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Abstract

To get a better understanding of Cross Site Scripting vulnerabilities, we investigated 50
randomly selected CVE reports which are related to open source projects. The vulnerable
and patched source code was manually reviewed to find out what kind of source code
patterns were used. Source code pattern categories were found for sources, concatenations,
sinks, HTML context and fixes. Our resulting categories are compared to categories from
CWE. A source code sample which might have led developers to believe that the data was
already sanitized is described in detail. For the different HTML context categories, the
necessary Cross Site Scripting prevention mechanisms are described.

1 Introduction

Cross Site Scripting (XSS) is on the fourth place in Common Weakness Enumeration (CWE)
top 25 2011 [3] and on the seventh place in Open Wep Application Security Project (OWASP)
top 10 2017 [4]. Accordingly, Cross Site Scripting is still a common issue in web security.
To discover the reason why the same vulnerabilities are still occurring, we investigated the
vulnerable and patched source code from open source projects. Similar methods, functions and
operations are grouped together and are called source code patterns. Our work shows which
source code patterns occur in real life projects, to provide a data set that can be compared to
existing vulnerability data sets like SAMATE SARD [8]. The questions to be answered are:
How do source code patterns from real projects look like? What main protection mechanisms
are required to prevent Cross Site Scripting attacks? Real source code samples from open source
projects are investigated to get answers to these questions.

This paper begins with an overview of related work in section 2. Section 3 explains how we
got the source code sample and how the manual review process looks like. The next section
explains what Cross Site Scripting categories from CWE [3] exist and how they fit into source
code pattern categories. In section 5 our taxonomy resulting from the manual review process is
explained. The sample from CVE-2012-5163 described in section 6 is a sample where developers
might thought that data is already sanitized. In section 7 the results are discussed. The final
section provides some discussion about how our result can be used in the future.
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2 Related Work

For SQL injection and Buffer Overflow vulnerabilities, we created the source code patterns with
the same method that was used by [23] and [22]. Research projects about general classification
of source code patterns exist. Lerthathairat and Prompoon [15] did research about the clas-
sification of source code into bad code, clean code and ambiguous code. They use metrics in
source code like comments, the size of the function, et cetera. These metrics were analysed by
using Fuzzy logic to determine which category the source code belongs to. Bad and ambiguous
code were improved by refactoring. A more security related work is from Hui et al. [14], they
use a software security taxonomy for software security tests. They created a security defects
taxonomy based on top 10 software security errors from authoritative vulnerabilities enumer-
ations. Their taxonomy is categorized into induced causes, modification methods and reverse
use methods. They advise that their taxonomy should be used as security test cases. Stivalet
and Fong [24] present a tool that allows to create short code examples including software vul-
nerabilities. They split up the source code parts into input, filtering and sink. Permutations
of these parts will create different examples. All of the examples can be found in the Testsuite
103 within the Software Assurance Reference Dataset [8].

The research also requires data sources, which are used to classify the source code patterns.
Massacci and Nguyen [17] researched different data sources for vulnerabilities, e.g. Common
Vulnerabilities and Exposures (CVE), National Vulnerability Database (NVD), et cetera. They
looked into which data sources were used by other research projects. They also used Firefox as
a database for their analysis. Wu et al. [25] use semantic templates created from the existing
CWE database [3]. They should help to understand security vulnerabilities. The authors did
an empirical study to prove that these semantic templates have a positive impact on the time
to completion on finding the vulnerability.

Louw and Venkatakrishnan [16] present a tool Blueprint can be used to defend against Cross
Site Scripting attacks. Different Cross Site Scripting variants are explained and how they can be
exploited. Another framework from Gupta and Gupta [13] can be used to protect against XSS
attacks specialized on HTML 5 web pages. Another approach from Maurya [18] [19] shows how
to prevent Cross Site Scripting vulnerabilities on the server side. In their work different security
levels require different sanitization approaches. Nadji et al. [20] present different XSS attack
scenarios and also suggest on how to prevent these attacks using a combination of server and
client protection mechanisms. Another work from Gundy et al. [12] uses a randomized approach
to prevent against XSS attacks. As long as the attackers cannot predict the randomization that
approach should deny any XSS exploits. In contrast we suggest using the correct standard
prevention methods based on the html context to prevent XSS attacks.

