
The Number Field Sieve

Elin Margrete Trondsen

Master of Science in Mathematics

Supervisor: Kristian Gjøsteen, MATH

Department of Mathematical Sciences

Submission date: November 2012

Norwegian University of Science and Technology

Acknowledgements

I want to thank associate professor Kristian Gjøsteen for supervising me. You
answered all my cloudy and fuzzy questions illuminating, and that has made all
the difference for this paper.

I thank Haidar Nuri for teaching me that Matteland is not just a place for
studies, but also for fun and social activities. Always remember H that the night
is dark and full of terror. A big thanks to Torkil Utvik Stai and Anders Smedstuen
Lund for always taking the time to answer my silly questions. And I am really
happy for all the coffee hours we have spend together!

Thanks to Laila Solli for taking care of me at the end. Writing a paper is hard,
but being served dinner every day makes it a tiny bit easier.

And to the rest of you who remain unnamed, I am forever grateful for the
support and love.

ii

Abstract

We present two algorithms for splitting a general composite number, the quadratic
sieve algorithm (QS) and the general number field sieve algorithm (NFS). The
former is the method of choice for integers between 50 and 110 digits, and the latter
beyond. They share a common strategy, but the NFS is far more sophisticated.
We therefore present the QS as a preparation for the NFS.

We also give two algorithms for the discrete logarithm problem in fields Fq, q a
prime, the index-calculus method (ICM) and the number field sieve for the discrete
logarithm problem (NFS-dlog). They have crossover point at 66-digit primes. The
only limitation made was restricting to the prime field case. The NFS-dlog uses
ideas from both the NFS and the ICM.

In addition we show that the running times of both the NFS and the NFS-dlog
are given as Lk(1/3; (64/9)1/3), where k is the number to split and the charac-
teristic of the prime field respectively. The subexponential function L is given
as

Lk(v; c) = e(c+o(1))(ln k)
v(ln ln k)1−v

, for k →∞

We also study the algebraic background for the two main algorithms.

Sammendrag

Vi presenterer to algoritmer for å splitte et generelt sammensatt tall, den kvadratiske
solden (QS) og den generelle tallkroppssolden (NFS). Den første solden er førstevalget
for tall best̊aende av mellom 50 og 110 siffer, og den andre for større tall. De deler
strategi, men NFS er mer avansert. Vi presenterer derfor QS som en forberedelse
til NFS.

Vi presenterer ogs̊a to algoritmer for å finne diskrete logaritmer i kropper Fq,
q et primtall. De kalles indeks-kalkulus metoden (ICM) og tallkroppssolden for
diskrete logaritmer (NFS-dlog) og har 66 siffers primtall som veiskille. Vi begrenset
oss til å studere primkroppen. NFS-dlog bruker ideer fra b̊ade NFS og ICM.

I tillegg viser vi at b̊ade NFS og NFS-dlog har Lk(1/3; (64/9)1/3) som et godt
tidsestimat, hvor k er henholdsvis tallet å splitte og karakteristikken til primkrop-
pen. Den subeksponensielle funksjonen L er gitt ved

Lk(v; c) = e(c+o(1))(ln k)
v(ln ln k)1−v

, for k →∞

Vi studerer ogs̊a den algebraiske bakgrunnen til algoritmene.

iii

iv

CONTENTS

1 Introduction 1

2 Computational Background 3
2.1 The Method of Sieves . 3
2.2 The Quadratic Sieve . 5
2.3 The Index-Calculus Method . 13

3 Algebraic Setting 15
3.1 The Ring . 15
3.2 Choosing a Polynomial . 17
3.3 The Norm and Factoring Ideals . 18
3.4 The Sieve . 22

4 The Number Field Sieve 27
4.1 Strategy . 28
4.2 Constructing the Congruence of Squares 28
4.3 The Square Roots . 34
4.4 The Algorithm . 36

5 The Number Field Sieve and The Discrete Logarithm Problem 37
5.1 Strategy . 38
5.2 Smooth Numbers in Action . 39
5.3 Constructing The Solution . 42
5.4 Some Complications . 44
5.5 The Algorithm . 46

6 The Analysis of the NFS and the NFS-dlog 47

7 Concluding Remarks 53

v

vi

CHAPTER

ONE

INTRODUCTION

In this thesis we are concerned with algorithms that solve two basic problems in
computational number theory: splitting integers into its prime factors and finding
discrete logarithms in fields Fq, q a prime.

