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Outline of thesis

The dissertation consists of a collection of five papers and an introductory section
that explains the connection between these papers and puts them into a context.
The following five papers are included:

Paper I
The full group C∗-algebra of the modular group is primitive. Joint work
with Erik Bédos. Published in Proc. Amer. Math. Soc., 140(4):1403-1411,
2012.

Paper II
Primitivity of some full group C∗-algebras. Joint work with Erik Bédos.
Published in Banach J. Math. Anal., 5(2):44-58, 2011.

Paper III
Primeness and primitivity conditions for twisted group C∗-algebras. Ac-
cepted for publication in Math. Scand., 2012.

Paper IV
C∗-algebras generated by projective representations of free nilpotent groups.
Submitted for publication, 2013.

Paper V
Cuntz-Li algebras from a-adic numbers. Joint work with Steve Kaliszewski
and John Quigg. Submitted for publication, 2012.
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1 C∗-algebras
This section is an attempt to very briefly motivate the study of C∗-algebras and
explain some aspects of the theory related to the thesis, without going too much
into detail on the historical background.

The theory of C∗-algebras can be developed in two different ways, either as
certain algebras of bounded operators on Hilbert spaces or as special cases of
Banach algebras.

1.1 Concrete approach
The motivation for studying operator algebras originally comes from quantum
mechanics, and almost every survey on the topic starts with the Heisenberg
commutation relation for a free particle,

PQ − QP = −iI, (1)

where P and Q are self-adjoint operators on a Hilbert space H representing
momentum and position, respectively. It turns out that (1) has nontrivial solutions
only if H is infinite-dimensional and at least one of P or Q is unbounded. However,
a theorem by Stone describes a bijective correspondence via “exponentiation”
between possibly unbounded self-adjoint operators on H and one-parameter
unitary subgroups of B(H). As a consequence, the Weyl form of (1) is introduced,
that is, for every real number t one defines the bounded unitary operators
U(t) = eitP and V (t) = eitQ on H and observes that

U(s)V (t) = eistV (t)U(s). (2)

In this way, U and V become unitary representations of R on H. Moreover, for
(s, t) in R2, set W (s, t) = U(s)V (t), and define σ : R2 × R2 → T by

σ((s, t), (s′, t′)) = eits′
. (3)

It is then evident that σ is a multiplier (or 2-cocycle) of R2 and that W is a
σ-projective unitary representation of R2 on H.

Equivalently, the pair (U, V ) determines a unitary representation of the real
Heisenberg group. Indeed, set W̃ (r, s, t) = eirU(s)V (t) = eirW (s, t), and then

W̃ (r, s, t)W̃ (r′, s′, t′) = ei(r+r′)eits′
W (s+ s′, t+ t′) = W̃ (r+ r′ + ts′, s+ s′, t+ t′).

Schrödinger’s solution of (2) are the bounded operators U and V on L2(R) given
by

U(s)ψ(t) = ψ(t − s) and V (s)ψ(t) = e−istψ(t), (4)
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and every pair of irreducible unitary representations of R satisfying (2) is unitarily
equivalent to this pair. Also, let σ be defined by (3). Then every irreducible
σ-projective representation of R2 is unitarily equivalent with the one coming from
(4).

This uniqueness result is generalized by Mackey to hold for all locally compact
second countable abelian groups G and is called the “Stone-von Neumann theorem”.
That is, there is, up to unitary equivalence, only one pair of irreducible unitary
representations U of G and V of Ĝ, such that

U(a)V (b) = 〈b, a〉V (b)U(a)

for all a ∈ G and b ∈ Ĝ (see also Example 3.1 below).

In general, states of a quantum mechanical system may be considered as
elements ψ of a Hilbert space H and observables as self-adjoint operators T on H,
such that the result of a measurement of T is given by the expected value 〈Tψ, ψ〉.
The dynamical evolution of a system is determined by a self-adjoint operator H
through T (t) = eitHTe−itH or ψ(t) = e−itHψ for t in R, so that the expected
value at t is

〈eitHTe−itHψ, ψ〉 = 〈Te−itHψ, e−itHψ〉. (5)

Moreover, there is a need for a study of families of operators, for example
for the consideration of spectral decomposition of a single operator. The “rings
of operators” that Murray and von Neumann considered in the first place are
the weakly closed and self-adjoint subalgebras of B(H) containing the identity
operator. This class of operator algebras is now called von Neumann algebras.
In this framework, the quantum observables are identified with the self-adjoint
elements of such operator algebras.

1.2 Abstract approach
One can argue that it is sufficient to consider uniformly closed and self-adjoint
subalgebras of B(H), and therefore the notion C∗ appears, for closed ∗-subalgebra.

Gelfand and Naimark (and Segal) then discover that C∗-algebras may also be
studied abstractly, without any reference to operators on Hilbert spaces. That is,
a C∗-algebra A can be defined axiomatically as a Banach algebra together with
an involution A → A, x �→ x∗ such that

‖x∗x‖ = ‖x‖2.

Then, for every such (abstract) C∗-algebra A there exists a Hilbert space H and
an injective ∗-homomorphism π : A → B(H). That is, A ∼= π(A) ⊂ B(H), as
every ∗-homomorphism is norm-decreasing and thus continuous.
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The algebraic structure in a C∗-algebra is strong. In fact, ‖x‖2 coincides with
the spectral radius of x∗x so that there is only one norm on a ∗-algebra making it
a C∗-algebra.

Furthermore, Gelfand and Naimark show that for every commutative C∗-
algebra A there is a locally compact Hausdorff space X such that A ∼= C0(X),
the set of complex-valued continuous functions on X vanishing at infinity with
pointwise operations and sup-norm. Moreover, two commutative C∗-algebras are
isomorphic if and only if their associated topological spaces are homeomorphic.
There is a (contravariant) category equivalence between the category of unital
commutative C∗-algebras with ∗-homomorphism and the category of compact
Hausdorff spaces with continuous maps. There is also a version of this result
relating nonunital commutative C∗-algebras with locally compact noncompact
Hausdorff spaces. Thus, topological properties of X can be translated into
algebraic properties of C0(X), and vice versa, and the theory of C∗-algebras is
often referred to as noncommutative topology in the modern language.

For example, let X be a compact Hausdorff space. If f is a projection in C(X),
that is, f(x) = f(x) = f(x)2 for all x ∈ X, then f can only take the values 0 and
1. Hence, X is connected if and only if C(X) is projectionless.

Open and closed sets of X correspond to ideals and quotients of C0(X),
respectively. Clearly, C0(X) is simple only if X = {∗}. In the noncommutative
case, on the other hand, the theory is much more intriguing, and highly nontrivial
C∗-algebras can still be simple.

2 Projective unitary representations

The importance of (projective) unitary representations in the theory of C∗-algebras
should now be obvious from the previous section. In particular, the way W and
W̃ are obtained above indicate a connection between projective representations of
a group and ordinary representations of an extension of that group. In addition,
since two states of a quantum mechanical system are equivalent if they are scalar
multiples of each other, states are really elements of a projective Hilbert space
PH = H/C1.

The original approach concerns representations of the group R and then
generalizations to locally compact second countable abelian groups. However, we
will delay the discussion of locally compact groups until Section 2.3, and first
focus on (arbitrary) discrete groups.

All of the five included papers deal with unitary representations of groups.
In Paper III and IV, we study C∗-algebras associated with projective unitary
representations of discrete groups in detail, and the consideration of locally
compact groups is needed for Paper V.
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2.1 Twisted group C∗-algebras
Let G be a discrete group and H a nontrivial Hilbert space. The automorphism
group of PH is the projective unitary group PU(H), that is, the quotient of U(H)
by its center, i.e.

PU(H) = U(H)/T1H.

A projective unitary representation of G is a homomorphism G → PU(H). Every
lift of a projective representation to a map U : G → U(H) satisfies

U(a)U(b) = σ(a, b)U(ab) (6)

for all a, b ∈ G and some function σ : G × G → T. From the associativity of U
and by requiring that U(e) = 1H, the identities

σ(a, b)σ(ab, c) = σ(a, bc)σ(b, c)
σ(a, e) = σ(e, b) = 1

(7)

must hold for all elements a, b, c ∈ G. Motivated by these observations, any
function σ : G × G → T satisfying (7) and is called a multiplier of G, and any
map U : G → U(H) satisfying (6) is called a σ-projective unitary representation
of G on H.

The lift of a homomorphism G → PU(H) up to U is not unique, but any other
lift is of the form βU for some function β : G → T. Consequently, one says that
two multipliers σ and τ are similar and writes σ ∼ τ if

τ(a, b) = β(a)β(b)β(ab)σ(a, b) (8)

for all a, b ∈ G and some β : G → T. The set of similarity classes of multipliers of
G is an abelian group under pointwise multiplication. This group was originally
called the Schur multiplier of G, but it coincides with the second cohomology
group H2(G,T) consisting of 2-cocycles on G with values in T.

Let σ be a multiplier of G. The Banach ∗-algebra �1(G, σ) is defined as the
Banach space �1(G) together with twisted convolution and involution given by

(f ∗ g)(a) =
∑
b∈G

f(b)σ(b, b−1a)g(b−1a)

f∗(a) = σ(a, a−1)f(a−1)

for elements f, g in �1(G).
The full twisted group C∗-algebra C∗(G, σ) is the universal enveloping algebra

of �1(G, σ), that is, the completion of �1(G, σ) with respect to the norm ‖·‖max
given by

‖f‖max = sup{‖π(f)‖ : π is representation of �1(G, σ)}.
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Let iσ denote the canonical injection of G into C∗(G, σ). Then C∗(G, σ) satisfies
the following universal property. Every σ-projective unitary representation of G
on some Hilbert space H (or in some C∗-algebra A) factors uniquely through iσ.

The left regular σ-projective unitary representation λσ of G on B(�2(G)) is
given by

(λσ(a)ξ)(b) = σ(a, a−1b)ξ(a−1b).

The integrated form of λσ on �1(G, σ) is defined by

λσ(f) =
∑
a∈G

f(a)λσ(a).

The reduced twisted group C∗-algebra and the twisted group von Neumann
algebra of (G, σ), C∗

r (G, σ) and W ∗(G, σ) are, respectively, the C∗-algebra and
the von Neumann algebra generated by λσ(�1(G, σ)), or equivalently by λσ(G).

If τ is similar with σ, then in all three cases, the operator algebras associated
with (G, τ) and (G, σ) are isomorphic.

Moreover, there is a natural one-to-one correspondence between the representa-
tions of C∗(G, σ) and the σ-projective unitary representations of G. In particular,
λσ extends to a ∗-homomorphism of C∗(G, σ) onto C∗

r (G, σ). If G is amenable,
then λσ is faithful. Also, if σ = 1, faithfulness of λσ implies that G is amenable,
but it is not known whether this holds for nontrivial σ. The reason why the
argument does not carry over to the twisted case is that there is in general no
trivial 1-dimensional representation of C∗(G, σ).

2.2 Cohomology of groups

Let G be a discrete group. Denote the group of all multipliers of G by Z2(G,T)
and the group of all trivial multipliers of G by B2(G,T), so that

H2(G,T) = Z2(G,T)/B2(G,T),

where T is regarded as a ZG-module for which G acts trivially. To analyze the
projective representations of G and its associated twisted group C∗-algebras, it is
useful to compute its cohomology group H2(G,T), and there are several approaches.
In particular, it is interesting to study how the structure of C∗(G, σ) varies with
σ and to determine precisely when C∗(G, σ) and C∗(G, τ) are isomorphic also
when τ �∼ σ.

For the results mentioned below, we refer to the books by Brown [3] and
Weibel [25].
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Central extensions Recall that two extensions E1 and E2 of T by G are
equivalent if there exists a homomorphism f : E1 → E2 such that the diagram

1 � T � E1 � G � e

1 � T

=
�

� E2

f

�
� G

=
�

� e

commutes. Then f must be an isomorphism by the “five-lemma”. Denote by
Ext(G,T) the set of equivalence classes of (algebraic) central extensions of T by
G. Then there is a bijection

Ext(G,T) ∼= H2(G,T).

In particular, if σ is a multiplier of G, then the corresponding extension is given
as the group Gσ defined by the product

(z, a)(w, b) = (zwσ(a, b), ab) (9)

on T × G. The trivial element in Ext(G,T) corresponds to the direct product
T × G and is the only split extension. Since every extension of a free group splits,
H2(G,T) is trivial for all free groups G. Moreover, if G is abelian, then every
abelian central extension of T by G is trivial in Ext(G,T). Hence, a multiplier of
an abelian group is trivial if and only if it is symmetric.

Homology of groups The universal coefficient theorem gives an isomorphism

H2(G,T) ∼= Hom(H2(G,Z),T),

that is, a “duality” between homology and cohomology of groups. Here is a few
examples from Brown’s book:

• Let Zn = Z/nZ be the cyclic group of order n. Then H2(Zn,Z) = {0}.

• Let F (S) be a free group on a set S. Then H2(F (S),Z) = {0}.

• More generally, let G = 〈S | R〉, that is, G = F/N where F = F (S) is the
free group on the set S and N is the normal subgroup of F generated by
the relations R. Then Hopf’s formula gives that

H2(G,Z) = (N ∩ [F, F ])/[F, N ].
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One can apply a Mayer-Vietoris sequence to compute the homology of a free
product of groups and obtain that

H2(G1 ∗ G2,Z) ∼= H2(G1,Z) ⊕ H2(G2,Z).

By dualizing, we get that

H2(G1 ∗ G2,T) ∼= H2(G1,T) ⊕ H2(G2,T),

and an explicit description of the multipliers is given in [15, Section 5] and [19,
Section 4]. The facts stated above illustrates that there are several ways to see
that H2(Fn,T) is trivial for all n ≥ 1. Moreover, the Künneth formula gives that

H2(G1 × G2,Z) ∼= H2(G1,Z) ⊕ H2(G2,Z) ⊕ (H1(G1,Z) ⊗Z H1(G2,Z)),

where H1(G,Z) is the abelianization of G, and thus,

H2(G1 × G2,T) ∼= H2(G1,T) ⊕ H2(G2,T) ⊕ Hom(G1,Hom(G2,T)).

By applying Mackey’s theorem [14, Theorem 9.4], one can compute the multipliers
up to similarity as explained in [19, Section 3].

Group extensions and semidirect products If one has a short exact se-
quence of discrete groups,

e � H � G � K � e,

one may try to apply a Lyndon-Hochschild-Serre spectral sequence on this to
compute the group homology or cohomology. Of course, in general there might
be complicated to compute the boundary maps.

The drawback with applying purely homological techniques is that one does
not get an explicit description of the multipliers up to similarity. To study twisted
group C∗-algebras, we want a concrete family of multipliers in Z2(G,T), that
represents the similarity classes in H2(G,T).

In some cases, for example, G = Zn or Zn, the group Z2(G,T) is known as
well. Apart from this, one of the most important techniques used for explicit
computations is given by Mackey in [14, Theorem 9.6] for semidirect products.
That is, this applies if the short exact sequence above splits, but it is easier to
handle the calculations if H is abelian.

In Paper IV [21, Section 2], we apply this technique to give an explicit
description of a family of representatives of H2(G,T) when G is a free nilpotent
group of class 2.
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2.3 Locally compact groups
We now give a brief explanation of projective unitary representations of locally
compact groups and twisted group C∗-algebras associated with these.

First, if G is a topological group that is T0 (i.e. points are topologically
distinguishable), then it is also completely regular and Hausdorff, so T0 is therefore
often part of the definition of a topological group (see [10, p. 83]). In particular,
when we consider a locally compact group, we will always mean a locally compact
T0 group.

Every locally compact group G will be equipped with a left Haar measure
μ and the other spaces in question with the obvious Borel measures. Then a
multiplier σ of G is a measurable function G × G → T such that (7) hold, and
a σ-projective unitary representation of G on a Hilbert space H is a measurable
function G → U(H) satisfying (6). As above, we say that two multipliers σ and
τ are similar if there is a measurable function G → T such that (8) holds. The
topological structure of H2(G,T) = Z2(G,T)/B2(G,T) is handled by Moore in
[16].

The Banach ∗-algebra L1(G, σ) is defined as the Banach space L1(G) together
with twisted convolution and involution given by

(f ∗ g)(a) =
∫

G

f(b)σ(b, b−1a)g(b−1a) dμ(b),

f∗(a) = Δ(a)−1σ(a, a−1)f(a−1),

for elements f, g in L1(G) and the modular function Δ of G.
Similarly as for the discrete case, one defines the left regular σ-projective

unitary representation λσ of G on B(L2(G)), as well as the full and reduced
twisted group C∗-algebras and the group von Neumann algebra. Also, λσ is
faithful on C∗(G, σ) whenever G is amenable. However, C∗(G, σ) and C∗

r (G, σ)
are unital only if G is discrete and the canonical map iσ is in general a map from
G into the multiplier algebra of C∗(G, σ). The twisted group C∗-algebras are
separable precisely when G is second countable.

To avoid topological issues, we now assume that G is a second countable
locally compact group (or an arbitrary discrete group, see [26, Section D.3]). For a
multiplier σ of G, the algebraic central extension Gσ of T by G defined by (9) has
a unique second countable locally compact topology such that the Borel structures
of Gσ and T × G coincide and μGσ = μT × μG is a left Haar measure on Gσ, by
[13]. If Ext(G,T) denotes the set of locally compact second countable central
extensions of T by G, then σ �→ Gσ gives a bijection H2(G,T) → Ext(G,T), by
[16].

There is a 1-1-correspondence between σ-projective unitary representations of
G and unitary representations of Gσ satisfying (z, e) �→ z1H, and C∗(G, σ) is a
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quotient of C∗(Gσ).

Compact groups and the twisted Peter-Weyl theorem Let G be a com-
pact group and σ a multiplier of G. If U and U ′ are two σ-projective unitary
representations of G on H and H′, respectively, we can in the usual way form the
σ-projective unitary representation U ⊕ U ′ on H ⊕ H′.

Let (Ĝ, σ) denote the set of all equivalence classes of irreducible σ-projective
representations of G. We reserve the symbol dU for the dimension of the repre-
sentation space for [U ] ∈ (Ĝ, σ). Then the following hold:

• Each irreducible σ-projective unitary representation of a compact group G
is finite-dimensional. The left regular σ-projective unitary representation λ
of G is unitarily equivalent to the direct sum of irreducible ones, that is,

λ �
⊕

[U ]∈(Ĝ,σ)

dU⊕
j=1

U.

