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Abstract—Modeling and prediction of Packet Loss Rate (PLR)
of wireless links using hardware information is essential for the
design of higher-layer protocols in Wireless Sensor Networks.
While many previous studies revealed the spatio-temporal vari-
ation of various link quality metrics, how environment impacts
on the mapping between PLR and hardware indicators still
remains unclear. Without a comprehensive understanding of such
environmental impact, the acquired empirical PLR models are
severely limited to specific scenarios. In this paper, we present the
results of indoor and outdoor experimental campaigns focusing
on the impact of various environmental factors (e.g., obstacles,
human activities, climate conditions) on the dependency between
the link PLR, signal to noise ratio (SNR) and packet length. Rich
observations are made on the spatio-temporal characteristics of
the PLR-SNR relationship and our analysis shows that link PLR
can be modeled, in all experimented scenarios, as an exponential
function of SNR and packet length with two model parameters
that may vary over space and time. Besides, implications of the
observations are summarized, providing guidelines to construct
and adapt PLR models in different environments.

I. INTRODUCTION

Link quality estimation has been an important problem in
Wireless Sensor Networks (WSNs) for about a decade. In
particular, modeling and prediction of link Packet Loss Rate
(PLR) using the information from radio hardware (e.g., RSSI,
received signal strength indicator, or SNR, signal to noise ratio)
has received significant attention in the research community [1]
[2]. It is essential for the design of higher-layer protocols in
WSNs, e.g., routing, deployment planning, link performance
maintenance, as the PLR of wireless links has a fundamental
impact on the network performance metrics such as delay,
reliability and lifetime.
Related work. The quality of low power 802.15.4 links is
known as unstable since it is easily affected by a variety
of environmental factors. Many previous studies revealed the
spatio-temporal variation of link quality metrics, such as RSSI,
noise power and PLR, due to the impact of temperature [3],
human presence [4], external interference [5], climate condition
and terrains [6]. Some other researchers focus on the environ-
mental impact on the relationship between PLR and hardware
indicators. Lin et al. found that the RSSI threshold of good links
is slightly different on a grass field, in a parking lot and in a
corridor [7]. Zuniga et al. showed that the extent of transitional
zone in terms of distance depends on the environment (e.g.,
outdoor, indoor, obstacles) [8].

Some recent works try to model the link PLR using mathe-
matical expressions, and to study how environment impacts on

the models. For example, Bas et al. model PLR with respect
to distance in indoor and outdoor environments as exponen-
tial functions but with different parameter constants [9]. We
know, however, that PLR is not well correlated with distance,
especially in the transitional region [10]. In [11], Bildea et
al. model the dependence between RSSI and packet reception
rate (i.e. 1−PLR). Nevertheless, the model is only applicable
to CC1101 radio links in an indoor environment. Most of
these works have studied different aspects of the environmental
impact on the prediction of PLR using hardware information.
However, to truly apply PLR modeling and prediction to real-
world applications in different environments, we still lack a
comprehensive and quantitative understanding of the relation
between the link PLR and hardware indicators under diverse
environmental conditions. This is the focus of this paper.
Motivation. This work is motivated by one of our recent
studies [12], in which we presented the joint impact of radio
stack parameters on the packet delivery performance over a
802.15.4 link based on the experiments conducted in an office
corridor. We modeled the link PLR as an exponential function
of SNR and packet payload size and further demonstrated the
potential of applying the model to optimize link performance by
achieving a good tradeoff between delay, reliability and energy
consumption.

However, we need to answer several fundamental questions
before we are able to apply the acquired empirical PLR model
to real-world deployments. The main questions are: (1) How
does the PLR model change in different environments, e.g. in
an open field or in offices? (2) Is the PLR model different for
different links? (3) Does the PLR model change over time, e.g.
during day and night or due to human-related activities?
Contributions. To answer these questions, we conducted in-
door and outdoor experimental campaigns in four different
locations, considering a variety of environmental factors, such
as climate condition during day and night, obstacles, human
presence, interference, etc. Our results show that the correlation
of PLR with SNR and packet length can be significantly
different in different environments, especially in the transitional
region. The PLR-SNR relationship may differ from link to
link in the same environment, while there may exist a spatial
correlation between nearly links. Moreover, the PLR-SNR
relationship may vary over time due to interference and the
shadowing effect of humans or other objects. Nevertheless, the
mathematical mapping between PLR, SNR and payload size
remains in the form of exponential function in all experimented