They are both simple mathematical concepts, but the problem is the sizes.
Being doable in principle is not enough when a number gets too big. Since just
trying all options it way too time-consuming, a more sophisticated approach is
needed. We will study some of these methods.

Although the integer factorization and the discrete logarithm problem are dif-
ferent, they have a few common features. They are both difficult problems, but
some efficient algorithms are known for both. And if we know an algorithm for
one problem, we can adapt it to the other. Lastly, various cryptographic systems
have been constructed based on the difficulty of both problems.

The problems we look at are for instance used as security in the RSA and the
Diffie-Hellman key exchange protocol. The RSA is based upon the difficulty of
splitting a product of two primes and the other the discrete logarithm problem.

The RSA cryptosystem was introduced in 1978 by Ronald Rivest, Adi Shamir
and Leonard Adleman. It is a public-key cryptosystem, meaning an encryption
key is made public allowing anyone to encrypt a message. The decryption key is
kept secret. B wants to send a message m to A. A makes the system by choosing
two primes p and q and calculates n = pq. Then she picks an encryption exponent
e, such that gcd(e, (p − 1)(q − 1)) = 1. The public key is (n, e). B computes me

(mod n) and sends it to A. A can easily calculate the decryption key d such that
ed ≡ 1 (mod (p− 1)(q − 1)), and hence find (me)d ≡ m (mod n).

The Diffie-Hellman key exchange protocol can be described as follows. Two
users, A and B, wants to decide on a secret cryptographic key and they have only
an insecure communication channel to work in. They agree on a group G and an
element g ∈ G. Now A chooses a random integer x, computes gx and sends this
element to B, while keeping x secret. B does the same, chooses y, computes gy and
sends it to A while keeping y secret. They can now both compute the secret key by
(gy)x and (gx)y, while an intruder will only have gy and gx. It is conjectured that

1

it is impossible to compute the secret key from this information, so the intruder’s
only hope is to calculate one of the discrete logarithms.

In the 70s, before one began to take factorization seriously, the numbers consid-
ered hard were 20-digit numbers. This limit was expanded to 50-digit numbers by
the continued fraction factorization method and further, in 1981, Carl Pomerance’s
quadratic sieve factoring algorithm increased the limit, hitting a record in 1994
with a 129-digit RSA challenge number [9]. And then John Pollard’s number field
sieve arrived and split a 130-digit number in about 15 % of the time the quadratic
sieve would have used. It is still the most efficient algorithm for general numbers,
with a latest record in 2009 splitting the 232-digit RSA challenge number [5].

The computation of discrete logarithms in prime fields is not as developed as
the splitting of integers of approximately the same size as the order of the field,
even though the index-calculus method was already described in 1922 by Maurice
Kraitchik. After the arrival of the number field sieve algorithm, Daniel M. Gordon
and others modified it to fit the discrete logarithm problem and it had a recent
record in 2007 when Thorsten Kleinjung computed a discrete logarithm modulo a
160-digit prime [12].

The goal of this thesis is to describe the two number field sieves, explain relevant
background information and analyse the algorithms. Beyond their practical values,
the number field sieves use a lot of mathematical concepts and they are therefore
also academically interesting.

The algorithms for splitting numbers builds upon the following idea. If we
have X2 ≡ Y 2 (mod n) and X 6≡ ±Y (mod n), then gcd(X ± Y, n) is a nontrivial
factor of n, with probability at least 1/2. So if we find the numbers X and Y , we
can easily factor n.

As we will see, the number field sieve for the discrete logarithm problem has
the same strategy as the splitting algorithms, but has a different purpose with
its action. Instead of searching for squared elements, it seeks lth powers, where l
divides the order of the field.

We have organized the thesis as follows. We begin the next chapter with a
description of the smooth numbers and the sieving process. Then we present the
quadratic sieve and the index-calculus method together with their analysis.

The main algorithms and their analysis depends on many different parts of
number theory and we cannot hope to present a complete exposition, but we will
outline some of the relevant algebraic number theory in Chapter 3 . Then Chapter
4 contains the presentation of the number field sieve for integer factorization and
Chapter 5 the number field sieve for the discrete logarithm problem. In Chapter
6 we analyse the two last algorithms and in Chapter 7 we make some concluding
remarks.

