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Abstract—Conventional small-signal approaches present 
obvious advantages applied in analyzing closed-loop stability in 
power electronics systems. However, linearized models fall short 
of predicting any nonlinear behavior which means not able to 
acquire the accurate stability margin. This paper mainly 
analyzes bifurcation behaviors of the Modular Multilevel 
Converter (MMC) connected to a weak grid and calculates the 
parameters’ precise stability margin. The nonlinear continuous-
time averaging model of the MMC is established to study two 
common bifurcation phenomena, i.e. Saddle-Node bifurcation 
(SNB) and Hopf bifurcation (HB). Characteristics of limit cycles 
caused by HB are analyzed by changing the value of a certain 
parameter. The theoretical analysis has been validated by the 
time domain simulation results. 
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I. INTRODUCTION  
The MMC has been widely used in high-voltage/high-

power applications due to its advantages such as modularity, 
high efficiency, high performance, etc. However, it has 
complex internal structure which makes its modeling and 
control much more complicated. Due to this, affected by the 
MMC, stability problems of the power electronic system 
become more complex and difficult. Therefore, with 
consideration of the grid strength’s effects, it’s essential and 
meaningful to analyze the MMC’s dynamic behavior which is 
closely associated with the system stability. 

Currently, there are mainly two kinds of linear approaches 
to analyze MMC’s small-signal stability, i.e. ,eigenvalue-based 
method [1] and impedance-based method [2], [3]. Nevertheless, 
both two methods neglect nonlinear characteristics and are 
only capable of characterizing the system behavior locally 
around a point in the state space, which means only the SNB [4] 
could be determined. The SNB is equivalent to the instability 
defined in small-signal approaches or Nyquist criterion, 
whereas dynamic bifurcations HB may bring about oscillatory 
instability which cannot be detected by linearized methods. 
More importantly, it’s frequently observed in p wer system that 
HB and limit cycles lead to system collapse before the 
occurrence of the SNB [5]. Thus, the bifurcation theory is 
more suitable to study stability and oscillations of autonomous 
nonlinear systems, which is able to acquire the precise stability 
margin of the MMC’s parameters with consideration of HB.  

The bifurcation theory has been widely used to study 
voltage stability [5], oscillations [6] and stabilization [7] in 
power systems. In 1976, the bifurcation theory was first 
applied in analyzing sinusoidal electronic oscillator’s periodic 
oscillations by Alistair [8]. Then the bifurcation and chaos 
behavior of dc-dc converters, e.g. cuk converter [9], buck 
converter [10], boost converter [11] etc. were analyzed. In 
recent years, bifurcation theory is expanded to power electronic 
systems. Based on multi-parameter bifurcation theory, [12] 
explains the mechanism of sub-synchronous oscillations 
between the wind farm and the grid. The voltage source 
converter’s (VSC) catastrophic bifurcation phenomenon caused 
by voltage drop is analyzed in [13] by Huang et al. [14] 
analyzes the bifurcation of photovoltaic hybrid power system. 

In this paper, the nonlinear continuous-time averaging 
model of a grid-connected MMC is established which 
considers circulating current and fluctuations of capacitor 
voltage. One-parameter bifurcation theory is adopted to reveal 
phenomena of SNB and HB. Also, characteristics of limit 
cycles derived from HB are studied. At last, time domain 
simulations are carried out to verify theoretical findings. 

II. NONLINEAR CONTINUOUS-TIME AVERAGNING 
MODEL IN THE ABC FRAME 

The nonlinear continuous-time averaging model derived in 
this paper consists of external dynamic model, internal 
dynamic model and control model. External dynamic model 
contains ac side’s and dc side’s dynamics. Internal dynamic 
model involves dynamic characteristics of capacitors’ voltage 
and circulating current. The studied system is shown in Fig. 1, 
where the point of common coupling (PCC) is defined. The 
strength of power grid can be adjusted via short-circuit ratio 
(SCR). Control model is shown in Fig. 2 including the d-q 
decoupled control, phase locked loop (PLL) control and the 
circulating current suppress control (CCSC). 

To make analytic analysis feasible, several assumptions 
need to be made before modeling: MMC works at three-phase 
balance status; capacitor’s voltage balance of sub modules is 
ideal; PWM is represented by average model and sampling 
delay is neglected. The system parameters’ definition and 
values are listed in TABLE I. 

