ←−
k∏
i=1

zσii y
−ρi
i

Γσi ?= WiDi

CP(logg h = logΦ1Λ1 Φ2Λ2)
SS(Si = Rγ

π(i))

Figure 3.3: Protocol 2.
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3.2 Neff-based solution

and {wi} such that
Ai = gai

Bi = gbi

Ci = Γci

Di = Γdi

Ui = gui

Wi = Γwi .
Also,

si = rπ(i)

ri = ai + λbi

si = ci + λdi

bi = ρi − ui
σi = wi + di.

Since λ is selected at random after the others have been chosen, ci = aπ(i) and
di = bπ(i) holds with probability 1− 2−`. Therefore, σi = wi + ρπ(i) − uπ(i).
We can insert this into (3.8).(

Λ1

k∏
i=1

x−ρii

)a
= Λa

1

k∏
i=1

x−aρii

= Λ2

k∏
i=1

z
wi+ρπ(i)−uπ(i)
i y−ρii

= Λ2

k∏
i=1

zwii z
ρπ(i)
i z

−uπ(i)
i x−aρii m−ρii

Let β = ∏k
i=1 z

wi
i z
−uπ(i)
i . We can then write

Λa
1Λ−1

2 β−1 =
k∏
i=1

z
ρπ(i)
i m−ρii

The left side of the equation as well as all zi andmi are fixed after step 1, so we can
consider it as a constant. A cheating prover must therefore select zi in advance
such that the random linear combination on the right side equals the constant.
The unconditional probability for this is 1

q
, so in total we have a soundness bound

of
k

q
+ 1
q

+ 2
2` <

k + 3
2` .

Proposition 3.8 (Zero knowledge). Protocol 2 is honest verifier zero knowledge.
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3 Roots of polynomials

Proof. We describe simulators that output valid transcripts. The final simulator
is only given access to the public input. We then proceed to prove that the all the
simulated transcripts are indistinguishable from a real transcript.
The simulators described below are cumulative: Unless stated otherwise, they

will incorporate the changes from the previous simulators.

Simulator I Simulate the transcripts of Chaum-Pedersen and the Simple k-shuffle.

Simulator II Choose {σi} at random, and compute Di ←− Γρπ(i)−ui , Wi ←− ΓσiD−1
i .

Simulator III Choose Λ1 at random.

Simulator IV Choose Λ2 at random.

Simulator V Use a random permutation τ in place of π for {Ci} and {Di}.

Simulator V will not use any of the secret input, and all checks will hold, due
to the construction of Wi and Di, and the simulation of the Chaum-Pedersen and
Simple k-shuffle protocols. The transcripts are given in Table 3.1.
The result follows from the following chain of claims, due to transitivity of

indistinguishability.
Claim 3.9. The distribution of real transcripts is indistinguishable from the dis-
tribution of Simulator I transcripts.

Proof. Both Chaum-Pedersen and the Simple k-shuffle are honest verifier zero
knowledge.

Claim 3.10. The distribution of Simulator I transcripts is indistinguishable from
the distribution of Simulator II transcripts.

Proof. The only difference is which of wi and σi is random, and which is computed
using the other.

Claim 3.11. The distribution of Simulator II transcripts is indistinguishable from
the distribution of Simulator III transcripts.

Proof. It is clear that in order to distinguish, an adversary needs to decide whether
Λ1 and Λ2 are well-formed or random.
We show that distinguishing real and simulated Λ1 is at least as hard as DDH.

Recall from the ElGamal scheme that xi = gri for some random ri. Then we have
two distributions

IP =
{(
gr1 , . . . , grk , gu1 , . . . , guk , g

∑k

i=1 riui

)}
IP ′ =

{(
gr1 , . . . , grk , gu1 , . . . , guk , gR

)
|R random

}
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3 Roots of polynomials

where the last element of IP is equal to a real Λ1. The exponent of the last
element is the inner product of the vectors created from the exponents. We may
call this problem Decision Inner Product (DIP).
Now assume that A is an adversary with AdvDIP (A) = ε. We define B such:

Given two Diffie-Hellman triples (A,B,C) and (A,B,C ′), pick {r2, . . . , rk} and
{u2, . . . , uk} at random, form two 2k + 1 tuples as

(A, gr2 , . . . , grk , B, gu2 , . . . , guk , Cg
∑k

i=2 riui)

(A, gr2 , . . . , grk , B, gu2 , . . . , guk , C ′g
∑k

i=2 riui)

and submit these to A. He will then respond with a bit b ∈ {0, 1}, which B uses
as his answer. It is clear that AdvDDH(B) = ε, and so B is successful if and only
if A is successful.

Claim 3.12. The distribution of Simulator III transcripts is indistinguishable from
the distribution of Simulator IV transcripts.

Proof. We have

Λ2 =
k∏
i=1

zwii y
−ui
i =

∏
mwi
π(i)h

−uirimui
i

=
∏
m
σi−ρπ(i)
π(i) x−uiai = Λa

1
∏
m
σi−ρπ(i)
π(i) .

Hence, loosely speaking, if Λa
1 looks random, Λ2 will too. More precisely, define

two distributions as follows

D = {(g, ga,Λ1,Λa
1)}

D′ = {(g, ga,Λ1, r) | r random group element}

Since Λ1 is a group element, it is equal to gβ for some β ∈ Zq. It is then clear that
the above problem is exactly DDH, which is assumed to be hard in G.

Claim 3.13. The distribution of Simulator IV transcripts is indistinguishable from
the distribution of Simulator V transcripts.