2

CHAPTER

TWO

COMPUTATIONAL BACKGROUND

We introduce the sieving method. After a thorough description, we demonstrate
it in the presentation of the quadratic sieve in Section 2.2. The quadratic sieve
will also be analysed and during the analysation we present two important tools,
Theorem 1 and Theorem 2. After a small demonstration of the quadratic sieve
with a trivial splitting, we present the index-calculus method in Section 2.3.

2.1 The Method of Sieves

The sieving method is a process where members on a list get cut out due to some
premade rules. There are different ways to use the method and we will use it to
detect smooth polynomial values, to be defined.

The earliest use of a sieve is Eratosthenes sieve. It finds all the primes in a list
up to a bound. We describe the sieve shortly to grasp the sieving idea.

Let b be a composite number and make the list N = {2, 3, 4, . . . , b}. The first
prime element in N is p1 = 2. Start at p1 and go through the list by renaming
every other number 1, that is, remove all multiples of 2. The next nontrivial
element in N is p2 = 3. Start at p2 and go through the list by renaming every
third number 1, that is, delete all multiples of 3. The numbers already renamed 1
are unchanged. This process is repeated until the next nontrivial element, say pi,
have a size such that p2i > b. Then every nontrivial element in the list is a prime

and the list will look like N̂ = {2, 3, 1, 5, 1, 7, 1, 1, 1, 11, . . . , 1}. The bound could

of course be a prime, then the last element in N̂ would be b.

Sieving to find B-smooth Numbers

We want to find the smooth integers in N . An integer is defined to be B-
smooth if all of its prime divisors are less than B. Collect all primes ≤ B in B.
We call it the factor base and define π(B) = |B|.

3

We begin with the first prime p1 ∈ B and find the first integer in the list having
p1 as a factor. Now divide through N as described in the Eratosthenes sieve, but
instead of replacing the divided terms with 1, we store the divisor. The next
element to sieve by is p21, then p31, until pi1 ≥ b for some i. After this is repeated
for all primes in B, we multiply all the biggest divisors together for each element
in N . If we get the original number back, it is B-smooth.

We demonstrate the sieve with a small example. Let N = {2, 3, . . . , 12} and
B = 3, so that B = {2, 3}. We sieve N by {2, 22, 23, 3, 32}

2 3 4 5 6 7 8 9 10 11 12
2 2 2 2 2 2 2
22 22 22 22

23 23

3 3 3 3 3
32 32

2 3 4 - 6 - 8 9 2 - 12

The set N̂ = {2, 3, 4, 6, 8, 9, 12} contains the 3-smooth numbers in N .

Sieving a Polynomial to find B-smooth Numbers

The sieve described next will detect the B-smooth values of f(x) = cdx
d + . . .+ c0

over N = [1, b]. We begin by making the list

F = {f(1), f(2), . . . , f(b)}

The following procedure should be performed for all primes in B.

Let p1 be the first prime in B and locate the first element i in N such that

f(i) ≡ 0 (mod p1)

Naturally f(i + kp1) ≡ 0 (mod p1), ∀k ∈ N. Test if there is an i′ ∈ [i, i + p1]
such that f(i′) ≡ 0 (mod p1).

We find all elements in [1, b] that divides f mod p1 by adding p1 to the root i of
f mod p1 and they will be located in the places f(i) + kp1 in F . Divide f(i+ kp1)
by the highest power of p1 dividing it. The same for i′ if it exists.

After repeating for all primes in B, the B-smooth polynomial values can be
located in F as the ±1’s.

Different ways of storing the divisors will save time. Also, if we do the sieving
with the logarithms instead we can change from divison to subtraction, which is a
cheaper operation. In further use of the technique we do not always bother with
higher terms of the primes or with the small and time-consuming primes. Note
that we are not only interested in the polynomial values being B-smooth, but also
the x’s that leads to the smooth f(x) values. Why will be clear in the description
of the quadratic sieve given next.

4

2.2 The Quadratic Sieve

This section contains a presentation of the quadratic sieve factoring algorithm
(QS) followed by an heuristic time analysis and a small example. It was the best
general factoring algorithm one had in the 80s and early 90s, and it is still the
method of choice for integers between 50 and 110 digits. We will mainly follow the
presentation in [11].

Algorithm

We are given a composite number n and want to split it. To achieve the splitting
we locate two integers X and Y satisfying X2 ≡ Y 2 (mod n). Then hopefully
gcd(X ± Y, n) is a nontrivial factor of n.