TABLE I: Experimental setup
Location Experiments Setup Description

Athletic Field
(outdoor)

OPEN-SPATIAL a star topology
of 10 nodes

two-hour experiments to understand the spatial characteristics of PLR models
of LOS (line-of-sight) and NLOS (non-line-of-sight) links in an open field

OPEN-TEMP a pair of sender
and receiver nodes

24-hour experiments to understand the temporal characteristics of PLR models
of LOS and NLOS links in an open field

Parking Lot
(outdoor)

PLOT-SPATIAL a star topology
of 10 nodes

two-hour experiments to understand the spatial characteristics of PLR models
of LOS and NLOS links in an urban parking lot

PLOT-TEMP a pair of sender
and receiver nodes

24-hour experiments to understand the temporal characteristics of PLR models
of LOS and NLOS links in an urban parking lot

Office Building
(indoor)

OFFICE-1WEEK indoor testbed
of 32 nodes

a 7-day experiment with sender rotating between several nodes to understand
spatio-temporal characteristics of PLR models in an office environment

OFFICE-PEOPLE indoor testbed
of 32 nodes

two-hour experiments to understand the impact of people walking on the
PLR model, performed in a weekend to minimize other interference sources

OFFICE-WLAN indoor testbed
of 32 nodes

two-hour experiments to understand the impact of WiFi interference on the
PLR model, performed in a weekend to minimize other interference sources

Home
(indoor)

HOME a star topology
of 10 nodes

24-hour experiments to understand the spatio-temporal characteristics of PLR
models in a home environment

scenarios while the values of the model parameters may change
from link to link and vary over time.

The major departure this paper takes from prior work is
that we study the environmental impact on the quantitative
mapping between PLR, SNR and packet length, rather than
that on individual link quality metric: it seeks to discover
how the correlation of PLR with SNR and packet length
changes with a variety of environmental factors. Based on the
rich experimental results, we summarize a set of observations
regarding the spatio-temporal characteristics. Furthermore, we
provide implications for applications to build PLR models and
to maintain model accuracy over time, making it possible to
model and predict PLR of radio links in different environments.
These constitute the major contributions of the paper.

The rest of the paper is organized as follows. In Section II,
the experimental setup is described. The spatial and temporal
characteristics of the dependency between PLR, SNR and
packet length are presented in Section III and Section IV,
respectively. Section V discusses the implications of the exper-
imental results. Finally, in Section VI, we conclude the paper.

II. EXPERIMENTAL SETUP

The findings reported in this paper were gathered in indoor
and outdoor experimental campaigns. To cover various envi-
ronmental factors, we have chosen four different experiment
locations: (1) an Athletic Field, an open field isolated from
human activity and absence of electromagnetic interference, (2)
an university Parking Lot, where shadowing effect of obstacles
such as cars is notable during the day, (3) an Office Build-
ing, a university building with heavy human-related activities
during office hours, and (4) Home, an apartment where cross
technology interference is ubiquitous.

In the experiments, we used TelosB nodes, equipped with
the CC2420 radio chip compliant with IEEE 802.15.4, and
on-board omnidirectional antenna. The CC2420 is the most
widely used chip in sensor network research, also allowing us
to leverage past experience in the literature. The radio chip
operates in the ISM band of 2.4 GHz at the PHY layer and all
experiments use the standard TinyOS 2.1 CSMA MAC layer.

Most of our experiments use a star topology with one
centralized sender node broadcasting packets and other nodes as

receivers logging metadata of received packets. Such topology
allows us to investigate the spatial characteristics of the PLR-
SNR relation. For experimental setup, we utilize a testbed in
the Office scenario and several ad-hoc deployments in other
scenarios. The indoor testbed consists of 32 TelosB nodes
mounted on the walls and ceilings, spreading over an entire
office floor. In outdoor scenarios, we use a smaller ad-hoc
deployment of 10 nodes due to safety reasons, where each node
is attached to a 1-meter tall wooden stand. The same ad-hoc
deployment is used in Home since 10 nodes are enough to cover
the entire space. In all experiments, each node is connected to
a Raspberry Pi for logging purposes.