The MMC internal dynamics can be accurately represented 
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Fig. 1. The MMC connected to  a weak grid  

by the average model described in [15], which means only 
fundamental and second harmonic component exist. 
Components of each signal are listed in APPENDIX A. Thus, 
the converter dynamics in the three phases can be represented 
by the state- and control- variables defined in (1) and (2), 

                   (1) 

                        (2) 

where ic and ig are the circulating and ac-side current state 
variables, while νΣ 

c  and vΔ 
c  are the sum and difference of the 

aggregated upper and lower capacitor voltages (i.e. νΣ 
u  and νΣ 

l ). 
iu and il are the upper and lower bridge arm current. Note that 
the chosen ∑-Δ representation allows for the separation of the 
state and control variables defined in (1)- (2) into two groups 
[16]: those mainly oscillating at −2ω (ic, νΣ 

c ) given in (1), and 
those oscillating at +ω (ig, vΔ 

c ) given in (2).  

The upper and lower arm’s modulation function nu, nl can 
be acquired by normalizing voltage modulation wave. Direct 
modulation [16] is taken in this paper which means setting dc 
side voltage as reference value. The modulation function 
considering CCSC is given in (3) .  

                           (3) 

where νsref is the output modulation voltage of dq coupled 
control, and νcref is the compensation output modulation voltage 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Control block diagram of the MMC. (a) d-q decoupled control. (b) 
circulating current suppress control. (c) PLL transfer function. 

of CCSC. According to [16], the state-space model of a three-
phase MMC in a stationary reference frame is given in (4)-(8). 

                       (4) 

                        (5) 

          (6) 

                     (7) 

                    (8) 

With nu and nl in (3) substituted, equations (4)-(8) could be 
represented purely by state variables and control variables. 

III. NONLINEAR CONTINUOUS-TIME AVERAGING 
MODEL IN THE DQ FRAME 

To interface the control system, the electrical model 
derived above in the abc frame needs to be transformed to that 
in the d-q frame. The nonlinear multiplication terms in the abc 
frame for modulating oscillating signals exist in the equation 
derived in section II. According to [17], simultaneous 
modeling of these nonlinear terms in zero sequence, 
fundamental frequency DQ and double fundamental frequency 
DQ2 frames in the d-q frame are derived below. 

A. Fundamental frequency dynamics 
1) AC side: The voltage us in the d-q frame at the PCC can 

be gotten in (9) by subtracting (4) from (5). 
 
 
 

TABLE I.  PARAMETERS DEFINITION 
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Parameters Definition Value 

ug Ideal AC phase voltage 135.5 kV 

Vdc DC voltage ±160 kV 

LT Transformer equivalent inductance 0.035 H 

RT Transformer equivalent resistance 1 W 

Larm Arm inductance 0.06 H 

Rarm Arm resistance 2 W 

Ls Grid inductance 0.1 H 

Rs Grid resistance 1 W 

C Capacitance of sub modules 10 mF 

N Number of sub modules per arm 10 

Pref Active power reference 500 MW 

 

  (9) 

The ac-side current of (4) is transformed into (10) in the 
DQ frame.  

     (10) 

where L=LT+Larm/2, R=RT+Rarm/2.  
2) Differential mode voltage: the differential mode voltage 

of (8) is transformed into (11) in the DQ frame. 

               (11) 

where Z∆ d  and Z∆ q  are the nonlinear product of modulation signal. 

    (12) 

    (13) 

B. Zero sequence and second harmonic dynamics 
1) DC side: circulating current of (6) is transformed into 

(14) in the DQ2 frame. 

(14) 

where Zc 
o , Zc 

d2 and Zc 
q2 are nonlinear products in the dq frame. 

(15) 

(16) 

(17) 

2) Common mode voltage : the common mode voltage of  
(7) is transformed into (18) in the DQ2 frame. 

           (18) 

where ZΣ 
o , ZΣ 

d2  and ZΣ 
q2 are nonlinear products in the dq frame. 

(19) 

(20) 

(21) 

C. Control equations 
The control equations in the DQ frame can be referred to 

[17] which are listed in (22). 

