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Abstract

Let K be a field and A be an artin K-algebra. Let rep ;A represent the set of all A-modules
with the length equal to a natural number d as a K-vector space. The set of modules
repg\ is equipped with the action of the general linear group. The corresponding
Zariski-topology for algebraically closed field K then induce a partial order on rep, A,
which is called degeneration order and it is denoted by <,,. Here for M and N, A-
modules, the notion M <4, N mean that the orbit of N under the action of general
linear group is contained in the closure of the orbit of M under the same group action.
Another partial order on rep A first showed by Riedtmann, is the virtual degeneration
order, which is denoted by <, 4¢, are given by M <,4.¢ N, if there is a A-module X such
that M & X <4, N @ X. There are known examples where these two partial orders do
not coincide. If K is an algebraically closed field, there is a geometric interpretation of
these notions. However, there is also a module theoratical interpretation, which can
be generalized to the general settings with K a commutative artin ring. Let I" be the
Kronecker quiver 1 = 2 and A = Z,T be the path algebra of I over the field Z, with two
elements. In this work all degenerations between isomrphism classes of modules over A
of dimension vector (1,1), (2,2) and (3, 3) are determined and the Hasse diagrams of the

corresponding partial orders are given.
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Introduction and preliminaries

1.1 Introduction

Let K be a field and A be an artin K-algebra. Let rep;A represent the set of all A-
modules with K-length equal to a natural number d. the set of modules repgA is
equipped with the action of the general linear group. The corresponding Zariski-topology
for algebraically closed field K then induce a partial order on rep, A, which is called
degeneration order and it is denoted by < ;... Here for M and N, A-modules the notion
M <g4.¢ N mean that the orbit of N under the action of the group is contained in the
closure of the orbit of M under the same group action. Another partial order on rep;A
first showed by Riedtmann [1], is the virtual degeneration order, which is denoted by
<ydeg 18 given by M <, 4., N, if there is a A-module X such that M & X <;,, N& X. There

are known examples where these two partial orders do not coincide.

If K is an algebraically closed field then there is a geometric interpretation of these
notions. The theorems of Christine Riedmann and Grzegorz Zwara give a complete alge-
braic description, which can be generalized to the general settings with K a commutative
artin ring. See [2, 1] for detail. This work deals with the notion of degeneration for non
algebraically closed field K and the generalized pure module theoretical interpretation is
used here. Chapter 2 is dedicated to describe these notions, especially the degeneration
order.

Chapter 3 is devoted to explain some examples of degenration order of the modules for
the kronecker quiver over the field of two Z,. The degenerations between isomorphism

classes of modules of dimension vector (1,1), (2,2) and (3,3) are determined and the



Hasse diagrams will be used to present a graphical representation of the partial order.

1.2 Preliminaries

Hasse diagram is a very intuitive tool to give a graphical representation of partial orders
on finite sets consisting of vertices and line segments. A vertex represent each element
of the partially ordered set and the line segements are drawn between these vertices

according to the following rules:

— if x < y in the poset, then the vertex corresponding to x appears above in the

drawing than the vertex corresponding to y.

— The line segment between the vertices corresponding to any two elements x and y
of the poset can only be included in the graphs if x < y and x < z < y implies that

zZ=Xo0rz=y.

Example:

Let the set x, y, z be a partially ordered set where the relations between the elements are

x < zand y < z, then the Hasse diagram would look like this

X y

Throughtout this dissertation, modR denotes the the category of finitely generated
R-modules, where R is a ring. The subcategory indR < modR consists of exactly one
representative of each isomorphism class of indecomposable modules in modR. The
ring R is said to be of finite representation type if indR is finite. An R-module is called
artin if every descending chain of proper submodules is finite. We say R is artin if it
is artin as an R-module. Let K be a commutative ring, then a K-module A is called a

K-algebra if it is also a ring such that

a(xy) = (ax)y = x(ay)



forallae Kand x,y € A.
Further if K is a commutative artin ring, then a K-algebra A is called an artin K-algebra

if it is finitely generated as a K-module. Here we present some examples of algebras

Example:

In all these examples K is a commutative ring.

— Let A =K, then A not only is a K-algebra but also artin algebra if K is an artin ring.

— Let A = K[X] the polynomial ring in one variable is a K-algebra. It is finitely
generated as an algebra by {X}, however as a K-module the basis set {lK, X, X?, }

is not finite. Hence it is not an artin algebra over K.

— Let the ring of polynomials in n commuting variables K[X;, Xy, ..., X;;] is a K-
algebra. It is finitely generated as an algebra by {X;, X5, ..., X;;}, but again for the
similar reason is not finitely generated as a K-module and therefore is not artin

algebra.