Proof. The only change is that we use a random permutation. The change only
alters {Ci} and {Di}, since the rest of the protocol is simulated, and in particular
independent of π. Equation (3.7) still holds after the alteration.
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3.3 Groth-based solution

The number of exponentiations for P is 11k and for V 9k, plus a low number of
single exponentiations. Most of the exponentiations may be computed quicker.
In order to get the number of exponentiations, note that P needs to compute

Φ1 in order to execute the Chaum-Pedersen protocol, as well as the cost for the
Simple k-shuffle.
For P , 7k of the exponentiations can be computed with base g, and we may

then employ precomputation techniques to reduce the cost with a factor 0.2, see
Chapter 2.7. Next, we can use multiexponentiation to compute Λ1 and Λ2 (3k
exponentiations), and so we can gain at least a double speed-up here as well,
compared to square-and-multiply. This also applies to the verifier’s computation
in the Simple k-shuffle (2k exponentiations).
Finally, the verifier should choose ρi and λ small. This will reduce the cost of

computing Bi, Φ1, Φ2, Ri and Si significantly.
We summarise this discussion in a proposition.

Proposition 3.14. The exponentiation cost for P is 7c1k + 3c2k + c3k ' 3.0k,
where c1 ' 0.2 (Lim-Lee-exponentiation), c2 < 0.5 (multi-exponentiation) and
c3 ' 0.1 (short exponents). The exponentiation cost for V is 5c2k+5c3k+k ' 4.0k.

3.3 Groth-based solution
This idea is largely following the same lines at the solution based on Neff’s articles.
However, Groth [19] has improved substantially on Neff’s results, which gives us
better runtimes.
Another advantage is the possibility to use different commitment schemes to

get different properties for the protocol. We will use one that is unconditionally
binding, so that we will end up with an unconditionally sound proof. The following
commitment scheme is described in [19].
Let p and q be as before, and let g be a generator for G, the order q subgroup

of Z∗p. Select g1, . . . gN and h at random from G, where N is larger than the
number of messages we would like to commit to in one batch. In practice, we may
want to select exponents at random instead of group elements, so that we may
use Lim-Lee exponentiation with respect to base g. Since the following scheme is
computationally hiding and statistically binding, it will not be a problem.
To commit to k messages (m1, . . . ,mk), select a random number r from Zq.

Then form the k + 1 tuple (gm1+r
1 , . . . , gmk+r

k , hr).

Protocol 3. Let 1 ≤ i ≤ k. Both P and V recieve {(xi, yi)} = {(gri , hrimi)} and
{zi} as public input. In addition P knows the decryption key a and a permutation
π. P must convince V that zi = D(xπ(i), yπ(i)) = mπ(i).
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3 Roots of polynomials

We require a commitment scheme commit working on the same order q group
as the ElGamal cryptosystem, as well as a commitment scheme commit′ working
over an order Q group. Both schemes will be assumed to be as above.

1. P selects d1, . . . , dk, r and rd at random from Zq and da, rY , dY , r1 and r2
from ZQ. He then computes

c←− commit(π(1), . . . , π(k); r)
cd ←− commit(−d1, . . . ,−dk; rd)
D ←− gda

Y ←− grY
k∏
i=1

zdii

C1 ←− commit′(rY ; r1)
C2 ←− commit′(dY ; r2)

and sends c, cd, D, Y, C1 and C2 to V .

2. The verifier selects coefficients t1, . . . , tk of length ` at random, and sends to
P .

3. The prover now computes fi as tπ(i) + di and

X ←− gdY
(

k∏
i=1

xtii

)da
and sends f1, . . . , fk and X to V .

4. V now selects λ and e of length `e at random, and sends to V .

5. P and V carries out Groth’s shuffle for known contents to prove that P knows
π and a randomiser ρ such that

cλcd commit(f1, . . . , fk; 0) = commit(λπ(1) + tπ(1), . . . λπ(k) + tπ(k); ρ)

6. P computes f ←− ea+ da, fY = erY + dY and er1 + r2, and sends to V .

7. The verifier accepts if and only if all transmitted values are members of their
respective sets or groups and

Y eX
k∏
i=1

xftii y−tiei zfiei = gfY (3.10)

heD = gf (3.11)
Ce

1C2 = commit′(fY ; zY ) (3.12)
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3.3 Groth-based solution

Public input: {(xi, yi) = (gri , hrimi)} and {zi}.
Private input to P : π such that zi = mπ(i) and a such that h = ga.

Prover Verifier

r, rd, d1, . . . , dk
r←− Zq

c←− commit(π(1), . . . , π(k); r)
cd ←− commit(−d1, . . . ,−dk; rd)
da, rY , dY , r1, r2

r←− ZQ
D ←− gda

Y ←− grY
k∏
i=1

z−dii

C1 ←− commit′(rY ; r1)
C2 ←− commit′(dY ; r2)

c, cd, D, Y, C1, C2 ti
r←− {0, 1}`e

{ti}

fi ←− tπ(i) + di

X ←− gdY
(

k∏
i=1

x−tii

)da
{fi}, X λ, e

r←− {0, 1}`e

λ, e

π, ρ s.t. cλcd commit(f1, . . . , fk; 0)
= commit(λπ(i) + tπ(i); ρ)

f ←− ea+ da

fY ←− erY + dY

zY ←− er1 + r2

f, fY , zY

Check group membership

Y eX
k∏
i=1

xftii y−tiei zfiei
?= gfY

heD
?= gf

Ce
1C2

?= commit′(fY ; zY )Figure 3.4: Protocol 3.
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As before, the properties of this protocol are given by the following propositions.

Proposition 3.15 (Completeness). Protocol 3 is complete.

Proof. The shuffle of known content is complete. It is easy to verify that the
remaining equations hold.

Proposition 3.16 (Soundness). Protocol 3 is unconditionally sound.