           (22) 
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where kpi(i=1~6) is PIi’s proportional adjustment factor, while 
kii(i=1~6) is PIi’s integral adjustment factor shown in Fig .2. 
By integrating formulae (9)-(22), the whole system’s 
differential algebraic equations (DAE) is shown in (23) 

                                (23) 

where x, y and µ represent state variables, algebraic variables, 
parameter variables  respectively. Based on implicit function 
theorem, formulae (23) can be simplified to (24). 

                                      (24) 

Now the automatous multi-parameter nonlinear ordinary 
differential equations(ODE) of MMC is acquired . 

IV. STABILITY THEORY BASED ON LOCAL BIFURCATION 
Bifurcation theory is mainly used to analyze qualitative 

changes of dynamic system caused by parameters’ changes. To 
be specific, the theory keeps tracking the equilibrium solution 
without linearizing and studies characteristics of each balance 
point. However, Small-signal analysis neglects nonlinear terms 
existing in the ODE and is not able to analyze nonlinear 
behaviors. 

A. Basic theory 
A dynamical system can have multiple equilibrium 

solutions. For a given set of parameters and initial condition, 
the system converges to one of the equilibrium solutions. As 
the parameters vary, the presently assumed equilibrium 
solution becomes unstable and the system is attracted to 
another stable equilibrium solution. This phenomenon is 
termed bifurcation. In general, bifurcation can be regarded as a 
sudden change of qualitative behavior of a system when a 
parameter is varied. We may therefore classify bifurcation 
according to the type of qualitative change that takes place 
when a parameter μ is varied [4].  

Two types of bifurcation are closely associated with the 
instability and/or collapse in power systems: SNB and HB. The 
SNB is characterized by a sudden loss or acquisition of a stable 
equilibrium solution as a parameter moves across a critical 
value. The HB is characterized by a sudden expansion of a 
stable fixed point to a stable limit cycle. 

B. Detection of bifurcation points 
There are mainly three ways to track the bifurcation point 

of a nonlinear system which are direct method, continuous 
method and optimal method respectively. The direct method is 
taken in this paper to calculate the SNB and HB for its high 
precision. Also the continuous method tracking balance 
manifold is used in section V via auto-07p [18] to verify the 
correctness of the direct method.  

The basic principle of the direct method is to solve the 
nonlinear algebraic equation satisfied by local bifurcation. 
Newton method can be used because it converges fast. The 
remaining parameters of the system are fixed considering a 
single parameter system. Setting the eigenvalues and right 
eigenvectors of  DxF(x,μ) as λ and ux respectively. 

                                    (25) 

Let λ(μ)=α(μ)±iβ(μ)，ux= uxR+juxI 

                     (26) 

Normalization equation of state-variables is uT 
x ux=1. 

                         (27) 

The equilibrium point constraint equation is 

                                   (28) 

By integrating formulae (26), (27), (28), the bifurcation 
point can be calculated according to the definition of HB 
(α=0&β≠0) and SNB (λ=0, α=0&β=0).  

C. Hopf  bifurcation theory  
The system maybe unstable for occurrence of HB before 

generating saddle-point. Considering a single parameter system. 

                                    (29) 

When bifurcation occurs at (x0,μ0), the translation 
transformation from original equilibrium point (x0,μ0) to (0,0) 
is implemented. According to center manifold theory [4], the 
system has a two-dimensional central manifold at the 
equilibrium point(μ=μ0) which can transform n-dimensional 
bifurcation into two-dimensional bifurcation. The simplified 
two-dimensional system is represented as 

                   (30) 

Taylor expansion is implemented as 

        (31) 

Theorem：When (0,0) is non-hyperbola  equilibrium  point 
and DxF(x0,μ0) has a pair of pure virtual eigenvalues α(μ)±iβ(μ) 
around μ=0, there exists a analytic function in (31) with ε0>0.  

                                 (32) 

When μ=μ(ε) ≠0(ε ϵ(0, ε0))，the system has only one 
closed track(i.e. periodic solution Gε) within a sufficiently 
small neighborhood of the origin. The analytic function of this 
periodic solution is represented as 

                           (33) 

where s=2πt/T. The cycle of periodic solution is represented as 
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(a) 

 
(b) 

Fig. 3. Distribution of engivalues. (a) global distribution from kp2=5 to kp2=0; 
(b) partial enlarged detail around virtual axis. 

                          (34) 

where coefficient μi can be calculated referring to [4]. 

