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Abstract

Let K be a field andΛ be an artin K -algebra. Let r epdΛ represent the set of allΛ-modules

with the length equal to a natural number d as a K -vector space. The set of modules

r epdΛ is equipped with the action of the general linear group. The corresponding

Zariski-topology for algebraically closed field K then induce a partial order on r epdΛ,

which is called degeneration order and it is denoted by ≤deg . Here for M and N , Λ-

modules, the notion M ≤deg N mean that the orbit of N under the action of general

linear group is contained in the closure of the orbit of M under the same group action.

Another partial order on r epdΛ first showed by Riedtmann, is the virtual degeneration

order, which is denoted by ≤vdeg , are given by M ≤vdeg N , if there is aΛ-module X such

that M ⊕ X ≤deg N ⊕ X . There are known examples where these two partial orders do

not coincide. If K is an algebraically closed field, there is a geometric interpretation of

these notions. However, there is also a module theoratical interpretation, which can

be generalized to the general settings with K a commutative artin ring. Let Γ be the

Kronecker quiver 1 â 2 andΛ=Z2Γ be the path algebra of Γ over the field Z2 with two

elements. In this work all degenerations between isomrphism classes of modules overΛ

of dimension vector (1,1), (2,2) and (3,3) are determined and the Hasse diagrams of the

corresponding partial orders are given.
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Chapter1Introduction and preliminaries

1.1 Introduction

Let K be a field and Λ be an artin K -algebra. Let r epdΛ represent the set of all Λ-

modules with K -length equal to a natural number d. the set of modules r epdΛ is

equipped with the action of the general linear group. The corresponding Zariski-topology

for algebraically closed field K then induce a partial order on r epdΛ, which is called

degeneration order and it is denoted by ≤deg . Here for M and N ,Λ-modules the notion

M ≤deg N mean that the orbit of N under the action of the group is contained in the

closure of the orbit of M under the same group action. Another partial order on r epdΛ

first showed by Riedtmann [1], is the virtual degeneration order, which is denoted by

≤vdeg is given by M ≤vdeg N , if there is aΛ-module X such that M⊕X ≤deg N⊕X . There

are known examples where these two partial orders do not coincide.

If K is an algebraically closed field then there is a geometric interpretation of these

notions. The theorems of Christine Riedmann and Grzegorz Zwara give a complete alge-

braic description, which can be generalized to the general settings with K a commutative

artin ring. See [2, 1] for detail. This work deals with the notion of degeneration for non

algebraically closed field K and the generalized pure module theoretical interpretation is

used here. Chapter 2 is dedicated to describe these notions, especially the degeneration

order.

Chapter 3 is devoted to explain some examples of degenration order of the modules for

the kronecker quiver over the field of two Z2. The degenerations between isomorphism

classes of modules of dimension vector (1,1), (2,2) and (3,3) are determined and the
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Hasse diagrams will be used to present a graphical representation of the partial order.

1.2 Preliminaries

Hasse diagram is a very intuitive tool to give a graphical representation of partial orders

on finite sets consisting of vertices and line segments. A vertex represent each element

of the partially ordered set and the line segements are drawn between these vertices

according to the following rules:

– if x < y in the poset, then the vertex corresponding to x appears above in the

drawing than the vertex corresponding to y .

– The line segment between the vertices corresponding to any two elements x and y

of the poset can only be included in the graphs if x < y and x < z < y implies that

z = x or z = y .

Example:

Let the set x, y, z be a partially ordered set where the relations between the elements are

x < z and y < z, then the Hasse diagram would look like this

x y

z

Throughtout this dissertation, modR denotes the the category of finitely generated

R-modules, where R is a ring. The subcategory i ndR ⊆ modR consists of exactly one

representative of each isomorphism class of indecomposable modules in modR. The

ring R is said to be of finite representation type if i ndR is finite. An R-module is called

artin if every descending chain of proper submodules is finite. We say R is artin if it

is artin as an R-module. Let K be a commutative ring, then a K -module Λ is called a

K -algebra if it is also a ring such that

a(x y) = (ax)y = x(ay)
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for all a ∈ K and x, y ∈Λ.

Further if K is a commutative artin ring, then a K -algebraΛ is called an artin K -algebra

if it is finitely generated as a K -module. Here we present some examples of algebras

Example:

In all these examples K is a commutative ring.

– LetΛ= K , thenΛ not only is a K -algebra but also artin algebra if K is an artin ring.

– Let Λ = K [X ] the polynomial ring in one variable is a K -algebra. It is finitely

generated as an algebra by {X }, however as a K -module the basis set
{
1K , X , X 2, ...

}
is not finite. Hence it is not an artin algebra over K .

– Let the ring of polynomials in n commuting variables K [X1, X2, ..., Xn] is a K -

algebra. It is finitely generated as an algebra by {X1, X2, ..., Xn}, but again for the

similar reason is not finitely generated as a K -module and therefore is not artin

algebra.

Path algebra

A path algebra is an important example of an algebra which is extensively used in this

work. The starting point is a quiver Q which is a directed graph where loops and multiple

arrows between vertices are allowed, i.e. a directed multidigraph. The quiver Q consists

of a set of vertices Q0 and a set Q1 of oriented edges. The oriented edges are also often

called arrows. We explain this with an example.

Example:

1 2 3
α β

One can construct an algebra using all the oriented paths in this oriented graph

including the paths of length zero at each vertex as a basis. By concatenating paths one

makes a multiplication table for these base elements and in this way one obtains the

path algebra. For the example of the quiver above, this will be a six dimensional algebra,
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with basis e1, e2, e3, α, β and βα. Here e1, e2 and e3 represent the paths of length zero at

the vertices 1, 2 and 3 respectively. One has to make a convention about how to represent

a path and here one is using the convention that an oriented path is ordered from right

to left. The multiplication table for this algebra is rather long, but for the convenience of

the reader the complete table is included.

e1.e1 = e1, e1.e2 = 0, e1.e3 = 0, e1.α= 0, e1.β= 0, e1.βα= 0, e2e1 = 0, e2e2 = e2, e2e3 = 0,

e2α = α, e2β = 0, e2βα = 0, e3e1 = 0, e3e2 = 0, e3e3 = e3, e3α = 0, e3β = β, e3βα = βα,

αe1 = α, αe2 = 0, αe3 = 0, αα= 0, αβ = 0, αβα = 0, βe1 = 0, βe2 = β, βe3 = 0, βα= βα,

ββ= 0, ββα= 0, βαe1 =βα, βαe2 = 0, βαe3 = 0, βαα= 0, βαβ= 0, βαβα= 0.