3 Method

For our research we decided to review vulnerabilities that were found in open source projects.
We focus on vulnerabilities that are tracked in the CVE [1] database. CVE reports between
2010 and 2016 (seven years) are used as data samples to ensure that developers had sufficient
time to patch the vulnerabilities. To get the vulnerable and patched source code related to
CVE reports the results from the source code crawler from [22] were used. It checks CVE
entries for related GitHub [2] patches and downloads the vulnerable and patched source code.
Table 1 shows how many source code samples for different vulnerability types and programming
languages are found. We chose PHP as reviewed programming language because it provides the
most samples (122) related to Cross Site Scripting. Out of these source code samples 50 CVE
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Categories from CVE details CVEs Github PHP Java C/C++ js Python Ruby
Denial Of Service 10,929 737 7 3 664 4 8 6

Execute Code 10,647 217 70 6 83 8 12 17
Overflow 6,594 302 3 1 280 0 5 1

Obtain Information 5,471 233 32 6 153 5 10 11
Cross Site Scripting 4,878 219 122 5 2 46 14 11
Memory corruption 3,419 52 0 0 49 0 0 0

Bypass a restriction or similar 2,609 96 24 4 51 1 6 2
Gain privileges 2,207 118 4 0 100 0 0 1
SQL Injection 1,732 71 53 3 2 2 0 5

Directory traversal 1,059 35 14 1 7 3 2 5
CSRF 1,046 33 25 2 0 6 1 3

File Inclusion 100 3 0 0 0 0 0 0
Http response splitting 74 4 0 0 0 0 0 0

Summary 50,765 2,120 354 31 1,391 75 58 62

Table 1: Software vulnerabilities in open source software grouped by vulnerability type and
programming language.

reports are randomly selected for a manual review. 50 samples means 1% of all CVE entries
related to XSS and 40% of all CVE entries related to XSS and PHP.

Cross Site Scripting vulnerabilities are commonly split into three parts (sources, sanitization
and sinks). The sources are methods where data is provided which can be manipulated by a
user. Sinks are methods where such data can be harmful. In a XSS vulnerability it will result
in scripts that will be executed on the victim’s browser. Sanitization methods transform user
provided data such that it will not be harmful, if it reaches sinks.

The manual reviews were done as follows. For each CVE report the note entry was looked up.
It usually describes which input fields or variables can be used to exploit the vulnerability. Just
within the scope these variables/fields are the tainted data sources for the Cross Site Scripting
vulnerabilities. If no variable/field is mentioned the source code is manually backtracked from
the patched source code to find the sources. By doing a data flow analysis from the sources
relevant source code patterns are tracked. For example, it will be noted if a sanitization method
from a framework is used. For sources, insufficient sanitization, PHP sinks, HTML context and
fixes a taxonomy is created based on the review results.

4 CWE

Common Weakness Enumeration (CWE) [3] provides categories for software vulnerabilities.
CWE-79 is the basic enumeration for Cross Site Scripting. It is distinguished between reflected
XSS, stored XSS and dom-based XSS. In a developer perspective these are different sources and
sinks depending on when the sanitization should happen. For example, if only sanitized data
should be stored in the database, the category can be seen as sink category. On the contrary it
can be seen as a source category, if sanitization should only occur before the data is presented
on the web page. The CWEs 81 to 87 are different variants of the base CWE-79. These can be
seen as different categories for failed sanitization methods and different HTML contexts. The
table 2 shows source code pattern categories of the different CWE enumerations.
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CWE-81 Improper Neutralization of Script in an Error Message Web
Page

