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Abstract—In a multihop wireless network, it is crucial but
challenging to schedule transmissions in an efficient and fair
manner. In this paper, a novel distributed node scheduling
algorithm, called Local Voting, is proposed. This algorithm tries
to semi-equalize the load (defined as the ratio of the queue length
over the number of allocated slots) through slot reallocation based
on local information exchange. The algorithm stems from the
finding that the shortest delivery time or delay is obtained when
the load is semi-equalized throughout the network. In addition,
we prove that, with Local Voting, the network system con-
verges asymptotically towards the optimal scheduling. Moreover,
through extensive simulations, the performance of Local Voting
is further investigated in comparison with several representative
scheduling algorithms from the literature. Simulation results
show that the proposed algorithm achieves better performance
than the other distributed algorithms in terms of average delay,
maximum delay, and fairness. Despite being distributed, the
performance of Local Voting is also found to be very close
to a centralized algorithm that is deemed to have the optimal
performance.

Index Terms—Multihop wireless networks, Node scheduling
algorithm, Wireless mesh networks, Load balancing.

I. INTRODUCTION

MULTIHOP wireless networks are a paradigm in wireless
connectivity which has been used successfully in a

variety of network settings, including ad-hoc networks [1],
wireless sensor networks [2], and wireless mesh networks [3].
In such networks, the wireless devices may communicate with
each other in a peer-to-peer fashion and form a network, where
intermediate wireless nodes may act as routers and forward
traffic to other nodes in the network [4].

Due to their many practical advantages and their wide use,
there have been a lot of studies on the performance of multihop
wireless networks. For example, the connectivity of a multihop
wireless network has been studied under various channel
models in [4], [5]. Furthermore, their capacity has been studied
analytically in [6]–[9]. In addition, the stability properties of
scheduling policies for maximum throughput in multihop radio
networks have been studied in [10], [11]. Also, a centralized
scheduling algorithm that emphasizes on fairness has been
proposed in [12]. In [13], the authors focused on the joint
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scheduling and routing problem with load balancing in multi-
radio, multi-channel and multi-hop wireless mesh networks.
They also designed a cross-layer algorithm by taking into
account throughput increase with load balancing. Algorithms
for joint power control, scheduling, and routing have been
introduced in [14], [15]. In [16], the load balancing problem
in a dense wireless multihop network is formulated where the
authors presented a general framework for analyzing the traffic
load resulting from a given set of paths and traffic demands.

Some more recent literature works include [17]–[25].
In [17], the authors present the state of the art in Time
Division Multiple Access (TDMA) scheduling for wireless
multihop network. Reference [18] proposes Genetic Algo-
rithm for finding Collision Free Set (GACFS) which is a
co-evolutionary genetic algorithm that solves the Broadcast
Scheduling Problem (BSP) in order to optimize the slot assign-
ment algorithm in WiMAX mesh networks. It is a centralized
approach and does not take into consideration the traffic
requirements or the load in the network. Another scheduling
solution for wireless mesh networks based on a memetic
algorithm that does not consider the traffic requirements is
presented in [21]. An improved memetic algorithm is applied
for energy-efficient sensor scheduling in [26]. Reference [20]
investigates the mini-slot scheduling problem in TDMA based
wireless mesh networks, and it proposes a decentralized al-
gorithm for assigning mini-slots to nodes according to their
traffic requirements. The authors in [19] propose a scheduling
scheme for multicast communications where a conflict-free
graph is created dynamically based on each transmission’s
destinations. Reference [22] presents a probabilistic topology
transparent model for multicast and broadcast transmissions
in mobile ad-hoc networks. The novelty of the scheme is
that instead of guaranteeing that at least one conflict-free
time slot is assigned to each node, it only tries to bring the
probability of successful transmission above a threshold. The
authors have further presented performance improvement for
broadcasting in [27]. Another topology transparent scheduling
algorithm is presented in [24]. The algorithm is not traffic
dependent, and the achieved throughput is lower than the
optimal mainly due to the requirement for a guaranteed slot for
each node. Reference [23] proposes a distributed scheduling
scheme for wireless sensor networks (WSNs). Finally, the
NP-hardness of the minimum latency broadcast scheduling
problem is proved in [25] under the Signal-to-Interference-
plus-Noise-Ratio (SINR) model. Two distributed deterministic
algorithms for global broadcasting based on the SINR model
are presented in [28].
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Efficient traffic load balancing and channel access are
essential to harness the dense and increasingly heterogeneous
deployment of next generation 5G wireless infrastructure [29].
Channel access in 5G networks faces inherent challenges
associated with the current cellular networks [30], e.g. fairness,
adaptive rate control, resource reservation, real-time traffic
support, scalability, throughput, and delay. For instance, being
able to do frequency and time slot allocation enables more
adaptive and sophisticated multi-domain interference manage-
ment techniques [31], [32]. In [32], TDMA is used to mitigate
the co-tier interference from time domain perspective in ultra-
dense small cell networks. The modeling and the optimization
of load balancing plays a crucial role in the resource allocation
in the next generation cellular networks [33].

In this paper, we focus on the problem of node scheduling in
multihop wireless networks. In the node scheduling problem,
each transmission opportunity is assigned to a set of nodes
in a such way which ensures that there will be no mutual
interference among any transmitting nodes. More specifically,
under node scheduling, two nodes can be assigned the same
time slot (and transmit simultaneously) if they do not have
any common neighbors. We introduce the Local Voting algo-
rithm. The idea behind the algorithm was originated by the
observation that the total delivery time in a network can be
minimized, if the ratio of the queue length over the number of
allocated slots is semi-equalized throughout the network. We
call this ratio the load of each node. The proposed algorithm
allows for neighboring nodes to exchange slots in a manner
that eventually semi-equalizes the load in the network. The
number of slots that are exchanged is determined by the
relation between the load of each node and its neighbors,
under the limitation that certain slot exchanges are not possible
due to interference with other nodes. The preliminary results
were presented in [34]. This paper presents new algorithm
and an analysis of its performance, as well as new simulation
results. The simulation results of the comparative study be-
tween Local Voting and other representative algorithms from
the literature show that Local Voting achieves the shortest
end-to-end delivery time and greatest fairness compared to
other distributed algorithms for different network densities. We
also show that its performance is very close to a centralized
algorithm. The presented algorithm is a modification of the
Local Voting protocol with non-vanishing to zero step-size
which was suggested in [35]. It belongs to the more general
class of stochastic approximation decentralized algorithms
which have been studied early in [36], [37] with decreasing
to zero step-size. However, changing the traffic parameters
leads to an unsteady setting of the optimization problem. For
similar cases the stochastic approximation with constant (or
non-vanishing to zero step-size) is useful [38], [39].