Here e1 + e2 + e3 is the identity element.For this simple example, the path algebra is

isomorphic to the K -algebra of lower three by three matrices over K . To see this let ei j

be the matrix with 1 in place i j and zero otherwise. Then an isomorphism can be given

by sending e1 in the path algebra to the matrix e11, e2 in the path algebra to the matrix

e22, e3 in the path algebra to the matrix e33, α in the path algebra to the matrix e21, β in

the path algebra to the matrix e32 and βα in the path algebra to the matrix e31. An easy

calculation now shows that this is a K -algebra isomorphism from the path algebra of

this quiver to the algebra of lower three by three matrices over K .

Let R be a commutative artin algebra andΛ be R-algebra then we define the following:

Definition 1.1. A -module P in ModΛ is projective if for every module epimorphism f :

N −→ M and every module homomorphism g : P −→ M , there exists a homomorphism

h : P −→ N such that f h = g . An aribtrary module A is said to be preprojective if and

only if (DTr )n A = 0 for some nonnegative integer n.

Definition 1.2. A -module I in ModΛ is injective if for any module monomorphism f :

N −→ M and every module homomorphism g : M −→ I , there exists a homomorphism

h : N −→ I such that h f = g . An aribtrary module B is said to be preinjective if and only

if (Tr D)nB = 0 for some nonnegative integer n.

Definition 1.3. A representation (V , f ) of a quiver Q over a field K is a set of vector spaces

V (i ) | i ∈Q0 together with K -linear mapes fα : V (i ) −→ V ( j ) for each arrow α : i −→ j .

Further a representation (V
′
, f

′
) is called a subrepresentation of (V , f ) , if V

′
(i ) ⊂V (i ) for

all i0 and f
′
α = fα|v(i ) for each arrow α : i −→ j .
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Definition 1.4. In abstract algebra, a module is indecomposable if it is non-zero and

cannot be written as a direct sum of two non-zero submodules. Equivalently, representa-

tion of an algebra is said to be indecomposable if it cannot be expressed as a direct sum

of proper nonzero subrepresentations.

Example:

The Kronecker quiver is the quiver having two vertices 1, 2 and α1, α2 : 1 → 2. The

representations of K consist of two vector spaces V and W together with linear maps f1,

f2 : V →W . The dimension vector is the pair (di mV ,di mW ) of non-negative integers.

The Kronecker quiver is represented as:

1 2
α1
α2

The isomorphism classes of representations with dimension vector (m,n) corre-

spond bijectively to the r -tuples of n×m matrices, up to simultaneous multiplication by

invertible n ×n matrices on the left, and by invertible m ×m matrices on the right. The

pairwise non-isomorphic indecomposable representations up to isomorphism are given

by the following representations for m ∈N and λ ∈ K (see [5]).

K m K m
1m

Jm,K

where

1m =



1

1

. . .

1


is the m ×m identity matrix and
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Jm,K =



λ 1

λ 1

. . .

λ 1

λ


is a Jordan block of size m ×m. The number of such indecomposables is infnite, but

can be organized in a one-parameter family in every dimension.
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Chapter2Some partial orders and their mutual

relationship

This chapter is devoted to explain the notions of degeneration, virtual degeneration,

Hom orders and their mutual relationship.

2.1 Degeneration

We start by discussing the geometric interpretation of degeneration order.

Definition 2.1. A homomorphism between two algebras,Λ1 andΛ2, over a field K , is a

map such that for all r ∈ K and λ1,λ2 ∈Λ1,

F (rλ1) = r F (λ1)

F (λ1 +λ2) = F (λ1)+F (λ2)

F (λ1λ2) = F (λ1)F (λ2)

Further, we define r epdΛ for a finitely generated K -algebraΛ and a fixed natural number

d , by a set of all K -algebra-homomorphisms fromΛ to Md (K ).

Example:

– ForΛ= K , r epdΛ consist of only one homomorphism sending 1Λ to Id where Id

is d ×d identity matrix.

– ForΛ= K [X ], r epdΛ' Md (K ), by sending f ∈ r epd (Λ) to f (X ). This can easily be

extended to r epdΛ' Md (K )×Md (K ) forΛ= K < X ,Y > (see [6]).
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For each f ∈ r epdΛ there is associated a d-dimensional Λ-module M f . This module

is K d as a K -vector space and define Λ action on M by λ.x = f (λ)x for all λ ∈ Λ and

x ∈ M f = K d .

Conversly, from a d-dimensional Λ-module M one can have a fM ∈ r epdΛ by fixing a

K -basis for M and identifying M with K d through this basis. This setting then allow to

construct fM by letting fM (λ) be the matrix where the i th column is λ times the i th basis

vector in M . It can easily be verified that fM is K -algebra homorphism.

Any f ∈ r epdΛ is completely determined by its values on the generators ofΛ. SinceΛ is

finitely generated, by letting X1, X2, ..., Xn be a generating set, the n-tuple ( f (X1), f (X2), ..., f (Xn)) ∈
Md (K )n can be identified with f . Here, one realize that r epdΛ is an affine space.

We also define a group action of the set of invertible d ×d matrices Gld (K ) on r epdΛ

by

G ∗ f = (G f (X1)G−1,G f (X2)G−1, ...,G f (Xn)G−1)

where G ∈Gld (K ).