• The twisted group C∗-algebra decomposes into a direct sum of matrix
algebras, that is,

C∗(G, σ) ∼=
⊕

[U ]∈(Ĝ,c)

MdU
(C),

and for f ∈ L1(G, σ), the isomorphism is given by

f �→ (U(f))[U ]∈(Ĝ,σ).

• For every nontrivial a ∈ G, there exists an irreducible σ-projective unitary
representation U of G such that U(a) �= I.
In particular, C∗(G, σ) is residually finite-dimensional, that is, has a sepa-
rating family of finite-dimensional representations.

3 Dynamical systems and crossed products
In this section we consider (twisted) group actions on C∗-algebras. Again, this is
motivated by topological dynamics in the commutative case. To see this, let X
be a compact metric space and ϕ a homeomorphism X → X. Then ϕ induces an
action of Z on C(X) by n · f(x) = f(ϕ−n(x)).

More generally, let G be a locally compact group acting on a locally compact
Hausdorff space X, i.e. (X, G) is a transformation group. Define the induced
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action α of G on C0(X) by αg(f)(x) = f(g−1 · x). Then (C0(X), G, α) is a
so-called C∗-dynamical system.

Dynamical systems are dealt with in the enclosed Paper I and II (the unital
twisted case) and Paper V (the separable case).

3.1 C∗-dynamical systems
In general, a C∗-dynamical system is a triple (A, G, α) consisting of a C∗-algebra
A, a locally compact group G, and a continuous homomorphism α : G → AutA
(i.e. g �→ αg(a) is continuous for all a ∈ A). There are two cases that are of
particular interest:

• A is separable and G is second countable,

• A is unital and G is discrete.

Let (A, G, α) be a C∗-dynamical system and let Cc(G, A) be the set of contin-
uous functions G → A with compact support. For f, g ∈ Cc(G, A), define f ∗ g,
f∗, and ‖f‖1 by

f ∗ g(a) =
∫

G

f(b)αb(g(b−1a)) dμ(b),

f∗(a) = Δ(a−1)αa(f(a−1)∗),

‖f‖1 =
∫

G

‖f(a)‖ dμ(a).

Banach space valued integration and the Bochner integral are treated in Williams’
book [26, Section B.1]. The completion of Cc(G, A) with respect to ‖·‖1 is a
Banach ∗-algebra denoted by L1(A, G, α). A covariant representation of (A, G, α)
is a pair (π, U) consisting of a representation π of A on a Hilbert space H and a
unitary representation U of G on H satisfying

π ◦ αa = Ad(U(a))π

for all a ∈ G. There is 1-1 correspondence between covariant representations
of (A, G, α) and representations of L1(A, G, α). In particular, a covariant repre-
sentation (π, U) of (A, G, α) induces a representation π × U of L1(A, G, α) given
by

(π × U)(f) =
∫

G

π(f(a))U(a) dμ(a).

For f ∈ Cc(G, A), define

‖f‖max = sup{‖π(f)‖ : π is representation of L1(A, G, α)}
= sup{‖π × U(f)‖ : (π, U) is a covariant representation of (A, G, α)}.



Dynamical systems and crossed products 13

The completion of Cc(G, A) with respect to ‖·‖max is the crossed product of A by
G and is denoted by A �α G.

An interesting example of a transformation group C∗-algebra is when G is a
locally compact group and H is a subgroup of G acting on G by left translation.
A special case of this example is when H = G.

Example 3.1 (The Stone-von Neumann theorem, part II). Let G be a locally
compact group. Then

C0(G)�lt G ∼= K(L2(G)),

where K(L2(G)) is the compact operators on L2(G), which is a simple C∗-algebra.

3.2 Coactions and duality theory

If G is a locally compact abelian group, then C∗(G) ∼= C∗
r (G) ∼= C0(Ĝ) via the

Fourier transform. Moreover, if (A, G, α) is a C∗-dynamical system and G is
abelian, then there is an action α̂ of Ĝ on A �α G such that

(A �α G)�α̂ Ĝ ∼= A ⊗ K(L2(G)).

Motivated by the goal of extending this result to nonabelian groups, one introduces
coactions, so that if G is abelian, then a coaction of G on a C∗-algebra A is an
action of Ĝ on A.

Moreover, an action α of G on A may be identified with a map

α̃ : A → M(A ⊗ C0(G)) ∼= Cb(G, M(A)), α̃(x)(a) = αa(x), x ∈ A, a ∈ G.

Inspired by this fact, one says that a coaction of G on A is an injective nondegen-
erate homomorphism δ : A → M(A ⊗ C∗(G)) satisfying

span{δ(A)(1 ⊗ C∗(G))} = A ⊗ C∗(G)
(δ ⊗ i) ◦ δ = (i ⊗ δG) ◦ δ,

where the coaction δG of G on C∗(G) is given by C∗(G) → M(C∗(G) ⊗ C∗(G)),
a �→ a⊗a. The associated (co-)crossed product of (A, G, δ) is a C∗-algebra A�δ G
whose representations are the same as the covariant representations of (A, G, δ)
(see [9, Appendix A.5]).

In Paper V [11, Appendix], we consider an injective homomorphism ϕ : H → G,
its integrated form πϕ : C∗(H) → M(C∗(G)), and the coaction of G on C∗(H)
defined by δ = (id ⊗ πϕ) ◦ δH .
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3.3 Twisted C∗-dynamical systems
To unify the constructions of twisted group C∗-algebras and crossed products, we
now consider twisted C∗-dynamical systems. Since we only need this construction
in the unital case, we will assume that the C∗-algebras are unital and that
the groups are discrete. The more general construction of separable twisted
C∗-dynamical systems is nicely treated by Packer and Raeburn [23].

A (unital) twisted C∗-dynamical system is a quadruple (A, G, α, ω) consisting
of a unital C∗-algebra A, a discrete group G, and maps α : G → AutA and
ω : G × G → U(A) satisfying

αaαb = Ad(ω(a, b))αab

ω(a, b)ω(ab, c) = αa(ω(b, c))ω(a, bc)
ω(e, e) = 1A

for all a, b, c ∈ G, and from this it is easily deduced that

ω(a, e) = ω(e, b) = 1A , αe = idA , ω(a, a−1) = αa(ω(a−1, a)).

Twisted C∗-dynamical systems coming from discrete groups were introduced by
Zeller-Meier [27] in the case where ω is central-valued, and then in more generality
by Busby and Smith [4].

A covariant representation of a twisted C∗-dynamical system (A, G, α, ω) is a
pair (π, U) consisting of a representation π of A on a Hilbert space H and a map
U : G → U(H) satisfying

U(a)U(b) = π(ω(a, b))U(ab)
π ◦ αa = Ad(U(a))π

for all a, b ∈ G.
We equip the Banach space �1(G, A) with twisted convolution and involution

given by

(f ∗ g)(a) =
∑
b∈G

f(b)αb(g(b−1a))ω(b, b−1a)

f∗(a) = ω(a, a−1)∗αa(f(s−1))∗

and denote the resulting Banach ∗-algebra by �1(A, G, α, ω). There is 1-1 corre-
spondence between covariant representations of (A, G, α, ω) and representations
of �1(A, G, α, ω). In particular, every covariant representation (π, U) of a twisted
C∗-dynamical system (A, G, α, ω) induces a representation, denoted by π × U , of
�1(A, G, α, ω) defined by

(π × U(f)ξ)(a) =
∑
b∈G

π(αa−1(f(b)))(U(b)ξ)(a).
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Define now a C∗-norm on �1(A, G, γ, ω) by

‖f‖max = sup{‖π(f)‖ : π is a representation of �1(A, G, α, ω)}
= sup{‖π × U(f)‖ : (π, U) is a covariant representation of (A, G, α, ω)}.

The full twisted crossed product A �(α,ω) G is the completion of �1(A, G, γ, ω)
with respect to ‖·‖max, that is, the enveloping C∗-algebra of �1(A, G, γ, ω).

The following example was one of the motivations for studying twisted crossed
products in the first place and is essential when constructing induced representa-
tions.

Example 3.2. Let H be a normal subgroup of a group G with quotient group
K = G/H, that is, we have a short exact sequence of groups

e � H � G � K � e.

Let σ be a multiplier of G and σ′ the restriction to H. Then we may decompose
C∗(G, σ) into a twisted crossed product ([20] based on [23, Theorem 4.1])

C∗(G, σ) ∼= C∗(H, σ′)�(α,ω) K,

where

αa(iH(b)) = iG(n(a))iG(b)iG(n(a))∗

ω(a, b) = iG(n(a))iG(n(b))iG(n(ab))∗

for a normalized section n for the quotient map G → K.
This decomposition becomes an ordinary crossed product if and only if the

sequence splits and σ = 1 when restricted to K.

Let π be a representation of A on a Hilbert space H and define the covariant
representation (π̃, λ) on �2(G, H) by

(π̃(x)ξ)(a) = π(αa−1(x))ξ(a)
(λ(b)ξ)(a) = π(ω(a−1, b))ξ(b−1a)

for a, b ∈ G, ξ ∈ �2(G, H), and x ∈ A, and set Indπ = π̃×λ. For f ∈ �1(A, G, α, ω),
define

‖f‖red = sup{‖Indπ(f)‖ : π is a representation of A} = ‖Ind ρ(f)‖
for some faithful representation ρ of A. The completion of �1(A, G, α, ω) with
respect to ‖·‖red is the reduced twisted crossed product of A by G and is denoted
by A �(α,ω),r G. If G is amenable, then it is well known that the full and reduced
twisted crossed products are isomorphic.
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Moreover, Indπ is faithful on A�(α,ω),rG if and only if {π◦αa}a∈G is separating
for A, as explained in [20] based on [27, Théorèm 4.11]. The next results can be
deduced from Mackey’s work [13], but is shown in [20] and [2, Appendix] as well.
First, the following are equivalent:

(i) Indπ is irreducible,

(ii) π is irreducible and the stabilizer group {a ∈ G | π ◦ αa � π} is trivial,

(iii) [π] ∈ Â is a free point for the natural action of G on Â, that is, [π] �= [π ◦αa]
for all a �= e.

Furthermore, suppose that π1 and π2 are irreducible representations such that
π1 ◦ αa �� π2 for all a ∈ G. Then Indπ1 �� Indπ2.

4 Some aspects of structure and classification
The structure and classification theory for C∗-algebras are vast subjects, and
we will only mention a few aspects here. One of the most interesting topics is
investigation of the ideal structure (and especially simplicity) which is central in
all of the included papers.

Moreover, K-theory plays a major role in the classification program for C∗-
algebras. Even though K-theory is not dealt with directly in any of the included
papers, we consider the properties of being nuclear (Paper III and V) and purely
infinite (Paper V), since these notions are very useful for classification by K-theory.

Representation theory is also central in all of the included papers, and this
motivates the study of Morita equivalence of C∗-algebras.

4.1 Ideals
By an ideal of a C∗-algebra we will always mean a closed (and thus self-adjoint)
two-sided ideal. As usual, a C∗-algebra is simple if it contains no proper nontrivial
ideals, and prime if any pair of nonzero ideals has nonzero intersection. A C∗-
algebra with a faithful irreducible representation is called primitive. In general,
primitivity is a property between simplicity and primeness. Obviously, every
simple C∗-algebra is primitive, and it is not difficult to see that every primitive
C∗-algebra is prime. Conversely, every prime and separable C∗-algebra is primitive
by a result of Dixmier [6], that is, the notions of primeness and primitivity are
equivalent for separable C∗-algebras. There are rather few examples of prime
nonprimitive C∗-algebras (the first was presented by Weaver [24]). It is also
well known that every prime C∗-algebra has trivial center, so that we have the
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following:

simplicity ==⇒ primitivity ==⇒ primeness ==⇒ trivial center

Moreover, a von Neumann algebra is a factor if it has trivial center, or equivalently,
if it contains no proper nontrivial weakly closed ideals. If A is a concrete unital
C∗-algebra, and A′′ is a factor, then A is prime. Hence, a von Neumann algebra
is a factor if and only if it is prime (as a C∗-algebra).

Following Dixmier [7], a C∗-algebra A is antiliminary if π(A) ∩ K(H) = {0}
for all, or equivalently, some faithful irreducible representations π of A.

Let A be a separable unital C∗-algebra. Then, by [7], A is primitive and
antiliminary if and only if the pure state space of A is weak∗-dense in the state
space of A.

4.2 Kirchberg algebras
A C∗-algebra is called nuclear if the identity map, as a completely positive map,
approximately factors through matrix algebras. Equivalently, A is nuclear if
A ⊗min B ∼= A ⊗max B for all C∗-algebras B, or yet equivalently, if A′′ is an
injective von Neumann algebra.

A simple C∗-algebra A is purely infinite if and only if every hereditary C∗-
subalgebra of A contains an infinite projection. In the separable case, this is the
same as saying that every corner xAx∗ of A contains an infinite projection.

A Kirchberg algebra is a separable, simple, nuclear, purely infinite C∗-algebra
in the UCT class (meaning KK-equivalent with a commutative C∗-algebra).
Moreover, Kirchberg algebras are classifiable by K-theory, and it is therefore of
interest to show that C∗-algebras coming from for example C∗-dynamical systems
belong to this class.

4.3 Morita equivalence
Let A and B be C∗-algebras. Then A and B are Morita equivalent if there exists
an A − B-imprimitivity bimodule. That is, if there is an A − B-bimodule E which
is simultaneously a full left Hilbert A-module under an A-valued inner product
A〈·, ·〉 and a full right Hilbert B-module under a B-valued inner product 〈·, ·〉B

such that
A〈ξ, η〉ζ = ξ〈η, ζ〉B

for all ξ, η, ζ ∈ E.
One important feature of a Morita equivalence is that it gives a functorial

correspondence between the representations of the algebras. In particular, the
spectrum and primitive ideal spaces are homeomorphic.
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If A and B are separable, they are Morita equivalent if and only if they are
stably isomorphic.

4.4 Group C∗-algebras and crossed products
The trivial representation ι of any locally compact group G on C given by ι(g) = 1
for all g ∈ G, induces a representation of C∗(G) on C. Hence, C∗(G) will always
have an ideal of codimension 1, called the augmented ideal. That is, C∗(G) is
never simple, unless G is trivial. Therefore, primitive and prime group C∗-algebras
may be considered as the building blocks for the class of group C∗-algebras.

The problem of determining whether a group C∗-algebra is primitive seems
hard in general. For example, primitivity of the group C∗-algebra of the group
F2 × F2 can be related to Connes’ embedding problem [2, Remark 2.2]. In [17],
Murphy gives some conditions and examples of primitive group C∗-algebras.

On the other hand, the reduced group C∗-algebra C∗
r (G) can be simple for

nontrivial G. Much work is done in the area of determining the class of C∗-simple
groups, see e.g. de la Harpe [5]. Simplicity of C∗

r (G) is in general unrelated to
primitivity of C∗(G).

Also, the full twisted group C∗-algebra C∗(G, σ) may be simple when G is
amenable. For example, by the work of Kleppner, it is known that if G is abelian,
then PrimC∗(G, σ) is homeomorphic with Ŝσ, where

Sσ = {a ∈ G | σ(a, b) = σ(b, a) for all b ∈ G},

and C∗(G, σ) is simple if Sσ is trivial.
Moreover, if G is discrete, then C∗(G, σ) is simple and nuclear if and only

if C∗
r (G, σ) is simple and nuclear, and for this to hold, we must have that G is

amenable and σ is nontrivial. This gives another motivation for considering the
twisted case. However, our main focus is to study primeness and primitivity of
the full and reduced twisted group C∗-algebras corresponding to discrete groups.

Furthermore, we have the following (references given in [11]):

• If (A, G, α, ω) is a twisted C∗-dynamical system with A nuclear and G
amenable, then A �(α,ω) G is nuclear.

• Let (A, G, α) be a C∗-dynamical system with A = C0(X) commutative and
G amenable and discrete so that the action of G on X is topologically free.
Then A �α G is simple if the action of G on X is minimal and A �α G is
purely infinite if the action of G on X is locally contractive.

• If (A, G, α) is a C∗-dynamical system with A commutative and G amenable
and discrete, then A �α G belongs to the UCT class.
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Finally, as an application of “Green’s symmetric imprimitivity theorem”, we get
the following (see e.g. [26, p. 126]). Suppose that K and H are closed subgroups
of a locally compact group G. Let K act by left multiplication on G and let H
act by right multiplication on G. Then C0(K\G)�rt H is Morita equivalent to
C0(G/H)�lt K.

5 Overview of the thesis

Paper I and II

In [2], we study the projective special linear groups PSL(n,Z) for n ≥ 2. The
main result is [2, Theorem 2.3], which says that C∗(PSL(2,Z)) is primitive, and
also antiliminary. The proof of this result uses the techniques mentioned in the
end of Section 3.3 (and Example 3.2), namely we construct a faithful irreducible
representation through an inducing process [2, Theorem 2.1 and Appendix]. In
[17] Murphy mentions that he knows no example of an icc group whose full
group C∗-algebra is nonprimitive. When n ≥ 3, we show that C∗(PSL(n,Z)) is
nonprimitive so that for example SL(3,Z) provides such an example.

The main result of [1] is [1, Theorem 1.2], where we show that C∗(G1 ∗ G2)
is primitive whenever G1 and G2 are countable discrete amenable groups such
that |G1 − 1| · |G2 − 1| ≥ 2. Since PSL(2,Z) ∼= Z2 ∗ Z3, this is a generalization
of the previous paper, and the technique of the proof is again an application
of [2, Theorem 2.1 and Appendix]. However, the argument turns out to be
combinatorially harder in this case. Moreover, in [1, Lemma 3.2, Corollary 3.3,
and Corollary 3.4] we give conditions to ensure that C∗(G1 ∗ G2) is antiliminary
whenever G1 and G2 satisfy the conditions of [1, Theorem 1.2].

Finally, we remark that in a recent preprint by Dykema and Torres-Ayala [8],
related results are shown with a different approach.

Paper III

Let G be an arbitrary discrete group and σ a multiplier of G. The aim of [19] is
to generalize results of Murphy [17] and Kleppner [12] and give precise conditions
for primeness of C∗

r (G, σ). Following [12], an element a of G is called σ-regular
if σ(a, b) = σ(b, a) whenever b commutes with a. Moreover, σ-regularity is a
property of conjugacy classes, and we will say that (G, σ) satisfies condition K if
every nontrivial σ-regular conjugacy class of G is infinite. The main result is [19,
Theorem 2.7], which says that condition K on (G, σ) is equivalent with primeness
of C∗

r (G, σ). Also, [19, Corollary 2.8] gives that condition K on (G, σ) is necessary
for primeness of C∗(G, σ).
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In the final sections, we consider the cases where G = G1 × G2 and where
G = G1 ∗G2. The direct product is in general harder to handle since a multiplier σ
of G does not necessarily decompose nicely in this case, but has a “cross-term” as
discussed in Section 2.2. In the free product case, we obtain with [1, Theorem 1.2]
a generalization of [19, Theorem 4.1] to the twisted case.
Remark. Significant parts of [19, Section 2], especially [19, Lemma 2.2 and 2.4],
were already obtained in [20], although rewritten here.