Proof. Since the protocol in Figure 3.2 is unconditionally sound, there exists a
permutation π and a number ρ such that cλcdgfii = g

λπ(i)+tπ(i)+ρ
i . Assume that

c = commit(c1, . . . , ck, r) and cd = commit(−d1, . . . ,−dk, rd) for some ci and di.
Then it must hold that

λci − di + fi + r + rd = λπ(i) + tπ(i) + ρ.

and ρ = r + rd, by the last component of the commitments, so we can cancel on
both sides.
Since λ is chosen by V after all the commitments have been made, it holds except

with probability 2−` that ci = π(i) and fi = tπ(i) + di.
Also, since heD = gf and Ce

1C2 = commit′(fY ; zY ), then there must exist a da
such that f = ae+da, and there must exist rY , dY , r1 and r2 such that fY = erY +dY
and zY = er1 + r2.
We can then rewrite equation (3.10) into two parts: One that depends on the

exponent e, and one that doesn’t.

1 = g−fY Y eX
k∏
i=1

xftii y−tiei zfiei

= g−erY −dY Y eX
k∏
i=1

x
(ae+da)ti
i y−tiei z

(tπ(i)+di)e
i

= g−erY −dY Y eX
k∏
i=1

x
(ae+da)ti
i (xaimi)−tie z

(tπ(i)+di)e
i

=
(
Y g−rY

k∏
i=1

(
m−1
π(i)zi

)tπ(i)
zdii

)e
Xg−dY

(
k∏
i=1

xtii

)da

All other values above are fixed when e is chosen, so both parts must be 1. The
part that doesn’t depend on e shows that X is well-formed.
Since e is arbitrary, we must with probability 1− 2−` have

Y g−rY
k∏
i=1

(
m−1
π(i)zi

)tπ(i)
zdii = 1

38



3.3 Groth-based solution

This again splits into two parts, where one is dependent of {ti}, while the other
is fixed after the first round. P must then have guessed {ti} such that a special
group element was hit, with probability 1

q
.

Y g−rY
k∏
i=1

zdii = 1

k∏
i=1

(
m−1
π(i)zi

)tπ(i) = 1

which implies that Y is well-formed, and that zi = mπ(i). The probability of P∗
winning is then at most

k + 1
2` + 2

2` + 1
q
<
k + 4

2` .

Proposition 3.17 (Zero knowledge). Protocol 3 is special honest verifier zero
knowledge.

Proof. We create two simulators, where the second is without access to the prover’s
private input. These are the same simulators as Groth uses to sketch a proof of
Theorem 3 in [19].

Simulator I
1. Simulate the shuffle of known contents.
2. Select f1, . . . , fk, f, fY , zY and X at random.
3. Compute c, cd and C1 as in the real protocol.
4. Compute D, Y and C2 such that all equations hold.

Simulator II
1. Simulate the shuffle of known contents.
2. Select f1, . . . , fk, f, fY , zY at random.
3. Compute c, cd and C1 as commitments to 0.
4. Select Y at random.
5. Compute D, C2 and X such that all equations hold.

The result follows by the following two claims.
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3.4 A better Groth-based solution

Claim 3.18. The transcript of Simulator I is indistinguishable from the real tran-
script.

Proof. The shuffle of known contents is HVZK, so we can safely simulate its tran-
script. Since f, fY and zY are computed based on random values, these distribu-
tions are indistinguishable from random f, fY and zY . Now we choose a random
group element X. If an adversary is able to distinguish a real and random X, he
will also be able to solve DDH. Since f now is random, we can choose D as h−egf ,
and Y and C2 similarly. Hence the distributions of real and forged D, Y, and C2
are indistinguishable.

Claim 3.19. The transcript of Simulator II is indistinguishable from the transcript
of Simulator I.

Proof. Both c and cd can be simulated since the commitment scheme is hiding and
the shuffle is simulated. It is easy to compute a convincing C1.

The above simulators do not depend on the challenges from V , hence we have
special HVZK.

As before, several exponentiations can be done with optimisations.

Proposition 3.20. The exponentiation cost for P is 5c1k+c2k+c3k ' 1.6k, where
c1 ' 0.2 (Lim-Lee exponentiation), c2 < 0.5 (multi-exponentiation) and c3 ' 0.1
(short exponents). The exponentiation cost for V is 2k + c2k + 2c3k ' 2.7k.

Note that the zero knowledge property fails to hold if V knows the logarithms
of the commitment key.
A lighter commitment scheme could occasionally be used to reduce communi-

cation costs. For example, it could be sufficient to only use a computationally
binding scheme for {di}. This is impossible due to the computations later in the
protocol.

3.4 A better Groth-based solution
The solution presented now also builds on Groth’s shuffle of known content, but
with a more direct approach. The idea is that the verifier computes the per-
muted decryption using commitments from the prover, and then compares with
the claimed decryption.
In the first variant, we will use the following commitment scheme. Assume g

is the generator from the ElGamal scheme. Select a basis {x1, . . . , xk} of group
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3 Roots of polynomials

elements. The commitment key is then (g, x1, . . . , xk). In order to commit to a
permutation π on a set {t1, . . . , tk} of integers, one computes

c←− gr
k∏
i=1

x
tπ(i)
i

where r is a random number. This scheme is similar to the one used by [19].
They require that the basis consists of random generators of G. The commitment
scheme is perfectly hiding and computationally binding.
We will use the commitment scheme somewhat off the standard approach,

namely with the two specific keys (g, x1, . . . xk) and (g, y1, . . . , yk) where (xi, yi)
is a ciphertext. We will assume that the cipertexts are random, and that both
components are group members. In particular, this means that the encrypted mes-
sages must be group elements. We denote the variants as commitx and commity
respectively.
Protocol 4. Let 1 ≤ i ≤ k. Both P and V recieve {(xi, yi)} = {(gri , hrimi)} and
{zi} as public input. In addition P knows the decryption key a and a permutation
π. P must convince V that zi = D(xπ(i), yπ(i)) = mπ(i).

1. V selects t1 to tk at random, and sends to P .

2. P selects r0 at random, computes the following commitments

X0 ←− commitx(−tπ−1(1), . . . ,−tπ−1(k);−r0)
X ←− Xa

0

Y0 ←− commity(tπ−1(1), . . . , tπ−1(k); ar0)

and sends X0, X and Y0 to V .