We denote the orbit of f under the group action above by O( f ). IfΓ= KQ is a path algebra

then there is a correspondence between the representations of dimension vector ddd =
(di )i∈Q0 and points in r epdΛby choosing basis for each vectorspace in the representation

where ddd =∑
di . Two elements f and f

′
in r epdΛ represent isomorphicΛ-modules M f

and M
′
f if and only if f and f

′
belong to the same orbit under the action of Gld (K ) on

r epdΛ. This follows from the following result:

Lemma 2.1. The orbits of O( f ) for f ∈ r epdΛ corresponds to the isomorphism classes

ofΛ-modules of dimension d or equivalently correspond to the isomorphism classes of

representations with dimension vector ddd , where ddd = (di )i0 and ddd =∑
(di )

Definition 2.2. Let f ∈ r epdΛ then Zariski closure of O( f ) is

O( f ) = {
g ∈ r epdΛ/p(g ) = 0 for all polynomialsp such that p(O( f )) = 0

}
.

Degeneration on r epdΛ is then defined as f ≤deg g ⇐⇒ g ∈O( f ). or equivalently let M

and N be d-dimensionalΛ-modules and let fM and fN be the corresponding elements

in r epdΛ then M ≤deg N , if O( fN ) ⊆O( fM ).
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Degeneration make a reflexive and transitive relation on the set of isomophism

classes of d-dimensionalΛ-modules. In the later part of this chapter we will see that it

is also antisymmetric, and hence is a partial order on the set of isomorphism classes of

d-dimensional Λ-modules and will be called the degeneration order throughout this

work. This description of degeneration provide an algebraic interpretation. Thanks to

results from C. Riedtmann [1] and G. Zwara [2] providing an algebraic description for the

notion of degeneration. We start by the following result from Riedtmann [1]:

Proposition 2.1. Let Λ be a finitely generated K -algebra. If there exists a short exact

sequence sequence

0 → A → A⊕M → N → 0

of Λ-modules with A, M and N finite dimensional as Λ-modules, then di m(M) =
di m(N ) and M ≤deg N .

Proof. A proof of this proposition is available in [1] and therefore is not given here.

Proposition 2.2. Let Λ be a finitely generated K -algebra and M and N in r epdΛ with

M ≤deg N . Then there exists an exact sequence 0 → A → A⊕M → N → 0 ofΛ-modules

where A is finite-dimensional as a K -module.

These two results combined give a complete algebraic despcription and therefore

this notion can be extended to algebras over commutative rings. From now on K will be

a commutative artin ring,Λwill be a finitely generated algebra over K .

Here we also present a result from [6] which states that

Lemma 2.2. Let M and N be non-isomorphicΛ-module. Then there exists aΛ-module

X such that `(HomΛ(X , M)) 6= `(HomΛ(X , N )).

The above two results can be used to show that degeneration is antisymmetric. If M ,

N ∈ mod(Λ) such that M ≤deg N and N ≤deg M implies

0 → A → A⊕M → N → 0
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0 → B → B ⊕N → M → 0

Where A, B ∈ mod(Λ). For any X ∈ mod(Λ) one get two new short exact sequences

0 → HomΛ(N , X ) → HomΛ(A⊕M , X ) → HomΛ(A, X )

0 → HomΛ(M , X ) → HomΛ(B ⊕N , X ) → HomΛ(B , X )

This follows

di mK (HomΛ(M , X ))+di mK (HomΛ(A, X )) ≤ di mK (HomΛ(A, X ))+di mK (HomΛ(N , X ))

=⇒ di mK (HomΛ(M , X )) ≤ di mK (HomΛ(N , X ))

In a similar way we get

=⇒ di mK (HomΛ(N , X )) = di mK (HomΛ(M , X ))

for any X . Using above lemma we conclude that M ' N and therefore degeneration is a

partial order on the set of isomorphism classes of r epdΛ.

Later G. Zwara [2] proved that the converse of Riedmann’s result holds.

2.2 Virtual Degeneration and Hom-order

This section is devoted to introduce two other important partial orders on r epdΛ. Vir-

tual degeneration is a generalization of degeneration. In general one cannot cancel

common direct summands from M and N when M ≤deg N (courtesy: an axemple due

to J. Carlson)[1]), and obtain a degeneration of the remaining complements. But virtual

degeneration provides this generalization and thus it is formally defined as

Definition 2.3. Let M and N beΛ-modules, M virtually degenerates to N if M ⊕X ≤deg

N ⊕X for some X ∈ mod(Λ). It is denoted as M ≤vdeg N .

One can choose X to be the zero module, so obviously ≤deg =⇒≤vdeg .
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Definition 2.4. Let M and N areΛ-modules, We write M ≤Hom N if `K (HomΛ(X , M)) ≤
`K (HomΛ(X , N )) for all X ∈ mod(Λ).

Hom-order provide an opportunity to extend the notion of virtual degeneration to

situations where finitely generated algebraΛ over a commutative artin ring K instead

of over an algebraically closed field(Using the charaterization of virtual degeneration

given by short exact sequences). The relationship between virtual degeneration and

Hom-order is established in following proposition.

Proposition 2.3. Let Λ be a finitely generated K -algebra. If the Λ-module M virtually

degenerates to theΛ-module N , i.e. there is an exact sequence ofΛ-modules

0 → A → A⊕B ⊕M → B ⊕N → 0

which are of finite length as K -module, then

`K (HomΛ(X , M)) ≤ `K (HomΛ(X , N ))

for eachΛ-module X which has finite length as a K -module.

Proof. Since M ≤vdeg N then for anyΛ-module X there exists an exact sequence

0 → HomΛ(A, X ) → HomΛ(A⊕B ⊕M , X ) → HomΛ(B ⊕N , X )

From this we get

`(HomΛ(A⊕B ⊕M , X )) ≤ `(HomΛ(A, X ))+`(HomΛ(B ⊕N , X ))

By subtracting

(`(HomΛ(A, X ))+`(HomΛ(B , X )))

from each side of the above inequality we get

`(HomΛ(M , X )) ≤ `(HomΛ(N , X ))
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for eachΛmodule X .