The quadratic sieve has three main steps. First we make a factor base, then we
use sieving to locate integers of the correct form and lastly linear algebra is used
to reveal X and Y .

We begin by calculating the limit B and finding all the primes p ≤ B. A good
limit is estimated in the next section. The factor base M will consist of p1 = 2

and the primes p ≤ B for which
(
n
p

)
= 1. Now n is a quadratic residue modulo

p, ∀p ∈M , and there exists some a ∈ [1, p− 1] such that a2 ≡ n (mod p). Notice
that |M | ≈ 1

2π(B). We have saved time for the sieving by removing the primes
that never give integers of the right form. What are the integers of the correct
form?

We are looking for two integers X and Y satisfying X2 ≡ Y 2 (mod n). If we
let one side be a square and search for its B-smooth residues, a combination might
provide the other square. Formally, we want f(xi) = x2i − n to be B-smooth for
some set {xi}i, meaning each xi should satisfy

f(xi) =

|M |∏
j=1

p
ei,j
i,j , where pi,j ∈M , ei,j ∈ N, ∀i, j

To achieve this we sieve a list of f(x) values and keep the x’s that return f(x)
as B-smooth. The x’s that have highest possibility of success are the ones keeping
f(x) small. Let therefore d

√
ne ≤ x ≤ d

√
ne+ U and perform the sieving process

described in Section 2.1. An estimate for a good bound U is given in the next
section.

The sieving is completed when we have collected more than |M | B-smooth
f(xi) values.

Now associate an exponent vector vi(x
2
i − n) = (ei,1, ei,2, . . . , ei,|M |) to each

f(xi) and collect the vectors in a matrix. Since we have more vectors than there
are primes in M , a linearly dependent subset is possible to find. Actually, when
a combination of different vectors modulo 2 equals the zero vector, we have found
the squared property we are searching for. To see this, assume linear algebra over
the matrix has returned a subset S = {v(x2i − n)}ki=1 such that

5

v1 + v2 + . . .+ vk ≡ 0 (mod 2) (2.1)

This is equivalent to

k∑
i=1

ei,j = 2zj , where zj ∈ Z for 1 ≤ j ≤ |M |

For every vector in (2.1), locate the associated f(xi) value. In the sieving step
we found the factorization of f(xi),∀xi, and can now compute

Y 2 = f(x1)f(x2) . . . f(xk) (2.2)

=

|M |∏
j=1

p
2zj
j (2.3)

In other words, we have found the squared property. What we really seek is
the square root of (2.2)

Y =
√
f(x1)f(x2) . . . f(xk)

This is a huge number and is almost impossible to compute, so we use the
easier (2.3) instead and get

Y ≡
|M |∏
j=i

p
zj
j (mod n)

We are working modulo n all the way, but await the reduction until this very
last step to maintain the desired properties outlined above.

The other square X2 was squared from the beginning and it looks like

X2 =

k∏
i=1

x2i − n

We easily find X to be

X ≡
k∏
i=1

xi (mod n)

Lastly we calculate gcd (X ± Y, n) = D. If D is nontrivial, we have managed to
split n. If not, go back to the linear algebra step and locate a new subset satisfying
(2.1) and repeat the remaining part of the algorithm. If no such subset is found
we need to extend the bounds B and U and locate more relations.

Before we move on to the analysis of the algorithm, we will briefly mention
a possible improvement. There are different advancements to make, for instance

6

sieving x’s centered at
√
n or carry out the sieve with the logarithms. We will look

at Montgomery’s multiple polynomial variation of the quadratic sieve method [11].
The polynomial values f(x) = x2−n will increase rapidly as x runs away from√

n. A consequence is that the smooth numbers will occur at a decreasing rate,
because small numbers are more likely to be smooth than greater numbers. If we
now replace the polynomial with a well-chosen family of polynomials, then perhaps
the numbers will stay smaller overall.

We require the new polynomial to sieve by the same factor base M since more
primes would be time-consuming. Also, the shape must be preserved to keep the
polynomial a square modulo n. Essentially we replace x with a linear polynomial
satisfying some demands. Montgomery chose

y(x) = (ax+ b)2 − n = a2x2 + 2abx+ b2 − n a, b ∈ Z

The a should be chosen such that it is a square times a B-smooth integer
and b such that b2 − ac = n for some c ∈ Z. Then y(x) = a(ax2 + 2bx + c)
with f(x) = ax2 + 2bx + c minimized, and we get the relation (ax + b)2 ≡ af(x)
(mod n). If a, b and c are chosen optimally, f(x) will stay small during the sieving.