3. P and V carries out Groth’s shuffle of known content (SKC) for X0 and Y0,
and Chaum-Pedersen for X = Xa

0 .

4. V accepts if and only if the protocols in the previous step are accepted and
XY0 = ∏k

i=1 z
ti
i .

Proposition 3.21 (Completeness). Protocol 4 is complete.

Proof. This is easily seen with the following computation,

XY0 =
(
g−r0

k∏
i=1

x
−tπ−1(i)
i

)a (
gar0

k∏
i=1

y
tπ−1(i)
i

)

=
k∏
i=1

(
x−aπ(i)yπ(i)

)ti =
k∏
i=1

mti
π(i) =

k∏
i=1

ztii
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Public input: {(xi, yi) = (gri , hrimi)} and {zi}.
Private input to P : π such that zi = mπ(i) and a such that h = ga.

Prover Verifier

ti
r←− {0, 1}`

{ti}

r0
r←− Zq

X0 ←− commitx(−tπ−1(1), . . . ,−tπ−1(k);−r0)
X ←− Xa

0

Y0 ←− commity(tπ−1(1), . . . , tπ−1(k); ar0)

X0, X, Y0

SKC(X0 = g−r0
∏k
i=1 x

−tπ−1(i)
i )

SKC(Y0 = gar0
∏k
i=1 y

tπ−1(i)
i )

CP (g, h,X0, X)

XY0
?= ∏k

i=1 z
ti
i

Figure 3.5: Protocol 5.
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Proposition 3.22 (Soundness). Protocol 4 is computationally sound.
Proof. The commitment scheme is perfectly hiding and computationally bind-
ing, and hence the shuffle of known content is computationally sound. Also, the
Chaum-Pedersen protocol is sound. This implies that all commitments in step 2
above are well-formed, and hence that the protocol itself is sound.
Proposition 3.23 (Zero knowledge). Protocol 4 is special honest verifier zero
knowledge.
Proof. The protocol cannot be statistical HVZK, due to inclusion the Chaum-
Pedersen protocol. The following simulator shows that this is SHVZK.

1. Select X0 and X at random.

2. Compute Y0 as ∏k
i=1 z

ti
i x
−1

3. Simulate the subprotocols.
It is clear that this distribution is computationally indistinguishable from the real
distribution.
Proposition 3.24 (Runtime). Protocol 4 requires 8k exponentiations for P and
5k exponentiations for V, all of which can be computed using multi-exponentiations
techniques, giving a cost of approximately 4k and 3.5k respectively.
We would like to achieve unconditional soundness. This can be achieved by using

a similar commitment scheme as in Chapter 3.3. As above, we use the components
of the cipertexts as bases. In addition, we select two group elements x0 and y0 at
random. We then define the commitment scheme commitx as

commitx(tπ(i), . . . , tπ(k); r) = (xtπ(1)+r
1 , . . . , x

tπ(k)+r
k , xr0).

The scheme commity is defined similarly.
Protocol 5. Let 1 ≤ i ≤ k. Both P and V recieve {(xi, yi)} = {(gri , hrimi)} and
{zi} as public input. In addition P knows the decryption key a and a permutation
π. P must convince V that zi = D(xπ(i), yπ(i)) = mπ(i).

1. V selects t1 to tk at random, and sends to P .

2. P selects r0 at random, computes the following commitments
X0 ←− commitx(−tπ−1(1), . . . ,−tπ−1(k);−r0)

X ←−
(

k∏
i=1

(X0)i
)a

Y0 ←− commity(tπ−1(1), . . . , tπ−1(k); r0)

R←−
(

k∏
i=1

zi

)r0
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3.4 A better Groth-based solution

and sends X0, X, Y0 and R to V .

3. P and V carries out Groth’s shuffle of known content (SKC) for X0 and Y0,
and Chaum-Pedersen for X = Xa

0 and R =
(∏k

i=1 zi
)r0 .

4. V accepts if and only if the protocols in the previous step are accepted and

XR−1
k∏
i=1

(Y0)i =
k∏
i=1

ztii (3.13)

Proposition 3.25 (Completeness). Protocol 5 is complete.

Proof. Again, this is the result of an easy computation.

XR−1
k∏
i=1

(Y0)i =
(

k∏
i=1

x
−tπ−1(i)−r0
i

)a ( k∏
i=1

zi

)−r0 k∏
i=1

y
tπ−1(i)+r0
i

=
(

k∏
i=1

x−1
i yi

)r0 ( k∏
i=1

zi

)−r0 k∏
i=1

(
x−1
i yi

)tπ−1(i)

=
k∏
i=1

mti
π(i) =

k∏
i=1

ztii

Recall that we assume that all cipertexts are random. This assumption is rea-
sonable as long as neither P nor V are able to influence the selection of these.

Proposition 3.26 (Soundness). Protocol 5 is unconditionally sound.

Proof. The commitment scheme is perfectly binding, and hence the shuffle of
known content is unconditionally sound. Also, the Chaum-Pedersen protocol is
unconditionally sound. This implies that all commitments in step 2 above are
well-formed, and hence that the protocol itself is sound, bounded by k+2

2` .

Proposition 3.27 (Zero knowledge). Protocol 5 is special honest verifier zero
knowledge.

Proof. It is easy to show that this is SHVZK, using the following simulator.

1. Simulate all subprotocols

2. Select X0, X and Y0 at random.

3. Select R in accordance with (3.13).
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3 Roots of polynomials

Public input: {(xi, yi) = (gri , hrimi)} and {zi}.
Private input to P : π such that zi = mπ(i) and a such that h = ga.