Paper IV
In [21], we study the free nilpotent groups of class 2 and rank n, denoted by G(n).
These groups may be considered as generalized Heisenberg groups with higher-
dimensional center. Motivated by Packer [22], we compute the second cohomology
group of G(n) and give explicit formulas for the multipliers in [21, Theorem 2.7],
by applying techniques of Mackey [14, Section 9]. Then we give conditions for
simplicity of the twisted group C∗-algebras C∗(G(n), σ) in [21, Section 4]. We also
describe C∗(G(n), σ) in terms of generators and relations in [21, Theorem 3.1],
and as a continuous field over T 1

2 n(n−1) with the noncommutative n-tori as fibers
in [21, Theorem 1.1].

Paper V
Inspired by the work of Cuntz and Li on ring C∗-algebras, we give a crossed
product construction of a family of C∗-algebras Q associated with the a-adic
numbers. We show that these algebras are nonunital Kirchberg algebras in the
UCT class [11, Corollary 2.8].

The a-adic numbers are locally compact abelian groups that appear as Haus-
dorff completions of additive subgroups of Q, and the most commonly studied
examples are the p-adic numbers Qp.

The main result is [11, Theorem 4.1] which says that Q is Morita equivalent
with a crossed product C∗-algebra coming from an ax+ b-action on R of a certain
subgroup of Q�Q×

+. The proof uses “Green’s symmetric imprimitivity theorem”
and relies especially on two additional results, a duality result for groups [11,
Theorem 3.3], and a “subgroup of dual group theorem” that we prove in a more
general setting, for coactions, in [11, Appendix].
Remark. The main results of [11] are also summarized in a preprint for a conference
proceedings paper [18].
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THE FULL GROUP C∗-ALGEBRA OF THE
MODULAR GROUP IS PRIMITIVE

ERIK BÉDOS AND TRON Å. OMLAND

This paper is dedicated to the memory of Gerard J. Murphy

Abstract
We show that the full group C∗-algebra of PSL(n,Z) is primitive when
n = 2, and not primitive when n ≥ 3. Moreover, we show that there
exists an uncountable family of pairwise inequivalent, faithful irreducible
representations of C∗(PSL(2,Z)).

1 Introduction
Simple and, more generally, primitive and prime C∗-algebras may be considered
as building blocks of the theory, playing a somewhat similar role as factors do
within the theory of von Neumann algebras. If we restrict ourselves to separable
C∗-algebras, as we always do in this paper, primitivity is equivalent to primeness
(see for example [17]), and we will therefore refer to primitivity for both notions.
Now, given some class of separable C∗-algebras, one natural task is to investigate
which members of this class are simple or primitive.

An interesting family of separable C∗-algebras consists of the group C∗-algebras
associated with countable discrete groups. We recall that such a group G is called
C∗-simple if its reduced group C∗-algebra C∗

r (G) is simple. As the full group C∗-
algebra C∗(G) is simple only when G is trivial, this terminology is not ambiguous.
The class of C∗-simple groups has received a lot of attention during the last
decades and the reader may consult [8] for a recent, comprehensive review. It
is also well known (see [15, 14]) that C∗

r (G) is primitive if and only if G is icc
(that is, every nontrivial conjugacy class in G is infinite) if and only if the group
von Neumann algebra of G is a factor.

On the other hand, the problem of determining when C∗(G) is primitive seems
hard in general. A necessary condition is that G is icc [14], and this condition is
also sufficient when G is assumed to be amenable, as C∗(G) is then isomorphic to
C∗

r (G). We note in passing that this problem is quite different from the one of
determining the class of groups having a faithful irreducible unitary representation,
which contains many other groups besides all icc groups (see [3]).

2010 Mathematics Subject Classification. Primary 46L05; Secondary 22D25, 46L55.
Key words and phrases. modular group, full group C*-algebra, primitivity, twisted crossed

product.
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Until a few years ago, the only known nonamenable icc groups having a
primitive full group C∗-algebra were nonabelian free groups, as originally shown
by H. Yoshizawa [21] and rediscovered later by M. D. Choi [5, 6]. Then primitivity
of C∗(G) was established when G = G1 ∗ G2 is the free product of two countable
subgroups G1 and G2 satisfying at least one of the following assumptions:

(i) G1 = Z ∗ Z or G1 = Z ∗ Z2 (G2 being then any group).

(ii) G1 is nontrivial and free, and G2 is nontrivial and amenable.

(iii) G1 is nonabelian and free, and C∗(G2) admits no nontrivial projections.

Case (i) is due to N. Khatthou [9, Théorèmes 2 et 3], while (ii) and (iii) are due
to G. J. Murphy [14, Theorems 3.3 and 3.4].

In [8, Problem 25], P. de la Harpe raises the problem of finding other (nona-
menable icc) groups having a primitive full group C∗-algebra. One may especially
wonder whether this property holds for any group G which is the free product of
two nontrivial groups, where at least one of them has more than two elements
(as the infinite dihedral group Z2 ∗ Z2 is not icc). The simplest case for which
the answer is unknown is the modular group PSL(2,Z) = Z2 ∗ Z3, and our main
result in this paper is that C∗(PSL(2,Z)) is indeed primitive (cf. Theorem 2.3).

An outline of our proof is as follows. Let H be the kernel of the canonical
homomorphism from G = Z2 ∗ Z3 onto Z2 × Z3. Then H � Z ∗ Z. Exploiting
a certain phase-action of the circle group T on C∗(H), we then show how a
faithful irreducible representation of C∗(H) may be picked so that it induces
a representation of C∗(G) which is also faithful and irreducible. Moreover, we
show that there exists an uncountable family of pairwise inequivalent, irreducible
faithful representations of C∗(G). A similar idea was used by Murphy in his
proof of [14, Theorem 3.3], where he considers certain semidirect products of
nonabelian free groups by amenable groups. However, in our case, the exact
sequence 1 → H → G → Z2 × Z3 → 1 does not split, so we have to decompose
C∗(G) as a twisted crossed product of C∗(H) by Z2 × Z3 and use results of
J. A. Packer and I. Raeburn from [16]. Actually, when H is a normal subgroup of
a group G, we give a criterion ensuring that primitivity of C∗(H) passes over to
C∗(G) (see Theorem 2.1), and use it to deduce Theorem 2.3.1

Murphy mentions in [14] that he knows of no example of an icc group whose
full group C∗-algebra is not primitive, but that it is unlikely that such groups
do not exist. Now it is almost immediate (cf. Proposition 2.5) that C∗(G) is not
primitive whenever G is a nontrivial group having Kazhdan’s property (T). As

1In a recent paper (Banach J. Math. Anal., 5(2), 44-58, 2011), we use this criterion to show
that C∗(G) is primitive whenever G is the free product of two nontrivial amenable groups where
at least one of them has more than two elements. The proof is combinatorially much more
involved than in the case of the modular group.
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there are many nontrivial icc groups having property (T), such as G = PSL(n,Z)
for any integer n ≥ 3 (see [4]), this confirms that the full group C∗-algebra of an
icc group is not necessarily primitive. Moreover, as it is known that PSL(n,Z)
is always C∗-simple (see [1, 2]), this also illustrates that C∗-simplicity of G does
not imply that C∗(G) is primitive.

2 On primitivity of full group C∗-algebras and
the modular group

We use standard notation and terminology in operator algebras; see for example
[7, 17, 6]. All Hilbert spaces are assumed to be complex. By a representation
of a C∗-algebra A, we always mean a ∗-homomorphism π : A → B(H) into the
bounded operators B(H) on some Hilbert space H. We use the same symbol � to
denote unitary equivalence of operators on Hilbert spaces, (unitary) equivalence
of representations of a C∗-algebra and ∗-isomorphism between C∗-algebras.

All the groups we consider are assumed to be countable and discrete. If G is
such a group, we let eG, or just e, denote its unit. When G acts on a nonempty
set X and x ∈ X, we say that x is a free point (for the action of G) whenever
g · x �= x for all g ∈ G, g �= e.

Let A be a separable C∗-algebra and Â denote the set of (unitary) equivalence
classes of nonzero irreducible representations of A. Set

Â◦ = {[π] ∈ Â | π is faithful}.

This set is clearly well-defined, and it is nonempty if and only if A is primitive.
Assume now that a group G has a normal subgroup H such that A = C∗(H)

is primitive and set K = G/H. Then K acts on Â◦ in a natural way.
To see this, let n : K → G be a normalized section for the canonical homo-

morphism p from G onto K (so n(eK) = eG and p ◦ n gives the identity map on
K).

Let α : K → Aut(A) and u : K × K → A be determined by

αk(iH(h)) = iH(n(k)hn(k)−1), k ∈ K, h ∈ H,

u(k, l) = iH(n(k)n(l)n(kl)−1), k, l ∈ K,

where iH denotes the canonical injection of H into A.
Then (α, u) is a twisted action of K on A (see [16] or the Appendix); especially,

we have
αkαl = Ad(u(k, l))αkl, k, l ∈ K,

where, as usual, Ad(v) denotes the inner automorphism implemented by some
unitary v in A.
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This twisted action (α, u) clearly induces an action of K on Â given by

k · [π] = [π ◦ αk−1 ].

By restriction, we get the natural action of K on Â◦, which is easily seen to be
independent of the choice of normalized section n for p.

The following result holds:

Theorem 2.1. Assume that a group G has a normal subgroup H such that

(a) A = C∗(H) is primitive,

(b) K = G/H is amenable,

(c) the natural action of K on Â◦ has a free point.

Then C∗(G) is primitive.

Proof. We use the notation introduced above and recall that Packer and Raeburn
have shown (see [16, Theorem 4.1]) that C∗(G) may be decomposed as the twisted
crossed product associated with (α, u):

C∗(G) � A ×α,u K.

Let [π] ∈ Â◦ be a free point for the natural action of K. This means that

π ◦ αk �� π for all k ∈ K, k �= e.

Now, this condition implies that the induced regular representation Indπ of
A ×α,u K is irreducible. Indeed, as G is discrete, this could be deduced from [11]
(see the discussion in [18, Introduction]; see also [12, 13, 19]). For completeness,
we give a proof in the Appendix (cf. Corollary 3.2(a)).

Further, as K is amenable, [16, Theorem 3.1] gives that Indπ is faithful.
Altogether, it follows that C∗(G) has a faithful, irreducible representation, as
desired.

Remark 2.2. Assume that G has a normal subgroup H and K = G/H. It would
be interesting to find more general conditions than those given in Theorem 2.1
ensuring that C∗(G) is primitive. However, even for the case where G is the
direct product of H and K, this is a nontrivial problem. Murphy has shown in
[14, Theorem 2.5] that C∗(H × K) is primitive whenever C∗(H) is primitive and
K is amenable and icc. But when for example F is a free nonabelian group, it is
unknown whether C∗(F × F) is primitive or not. Note that if it should happen
that C∗(F × F) is not primitive, this would imply that

C∗(F) ⊗max C∗(F) �� C∗(F) ⊗min C∗(F).
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Thus, when F has infinitely many generators, this would solve negatively an open
problem of E. Kirchberg, which is known to be equivalent to Connes’ famous
embedding problem (see [10]).

Theorem 2.3. Set G = PSL(2,Z). Then C∗(G) is primitive. Moreover, there
exists an uncountable family of pairwise inequivalent, irreducible faithful represen-
tations of C∗(G).

Proof. Write G = Z2 ∗ Z3 = 〈a, b | a2 = b3 = 1〉 and let H denote the kernel of
the canonical homomorphism p from G onto K = Z2 × Z3 (� Z6).

Then H is freely generated as a group by x1 = abab2 and x2 = ab2ab (see e.g.
[20, I.1.3, Proposition 4]).

Set A = C∗(H). Using [21] or [5], we may pick [π] ∈ Â◦. Set

U1 = iH(x1), V1 = π(U1), U2 = iH(x2), V2 = π(U2),

so V1, V2 are unitary operators on the separable Hilbert space Hπ on which π acts.
As shown in the proof [5, Theorem 6], we may and do assume that V2 is diagonal
relative to some orthonormal basis for Hπ, with (distinct) diagonal entries given
by some μj ∈ T, j ∈ N.

For each λ ∈ T, let γλ be the ∗-automorphism of A determined by

γλ(U1) = U1, γλ(U2) = λU2,

and set πλ = π ◦ γλ. Clearly, [πλ] ∈ Â◦.
We will show that we can pick λ ∈ T such that [πλ] is a free point for the

natural action of K on Â◦. As K is amenable, the primitivity of C∗(G) will then
follow from Theorem 2.1. To pick λ, we proceed as follows.

As a normalized section for p : G → K, we choose n : K → G given by

n(i, j) = aibj , i ∈ {0, 1}, j ∈ {0, 1, 2}.

For each k = (i, j) ∈ K we let αk be the ∗-automorphism of A used to define the
natural action of K on Â◦.

It is clear that [πλ] will be a free point for this action of K if for each k ∈ K,
k �= (0, 0), we have

(πλ ◦ αk)(Ur) �� πλ(Ur) for r = 1 or r = 2.

Some elementary computations give:

πλ(U1) = V1, πλ(U2) = λV2;
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when k = (0, 1) : (πλ ◦ αk)(U2) = V ∗
1 ;

when k = (0, 2) : (πλ ◦ αk)(U1) = (λV2)∗;
when k = (1, 0) : (πλ ◦ αk)(U2) = (λV2)∗;
when k = (1, 1) : (πλ ◦ αk)(U2) = V1;
when k = (1, 2) : (πλ ◦ αk)(U1) = λV2.

It follows that [πλ] will be a free point whenever

(∗) V1 �� λV2, V1 �� (λV2)∗, λV2 �� (λV2)∗.

Define

Ω1 = {λ ∈ T | V1 � λV2},

Ω2 = {λ ∈ T | V1 � (λV2)∗},

and
Ω3 = {λ ∈ T | λV2 � (λV2)∗}.

As the point spectrum of V2 is given by σp(V2) = {μj | j ∈ N} ⊆ T, the sets Ω1,
Ω2, and Ω3 are all countable.

Indeed, if Ω1 was uncountable, then, as σp(V1) = λσp(V2) for all λ ∈ Ω1,
σp(V1) would also be uncountable; as Hπ is separable, this is impossible. In the
same way, we see that Ω2 must be countable. Finally, if Ω3 were uncountable,
then the equality

λ{μj | j ∈ N} = λ{μj | j ∈ N}
would hold for uncountably many λ’s in T, and this is easily seen to be impossible.

Hence, the set Ω = Ω1 ∪Ω2 ∪Ω3 is countable. Especially, Ω �= T and (∗) holds
for every λ in the complement Ωc of Ω in T. Thus, we have shown that C∗(G) is
primitive.

To prove the second assertion, we consider λ, λ′ ∈ Ωc, so Indπλ and Indπλ′

are irreducible and faithful. A well-known argument (adapted to our twisted
setting; see Corollary 3.2(b) in the Appendix) gives that Indπλ and Indπλ′ will
be inequivalent whenever

πλ ◦ αj �� πλ′ for all j ∈ K.

Using our previous computations, we see that this will hold whenever

V1 �� λV2, V1 �� (λV2)∗,

V1 �� λ′V2, V1 �� (λ′V2)∗,

λV2 �� λ′V2, (λV2)∗ �� λ′V2.
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The first four conditions are satisfied since λ, λ′ ∈ Ωc. Set

Ωλ = {ω ∈ T | λV2 � ωV2 or (λV2)∗ � ωV2}.

Then Ωλ is countable (arguing as in the first part of the proof), so Ω ∪ Ωλ

is countable. Hence, if we assume, as we may, that λ′ ∈ (Ω ∪ Ωλ)c, then all
six conditions above are satisfied, and it follows that Indπλ and Indπλ′ are
inequivalent, irreducible and faithful.

Proceeding inductively, we may produce in this way a countably infinite family
of pairwise inequivalent, irreducible faithful representations of C∗(G). In fact,
even an uncountable family of such representations does exist. Indeed, observe
that Indπλ is an essential representation of C∗(G); that is, its range contains no
compact operators other than zero. Otherwise, the irreducible representations
Indπλ and Indπλ′ would have to be equivalent since they have the same kernel
(cf. [7, Corollaire 4.1.10]). As C∗(G) is separable, the claim then follows from [7,
Compléments 4.7.2].

Remark 2.4. Let G = PSL(2,Z). As we have seen in the above proof, C∗(G) has a
faithful irreducible representation which is essential. Hence, C∗(G) is antiliminary
(cf. [7, Compléments 9.5.4]). Since C∗(G) is also primitive (and therefore prime),
it follows that the pure state space of C∗(G) is weak∗-dense in the state space
of C∗(G) (cf. [7, Lemme 11.2.4]). This is also true when G is a nonabelian free
group; in fact, this is precisely what Yoshizawa proves in [21] when G = F2.

Our next observation is quite obvious and surely known to specialists.

Proposition 2.5. Let G be a group with Kazhdan’s property (T) (see e.g. [4])
and assume that C∗(G) is primitive. Then G is trivial.

Proof. Set A = C∗(G). We endow the primitive ideal space Prim(A) of A with
its Jacobson (hull-kernel) topology and Â with the weakest topology making the
canonical map from Â onto Prim(A) continuous. Since A is primitive, we may
pick [π0] ∈ Â◦. As {0} is dense in Prim(A), {[π0]} is dense in Â.

Now let π1 denote the representation of A associated with the trivial one-
dimensional unitary representation of G. Property (T) means that [π1] is isolated
in Â; i.e. {[π1]} is open in Â. Thus we must have [π1] = [π0]. Specifically, π1 must
be faithful, which implies that G is trivial.

Corollary 2.6. Set G = PSL(n,Z), n ≥ 3. Then G is icc, but C∗(G) is not
primitive.

Proof. As it is well known that G is icc and has property (T) (see [4]), this follows
from Proposition 2.5.



32 The full group C∗-algebra of the modular group is primitive

Moreover, as PSL(n,Z) is always C∗-simple (cf. [1, 2]), this result also shows
that C∗-simplicity of a group G does not imply that C∗(G) is primitive.

3 Appendix
We prove here a couple of results about induced representations of discrete twisted
crossed products, which we could not find explicitly in the literature in the form
needed for our purposes.