To study the correlation of link PLR with SNR and packet
length, the sender node broadcasts 3000 packets at a 20 ms
interval between messages with a specific radio transmission
power and packet length. The receiver nodes measure and log
the metadata (e.g., RSSI) of received packets and the noise
power when there is no packet transmission. One experimental
run includes, in total, the transmission of 96 thousand packets
under 8 different power levels from 3 to 31 and 4 different
payload sizes from 20 to 110 bytes. Each experiment consists of
a number of experimental runs to achieve statistical confidence
as well as to investigate the temporal variations in a daily or
a weekly cycle. Note that for some long-term experiments in
public locations, we are only allowed to deploy two nodes at
carefully selected locations for safety reasons. The details of
all experiments are described in Table I.

III. SPATIAL CHARACTERISTICS

In this chapter, we report the spatial characteristics of the
dependency between PLR, SNR and packet length in different
environments. To minimize temporal effects, all results are
generated from experiments of a short time span (e.g., over
a one hour window).

A. PLR-SNR Relationship in Different Environments

The first question that we try to answer is whether the
correlation of PLR with SNR and packet length changes in
different environments. Figure 1 plots the PLR-SNR curves
with respect to packet payload size L (in bytes) for a selected
link in each of the experimented environments. Each graph in



Fig. 1: The dependency between PLR, SNR and packet payload size L (in bytes) in different environments.

the figure is plotted based on two consecutive experimental
runs (i.e. 192 thousand packets transmitted in approximately
one hour) and PLR is computed over every 3000 packets and
then averaged for each value of SNR (at a step of 0.5 dB).
Observation 1. The correlation of PLR with SNR and packet
length can be significantly different in different environments.
Specifically, the extent of the transitional region in terms of
SNR varies significantly with packet length and environment.

Figure 1 shows that although the PLR-SNR curves look
similar in the region of bad links (PLR higher than 90%),
the curves turn to be significantly different in the transitional
region (PLR between 10% and 90%). In the athletic field,
PLR decreases drastically with SNR after 3 dB, similar to
the sharp PLR-RSSI curves reported in [2]. However, in other
environments (e.g., office), PLR decreases much more slowly
with SNR. In other words, the width of the transitional region
in terms of SNR strongly depends on the environment. For
example, such width is found to be approximately 2 dB (for 80
bytes payload) in the athletic field (Figure 1(a)) and 12 dB in
the office building (Figure 1(c)). We further find that the width
of the transitional region of links in indoor environments is in
general larger than those in outdoor environments.

Another factor that impacts on the PLR-SNR relationship is
the packet length. In Figure 1, we observe that the extent of the
transitional region increases with a larger packet size. However,
such impact also depends on the environment. For example,
the PLR-SNR curves of various packet payload sizes almost
overlap in the athletic field while there is a clear separation
between those curves in other environments.

As a result, the SNR threshold of good links (PLR less
than 10%) varies significantly with the environment and packet
length. The maximum SNR threshold of good links observed
in our experiments is 28 dB for a link in the office building
while the minimum is 4 dB for a link in the athletic field.
Such variation of the threshold of good links (24 dB) is found
to be much larger than the variation of RSSI threshold (2
dB) reported in [7], even after considering the difference of
noise power measured in all experimented environments. One
possible reason is that we additionally considered the impact
of packet length and other environmental factors (e.g., human
presence and WiFi interference) in the experiments.
Observation 2. In all experimented environments, the depen-
dency between PLR, SNR and packet length can be modeled
as an exponential function in the following form:

PLR = α · L · exp(−β · SNR), (1)

Fig. 2: Modeling the PLR of an exemplary link as an exponential
function of SNR and payload size (α = 0.065, β = 0.473).

where L is the packet payload size in bytes, α and β are the
model parameters. While the mathematical expression for the
correlation of PLR with SNR and packet length remains in the
same form of Equation 1 in different environments, the values
of the model parameters may be different.