Prover Verifier

ti
r←− {0, 1}`

{ti}

r0
r←− Zq

X0 ←− commitx(−tπ−1(1), . . . ,−tπ−1(k);−r0)

X ←−
(

k∏
i=1

(X0)i
)a

Y0 ←− commity(tπ−1(1), . . . , tπ−1(k); r0)

R←−
(

k∏
i=1

zi

)r0

X0, X, Y0, R

SKC(X0 = g−r0
∏k
i=1 x

−tπ−1(i)
i )

SKC(Y0 = gar0
∏k
i=1 y

tπ−1(i)
i )

CP (g, h,X0, X)

CP (x0, (X0)k+1,
∏k
i=1 zi, R)

XR−1∏k
i=1(Y0)i ?= ∏k

i=1 z
ti
i

Figure 3.6: Protocol 5.
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3.4 A better Groth-based solution

It is clear that this distribution is computationally indistinguishable from the real
distribution, since R looks random, and X0 and Y0 are ElGamal encryptions.

Proposition 3.28 (Runtime). Protocol 5 requires 8k exponentiations for P and
5k exponentiations for V. No elementary exponentiations techniques can be used
to compute the commitments.

The runtime can be improved by running one instance of the shuffle instead
of two. Since the exponents are the same, we can instead prove that x0y0 =
commitxy(xoy0 = g−r0+ar0

∏k
i=1

(
x−1
i yi

)tπ−1(i)). This does not affect the security,
but reduces the runtime to 5k and 3k.
The same idea can also be applied to the previous protocol, giving a cost of 2.5k

and 1.5k.

3.4.1 Planted ciphertexts
Assume that an attacker has been able to choose a number of the original cipher-
texts. It is clear that this will not affect the soundness of the proof for Protocol 5.
This is due to the fact that the commitment scheme is unconditionally binding.
However, if the scheme is just computationally binding, it will be easy to create

a new opening if P∗ have created the ciphertexts. One can avoid this by using a
hash function, and use the hashes of the ciphertexts as basis for the commitment
schemes. The security argument is then moved to the random oracle model, since
we need to assume that the hashes are random.
Now assume that V has been able to insert s ciphertexts. If we rearrange the

tuple, we have a new ElGamal encryption, and we can assume that the chosen
generators are at the front. We then get(

(x0y0)r, (x1y1)tπ(1)+r, . . . , (xsys)tπ(s)+r, (xs+1ys+1)tπ(s+1)+r, . . . , (xkyk)tπ(k)+r
)

=
(
αr0, g

r1tπ(1)gr1r, . . . , grstπ(s)grsr, (αs+1)tπ(s+1)+r, . . . , α
tπ(k)+r
k

)
=
(
αr0, (gtπ(1)gr)r1 , . . . , (gtπ(s)gr)rs , (αs+1)tπ(s+1)+r, . . . , α

tπ(k)+r
k

)
where αi is a random generator and ri is an exponent chosen by V . Now, we are
only interested in the components 2 to s + 1, and we take the respective roots,
getting (

gtπ(1)gr, . . . , gtπ(s)gr
)
.

We now divide each component with the first to cancel out gr, and by insertion,
we can easily find the part of π that works on the ciphertexts chosen by V .
However, we are unable to compute r and the part of π working on the rest

of the shuffle, so V does not get any new information, due to the zero knowledge
property of the protocol.
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4 Permutation matrices
The idea of this chapter is to use a permutation matrix (Aij) over Zq, defined as
Aij = 1 (mod q) when π(i) = j and 0 otherwise, where π is a permutation and q
is a prime [11]. There has been built a number of protocols, each using a theorem
stating that A is a permutation matrix if and only if certain conditions hold. This
is the other main paradigm for shuffling.
There are many protocols using permutation matrices as a basis. The overarch-

ing idea is to commit to the matrix, and then prove that the commitment is well
formed. Finally, one prove that the matrix has been used to produce a specific
vector [25].
The difference between the various approaches is then to find a theorem of the

form “A is a permutation matrix if and only if (some condition)”. Some such
conditions are possible to prove efficiently in zero-knowledge. Each new protocol
is based on a different set of conditions, so there are few common primitives, apart
from Chaum-Pedersen.
We have used works by Furukawa [12, 11], Peng, Dawson and Bao [30] and

Terelius and Wikström [33]

4.1 Existing verifiable shuffles
We start by describing the original work of Furukawa et al. They are able to create
a 3-round computationally sound and honest verifier zero knowledge protocol. The
protocol requires about 15k exponentiations in total.
The main idea comes from the following theorem

Theorem 4.1 (Theorem 1, [12] and Theorem 2, [11]). Let

δij =

1 if i = j

0 if i 6= j

δijg = δijδjg

and let q be a prime. A k × k matrix A is a permutation matrix over Zq if and
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4 Permutation matrices

only if
k∑

h=1
AhiAhjAhg = δijg

k∑
h=1

AhiAhj = δij

for all i, j and g.
Furthermore, if q ≡ 2 (mod 3), then A is a permutation matrix if and only if

only the first condition holds.

In the second part of the article, he customises the protocol for decrypting
mixnets, i.e. where each computer has a share in the decryption key, and both
shuffles and partly decrypts, shuffle-decryption. The exponentiation count is re-
duced to 14k, but on the expense of security: Although the shuffle-decryption al-
gorithm hides the permutation for almost all cases, it is not guaranteed to be zero
knowledge. Indeed, Furukawa notes that his approach cannot be zero-knowledge.
This solution is directly applicable to our problem by letting the mix-net consist

of a single computer. This does not alter the runtime, and as with the solution
based on Neff’s work, it is also inefficient.
There has been done further work based on Furukawa’s idea. In a 2010 paper,

a four-move honest verifier zero knowledge scheme for shuffling was proposed [30].
The exponentiation cost for both prover and verifier was given to be 3k. However,
it is only computationally sound. The computational assumption is given in the
following definition.

Definition 4.2 (Definition 1, [30]). A logarithm relation of m1, . . . ,mn all in G, is
found if non-negative integers l1, . . . , ln, not all zero (modulo q), are found such that∏n
i=1m

li
i ≡ 1 (mod p). Multiple discrete logarithm assumption on a polynomial

party with respectm1, . . . ,mn states that this party cannot find a logarithm relation
of m1, . . . ,mn with a non-negligible probability.