HTML context

CWE-82 Improper Neutralization of Script in Attributes of IMG
Tags in a Web Page

HTML context

CWE-83 Improper Neutralization of Script in Attributes in a Web
Page

HTML context

CWE-84 Improper Neutralization of Encoded URI Schemes in a Web
Page

HTML context

CWE-85 Doubled Character XSS Manipulations Failed sanitization
CWE-86 Improper Neutralization of Invalid Characters in Identifiers

in Web Pages
Failed sanitization

CWE-87 Improper Neutralization of Alternate XSS Syntax Failed sanitization

Table 2: CWE Cross Site Scripting variants mapped to categories.

Sources (51)

Database Source (10)

Framework Source (11)

HTTP Source (30)

Figure 1: Taxonomy of sources based on the data set.

5 Taxonomy of Source Code Patterns

In this section the different taxonomies resulting from the review process are described in detail.
The correlations to more or less corresponding CWE categories are mentioned.

5.1 Sources

Figure 1 shows three categories for the sources. There are 51 sources because CVE-2014-9270 is
a stored and reflected Cross Site Scripting vulnerability. Accordingly, for each type a different
source was found (database source and user input source).

HTTP Source

Sources which fall in the HTTP Source category are basic HTTP methods provided by PHP.
No wrapper was used which might trick developers into thinking that the data might already be
sanitized. Sources from this category are related to reflected Cross Site Scripting vulnerabilities.
In our data set we found $ GET, $ REQUEST, $ POST, $ SERVER and $ COOKIE. These
are reserved variables from PHP [7]. $ FILES, $ HTTP RAW POST DATA would also fall
into this category, but these were not found in our data set.

Framework Source

PHP is commonly used with frameworks which provide features to create web pages more
conveniently. Methods that wrap around methods from the HTTP Source category or methods
provided from frameworks to get user provided data fall into this category (e.g. gpc get string(),
getParam()). All our samples were internally using sources from the HTTP Source category.
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Insufficient San-
itization (50)

Encoding Function (1)

Custom Sanitization (3)
Self Implemented
Sanitization (1)

Wrapper Standard
Sanitization (2)

Standard Sanitization (3)

No Sanitization (43)

Figure 2: Taxonomy of insufficient sanitization methods based on the data set.

Accordingly, vulnerabilities with sources from this category are also related to reflected Cross
Site Scripting. The extra category was created because such methods might already sanitized
the input.

Database Source

Stored Cross Site Scripting stores the malicious input in the database. That input will be later
on presented without any further sanitization on a web page. For our research the methods
where user data is returned from the database is seen as a source. For example, in our data set
we found functions like db fetch row() and serendipity db query().

5.2 Insufficient Sanitization

There is a difference between sanitization methods and escaping methods. Sanitization methods
are removing suspicious character which is commonly used to mitigate SQL injection vulnerabil-
ities. In contrast escaping methods are just escaping suspicious character that cannot be used to
inject any code. The resulting data from both methods will not be harmful anymore. Escaping
methods are more commonly used to protect against Cross Site Scripting attacks because it will
not remove characters that an user wants to be displayed. We group both methods together
and call them sanitization methods which can either be sanitization methods or escaping meth-
ods. Most of our vulnerable samples did not use any sanitization methods. Nevertheless, some
did use well known sanitization methods, but Cross Site Scripting vulnerabilities still occurred.
Figure 2 shows an overview of the categories for insufficient sanitization methods.

No Sanitization

As the name already indicates, no sanitization method was used. Samples where plain user
input will reach a sink fall into this category.

Standard Sanitization

Developers actually used official sanitization methods like htmlspecialchars(), but a Cross Site
Scripting vulnerability still existed. Why was that sanitization insufficient? Two of the three
found samples, the sanitization was insufficient because the HTML sink was from the category
JavaScript Context. If sinks are from that category, the sanitization has to be more specialized
because the context is already in Javascript. How to prevent XSS attacks in such a context is
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PHP Sinks (50)

Framework Header Sink (1)

Website Templates Sink (2)

PHP Eval Func-
tion Sink (2)

Standard PHP Sink (45)
PHP Output Sink (5)

PHP Function Sink (40)

Figure 3: Taxonomy of PHP sinks based on the data set.

described later on. The last sample did have a special condition where the sanitization method
is not used. That sample is described in detail in section 6.