Figure 2 shows an example of modeling PLR for a link in the
Home scenario. We used Matlab to find the best distribution fit
for our data set. Different theoretical distributions are compared
according to chi-square test and the exponential function is the
best fit and is accepted for all experiments. The values of model
parameters are found with 95% confidence level.

We remark that the exponential function relation between
PLR and SNR interestingly matches with a recent analytical
result found in [13], where it is proved that for typical wireless
channels, their instantaneous capacity and cumulative capacity
are both light-tailed, i.e. their complementary cumulative dis-
tribution function is exponentially bounded.

B. Spatial Correlation in One Environment

In this section, we first examine whether the PLR model
differs from link to link in the same environment. We select
3 different links from each experimented environment and plot
the PLR-SNR curves in Figure 3. The curves in each graph are
plotted based on the same data traces.
Observation 3. The PLR-SNR relation of different links in
the same environment may differ significantly from each other.
Such spatial variation is largely due to e.g., obstruction in line
of sight and shadowing effects of objects (human, car, etc.).

In the athletic field (Figure 3(a)), the extent of the transitional
region of link 2 is clearly larger than that of link 1 and link
3. A possible reason is that link 1 and link 3 maintained
line-of-sight (LOS) between the transmitter and receiver while
link 2 has non-line-of-sight (NLOS) radio communication.



Fig. 3: The PLR-SNR relationship (for 110 bytes payload) of three
different links in each experimented environment.

Such difference in the PLR-SNR relation between LOS and
NLOS links is also observed in other scenarios, indicating that
blocking line of sight may impact the PLR-SNR relation of a
link, possibly extending the transitional region.

The three selected links in the parking lot (Figure 3(b)) are
all NLOS links while the PLR-SNR curves yet look different
from each other. We believe that such difference is caused by
the different shadowing effects of objects (in this case, cars)
on each link. Similarly, the difference of PLR-SNR relation
between different links in the office (Figure 3(c)) and home
scenarios (Figure 3(d)) is largely due to the different shadowing
effects of human, furniture, etc.

We further investigate whether there exists a spatial depen-
dency between the PLR-SNR relation of nearby links. The
answer to this question can help to reduce the overhead of
building PLR models for every link in a network. We analyzed
the data traces collected from the indoor testbed, in which 32
TelosB nodes are deployed over a floor (around 500 m2) in
an university building. The analysis of the spatial dependency
is done in three steps. First, we find the PLR model of each
link in the testbed. Then we compute the correlation coefficient
between any two links, i.e., between any two receivers, as all
links in the experiment have the same sender node.

We formally define the PLR model correlation coefficient
between two receivers x and y as:

Rx,y =

∑m
i=n(P

x
snr=i − Px)(Py

snr=i − Py)

(m− n+ 1)σPxσPy

(2)

where Px and Py are means of the PLR values from SNR = n
dB to SNR = m dB for receiver x and y, respectively, and σPx

and σPy are the standard deviations of the PLR values.
The last step of the spatial dependency analysis uses a

data clustering algorithm to calculate a clustering of nodes
based on the computed correlation coefficient. We employed
an agglomerative approach, which starts with each node being
its own cluster. In each step of the clustering process, the two
most correlated clusters are combined to form a new cluster.
This is repeated until the correlation between clusters is below
a threshold. We show in Figure 4 the results of clustering after
applying such approach to the 32 testbed nodes.

Fig. 4: Clusters of testbed links based on the spatial correlation of
PLR models. All links have the same transmitter (node 10).

Observation 4. Links that are geographically close to each
other may have spatially correlated PLR-SNR models.

Figure 4 shows that most nodes located in the same office
are grouped into one cluster. Such resemblance of the PLR
models may spread in nearby offices if the offices share similar
environmental factors. For example, both cluster 2 and 5 cover
two offices, where there were heavy human-related activities.
We believe the same reason caused the nodes in Lab 1 to
split into different clusters as there was people presence only
around node 13 and 16. Interestingly, although not all the nodes
in cluster 1 are geographically close to each other, their PLR
models have high correlation because of similar environmental
characteristics: almost no human activity in those rooms. We
notice that the clusters may change during night when there
was almost no human activity on the entire floor. In such case,
most of the nodes are grouped into one big cluster. Details of
such temporal effects will be presented in Section IV.