Let (A, K, α, u) be a twisted C∗-dynamical system as considered by Packer
and Raeburn [16], where A is a unital C∗-algebra, K is a discrete group with unit
e, and (α, u) is a twisted action of K on A; this means that α is a map from K
into Aut(A), the group of ∗-automorphisms of A, and u is a map from K × K
into U(A), the unitary group of A, satisfying

αkαl = Ad(u(k, l))αkl,

u(k, l)u(kl, m) = αk(u(l, m))u(k, lm),
u(k, e) = u(e, k) = 1

for all k, l, m ∈ K. (To avoid technicalities, we assume that A is unital; otherwise,
one has to assume that the 2-cocycle u takes value in the multiplier algebra of A).

The full twisted crossed product A ×α,u K may then be considered as the
enveloping C∗-algebra of the Banach ∗-algebra �1(A, K, α, u), which consists of
the Banach space �1(K, A) equipped with product and involution given by

(f ∗ g)(l) =
∑
k∈K

f(k)αk(g(k−1l))u(k, k−1l), f, g ∈ �1(K, A), l ∈ K,

f∗(l) = u(l, l−1)∗αl(f(l−1))∗, f ∈ �1(K, A), l ∈ K.

We let iK and iA denote the canonical injections of K and A into A ×α,u K,
respectively.

Let now π be a nondegenerate representation of A on some Hilbert space
H = Hπ and let πα be the associated representation of A on HK = �2(K, H)
defined by

(πα(a)ξ)(k) = π(αk−1(a))ξ(k), a ∈ A, ξ ∈ HK , k ∈ K.

For every k ∈ K, let λu(k) be the unitary operator on HK given by

(λu(k)ξ)(l) = π(u(l−1, k))ξ(k−1l), k, l ∈ K, ξ ∈ HK .

(Note that we follow [22] here; the right-hand version is used in [16]).



Appendix 33

The pair (πα, λu) is then a covariant representation of (A, K, α, u), that is,

πα(αk(a)) = Ad(λu(k))(πα(a)), k ∈ K, a ∈ A;
λu(k)λu(l) = πα(u(k, l))λu(kl), k, l ∈ K.

This covariant representation induces a nondegenerate representation Indπ of
A ×α,u K on HK determined by

(Indπ)(f) =
∑
k∈K

πα(f(k))λu(k), f ∈ �1(K, A),

that is, by

(Indπ)(iA(a)) = πα(a), (Indπ)(iK(k)) = λu(k), a ∈ A, k ∈ K.

For each k ∈ K, let Hk denote the copy of H in HK given by

Hk = {ξ ∈ HK | ξ(l) = 0 for all l ∈ K, l �= k},

giving us the natural direct sum decomposition HK = ⊕k∈KHk.
Assume now that π′ is a nondegenerate representation of A on H′ and denote

by (π′
α, λ′

u) the associated covariant representation of (A, K, α, u) on H′
K .

Let T ∈ B(HK , H′
K). Denote by [Tk,l]k,l∈K the matrix of T with respect to

the natural direct sum decompositions of HK and H′
K , and identify each Tk,l as

an element in B(H, H′).
Hence, if η ∈ H and k, l ∈ K, then Tk,lη = (Tηl)(k), where ηl ∈ HK is given

by ηl(k) = η when k = l, and ηl(k) = 0 otherwise.
Some tedious (but straightforward) computations give:

(1) (Tπα(a))k,l = Tk,lπ(αl−1(a)), (π′
α(a)T )k,l = π′(αk−1(a))Tk,l,

(2) (Tλu(j))k,l = Tk,jlπ(u(l−1j−1, j)), (λ′
u(j)T )k,l = π′(u(k−1, j))Tj−1k,l,

Proposition 3.1. Assume π and π′ are irreducible, and π ◦ αj �� π′ for all
j ∈ K, j �= e. Let T ∈ B(HK , H′

K) intertwine Indπ and Indπ′. Then Tk,k

intertwines π and π′ for all k ∈ K. Further, T is decomposable; that is, Tk,l = 0
for all k �= l in K.

Proof. We first note that Tπα(a) = π′
α(a)T for all a ∈ A. Using (1), we then get

(3) Tk,lπ(αl−1(a)) = π′(αk−1(a))Tk,l for all k, l ∈ K, a ∈ A.

Letting l = k, this clearly implies that Tk,k intertwines π and π′ for all k ∈ K.
Assume now that k �= l. Using (3) with a = αk(b), we get

(4) Tk,l(π ◦ Ad(u(l−1, k)) ◦ αl−1k)(b) = (π′ ◦ Ad(u(k−1, k)))(b)Tk,l for all b ∈ A.
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From the assumption, we have π′ �� π ◦ αl−1k. Hence, it follows that π ◦
Ad(u(l−1, k) ◦ αl−1k and π′ ◦ Ad(u(k−1, k)) are irreducible and inequivalent. But
(4) says that Tk,l intertwines these two representations of A, and we can therefore
conclude that Tk,l = 0.

The following corollary is due to Zeller-Meier in the case where u takes values
in the center of A (see [22, Propositions 3.8 and 4.4]). Part (a) could be deduced
from [19, Theorem], but as we also need part (b), we prove both.

Corollary 3.2. (a) Indπ is irreducible whenever π is irreducible and the stabi-
lizer subgroup Kπ = {k ∈ K | π ◦ αk � π} is trivial.

(b) Assume that π and π′ both are irreducible. Then Indπ �� Indπ′ whenever
π ◦ αj �� π′ for all j ∈ K.

Proof. (a) Suppose that π is irreducible and Kπ is trivial. Let T ∈ B(HK) lie
in the commutant of (Indπ)(A ×α,u K). Using Proposition 3.1 with π′ = π, it
follows that T is decomposable and Tk,k ∈ π(A)′ for all k ∈ K. As π is irreducible,
this gives that Tk,k ∈ CIH for all k ∈ K. Further, we have Tλu(j) = λu(j)T for
all j ∈ K. Hence, using (2), we get

π(u(k−1, kl−1))Tk,k = Tk,kπ(u(k−1, kl−1)) = (Tλu(kl−1))k,l

= (λu(kl−1)T )k,l = π(u(k−1, kl−1))Tl,l,

which implies that Tk,k = Tl,l for all k, l ∈ K. Altogether, this means that T is a
scalar multiple of the identity operator on HK . Hence we have shown that Indπ
is irreducible, as desired.

(b) Assume that π and π′ both are irreducible and π ◦ αj �� π′ for all j ∈ K.
Let T ∈ B(HK , H′

K) intertwine Indπ and Indπ′. It follows from Proposition 3.1
that Tk,l = 0 for all k, l ∈ K, k �= l, and that Tk,k intertwine π and π′ for all
k ∈ K. As π �� π′ by assumption, we also have Tk,k = 0 for all k ∈ K. Hence,
T = 0. This shows that Indπ �� Indπ′, as desired.

Actually, both implications converse to those stated in (a) and (b) of Corol-
lary 3.2 also hold (as in [22]). However, since we don’t need these in this paper,
we skip the proofs.
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PRIMITIVITY OF SOME FULL GROUP
C∗-ALGEBRAS

ERIK BÉDOS AND TRON Å. OMLAND

Abstract
We show that the full group C∗-algebra of the free product of two nontrivial
countable amenable discrete groups, where at least one of them has more
than two elements, is primitive. We also show that in many cases, this
C∗-algebra is antiliminary and has an uncountable family of pairwise
inequivalent, faithful irreducible representations.

1 Introduction
Let G denote a countable discrete group. It is known that C∗(G), the full group
C∗-algebra of G, is primitive in a number of cases [17, 3, 11, 8, 10, 1]. Especially,
this is true for many groups which have a free product decomposition satisfying
various conditions: see [8, 10, 1]. These results suggest that C∗(G) should be
primitive whenever G is the free product of two nontrivial countable discrete
groups G1 and G2, where at least one of them has more than two elements. In
this note, we show that this is indeed the case when both G1 and G2 are also
assumed to be amenable.

This applies for example when G1 and G2 are both finite with |G1| ≥ 2 and
|G2| ≥ 3. This case is not covered by any of the papers cited above, except
when G1 = Z2 and G2 = Z3, i.e. G is the modular group PSL(2,Z), for which
primitivity of C∗(G) was shown in [1]. The reader should consult [10] and [1]
for more information around the problem of determining when the full group
C∗-algebra of a countable discrete group is primitive.

Our proof will rely on the following result from [1]:

Theorem 1.1. Assume that a group G has a normal subgroup H such that

(i) C∗(H) is primitive,

(ii) K = G/H is amenable,

(iii) the natural action of K on Ĉ∗(H)◦ has a free point.

2010 Mathematics Subject Classification. Primary 46L05; Secondary 22D25, 46L55.
Key words and phrases. full group C*-algebra, primitivity, free product, antiliminary.
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Then C∗(G) is primitive.

We recall here what condition (iii) means. Set A = C∗(H). Then the set

Â◦ = {[π] ∈ Â | π is faithful}

is nonempty since A is assumed to be primitive. The natural action of K = G/H

on Â◦ is defined as follows.
Let n : K → G be a normalized section for the canonical homomorphism p

from G onto K. Let α : K → Aut (A) and u : K × K → A be given by

αk

(
iH(h)

)
= iH

(
n(k)hn(k)-1), k ∈ K, h ∈ H,

u(k, l) = iH

(
n(k)n(l)n(kl)-1), k, l ∈ K,

where iH denotes the canonical injection of H into A. Then (α, u) is a twisted
action of K on A (cf. [12]), which induces an action of K on Â◦ given by

k · [π] = [π ◦ αk-1 ].

This action is independent of the choice of normalized section for p and called the
natural action of K on Â◦. Finally, we recall that [π] ∈ Â◦ is a free point for this
action whenever we have k · [π] �= [π] for all k ∈ K, k �= e.

Throughout this paper, we let G1 and G2 be two nontrivial countable discrete
groups and assume that at least one of them has more than two elements. Further,
we let G = G1 ∗ G2 denote the free product of G1 and G2. It is well known that
G is icc and nonamenable. Section 2 is devoted to the proof of our main result in
this paper:

Theorem 1.2. Assume moreover that G1 and G2 are both amenable. Then C∗(G)
is primitive.

In the final section (Section 3), we discuss the problem of deciding when C∗(G)
is antiliminary and has an uncountable family of pairwise inequivalent, faithful
irreducible representations.

As will be evident from its proof, the annoying amenability assumption in
Theorem 1.2 is due to the amenability assumption on K in Theorem 1.1. Now, if
one replaces this assumption on K by requiring that the twisted action of K on
C∗(H) is amenable in the sense that the full and the reduced crossed products of
C∗(H) by this action agree, then Theorem 1.1 still holds. An interesting problem
is whether one can find condition(s) other than the amenability of K ensuring
that this more general requirement is satisfied.
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2 Proof of Theorem 1.2
We let e1 (resp. e2) denote the unit of G1 (resp. G2) and set G′

1 = G1 \ {e1},
G′

2 = G2 \ {e2}. We let X ⊂ G denote the set of commutators given by

X = {[a, b] = aba-1b-1 ∈ G | a ∈ G′
1, b ∈ G′

2}.

As is well known (see e.g. [14]), X is free and generates the kernel H of the
canonical homomorphism p from the free product G = G1 ∗ G2 onto the direct
product K = G1 ×G2. The map (a, b) �→ [a, b] is then a bijection between G′

1 ×G′
2

and X, and H is isomorphic to the free group F|X| with |X| generators.
As |X| = |G′

1| · |G′
2| ≥ 2, A = C∗(H) is primitive (cf. [17, 3]). Further, as G1

and G2 are both assumed to be amenable, K is amenable.
Now let π be a faithful irreducible representation of A acting on a (necessarily

separable) Hilbert space Hπ. For each function λ : X → T, we let γλ denote the
∗-automorphism of A determined by

γλ(iH(x)) = λ(x)iH(x), x ∈ X,

and set πλ = π ◦ γλ. Clearly, each πλ is also faithful and irreducible, i.e. [πλ] ∈ Â◦.
The burden of the proof is to establish the following:

Proposition 2.1. There exist [π] ∈ Â◦ and λ : X → T such that [πλ] is a free
point for the natural action of K on Â◦.

Once we have proven this proposition, the primitivity of C∗(G) then clearly
follows from Theorem 1.1 and the proof of Theorem 1.2 will therefore be finished.

Proof of Proposition 2.1. As a normalized section n : K → G for p, we choose

n(a, b) = ab, a ∈ G1, b ∈ G2.

We have to show that some faithful irreducible representation π of A and some
λ : X → T may be chosen so that

πλ ◦ αk �� πλ

for all nontrivial k ∈ K.
Clearly, to show that this condition holds, it suffices to show that for each

nontrivial k ∈ K, there exists some x ∈ X (depending on k) such that

(πλ ◦ αk)(iH(x)) �� πλ

(
iH(x)

)
. (2.1)

To show this, we will use following fact:
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Assume x0 ∈ X is fixed. Then, as follows from Choi’s proof [3] (see [10, Proof
of Theorem 3.2]), we may choose a faithful irreducible representation π = πx0

of A such that for each x �= x0 in X the unitary operator π(iH(x)) is diagonal
relative to some orthonormal basis of Hπ (which depends on x). We will call such
a representation for a Choi representation of A associated to x0.

Our choice of x0, and thereby of π = πx0 , will depend on the possible existence
of elements of order 2 in G1 or G2.

We will also use repeatedly the following elementary fact (already used in [10]
and in [1]):

Assume H is a separable Hilbert space. Let U and V be unitary operators on
H and assume that U is diagonal relative to some orthonormal basis of H. Then
the sets

{μ ∈ T | μU � V } and {μ ∈ T | μU � (μU)∗}
are both countable.

Consider some faithful irreducible representation π of A and λ : X → T. When
a ∈ G′

1, b ∈ G′
2, so [a, b] ∈ X, we let U(a, b) (= Uπ(a, b)) denote the unitary

operator on Hπ given by U(a, b) = π
(
iH([a, b])

)
. Further, we set λ(a, b) = λ([a, b]).

Thus we have
πλ

(
iH([a, b])

)
= λ(a, b)U(a, b). (2.2)

Some straightforward calculations give the following identities which we will use
in the sequel:

πλ

(
α(a,b)(iH([a-1, b-1]))

)
= λ(a, b)U(a, b)

πλ

(
α(a,e2)(iH([a-1, b]))

)
=
(
λ(a, b)U(a, b)

)∗

πλ

(
α(e1,b)(iH([a, b-1]))

)
=
(
λ(a, b)U(a, b)

)∗
(2.3)

πλ

(
α(a,b)(iH([a-1c, b-1]))

)
= λ(a, b)U(a, b)

(
λ(c, b)U(c, b)

)∗

πλ

(
α(a,b)(iH([c, b-1]))

)
= λ(a, b)U(a, b)

(
λ(ac, b)U(ac, b)

)∗ (2.4)

πλ

(
α(a,e2)(iH([a-1c, b]))

)
= λ(c, b)U(c, b)

(
λ(a, b)U(a, b)

)∗

πλ

(
α(a,e2)(iH([c, b]))

)
= λ(ac, b)U(ac, b)

(
λ(a, b)U(a, b)

)∗ (2.5)

whenever a ∈ G′
1, b ∈ G′

2, and c ∈ G′
1 \ {a, a-1}.

We will show how to pick π and λ such that (2.1) holds. It turns out that the
possible existence of elements of order 2 in G1 or G2 complicates the argument.
Set

P = {s ∈ G′
1 | s2 �= e1}, S = G′

1 \P, Q = {t ∈ G′
2 | t2 �= e2}, and T = G′

2 \Q.

Hence, we have

G1 = {e1} � P � S and G2 = {e2} � Q � T.
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We divide our discussion into three separate cases.

Case 1. Both P and Q are nonempty.
We pick p0 ∈ P , q0 ∈ Q and set x0 = [p-1

0 , q-1
0 ] ∈ X. Then we let π = πx0

be a Choi representation of A associated to x0, and set U(a, b) = Uπ(a, b) for
each x = [a, b] ∈ X. It remains to define λ : X → T so that (2.1) holds for each
nontrivial k ∈ K. We introduce the following notation.

Assume that a ∈ G′
1, b ∈ G′

2, p ∈ P , q ∈ Q, s ∈ S, and t ∈ T . Then we set

Ω(a, b) = {μ ∈ T | μU(a, b) � U(a-1, b-1)},

Ω1(p) = {μ ∈ T | μU(p, q0) � U(p-1, q0)∗},

Ω2(q) = {μ ∈ T | μU(p0, q) � U(p0, q-1)∗},

Ω1(s) = {μ ∈ T | μU(s, q0) � (
μU(s, q0)

)∗},

Ω2(t) = {μ ∈ T | μU(p0, t) � (
μU(p0, t)

)∗}.

Note that if (a, b) �= (p-1
0 , q-1

0 ), then Ω(a, b) is countable (as U(a, b) is then
diagonalizable). Similarly, Ω1(p), Ω2(q), Ω1(s), and Ω2(t) are countable.

To ease our notation, we will define λ on G′
1 × G′

2 and identify it with the
function on X given by λ([a, b] = λ(a, b), a ∈ G′

1, b ∈ G′
2. We will first define λ

on P × Q.
Let P = �i∈I{pi, p-1

i } and Q = �j∈J{qj , q-1
j } be enumerations of P and Q,

where the index set I (resp. J) is a (finite or infinite) set of successive integers
starting from 0. For each i ∈ I and j ∈ J , we set

λ(p-1
i , qj) = λ(p-1

i , q-1
j ) = 1.

Now let i ∈ I and j ∈ J . Using (2.2) and (2.3), we see that (2.1) will hold for

k = (pi, q-1
j ) and k = (p-1

i , qj) if λ(pi, q-1
j )U(pi, q-1

j ) �� U(p-1
i , qj);

k = (pi, qj) and k = (p-1
i , q-1

j ) if λ(pi, qj)U(pi, qj) �� U(p-1
i , q-1

j );
k = (pi, e2) and k = (p-1

i , e2) if λ(pi, q0)U(pi, q0) �� U(p-1
i , q0)∗;

k = (e1, qj) and k = (e1, q-1
j ) if λ(p0, qj)U(p0, qj) �� (

λ(p0, q-1
j )U(p0, q-1

j )
)∗

.

For each i ∈ I and j ∈ J , we therefore pick

λ(pi, q-1
j ) ∈ T \ Ω(pi, q-1

j ).