The paper is organized as follows: Section II describes
thoroughly the network model. Section III presents the pro-
posed Local Voting algorithm where Section III-B presents
an analysis of the performance of the algorithm in terms of
achieving consensus. The simulation results in Section IV
compare the performance of the proposed algorithm with other
algorithms from the literature. Finally, Section V concludes the
paper.

i

Fig. 1. A multihop wireless network where the communication range and
the interference range of node i are denoted by the circle. The nodes with
white background are two-hop neighbors of node i, and the nodes with gray
background are outside the two-hop neighborhood of node i.

II. NETWORK MODEL AND LOAD BALANCING

Consider a network that can be represented by a graph
G = (N, E). N is the set of all wireless nodes that commu-
nicate over a shared wireless channel, i.e. N = {1, 2, . . . , n}.
E is the set of directional but symmetric edges which exist
between two nodes if a broadcast from one node may cause
interference on the other node. We use the terms edges and
links interchangeably. Access on the channel is considered to
follow a paradigm of time division multiple access. There is
no spatial movement of the nodes.

The considered scheduling algorithm is a node scheduling
algorithm, i.e. each slot is allocated to a node, instead of a
communication link. We study a simple protocol interference
model where two nodes are one-hop neighbors as long as their
distance is less than the communication range. The interfer-
ence range is considered to be equal to the communication
range, and both values are considered constant throughout the
network. A multihop network is presented in Fig. 1 where the
nodes within the circle of node i are one-hop neighbors of
node i, and the one-hop neighborhood of node i is denoted by
N (1)
i . We also define N (2)

i as a two-hop neighborhood of node
i, i.e. the set of all the nodes that are neighbors to node i or
that have a common neighbor with node i. Since the inclusion
N (1)
i ⊂ N (2)

i holds, the nodes with white background in Fig. 1
are two-hop neighbors of node i. The nodes presented with
gray background are outside the two-hop neighborhood of
node i. Note that the nodes within the circle of node i are also
within the interference range of node i because the interference
range and the communication range are equal. Two flows are
depicted with red and blue arrows, respectively. According to
the protocol interference model, two nodes can be assigned
the same transmission slot, with no collision, as long as they
do not have any common neighbors. Otherwise, a collision
would happen, resulting in data loss. Node scheduling tries to
guarantee that no such collision happens.

Each node contains a queue with packets to be transmitted,
and the internal scheduling on the queue is first-come-first-
serve. The maximum length of each queue is considered to be
unbounded. Each node also has a set of slots that have been
assigned to it, and neighboring nodes may exchange slots.
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Fig. 2. Procedure of slot assignment and transmission of packets during
frame t.

Time is divided into frames where each frame is denoted
with t and t = 0, 1, . . . . In addition, each frame t is divided
into time slots. The number of time slots in each frame is
considered to be fixed and equal to |S | where all time slots
have the same duration. The number of slots in a frame |S |
is considered to be large enough for every node to be able to
obtain at least one slot in each frame, if needed. This value
can be determined by the chromatic number of the graph,
where there is an edge between any two-hop neighbors in
the original graph G. The Greedy Coloring Theorem provides
an upper bound for this chromatic number which is equal to
maxi∈N |N (2)

i |+1 [40]. The duration of a time slot is sufficient
to transmit a single packet.

The transmission schedule of the network is defined as,

X i,s
t =

{
1, if a slot s ∈ S is assigned to a node i ∈ N ;
0, otherwise;

(1)
for t ≥ 0, with X i,s

0 = 0 by convention.
The transmission schedule is conflict-free, if for any t,

X i,s
t X j,s

t = 0,∀s ∈ S, i ∈ N, j ∈ N (2)
i , i , j . (2)

For each i ∈ N , let Ñ i
t denote a set of such nodes j that node i

can exchange slots with node j and the produced schedule
remains conflict-free and Et denote the corresponding subset
of edges.

The objective of this work is to design a load balancing
node scheduling strategy to schedule nodes’ transmissions
in such a way that the minimum maximal (min-max) nodal
delay is achieved. We will study the following scheme of slot
assignment and transmission of packets (see Fig. 2).

At the beginning of frame t, the state of each node i in the
network is described by three characteristics:
• qi

t is the queue length, counted as the number of slots
needed to transmit all packets at node i at frame t;

• pi
t−1 is the number of slots assigned to node i at the

previous frame t − 1, i.e. pi
t−1 =

|S |∑
s=1

X i,s
t−1;

• uit is the number of time slots which are assigned (uit > 0)
or released (uit < 0) by node i at the beginning of frame
t (uit is calculated by the scheduling policy).

For each node i, the slot assignment starts with releasing time
slots according to the scheduling policy when uit < 0, or
otherwise with assigning slots to node i from free time slots
or through redistribution of time slots with its neighbors. After

that, the transmission of packets begins. During frame t new
packets arrive. At the end of frame t, the scheduling policy
calculates {ui

t+1}i∈N locally based on the available data.
So, the dynamics of each node is described by

pit = pit−1 + nit + uit, i ∈ N, t = 0, 1, . . . ,
qi
t+1 = max{0, qi

t − pit } + zit,
(3)

where nit is the number of free slots that are allocated to node
i or the number of slots that are released due to an empty
queue, and uit is the number of time slots that node i gains or
loses at frame t due to the adopted slot scheduling strategy.
These are slots that are exchanged between neighboring nodes,
while zit is the number of slots needed to transmit new packets
received by node i at frame t, either received as new packets
from the upper layers or from a neighboring node. If qi

t = 0,
then no slot is allocated to the node i, i.e. we set pit = 0.

For reader’s convenience, we provide Table I with the key
notations used in this paper.

A. Load Balancing
The ultimate objective of a scheduling algorithm in a

multihop network is the packet flows to be delivered from
the source to the destination in a short time. This can be
measured by the end-to-end delay per packet, the end-to-
end delivery time of a packet burst, the throughput of each
flow, and the fairness in distributing the resources among
the competing flows. In general, the problem of optimal
scheduling in terms of approximating the optimal throughput
in a multihop wireless network is NP-hard as it is proven
in [41]. A specific challenge of having such a scheduling
algorithm is that it needs to examine per flow information and
use this information to schedule flows at every node which we
believe is difficult to implement.

For this reason, we do not optimize the end-to-end delay
for the whole wireless network, but instead we focus on
optimizing the nodal (per-node) delay in each transmitter.
The proposed Local Voting algorithm may be considered as a
compromise, where we do node scheduling by using the slots
without information about the individual flows. Since multihop
end-to-end delay is the sum of nodal delays on the end-to-end
path, we expect Local Voting to deliver also good multihop
end-to-end delay performance. To validate this, the evaluation
in Section 4 has been focused on multihop end-to-end delay,
and the results indicate that Local Voting does give good or
indeed better multihop end-to-end performance than various
literature algorithms.