Let −UM < x < UM be the sieving interval, and choose a ≈
√

2n/UM and

b ≈ 1
2a. Then f(x) is bounded by UM

√
n√

2
. The x2−n would have been bounded by

2UM
√
n if we had sieved by

√
n − UM < x <

√
n + UM in the original quadratic

sieve, and then Montgomery’s method would have saved a factor of 2
√

2. Since
our interval is [

√
n,
√
n + U] with U = 2UM in the original sieve, even more time

is saved. It is said in [11] that using multiple polyomials speeds up the quadratic
sieve by a factor of 1

2

√
lnn ln lnn. This is why the multiple polynomial variation

is preferred over the standard polynomial when the method is implemented.
Nevertheless we will analyse the original quadratic sieve algorithm.

Analysis

In this section we give estimates on the bounds B and U , find the probability
that a random integer x2 − n is B-smooth and give an heuristic estimate of the
complexity.

We want to know where to place the limit B so that the frequency of B-smooth
numbers is optimal. If the bound is small the matrix will be easy to work with,
but the number of smooth integers will be rare and the sieving step will dominate
the algorithm. If the limit is big we will find the smooth numbers quickly, but we
need a lot of them to locate the linearly dependent subset and hence the matrix
will be very large and control the algorithm. The two forces must be balanced.
Before we can calculate where the optimal limit should be placed, we need some
other estimates.

We begin with a definition.

Definition 1. Ψ(n,B) = |{x|x is B-smooth and ≤ n}|

All the B-smooth integers can be written uniquely as
∏π(B)
i=1 peii for the primes

pi ≤ B and some integers ei, and we found their factorization during the sieving.

7

Now, the likelihood of x2 − n being B-smooth in an interesting range is an
unsolved and hard problem in analytic number theory, and many people have
approached the problem with a lot of different estimates. The following from [6]
gives an heuristic estimat that is good enough for our use. Let u = lnn

lnB .

Theorem 1. The probability that a number less than n is B-smooth is u−u.

Proof. A brief overview of a heuristic proof follows.
Assume polynomial values are just as likely to be smooth as random numbers

of same size. Every smooth integer less than n has a corresponding π(B)-tuple
of ei’s. Hence we think of Ψ(n,B) as the number of integer solutions ei to the

inequality
∑π(B)
i=1 ei ln pi ≤ lnn.

If we now ignore the smallest primes, the primes less than B have about equal
logarithms as B and we can exchange ln pi with lnB for all pi’s. If we also replace
π(B) with B, then Ψ(n,B) will be roughly equal to the number of B-tuple integer
solutions to the inequality

B∑
i=1

ei ≤ u (2.4)

The total number of B-tuples ei in (2.4) is precisely the binomial coefficient(
[u]+B
B

)
, with [u] being the greatest integer function.

The probability that a nonnegative number smaller than n is B-smooth is

Pr[random integer ≤ n is smooth] =
Ψ(n,B)

n
(2.5)

We use the binomial coefficient as an approximation for Ψ(n,B) and try to
calculate a good estimate for (2.5) by

ln

(
Ψ(n,B)

n

)
= ln

((
[u]+B
B

)
n

)

= ln

(
([u] +B)!

[u]!B!

)
− lnn

= ln (([u] +B)!)− ln[u]!− lnB!− u lnB

= u lnB +B lnB − u−B − u lnu+ u−B lnB +B − u lnB

= −u lnu

We simplified the calculation by replacing [u] with u and ln(u+B) with lnB,
since u � B. We also used Stirling’s formula lnn! = n lnn − n. Together, this
yields

Ψ(n,B)

n
≈ u−u (2.6)

8

We will justify that u is much smaller than both B and π(B) with a small
example. By the Prime Number Theorem we get that π(B) ≈ B

lnB . If n = 1070

and B = 106, then lnn = 161, lnB = 14, u = 161
14 = 12 and π(B) = 106

14 = 105.
Hence the claim is clear. Now using the theorem we get that the probability that
a random number between 2 and 1070 is 106-smooth is approximately 1

1212 .
In Theorem 1 we used n as an upper bound for the integers x, but as we will

now show, it is too big. Since the sieving begins at x = d
√
ne, the first residues

x2 mod n are simply x2−n. When
√
n < x <

√
n+nε, the upper limit for x2−n

is

(
√
n+ nε)2 − n = n+ 2n

1
2+ε + n2ε − n

≈ n 1
2+ε (2.7)