As mentioned earlier degeneration does not implies virtual degeneration in general

due to the example of J. Carlson. So in general, there is no equivalence between these

three relations, but again Zawara come up with an important example when these three

notions are equivalent.

Theorem 2.1. IfΛ is an artin K -algebra of finite representation type, and M and N are

twoΛ-modules of the same length as K -modules, then the following three statements

are equivalent:

– M ≤deg N .

– M ≤vdeg N .

– M ≤hom N .
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Chapter3Examples of Degeneration Order Of The

Modules for the Kronecker Quiver Over

The Field Of Two Elements
Let Γ be the Kronecker quiver 1 â 2 andΛ=Z2Γ be the path algebra of Γ over the field

Z2 with two elements. This chapter is dedicated to derive all degenerations between

isomorphism classes of modules overΛ of dimension vector (1,1), (2,2) and (3,3) and

the Hasse diagrams of the corresponding partial orders.

Definition 3.1. A degeneraton M ≤deg N is called minimal if there does not exist a

Λ-module M
′

such that M ≤deg M
′ ≤deg N with N 6' M

′ 6' M .

The degeneration order is only determined for the modules of dimension vector

(1,1), (2,2) and (3,3). Hasse diagram are very intuitive tools for dealing with partial

orders on finite sets and therefore is chosen here to represent the degeneration orders

determined in these examples. The transitive reduction here is the minimal degeneration

as the covering relation on the finite set of modules. Given an exact sequence 0 →
Y

f→ M
g→ N → 0 of Λ-modules, it follows that there always exist an exact sequence

0 → Y
( f )→ Y ⊕M

(g ,0)→ Y ⊕N → 0 which implies M ≤deg Y ⊕N . This fact will be extensively

used in this article.

The map between two modules are represented here as

Z
n1
2

↓↓

Z
n2
2

A,B−−→
Z

m1
2

↓↓

Z
m2
2

with A and B

are matrices of order m1 ×n1 and m2 ×n2 respectively.

There are only fourΛ-modules of dimension vector (1,1) and all are non-isomorphic.
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16 CHAPTER 3. EXAMPLES OF DEGENERATION

The only decomposable module is P2 ⊕ I1, where P2 is the simple projective correspond-

ing to vertex 2 and I1 is a simple injective corresponding to vertex 1. The remaining three

modules are all indecomposables with endomorphism rings isomporphic to Z2 which is

local, and the indecomposables can be described with a specific nomenclature such as

R0,1 =
Z2

1 ↓↓ 0

Z2

, R∞,1 =
Z2

0 ↓↓ 1

Z2

, R1,1 =
Z2

1 ↓↓ 1

Z2

.

Trivially, there always exist a short exact sequence

0 → P2 → Ri ,1 → I1 → 0, i= 0,1,∞. Therefore Ri ,1 ≤deg P2 ⊕ I1 are minimal degen-

rations and hence the Hasse diagram of the associated partial order can be drawn as:

R0,1 R1,1 R∞,1

P2 ⊕ I1

Figure 3.1: Hasse diagram of the degeneration order for modules of dimension vector
(1,1)

The rows are determined with ascending dimensions of the endomorphism rings

ofΛ-modules and to simplify it more each module represent the class of modules with

isomorphic endomorphism rings which in this case is trivial but will be helpful in coming

examples. Finding isomorphism classes ofΛ-modules of higher dimension vector can

be a little tricky. This may be simplified by using the following description.

Let G =Gln(Zn
2 )×Gln(Zn

2 ), where Gln(Zn
2 ) is the set of all n ×n invertible matrices

and X is the set of all representation of dimension vector (n,n). Define a group action

o : G ×X → X by (g ,h)× (A,B) = (h Ag−1,hB g−1) where (g ,h) ∈G .

As discussed in chapter 2 there is bijection between the set of isomorphism classes
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of Λ-modules in X and the set of G-orbits. With the above group action o and using

Burnside’s lemma, one gets that there are 16 Λ-modules of dimension vector (2,2) up

to isomorphism. The indecomposables are found by the fact that their endomorphism

rings are local. Four modules are found to be indecomposable up to isomophism.

There is only one module up to isomorphism that has endomorphism ring iso-

morphic to the field of 4-elements GF (4), which is local. Further, it corresponds to

the only available irreducible polynomial of degree 2 in Z2[X ] and we represent it by

Rx2+x+1,2 =
Z2

2

I ↓↓α1

Z2
2

, where I is the identity matrix and α1 =

0 1

1 1

 is the matrix of lin-

ear operator obtained by Z2[x]/ f
x→ Z2[x]/ f relative to the basis induced by 1 and x,

where f = x2 + x + 1 is the only monic polynomial of degree 2. The remaining inde-

composables are R0,2 =
Z2

2

I ↓↓α2

Z2
2

, R1,2 =
Z2

2

I ↓↓α3

Z2
2

and R∞,2 =
Z2

2

α4 ↓↓ I

Z2
2

. Where α2 =

0 1

0 0

,

α3 =

1 1

0 1

 and α4 =

0 1

0 0

. Their endomorphism rings are isomorphic to the local

ring Z2[X ]/ < x2 >.