In the following we show that the nodal delay may be
optimized (min-max), if the load of each node in the network
is balanced. The load of node i at the beginning of frame t
is defined as zero when qi

t = 0, and otherwise it is defined as
the ratio of the queue length qi

t over the number of allocated
slots pit (note that slots are not assigned to nodes that have
nothing to transmit in an optimal scheduling strategy, so we
have qi

t = 0 if pit = 0), i.e.

xi =





qi
pi
+ 0.5


, if qi > 0,

0, if qi (and consequently pi) = 0.
,

(4)
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TABLE I
TABLE WITH NOTATIONS

G = (N, E ) Graph of a network topology
i Node
N Set of nodes in the network
|N | Number of nodes in the set N

E Set of directional and symmetric edges between all two
interfering nodes

S Set of slots in a frame
|S | Number of slots in a frame
s Time slot
X i,s
t Transmission schedule for allocating slot s to node i at

frame t

N (1)
i Set of one-hop neighbors of node i

N (2)
i Set of two-hop neighbors of node i

qi
t Queue length of node i at frame t

pi
t Number of slots assigned to node i at frame t

xit Load of node i at frame t

zit Number of required slots to transmit new packets received
by node i at frame t

nit Number of free slots that are allocated to node i or
released due to an empty queue at frame t

ui
t Number of slots that node i gains or releases at frame t

Ñ i
t Set of neighbors that can exchange slots with node i at

frame t

Et Set of edges between nodes that can exchange slots at
frame t

At Adjacency matrix corresponding to Et

a
i, j
t Weight of edge ( j, i) ∈ Et

GAt Graph defined by the adjacency matrix At

Emax Maximal set of communication links
di (A) Weighted in-degree of node i (sum of i-th row of A)
D(A) Diagonal matrix of weighted in-degree of A

L(A) Laplacian matrix of the graph GA

λ1, . . . , λn Eigenvalues of the matrix L(A)
E Mathematical expectation
EFt Conditional mathematical expectation with respect to the

σ-algebra Ft
Aav Adjacency matrix of the averaged system
a
i, j
av Mathematical expectation (average value) of a

i, j
t

λ2 (Aav ) Second eigenvalue of the matrix Bav ordered by absolute
magnitude

[·] Round function

where [·] is the round function (rounds a real number to the
nearest integer). Using this definition we calculate the delay
for each node i (in time slots) as xi · |S |.

Definition 1: Load balancing is the processes of equalizing
the load between the nodes in the network by exchanging slots
among them.

Definition 2: We define a conflict-free schedule as “nodally
optimal” or just “optimal”, if the maximum delay per node in
the network is smaller or equal than the maximum per node
delay for every other schedule (min-max).

Lemma 2.1: (Optimal schedules are maximal) An optimal
schedule is a (or has an equivalent) maximal schedule in the
sense that1 @ j ∈ N such that pj can be increased without
reducing pk in at least one other node k ∈ N .

1 Symbol @ denotes the negation of existense ∃

Proof: Consider a schedule that is not maximal. That
means there exists j ∈ N such that pj can be increased by
one. For the new schedule, the delay for all the other nodes is
unchanged (since we did not reduced slots for the other nodes).
For node j, the new delay is x ′i · |S | =

[
qi

(pi+1) + 0.5
]
· |S | ≤

xi · |S |. Thus, for every non-maximal schedule, there exists a
maximal schedule that has smaller or equal maximum delay.

Lemma 2.2: (Optimal schedules are balanced) Assume
that node k is the most loaded node in the network, i.e
k = argmax(xi), i ∈ N . For all optimal schedules, it holds
xk ≤ x j/(1 − 1/pj ) for the load of the most loaded node k
and the load of every other node j where j ∈ Ñk .

Proof: Assume that an optimal schedule exists where for
the most loaded node k, xk > x j/(1 − 1/pj ) where j ∈ Ñk .
Since k is the most loaded node, the maximal delay for such a
schedule is xk · |S |. Since node j ∈ Ñk , it follows that a slot of
node j can be reassigned to node k. After reassigning, the new
load for node k is [qk/(pk + 1) + 0.5], and the corresponding
delay for node k is dqk/(pk + 1)e · |S | < xk · |S |. In addition,
node j loses a slot so the new delay for node j is [qj/(pj −

1) + 0.5] · |S | = [(qj/pj )/(1 − 1/pj ) + 0.5] · |S | = [(qj/pj ) +
0.5]/(1 − 1/pj ) · |S | = x j/(1 − 1/pj ) · |S | < xk · |S |. Thus,
the new allocation has a maximal delay that is smaller than
or equal to the maximal delay of the other allocation, so the
allocation is not optimal.

Based on the above reasoning, we design a load balancing
strategy with two goals: 1) The produced schedule should be
maximal, 2) The load in the schedule should be balanced in
the sense of Lemma 2.2. For this reason, we define a slot
exchange strategy that tries to equalize the load through load
balancing, and in the next Section III-B we prove that the
Local Voting algorithm converges to a such solution.

It should be noted that, in general, a schedule could be both
maximal and balanced, but still not optimal. This is because
there could exist a reallocation of the slots in the network
that would produce a larger spectral efficiency. Optimizing
the schedule in this sense would require finding a solution
for the NP-complete broadcast scheduling problem. This is
not easy, so for the purposes of this paper, we do not
examine ways of escaping local optima and finding the global
optimum. However, we can see from the simulation results
that the performance of Local Voting is still better than the
performance of other distributed algorithms that we compare
with, and also we see that optimizing the maximal nodal delay
also has a positive impact on the end-to-end delay.

Among all possible options for load balancing, the min-
max nodal delay is achieved when all nonzero loads qi

t/pit are
semi-equal. This comes as a result from the finding that the
minimum expected nodal delay is achieved when the load in
the network is equalized on nodes (Lemma 1 and Corollary 1
from [35]).

III. THE PROPOSED NODE SCHEDULING ALGORITHM:
LOCAL VOTING

In the previous section we have shown that an optimal
schedule has three properties: it is efficient, it is maximal,
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and it is balanced. These are the properties which guide us in
the design of the Local Voting algorithm.

In order to be efficient, there should be no slots allocated to
nodes that have an empty queue. For this reason, before the
beginning of each frame, nodes with an empty queue release
all time slots that they have reserved.

In order to be maximal, there should be no free time slot
in the neighborhood of any node, if that node has a positive
queue, and assigning the slot to the node would not cause a
conflict with other nodes. In order to meet this objective, after
the first step, free slots are allocated to the nodes that do not
have an empty queue. Conflicts are resolved in a descending
order of the load.

Finally, the third objective is to be balanced, which can be
formulated with the following control goal: to keep the ratio
qi
t/pit semi-equal throughout the network (as much as possible)

for the nodes i where the queue is not empty qi
t > 0. In

other words, the number of slots assigned to each node should
correspond to the amount of backlogged traffic. A consequent
implication is that, in order to achieve this optimal strategy, we
should be able to freely exchange slots among any two nodes
in the network. However, in reality, it is not always possible
due to the potential interference with other nodes in network.
That is expressed through Eq. (2).