The probability that x is a B-smooth number is still u−u, but we replace u with
the more modest lnn

2 lnB . Hence the probability that a random number between 2
and 1070 is 106-smooth is 1

66 .
In the remaining part we will be dealing with the analysis of the algorithm and

at the end a good estimate for the bound B will follow.
The first important consideration is how long we need to spend with a particular

x to decide whether x2 − n is B-smooth. We use the sieving method described in
Section 2.1, where the average number of arithmetic operations spent per value of
x is about ln lnB. This estimate follows from the Eratosthenes sieve where the
number of steps are

∑
p≤pi b/p, with p running over the first primes, pi being the

smallest prime such that pi
2 > b and b the biggest integer in the list being sieved.

We use Mertens’ Second Theorem and get∑
p≤pi

b

p
= b ln ln pi +O(1)

Since our primes are less or equal to B, it follows that average time spent per
integer ≤ n is ln lnB.

We defined the factor base M to consist of p1 = 2 and the primes p ≤ B

for which
(
n
p

)
= 1. Heuristically, |M | = 1

2π(B) and we need at least |M | + 1

B-smooth values to get a linear dependency among their exponent vectors. Since
the probability that x gives a B-smooth number is 1

uu , we expect uu x’s to achieve
a smooth number. Hence the total amount of x’s required are uu(|M |+ 1) and we
have found a good estimate on U , the length of the list to sieve in.

The total number of x’s together with the amount of work on average on every
x gives the time expression

Tn = uu(|M |+ 1) ln lnB (2.8)

We want to minimize Tn by finding B as a function of n. We begin by com-
puting the logarithm

9

lnTn = ln (uu(|M |+ 1) ln lnB)

= u lnu+ ln

(
B

2 lnB
+ 1

)
+ ln ln lnB

≈ u lnu+ lnB (2.9)

Now u is replaced with the estimated value lnn
2 lnB and the derivative calculated

lnTn =
lnn

2 lnB
ln

(
lnn

2 lnB

)
+ lnB

=
lnn

2 lnB
(ln lnn− ln 2− ln lnB) + lnB

d lnTn
dB

=
− lnn

2(lnB)2B
(ln lnn− ln 2− ln lnB) +

lnn

2 lnB

(
− 1

lnB

1

B

)
+

1

B

=
− lnn

2(lnB)2B
(ln lnn− ln 2− ln lnB + 1) +

1

B

=
− lnn(ln lnn− ln 2− ln lnB + 1) + 2(lnB)2

2(lnB)2B

We let the derivative be equal to zero and find an estimate for B

2(lnB)2 = − lnn(ln lnn− ln 2− ln lnB + 1)

lnB =

√
1

2
lnn(ln lnn− ln lnB) (2.10)

At this point we need to think a bit since our estimate for B now depends on
B. If B is close to n, then ln lnB ≈ ln lnn and lnB = a

√
lnn for some constant a.

On the other hand, if B is relatively small compared to n, then ln lnB � ln lnn
and lnB = b

√
lnn ln lnn for some constant b. We take the logarithms of the two

extremal points and find that ln lnB ≈ 1
2 ln lnn. This estimate replaces ln lnB in

(2.10) and we get

lnB =

√
1

2
lnn(ln lnn− 1

2
ln lnn)

=
1

2

√
lnn ln lnn (2.11)

Also

u =
lnn

2 lnB

=

√
lnn

ln lnn
(2.12)

10

We combine (2.9), (2.11) and (2.12)

lnTn = u lnu+ lnB

=

√
lnn

ln lnn

1

2
(ln lnn− ln ln lnn) +

1

2

√
lnn ln lnn

=
1

2

√
lnn(ln lnn− ln ln lnn+ ln lnn)√

ln lnn

≈ 1

2

√
lnn(2 ln lnn)√

ln lnn

=
√

lnn ln lnn (2.13)

Finally we can conclude that the optimal choice for B is e
1
2

√
lnn ln lnn and the

running time to split n is Tn = elnTn = e
√
lnn ln lnn = B2.

The subexponential function L is often used to describe the running time of
an algorithm, and it is given as

Ln(v; c) = e(c+o(1))(lnn)
v(ln lnn)1−v

, for n→∞ (2.14)

When v = 1 we have exponential time and when v = 0 we get polynomial time.
So our algorithm will be faster the closer we get towards v = 0. In our analysis of
the QS algorithm we see that v = 1/2 and c = 1.