The remaining 12 isomorphism classes of Λ-modules are decomposable and can

completely be determined by the list of indecomposable, projective, injective and simple

Λ-modules that is P1 =

Z21

0

 ↓↓

0

1


Z2

2

, P2 = S2, I1 = S1 and I2 =

Z2
2(

1 0

)
↓↓

(
0 1

)
Z2

. Which

then easily leads to the list of all isomorphism classes of decomposable modules. The list

includes Ri ,1⊕R j ,1, i < j , P1⊕S1, I2⊕S2, Ri ,1⊕Ri ,1, Ri ,1⊕S1⊕S2 and S1⊕S1⊕S2⊕S2. Note

that i and j varies as 0,1,∞ and i < j whenever they come together in a single module

notation through out this paper. The corresponding dimensions of their endomorphism

rings as Z2-modules are 2, 3, 3, 4, 5 and 8 respectively and further are given as:
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1. EndΛ(Ri ,1 ⊕R j ,1) 'Z2 ⊕Z2

2. EndΛ(Ri ,2) 'Z2[x]/ < x2 >

3. EndΛ(Rx2+x+1,2) 'GF (4)

4. EndΛ(P1 ⊕S1) =



a 0

b c
0

0
a 0

0 a


∈ M4(Z2)

5. EndΛ(I2 ⊕S2) =



a 0

0 a
0

0
a b

0 c


∈ M4(Z2)

6. EndΛ(Ri ,1 ⊕Ri ,1) '

a b

c d

 ∈ M2(Z2)

7. EndΛ(Ri ,1 ⊕S1 ⊕S2) =



a 0

b c
0

0
a d

0 e


∈ M4(Z2)

8. EndΛ(S1 ⊕S1 ⊕S2 ⊕S2) =



a b

c d
0

0
e f

g h


∈ M4(Z2)

Hasse diagram in Figure 2 is then drawn by arranging the modules in rows corresponding

to the ascending dimension of their endomorphism rings and further each modules is

the representatives of the class of modules with same endomorphism rings. The joining
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Ri ,1 ⊕R j ,1 Ri ,2 Rx2+x+1,2

P1 ⊕S1 I2 ⊕S2

Ri ,1 ⊕Ri ,1

Ri ,1 ⊕S1 ⊕S2

S1 ⊕S1 ⊕S2 ⊕S2

Figure 3.2: Hasse diagram for the degeneration order of modules of dimension vector
(2,2)

lines represent all the minimal degenerations and they are determined by using the

technique discussed earlier in this chapter. We have the following short exact sequences

which correspond to the minimal degenerations for i = 0 and j = 1 in Figure 2:

1. 0 → P1


0

1

,


0 0

1 1


−−−−−−−−−→ R0,1 ⊕R1,1

(
0 1

)
,

(
0

)
−−−−−−−−→ S1 → 0

2. 0 → S2

(
0

)
,


1

0


−−−−−→ R0,1 ⊕R1,1


0 1

1 0

,

(
0 1

)

−−−−−−−−−−−−→ I2 → 0

3. 0 → R0,1


1

0

,


1

0


−−−−−−→ R0,2

(
0 1

)
,

(
0 1

)
−−−−−−−−−−−−→ R0,1 → 0

4. 0 → P1


1

0

,


1 0

0 0


−−−−−−−−−→ R0,2

(
0 1

)
,

(
0

)
−−−−−−−−→ S1 → 0
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5. 0 → S2

(
0

)
,

(
0

)
−−−−−→ R0,2


0 1

1 0

,

(
1 0

)

−−−−−−−−−−−−→ I2 → 0

6. 0 → P1


1

0

,


1 0

0 1


−−−−−−−−−→ Rx2+x+1,2

(
0 1

)
,

(
0

)
−−−−−−−−→ S1 → 0

7. 0 → S2

(
0

)
,


0

1


−−−−−→ Rx2+x+1,2


0 1

1 0

,

(
1 0

)

−−−−−−−−−−−−→ I2 → 0

8. 0 → S2


0

1

,

(
0

)

−−−−−→ P1 ⊕S1

(
1 0

)
,


1 0

0 0


−−−−−−−−−−−−→ R0,1 ⊕S1 → 0

9. 0 → R0,1


1

0

,


1

0


−−−−−−→ I2 ⊕S2

(
0 1

)
,

(
0 1

)
−−−−−−−−−−−−→ S1 ⊕S2 → 0

10. 0 → S2

(
0

)
,

(
1 0

)
−−−−−−−−→ R0,1 ⊕R0,1


0 1

1 0

,

(
0 1

)

−−−−−−−−−−−−→ R0,1 ⊕S1 → 0

11. 0 → S2

(
0

)
,

(
1 0

)
−−−−−−−−→ R0,1 ⊕S1 ⊕S2


0 1

1 0

,

(
0 1

)

−−−−−−−−−−−−→ S1 ⊕S1 ⊕S2 → 0

Exact sequences can easily be found for other values of i and j in a similar fashion. No

other minimal degeneration is possible. To prove this we recall a proposition from [6].

Proposition 3.1. Let M and N are Λ-modules then M �deg N if di m(Hom(X , M)) �

di m(Hom(X , N )), for some X where M , N and X areΛ-modules.

By virtue of this proposition the following cases turn out to have no degenerations.
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1. Rx2+x+1,2 �deg Ri ,1 ⊕Ri ,1,

since di m(Hom(X ,Rx2+x+1,2))� di m(Hom(X ,Ri ,1 ⊕Ri ,1)) for X = Rx2+x+1,2

2. Ri ,1 ⊕R j ,1 �deg Ri ,1 ⊕Ri ,1 for X = R j ,1

3. P1 ⊕S1 �deg Ri ,1 ⊕Ri ,1 for X = S1

Others only have zero homomorphisms between each other for instance say between

Λ-modules M and N and therefore there cannot be an exact sequence of the form

0 → Y → Y ⊕M → N → 0.

Now for the case of Λ-modules of dimension vector (3,3), there are 52 Λ-modules

up to isomorphism using the analogy as has been used in previous example. There

are 5 indecomposableΛ-modules, and it turns out that their endomorphism rings are

isomorphic either to Z2[x]/ < x3 > or GF (8) (the field of 8-elements). Three of the 5

indecomposableΛ-modules of dimension vector (3,3) have endomorphism rings iso-

morphic to Z2[x]/ < x3 > and they are represented and named as

R0,3 =
Z3

2

I ↓↓β1

Z3
2

, R1,3 =
Z3

2

I ↓↓β2

Z3
2

and R∞,3 =
Z3

2

β1 ↓↓ I

Z3
2

, whereβ1 =


0 1 0

0 0 1

0 0 0

 andβ2 =


1 1 0

0 1 1

0 0 1

.