In the following, we propose a novel algorithm that adopts
the local voting control strategy. For the proposed Local Voting
algorithm, its semi-consensus properties with respect to the
local balancing are proved in Section III-B.

A. The Proposed Algorithm: Local Voting

At the end of frame t, each node computes a scheduling
policy. The ui

t+1 value is calculated as follows.
Each node uses the characteristics of its own state qi

t+1, pit
and its neighbors’ states q j

t+1, pj
t if Ñ i

t , ∅.
Let us for time frame t and for each node i, i ∈ N : qt+1

i >
0, define semi-inverse load x̃it : x̃it = pti/q

t+1
i , and consider the

following modification in the already known Local Voting (LV)
protocol [35]:

ut+1
i =


γ
∑
j∈Ñ i

t

ai, j
t ( x̃ j

t − x̃it )


(5)

where γ > 0 is a LV protocol step-size, and LV protocol matrix
coefficients ai, j

t :

ai, j
t =

q j
t+1

1 +
∑

k∈Ñ i
t

qk
t+1

qi
t+1

.

Note, it is not so hard to see that

uit+1 =


γ

∑
j∈Ñ i

t
qi
t+1pj

t − q j
t+1pit

qi
t+1 +

∑
j∈Ñ i

t
q j
t+1


.

For all other case we define ut+1
i = 0 and x̃it = pti . We set ai, j

t =

0 for other pairs i, j and denote the matrix of the protocol as
At = [ai, j

t ]. The elements ai, j
t in adjacency matrix At are ai, j

t >
0 if node i can exchange slots with node j and the produced
schedule remains conflict-free; and ai, j

t = 0 otherwise.

When γ = 1, Eq. (5) has a form:

uit+1 =


qi
t+1 ×

pit +
∑

j∈Ñ i
t

pj
t

qi
t+1 +

∑
j∈Ñ i

t
q j
t+1


− pit .

Example. Let’s consider the network with |S | = 50, three
nodes, all neighbors with each other (single hop), with the
following initial queue lengths of q1

0 = 400, q2
0 = 100, q3

0 =

310, and p1
0 = 20, p2

0 = 20, p3
0 = 10. The initial values for the

loads are the following: x1
0 = 20, x2

0 = 5, x3
0 = 32.

The queue lengths at the end of frame t = 0 will be q1
1 =

400 − 20 = 380, q2
1 = 100 − 20 = 80, q3

1 = 310 − 10 = 300.
Using Eq. (5) we get

u1
1 = [380 · (20 + 20 + 10)/(380 + 80 + 300)] − 20 = 5,

u2
1 = [80 · (20 + 20 + 10)/(380 + 80 + 300)] − 20 = −15,

u3
1 = [300 · (20 + 20 + 10)/(380 + 80 + 300)] − 10 = 10,

and we have three semi-equal loads

x1
1 = 380/25 = 15.2, x2

1 = 80/5 = 16, x3
1 = 300/20 ≈ 15

Eventually, node i gains a slot in the following scenarios:
• Its queue length is positive and there exists an available

time slot that is not allocated to one-hop or two-hop
neighbors of node i;

• Its queue length is positive and there exists a neighbor
j ∈ Ñ i

t that has a value u j
t lower than zero.

It is important to note that the quantities in protocol (5) are
discrete-values, i.e. the state and other relevant quantities may
only take a countable set of values. In that case, it makes sense
to consider a quantised consensus problem [42], [43].

The proposed Local Voting algorithm consists of two func-
tions: requesting and releasing free time slots, and load bal-
ancing.

For the first function (Fig. 3) nodes are examined sequen-
tially at the beginning of each frame. If a node has an empty
queue, then it releases all its time slots. If a node has a positive
backlog (i.e. its queue is not empty), then it is given time slots.
All time slots are examined sequentially, and the first available
time slots that are found, which are not reserved by one-hop
or two-hop neighbors for transmission, are allocated to the
node. The message exchanges for requesting and releasing
slots are considered equivalent to message exchanges in the
DRAND algorithm [44]. If no available slot is found (all slots
have been allocated to one-hop or two-hop neighbors of the
examined node), then no new slot is allocated to the node. On
the contrary, if the queue of the node is found to be empty
and the node has allocated slots, then all slots are released.

The load balancing function (Fig. 4) is invoked in order to
achieve the objective of keeping the load balanced. Every node
i ∈ N has a value uit (from the scheduling policy calculated at
the end of the previous frame) which determines how many
slots the node should ideally gain or lose by the load balancing
function. If a node has a positive uit value, then it checks if
any of its neighbors has a load lower that its own and may
give a slot to it without causing a conflict. Note that this is
not always the case, because the requesting node may not be
able to obtain a slot if one of its other one-hop or two-hop
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For every
node i ∈ N
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Fig. 3. Requesting and releasing time slots function for the Local Voting
algorithm.

Start
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End
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i
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t = min

m∈Ñ i
t

umt ,

uit := uit − r , u j
t := u j

t + r

Is there a
node j
∃ j ∈ Ñ i

t
such that
u j
t < 0?

no

yes

no

yes

Fig. 4. Load balancing function for the Local Voting algorithm.

neighbors has also allocated the same slot. The neighbor with
the smallest u j

t value gives slots to node i. After the exchange
uit is reduced by r = min{uit, uit − u j

t , pj
t−1}, and u j

t is increased
by r . This procedure is repeated until uit is positive, or until
none of the neighbors of node i can give any slots to node i
without causing a conflict. In this way, in general, slots are
removed from nodes with lower load and are offered to nodes
with higher load, and eventually the load between nodes will
reach a common value, i.e. semi-consensus will be achieved.

B. Consensus Properties of Local Voting

1) Notation: For the considered network, N (1)
i and N (2)

i do
not change over time since there is no spatial movement of the
nodes. However, the network changes over time due to the slot
allocation which is dynamic. Taking this into consideration, we
describe the structure of the dynamic network (network topol-
ogy) using a sequence of directed graphs GAt = {(N, Et )}t≥0,
where Et ⊆ E. In the considered case, Et defines a subset
which consists of links between the nodes that can exchange
slots at time t. Note that these directed graphs GAt are not
the same as the communication graph G. Instead, they define
to which of the other nodes a node can offer a slot. More
specifically, if there is an edge from node i to node j in GAt ,
it means that node i has a slot to offer to node j, and after the
exchange the produced schedule will still remain conflict-free
with respect to Eq. (2).

At = [ai, j
t ] is the corresponding adjacency matrix. As

defined earlier, Ñ i
t =

{
j : ai, j

t > 0
}

denotes the set of neighbors
of node i ∈ N at time t, i.e. the set of neighbors that can
exchange slots with node i. Generally, Ñ i

t , ∅ if ∃s ∈ S :
X i,s
t = 1 and ∀k ∈ N (2)

i ∪ i, X i,s
t Xk,s

t = 0. Note that in
contrast to N (1)

i and N (2)
i , the set Ñ i

t ⊂ N (1)
i changes in time.