The following theorem from [11] will be helpful in further analysis.

Theorem 2. Have a sequence x1, x2, . . . of integers in [1,K], each chosen inde-
pendently and with uniform distribution. Let k be the least integer such that a
nonempty subsequence from x1, x2, . . . , xk has product being a square. Then the

expected value for k is L(K)
√
2+o(1). We can expect the same value for k if all xi

are B-smooth, with B = L(K)1/
√
2.

In (2.7) we calculated the bound K to be n1/2+ε and the overall complexity
of the quadratic sieve is therefore L(n)1+o(1), with o(1) taking care of the smaller
terms. Our complexity estimate is in consensus with Theorem 2, as expected.

If we had taken Montgomery’s method in consideration in the analysis it would
only have affected the o(1) term.

For the purpose of this thesis, the linear algebra is not studied, but it can be
shown that if for instance the Lanczos sparse-matrix method is applied, the matrix
has a time bound of B2+o(1). Details can be found in [8].

11

Example

To illustrate the method we will split n = 10379. It is a trivial number and trial
divison would use no time, but it will illustrate the method. We let B = 25 and
find M = {2, 5, 17, 19, 23}. Since n is so small, the estimated boundaries are not
valuable and that is why we chose the bound B bigger than the estimated limit
from Section 2.2. We choose U = 26 and sieve f(x) = x2 − n over [102, 128]

F = {f(102), f(103), . . . , f(128)}
We find the smooth numbers

f(102) = 5 · 5
f(103) = 2 · 5 · 23

f(104) = 19 · 23

f(123) = 2 · 53 · 19

f(127) = 2 · 53 · 23

Their associated exponent vectors are collected in a matrix modulo 2
0 0 0 0 0
1 1 0 0 1
0 0 0 1 1
1 1 0 1 0
1 1 0 0 1


After some searching we see that

f(103)f(104)f(123) = (2 · 5 · 23)(19 · 23)(2 · 53 · 19)

= (2 · 52 · 19 · 23)2

≡ 43702 (mod 10379)

= Y 2

The other side

X = 103 · 104 · 123

≡ 3829 (mod 10379)

The gcd(4370 ± 3829, 10379) = 1, so we must search some more. Let us try
f(103)f(127) = (2 · 5 · 23)(2 · 53 · 23) with

(103 · 127)2 ≡ (2 · 52 · 23)2 (mod 10379)

27022 ≡ 11502 (mod 10379)

Finally, gcd(2702− 1150, 10379) = 97 and we can conclude that

10379 = 97 · 107

12

2.3 The Index-Calculus Method

Given a finite cyclic group G and g, t ∈ G, then a solution z of gz = h is called the
discrete logarithm of t with respect to the base g in G. Locating the z is called
the discrete logarithm problem of t with respect to the base g in G.

Although the problem is different from the integer factorization issue, the pro-
cedure we now describe from [11] has similiar steps to the already explored QS.
To simplify further notation we will just call the index-calculus method the ICM.

Algorithm

We consider a finite field Fq, q a prime, with a generator g for a multiplicatively
subgroup and an element t generated by g. We want to find the least integer z
such that gz ≡ t (mod q).

Elements in Fq can be represented as integers and integers can be factorized,
hence we can use the idea from the QS.

First we choose a bound B and collect all primes ≤ B and −1 in the factor base
M . An estimate for the bound is given in the next section. We will gather relations
between the elements in M and powers of g, so pick a random h ∈ [1, q − 2] and
test for smoothness. If gh is smooth, then

gh ≡ (−1)h0ph1
1 · · · phy

y (mod q), where y = π(B) and hi ∈ Z (2.15)

Note that this random method is not efficient since the upper bound for gh is
q, but there does not exists a sieve to detect smooth values in the ICM.