Path algebra

A path algebra is an important example of an algebra which is extensively used in this
work. The starting point is a quiver Q which is a directed graph where loops and multiple
arrows between vertices are allowed, i.e. a directed multidigraph. The quiver Q consists
of a set of vertices Qg and a set Q; of oriented edges. The oriented edges are also often

called arrows. We explain this with an example.

Example:

One can construct an algebra using all the oriented paths in this oriented graph
including the paths of length zero at each vertex as a basis. By concatenating paths one
makes a multiplication table for these base elements and in this way one obtains the

path algebra. For the example of the quiver above, this will be a six dimensional algebra,



with basis ey, e», e3, @, B and Ba. Here e}, e; and e3 represent the paths of length zero at
the vertices 1, 2 and 3 respectively. One has to make a convention about how to represent
a path and here one is using the convention that an oriented path is ordered from right
to left. The multiplication table for this algebra is rather long, but for the convenience of
the reader the complete table is included.
ej.e1=ey,e1.e2=0,e1.e3=0,e1.0=0,e1.0=0,e1.6a =0, e2e; =0, e2e2 = €2, €203 =0,
ea=a,ef =0 epfa=0, ee =0, ee =0, ese3 =e3, e3a =0, e3 = B, e3fa = fa,
aej=a,ae;=0,ae3=0,aa=0,af=0,afa=0, Be; =0, fez =B, Be3s =0, Ba = PBa,
BB =0, BPa =0, Bae; = Pa, Pae, =0, faes =0, Baa =0, faf =0, faPa=0.

Here e + e, + e3 is the identity element.For this simple example, the path algebra is
isomorphic to the K-algebra of lower three by three matrices over K. To see this let e;
be the matrix with 1 in place i j and zero otherwise. Then an isomorphism can be given
by sending e; in the path algebra to the matrix e, e» in the path algebra to the matrix
€22, e3 in the path algebra to the matrix es3, a in the path algebra to the matrix e»;, § in
the path algebra to the matrix e3> and Ba in the path algebra to the matrix e3;. An easy
calculation now shows that this is a K-algebra isomorphism from the path algebra of
this quiver to the algebra of lower three by three matrices over K.

Let R be a commutative artin algebra and A be R-algebra then we define the following:

Definition 1.1. A -module P in Mod A is projective if for every module epimorphism f :
N — M and every module homomorphism g : P — M, there exists a homomorphism
h: P — N such that fh = g. An aribtrary module A is said to be preprojective if and

only if (DTr)" A =0 for some nonnegative integer n.

Definition 1.2. A -module I in ModA is injective if for any module monomorphism f :
N — M and every module homomorphism g : M — I, there exists a homomorphism
h: N — Isuchthat hf = g. An aribtrary module B is said to be preinjective if and only

if (Tr D)" B = 0 for some nonnegative integer n.

Definition 1.3. Arepresentation (V, f) of a quiver Q over a field K is a set of vector spaces
V(i) | i € Qp together with K-linear mapes f; : V(i) — V() for each arrow a : i — j.
Further a representation w, f ")is called a subrepresentation of (V, f) , if V' (i) c V(i) for

. ! . .
all ip and f, = fy,, for each arrow a:i — j.



Definition 1.4. In abstract algebra, a module is indecomposable if it is non-zero and
cannot be written as a direct sum of two non-zero submodules. Equivalently, representa-
tion of an algebra is said to be indecomposable if it cannot be expressed as a direct sum

of proper nonzero subrepresentations.

Example:

The Kronecker quiver is the quiver having two vertices 1, 2 and a;, a2 : 1 — 2. The
representations of K consist of two vector spaces V and W together with linear maps fi,
f>:V — W. The dimension vector is the pair (dimV,dimW) of non-negative integers.

The Kronecker quiver is represented as:
a
1 ‘%]—2—3 2

The isomorphism classes of representations with dimension vector (m, n) corre-
spond bijectively to the r-tuples of n x m matrices, up to simultaneous multiplication by
invertible n x n matrices on the left, and by invertible m x m matrices on the right. The
pairwise non-isomorphic indecomposable representations up to isomorphism are given

by the following representations for m € Nand A € K (see [5]).

Km#? K™

)

where

1y, =

is the m x m identity matrix and



]m,Kz

is a Jordan block of size m x m. The number of such indecomposables is infnite, but

can be organized in a one-parameter family in every dimension.



Some partial orders and their mutual

relationship

This chapter is devoted to explain the notions of degeneration, virtual degeneration,

Hom orders and their mutual relationship.