Let Emax = {( j, i) : supt≥0 ai, j
t > 0} stand for the maximal

set of communication links (a set of edges that appear with
non-zero probability in Ñ i

t ). For any matrix A we define the
weighted in-degree of node i as a sum of i-th row of the
matrix A: di (A) =

∑n
j=1 ai, j , and D(A) = diag{di (A)} as

the corresponding diagonal matrix. Let L(A) = D(A) − A
denote the Laplacian matrix of the graph GA, and λ1, . . . , λn
stand for the eigenvalues of the matrix L(A) ordered by
increasing absolute magnitudes. The symbol dmax(A) accounts
for a maximum in-degree of the graph GA.

2) Assumptions: Let (Ω, F , P) be the underlying proba-
bility space corresponding to the sample space, the collec-
tion of all events, and the probability measure, respectively,
and {Ft } be a sequence of σ-algebras which are generated
by {qi

k
, pi

k
}i=1,...,n,k=1,...,t . The symbol E accounts for the

mathematical expectation, EFt is a conditional mathematical
expectation with respect to the σ-algebra Ft , and the following
assumptions are satisfied:

A1. a) For all i ∈ N, j ∈ N i
max an appearance of “variable”

edges ( j, i) in the graph GAt is an independent random event.
N i

max is defined by the topology Emax.
Denote by ai, j

av the average value of ai, j
t . Let Aav stand for

the adjacency matrix of averaged values ai, j
av .

b) For all i ∈ N, t = 0, 1, . . ., the number of slots zit required
to transmit new packets received by node i at frame t in Eq.
(3) are random variables do not depend on Ft .

Note that new packets refer to new incoming packets from
new connections and new packets arrived from neighbors.

c) For all i ∈ N, j ∈ Ñ i
t and bi, jt =

q
j
t+1

qi
t+1+
∑

k∈Ñ i
t
qk
t+1

there

exist conditional average values bi, jav = EFt−1 (bi, jt ), which do
not depend on t. Note that bi, jt = ai, j

t /q
i
t+1 and Bt = AtQ−1

t+1
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where Qt+1 = diag{max{1, qi
t+1}}.

There exists a positive definite matrix Qav > 0 such that
Aav = BavQav , and E‖Q−1

t+1 −Q−1
av ‖

2 ≤ σ2
q .

d) For matrices Bt = [bi, jt ] and Bav = [bi, jav] there exists a
matrix R such that

E(L(Bav) − L(Bt ))T(L(Bav) − L(Bt )) ≤ R,

and its maximum on the absolute magnitude eigenvalue:
λmax(R) < ∞.

e) For all i ∈ N, t = 0, 1, . . ., the errors of rounding in LV
protocol (5)

wi
t = γ

∑
j∈Ñ i

t

ai, j
t ( x̃ j

t − x̃it ) − [γ
∑
j∈Ñ i

t

ai, j
t ( x̃ j

t − x̃it )] (6)

are centered, independent, and they have a bounded variance
E(wi

t )
2 = σ2

w and independent of Ft .
f) For all i ∈ N, t = 0, 1, . . ., the variables ei

t+1 are random,
independent and identically distributed with mean values ēi

and variance σ2
e, and they do not depend on Ft .

All variables zit, e
i
t+1,w

i
t are mutually independent.

We assume that the following assumption for the average
matrix of the network topology is satisfied:

A2: Graph GAav has a spanning tree, and for any edge
( j, i) ∈ Emax it holds ai, j

av > 0.
3) Mean Square ε-consensus: Consider the state vectors

x̃t ∈ Rn, t = 0, 1, . . . , which consist of the elements
x̃1
t , x̃2

t , . . . , x̃nt . Note that if state values x̃it, i ∈ N, are semi-
equal then the inverse values qi

t+1/pit, i ∈ N for qi
t+1 > 0, pit >

0 are semi-equal.
The following theorem gives the conditions when the se-

quence {xt } converges asymptotically in the mean squared
sense to some bounded set around a trajectory x̄t of the
corresponding averaged model

x̄t+1 = x̄t − γL(Bav)x̄t +Q−1
av ēt+1, x̄0 = 0(= x0). (7)

If ēt ≡ 0 then x̄t → x̄? as t → ∞, and x̄? is a left eigenvector
of the matrix Aav corresponding to its zero eigenvalue. Note
that if Aav is a symmetric matrix, then x̄? is equal to x?1n
where 1n is n-vector of ones, i.e. we will get the asymptotical
consensus for the state vectors {x̄t }.

Theorem 1. If Assumptions A1–A2 are satisfied and

0 < γ <
1

dmax(Bav)
, (8)

then
ρ = (1 − λ2(Bav))2 < 1 (9)

and the trajectory {x̄t } of the system (7) converges to the vector
x̄? which is a left eigenvector of the matrix Amax corresponding
to its zero eigenvalues, and the following inequality holds:

E‖x̃t+1−x̄t+1‖
2 ≤ 2(

∆

1 − ρ
+ρtE‖p0‖

2+σ2
q ‖Qav x̄t+1‖

2), (10)

where
∆ = n(λmax(R) |S | + σ2

e + σ
2
w ).

If t → ∞, then the asymptotic mean square ε-consensus is
achieved with

ε ≤ 2
∆

1 − ρ
+ 2σ2

q ‖Qav x̄t+1‖
2.

TABLE II
SIMULATION SETUP

Parameter Value
Number of Nodes 100
Transmission/Interference range 10 units
Topology size 100 x 100 units
Frame length 10 time units
Number of concurrent connections 1 - 30
Number of packets per connection 100
Packet generation interval Every 5 slots
Number of iterations 500

Proof is in the Appendix.
Theorem 1 shows that our protocol (5) provides an approx-

imate consensus, i.e. gives an almost optimal behavior of the
system.

IV. EVALUATION

We have performed a set of simulations in order to evaluate
the performance of different scheduling algorithms. These
simulations are carried out by using a custom–built, event-
driven simulation tool developed in Java. The simulation setup
is summarized in Table II.

Although several routing algorithms for load balancing in
multihop networks exist, e.g. [45], in this paper we focus on
the interaction of scheduling and load balancing algorithms.
The routing in the network is considered to follow a simple
shortest path routing algorithm.

A. The Simulation Tool

The source code that was developed for evaluating different
scheduling algorithms has been made open source and is avail-
able.2 The scripts for running the simulations and producing
the results have also been made available.3

The simulation tool focuses on the evaluation of the schedul-
ing algorithms. There are two types of scenarios that were
evaluated. In the first class of scenarios, a variable number of
connections is considered, each connection starts with a fixed
number of packets. This represents the response to a sudden
burst of traffic. Different load in the network is calibrated
by changing the number of connections. The simulation is
executed until all packets have reached their destinations. In
the second class of scenarios, connections are added con-
stantly, following a Poisson process. The load is calibrated by
changing the connection arrival rate. This scenario is executed
for a fixed time duration.