Custom Sanitization

Custom sanitization methods were also found in the data set. Two samples did use wrapper
methods which internally use methods from the Standard Sanitization category. Accordingly,
they should be protected against XSS attacks, but the sinks are again from the JavaScript
Context category.

One sample did implement a sanitization method using str replace() method. The imple-
mentation was insufficient and the patch did fix the vulnerability by using a sanitization method
from the category Standard Sanitization.

Encoding Function

One sample did use an encoding function. These functions are not supposed to be used as a
sanitization method. Nevertheless, as seen in the fixes categories, some developers patched the
vulnerabilities by using encoding functions. This just prevents Cross Site Scripting vulnerability
as long the context is from the Plain HTML Context category and the correct HTML encoding
function is used.

5.3 PHP Sinks

The sink categories are split into PHP and HTML sinks. An overview of the PHP sink categories
is shown in figure 3. This sinks taxonomy is useful for developers because these are the sinks
where user input without sanitization will be harmful.

Standard PHP Sink

This category covers standard output to the web page. Most of our data samples did have sinks
in the Standard PHP Sink category. It is split into the first category PHP Function Sink where
methods are used to output the data. Common methods are echo() and print(). The other
category PHP Output Sink covers simple output in PHP files, where the <?...?> element is
used.
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HTML Context (50)

HTML Header Context
(CWE-84) (1)

HTML Attribute Context
(CWE-83) (24)

Base (1)

CDATA (1)

Div (1)

Link (5)

Meta (1)

Form (3)

Input (10)

Img (CWE-82) (2)

JavaScript Context (5)

Plain HTML Context (20)

Figure 4: Taxonomy of HTML sinks based on the data set.

PHP Eval Function Sink

In our data set two samples did have an eval() function as sink. These CVE reports were marked
as Cross Site Scripting vulnerability. Actually these sinks also open up Direct Dynamic Code
Evaluation vulnerabilities (CWE-95). Nevertheless, it can also result in a Cross Site Scripting
vulnerability.

Website Templates Sink

Some PHP frameworks provide template files, which can be used to write PHP similar code
with some extra features. In our data set two samples are using tlp files from the Smarty
framework [9]. If such a framework template is used it falls into this category.

5.3.1 Framework Header Sink

One sample did have the sink in a header parameter. The PHP framework used in that sample
provides a function to set a header parameter. Accordingly, this category was created for sinks
which allow to modify the HTTP header.

5.4 HTML Context

The PHP sinks categories are more focused on what functions are used to print the data. HTML
context rather focus on where the data is presented in the web page. This taxonomy is more
similar to the categories provided by CWE. Figure 4 shows the categories found in our data
set.
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HTML Context Encoding Sanitization Sanitization &
Escaping

Plain HTML Context prevent prevent prevent
HTML Attribute Context insufficient insufficient prevent

HTML Header Context insufficient prevent prevent
JavaScript Context insufficient insufficient prevent

Table 3: CWE Cross Site Scripting variants mapped to categories.

Plain HTML Context

Outputs which get into a context of this category are in a simple plain HTML part. No
special condition like being in a Javascript context or being an attribute. Standard sanitization
methods are well suited for such a context. Also the use of HTML encoding functions is enough
as long the output is inside the HTML body [6].