The other two have endomorphism rings isomorphic to GF (8) and they are Rp1,3 =
Z3

2

I ↓↓β3

Z3
2

and Rp2,3 =
Z3

2

I ↓↓β4

Z3
2

, where β3 =


0 0 1

1 0 0

0 1 1

 and β4 =


0 0 1

1 0 1

0 1 0

 are linear operators ob-

tained by Z2[x]/ f
x→Z2[x]/ f relative to the basis induced by 1, x and x2. Where f = p1

or p2 and p1 = x3 +x2 +1 and p2 = x3 +x +1 are the irreducible monic polynomials of

degree 3.

Note that these are the only irreducible polynomials inZ2[x] of degree 3. There is only

one pre-projectiveΛ-module and one pre-injectiveΛ-module up to isomorphism that
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can be the summands ofΛ-modules of dimension vector (3,3) and they are P̃ =
Z2

2

β5 ↓↓β6

Z3
2

and Ĩ =
Z3

2

β7 ↓↓β8

Z2
2

respectively, Where β5 =


0 0

0 1

1 0

, β6 =


0 1

1 0

0 0

, β7 =

0 0 1

0 1 0

 and

β8 =

0 1 0

1 0 0

.

Figure 3 shows the Hasse diagram associated to the degeneration order ofΛ-modules.

Note that in Figure 3 pr , r = 1,2 represents the two irreducible polynomials.

The rows haveΛ-modules with endomorphim rings of increasing dimensions: 3, 4,

5, 6, 8, 9, 10, 13 and 18 as one goes down the rows. Following is the list of endomorphism

rings of all modules in the Figure 3 except the indecomposables which are already

mentioned. This information is vital in order to draw the above Hasse diagram:

1. EndΛ(R0,1 ⊕R1,1 ⊕R∞,1) =Z2 ×Z2 ×Z2

2. EndΛ(Ri ,1 ⊕R j ,2) =Z2[x]/ < x2 >×Z2

3. EndΛ(Rx2+x+1,2 ⊕Ri ,1) =GF (4)×Z2

4. EndΛ(Ĩ ⊕S2) =



a 0 0

0 a 0

0 0 a

0

0

a 0 b

0 a c

0 0 d



∈ M6(Z2)
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R0,1 ⊕R1,1 ⊕R∞,1 Ri ,1 ⊕R j ,2 Rx2+x+1,2 ⊕Ri ,1 Ri ,3 Rpr ,3

Ĩ ⊕S2 P1 ⊕ I2 P̃ ⊕S1

Ri ,1 ⊕Ri ,1 ⊕R j ,1 Ri ,1 ⊕Ri ,2

I2 ⊕Ri ,1 ⊕S2 P1 ⊕Ri ,1 ⊕S1

Ri ,2 ⊕S1 ⊕S2 Rx2+x+1,2 ⊕S1 ⊕S2 Ri ,1 ⊕R j ,1 ⊕S1 ⊕S2

Ri ,1 ⊕Ri ,1 ⊕Ri ,1

I2 ⊕S1 ⊕S2 ⊕S2 Ri ,1 ⊕Ri ,1 ⊕S1 ⊕S2P1 ⊕S1 ⊕S1 ⊕S2

Ri ,1 ⊕S1 ⊕S1 ⊕S2 ⊕S2

S1 ⊕S1 ⊕S1 ⊕S2 ⊕S2 ⊕S2

Figure 3.3: Hasse diagram for modules of dimension vector (3,3)
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5. EndΛ(P1 ⊕ I2) =



a 0 b

0 a c

0 0 d

0

0

a b c

0 d 0

0 0 d



∈ M6(Z2)

6. EndΛ(P̃ ⊕S1) =



a 0 0

b d 0

c 0 d

0

0

a 0 0

0 a 0

b c d



∈ M6(Z2)

7. EndΛ(Ri ,1 ⊕Ri ,1 ⊕R j ,1) '


a b 0

c d 0

0 0 e

 ∈ M3(Z2)

8. EndΛ(Ri ,1 ⊕Ri ,2) '


a b c

0 a 0

0 d e

 ∈ M3(Z2)

9. EndΛ(I2 ⊕Ri ,1 ⊕S2) =



a 0 0

0 a b

0 0 d

0

0

a b c

0 d e

0 0 f



∈ M6(Z2)
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10. EndΛ(P1 ⊕Ri ,1 ⊕S1) =



a 0 0

b c 0

d e f

0

0

a 0 0

0 a 0

0 b c



∈ M6(Z2)

11. EndΛ(Ri ,2 ⊕S1 ⊕S2) =



a b 0

0 a 0

f d c

0

0

a b 0

0 a g

0 0 h



∈ M6(Z2)

12. EndΛ(Rx2+x+1,2 ⊕S1 ⊕S2) =



a b 0

b a 0

f e c

0

0

a +b b d

b a g

0 0 h



∈ M6(Z2)

13. EndΛ(Ri ,1 ⊕R j ,1 ⊕S1 ⊕S2) =



a 0 0

0 b 0

d f c

0

0

a 0 e

0 b g

0 0 h



∈ M6(Z2)
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14. EndΛ(Ri ,1 ⊕Ri ,1 ⊕Ri ,1) '


a b c

d e f

g h k

 ∈ M3(Z2)

15. EndΛ(I2 ⊕S1 ⊕S2 ⊕S2) =



a 0 0

0 a 0

d b c

0

0

a e f

0 g h

0 k l



∈ M6(Z2)

16. EndΛ(Ri ,1 ⊕Ri ,1 ⊕S1 ⊕S2) =



a b 0

c h 0

d e g

0

0

a b f

c h k

0 0 l



∈ M6(Z2)

17. EndΛ(P1 ⊕S1 ⊕S1 ⊕S2) =



h 0 0

a b c

d e f

0

0

h 0 g

0 h k

0 0 l



∈ M6(Z2)
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18. EndΛ(Ri ,1 ⊕S1 ⊕S1 ⊕S2 ⊕S2) =



g 0 0

a b c

d e f

0

0

g h k

0 l m

0 n p



∈ M6(Z2)

19. EndΛ(S1 ⊕S1 ⊕S1 ⊕S2 ⊕S2 ⊕S2) =



a b c

d e f

g h i

0

0

a′ b′ c ′

d ′ e ′ f ′

g ′ h′ i ′



∈ M6(Z2).