The soundness is then based on the following theorem.

Theorem 4.3 (Theorem 2, [30]). If the verifier chooses his challenges si randomly
and the shuffling node can find integers ti for i = 1, . . . , k in polynomial time to
satisfy

k∏
i=1
D(ci)si =

k∏
i=1
D(c′i)ti

k∏
i=1
D(ci)s

2
i =

k∏
i=1
D(c′i)t

2
i
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4.1 Existing verifiable shuffles

with a non-negligible probability, then there exists an k× k permutation matrix M
such that (D(c′1), . . . ,D(c′k))M = (D(c1), . . . ,D(ck)) under multiple discrete loga-
rithm assumption on the shuffling node with respect to D(c1), . . . ,D(ck).

Also in 2010, Terelius and Wikström [33] published an article in which they
present a basic protocol for proving that a matrix is in fact a permutation matrix.
The protocol uses a Pedersen-like commitment scheme. Let g, g1, . . . , gk all be
generators of the group G. A vector v in Zkq is committed to by computing

commit(v; s) = gs
k∏
i=1

gvii

where s is a random number from Zq.
In order to commit to a matrix, one simply commits column-wise, so that if

M = (mij) is a matrix and s is a vector of random numbers, then commit(M ; s)
is the vector (commit((mi,1); s1), . . . , commit((mi,k); sk)).
If v, u are vectors, let 〈v, u〉 be the ordinary inner product, and let vu = ∏k

i=1 v
ui
i .

Note the useful identity

commit(M, s)e = commit(Me, 〈s, e〉).

Theorem 4.4 (Theorem 1, [33]). Let M be an k×k matrix over Zq and x a vector
of k independent variables. Then M is a permutation matrix if and only if

k∏
i=1
〈mi, x〉 =

k∏
i=1

xi

and M1 = 1.

The proof is straightforward, since each inner product will pick one distinct xj
for each i, and conversely, since Zq[x] is a unique factorisation domain. The last
condition guarantees that all non-zero elements in the matrix must be 1.
A protocol based on this theorem is then presented. We have not been able to

make an estimate of the exponentiation count, although it seems to be low. Later,
we will write TW1(a = commit(M ; s)) when we use their first protocol to show
that a is a commitment to a permutation matrix.
The protocol is a proof of knowledge of either the permutation π or a different

opening to the commitment. Since the commitment scheme is computationally
binding and statistically hiding, the protocol itself is computationally sound. It is
also honest verifier zero-knowledge.
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4 Permutation matrices

4.2 Attempted adaption of Peng, Dawson, Bao
We spent quite a while trying to adapt [30] to our use, motivated by their low
runtimes. Although we didn’t succeed, the work is included for completeness, and
so that others may do a better attempt.
In order to achieve shuffled decryption, we need to have V compute a linear

combination of the claimed plaintexts. P must also prove knowledge of {ti} such
that

k∏
i=1

D(ci)si =
k∏
i=1

ztii

k∏
i=1

D(ci)s
2
i =

k∏
i=1

z
t2i
i

holds, where ci = (xi, yi), zi the claimed decryption and si is the challenge from
V .
Protocol 6. Let 1 ≤ i ≤ k. Both P and V recieve {(xi, yi)} = {(gri , hrimi)} and
{zi} as public input. In addition P knows the decryption key a and a permutation
π. P must convince V that zi = D(xπ(i), yπ(i)) = mπ(i).

1. V selects si at random from {0, 1}` and sends to P .

2. P assigns ti as tπ(i), and selects ri, vi, ui, wi and w′i at random from Zq. He
then computes

z′i ←− ztii x
ri
i

βi ←− zvii x
ui
i

b←−
(

k∏
i=1

xi

)wi

β ←−
(

k∏
i=1

xi

)w′i k∏
i=1

z′vii

Finally, z′i, {βi}, b and β is sent to V .

3. V sends a random challenge c from {0, 1}`.

4. P sends the following responses

θi ←− ui + ric

γi ←− vi + tic

δi ←− wi + (asi − ri)c
εi ←− w′i + (as2

i − riti)c
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4.2 Attempted adaption of Peng, Dawson, Bao

5. V accepts if

βiz
′c
i

?= zγii x
θi
i

b
?=

k∏
i=1

xδii

(
k∏
i=1

z′i

)c ( k∏
i=1

y−sii

)c

β
?=

k∏
i=1

xεii

k∏
i=1

z′γii

(
k∏
i=1

y
−s2

i
i

)c

Proposition 4.5 (Completeness). Protocol 6 is complete.
Proof. Assuming that both P and V are honest, we get

βiz
′c
i = zvii x

ui
i

(
ztii x

ri
i

)c
= zvi+tici xui+rici = zγii x

θi
i

k∏
i=1

xδii

(
k∏
i=1

z′i

)c ( k∏
i=1

y−sii

)c
=

k∏
i=1

x
wi+(asi+ri)c
i

(
k∏
i=1

ztii x
ri
i

)c ( k∏
i=1

y−sii

)c

=
k∏
i=1

x
wi+(asi+ri)c
i

k∏
i=1

(
x−aπ(i)yπ(i)

)tic
xrici

k∏
i=1

y−sici

=
k∏
i=1

x
wi+(asi+ri)c
i x−aticπ(i) xrici

k∏
i=1

yticπ(i)y
−sic
i

=
k∏
i=1

x
wi+(asi+ri)c
i x−asici xrici

k∏
i=1

ysici y−sici

=
k∏
i=1

xwii = b

k∏
i=1

xεii

k∏
i=1

z′γii

(
k∏
i=1

y
−s2

i
i

)c
=

k∏
i=1

xεii

k∏
i=1

(
ztii x

ri
i

)γi k∏
i=1

y
−s2

i c
i

=
k∏
i=1

xεii

k∏
i=1

ztivii xrivii z
t2i c
i xritici

k∏
i=1

y
−s2

i c
i

=
k∏
i=1

xεii

k∏
i=1

ztivii xrivii

(
x−aπ(i)yπ(i)