Next, for each i ∈ I, i �= 0, and j ∈ J , j �= 0, we pick

λ(pi, qj) ∈ T \ Ω(pi, qj),
λ(pi, q0) ∈ T \ (Ω(pi, q0) ∪ Ω1(pi)

)
,

λ(p0, qj) ∈ T \ (Ω(p0, qj) ∪ λ(p0, q-1
j )Ω2(qj)

)
.
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Finally, we pick

λ(p0, q0) ∈ T \ (Ω(p0, q0) ∪ Ω1(p0) ∪ λ(p0, q-1
0 )Ω2(q0)

)
.

All these choices are possible as all the involved Ω’s are countable. After having
done this, λ is defined on P × Q and we know that (2.1) will hold for all k ∈
(P × Q) ∪ (P × {e2}) ∪ ({e1} × Q).

This means that if both S and T happen to be empty, then λ is defined on
the whole of X and (2.1) holds for every nontrivial k ∈ K, as desired.

We assume from now on and until the end of Case 1 that S is nonempty.

Consider s ∈ S. For each j ∈ J we set λ(s, q-1
j ) = 1. Using (2.2) and (2.3),

we see that (2.1) will hold for

k = (s, qj) and k = (s, q-1
j ) if λ(s, qj)U(s, qj) �� U(s, q-1

j );

k = (s, e2) if λ(s, q0)U(s, q0) �� (
λ(s, q0)U(s, q0)

)∗
.

For each j ∈ J , j �= 0, we therefore pick λ(s, qj) ∈ T \ Ω(s, qj). We also pick
λ(s, q0) ∈ T \ (Ω(s, q0) ∪ Ω1(s)

)
. Again, these choices are possible as all the

involved Ω’s are countable.
Following this procedure for every s ∈ S, we achieve that λ is defined on

G′
1 × Q in such a way that (2.1) will hold for all

k ∈ (G′
1 × ({e2} ∪ Q)

) ∪ ({e1} × Q).

If T happens to be empty, this means that λ is defined on the whole of X and
(2.1) holds for every nontrivial k in K, as desired.

Finally, we assume from now on and until the end of Case 1 that T is also
nonempty.

Consider t ∈ T . For each i ∈ I we set λ(p-1
i , t) = 1. Using (2.2) and (2.3), we

see that (2.1) will hold for

k = (pi, t) and k = (p-1
i , t) if λ(pi, t)U(pi, t) �� U(p-1

i , t);

k = (e1, t) if λ(p0, t)U(p0, t) �� (
λ(p0, t)U(p0, t)

)∗
.

For each i ∈ I, i �= 0, we pick λ(pi, t) ∈ T \ Ω(pi, t). We also pick λ(p0, t) ∈
T \ (Ω(p0, t) ∪ Ω2(t)

)
. Once again, these choices are possible as all the involved

Ω’s are countable. By doing this for every t ∈ T , we achieve that λ is defined on
(G′

1 × G′
2) \ (S × T ) and (2.1) will hold for all

k ∈ (G′
1 × ({e2} ∪ Q)

) ∪ (({e1} ∪ P ) × G′
2
)
.
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It remains to define λ on S × T in a way which ensures that (2.1) also will hold
for all k ∈ S × T .

Let t ∈ T . We will below describe how to define λ on S × {t} in a way which
ensures that (2.1) will hold for all k ∈ S × {t}. By following this procedure for
each t ∈ T , the proof in Case 1 will then be finished.

It is now appropriate to partition S as S = S′ � S′′, where

S′ = {s ∈ S | sp0 ∈ P} and S′′ = {s ∈ S | sp0 ∈ S}.

Assume that s ∈ S′. Using (2.2) and (2.4), we see that (2.1) will hold for

k = (s, t) if λ(s, t)U(s, t)
(
λ(p0, t)U(p0, t)

)∗ �� λ(sp0, t)U(sp0, t).

Note that λ(sp0, t) is already defined since sp0 ∈ P . Further, as λ(sp0, t)U(sp0, t)
is diagonalizable, the set

Ω′(s, t) = {μ ∈ T | μ
(
λ(sp0, t)U(sp0, t)

) � U(s, t)
(
λ(p0, t)U(p0, t)

)∗}

is countable. We can therefore pick λ(s, t) ∈ T\Ω′(s, t). If S′ is nonempty, we can
do this for each s ∈ S′ and λ will then be defined on S′ × {t} in such a way that
(2.1) will hold for every k ∈ S′ × {t}. If S′′ is empty, then S′ has to be nonempty
and the proof of Case 1 is then finished.

Assume now that S′′ is nonempty and consider s ∈ S′′, so (sp0)2 = e1. One
easily checks that this implies that spn

0 = p-n
0 s for all n ∈ Z. It is then almost

immediate that S′′(s) = {spn
0 | n ∈ Z} is a subset of S′′.

Furthermore, if s̃ ∈ S′′ \ S′′(s), then S′′(s) and S′′(s̃) are disjoint. Hence, as
S′′ is countable, we may pick a countable family {sl}l∈L of distinct elements in
S′′ such that S′′ = �l∈LS′′(sl).

Consider l ∈ L. To ease notation we write s = sl. We are going to define λ
on S′′(s) × {t} in such a way that (2.1) will hold for every k ∈ S′′(s) × {t}. By
doing this for each l ∈ L, λ will then be defined on S′′ × {t} and (2.1) will hold
for every k ∈ S′′ × {t}. Since S × {t} = (S′ × {t}) � (S′′ × {t}), the proof of Case
1 will then be finished.

For each n ∈ Z, using (2.2) and (2.4) (with a = spn
0 , b = t, and c = spn±1

0 ),
we see that (2.1) will hold for

k = (spn
0 , t) if λ(spn

0 , t)U(spn
0 , t)

(
λ(spn+1

0 , t)U(spn+1
0 , t)

)∗ �� λ(p0, t)U(p0, t)

or λ(spn
0 , t)U(spn

0 , t)
(
λ(spn-1

0 , t)U(spn-1
0 , t)

)∗ �� λ(p-1
0 , t)U(p-1

0 , t).

Suppose first that p0 is aperiodic, so S′′(s) = �n∈Z{spn
0 }. We first set λ(s, t) = 1.

Then, for each m ∈ N, we do inductively the following two steps:
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i) Define

Ωm(s, t) = {μ ∈ T | μ
(
λ(p0, t)U(p0, t)

) � λ(spm-1
0 , t)U(spm-1

0 , t)U(spm
0 , t)∗}

(which is countable) and pick λ(spm
0 , t) ∈ T \ Ωm(s, t).

ii) Define Ω-m(s, t) as the set

{μ ∈ T | μ
(
λ(p-1

0 , t)U(p-1
0 , t)

) � λ(sp-m+1
0 , t)U(sp-m+1

0 , t)U(sp-m
0 , t)∗}

(which is countable) and pick λ(sp-m
0 , t) ∈ T \ Ω-m(s, t). Once this inductive

process is finished, λ is defined on S′′(s) × {t} and we know that (2.1) holds for
every k = (sp

±(m-1)
0 , t), m ∈ N, i.e. for every k ∈ S′′(s) × {t}, as desired.

Assume now that p0 is periodic with period N . Note that N ≥ 3 since p0 ∈ P .
The aperiodic case has to be modified as follows.

Again, we first set λ(s, t) = 1. Then, for each m = 1, · · · , N − 2, we define
inductively

Ωm(s, t) = {μ ∈ T | μ
(
λ(p0, t)U(p0, t)

) � λ(spm-1
0 , t)U(spm-1

0 , t)U(spm
0 , t)∗}

(which is countable) and pick λ(spm
0 , t) ∈ T \ Ωm(s, t). This ensures that (2.1)

holds for each k = (spm-1
0 , t), m = 1, · · · , N − 2.

We also define

ΩN-1(s, t) = {μ ∈ T | μ
(
λ(p0, t)U(p0, t)

) � λ(spN-2
0 , t)U(spN-2

0 , t)U(spN-1
0 , t)∗}

(which is countable). If we pick λ(spN-1
0 , t) outside ΩN-1(s, t), then (2.1) will

hold for k = (spN-2
0 , t). However, we want to pick λ(spN-1

0 , t) so that (2.1) also
holds for k = (spN-1

0 , t). Now, using (2.2) and (2.4) (with a = spN-1
0 , b = t, and

c = s), we see that (2.1) will hold for k = (spN-1
0 , t) if

λ(p0, t)U(p0, t) �� λ(spN-1
0 , t)U(sp0

N-1, t)U(s, t)∗.

Hence, we define

ΩN (s, t) = {μ ∈ T | μ
(
λ(p0, t)U(p0, t)

) � U(spN-1
0 , t)U(s, t)∗}

(which is countable) and pick

λ(spN-1
0 , t) ∈ T \ (ΩN-1(s, t) ∪ ΩN (s, t)

)
.

This choice does ensure that (2.1) holds both for k = (spN-2
0 , t) and k = (spN-1

0 , t).
Hence, λ is defined on S′′(s) × {t} and (2.1) holds for every k ∈ S′′(s) × {t}.

This finishes the proof of Case 1.
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Case 2. Either P is nonempty and Q is empty, or P is empty and Q is nonempty.
Clearly, it suffices to consider the first alternative. We then pick p0 ∈ P ,

t0 ∈ T and set x0 = [p-1
0 , t0] ∈ X. We let π = πx0 be a Choi representation of A

associated to x0 and set U(a, b) = Uπ(a, b) for each x = [a, b] ∈ X.
Our proof that λ : X → T may be defined so that (2.1) holds for each nontrivial

k ∈ K is quite similar to our proof of Case 1, but some care is required and some
repetitions seem unavoidable in our presentation.

For p ∈ P , s ∈ S, and t ∈ T , we now set

Ω(p, t) = {μ ∈ T | μU(p, t) � U(p-1, t)},

Ω1(p) = {μ ∈ T | μU(p, t0) � U(p-1, t0)∗},

Ω1(s) = {μ ∈ T | μU(s, t0) � (
μU(s, t0)

)∗},

Ω2(t) = {μ ∈ T | μU(p0, t) � (
μU(p0, t)

)∗}.

Note that if (p, t) �= (p-1
0 , t0), then Ω(p, t) is countable. On the other hand, Ω1(p)

is countable when a �= p-1
0 , while Ω1(s) and Ω2(t) are always countable.

Let P = �i∈I{pi, p-1
i } be an enumeration of P , where I is a (finite or infinite)

set of successive integers starting from 0. First, we set λ(pi
-1, t) = 1 for all i ∈ I

and t ∈ T .
Let i ∈ I and t ∈ T . Using (2.2) and (2.3), we see that (2.1) will hold for

k = (pi, t) and k = (pi
-1, t) if λ(pi, t)U(pi, t) �� U(pi

-1, t);
k = (pi, e2) and k = (pi

-1, e2) if λ(pi, t0)U(pi, t0) �� U(pi
-1, t0)∗;

k = (e1, t) if λ(p0, t)U(p0, t) �� (
λ(p0, t)U(p0, t)

)∗
.

Therefore, for each i ∈ I, i �= 0, and t ∈ T , t �= t0, we pick

λ(pi, t) ∈ T \ Ω(pi, t),
λ(pi, t0) ∈ T \ (Ω(pi, t0) ∪ Ω1(pi)

)
,

λ(p0, t) ∈ T \ (Ω(p0, t) ∪ Ω2(t)
)
.

Finally, we pick

λ(p0, t0) ∈ T \ (Ω(p0, t0) ∪ Ω1(p0) ∪ Ω2(t0)
)
.

These choices ensure that λ is defined on P × T and (2.1) will hold for all
k ∈ (P × (

T ∪ {e2})) ∪ ({e1} × T ).
This means that if S happens to be empty, λ is defined on the whole of X and

(2.1) holds for every nontrivial k in K, as desired.

We assume from now on and until the end of Case 2 that S is nonempty.
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Consider s ∈ S. Using (2.2) and (2.3), we see that (2.1) will hold for

k = (s, e2) if λ(s, t0)U(s, t0) �� (
λ(s, t0)U(s, t0)

)∗
.

We will therefore pick λ(s, t0) in a subset of T \ Ω1(s). But which subset will
depend on whether s belongs to S′ or S′′, where

S′ = {s ∈ S | sp0 ∈ P} and S′′ = {s ∈ S | sp0 ∈ S}

(using the same notation as in Case 1).
Assume that s ∈ S′ and t ∈ T . As in Case 1, (2.1) will hold for

k = (s, t) if λ(s, t)U(s, t)
(
λ(p0, t)U(p0, t)

)∗ �� λ(sp0, t)U(sp0, t).

Again, we set

Ω′(s, t) = {μ ∈ T | μ
(
λ(sp0, t)U(sp0, t)

) � U(s, t)(λ(p0, t)U(p0, t)
)∗}.

If t = t0, then we pick λ(s, t0) ∈ T \ (Ω1(s) ∪ Ω′(s, t0)
)
. Otherwise, we pick

λ(s, t) ∈ T \ Ω′(s, t).
If S′ is nonempty, we can do this for every s ∈ S′ and every t ∈ T . This ensures

that λ is defined on S′ × T and that (2.1) will hold for every k ∈ S′ × (T ∪ {e2}).
Hence, if S′′ is empty, then S′ has to be nonempty and the proof of Case 2 is
finished.

Assume now that S′′ is nonempty. As in Case 1, we then pick a countable
family {sl}l∈L of distinct elements in S′′ such that S′′ = �l∈LS′′(sl), where
S′′(s) = {spn

0 | n ∈ Z} for s ∈ S′′.
Consider l ∈ L, t ∈ T and set s = sl. If t = t0, then we pick λ(s, t0) ∈ T\Ω1(s).

Otherwise, we set λ(s, t) = 1.
Let n ∈ Z. As in Case 1, (2.1) will hold for

k = (spn
0 , t) if λ(spn

0 , t)U(spn
0 , t)

(
λ(spn+1

0 , t)U(spn+1
0 , t)

)∗ �� λ(p0, t)U(p0, t)

or λ(spn
0 , t)U(spn

0 , t)
(
λ(spn-1

0 , t)U(spn-1
0 , t)

)∗ �� λ(p-1
0 , t)U(p-1

0 , t).

Suppose first that p0 is aperiodic, so S′′(s) = �n∈Z{spn
0 }. Then, for each m ∈ N,

we proceed inductively and do the following two steps:
i) Define

Ωm(s, t) = {μ ∈ T | μ
(
λ(p0, t)U(p0, t)

) � λ(spm-1
0 , t)U(spm-1

0 , t)U(spm
0 , t)∗}.

If t = t0, then we pick λ(spm
0 , t0) ∈ T \ (Ω1(spm

0 )∪Ωm(s, t0)
)
. Otherwise, we pick

λ(spm
0 , t) ∈ T \ Ωm(s, t).
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ii) Define Ω-m(s, t) as the set

{μ ∈ T | μ
(
λ(p-1

0 , t)U(p-1
0 , t)

) � λ(sp-m+1
0 , t)U(sp-m+1

0 , t)U(sp-m
0 , t)∗}.

If t = t0, then we pick λ(sp-m
0 , t0) ∈ T \ (Ω1(sp-m

0 ) ∪ Ω-m(s, t0)
)
. Otherwise, we

pick λ(sp-m
0 , t) ∈ T \ Ω-m(s, t).

Assume next that p0 is periodic with period N ≥ 3. Then for each m =
1, · · · , N − 2, proceeding inductively, we define

Ωm(s, t) = {μ ∈ T | μ
(
λ(p0, t)U(p0, t)

) � λ(spm-1
0 , t)U(spm-1

0 , t)U(spm
0 , t)∗}.

If t = t0, we pick λ(spm
0 , t0) ∈ T \ (Ω1(spm

0 ) ∪ Ωm(s, t0)
)
. Otherwise, we pick

λ(spm
0 , t) ∈ T \ Ωm(s, t).
We also define

ΩN-1(s, t) = {μ ∈ T | μ
(
λ(p0, t)U(p0, t)

) � λ(spN-2
0 , t)U(spN-2

0 , t)U(spN-1
0 , t)∗}.

As in Case 1, (2.1) will hold for k = (spN-1
0 , t) if

λ(p0, t)U(p0, t) �� λ(pN-1
0 , t)U(spN-1

0 , t)U(s, t)∗.

So we define

ΩN (s, t) = {μ ∈ T | μ
(
λ(p0, t)U(p0, t)

) � U(spN-1
0 , t)U(s, t)∗}.

Now, if t = t0, then we pick

λ(spN-1
0 , t0) ∈ T \ (Ω1(spN-1

0 ) ∪ ΩN-1(s, t0) ∪ ΩN (s, t0)
)
.

Otherwise, we pick

λ(spN-1
0 , t) ∈ T \ (ΩN-1(s, t) ∪ ΩN (s, t)

)
.

Under both alternatives (p0 being aperiodic or not), these processes ensure that λ
is defined on S′′(s)×{t} and that (2.1) will hold for every k ∈ S′′(s)× ({t}∪{e2}).

After having done this for every s = sl, l ∈ L and every t ∈ T , λ is defined on
S′′ × T and we know that (2.1) will hold for every k ∈ S′′ × (T ∪ {e2}).

Altogether, this means that λ is defined on the whole of G′
1 × G′

2 and (2.1)
holds for every nontrivial k ∈ K. This finishes the proof of Case 2.

Case 3. Both P and Q are empty.
This means that G′

1 = S and G′
2 = T , i.e. all nontrivial elements in G1 and

G2 have order 2, so both groups are abelian. As one of them is assumed to have
more than two elements, we may assume that |G1| ≥ 4 and |G2| ≥ 2.
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We pick s0 ∈ S, t0 ∈ T and set x0 = [s0, t0] ∈ X. Next, we let π = πx0 be
a Choi representation of A associated to x0 and set U(a, b) = Uπ(a, b) for each
(a, b) ∈ S × T = G′

1 × G′
2.

Now, since S is countable, it is not difficult to see that we may find a family
{sl}l∈L of distinct elements in S \ {s0} such that

S = {s0} � ( �l∈L {sl, s0sl}
)
,

where L is a (finite or infinite) set of successive integers starting from 1.
Let t ∈ T . Set λ(s0, t) = 1 and λ(sl, t) = 1 for each l ∈ L, l ≥ 2. Using (2.2)

and (2.3), we see that (2.1) will hold for

k = (e1, t) if λ(s1, t)U(s1, t) �� (
λ(s1, t)U(s1, t)

)∗
.

Hence, we set Ω(t) = {μ ∈ T | μU(s1, t) � (
μU(s1, t)

)∗}, which is countable, and
pick

λ(s1, t) ∈ T \ Ω(t).