The measured metrics for each connection are:

• the delivery time, which is the time needed for all packets
of a connection to reach their final destination;

• The delay, which is time from the moment each packet
is generated until it has been received by its final desti-
nation;

2https://github.com/djvergad/local_voting_src
3https://github.com/djvergad/local_voting

https://github.com/djvergad/local_voting_src
https://github.com/djvergad/local_voting


8

• The throughput, which is the number of packets in the
connection, divided over the time difference (in slots)
between the start and the completion of the connection.

For each simulation we used the per connection metrics
in order to take the average value between the connections
per simulation, the maximum and minimum values for each
connection, and the fairness, which was calculated using Jain’s
fairness index [46].

The simulation software is organized into four packages: the
network package contains the implementation of the network
elements and algorithms, the simulator package which contains
the objects for implementing the discrete–event simulator, the
application package which implements the network connec-
tions and the statistics gathering functionality, and the stability
package which contains the different scenarios to be executed.

Some of the network functions that were implemented
in the simulation tool include the following: a Connection
object represents the application layer. For the purposes of
this simulation, each connection has a random source and
destination. It is initialized with a number of packets that
are transmitted. For the first scenario (traffic bursts), each
connection has 100 packets. For the steady state scenario, the
number of packets are calculated based on an exponential dis-
tribution. The Node object represents each wireless station in
the network. It contains an infinite FIFO queue that is common
for all outgoing transmissions. It also has a routing table that
is created using a shortest path algorithm. It contains a set of
slot reservations, as well as X-Y coordinates. A Reservation
object represents the slot reservation. It contains fields for the
transmitting node, as well as the nodes that are blocked due
to this reservation (all nodes in the two-hop neighborhood,
except for the link-scheduling case). The Network object
implements network functions, such as routing. The Scenario
object contains the scenario to be executed, and defines the
scheduler type, the transmission range, the number of time
slots in each frame, the number of nodes in the network, and
the size of the topology. Each Scheduler also has a different
class which inherits from the TDMAScheduler class. The
wireless channel is lossless (unless otherwise specified). Two
nodes are one-hop neighbors if their distance is smaller than
the transmission/interference range. All scheduling algorithms
are conflict-free using the protocol interference model where
two nodes are not scheduled to transmit as long as they are
two-hop neighbors. We also consider a scenario with a link-
scheduling algorithm where two transmissions are allowed to
be concurrent, if each receiver receives at most one packet at
a time.

B. Implemented Algorithms

In this subsection we briefly describe the operation of some
algorithms for node scheduling from the literature. We have
implemented these algorithms in our simulation platform, and
compared their performance with the performance of Local
voting algorithm.

A typical example of a distributed, traffic indepen-
dent, topology dependent node scheduling algorithm is
DRAND [44]. DRAND defines a communication protocol for
obtaining a conflict-free schedule, using information from the

two-hop neighborhood. The protocol assigns a single time slot
to each node. The frame length is constant throughout the
network, and it is determined by the maximum density of the
nodes.

Another example of a distributed, traffic independent, topol-
ogy dependent node scheduling algorithm is Lyui’s algo-
rithm [47], [48]. The algorithm first assigns a color to each
node, using existing graph coloring techniques, with the lim-
itation that two nodes are not assigned the same color if they
are in the same two-hop neighborhood. Depending on the color
that is assigned to a node, it is a candidate to transmit in any
time slot for which t mod p(ck ) = ck mod p(ck ), where t is the
time slot, ck is the color assigned to node k, and p(ck ) is the
smallest power of 2 greater than or equal to ck . Among these
candidate nodes, in each two-hop neighborhood, the node with
the largest color transmits. Therefore, in Lyui’s algorithm, the
nodes have more than one transmission opportunity in each
frame, and there is no common frame length for the entire
network. This makes slot assignment easier than in DRAND
where the frame length must be known in advance. Lyui’s
algorithm also has better performance since the nodes can
transmit more frequently, and the performance in sparse areas
is not affected by larger node density elsewhere.

The Load-Based Transmission Scheduling (LoBaTS) [49]
protocol is an example of a distributed, traffic dependent,
topology dependent node scheduling scheme. It schedules the
transmissions using Lyui’s algorithm, but now instead of each
node having a single color, additional colors can be assigned
to nodes that experience high load. Each node maintains
an estimate of the utilization of every node in its two-hop
neighborhood. If the queue length exceeds a threshold, then
the node tries to find an additional color that: a) is not assigned
to any other node in the two-hop neighborhood, and b) does
not cause the utilization of any other node in the neighborhood
to exceed one. If such a color is found, then the node informs
its neighbors about the new assignment, and it uses Lyui’s
algorithm to calculate the new transmission schedule.

A centralized, traffic dependent, topology dependent node
scheduling algorithm was proposed in [50], called Longest
Queue First (LQF) scheduling. According to this scheduling
algorithm, nodes that have a packet to transmit are ordered
according to their queue length in a descending order. The
node with the longest queue is assigned to transmit in the
current time slot. The remaining nodes are examined one
by one, and any node that can transmit in the same time
slot without causing a conflict is also assigned to transmit.
The LQF policy is a simple heuristic for slot assignment,
but it is not really practical, since it is centralized and the
scheduler requires information about the queue lengths of all
nodes in the network. Nevertheless, due to its simplicity and
good performance, this algorithm has been often used for
obtaining theoretical results and as a benchmark for comparing
the performance of scheduling schemes. This algorithm is also
known as the Greedy Maximal Scheduling algorithm, and its
performance in terms of capacity has been analyzed in [51].

For the final scenario we used a link-scheduling variant of
the LQF algorithm. In this version of the algorithm, again
the nodes are examined in decreasing queue size. This time,
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however, whether the packet will conflict with other trans-
missions depends on the destination of the packet (since we
have link scheduling). For this reason, we examine the packets
from the start of the queue until we find the first packet that
has a destination that doesn’t cause a convict with the already
scheduled transmissions in this slot. This packet is added to
the slot, and the algorithm continues with the next node.

C. Delivery Time Scenario

In this experiment we investigate the delivery time of
fixed sized messages, all initialized at the same time. The
scenario has been repeated 500 times for each number of
connections and for each of the algorithms. The total num-
ber of experiments is 500 × 30 connections × 5 protocols =
75000 experiments.

At the beginning of each simulation a varying number from
1 to 30 concurrent connections is generated with random
sources and destination nodes. Each connection generates 1
packet every 5 time units until a total of 100 packets per
connection is generated.

The results of the simulation are depicted in Fig. 5. For each
number of concurrent connections and each algorithm, the
above metrics are averaged over the 500 different simulation
runs.