2.1 Degeneration

We start by discussing the geometric interpretation of degeneration order.

Definition 2.1. A homomorphism between two algebras, A; and Ay, over a field K, is a
map such that forall r € K and 11,1, € Ay,

F(rAd)=rF(1;)

F(A1 +A2) = F(A1) + F(A2)

F(A112) = F(A1)F(A»)

Further, we define rep, A for a finitely generated K-algebra A and a fixed natural number

d, by a set of all K-algebra-homomorphisms from A to M;(K).

Example:

— For A =K, rep A consist of only one homomorphism sending 1, to I; where I

is d x d identity matrix.

— For A=KI[X], repgA = M;(K), by sending f € reps(A) to f(X). This can easily be
extended to repg A = M;(K) x My (K) for A=K < X,Y > (see [6]).



For each f € repy A there is associated a d-dimensional A-module My . This module

is K% as a K-vector space and define A action on M by A.x = f(A)x for all A € A and
xXeMy=K d,

Conversly, from a d-dimensional A-module M one can have a fys € repsz A by fixing a

K-basis for M and identifying M with K¢ through this basis. This setting then allow to
construct fjs by letting fis(1) be the matrix where the ith column is A times the ith basis

vector in M. It can easily be verified that fj is K-algebra homorphism.

Any f € rep A is completely determined by its values on the generators of A. Since A is

finitely generated, by letting X;, X, ..., X;, be a generating set, the n-tuple (f(X1), f(X2), ..., f(Xp)) €

M,;(K)" can be identified with f. Here, one realize that rep;A is an affine space.

We also define a group action of the set of invertible d x d matrices Gl;(K) on rep; A
by

G+ f=(Gf(X1)G ,Gf(X2)GL,...,Gf(X)G ™

where G € Gl;(K).

We denote the orbit of f under the group action above by O(f). If I' = KQ is a path algebra
then there is a correspondence between the representations of dimension vector d =
(d;)ieq, and points in rep, A by choosing basis for each vectorspace in the representation
where d =} d;. Two elements f and f/ in repy A represent isomorphic A-modules My
and M} ifand only if f and f/ belong to the same orbit under the action of GI;(K) on

repg /. This follows from the following result:

Lemma 2.1. The orbits of O(f) for f € rep A corresponds to the isomorphism classes
of A-modules of dimension d or equivalently correspond to the isomorphism classes of

representations with dimension vector d, where d = (d;);, and d = }_(d;)

Definition 2.2. Let f € repy A then Zariski closure of O(f) is

O(f) ={g € repaA/p(g) =0 for all polynomialsp such that p(O(f)) = 0}.

Degeneration on repy A is then defined as f <g4.; § <= g€ O(f). or equivalently let M
and N be d-dimensional A-modules and let fj; and f be the corresponding elements

in repyA then M <ge4 N, if O(fi) € O(fu).

10



Degeneration make a reflexive and transitive relation on the set of isomophism
classes of d-dimensional A-modules. In the later part of this chapter we will see that it
is also antisymmetric, and hence is a partial order on the set of isomorphism classes of
d-dimensional A-modules and will be called the degeneration order throughout this
work. This description of degeneration provide an algebraic interpretation. Thanks to
results from C. Riedtmann [1] and G. Zwara [2] providing an algebraic description for the

notion of degeneration. We start by the following result from Riedtmann [1]:

Proposition 2.1. Let A be a finitely generated K-algebra. If there exists a short exact

sequence sequence

0—-A—-AdsM—-N—-0

of A-modules with A, M and N finite dimensional as A-modules, then dim(M) =

dim(N) and M <g4.¢ N.

Proof. A proof of this proposition is available in [1] and therefore is not given here. O

Proposition 2.2. Let A be a finitely generated K-algebra and M and N in repz A with
M =40 N. Then there exists an exact sequence 0 > A— A& M — N — 0 of A-modules

where A is finite-dimensional as a K-module.

These two results combined give a complete algebraic despcription and therefore
this notion can be extended to algebras over commutative rings. From now on K will be

a commutative artin ring, A will be a finitely generated algebra over K.

Here we also present a result from [6] which states that
Lemma 2.2. Let M and N be non-isomorphic A-module. Then there exists a A-module

X such that /(Homp (X, M)) # ¢(Homp (X, N)).