Consider now l ∈ L. Using (2.2), (2.3), (2.4), and (2.5), we see that (2.1) will
hold for

k = (s0, t) and k = (sl, e2) if λ(s0sl, t)U(s0sl, t) �� U(s0, t)
(
λ(sl, t)U(sl, t)

)∗;
k = (s0, e2) and k = (sl, t) if λ(s0sl, t)U(s0sl, t) �� λ(sl, t)U(sl, t)U(s0, t)∗;

k = (s0, t) and k = (s0sl, e2) if λ(sl, t)U(sl, t) �� U(s0, t)
(
λ(s0sl, t)U(s0sl, t)

)∗;
k = (s0sl, t) and k = (s0, e2) if λ(sl, t)U(sl, t) �� λ(s0sl, t)U(s0sl, t)U(s0, t)∗.

For each l ∈ L, we therefore set

Ω1(l, t) = {μ ∈ T | μU(sls0, t) � U(s0, t)
(
λ(sl, t)U(sl, t)

)∗},

Ω2(l, t) = {μ ∈ T | μU(s0sl, t) � λ(sl, t)U(sl, t)U(s0, t)∗},

Ω3(l, t) = {μ ∈ T | μ
(
λ(sl, t)U(sl, t)

) � U(s0, t)U(s0sl, t)∗},

Ω4(l, t) = {μ ∈ T | μ
(
λ(sl, t)U(sl, t)

) � U(sls0, t)U(s0, t)∗}.

All these sets are countable. Hence, for each l ∈ L, we can pick

λ(s0sl, t) ∈ T \ (Ω1(l, t) ∪ Ω2(l, t) ∪ Ω3(l, t) ∪ Ω4(l, t)
)
.

We have thereby defined λ on S × {t} in such a way that (2.1) will hold for
every k ∈ (G1 × {t}) � (S × {e2}). By doing this for each t ∈ T , λ is defined on
S × T = G′

1 × G′
2 and (2.1) holds for every nontrivial k ∈ K. This finishes the

proof of Case 3 (and thereby the proofs of Proposition 2.1 and Theorem 1.2).
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3 Some further aspects
We believe that if G is a countable group such that C∗(G) is primitive, then C∗(G)
is antiliminary and has an uncountable family of pairwise inequivalent, irreducible
faithful representations. It is not difficult to see that this true in the case where G
is nontrivial, icc and amenable (see below). As pointed out in [1], this also holds
when G = Z2 ∗ Z3. The argument was based on the following observation, which
goes back to the work of J. Glimm and J. Dixmier in the sixties. We recall that a
representation of a C∗-algebra is called essential whenever its range contains no
compact operators other than zero.

Proposition 3.1. Let A be a primitive separable C∗-algebra and consider the set
Â◦ = {[π] ∈ Â | π is faithful}. Then the following conditions are equivalent:

(i) |Â◦| > 1.

(ii) Every faithful irreducible representation of A is essential.

(iii) A has a faithful irreducible representation which is essential.

(iv) Â◦ is uncountable.

Moreover, if A satisfies any of these conditions, then A is antiliminary.

Proof. The implications (ii) ⇒ (iii) and (iv) ⇒ (i) are trivial. The implication
(i) ⇒ (ii) follows from [4, Corollaire 4.1.10], while (iii) ⇒ (iv) follows from [4,
Compléments 4.7.2]. The final assertion follows from [4, Compléments 9.5.4].

For completeness we mention that there is another way to show that a unital
separable C∗-algebra is primitive and antiliminary. Indeed, using that primitivity
and primeness are equivalent notions for separable C∗-algebras (see e.g. [13]), one
deduces that a separable unital C∗-algebra A is primitive and antiliminary if and
only if the pure state space of A is weak∗-dense in the state space of A (cf. [4,
Lemme 11.2.4 and Compléments 11.6.6]). H. Yoshizawa showed in [17] that the
right-hand side of this equivalence holds when A = C∗(F2).

Now let G = G1 ∗ G2 be as in Theorem 1.2. It is conceivable that one might
be able to check that condition (i) in Proposition 3.1 holds for A = C∗(G) by
following the line of proof used in [1] when G = Z2 ∗ Z3. However, in light of our
proof of Theorem 1.2, the necessary combinatorics will certainly be very messy.
We will instead use the following well-known lemma to check that condition (ii)
holds for A = C∗(G) in many cases.

Lemma 3.2. Let A be a primitive, unital, infinite-dimensional C∗-algebra. As-
sume that A contains no nontrivial projections or that A has a faithful tracial
state. Then A satisfies condition (ii) in Proposition 3.1.
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Proof. For completeness, we give the proof. Let π be a faithful irreducible repre-
sentation of A acting on a Hilbert space H and let K denote the compact operators
on H. Note that H is infinite-dimensional since π(A) is infinite-dimensional.

Assume first that A contains no nontrivial projections. Since π is faithful, π(A)
contains no nontrivial projections. Hence, π(A) ∩ K = {0} (otherwise we would
have K ⊂ π(A) by irreducibility, and π(A) would contain all finite-dimensional
projections), so π is essential.

Assume now that A has a faithful tracial state τ . Assume (for contradiction)
that π(A) ∩ K �= {0}. Then K ⊂ π(A). As is well known, when H is infinite-
dimensional, the only bounded trace on K is the zero map. Hence, the restriction
of τ to K must be zero. But K contains nontrivial projections and evaluation of τ
on any of these does not give zero since τ is faithful. This gives a contradiction,
and it follows that π is essential.

Corollary 3.3. Let G = G1 ∗G2 satisfy the assumptions of Theorem 1.2. Assume
also that G1 and G2 are both torsion-free. Then C∗(G) has no nontrivial pro-
jections. Moreover, it is antiliminary and has an uncountable family of pairwise
inequivalent, irreducible faithful representations.

Proof. The first assertion is mentioned by G. J. Murphy [10, p. 703], where he
refers to [5] and [9] for a proof. It seems to us that this is somewhat unprecise.
We therefore provide an alternative way to prove this assertion:

Since G1 and G2 are amenable, G has the Haagerup property ([2, Proposi-
tion 6.2.3]). Hence, as shown by N. Higson and G. Kasparov in [7], G satisfies the
Baum-Connes conjecture. As G is easily seen to be torsion-free, G also satisfies the
Kadison-Kaplansky conjecture (see e.g. [16]), i.e. the reduced group C∗-algebra
C∗

r (G) contains no nontrivial projections.
Moreover, as shown by J.-L. Tu in [15], any group having the Haagerup

property is K-amenable. It follows that the homomorphism λ∗ from K0(C∗(G)) to
K0(C∗

r (G)) induced by the canonical map λ : C∗(G) → C∗
r (G) is an isomorphism.

It is then straightforward to check that this implies that C∗(G) has no nontrivial
projections.

Now, Theorem 1.2 says that C∗(G) is primitive. The second assertion fol-
lows therefore from Proposition 3.1 in combination with the first assertion and
Lemma 3.2.

To our knowledge, the class of countable discrete groups which are such that
their full group C∗-algebras have a faithful tracial state has not been much
studied. Clearly, it does contain all countable amenable groups (as the full and
the reduced group C∗-algebras agree for such groups, and the canonical tracial
state on the reduced algebra is always faithful). Hence, if H is nontrivial, icc and
amenable, then C∗(H) is primitive (cf. [10, 11]) and Lemma 3.2 may be applied.
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Our assertion at the beginning of this section follows then from Proposition 3.1.
On the other hand, this class also contains all free groups with countably many
generators. This fact is due to Choi [3, Corollary 9] and may be put in a somewhat
more general framework as follows.

We first recall that a C∗-algebra is called residually finite-dimensional (RFD)
if it has a separating family of finite-dimensional representations (see e.g. [6]).
Clearly, any abelian or finite-dimensional C∗-algebra is RFD. If F is a free group
on countably many generators, then C∗(F) is RFD (cf. [3, Theorem 7]). Moreover,
the class of RFD C∗-algebras is closed under free products (see [6, Theorem 3.2]).
Finally, any unital RFD C∗-algebra has a faithful tracial state (see the proof of
[3, Corollary 9]). Hence, we get:

Corollary 3.4. Consider G = G1 ∗ G2, where at least one of the Gi’s has more
than two elements, and assume that G1 (resp. G2) is abelian or finite. Then C∗(G)
is RFD, antiliminary and has an uncountable family of pairwise inequivalent,
irreducible faithful representations.

Proof. It follows from Theorem 1.2 that C∗(G) is primitive. Moreover, C∗(G) =
C∗(G1) ∗ C∗(G2) is RFD since C∗(G1) and C∗(G2) are RFD. Hence, C∗(G) has
a faithful tracial state, and the assertion follows from Proposition 3.1 combined
with Lemma 3.2.
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PRIMENESS AND PRIMITIVITY CONDITIONS FOR
TWISTED GROUP C∗-ALGEBRAS

TRON ÅNEN OMLAND

Abstract
For a multiplier (2-cocycle) σ on a discrete group G we give conditions
for which the twisted group C∗-algebra associated with the pair (G, σ) is
prime or primitive. We also discuss how these conditions behave on direct
products and free products of groups.

Introduction
In this paper, G will always denote a discrete group with identity e. The full
group C∗-algebra associated with G, C∗(G) is simple only if G is trivial, but
other aspects of its ideal structure are of interest. Recall that a C∗-algebra is
called primitive if it has a faithful irreducible representation and prime if nonzero
ideals have nonzero intersection. Primeness of a C∗-algebra is in general a weaker
property than primitivity. However, according to a result of Dixmier [9], the two
notions coincide for separable C∗-algebras.

Furthermore, recall what the icc property means for G — that every nontrivial
conjugacy class is infinite, and its importance comes to light in the following
theorem.

Theorem A. The following are equivalent:

(i) G has the icc property.

(ii) The group von Neumann algebra W ∗(G) is a factor.

(iii) The reduced group C∗-algebra C∗
r (G) is prime.

The equivalence (i) ⇔ (ii) is a well-known result of Murray and von Neumann
[19], while (i) ⇔ (iii) is proved by Murphy [18]. Murphy also shows that the
icc property is a necessary condition for primeness of C∗(G). Therefore, for the
class of discrete groups, primeness and, in the countable case, primitivity, may be
regarded as C∗-algebraic analogs of factors. The theorem gives as a corollary that

2010 Mathematics Subject Classification. Primary 46L05; Secondary 22D25, 20C25.
Key words and phrases. twisted group C*-algebra, primitivity, primeness, projective unitary

representation, multiplier, amenable group.
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if G is countable and amenable, then primitivity of C∗(G) is equivalent with the
icc property of G. Moreover, since amenability of G implies injectivity of W ∗(G),
this is also equivalent to W ∗(G) being the hyperfinite II1 factor if G is nontrivial,
according to Connes [8].

In the present paper, Theorem A will be adapted to a twisted setting where
pairs (G, σ) consisting of a group G and a multiplier σ on G are considered. We
will show that the reduced twisted group C∗-algebra C∗

r (G, σ) is prime if and
only if every nontrivial σ-regular conjugacy class of G is infinite, and say that
the pair (G, σ) satisfies condition K if it possesses this property. It was first
introduced by Kleppner [13], who proves that this property is equivalent to the
fact that the twisted group von Neumann algebra W ∗(G, σ) is a factor. The
main part of our proof is to show that (G, σ) satisfies condition K if and only
if C∗

r (G, σ) has trivial center, and this argument is, of course, inspired by the
mentioned works of Kleppner and Murphy. As a corollary, we get that primeness
of the full twisted group C∗-algebra C∗(G, σ) implies condition K on (G, σ). The
converse is not true in general, but at least holds if G is amenable, as the full and
reduced twisted group C∗-algebras then are isomorphic. Thus, if G is countable
and amenable, condition K on (G, σ) is equivalent to primitivity of C∗(G, σ)
by applying Dixmier’s result. This fact is also explained by Packer [21] with a
different approach. On the other hand, no examples of nonprimitive, but prime
twisted group C∗-algebras are known, so it is not clear whether we need the
countability assumption on G.

In the last two sections we will investigate primeness and primitivity of the
twisted group C∗-algebras of (G, σ) when G = G1 × G2 and when G = G1 ∗ G2.
The free product case turns out to be easier to handle in general, since the
corresponding C∗-algebra always decomposes into a free product of the two
components. For direct products, however, the multiplier σ on G can have
a ’cross-term’ which makes a C∗-algebra decomposition into tensor products
impossible.

1 Twisted group C∗-algebras
Let G be a group and H a nontrivial Hilbert space. The projective unitary group
PU(H) is the quotient of the unitary group U(H) by the scalar multiples of the
identity, that is,

PU(H) = U(H)/T1H.

A projective unitary representation G is a homomorphism G → PU(H). Every
lift of a projective representation to a map U : G → U(H) must satisfy

U(a)U(b) = σ(a, b)U(ab) (1.1)
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for all a, b ∈ G and some function σ : G × G → T. From the associativity of U
and by requiring that U(e) = 1H, the identities

σ(a, b)σ(ab, c) = σ(a, bc)σ(b, c)
σ(a, e) = σ(e, a) = 1

(1.2)

must hold for all elements a, b, c ∈ G.

Definition. Any function σ : G × G → T satisfying (1.2) is called a multiplier
on G, and any map U : G → U(H) satisfying (1.1) is called a σ-projective unitary
representation of G on H.

The lift of a homomorphism G → PU(H) up to U is not unique, but any other
lift is of the form βU for some function β : G → T. Therefore, two multipliers σ
and τ are said to be similar if

τ(a, b) = β(a)β(b)β(ab)σ(a, b)

for all a, b ∈ G and some β : G → T. Note that we must have β(e) = 1 for this to
be possible. We say that σ is trivial if it is similar to 1 and call σ normalized if
σ(a, a−1) = 1 for all a ∈ G.

Moreover, the set of similarity classes of multipliers on G is an abelian group
under pointwise multiplication. This group is the Schur multiplier of G and will
henceforth be denoted by M(G). Also, we remark that multipliers are often called
2-cocycles on G with values in T, and that the Schur multiplier of G coincides
with the second cohomology group H2(G,T).

Let σ be a multiplier on G. We will briefly explain how the operator algebras
associated with the pair (G, σ) are constructed and refer to Zeller-Meier [24] for
further details. First, the Banach ∗-algebra �1(G, σ) is defined as the set �1(G)
together with twisted convolution and involution given by

(f ∗σ g)(a) =
∑
b∈G

f(b)σ(b, b−1a)g(b−1a)

f∗(a) = σ(a, a−1)f(a−1)

for elements f, g in �1(G), and is equipped with the usual ‖·‖1-norm.

Definition. The full twisted group C∗-algebra C∗(G, σ) is the universal envelop-
ing algebra of �1(G, σ). Moreover, the canonical injection of G into C∗(G, σ) will
be denoted by i(G,σ) or just iG if no confusion arise.
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For a in G, let δa be the function on G defined by

δa(b) =

{
1 if b = a,

0 if b �= a.

Then the set {δa}a∈G is an orthonormal basis for �2(G) and generates �1(G, σ),
so that for all a in G, i(G,σ)(a) is the image of δa in C∗(G, σ). The left regular
σ-projective unitary representation λσ of G on B(�2(G)) is given by

(λσ(a)ξ)(b) = (δa ∗σ ξ)(b) = σ(a, a−1b)ξ(a−1b).

Note in particular that

λσ(a)δb = δa ∗σ δb = σ(a, b)δab

for all a, b ∈ G. Moreover, the integrated form of λσ on �1(G, σ) is defined by

λσ(f) =
∑
a∈G

f(a)λσ(a).

Definition. The reduced twisted group C∗-algebra and the twisted group von
Neumann algebra of (G, σ), C∗

r (G, σ) and W ∗(G, σ) are, respectively, the C∗-
algebra and the von Neumann algebra generated by λσ(�1(G, σ)), or equivalently
by λσ(G).

If τ is similar with σ, then in all three cases, the operator algebras associated
with (G, τ) and (G, σ) are isomorphic.

Moreover, there is a natural one-to-one correspondence between the representa-
tions of C∗(G, σ) and the σ-projective unitary representations of G. In particular,
λσ extends to a ∗-homomorphism of C∗(G, σ) onto C∗

r (G, σ). If G is amenable,
then λσ is faithful. However, it is not known whether the converse holds unless σ
is trivial.

Following the work of Kleppner [13], an element a in G is called σ-regular if
σ(a, b) = σ(b, a) whenever b commutes with a, or equivalently if

U(a)U(b) = U(b)U(a)

for all b commuting with a whenever U is a σ-projective unitary representation
of G. If σ and τ are similar multipliers on G, it is easily seen that a in G is
σ-regular if and only if it is τ -regular. Furthermore, if a is σ-regular, then cac−1

is σ-regular for all c in G, and thus the notion of σ-regularity makes sense for
conjugacy classes [13, Lemma 3]. The following theorem may now be deduced
from [13, Lemma 4].
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Theorem B. Let σ be a multiplier on G. Then the following are equivalent:
(i) Every nontrivial σ-regular conjugacy class of G is infinite.

(ii) W ∗(G, σ) is a factor.
Definition. We say that the pair (G, σ) satisfies condition K if (i) is satisfied.

If G has the icc property, then (G, σ) always satisfies condition K. If G is
abelian, or more generally, if all the conjugacy classes of G are finite, then (G, σ)
satisfies condition K only if there are no nontrivial σ-regular elements in G.

Example 1.1. For n ≥ 2, let Zn denote the cyclic group of order n. Then
M(Zn × Zn) ∼= Zn and its elements may be represented by multipliers σk given
by

σk((a1, a2), (b1, b2)) = e2πi k
n a2b1

for 0 ≤ k ≤ n − 1. An element a = (a1, a2) in Zn × Zn is σk-regular if and only if
both ka1 and ka2 belong to nZ. Therefore, (Zn × Zn, σk) satisfies condition K if
and only if k and n are relatively prime, in which case we have

C∗(Zn × Zn, σk) ∼= C∗
r (Zn × Zn, σk) = W ∗(Zn × Zn, σk) ∼= Mn(C).

Example 1.2. It is well known that M(Zn) ∼= T
1
2 n(n−1) and that the multipliers

are, up to similarity, determined by

σθ(a, b) = e
2πi
∑

1≤i<j≤n
aitijbj

for θ = (t12, t13, . . . , tn−1,n) in [0, 1) 1
2 n(n−1). Note that the C∗-algebras associated

with the pair (Zn, σθ), C∗(Zn, σθ) ∼= C∗
r (Zn, σθ), are the noncommutative n-tori

when θ is nonzero.
Furthermore, (Zn, σθ) satisfies condition K if there are no nontrivial σθ-regular

elements in Zn, that is, if there for all a in Zn exists b in Zn such that

σθ(a, b)σθ(b, a) = e
2πi
∑

1≤i<j≤n
tij(aibj−biaj) �= 1.