Fig. 5(a) depicts the average end-to-end delivery times
among all the concurrent connections. The LQF and the
Local Voting algorithms achieve the shortest delivery times,
followed by LoBaTS. The DRAND and Lyui algorithms ex-
hibit the worst performance, that is expected, since these
two algorithms assign a fixed number of slots to each node
without considering the traffic conditions. Fig. 5(b) presents
the fairness in terms of the end-to-end delivery time among
connections that is calculated using Jain’s fairness index. The
LQF and Local Voting algorithms clearly achieve superior
fairness than other algorithms, regardless of the number of
concurrent connections. This illustrates the significance of load
balancing when considering fairness. The LoBaTS algorithm
comes third (for most traffic loads) since it is also traffic
dependent, while the DRAND follows it. Lyui’s algorithm has
the worst fairness, and this validates what is expected, since it
assigns a different number of time slots according to the nodes’
color, without considering the traffic conditions. The lack of
fairness is noticeable for all algorithms except LQF and Local
Voting, even when the number of connections is limited. As the
number of connections increases, fairness deteriorates for all
algorithms, but the difference in performance among the Local
Voting and LQF algorithms and the remaining algorithms
increases as the traffic load increases. It should be noted that
even the LQF algorithm cannot achieve perfect fairness, and
this is due to the different levels of congestion in various
parts of the network. Namely, flows that encounter no (or only
limited) congestion on their path have shorter delivery times
than flows that encounter congestion, and this effect cannot be
mitigated by scheduling policies alone.

Fig. 5(c) demonstrates the maximum end-to-end delivery
time, which is the completion time of the connection that ends
the latest. This is an important metric because it shows after
how much time the system has delivered all packets to their

destination, thus, it is related to the capacity of the network.
The results confirm our expectations that the LQF algorithms
achieves the best performance. However, the performance of
the Local Voting algorithm is very close to optimal. This
validates the results of Section II that load balancing can
decrease the overall delivery time. The slight difference among
these two algorithms can be explained by two facts: 1) the
Local Voting algorithm is distributed, therefore, the delays in
propagating the state affect its efficiency, and 2) slot exchange
between two nodes is not always possible in real systems
since allocations by other neighbors may cause a conflict, thus,
it limits the amount of load balancing that is feasible. The
LoBaTS algorithm exhibits worse performance than the first
two algorithms, possibly because it assigns at least one slot to
each node, even if the node does not have traffic. DRAND and
Lyui’s algorithms perform equally badly, i.e. several orders of
magnitude behind the rest of the algorithms. This is expected
since both algorithms do not adapt the scheduling to traffic
requirements.

Fig. 5(d) depicts the end-to-end delivery time for the con-
nections with the shortest delivery time. In general, the Local
Voting algorithm has slightly better performance in terms of
the minimum delay compared to the other algorithms.

D. The Effect of the Network Density

In this scenario we have repeated the experiments of sec-
tion IV-C, but this time we have changed the size of the
topology, while the number of nodes is kept constant. This
allows us to investigate how the network density affects the
performance of the algorithms.

We vary the size of the network from 10 units to 200
units, while the number of nodes is still equal to 100, and the
transmission and the interference ranges are equal to 10 units.
The results are depicted in Fig. 6 for 10 and 30 concurrent
connections, respectively. In all cases the Local Voting and
LQF algorithms have the best performance. Additionally, the
performance of the proposed Local Voting algorithm is very
close to the performance of the centralized LQF scheme in
terms of maximum delivery time.

E. Steady State Scenario

In this subsection we evaluate the steady state performance
of the load balancing algorithm. This scenario is set up on
the same network as the previous one. However, instead of
starting all connections at the beginning of the simulation, the
connections start following a Poisson process where the arrival
rate λ is in the range of

[
10−4, 10−1

]
slots−1, the duration of

each connection is distributed exponentially with a parameter
of 1/µ = 10−3slots−1, and the packet inter-arrival time within
a connection is 1 packet every 5 time slots. The source and the
destination of the connection are chosen randomly, following a
uniform distribution. The duration of the simulation is 3×106

time slots. The packets that are received before 36666 slots
have elapsed since the beginning of the simulation are ignored.

We measure the average end-to-end delivery time, the aver-
age end-to-end delay, the average throughput, and the fairness
in terms of throughput. Fig. 7(a) presents the average end-to-
end delivery time, from the transmission of the first packet to
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Fig. 5. Simulation results of the different scheduling algorithms for different traffic load in the delivery time scenario.

 1000

 10000

 10  100

D
e

la
y
 (

ti
m

e
s
lo

ts
)

Topology size

Average Delay, for 10 connections

LocalVoting

LQF

DRAND

LoBaTS

Lyui

(a) The average delivery time (10 concurrent connections)

 1000

 10000

 10  100

D
e

la
y
 (

ti
m

e
s
lo

ts
)

Topology size

Average Delay, for 30 connections

LocalVoting

LQF

DRAND

LoBaTS

Lyui

(b) The average delivery time (30 concurrent connections)

Fig. 6. Simulation results for varying network density.
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Fig. 7. Simulation results for the steady state scenario.
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Fig. 8. The distribution of delay per packet (nodal and end-to-end) for the steady state scenario.
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Fig. 9. Simulation results for different values of the packet loss, for an
arrival rate of 10−4 connections/slot.
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Fig. 10. Simulation results for different values of the packet loss for an
arrival rate of 10−3 connections/slot.

the reception of the last packet of all connections. The Local
Voting algorithm achieves the best performance that is very
close to the LQF algorithm. The performance of the LoBaTS
algorithm is a bit behind the first two algorithms, and the
traffic independent algorithms achieve the worst performance.
In Fig. 7(b) we can see the average end-to-end delay, from the
moment a packet was generated until it was received by the
final destination. For low arrival rates, the LQF algorithm has
the smallest end-to-end delay, followed by the Local Voting,
LoBaTS, Lyui’s and DRAND algorithms. On the contrary, the
average throughput for the LQF, Local Voting, and LoBaTS
algorithms has a similar value, but Lyui’s and DRAND achieve
lower average throughput (Fig. 7(c)). Finally, in terms of
fairness, the Local Voting algorithm is superior for medium
arrival rates, but LQF has a superior performance for high
and low arrival rates.

Fig. 8(a) shows the evolution of the delay per packet per
node, for the different algorithms for an arrival rate of 10−3

new connections per time slot. The LQF algorithm has the
higher percentage of packets with very low delay, and this
is expected because there is no frame length, so packets are
eligible to be transmitted at the next time slot. On the contrary,
the Local Voting algorithm has a peak in the delay distribution
that is close to the frame length of 10. The LoBaTS algorithm
has higher delay, followed by DRAND and Lyui.

In Fig. 8(b) we plot the distribution of the end-to-end delay
per packet. We can see that the ranking of the algorithms is
similar to the per hop ranking. This result validates that opti-
mizing per-node delay through load balancing has a positive
effect on end to end delay in a multihop network.

F. The Effect of Packet Loss
In this scenario, we evaluate the performance of the schedul-

ing algorithms when errors can occur during the transmission
between nodes. We kept the same parameters as the previous
scenario, but this time we considered a packet loss probability
in a range from zero (i.e. no packet loss) to 0.9. We measure
the average delivery time, the average end-to-end delay, and
the average throughput for arrival rates of 10−4 and 10−3

connections per time slot.