The above two results can be used to show that degeneration is antisymmetric. If M,

N € mod(A) such that M <4,¢ N and N <4, M implies

0-A—-AeM—-N—-0

11



0—-B—-BeN—-M-—0

Where A, B € mod(A). For any X € mod(A) one get two new short exact sequences

0— Homp(N,X) — Homp(Ae M, X) — Homp (A, X)

0— Homp(M,X) — Homp(B® N, X) — Homy (B, X)

This follows

dimg(Hompa (M, X))+dimg(Homp (A, X)) <dimg(Homp (A, X))+dimg(Homp (N, X))
= dimg(Hompa (M, X)) <dimg(Hom (N, X))

In a similar way we get
= dimg(Homp (N, X)) =dimg(Homp (M, X))

for any X. Using above lemma we conclude that M = N and therefore degeneration is a

partial order on the set of isomorphism classes of repg A.

Later G. Zwara [2] proved that the converse of Riedmann’s result holds.

2.2 Virtual Degeneration and Hom-order

This section is devoted to introduce two other important partial orders on rep A. Vir-
tual degeneration is a generalization of degeneration. In general one cannot cancel
common direct summands from M and N when M <;,, N (courtesy: an axemple due
to]. Carlson)[1]), and obtain a degeneration of the remaining complements. But virtual

degeneration provides this generalization and thus it is formally defined as

Definition 2.3. Let M and N be A-modules, M virtually degenerates to N if M & X <.,

N e X for some X € mod(A). Itis denoted as M <,4¢¢ N.

One can choose X to be the zero module, so obviously <40 = <y4eg-

12



Definition 2.4. Let M and N are A-modules, We write M <gom N if ¢ x(Homp (X, M)) <
Cx(Homp (X, N)) for all X € mod(A).

Hom-order provide an opportunity to extend the notion of virtual degeneration to
situations where finitely generated algebra A over a commutative artin ring K instead
of over an algebraically closed field(Using the charaterization of virtual degeneration
given by short exact sequences). The relationship between virtual degeneration and

Hom-order is established in following proposition.

Proposition 2.3. Let A be a finitely generated K-algebra. If the A-module M virtually

degenerates to the A-module N, i.e. there is an exact sequence of A-modules
0—-A—-AeBeM—-Ba&N—-0
which are of finite length as K-module, then
lx(Homp(X,M)) < ¢x(Homp (X, N))

for each A-module X which has finite length as a K-module.

Proof. Since M <,4.¢ N then for any A-module X there exists an exact sequence

0— Homp (A, X)— Hompy(A®Be M, X) — Homp(B® N, X)

From this we get

¢(Homp(A®Be M, X)) <l(Homp (A, X))+ ¢(Homp(Be N, X))

By subtracting

(¢(Homp (A, X)) + ¢(Homa(B, X)))

from each side of the above inequality we get

¢(Homp (M, X)) < ¢(Homy (N, X))

13



for each A module X.

As mentioned earlier degeneration does not implies virtual degeneration in general
due to the example of J. Carlson. So in general, there is no equivalence between these
three relations, but again Zawara come up with an important example when these three

notions are equivalent.

Theorem 2.1. If A is an artin K-algebra of finite representation type, and M and N are
two A-modules of the same length as K-modules, then the following three statements

are equivalent:

- MSdeg N.
- Msvdeg N.

- M<pomN.

14



Examples of Degeneration Order Of The
Modules for the Kronecker Quiver Over

The Field Of Two Elements

Let I be the Kronecker quiver 1 = 2 and A = Z,T be the path algebra of I' over the field
Z, with two elements. This chapter is dedicated to derive all degenerations between
isomorphism classes of modules over A of dimension vector (1,1), (2,2) and (3,3) and

the Hasse diagrams of the corresponding partial orders.

Definition 3.1. A degeneraton M < ., N is called minimal if there does not exist a

A-module M’ such that M <geg M <geq N with N#M # M.

The degeneration order is only determined for the modules of dimension vector
(1,1), (2,2) and (3,3). Hasse diagram are very intuitive tools for dealing with partial
orders on finite sets and therefore is chosen here to represent the degeneration orders
determined in these examples. The transitive reduction here is the minimal degeneration
as the covering relation on the finite set of modules. Given an exact sequence 0 —

Y N M £ N — 0 of A-modules, it follows that there always exist an exact sequence

0—-Y V) YoM (&) Y ® N — 0 which implies M <4, Y @ N. This fact will be extensively

used in this article.

ni ny
ZZ ZZ

The map between two modules are represented here as | | A5, || with Aand B

ny my
ZZ ZZ

are matrices of order m; x n; and my x n, respectively.

There are only four A-modules of dimension vector (1,1) and all are non-isomorphic.