With μ(ε)→0 when ε→0，Gε tends to the origin. Set μj1 as 
the first non-zero coefficient of (32). If the sign of μj1 and d is 
same，Gε is a stable limit cycle defined as supercritical HB. 
And equal amplitude oscillations occur around the equilibrium 
point; If the sign of μj1 and d is different, Gε is an unstable limit 
cycle defined as subcritical HB. And the increasing amplitude 
oscillations occur around the equilibrium point. 

V. CASE STUDY 
In this section, the proportional gain kp2 of inner current 

control loop is varied and the bandwidth remains unchanged. 
The bifurcation point is calculated via the algorithm proposed 
in Section I and the accuracy is verified by continuous method 
in auto-07p.  Next, limit cycles are depicted to distinguish the 
bifurcation type which is validated by time domain simulations 
in Matlab. The accurate stable margin of proportional gain of 
the inner loop is acquired which can be extended to other 
parameters to get the global stable margin of MMC. 

A. Calculation of bifurcation points 
By using direct method, the algorithm converges after six 

iterations which consume 0.078s. The HB occurs at kp2=0.46 
and then SNB appears at kp2=0.22. Contrast with the direct 
method, HB occurs at kp2=0.467543 and then SNB appears at 
kp2=0.228456 via continuous method. The movement of 
eigenvalues is shown in Fig. 3(a). From the Fig. 3(b), the 
oscillating frequency can be approximated which is about 
70HZ.   

 
(a) 

 
(b) 

Fig. 4. Limit sycles. (a)stable limit cyles at HB(kp2=0.46); (b)disappearance 
of limit cycles at SNB(kp2=0.22). 

B. Limit cyles 
The state variable ico and igd is chosen as horizontal and 

vertical axis variables of limit cycle because ico is associated 
with output power of DC side while  igd is associated with input 
power of AC side. When kp2 drops to 0.46, the structural 
stability of the system is damaged due to the HB. It can be seen 
from Fig. 4(a) that a stable limit cycle generates from HB not 
affected by small disturbances. It can be judged that this 
bifurcation belongs to the supercritical HB. However, the limit 
cycle disappears gradually when  kp2 drops below 0.22 and the 
HB degenerates to the SNB.  

C. Simulation validation in time domain 
The igd is associated with  the active power input  Pac of the 

system so its dynamics can be represented by Pac. If kp2 drops 
from 5.0  to 0.46 at 0.02s, equal amplitude oscillations of  Pac  
are observed as shown in Fig. 5(a)  which  correspond to the 
stable limit cycle in Fig. 4(a). The oscillation frequency is 
about 65HZ which fits well with the HB’s eigenvalue derived 
in part A. If kp2 drops from 0.46 to 0.22 at 0.02s, increasing  
amplitude oscillations of Pac are observed as shown in Fig. 5(b)  
which correspond to the SNB in Fig. 4(b). Before the SNB, the 
system collapses at the HB for Pac’s big oscillation amplitude. 

VI. CONCLUSIONS 
In this paper, bifurcation behaviors and limit cycles of the 

MMC connected to a weak grid are analyzed and theoretical  
results are verified by time domain simulations. The system’s 
nonlinear continuous-time averaging model is first established 
considering circulating current and fluctuations of capacitors’ 
voltage. By setting proportional gain of inner current loop as 
the free parameter, the HB and SNB point of the system is 
calculated.  Limit  cycles  generated  from the HB are analyzed 
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Fig. 5. Simulation verifications in time domain.  

and compared with results of time domain simulations in 
Matlab. It’s observed that the supercritical HB and limit cycles 
have caused the system collapse before the occurrence of the 
SNB. This phenomena explains the necessity to study 
nonlinear behaviors of the MMC since conventional small-
signal analysis could only calculate the SNB which is not able 
to acquire the accurate stable margin.  

Therefore, the method proposed in this paper is more 
rigorous than the small-signal method which is extremely 
meaningful for large disturbance analysis and accurate stability 
margin calculations. In the near future, the quantitative 
calculation of limit cycles will be done, which is able to reveal 
the instability mechanism of the MMC connected to the weak 
grids. Furthermore, the bifurcation control scheme will be 
designed to improve system’s transient stability. 
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APPENDIX  A 
Components of main signals are represented as follows: 
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