For n = 2 and 3 we can give a good description of this property. Indeed, (Z2, σθ)
satisfies condition K if and only if θ is irrational, and (Z3, σθ) satisfies condition K
if and only if

dimQθ = 3 or 4,

where Qθ denotes the vector space over Q spanned by {1, t12, t13, t23}.
For n ≥ 4, the situation is more complicated. In particular, condition K on

(Zn, σθ) does not only depend on the dimension of Qθ. For example, if t12 = t34
is some irrational number in [0, 1) and tij = 0 elsewhere, then dimQθ = 2, and
(Z4, σθ) satisfies condition K. On the other hand, if t12 = t23 = t34 = 1 − t14 is
some irrational number in [0, 1) and t13 = t24 = 0, then dimQθ = 2, but it can
be easily checked that (1, 1, 1, 1) in Z4 is σθ-regular.
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Example 1.3. For each natural number n ≥ 2 let G(n) be the group with
presentation

G(n) = 〈ui, vjk : [vjk, vlm] = [ui, vjk] = e, [uj , uk] = vjk〉
for 1 ≤ i ≤ n, 1 ≤ j < k ≤ n and 1 ≤ l < m ≤ n. The group G(n) is sometimes
called the free nilpotent group of class 2 and rank n.

In a separate work2, we will calculate the multipliers of G(n) and show that

M(G(n)) ∼= T
1
3 (n−1)n(n+1).

Note that G(2) is isomorphic with the discrete Heisenberg group and this case is
already investigated by Packer [20].

To describe our result in the case of G(3), we first remark that G(3) is
isomorphic to the group with elements a = (a1, a2, a3, a4, a5, a6), where all entries
are integers, and with multiplication defined by

a · b = (a1 + b1, a2 + b2, a3 + b3, a4 + b4 + a1b2, a5 + b5 + a1b3, a6 + b6 + a2b3).

For every μ in T8, the element [σμ] in M(G(3)) may be represented by

σμ(a, b) = μb6a1+b3a4
13 μ

b5a2+b3(a4−a1a2)
22

· μ
b4a1+ 1

2 b2a1(a1−1)
11 μ

a2(b4+a1b2)+ 1
2 a1b2(b2−1)

21

· μ
b5a1+ 1

2 b3a1(a1−1)
12 μ

a3(b5+a1b3)+ 1
2 a1b3(b3−1)

32

· μ
b6a2+ 1

2 b3a2(a2−1)
23 μ

a3(b6+a2b3)+ 1
2 a2b3(b3−1)

33

where μij ∈ T.
The pair (G(3), σμ) satisfies condition K if and only if G(3) has no nontrivial

central σμ-regular elements, that is, if for all c = (0, 0, 0, c1, c2, c3) in Z(G(3)) = Z3

there exists a in G(3) such that σμ(a, c)σμ(c, a) �= 1.
Set μ31 = μ13μ22. One can then show that this holds if and only if for each

nontrivial c in Z3 there is some i = 1, 2 or 3 such that∏
1≤j≤3

μ
cj

ij �= 1.

2 Primeness and primitivity
Henceforth, we fix a group G and a multiplier σ on G. Consider the right regular
σ-projective unitary representation ρσ of G on B(�2(G)) defined by

(ρσ(a)ξ)(c) = (ξ ∗σ δ∗
a)(c) = σ(c, a)ξ(ca).

2C∗-algebras generated by projective representations of free nilpotent groups, arXiv:1301.2942,
submitted for publication.
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To simplify notation in what follows, we write just ρ and λ for ρσ and λσ. It
is straightforward to see that λ(a) commutes with ρ(b) for all a, b in G, that is,
W ∗(G, σ) is contained in ρ(G)′. In fact, it is well known that W ∗(G, σ) = ρ(G)′.
Moreover,

(λ(a)ρ(a)ξ)(c) = σ(a−1, c)σ(a−1ca, a−1)ξ(a−1ca) (2.1)

for all a, c ∈ G and all ξ ∈ �2(G). In particular,

λ(a)ρ(a)δe = ρ(a)λ(a)δe = δe (2.2)

for all a ∈ G.
Remark 2.1. The vector δe is clearly cyclic for W ∗(G, σ). It is also separating.
Indeed, if xδe = 0, then

xδa = xλ(a)δe = xρ(a)∗δe = ρ(a)∗xδe = 0

for all a ∈ G. Moreover, the state ϕ given by ϕ(x) = 〈xδe, δe〉 is a faithful trace
on W ∗(G, σ). Thus, W ∗(G, σ) is finite and is therefore a II1 factor whenever G is
infinite and (G, σ) satisfies condition K, according to Theorem B.

Lemma 2.2. Let T be an operator in W ∗(G, σ) and set fT = Tδe. Then the
following are equivalent:

(i) T belongs to the center of W ∗(G, σ).

(ii) fT (aca−1) = σ(a, c)σ(aca−1, a)fT (c) for all a, c ∈ G.

Moreover, fT can be nonzero only on the finite conjugacy classes.

Proof. The operator T belongs to the center of W ∗(G, σ) if and only if T =
λ(a)Tλ(a)∗ for all a ∈ G. Since, by Remark 2.1, δe is separating for W ∗(G, σ),
this is equivalent to fT = λ(a)Tλ(a)∗δe for all a ∈ G. By (2.2) we have

λ(a)Tλ(a)∗δe = λ(a)Tρ(a)δe = λ(a)ρ(a)Tδe = λ(a)ρ(a)fT

for all a ∈ G. Thus T belongs to the center if and only if fT = λ(a)ρ(a)fT for all
a ∈ G and the desired equivalence now follows from (2.1). If a function f satisfies
(ii), then |f | is constant on conjugacy classes. Since fT belongs to �2(G), it can
be nonzero only on the finite conjugacy classes.

Remark 2.3. Lemma 2.2 is proved in [13, Theorem 1]. However, the proof provided
above is shorter. Lemma 2.4 below is proved in [13, Lemma 2] in the case where
C is a single point. Also, note that we do not restrict to normalized multipliers
as in [13].
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Lemma 2.4. Let C be a conjugacy class of G. Then following are equivalent:

(i) C is σ-regular.

(ii) There is a function f : G → C satisfying:

1. f(c) �= 0 for all c ∈ C.
2. f(aca−1) = σ(a, c)σ(aca−1, a)f(c) for all c ∈ C and all a ∈ G.

Moreover, f can be chosen in �2(G) if and only if C is finite.

Proof. (ii) ⇒ (i): Suppose c belongs to C and that a commutes with c. Then
there is a function f : G → C satisfying 0 �= f(c) = σ(a, c)σ(c, a)f(c). Hence
σ(a, c) = σ(c, a), so c is σ-regular.

(i) ⇒ (ii): This clearly holds if C is trivial, so suppose C is nontrivial and
σ-regular and fix an element c in C. Define a function f : G → C by

f(x) =

{
σ(a, c)σ(aca−1, a) if x ∈ C, x = aca−1 for some a ∈ G

0 if x /∈ C

First we show that f is well-defined, so assume aca−1 = bcb−1, and note that

σ(a−1, aca−1)σ(ca−1, b) = σ(a−1, aca−1b)σ(aca−1, b)
= σ(a−1, bc)σ(bcb−1, b).

As c is σ-regular and commutes with a−1b, σ(a−1b, c) = σ(c, a−1b). Thus

σ(c, a−1)σ(ca−1, b) = σ(c, a−1b)σ(a−1, b)
= σ(a−1, b)σ(a−1b, c) = σ(a−1, bc)σ(b, c).

Together, we get from these equations that

σ(a−1, aca−1)σ(b, c) = σ(c, a−1)σ(bcb−1, b). (2.3)

Finally, the two identities

σ(a−1, aca−1)σ(ca−1, a) = σ(a−1, ac)σ(aca−1, a)
σ(c, a−1)σ(ca−1, a) = σ(a−1, a) = σ(a−1, ac)σ(a, c)

give that
σ(a−1, aca−1)σ(a, c) = σ(c, a−1)σ(aca−1, a). (2.4)

Combining (2.3) and (2.4) we get that

σ(a, c)σ(aca−1, a) = σ(b, c)σ(bcb−1, b).
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Hence f is well-defined, so f(aca−1) = f(bcb−1).

It is easily seen that |f(x)| = 1 for all x in C. In fact, if f is any function
satisfying (ii), then |f | must be constant and nonzero on C, hence f belongs to
�2(G) if and only if C is finite.

In particular, f(c) = 1 in our case, so f satisfies part 2 of (ii) for the chosen c
in C. It remains to show that f satisfies part 2 of (ii) for all other x in C. Suppose
x is an element of C, that is, there exists b in G such that x = bcb−1. Note first
that

f(x) = f(bcb−1) = σ(b, c)σ(bcb−1, b) = σ(b, c)σ(x, b).

Next,

σ(axa−1, a)σ(ax, b)σ(ab, c) = σ(axa−1, ab)σ(a, b)σ(ab, c)
= σ(axa−1, ab)σ(a, bc)σ(b, c),

which, since xb = bc, gives that

σ(a, x)σ(x, b) = σ(a, xb)σ(ax, b) = σ(a, bc)σ(ax, b)

= σ(axa−1, a)σ(ab, c)σ(axa−1, ab)σ(b, c).

Hence

f(axa−1) = f(abcb−1a−1) = σ(ab, c)σ(abcb−1a−1, ab)

= σ(ab, c)σ(axa−1, ab) = σ(a, x)σ(axa−1, a)σ(b, c)σ(x, b)

= σ(a, x)σ(axa−1, a)f(x).

Before stating the main theorem, we recall two results which are part of the
folklore of operator algebras. The first can be shown as sketched in the proof of
[18, Proposition 2.3], while the second is a rather easy consequence of Urysohn’s
Lemma. Remark that together these two results imply that if A is von Neumann
algebra, then A is prime if and only if it is a factor.

Proposition 2.5. If A is a concrete unital C∗-algebra and its bicommutant A′′

is a factor, then A is prime.

Proposition 2.6. Every prime C∗-algebra has trivial center.

Theorem 2.7. The following conditions are equivalent:

(i) (G, σ) satisfies condition K.
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(ii) W ∗(G, σ) is a factor.

(iii) C∗
r (G, σ) is prime.

(iv) C∗
r (G, σ) has trivial center.

Proof. For completeness, we include the few lines required to prove (i) ⇒ (ii):
Suppose (G, σ) satisfies condition K and let T belong to the center of W ∗(G, σ).
By Lemma 2.2 and Lemma 2.4, fT can be nonzero only on the finite σ-regular
conjugacy classes, hence on {e}. So Tδe = fT (e)δe, thus T = fT (e)I as δe is
separating for W ∗(G, σ) by Remark 2.1.

The implications (ii) ⇒ (iii) ⇒ (iv) follow from Proposition 2.5 and 2.6.

(iv) ⇒ (i): Suppose C is a finite nontrivial σ-regular conjugacy class of G.
Let f be a function satisfying part (ii) of Lemma 2.4 and define the operator
T =

∑
c∈C f(c)λ(c). Then T belongs to the center of C∗

r (G, σ). Indeed,

λ(a)Tλ(a)∗ =
∑
c∈C

f(c)λ(a)λ(c)λ(a)∗

=
∑
c∈C

f(c)σ(a, c)σ(aca−1, a)λ(aca−1)

=
∑

b∈aCa−1

f(a−1ba)σ(a, a−1ba)σ(b, a)λ(b)

=
∑
b∈C

f(a−1ba)σ(a−1, b)σ(a−1ba, a−1)λ(b)

=
∑
b∈C

f(b)λ(b) = T

for all a ∈ G, where the identity (2.4) is used to get the fourth equality.

The proof of the following corollary goes along the same lines as the one given
in [18, Proposition 2.1] in the untwisted case.

Corollary 2.8. If C∗(G, σ) is prime, then (G, σ) satisfies condition K.

Proof. Observe that the set {λ(a)}a∈G is linear independent in C∗
r (G, σ), and the

universal property of C∗(G, σ) ensures that there is a surjective ∗-homomorphism
C∗(G, σ) → C∗

r (G, σ) mapping iG(a) to λ(a). Hence, {iG(a)}a∈G is also linear
independent and has dense span in C∗(G, σ).

Therefore, the result follows by replacing iG with λ in the proof of Theorem 2.7,
and repeating the argument for (iii) ⇒ (iv) ⇒ (i) word by word.
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Remark 2.9. In general, the center of C∗(G, σ) is not easily determined.
However, a slightly stronger version of Corollary 2.8 is known in the untwisted

case. If C∗(G) has trivial center, then G/H is icc whenever H is a normal
subgroup of G satisfying Kazhdan’s property T (see e.g. [14]).

Corollary 2.10 ([21, Proposition 1.4]). Assume G is countable and amenable.
Then the following conditions are equivalent:

(i) (G, σ) satisfies condition K.

(ii) C∗(G, σ) is primitive.

Proof. If (G, σ) satisfies condition K, then C∗
r (G, σ) is prime by Theorem 2.7. As

G is countable, C∗
r (G, σ) is separable and hence primitive by Dixmier’s result.

Now, the amenability of G implies that C∗(G, σ) ∼= C∗
r (G, σ), so C∗(G, σ) is also

primitive. Finally, (ii) always implies (i) by Corollary 2.8.

Remark 2.11. Condition K on (G, σ) does not imply primeness or primitivity
of C∗(G, σ) in general. To see this, let G = SL(3,Z) and σ = 1. Then, G is
countable, icc and satisfies Kazhdan’s property T. In particular, G is nonamenable.
As explained in [4, Proposition 2.5], C∗(G) is not primitive.

On the other hand, I don’t know any example of an uncountable and amenable
group such that (i) holds, but not (ii).

Remark 2.12. If G is countable and nilpotent, then condition K on (G, σ) is
actually equivalent to simplicity of C∗(G, σ) [21, Proposition 1.7]. The same is
also true if G is finite.

However, this does not hold for all countable, amenable groups. For example,
if G is the group of all finite permutations on a countably infinite set, then G is
countable, amenable and icc, so C∗(G) is primitive and nonsimple.

Remark 2.13. Note that C∗
r (SL(3,Z)) is known to be simple [5], so Remark 2.11

and 2.12 show that primitivity of a full twisted group C∗-algebra is in general
unrelated to simplicity of the corresponding reduced twisted group C∗-algebra.

Proposition 2.14. The following conditions are equivalent:

(i) G is amenable.

(ii) C∗(G, σ) is nuclear.

(iii) C∗
r (G, σ) is nuclear.

(iv) W ∗(G, σ) is injective.
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Proof. This is well known in the untwisted case. The result in the twisted case
appeared in a preprint by Bédos and Conti [2], but was left out in the final version.
For the convenience of the reader we repeat the argument. First, (i) ⇒ (ii) follows
from [22, Corollary 3.9]. The implication (ii) ⇒ (iii) holds since every quotient of
a nuclear C∗-algebra is nuclear. Moreover, the von Neumann algebra generated
by a nuclear C∗-algebra is injective, hence (iii) ⇒ (iv). Finally, if W ∗(G, σ) is
injective, it has a hypertrace and thus G is amenable by [1, Corollary 1.7], so (iv)
⇒ (i).

According to [8], all injective II1 factors acting on a separable Hilbert space
are isomorphic to the hyperfinite II1 factor. Hence, we get the following corollary.

Corollary 2.15. Assume G is countably infinite. Then the following conditions
are equivalent:

(i) G is amenable and (G, σ) satisfies condition K.

(ii) C∗(G, σ) is nuclear and primitive.

(iii) C∗
r (G, σ) is nuclear and primitive.

(iv) W ∗(G, σ) is the hyperfinite II1 factor.

3 Direct products
Let G1 and G2 be two groups. A function f : G1 × G2 → T is called a bihomo-
morphism if

f(a1b1, a2) = f(a1, a2)f(b1, a2) and f(a1, a2b2) = f(a1, a2)f(a1, b2)

for all a1, b1 ∈ G1 and a2, b2 ∈ G2. Let B(G1, G2) denote the set of bihomomor-
phisms G1 × G2 → T. This is a group under pointwise multiplication and is
isomorphic with Hom(G1,Hom(G2,T)).

It is well known (see e.g. [15]) that the Schur multiplier of G1 ×G2 decomposes
as

M(G1 × G2) ∼= M(G1) ⊕ M(G2) ⊕ B(G1, G2).

We will only need to know the following. Let (σ1, σ2, f) be a triple where σ1 and
σ2 are multipliers on G1 and G2, respectively, and f belongs to B(G1, G2). Then
we can define a multiplier σ on G1 × G2 by

σ((a1, a2), (b1, b2)) = σ1(a1, b1)σ2(a2, b2)f(b1, a2) (3.1)
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for a1, b1 ∈ G1 and a2, b2 ∈ G2, and it can be shown that every multiplier on
G1 × G2 is similar to such a σ. When σ is a multiplier on G1 × G2, we let σ1 be
the multiplier on G1 defined by

σ1(a1, b1) = σ((a1, e), (b1, e))

for a1, b1 ∈ G1 and call it the restriction of σ to G1. Similarly we can define the
restriction σ2 of σ to G2.

Henceforth, we fix two groups G1 and G2, multipliers σ1 on G1 and σ2 on G2,
and a bihomomorphism f in B(G1, G2). We set G = G1 × G2 and let σ be the
multiplier on G defined by (3.1). Moreover, we write σ = σ1 × σ2 if f = 1.

It is convenient to record the identity

σ(a, b)σ(b, a) · f(a1, b2)f(b1, a2) = σ1(a1, b1)σ1(b1, a1) · σ2(a2, b2)σ2(b2, a2) (3.2)

which follows directly from (3.1). Note also that C is a conjugacy class of G if
and only if C = C1 × C2 where C1 and C2 are conjugacy classes of G1 and G2,
respectively.

Proposition 3.1. The following are equivalent:
(i) C∗

r (G, σ) is prime.

(ii) For every finite nontrivial conjugacy class C of G, there exist a = (a1, a2)
in C and b = (b1, b2) in G such that at least one of these conditions hold:

1. a1b1 = b1a1 and f(b1, a2) �= σ1(a1, b1)σ1(b1, a1).
2. a2b2 = b2a2 and f(a1, b2) �= σ2(a2, b2)σ2(b2, a2).

Proof. Suppose that condition (ii) does not hold. Then there is a finite nontrivial
conjugacy class C such that both 1. and 2. fail for all a in C and b in G. Hence,
f(b1, a2) = σ1(a1, b1)σ1(b1, a1) and f(a1, b2) = σ2(a2, b2)σ2(b2, a2) whenever a =
(a1, a2) is in C, b = (b1, b2) in G and b commutes with a. Then C is σ-regular by
(3.2), and therefore (G, σ) does not satisfy condition K, that is, C∗

r (G, σ) is not
prime by Theorem 2.7. Thus, (i) ⇒ (ii).