15



16 CHAPTER 3. EXAMPLES OF DEGENERATION

The only decomposable module is P @ I}, where P is the simple projective correspond-
ing to vertex 2 and I; is a simple injective corresponding to vertex 1. The remaining three
modules are all indecomposables with endomorphism rings isomporphic to Z, which is
local, and the indecomposables can be described with a specific nomenclature such as
2y Zy Zy
Ron=11]00 Rea1=0]]1, Rini=1}]1
Zy Zy Zy

Trivially, there always exist a short exact sequence

0— P, — Rj; — I —0,i=0,1,00. Therefore R; 1 <g.g P> ® I are minimal degen-

rations and hence the Hasse diagram of the associated partial order can be drawn as:

Pyolh

Figure 3.1: Hasse diagram of the degeneration order for modules of dimension vector
(1,1

The rows are determined with ascending dimensions of the endomorphism rings
of A-modules and to simplify it more each module represent the class of modules with
isomorphic endomorphism rings which in this case is trivial but will be helpful in coming
examples. Finding isomorphism classes of A-modules of higher dimension vector can

be a little tricky. This may be simplified by using the following description.

Let G = Gl,,(Z}) x Gl,(Z}), where GI,,(Z}) is the set of all n x n invertible matrices
and X is the set of all representation of dimension vector (7, n). Define a group action

0:Gx X — Xby (g, h) x (A B)=(hAg~',hBg~!) where (g, h) € G.

As discussed in chapter 2 there is bijection between the set of isomorphism classes
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of A-modules in X and the set of G-orbits. With the above group action o and using
Burnside’s lemma, one gets that there are 16 A-modules of dimension vector (2,2) up
to isomorphism. The indecomposables are found by the fact that their endomorphism

rings are local. Four modules are found to be indecomposable up to isomophism.

There is only one module up to isomorphism that has endomorphism ring iso-
morphic to the field of 4-elements GF(4), which is local. Further, it corresponds to

the only available irreducible polynomial of degree 2 in Z,[X] and we represent it by

2
Z5
0 1
Ry2, 412 =1|| a;» Where I is the identity matrix and a; = is the matrix of lin-
1 1
2
Z;

ear operator obtained by Z,[x]/ f A Zy[x]/ f relative to the basis induced by 1 and x,

where f = x? + x + 1 is the only monic polynomial of degree 2. The remaining inde-

2
z z; z
0 1
composables are Ry2 = || @y R1,2=1]| a3 and Re2 = @, || I. Where az = ,
00
2 2 2
Z Z, Z,
1 1 0 1
as = and a4 = . Their endomorphism rings are isomorphic to the local
0 1 0 0

ring Z,[X]/ < x% >.

The remaining 12 isomorphism classes of A-modules are decomposable and can

completely be determined by the list of indecomposable, projective, injective and simple
Z

2

Z;

1 0
A-modules that is P; = 1l ,P=8, =8 and I, = (1 0) 1l (0 1). Which

0 1

Z,
z;

then easily leads to the list of all isomorphism classes of decomposable modules. The list
includes R,',l GBR]‘YI, i< j, PioS, LSy, Ri,l @Ri,l» R,‘JGBSIGBSz and S;8S519S,8S,. Note
that 7 and j varies as 0,1,00 and i < j whenever they come together in a single module

notation through out this paper. The corresponding dimensions of their endomorphism

rings as Z,-modules are 2, 3, 3, 4, 5 and 8 respectively and further are given as:
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1. EndA(R,-,l @R]‘,l) =7o® 7y
2. Endp(R;2) = Zs[x)/ < x* >

3. EndA(Rx2+x+1,2) = GF(4)

a 0
0
b ¢
4, Ei’ldA(Pl @Sl) = € My(Z>)
a 0
0
0 a
a 0
0
0 a
5. Endpa(l® Sy) = € My(Z5)
a b
0
0 c
a b
6. Endp(R;1 ®R;1) = € M>(Z5)
c d
a 0
0
b ¢
7. Ei’ldA(Rl‘,l &S0 8)) = € My(Z5)
a d
0
0 e
a b
0
c d
8. EndA(SIGBSl@Sz@Sz): € My(Z»)
e f
0
g h

Hasse diagram in Figure 2 is then drawn by arranging the modules in rows corresponding
to the ascending dimension of their endomorphism rings and further each modules is

the representatives of the class of modules with same endomorphism rings. The joining
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Rii®Rj, Ri>
/1N
N 75T

PioS; LeS)

Rx2+x+1,2

Ri1®R;

Ri,1 &S5,

S1eS51958 S,

Figure 3.2: Hasse diagram for the degeneration order of modules of dimension vector
2,2)

lines represent all the minimal degenerations and they are determined by using the
technique discussed earlier in this chapter. We have the following short exact sequences

which correspond to the minimal degenerations for i =0 and j = 1 in Figure 2:

0|10 O
1111 1 (0 1)’(0)
1. O_’Pl—’RO,l@Rl,l S$1—0
1 0 1
o) o]
0 1 0
2.0—- 8, R()J@Rl,l I, —0
1)1
0]{0 (0 1)’(0 1)
3. 0—Ro1 R0,2 RO,I -0
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0 1
{19
ollo) o
5.0— 8, R L—0
1111 O
0/10 1 (0 l)v(O)
6. 0— Py ST $1 -0
0 0 1
o {19
1 1 0
7.0—S, Reyyi1p—————— 1 —0
0 1 0
o o)
1 0 0
8. 0— S, PieS; R0,1®51—>0
111
ol o il
9. 0—>R0,1 LeS $198,—0
0 1
o]
(0)'(1 O) 1 0
10. 0— S, R()JEBROJ R0,1®81—>0
0 1
o]
(0)'(1 O) 1 0
11. 0—- S, R(),l@Sl@Sz S195195,—0

Exact sequences can easily be found for other values of i and j in a similar fashion. No

other minimal degeneration is possible. To prove this we recall a proposition from [6].

Proposition 3.1. Let M and N are A-modules then M %_deg N if dim(Hom(X,M)) £
dim(Hom(X, N)), for some X where M, N and X are A-modules.

By virtue of this proposition the following cases turn out to have no degenerations.
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1. Rx2+x+1'2 ﬁdeg Ri,l ® Ri,l’

since dim(Hom(X, Rz, 412) £ dim(Hom(X,R;1 ® Ri1)) for X=R2, 1,
2. Ri1®Rj1 Laeg Rin ® Rii for X=R;,

3. oS ﬁdeg Ri,l EBR,'J for X =8;

Others only have zero homomorphisms between each other for instance say between
A-modules M and N and therefore there cannot be an exact sequence of the form

0—-Y—-YeoM—N-—O0.

Now for the case of A-modules of dimension vector (3,3), there are 52 A-modules
up to isomorphism using the analogy as has been used in previous example. There
are 5 indecomposable A-modules, and it turns out that their endomorphism rings are
isomorphic either to Z,[x]/ < x> > or GF(8) (the field of 8-elements). Three of the 5
indecomposable A-modules of dimension vector (3,3) have endomorphism rings iso-
morphic to Z,[x]/ < x* > and they are represented and named as

z z z3 010 1 10
Ros=1||ppRis=1||p,andRec3=p; || L wherefi=|0 0 1|andf2=[0 1 1]

z z z3 0 0 0 0 0 1

The other two have endomorphism rings isomorphic to GF(8) and they are R, 3 =1 | | B3

3
ZZ

z3 0 0 1 00 1

and Ry, 3=71|| By wheref3=|1 0 ofandfs=|1 o 1 [arelinearoperatorsob-

73 01 1 010
tained by Z,[x]/ f = Zolxl/ f relative to the basis induced by 1, x and x*. Where f = p;
or p, and p; = x3 + x? + 1 and p, = x3 + x + 1 are the irreducible monic polynomials of

degree 3.

Note that these are the only irreducible polynomials in Z,[x] of degree 3. There is only

one pre-projective A-module and one pre-injective A-module up to isomorphism that
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2
ZZ

can be the summands of A-modules of dimension vector (3, 3) and they are P= Bs 1 B

z
z 0 0 0 1
~ 0 0 1
and I = B, || pg respectively, Where s = |0 1|, fe=|1 0| f7= and
01 0
V3 1 0 0 0
01 0
Ps =
1 0 0

Figure 3 shows the Hasse diagram associated to the degeneration order of A-modules.

Note that in Figure 3 p,, r = 1,2 represents the two irreducible polynomials.

The rows have A-modules with endomorphim rings of increasing dimensions: 3, 4,
5,6, 8,9, 10, 13 and 18 as one goes down the rows. Following is the list of endomorphism
rings of all modules in the Figure 3 except the indecomposables which are already

mentioned. This information is vital in order to draw the above Hasse diagram:

1. EndA(Royl EBRLl EBROOJ) =7y x Ly x 2o

2. Enda(Riy ® Rjp) = Zo[x]/ < x* > xZ,

3. Endp(Ry, 11 ® Rin) = GF(4) x Z,

a 0 0
0 a 0 0
_ 0 0 a
4. Endpn(I8 Ss) = € Ms(Z>)
a 0 b
0 0 a ¢
0 0 d
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Ro1®Ri,1 ® Rol Rip®Rjo Re2yxi12®Rin Ri3 Ry, 3