Many of the degenerations in Figure 3 follow directly using the degenerations for Λ-

modules of direction vector (2,2) as if M ≤deg N implies M ⊕Y ≤deg N ⊕Y for M , N and

Y are theΛ-modules. The following exact sequences describe these degenerations;

1. 0 → Ri ,1 → Ri ,1 ⊕R j ,2 → Ri ,1 ⊕Ri ,1 → 0

2. 0 → S2 → P1 ⊕ I2 → I2 ⊕Ri ,1 → 0

3. 0 → P1 ⊕Ri ,1 → P1 ⊕ I2 → S1 → 0

4. 0 → S2 → Ri ,1 ⊕Ri ,1 ⊕R j ,1 → I2 ⊕Ri ,1 → 0

5. 0 → P1 → Ri ,1 ⊕Ri ,2 → Ri ,1 ⊕S1 → 0

6. 0 → R j ,1 → I2 ⊕Ri ,1 ⊕S2 → Ri ,1 ⊕S1 ⊕S2 → 0

7. 0 → S2 ⊕S2 → Ri ,2 ⊕S1 ⊕S2 → I2 ⊕S1 → 0

8. 0 → S1 ⊕S2 → Rx2+x+1,2 ⊕S1 ⊕S2 → I2 ⊕S1 → 0

9. 0 → P1 → Rx2+x+1,2 ⊕S1 ⊕S2 → S1 ⊕S1 ⊕S2 → 0
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10. 0 → S2 → Ri ,1 ⊕R j ,1 ⊕S1 ⊕S2 → I2 ⊕S1 ⊕S2 → 0

11. 0 → P1 → Ri ,1 ⊕R j ,1 ⊕S1 ⊕S2 → S1 ⊕S1 ⊕S2 → 0

12. 0 → S2 → Ri ,1 ⊕Ri ,1 ⊕Ri ,1 → Ri ,1 ⊕Ri ,1 ⊕S1 → 0

13. 0 → Ri ,1 → I2 ⊕S1 ⊕S2 ⊕S2 → S1 ⊕S1 ⊕S2 ⊕S2 → 0

14. 0 → S2 → Ri ,1 ⊕Ri ,1 ⊕S1 ⊕S2 → Ri ,1 ⊕S1 ⊕S1 ⊕S2 → 0

15. 0 → S2 → P1 ⊕S1 ⊕S1 ⊕S2 → Ri ,1 ⊕S1 ⊕S1 ⊕S2 → 0

16. 0 → S2 → Ri ,1 ⊕S1 ⊕S1 ⊕S2 ⊕S2 → S1 ⊕S1 ⊕S1 ⊕S2 ⊕S2 ⊕S2 → 0

Other exact sequences corresponding to the minimal degenerations in Hasse diagram in

Figure 3 for i = 0 and j = 1 are given below:

1. 0 → S2

(
0

)
,



0

0

1


−−−−−→ R0,1 ⊕R1,1 ⊕R∞,1



0 1 1

0 1 0

1 1 0


,


1 1 0

0 1 0


−−−−−−−−−−−−−−−−−−−→ Ĩ → 0

2. 0 → P1



1

1

1


,



1 0

1 1

0 1


−−−−−−−−−→ R0,1 ⊕R1,1 ⊕R∞,1


1 1 0

0 1 1

,

(
1 1 1

)

−−−−−−−−−−−−−−−−−−→ I2 → 0

3. 0 → P̃



1 0

1 1

0 1


,



0 0 1

1 1 1

1 0 0


−−−−−−−−−−−−−−−→ R0,1 ⊕R1,1 ⊕R∞,1

(
1 1 1

)
,

(
0

)
−−−−−−−−−−−−→ S1 → 0

4. 0 → S2

(
0

)
,



1

1

1


−−−−−→ R0,1 ⊕R1,2



0 0 1

0 1 1

1 1 0


,


1 1 0

0 1 1


−−−−−−−−−−−−−−−−−−−→ Ĩ → 0
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5. 0 → P1



1

1

1


,



1 0

1 0

1 1


−−−−−−−−−→ R0,1 ⊕R1,2


1 1 0

0 1 1

,

(
1 1 0

)

−−−−−−−−−−−−−−−−−−→ I2 → 0

6. 0 → P̃



1 0

1 1

0 1


,



0 0 1

0 1 1

1 1 0


−−−−−−−−−−−−−−−→ R0,1 ⊕R1,2

(
1 1 1

)
,

(
0

)
−−−−−−−−−−−−→ S1 → 0

7. 0 → S2

(
0

)
,



1

1

1


−−−−−→ Rx2+x+1,2 ⊕R0,1



1 0 0

1 1 0

0 1 1


,


0 1 1

1 1 0


−−−−−−−−−−−−−−−−−−−→ Ĩ → 0

8. 0 → P1



0

1

1


,



0 1

1 1

1 0


−−−−−−−−−→ Rx2+x+1,2 ⊕R0,1


1 1 1

1 0 0

,

(
1 1 1

)