JavaScript Context

Sinks where the output will be in a Javascript context fall into this category. Accordingly,
sanitization must be more specialized. The OWASP XSS prevention sheet [6] explains that
simple encoding functions are not enough. The output also should be quoted and sanitized
to prevent any Cross Site Scripting attacks [6]. It is important to know that inputs must be
data only. Otherwise, the prevention of Cross Site Scripting will be very difficult and requires
further restrictions. In our data set only data was used inside a script tag. Another pitfall in
this context is the method htmlspecialchars() because it does not remove simple quotes without
setting the ENT QUOTES parameter. If developers use simple quotes as escaping and do not
set the parameter, XSS attacks are still possible.

HTML Attribute Context

This is the same category as CWE-83. The output is inside a HTML attribute. The CWE-82 is
specialized version of being an image attribute. In our data set only two samples actually were
in a image attribute context. The input has to be sanitized and quoted like in the JavaScript
Context category.

HTML Header Context

One sample did have a sink from the category Framework Header Sink. Accordingly, the context
is a HTTP header and that sample falls into this context category. To prevent any Cross Site
Scripting attacks in a header, sanitization methods from Standard Sanitization are required.
Encoding function will not be sufficient.

5.4.1 Sanitization in different contexts

As already mentioned, different HTML context require different sanitization methods. The
table 3 provides an overview of what sanitization methods are sufficient enough to prevent any
Cross Site Scripting attacks. Accordingly, it would be helpful to sanitize and escape any user
input to be protected against XSS attacks in all HTML contexts.
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Fixes (50)

Removed Functionality (5)

White Listing (3)

Fixed Data Types (1)

Framework Sanitization (3)

Custom Sanitization (10)

Standard Sanitization (28)

Figure 5: Taxonomy of HTML sinks based on the data set.

5.5 Fixes

An important part to prevent Cross Site Scripting is correct sanitization of user input. Most
reviewed projects had no sanitization before the patch related to the CVE report was developed.
The patches contain different fixes to sanitize inputs. Figure 5 shows the taxonomy created for
the fixes which were used in our data set.

Standard Sanitization

Fixes of this category used the standard functions provided by PHP. No combination of multiple
sanitization methods or a sanitization method from a framework is used.

In our sample, common methods were htmlentities(), htmlspecialchars(), urlencode(), etc.

Custom Sanitization

Some patches did fix the vulnerability by using a custom developed sanitization method. Few
used a combination of different sanitization methods from the category Standard Sanitization
as sanitization method. Also some samples did fix the vulnerability by using a sanitization
method which did use replace methods like preg replace().

Framework Sanitization

Three samples were using sanitization methods provided by a framework to fix the vulnerability.
Fixes that use a framework sanitization method falls into this category. For example, the
esc html() function from WordPress [10] fall into this category.

Fixed Data Types

One sample did use a fixed data type to prevent any Cross Site Scripting vulnerabilities. An
ID value was evaluated as an integer value. Accordingly, a simple and elegant way of fixing the
vulnerability.

White Listing

White listing is a common way to prevent any injection attacks. Just fixed values are allowed and
all other inputs will be ignored. Three of the samples used white listing to fix the vulnerabilities.
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Removed Functionality

Another category to fix a vulnerability is to remove that output. Even some sample did remove
some functionality which contained the vulnerability. At least it fixed the vulnerability.

6 Special case: CVE-2012-5163

To get a better understanding of the manual review process, this section provides an example
of the CVE-2012-5163 report in the open source project Osclass [5]. Looking into the report
notes reveals that the id parameter in enable category can be used to inject arbitrary code.
Accordingly, the source is already known. Looking into the vulnerable source code reveals that
the function Params::getParam(”id”) is used which falls in the Framework Source source
category. The code snippet 6 shows the related source code. As seen on line 9 and 14 standard
sanitization methods are used. Consequently, it falls in the insufficient sanitization category
Standard Sanitization . Nevertheless, because $htmlencode is on default set to false, the
sanitization method is not used. The function will return the value without any sanitization
for the enable category id. As this sample shows, a developer might think that the getParam()
function does already sanitize the inputs but in specific conditions it does not.