Fig. 9 shows the results for an arrival rate equal to 10−4,
and Fig. 10 presents the results for an arrival rate equal to
10−3 connections per time slot. In both cases, when the packet
loss increases, the end-to-end delay also increases. This is
expected, because an increased packet loss causes the packets
to be re-transmitted, thus, an additional delay is experienced.
Similar results may be seen for the delivery time and the
throughput, but are omitted due to space page limitation.

G. The Effect of the γ Value

In this scenario we investigate the effect of the γ value on
the performance of the network. We execute the steady state
scenario for the Local Voting algorithm, but this time, we set
the γ parameter to different values, from 10−3 to 103. The
results are depicted in Fig. 11. There are significant differences
in terms of the end-to-end delay. For the network settings
tested, we observed the best performance with in terms of
delay for γ = 1.

H. Node Scheduling vs. Link Scheduling

All the algorithms studied in this paper are node-scheduling
algorithms. This means that the destination of each trans-
mission is not considered, so the interference model that is
used under node-scheduling is more conservative than link-
scheduling. On the other hand, node scheduling has a multi-
plexing advantage under intermittent load. Fig. 12 depicts the
results of the first scenario, including a link-scheduling variant
of the LQF algorithm.

V. CONCLUSION

The problem of scheduling is one of the big challenges in
wireless networks. In this paper we studied the interaction of
scheduling and load balancing. We showed that the problem
of minimizing the overall delivery time through a multihop
network can be modeled as a consensus problem, where
the goal is to semi-equalize the fraction of the number of
slots allocated to each node over the queue length of the
node. We introduced the schedule exchange graph, that is
a directed, time-varying graph, which represents whether a
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node can give a slot to another node. The problem of wireless
scheduling was modeled as a load balancing problem. Taking
into consideration the dynamically changing network topology,
we introduced Local Voting protocol (consensus protocol)
to solve the scheduling/load balancing problem. Finally, we
found the conditions that should be met in order for the
Local Voting protocol to achieve approximate consensus, and
therefore optimize the delivery time throughout the network.

We compared the performance of the Local Voting algorithm
with other scheduling algorithms from the literature. Simula-
tion results validated the theoretical analysis and showed that
the delivery times are minimized with the use of the Local
Voting algorithm. The proposed algorithm achieves better per-
formance than the other known distributed algorithms from the
literature in terms of the average delay, the maximum delay,
and the fairness. Despite being distributed, the performance of
the Local Voting algorithm is very close to the performance of
the centralized LQF algorithm which is considered to have the
best performance. To summarize, we showed the advantage
of load balancing when performing scheduling in wireless
multihop networks, proposed Local Voting algorithm for load
balancing/scheduling, found theoretical conditions for conver-
gence (reaching consensus), and demonstrated by simulations
that the Local Voting algorithm shows good performance in
comparison with other scheduling algorithms.

APPENDIX
PROOF OF THEOREM 1

Proof: The result of this Theorem and its proof are
different from corresponding parts in [35]. The difference is
caused by the different ways of achieving consensus. While
in [35], consensus is achieved through re-distributing the load
or qi

t , in this paper consensus is reached through re-distributing
slots in a frame, i.e. pit . The idea of the proof follows the
paper [52].

By virtue the Eqs. (3) and (6), the dynamics pit of the closed
loop system with protocol (5) are as follows

pit+1 = pit + eit+1 + [γ
∑
Ñ i

t

ai, j
t ( x̃ j

t − x̃it )] =

pit + γ
∑
Ñ i

t

ai, j
t ( x̃ j

t − x̃it ) + eit+1 + w
i
t . (11)

Denote by pt ∈ R
n a vector which consists of pit , et+1 ∈ R

n

a vector which consists of ei
t+1, and by wt ∈ R

n a vector of
the errors wi

t , where t = 0, 1, . . ..
Due to the view of the Laplacian matrix L(At ) and defini-

tion of Qt+1, we can rewrite Eq. (11) in a vector-matrix form
as:

pt+1 = pt − γL(At )Q−1
t+1pt + et+1 + wt . (12)

We consider that p̄t = Qav x̄t . If we multiply both sides of
Eq. (7) by Qav , we get that the sequence {p̄t } is a trajectory
of the average system

p̄t+1 = p̄t − γL(Bav)p̄t + ēt+1. (13)

The vector 1n is the right eigenvector of the Laplacian-type
matrices L̃t = γL(At )Q−1

t+1 = γL(Bt ) and L̄B = γL(Bav)
corresponding to the zero eigenvalue: L̃t1n1n = L̄B1n = 0.
Sums of all elements in the rows of the matrices L̃t or L̄B

are equal to zero and, moreover, all the diagonal elements are
positive and equal to the absolute value of the sum of all other
elements in the row.

The next Lemma from [53] is useful.
Lemma [53]: Laplacian matrix L(B) of graph GB has an

algebraic multiplicity equal to one for its eigenvalue λ1 = 0
if and only if graph GB has a spanning tree.

Note that graph GBav has a spanning tree when conditions
A1.c and A2 hold.

Due to the definitions of the matrices L̄t and L̃A, we derive
from (12),(13) for the difference rt+1 = pt+1 − p̄t+1

rt+1 = rt − L̃tpt + L̄Bp̄t + et+1 − ēt+1 + wt =

= (I − L̄B)rt − (L̄t − L̃B)pt + (et+1 − ēt+1) + wt,

where I is the identity matrix.
Consider the conditional mathematical expectation of the

squared norm rt+1 according to σ-algebra Ft . By virtue of
Assumptions A1.d–f we derive

EFt ‖rt+1‖
2 ≤ ‖(I − L̃B)rt ‖2 + pT

t Rpt + nσ2
e + nσ2

w .
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Further, by taking unconditional expectation we get:
E‖rt+1‖

2 ≤ ρE‖rt ‖2+∆. By Lemma 1 from Chapter 2 of [54]
it follows that

E‖rt+1‖
2 ≤

∆

1 − ρ
+ ρtE‖p0‖

2. (14)

Due to the definitions we have

E‖xt+1−x̄t+1‖
2 = E‖Q−1

t+1(pt+1−p̄t+1)+(Q−1
t+1Qav−I)x̄t+1‖

2 ≤

2E‖Q−1
t+1rt+1‖

2 + 2E‖(Q−1
t+1 −Q−1

av)Qav x̄t+1‖
2 ≤

2(
∆

1 − ρ
+ ρtE‖p0‖

2) + 2σ2
q ‖Qav x̄t+1‖

2.

The proof of the first part of Theorem 1 is completed.
The second conclusion about the asymptotic mean square

ε-consensus follows from inequality (10) if t → ∞. Since (9)
is satisfied, then the third term of (10) exponentially tends to
zero.
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