Conversely, assume that (G, σ) does not satisfy condition K and let C = C1×C2
be a finite nontrivial σ-regular conjugacy class of G. If b1 in G1 commutes with
a1 in C1, then (b1, e) commutes with (a1, a2) for every a2 in C2. Hence, the
σ-regularity of C and identity (3.2) give that

f(b1, a2) = σ1(a1, b1)σ1(b1, a1)

whenever a belongs to C and b1 in G1 commutes with a1. Similarly,

f(a1, b2) = σ2(a2, b2)σ2(b2, a2)

whenever b2 in G2 commutes with a2. It follows that for all a in C and b in G,
both 1. and 2. fail to hold, hence condition (ii) is not satisfied.
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Remark 3.2. Let G1 and G2 be abelian and assume that σ1 and σ2 are trivial.
Condition (ii) of Proposition 3.1 then says that for all nontrivial (a1, a2) in G
there exists (b1, b2) in G such that f(a1, b2) �= 1 or f(b1, a2) �= 1. If this holds, σ
is called nondegenerate and it was first shown by Slawny [23, Theorem 3.7] that
C∗(G, σ) ∼= C∗

r (G, σ) is simple in this case.

Lemma 3.3. Let a = (a1, a2) be an element in G. If two of the following
conditions hold, then all three hold:

(i) a is σ-regular.

(ii) ai is σi-regular for both i = 1 and 2.

(iii) f(a1, b2) = f(b1, a2) whenever b = (b1, b2) commutes with a.

Moreover, (iii) is equivalent to:

(iv) f(a1, b2) = f(b1, a2) = 1 whenever b = (b1, b2) commutes with a.

Proof. Suppose that (ii) holds and pick any b = (b1, b2) in G. Then it follows
readily from (3.2) that (i) holds if and only if (iii) holds.

Next, assume that (iii) holds and let b = (b1, b2) commute with a. Then
b′ = (b1, e) also commutes with a, so 1 = f(a1, e) = f(b1, a2). Similarly, we get
f(a1, b2) = 1 and thus (iv) holds.

Suppose finally that (i) and (iii) hold and pick an element b = (b1, b2) in G
that commutes with a. As (iv) also holds, we have that f(b1, a2) = 1. By applying
(3.2) with b′ = (b1, e), we see that a1 is σ1-regular. Similarly, f(a1, b2) = 1 and
a2 is σ2-regular.

Corollary 3.4. Let C = C1 ×C2 be a conjugacy class of G. Suppose there is some
a = (a1, a2) in C such that f(a1, b2) = f(b1, a2) whenever b = (b1, b2) commutes
with a. Then the following are equivalent:

(i) C is a finite nontrivial σ-regular conjugacy class of G.

(ii) Ci is a finite σi-regular conjugacy class of Gi for both i = 1 and 2 and at
least one of C1 and C2 is nontrivial.

Corollary 3.5. Suppose both C∗
r (G1, σ1) and C∗

r (G2, σ2) are prime. Let a =
(a1, a2) be such that f(a1, b2) = f(b1, a2) whenever b = (b1, b2) commutes with a.
Then at most one of the following two conditions hold:

(i) a is σ-regular.

(ii) a belongs to a finite nontrivial conjugacy class of G.
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Corollary 3.6. Suppose f(a1, b2) = f(b1, a2) whenever a = (a1, a2) is σ-regular
and b = (b1, b2) commutes with a. Then C∗

r (G, σ) is prime if both C∗
r (G1, σ1) and

C∗
r (G2, σ2) are prime.

Remark 3.7. In general, primeness of C∗
r (G, σ) does not imply primeness of either

C∗
r (G1, σ1) or C∗

r (G2, σ2). For example, if G1 = G2 = Z, then C∗(G, σ) can be
simple even if both σ1 and σ2 are trivial.

Also, C∗
r (G, σ) can be nonprime even if both C∗(G1, σ1) and C∗(G2, σ2) are

simple. To see this, let G1 = G2 = Z2 and consider the case described in the last
part of Example 1.2.

Proposition 3.8. Suppose f(c1, c2) = 1 whenever ci belongs to a finite conjugacy
class of Gi for either i = 1 or 2. Then C∗

r (G, σ) is prime if and only if both
C∗

r (G1, σ1) and C∗
r (G2, σ2) are prime.

In particular, this holds when σ = σ1 × σ2.

Proof. Suppose C∗
r (G, σ) is prime and C1 is a finite σ1-regular conjugacy class of

G1. Then C1 ×{e} is σ-regular by Corollary 3.4 so C1 = {e} and hence C∗
r (G1, σ1)

is prime. Similarly we get that C∗
r (G2, σ2) is prime.

The converse follows directly from Corollary 3.5.

Remark 3.9. Assume that σ = σ1 × σ2. Then C∗
r (G, σ) is simple if and only both

C∗
r (G1, σ1) and C∗

r (G2, σ2) are simple. Indeed, note that the map λσ(a1, a2) �→
λσ1(a1) ⊗ λσ2(a2) induces an isomorphism

C∗
r (G, σ) ∼= C∗

r (G1, σ1) ⊗min C∗
r (G2, σ2).

The result now follows from the fact that a spatial tensor product of two C∗-
algebras is simple if and only if both involved C∗-algebras are simple (see [12,
11.5.5-6]).

The only positive result on primitivity so far in this paper concerns countable,
amenable groups. However, Corollary 2.10 relies on Dixmier’s result that is not
constructive in the sense that it does not give a procedure to construct an explicit
faithful irreducible representation.

In some cases, one may construct faithful irreducible representations of C∗(G, σ)
through an inducing process on representations of C∗(G1, σ1).

Theorem 3.10. Assume that G2 is amenable. Suppose there exists a faithful
irreducible representation π of C∗(G1, σ1) such that for any given nontrivial a2
in G2, there exists a1 in G1 such that

f(a1, a2)π(iG1(a1)) �� π(iG1(a1)).

Then C∗(G, σ) is primitive.
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Proof. Recall that there is a twisted action (α, ω) of G2 on A = C∗(G1, σ1)
satisfying (see e.g. [24])

αa2(iG1(a1)) = f(a1, a2)iG1(a1),
ω(a2, b2) = σ2(a2, b2).

Hence, there is also a natural action of G2 on the set Â0 of equivalence classes of
faithful irreducible representations of A given by

a2 · [ψ] = [ψ ◦ αa−1
2
].

For any given nontrivial a2 in G2, the assumptions on π gives that

π ◦ αa−1
2
(iG1(a1)) = f(a1, a2)π(iG1(a1)) �� π(iG1(a1))

for some a1 in G1. Hence
a2 · [π] �= [π]

for all nontrivial a2 in G2. In other words, [π] is a free point for this action. The
conclusion follows from [4, Theorem 2.1].

Example 3.11. Let G = F2 × Z and let u, v be the generators of F2. Since
M(F2) = M(Z) = {1}, every multiplier on G is, up to similarity, determined by a
bihomomorphism f : F2 × Z → T. Moreover, f is determined by its values on the
generators, that is, by f(u, 1) and f(v, 1). Let σ be the multiplier on G defined
by these two numbers, say μ and ν. We remark that

C∗(G, σ) ∼= C∗(F2)�α Z

where α is determined by αk(iF2(x)) = f(x, k)iF2(x) for x ∈ F2 and k ∈ Z.

Assume μ is nontorsion and let A = C∗(F2) sit inside B(H) for some separable
Hilbert space H. Let U = iF2(u) and V = iF2(v) be the two unitaries in B(H)
generating A. Now, proceeding as Choi in [7, Lemma 4], there is an operator D
for which U − D is compact and such that the following hold; with respect to a
suitable basis on H, D is diagonal with diagonal entries {zi}∞

i=1 satisfying |zi| = 1
for all i, z1 = 1, zi �= zj if i �= j and zi /∈ {μk : k ∈ Z} when i ≥ 2.

Using [7, Lemma 5], we can find a compact perturbation E of V which is a
unitary operator having no common nontrivial invariant subspace with D. Then,
as explained in [7, Theorem 6], the map U �→ D, V �→ E defines a faithful and
irreducible representation π of A on H.

Now we have

π ◦ αk−1(U) = f(u, k)π(U) = μkπ(U) �� π(U)
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for all k in Z. Indeed, this holds as the point spectrum of π(U) = D is different
from the point spectrum of π(αk−1(U)) = μkD by construction.

A similar argument also holds if ν is nontorsion. Hence, we get from Theo-
rem 3.10 that C∗(G, σ) is primitive if either μ or ν is nontorsion.

On the other hand, if (G, σ) satisfies condition K, then at least one of μ and ν
must be nontorsion, so this is also a necessary condition for primitivity of C∗(G, σ).
Indeed, condition (ii) of Proposition 3.1 does not hold if both μ and ν are torsion.

Proposition 3.12. Assume that σ = σ1 × σ2 and that both C∗(G1, σ1) and
C∗(G2, σ2) are primitive. Then C∗(G, σ) is primitive if at least one of G1 and
G2 is amenable.

Proof. Without loss of generality we may assume that G1 is amenable. Then
C∗(G1, σ1) is nuclear by Proposition 2.14 so the minimal and maximal tensor
products of C∗(G1, σ1) and C∗(G2, σ2) coincide. According to [11, Section 3],
there is a unique isomorphism

C∗(G, σ) → C∗(G1, σ1) ⊗ C∗(G2, σ2)

given by iG(a1, a2) �→ iG1(a1) ⊗ iG2(a2).
For i = 1, 2, let πi be a faithful irreducible representation of C∗(Gi, σi) on

Hi. Then π = π1 ⊗ π2 is a representation of C∗(G, σ) on H = H1 ⊗ H2, which is
faithful by [17, Theorem 6.5.1] and irreducible by [11, Section 2]. Hence C∗(G, σ)
is primitive.

Remark 3.13. Primitivity of C∗(G, σ) is in general difficult to decide. For example,
let F be a free nonabelian group, then it is unknown whether C∗(F×F) is primitive
(see [4, Remark 2.2] for a brief discussion).

4 Free products
In some sense, free products are easier to treat than direct products, since the
Schur multiplier decomposes nicely. Indeed, let G1 and G2 be two groups. Then
we have that (see e.g. [6, page 51])

M(G1 ∗ G2) ∼= M(G1) ⊕ M(G2). (4.1)

Let σ1 be a normalized multiplier on G1 and σ2 a normalized multiplier on
G2. Following [16, Section 5], we will explain how to obtain a normalized free
product multiplier σ1 ∗ σ2 on G1 ∗ G2.

Every nontrivial element x in G1 ∗ G2 can be uniquely written as a reduced
word x = x1x2 · · · xn, for which the letters with odd index belong to Gi and the
letters with even index belong to Gj for i �= j. Define the length function as



74 Primeness and primitivity conditions for twisted group C∗-algebras

l(x) = l(x1x2 · · · xn) = n and l(e) = 0. If l(x), l(y) ≤ 1, we write x ⊥ y if either
x = e or y = e or else if x is in Gi and y is in Gj for i �= j.

Let s(x) and r(x) denote the first and last letter of a nontrivial word x and
set s(e) = r(e) = e. For a pair of words (x, y), we say that the pair is reduced if
r(x) �= s(y)−1.

When (x, y) is not reduced, let w be the longest word such that r(xw−1) ⊥ s(w)
and r(w−1) ⊥ s(wy). Set xw = xw−1 and yw = wy, so that x = xww and
y = w−1yw. Let (x, y)w = (xw, yw) be the reduction of (x, y) and note in
particular that xwyw = xy.

If the pair (x, y) is reduced, then we set (x, y)w = (x, y).

Define now the multiplier τ on G1 ∗ G2 by

τ(x, y) = τ((x, y)w) =

⎧⎪⎨⎪⎩
σ1(r(xw), s(yw)) if r(xw), s(yw) ∈ G1 \ {e},

σ2(r(xw), s(yw)) if r(xw), s(yw) ∈ G2 \ {e},

1 if r(xw) ⊥ s(yw),

and note that this definition coincides with the one explained in [16, Section 5].
Furthermore, let

X = {[a, b] = aba−1b−1 : a ∈ G1 \ {e}, b ∈ G2 \ {e}}
and recall that the free nonabelian group on X, denoted FX , may be identified
with the normal subgroup of G1 ∗ G2 generated by X.

Moreover, define a function β : G1 ∗ G2 → T by β(x) = 1 if x /∈ FX , while for
nontrivial x = qp1

1 · · · qpn
n in FX , where qi belongs to X and pi is an integer, we set

β(x) = β(qp1
1 · · · qpn

n ) =

{
τ(qp1

1 , qp2
2 )τ(qp2

2 , qp3
3 ) · · · τ(qpn−1

n−1 , qpn
n ) if n ≥ 2,

1 if n = 1.

Now define the multiplier σ on G1 ∗ G2 by

σ(x, y) = β(x)β(y)β(xy)τ(x, y).

We write σ = σ1 ∗ σ2 and note that σ ∼ τ , σ|Gi×Gi
= σi and σ|FX ×FX

= 1.
On the other hand, if σ is a normalized multiplier on G1 ∗ G2, we can define

the restriction σ1 on G1 by

σ1(x, y) =

{
σ(x, y) if x, y ∈ G1 \ {e},

1 if x or y = e.

Similarly, we can define the restriction σ2 of σ to G2. Next, define the function
β : G1 ∗ G2 → T by β(x) = 1 if l(x) ≤ 1 and else

β(x) = β(x1 · · · xn) = σ(x1, x2)σ(x1x2, x3) · · · σ(x1 · · · xn−1, xn).
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Then σ is similar to σ1 ∗ σ2 through β.
Remark that every multiplier is similar to a normalized one. Therefore, every

multiplier on G1 ∗ G2 is similar to σ1 ∗ σ2 for some normalized multipliers σ1 on
G1 and σ2 on G2.

We are now ready to prove the twisted version of [3, Theorem 1.2].

Theorem 4.1. Assume G = G1 ∗ G2, where G1 and G2 are countable and
amenable and (|G1| − 1)(|G2| − 1) ≥ 2, and let σ be a multiplier on G. Then
C∗(G, σ) is primitive.
Proof. We may assume that σ = σ1∗σ2 where σ1 and σ2 are normalized multipliers
on G1 and G2, respectively, and that σ|FX ×FX

= 1. The proof is only a slight
modification of the proof of [3, Theorem 1.2], so we just point out what needs to
be adjusted in this proof and use the notation therein. First, recall that there is a
twisted action (α, ω) of (G1 ∗ G2)/FX

∼= G1 × G2 on H = FX . Straightforward
calculations give that

α(c,d)(iH([a, b])) =

{
iH(cd[a, b]d−1c−1) · σ2(d, b) if d �= e

iH(cd[a, b]d−1c−1) · σ1(c, a) if d = e

for a, c ∈ G1 and b, d ∈ G2. Hence the expressions in the equations [3, (2.3),(2.4)]
remain unchanged, so it is enough to reconsider [3, Case 3]. More straightforward
calculations give that the conditions at the bottom of [3, page 54] must be replaced
with:

k = (s0, t) and k = (sl, e2) if
λ(s0sl, t)U(s0sl, t) �� σ1(sl, s0sl)U(s0, t)(λ(sl, t)U(sl, t))∗ ;

k = (s0, e2) and k = (sl, t) if
λ(s0sl, t)U(s0sl, t) �� σ1(s0, s0sl)λ(sl, t)U(sl, t)U(s0, t)∗ ;

k = (s0, t) and k = (s0sl, e2) if
λ(sl, t)U(sl, t) �� σ1(s0sl, sl)U(s0, t)(λ(s0sl, t)U(s0sl, t))∗ ;

k = (s0sl, t) and k = (s0, e2) if
λ(sl, t)U(sl, t) �� σ1(s0, sl)λ(s0sl, t)U(s0sl, t)U(s0, t)∗ .

Now it is easily seen that the rest of the proof works with appropriate modifications.

Remark 4.2. Theorem 4.1 is not surprising. In fact, I am not aware of any pair
(G, σ) such that C∗(G) is primitive, but C∗(G, σ) is nonprimitive.
Remark 4.3. Let G = G1 ∗ G2, let σ be a multiplier on G and assume σ = σ1 ∗ σ2.
Then it is known that (see [16, Section 5])

C∗(G, σ) = C∗(G1, σ1) ∗ C∗(G2, σ2).
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Example 4.4. As explained in Example 1.1 we have that for each natural number
n, there exists a multiplier σk on Zn × Zn such that C∗(Zn × Zn, σk) ∼= Mn(C).
One immediate consequence of Theorem 4.1 is that

Mj(C) ∗ Mk(C)

is primitive for all j, k ≥ 2. More generally, it has recently been shown [10] that
F1 ∗ F2 is primitive whenever F1 and F2 are finite-dimensional C∗-algebras and
(dimF1 − 1)(dimF2 − 1) ≥ 2.

Acknowledgements. A significant part of this work, especially Section 2, was
accomplished when I was a student at University of Oslo, and is also included in
my master’s thesis. I am indebted to Erik Bédos for his advice, both on the thesis
and on the completion of this paper. I would also like to thank the referee for
several useful comments and suggestions. This research was partially supported
by the Research Council of Norway (NFR).

References
[1] E. Bédos. Notes on hypertraces and C∗-algebras. J. Operator Theory,

34(2):285–306, 1995.

[2] E. Bédos and R. Conti. On twisted Fourier analysis and convergence of
Fourier series on discrete groups. J. Fourier Anal. Appl., 15(3):336–365,
2009.

[3] E. Bédos and T. Omland. Primitivity of some full group C∗-algebras. Banach
J. Math. Anal., 5(2):44–58, 2011.

[4] E. Bédos and T. Omland. The full group C∗-algebra of the modular group is
primitive. Proc. Amer. Math. Soc., 140(4):1403–1411, 2012.

[5] M. E. B. Bekka, M. G. Cowling, and P. de la Harpe. Simplicity of the reduced
C∗-algebra of PSL(n,Z). Internat. Math. Res. Notices, (7):285ff., approx. 7
pp. (electronic), 1994.

[6] K. S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathe-
matics. Springer-Verlag, New York, 1982.

[7] M. D. Choi. The full C∗-algebra of the free group on two generators. Pacific
J. Math., 87(1):41–48, 1980.

[8] A. Connes. Classification of injective factors. Cases II1, II∞, IIIλ, λ �= 1.
Ann. of Math. (2), 104(1):73–115, 1976.



References 77
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