The code snippet 7 shows a shortened version of the doModel() method, which prints the
not sanitized user input. Line 4 and 6 shows a little part of the data flow that was tracked by
the manual review. The final PHP sink is found on line 7, where the output will be encoded
by the function json encode and the sink is the echo function. Accordingly, as PHP sink was
found from the Standard PHP Sink category. The doModel() functions creates a web page
where the found echo result in a plain HTML context. Therefore it falls into the Plain HTML
Context category. The fix was very simple by encapsulating the related getParam() call with
a strip tags() functions. Thus the fix category is Standard Sanitization because it is a
function provided by PHP. The encoding function is supposed to be used for a JSON context.
Accordingly, this does not prevent any XSS attacks in a HTML context.

7 Discussion

The results did show that Cross Site Scripting vulnerabilities have a high rate of vulnerabilities
where no sanitization is used. The vulnerable source code for CVE-2013-0807, CVE-2014-
8793 and CVE-2013-4880 reports have the vulnerabilities including source and sink in one line
of code. These results show that Cross Site Scripting is not as present in developers’ minds
as it should be. For Cross Site Scripting the different HTML contexts are relevant because
as described in section 5.4.1 they require different sanitization methods. Accordingly, the
prevention mechanisms and context categories have to fit to prevent any attacks.

The CWE sub categories for Cross Site Scripting are not very detailed. As our results show
many different categories exist. Especially the context category JavaScript Context should
exist because it requires more specialized sanitization to prevent any XSS attacks. The method
htmlspecialchars() should probably also escape simple quotes as default because developers
might not read the documentation carefully enough to know that an additional parameter is
required to escape simple quotes. In a JavaScript Contextcontext it opens up unnecessary XSS
vulnerabilities.
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1 static function getParam($param, $htmlencode = false)

2 {

3 if ($param == "") return ’’ ;

4 if (!isset($_REQUEST[$param])) return ’’ ;

5

6 $value = $_REQUEST[$param];

7 if (!is_array($value)) {

8 if ($htmlencode) {

9 return htmlspecialchars(stripslashes($value), ENT_QUOTES);

10 }

11 }

12

13 if(get_magic_quotes_gpc()) {

14 $value = strip_slashes_extended($value);

15 }

16

17 return ($value);

18 }

Figure 6: Params::getParams() function with insufficient sanitization from CVE-2012-5163.

1 // root category

2 if( $aCategory[’fk_i_parent_id’] == ’’ ) {

3 ...

4 $aUpdated[] = array(’id’ => $id) ;

5 ...

6 $result[’affectedIds’] = $aUpdated ;

7 echo json_encode($result) ;

8 break ;

9 }

10 ...

11 break ;

Figure 7: A shortened version of the sink source code part from CVE-2012-5163.

8 Conclusion and Future Work

We analysed the source code of 50 GitHub projects which are correlated to CVE reports men-
tioning Cross Site Scripting and available source code patches. The results show different
taxonomies for important source code patterns. Relations to the existing CWE categories are
created. Our taxonomy is more focused on the developers point of view. In combination with
our previous work [22], [23], three taxonomies for different vulnerabilities categories are created.
These taxonomies allow further research using the taxonomy and the source code samples as a
dataset. These categories can be used to get a better understanding where Cross Site Scripting
vulnerabilities can occur. Especially, the HTML context taxonomy has a big influence on what
prevention mechanisms should be used.

The sample set was very small; more samples should be analysed for the source code patterns
and compared to our results. Another interesting aspect would be to research source code
patterns of XSS samples in the programming language JavaScript. These patterns could also
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be compared to our results. This taxonomy could be used to improve the teaching of software
security skills for developers. The knowledge of source code patterns can be used to create
exercises. An interesting point will be to create these exercises automatically similar to previous
research projects [21] [11]. Existing source code from projects can be used and transformed to
create these source code patterns. Another interesting point will be using these categories to
test static code analysis tools. These can be investigated whether they detect all permutations.
It will be interesting to see what combinations of the categories are difficult to be detected from
static code analysis tools.
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