)t2i c
xritici

k∏
i=1

y
−s2

i c
i

=
k∏
i=1

xεii

k∏
i=1

ztivii xrivii x
−as2

i c
i y

s2
i c
i xritici

k∏
i=1

y
−s2

i c
i

=
k∏
i=1

xεii x
(−as2

i+riti)c
i

k∏
i=1

z′vii

k∏
i=1

y
s2
i c−s

2
i c

i

=
k∏
i=1

x
w′i
i

k∏
i=1

z′vii = β

53



4 Permutation matrices

Public input: {(xi, yi) = (gri , hrimi)} and {zi}.
Private input to P : π such that zi = mπ(i) and a such that h = ga.

Prover Verifier

{si} si
r←− {0, 1}`

ti ←− sπ(i)

ri,ui, vi, wi, w
′
i

r←− Zq
z′i ←− ztii x

ri
i

βi ←− zvii x
ui
i

b←−
k∏
i=1

xwii

β ←−
k∏
i=1

(
z′vii x

w′i
i

)

{z′i}, {βi}, b, β c
r←− {0, 1}`

c

θi ←− ui + ric

γi ←− vi + tic

δi ←− wi + (asi − ri)c
εi ←− w′i + (as2

i − riti)c
{θi}, {γi}, {δi}, {εi}

βiz
′c
i

?= zγii x
θi
i

b
?=

k∏
i=1

xδii

(
k∏
i=1

z′i

)c ( k∏
i=1

y−sii

)c

β
?=

k∏
i=1

xεii

k∏
i=1

z′γii

(
k∏
i=1

y
−s2

i
i

)c

Figure 4.1: Protocol 6.
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as wished, and so the protocol is complete.

Proposition 4.6 (Soundness). Protocol 6 is not sound.

Proof. If V accepts, then there must exsist {ui}, {ri}, {vi} and {ti} such that
γi = vi + tic and θi = ui + ric, and hence

βi = zvii x
ui
i z′i = ztii x

ri
i

Also assume that δi = δ
(1)
i + δ

(2)
i c and εi = ε

(1)
i + ε

(2)
i c. Since yi = xaimi, we get

b =
k∏
i=1

x
δ

(1)
i
i

∏
msi
i =

k∏
i=1

ztii

k∏
i=1

x
δ

(2)
i +ri−asi
i

β =
k∏
i=1

x
ε

(1)
i
i z′vii

∏
m
s2
i
i =

k∏
i=1

z
t2i
i

k∏
i=1

x
ε

(2)
i +riti−as2

i
i

By rewinding, we can extract {ti} and a.

1. Run P∗ until he outputs z′i etc., and save the state. Submit a random c, and
run until the end. If we accept the response, rewind and input a new c′ until
we accept the new response.

2. By the above computations, δ(1)
i and ε(1)

i must be constant, and hence also
δ

(2)
i and ε(2)

i . Also, ui, ri, vi and ti must have been kept constant, so we can
compute them based on the responses to c and c′ respectively.

3. Since we can extract ti, it must be a correct shuffle.

However, it is impossible to prove that δ(2)
i + ri − asi = ε

(2)
i + riti − as2

i = 0.
Therefore, a cheating prover may modify the decryption with xi raised to a chosen
exponent.

4.3 Terelius-Wikström-based solution
Recall that we by TW1(a = commit(M ; s)) mean the protocol by [33] that proves
that a is a commitment to the permutation matrix M .
As we did in Chapter 3.4, let us modify the commitment scheme a bit, so

that commitx means the scheme described above, using g, x1, . . . , xk as key, and
similarly commity.
Protocol 7. Let 1 ≤ i ≤ k. Both P and V recieve {(xi, yi)} = {(gri , hrimi)} and
{zi} as public input. In addition P knows the decryption key a and a permutation
π. P must convince V that zi = D(xπ(i), yπ(i)) = mπ(i).
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1. P selects s at random from Zq, computes

X0 ←− commitx(M ; s)
Y0 ←− commity(M ; as)

X ←−
(

k∏
i=1

(X0)i

)−a

and submits X0, Y0 and X to V .

2. P and V run TW1 twice to prove that X0 and Y0 are well-formed. They also
run Chaum-Pedersen to prove that X is well-formed.

3. V accepts if X ∏k
i=1 (Y0)i = ∏k

i=1 zi.

The following propositions are easy to prove, as all properties are inherited from
TW1.

Proposition 4.7 (Completeness). Protocol 7 is complete.

Proof. First note that TW1 is complete, and that

commitx(M ; s) =
(
gs1

k∏
i=1

x
mi,1
i , . . . , gsk

k∏
i=1

x
mi,k
i

)
=
(
gs1xπ−1(1), . . . , g

skxπ−1(k)
)

commity(M ;−as) =
(
gas1

k∏
i=1

y
mi,1
i , . . . , gask

k∏
i=1

y
mi,k
i

)
=
(
hs1yπ−1(1), . . . , h

skyπ−1(k)
)

Then

X =
(
g
∑k

i=1 si
k∏
i=1

xi

)−a
= h

∑k

i=1−si
k∏
i=1

x−ai and
k∏
i=1

(Y0)i = h
∑k

i=1 si
k∏
i=1

yi,

and so

X
k∏
i=1

(Y0)i = h
∑k

i=1−si
k∏
i=1

x−ai h
∑k

i=1 si
k∏
i=1

yi =
k∏
i=1

x−ai yi =
k∏
i=1

zi

Proposition 4.8 (Soundness). Protocol 7 is a proof of knowledge for either π and
a, or a different opening to the commitments.