IV. TEMPORAL CHARACTERISTICS

This section explores the temporal variation of the depen-
dency between PLR, SNR and packet length due to changes in
outdoor and indoor environmental characteristics, respectively.

A. Temporal Variation Outdoors

Impact of climate change from day to night. We first turn
our attention to the temporal variation in outdoor environments
induced by the interleaving of night and day, which affects
environmental factors such as temperature and humidity.

Figure 5 provides two examples showing the dependency
between PLR, SNR and packet length during both day and
night. The top graphs show the results of a link in the athletic
field and the bottom ones show the results of a link in the
parking lot. Note that the data trace from the parking lot was
collected during a weekend, when no cars were parked during
both day and night and hence the effect of cars is minimized.
Observation 5. The climate change from day to night induces
almost no variation of the PLR-SNR relationship.

We notice that when changing from day to night, the link
quality under the same transmission power increases, i.e.,
PLR decreases and SNR increases, which matches previous
results [6] [14]. However, the dependency between PLR, SNR
and packet length remains surprisingly almost unchanged in
both scenarios, showing no clear temporal variation due to the
transition between day and night. This indicates that the change
in climate conditions (temperature, humidity) may impact on



Fig. 5: Impact of the climate change from day to night.

Fig. 6: Impact of cars in the parking lot.

PLR or SNR individually, however, it has little impact on the
mapping between PLR and SNR.
Impact of the shadowing effect of objects. We consider the
impact of the shadowing effect of objects, such as the cars in
the parking lot, on the correlation of PLR with SNR. Figure 6
shows the PLR-SNR curves during the day when the parking lot
was full of cars, and during the night when the parking lot was
almost empty. As the figure depicts, the width of transitional
region of the link during the day is larger than that during the
night. As we showed that the climate change from day to night
induces almost no variation, the major variation here is due to
the presence of cars. This suggests that the shadowing effect of
objects may strongly impact on the dependency between PLR,
SNR and packet length.

B. Temporal Variation Indoors

Impact of human-related activities. For indoor environments,
we evaluate the impact of two human-related factors: (1) human
presence and movement, and (2) WLAN interference. The
former imposes shadowing effects on the links; the latter is
known to have a strong impact on link quality [5]. Some
existing work (e.g., [15]) predicts PLR based on SINR (signal
to interference plus noise ratio) under the existence of WiFi
sources. In this work, we still use SNR to estimate PLR because
the measurement of SINR itself may require accurate time
synchronization and is difficult to obtain in reality.

To evaluate the impact of these two factors, we use the
indoor testbed to perform a set of experiments in a weekend, to
minimize the interference from other possible sources. We first
let a student walk around the transmitter, and then, close to a
link, we place a laptop that downloads a file from an access
pointer (AP) using WiFi. During the experiment, we select

Fig. 7: Impact of people walking and WLAN interference.

two different CC2420 channels: channel 12, whose frequency
overlaps with the channel used by the AP, and channel 26,
which is known to be outside the WLAN radio frequency [10].

Some results are plotted in Figure 7. We first observe
that human presence and walking extend the width of the
transitional region (Figure 7(b)), compared to the baseline
(Figure 7(a)), similar to the impact of cars in the parking
lot scenario. Furthermore, the figure shows that the WLAN
interference has a strong impact on the PLR-SNR relationship
on channel 12 (Figure 7(d)) while it has almost no impact on
channel 26 (Figure 7(c)). We further examined with different
WLAN traffic (video streaming) and obtained similar results.

Bringing the previous observations together, we can summa-
rize the causes of temporal variation as following.
Observation 6. The PLR-SNR relation may vary over time
due to interference and shadowing effects of human, obstacles,
etc. Despite of the temporal variation, we validate that the
correlation of PLR with SNR and packet payload size can still
be modeled using the same exponential function (Equation 1)
with the values of model parameters varying over time.
Weekly variation of PLR model indoors. To understand the
real temporal variation of PLR models in the office environ-
ment, we performed a 7-day experiment on the testbed (see
Figure 4) in the office building. The weekly variation of PLR
model parameters for a link from node 10 to node 8 is plotted
in Figure 8, where model parameters α and β are updated
approximately every four hours.