Ri1®R;19Rj; Ri1®R;p

RIZGBSl@Sg x2+x+12$81®82 ll@RJIGBSIEBSg
W e
LSS0 S, PieS 951885, ,1®R11€951€BSQ

N

Ri,leéslﬂBSl@SzGBSz

S195186519S50S5,8 S,

Figure 3.3: Hasse diagram for modules of dimension vector (3, 3)
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a 0 b
0 a c 0
0 0 d
5. Endy(P1 o L) = € Ms(Z>)
a b c
0 0 d O
0 0 d
a 0 0
b d o 0
- c 0 d
6. EndA(Pele): € Ms(Z>)
a 0 0
0 0 a 0
b ¢ d
a b 0

7. EndA(Ri,1$Ri,1®Rj,1)= c d o0l|eMs(Zy)

0 0 e

a b ¢

8. Enda(Rin®Rip)=|0 a 0|€M3(Z)

0 d e
a 0 O
0 a b 0
0 0 d
9. EndA(Ig EBR,"I Sy = € MG(ZZ)
a b ¢
0 0 d e
0 0 f



10. EndA(P1 & Ri,l &Sy =

11. EndA(Rm &S 88y =

12. EndA(Rx2+x+1,2 ®S510S5)=

13. EndA(RM QBR]'J &S S,) =

25

€ Mg(Z2)

€ Mg(Z2)

€ Mg(Z2)

€ Mg(Z2)

0 b g

0 0 h
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a b c

14. Endy(Rin®Rin®Ri1)=|d e f|€MsZy)

g h k
a 0 0
0 a 0 0
d b ¢
15. Endpa(lL,®S19 S, Sy) = € Mg(Z>)
a e f
0 0 g h
0 k I
a b 0
c h 0 0
d e g
16. EndA(RiylﬂBRi,l@Sl@Sz) = € Mg(Z>)
a b f
0 c h k
0o 0 !
h 0 O
a b ¢ 0
d e f
17. Endpa(P1&S1© 51 S5) = € Mgs(Z>)
h 0 g
0 0 h k
0o o0 I




18.

19.
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g 0 0
a b c 0
d e f
EndA(Ri,1$Sl®SleaSgea82): € Mg(Z>)
g h k
0 0 I m
0 n p
a b c
d e f 0
g h i
Enda(S10S51 80819505, 88, = € Mg(Z5).
a b
0 dl el fl
g/ o

Many of the degenerations in Figure 3 follow directly using the degenerations for A-

modules of direction vector (2,2) as if M <geg N implies M® Y Sgeg N®Y for M, N and

Y are the A-modules. The following exact sequences describe these degenerations;

1.

2.

0—-Ri1—Rj1®Rj>—~Ri1®R;1 —0

0—'82—'P1€3]2—>12€BR,‘,1—'0

. 0—>P1€9Rivl—'P1$12—>Sl—>0

0—>Sz—'Ri,1€9Ri,1@Rj,1—>12€9Ri,1—>0

. 0—>P1—>Ri'1€9Ri'2—>Ri'1€BSI—>0

0—’Rj,1—’IZGBRLIQBSZ_’RZ'J@Sl@Sz_’O

0—’82@82—>Ri,2®81®82—>lg®81—>0

. 0—>81@Sz—»sz+x+lyze>81@82—>lgesl—»0

0—>P1—>Rx2+x+1'2®81®52—>Sl@Sl€BSg—>0
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10. 0~ S, — R;1®R;18518S, —~ L8585, —0
11. 0= P~ R;1®R;1 85195~ 5165195, — 0

12. 0> S —R;1®R;1®R;1— Ri1®R; 15— 0

13. 0—-Ri1— DLheS18505—> 516519585, —0

14. 0— S —R;1®R; 1851952~ R; 18518951905, —0

15. 0> 8 —P1eS5165195—R 185195195, —0

16. 0—S2— R 105105105285 —5105185105:85®5,—0

Other exact sequences corresponding to the minimal degenerations in Hasse diagram in

Figure 3 for i = 0 and j = 1 are given below:

0 01 1
1 1 0
(O)vO 01 0
01 0
1 1 1 0
1 0—’82 RO,1$R1,1®R00,1 I—0
1111 O
111 1 1 1 0
'(l 1 1)
1110 1 0 1 1
2. 0—- P R0,1®R1,1®R00,1 IL—0
1 0|({0 0 1
1 1)1 1 1
0 1/11 0 O (1 1 l)v(())
3.0—-P R(),l@Rl,lG)Roo,l—*Sl—'O
1 0 0 1
1 1 0
(O)vl o1 1)
0 1 1
1 1 1 0 ~
4. 08, R()_léBRLz -0
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1|11 O
11 O 1 1 0
[
11|11 1 0 1 1
5. 0—-P R0'1$R1'2 I —0
1 0|0 0 1
1 10 1 1
0 1/11 1 O (1 1 l)(O)
6. 0— P RO,1$R1,2 Sl_’O
1 1 0 0
0 1 1
(O)v 1 1 1 0
1 1 0
1 0 1 1
7. 00— 8, Rx2+x+1,2®R0'1 I1—0
01{0 1
111 1 1 1 1
’(1 1 1)
111 O 1 0 O
8. 0— Py Re2yxi12® Ro1 L—0

(=]

1 00 1 (1 1 1){0)
9. 0— P Ryyys12®Ro) ~—————— 81 =0

1 0 0 1
1 10
(o)q 01 1
01 1
1 1 10
10. 0—S» Ro3 I—-0
1/{1 1
oljo 1 11 1
,(111)
1]{1 o 01 0

11. 0—>P1 Royg ]2_>0
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12.

13.

14.

15.

16.

17.

18.

CHAPTER 3. EXAMPLES OF DEGENERATION

1 1|1 1 1
0 1)/0 1 O
1 0J{0 0 1 (1 1 l)(O)
0—P R0,3 Sl—’o
1 1 1 0
0 1 1
(O)YI 1 0 1f
1 0 1
1 1 0 0
0—S5; Riixi13 -0
0]1{0 1
1111 O 0 1 1
’(0 1 1)
0j{1 O 0 0 1
0— P XB+x+1,3 ;=0
0 1|1 1 0
1 1)1 1 1
_ 1 0J{1 0 1 (l 1 1){0)
0—P Ri31x413 S1—0
0 1 0|10 1 O
(1 0 O)v(l 0 0) 0 0 1]{0 0 1
0— Roa Ros
o]f1 1
0|0 O 1 0 O
'(0 1 0)
1110 1 _ 01 0
0—>52@R0,1 185, IL—0
0|0 1
11 O 1 0 0
V(O 0 1)
0]{0 O _ 0 0 1
0— P Po S R0y16951—>0

Ro_z -0



0 01 0
1 01
(O)v 1 1 0 0
0 0 1
0 1 1 1
19. 0—- S, I GBR()J N Ro,g ®S5 —0
1 0 1 0
01 1
(O)v 0 1 0 Of
0 0 1
0 1 1 1
20. 0— 8, P1€BROy1 a5 Royg@Sl -0
0]{0 O
111 1 1 0 0
[0
0/10 1 1 0 1
21. 0—>R0,1€982 P1®R0,1®Sl GBSIGBROII -0

Degenerations for other values of i and j can easily be determined.

Again by proposition 2 the following cases turn out to have no degenerations.
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1. Ro1 ® R1,1 ® Roo,1 Ldeg Ri1 ® Riy ® Rj 1 for X = Ry,;, with i < jand i,j # k,

k=0,1,00
2. Re2iy12®Rit Laeg Rig ®Rin @ Rj) for X=Ry2, 1112
3. Rezyy12®Rin Laeg Rin ® Ri2 for X=Ry2 11
4. Ry 3 Ldeg Rin ®Ri> for X = p;
5. 1©Sy Lgeg Rin®Ri1 ®Rj, forX=1
6. 1©Ss Laeg Rin ®Ri2 for X =1
7. Pre Ly £4eg Rin ®Ri1 ® Rj 1 forX=10
8. Prol £4eg Ri1 ®Rip forX=1,

9. Po s ﬁdeg Ri1®R;» for X=8;
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10. Ri2®S1®S2 Laeg Ri1 ® Rij1 ® Ryt forX=35,;

11. PeS) Laeg Rin®Rin@R;,;  forX =5

12. L®R; 1952 Ldeg Ryzyx112,981982  for X=R;,

13. PL®R;1©S1 Laeg Ry241112,9519S2  for X=R;,

14. Ri24y412©52®S1 Laeg Rin ® Rij1 ® Ry for X=Re2, 112

15. Rj1®Rj1® S198S, gdeg Ri1®R;19R; for X = Rj1

Here is the table of some data calculated:

dimension vector | (1,1) | (2,2) (3,3

no. of modules 4 256 | 262144

no. of indecomposables 3 66 29232

no. of isomorphic classes of modules 4 16 52

no. of isomorphic classes of indecomposable modules 3 4 5

|Gl (Z2)| ® |Gl (Z2)] 1 36 28224
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