Proof. Run the knowledge extractor of TW1 to produce openings (M, s), (M,as)
of the commitment. If M is a permutation matrix, then we have the correct
openings [33], and can compute a. Otherwise, we have constructed an oracle for a
different opening to the commitments.
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Public input: {(xi, yi) = (gri , hrimi)} and {zi}.
Private input to P : π such that zi = mπ(i) and a such that h = ga.

Prover Verifier

si
r←− Zq

X0 ←− commitx(M ; s)
Y0 ←− commity(M ; as)

X ←−
(

k∏
i=1

(X0)i
)−a

X0, Y0, X

TW1(X0 = commitx(M ; s))
TW1(Y0 = commity(M ;−as))

CP
(

log∏k

i=1(X0)i
X = logg h−1

)

X
∏k
i=1 (Y0)i

?= ∏k
i=1 zi

Figure 4.2: Protocol 7.
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The discussion on planted ciphertexts from the last section also applies here.

Proposition 4.9 (Zero-knowledge). Protocol 7 is honest verifier zero-knowledge.

Proof. TW1 and Chaum-Pedersen are HVZK, so we can easily simulate the whole
protocol.

1. Let X0 and Y0 be random vectors, and create a simulated transcript of TW1.

2. Compute X as ∏k
i=1 zi/

∏k
i=1 (Y0)i, and create a simulated Chaum-Pedersen

transcript.

Let TP and TV be the exponentiation cost of TW1. The exponentiation count
of Protocol 7 is then 2k + 2TP and 2TV for P and V respectively. However, we
note that the 2k exponentiations for the prover are computed in products.
We may also save some time by just running one instance of TW1. Let � be the

pointwise multiplication of two vectors, and let A = X t
0� Y0, where t is a random

number from V , raised pointwise. Then A is a commitment to (M, ts + as) with
commitment key {xtiyi}. For the verifier, it will prove that M exists, and has been
used to form commitments

commitxty(M ; s) = committx(M ; ts′)� commity(M ; s− ts′).

Since t is random, this is with high probability the only decomposition, and hence
are both X0 and Y0 well-formed, reducing the cost to 2k multiexponentiations +
k short + TP and TV + k short exponentiations for P and V .
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5 Closing remarks
In this thesis, we have adapted several existing shuffles to shuffled decryption. The
most interesting question is whether we have been able to provide an improvement
over separate shuffle and decryption. Table 5.1 shows a comparison between our
proposed protocols and the protocols they are based upon, plus the cost of verifying
the decryption.

Protocol P V P ’s cost V ’s cost Security
[28] + VD 10k 13k US/HVZK
Protocol 2 11k 11k 3k 4k US/HVZK
[19] + VD 7k 7k CS/HVZK
Protocol 3 7k 5k 1.6k 2.7k US/HVZK
[1] + VD (2 log(m) + 1)k 5k CS/HVZK
Protocol 4 5k 3k 2.5k 1.5k CS/HVZK
Protocol 5 5k 3k 5k 3k US/HVZK
[11] 8k 6k 1.9k∗ 2k∗ CS/CPH
[30] + VD 3.1k∗ 3.1k∗ CS/HVZK
Protocol 7 3k + TP k + TV 1.1k + TP 0.1k + TV CS/HVZK

Table 5.1: Comparison of shuffles. VD is short for verifiable decryption, and is
assumed to take k extra short exponentiations for both prover and ver-
ifier. Numbers marked with * are copied from the respective articles,
and may have been computed differently than here. US = Uncondi-
tional soundness, CS = Computational soundness, HVZK = Honest
verifier zero knowledge, CPH = Complete permutation hiding.

If there was a moral triangle inequality, it would state that proving both the
shuffle and the decryption in one protocol ought to be more efficient than using
two protocols.
The problem can be studied from three angles.

1. As a more general verifiable decryption. This is the idea of Protocol 4, 5 and
7.

2. As a special case of shuffles, using the negative of the encryption randomiser.
However, the exponent cannot easily be extracted, so we need to use the
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decryption key instead, and thus modify the protocol. We then need to
show that the decryption key was indeed used, and that the decryption of
(xi, yi) is a permutation of the decryption of (1, zi). This is the approach of
Protocol 6, however not successful.

3. There also exist efficient protocols for shuffle-decryption. Our problem can
also be considered as a special case with only one node in the mixnet. This
is the basis for Protocol 3. Also [11] reduces to a solution without any
modifications.

We believe that the first and third are the best ways to look at the problem. In
ordinary shuffles, three things must be proved: That there exists a permutation,
that there exists some randomisers, and that the same randomiser has been used
for both components. However, in order to prove a decryption, one need to prove
that the decryption key has been used, which is a stronger requirement. This
turned out to be the main problem when adapting [30], as it would either allow
the verifier to use the decryption key, or allow the prover to include randomisers
– in theory making it possible for a prover to produce any set of messages.
The above argument also suggests that verifiable shuffled decryption should be

almost as expensive as first shuffle and then decryption.
The question as to which option is the better remains in limbo as long as the

cost of Terelius and Wikström’s primitive protocol is unknown. Furukawa [11] is
certainly looking good, but we may have been more conservative when estimating
the cost of our protocols than they were, so it is again a hard decision. Protocol 4
and 5 may originally look better than Protocol 3, but the latter will probably per-
form better in practice. The choice may also depend on actual hardware differences
between P and V .
It would be interesting to make a hybrid shuffle. There exist shuffles for known

contents, and for completely unknown content. It may be possible to save some
work by looking more into the basic shuffles, since we in fact are working with a
shuffle of partly known contents – the decryption does not contain any additional
information.
Finally, the prospect of a hybrid shuffle is very interesting. Shuffles exist for

both known and completely unknown content. Given that we are working with a
shuffle of partly known contents, it may be possible to combine these two to cut
costs and increase efficiency. Future research in this area may hence improve the
state of the art substantially.
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