The figure shows that the PLR model parameters change
dramatically in the morning when people walked in and in
the afternoon when people left the offices, while they only
change slightly in rest of the time. Figure 9 provides the model
variation in 24 hours on Saturday and Monday, respectively.
The curves in the graphs are plotted for 110 bytes payload.

V. IMPLICATIONS

The observed spatio-temporal characteristics of the depen-
dency between link PLR, SNR and packet length are essential
for the design of higher-layer protocols, where accurate PLR
prediction is desirable. Recall that this work is motivated by
our previous study [12] for link performance optimization. We
take this as an example to show the benefits of this work.



Fig. 8: The weekly variation of PLR model parameters α and β in
the office environment.

Fig. 9: The daily variation of PLR models in the office environment.

Our observations, for instance, imply that when the link
is in the transitional region, tuning packet length is much
more effective to improve link reliability in offices than in
the open field. In addition, the SNR value required for good
links varies significantly from 4 dB to 28 dB, depending on the
environment and packet length. Such spatial variation implies
that every link in a network should have its own PLR model to
find the best settings of stack parameters (e.g., packet length,
transmission power) for optimal performance. Nevertheless,
thanks to the spatial correlation of PLR models between nearby
links, it might be enough to construct PLR models only for
representative links of the network (e.g., one link for each
cluster) to reduce the overall modeling overhead.

Table II lists the typical parameter values of the PLR models
found with 95% confidence level in all experimented scenarios,
together with model precision in terms of two standard error
measures: R2 and RMSE (Root Mean Square Error). R2 is a
value between 0 and 1, with a value closer to 1 indicating a
greater proportion of variance is accounted for by the model.

Based on the finding that the link PLR can be modeled with
the same exponential function in all experimented scenarios,
we developed an online PLR modeling scheme running on
sensor nodes. In this scheme, we first linearize the exponential
function (Equation 1) by taking the logarithm of both sides and
then use linear regression to determine the values of the two
model parameters. Details of this scheme are not shown here for
space limitations. We found that with 3 minutes measurement
of probing packets (at an interval of 20 ms), we achieved good
tradeoffs between modeling overhead and model accuracy in
all experimented environments.

The acquired empirical PLR models after the probing phase
need to adapt to environmental changes due to the observed
temporal characteristics. In indoor environments, the modeling
process can be triggered again, e.g., by a motion detection
system detecting people entering or leaving the rooms. In

TABLE II: Typical values of model parameters in different scenarios

Scenarios Param. α Param. β R2 RMSE

Open field - LOS 0.644 1.043 0.984 0.023
Open field - NLOS 0.084 0.356 0.952 0.091
Parking lot - cars 0.018 0.203 0.958 0.079
Parking lot - no cars 0.543 0.872 0.974 0.038
Office - people walking 0.011 0.067 0.961 0.094
Office - interference 0.009 0.039 0.962 0.052
Office - weekend 0.356 1.229 0.981 0.037
Home 0.065 0.473 0.987 0.062

outdoor environments where surrounding objects rarely change
or move, the PLR models only need to be updated when
detecting a drastic change in PLR for the same SNR value.
However, in environments where frequent movement of objects
are not predictable, the models need to be updated at regular
intervals.

VI. CONCLUSION

This paper has presented the results of indoor and outdoor ex-
perimental campaigns to understand how environment impacts
the dependency between link PLR, SNR and packet length. The
results and observations enable us to have a comprehensive
understanding of the spatio-temporal characteristics of such
dependency. Various environmental factors were examined to
validate that the proposed link PLR model is applicable in all
experimented scenarios. Implications are provided for applica-
tions to construct PLR models and maintain model accuracy
over time in different environments. As a future work, the
dependency of PLR on another hardware indicator LQI (link
quality indicator) will be investigated to understand which of
SNR and LQI is a better predictor of PLR.
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