−−−−−−−−−−−−−−−−−−→ I2 → 0

9. 0 → P̃



0 1

1 1

1 0


,



1 1 0

0 1 1

0 0 1


−−−−−−−−−−−−−−−→ Rx2+x+1,2 ⊕R0,1

(
1 1 1

)
,

(
0

)
−−−−−−−−−−−−→ S1 → 0

10. 0 → S2

(
0

)
,



1

1

1


−−−−−→ R0,3



0 0 1

0 1 1

1 1 0


,


1 1 0

0 1 1


−−−−−−−−−−−−−−−−−−−→ Ĩ → 0

11. 0 → P1



1

0

1


,



1 1

0 1

1 0


−−−−−−−−−→ R0,3


1 1 1

0 1 0

,

(
1 1 1

)

−−−−−−−−−−−−−−−−−−→ I2 → 0
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12. 0 → P̃



1 1

0 1

1 0


,



1 1 1

0 1 0

0 0 1


−−−−−−−−−−−−−−−→ R0,3

(
1 1 1

)
,

(
0

)
−−−−−−−−−−−−→ S1 → 0

13. 0 → S2

(
0

)
,



1

1

1


−−−−−→ Rx3+x+1,3



1 1 0

1 0 1

1 0 0


,


0 1 1

1 0 1


−−−−−−−−−−−−−−−−−−−→ Ĩ → 0

14. 0 → P1



0

1

0


,



0 1

1 0

1 0


−−−−−−−−−→ Rx3+x+1,3


0 1 1

0 0 1

,

(
0 1 1

)

−−−−−−−−−−−−−−−−−−→ I2 → 0

15. 0 → P̃



0 1

1 1

1 0


,



1 1 0

1 1 1

1 0 1


−−−−−−−−−−−−−−−→ Rx3+x+1,3

(
1 1 1

)
,

(
0

)
−−−−−−−−−−−−→ S1 → 0

16. 0 → R0,1

(
1 0 0

)
,

(
1 0 0

)
−−−−−−−−−−−−−−−−−−→ R0,3


0 1 0

0 0 1

,


0 1 0

0 0 1


−−−−−−−−−−−−−−−−−−−→ R0,2 → 0

17. 0 → S2 ⊕R0,1



0

0

1


,



1 1

0 0

0 1


−−−−−−−−−→ Ĩ ⊕S2


1 0 0

0 1 0

,

(
0 1 0

)

−−−−−−−−−−−−−−−−−−→ I2 → 0

18. 0 → P1



0

1

0


,



0 1

1 0

0 0


−−−−−−−−−→ P̃ ⊕S1


1 0 0

0 0 1

,

(
0 0 1

)

−−−−−−−−−−−−−−−−−−→ R0,1 ⊕S1 → 0
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19. 0 → S2

(
0

)
,



0

1

0


−−−−−→ I2 ⊕R0,1 ⊕S2



0 1 0

1 0 0

1 1 1


,


1 0 1

0 0 1


−−−−−−−−−−−−−−−−−−−→ R0,2 ⊕S1 → 0

20. 0 → S2

(
0

)
,



1

0

0


−−−−−→ P1 ⊕R0,1 ⊕S1



0 1 0

1 0 0

1 1 1


,


0 1 1

0 0 1


−−−−−−−−−−−−−−−−−−−→ R0,2 ⊕S1 → 0

21. 0 → R0,1 ⊕S2



0

1

0


,



0 0

1 1

0 1


−−−−−−−−−→ P1 ⊕R0,1 ⊕S1


1 0 0

1 0 1

,

(
1 0 0

)

−−−−−−−−−−−−−−−−−−→⊕S1 ⊕R0,1 → 0

Degenerations for other values of i and j can easily be determined.

Again by proposition ?? the following cases turn out to have no degenerations.

1. R0,1 ⊕R1,1 ⊕R∞,1 �deg Ri ,1 ⊕Ri ,1 ⊕R j ,1 for X = Rk,1, with i < j and i , j 6= k,

k = 0,1,∞

2. Rx2+x+1,2 ⊕Ri ,1 �deg Ri ,1 ⊕Ri ,1 ⊕R j ,1 for X = Rx2+x+1,2

3. Rx2+x+1,2 ⊕Ri ,1 �deg Ri ,1 ⊕Ri ,2 for X = Rx2+x+1,2

4. Rps ,3 �deg Ri ,1 ⊕Ri ,2 for X = ps

5. Ĩ ⊕S2 �deg Ri ,1 ⊕Ri ,1 ⊕R j ,1 for X = Ĩ

6. Ĩ ⊕S2 �deg Ri ,1 ⊕Ri ,2 for X = Ĩ

7. P1 ⊕ I2 �deg Ri ,1 ⊕Ri ,1 ⊕R j ,1 for X = I2

8. P1 ⊕ I2 �deg Ri ,1 ⊕Ri ,2 for X = I2

9. P̃ ⊕S1 �deg Ri ,1 ⊕Ri ,2 for X = S1
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10. Ri ,2 ⊕S1 ⊕S2 �deg Ri ,1 ⊕Ri ,1 ⊕Ri ,1 for X = S1

11. P̃ ⊕S1 �deg Ri ,1 ⊕Ri ,1 ⊕R j ,1 for X = S1

12. I2 ⊕Ri ,1 ⊕S2 �deg Rx2+x+1,2 ⊕S1 ⊕S2 for X = Ri ,1

13. P1 ⊕Ri ,1 ⊕S1 �deg Rx2+x+1,2 ⊕S1 ⊕S2 for X = Ri ,1

14. Rx2+x+1,2 ⊕S2 ⊕S1 �deg Ri ,1 ⊕Ri ,1 ⊕Ri ,1 for X = Rx2+x+1,2

15. Ri ,1 ⊕R j ,1 ⊕S1 ⊕S2 �deg Ri ,1 ⊕Ri ,1 ⊕Ri ,1 for X = R j ,1

Here is the table of some data calculated:

dimension vector (1,1) (2,2) (3,3)

no. of modules 4 256 262144

no. of indecomposables 3 66 29232

no. of isomorphic classes of modules 4 16 52

no. of isomorphic classes of indecomposable modules 3 4 5

|Gln(Z2)|⊕ |Gln(Z2)| 1 36 28224
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