We use the relations to find the logarithms of the primes in M . To see how
this is done, let logg pi ≡ xi (mod q − 1) such that gxi ≡ pi (mod q),∀i. Then

gh ≡ (−1)h0ph1
1 · · · p

hy

k

≡ (gx0)h0(gx1)h1 · · · (gxy)hy

≡ gh0x0gh1x1 · · · ghyxy

≡ gh0 logg(−1)gh1 logg p1 · · · ghy logg py (mod q)

The relation (2.15) therefore gives us the congruence

h ≡ h0 logg (−1) + h1 logg p1 + . . .+ hy logg py (mod q − 1)

We make the linear system AX = H, where the rows in A consists of the hi
values, X the unknown logg pi and H the h values. When we have collected more
than |M | relations we use linear algebra to solve for the various logg pi’s. Since we
might need to invert a nonzero residue over Zq−1, where q − 1 is composite, this
is harder than previous linear algebra over Z2. The problem can be reduced to
linear algebra over the different prime divisors q− 1. Then it is just linear algebra
over a finite field, so usual reduction methods will do.

13

If one of the prime divisors p are such that pi|q− 1, we need to lift the located
solution AX ≡ H (mod p) to a solution AX ≡ H (mod pi). Assume we have X1

such that AX1 ≡ H (mod p), meaning AX1 = H − pY1 for some Y1. If we solve
AX2 ≡ Y1 (mod p2), then A(X1 + pX2) ≡ H (mod p2) [13]. Repeat the process
until the power i is reached. Now using the Chinese Remainder Theorem on all the
prime divisors and prime power divisors will give the final solution X mod q − 1.

The last stage is to find an element s ∈ [1, q− 2] such that gst (mod q) is close
to zero and B-smooth. Let gst ≡ (−1)s0ps11 · · · p

sy
y (mod q). The solution to the

discrete logarithm problem is then given as

logg t ≡ −s+ s0 logg(−1) + s1 logg p1 + . . .+ sy logg py (mod q − 1)

Analysis

We will just briefly sketch an analysis, since we are merely interested in ICM as a
preparation for Chapter 5.

As with the QS, Theorem 2 provides a good time estimate and choice for B.
The relations in (2.15) are bounded by q, since gh can take any value in Z∗q . So
the best estimate for B is L(q)c for some constant c which depends on how we test
the gh values for smoothness and how we perform the linear algebra. If we test
by just trial division, then c = 1/2 and B = L(q)1/2 with the overall running time
L(q)2+o(1). If the elliptic curve method is used, then c = 1/

√
2 and the running

time is L(q)
√
2+o(1). For more details, see [10].

The same procedure as in the QS can also be followed to analyse the ICM and
give a limit B.

The probability that an integer gh is B-smooth is still given in Theorem 1.
How long do we need to spend with a particular element to decide if it is B-

smooth? We consider trial division and expect O(π(B)) = O(B/ lnB) divisions,
each requiring O((lnK)2) time, so a total time of O((lnK)2B/ lnB). We can
express how many relations we need with a constant a times the number of elements
in the factor base π(B), and we still need uu values for one success. The total
number of integers to test with the total amount of time used is therefore

Tq = auu
(
B lnK

lnB

)2

Take the logarithm of Tq and calulate the derivative with respect to B. After
removing small terms and sat equal to zero, we find the optimal choice

B = Lq (1/2; cB + o(1))

According to Theorem 2, total complexity is B2+o(1). Study [10, 16] for de-
tails.

14

CHAPTER

THREE

ALGEBRAIC SETTING

The number field sieve for integer factorization share strategy with the QS from
Section 2.2 and the number field sieve for the discrete logarithm problem uses
ideas from both the QS and the ICM from Section 2.3. So we have an idea on
how the two main algorithms in this thesis works. However, when we present the
two algorithms in their respective chapters, we will see that they are far more
sophisticated than previous methods. Some of these features the algorithms share,
as their names might reveal, and we present them in this chapter.

The ring will be given in Section 3.1. Section 3.2 provides us the polynomial
and the map, while the concept norm is explored in Section 3.3. The last section
presents the common sieving part.

It will be clear in the presentations of the algorithms how this algebraic number
theory is linked and used.

To ease notation, we refer to the number field sieve for the integer factorization
when we write NFS, and NFS-dlog when we talk about the number field sieve for
the discrete logarithm problem.

3.1 The Ring

Assume we have a monic, irreducible polynomial f(x) of degree d with integer
coefficients and a root θ ∈ C. We have the number field Q(θ), the finite field
extension of Q of degree [Q(θ) : Q] = d.

Definition 2. A complex number α is called an algebraic integer if it is a root of
some monic polynomial with coefficients in Z.

Proposition 1. Given a monic, irreducible polynomial f(x) of degree d with ra-
tional coefficients and a root θ ∈ C, the set of all algebraic integers in Q(θ), OQ(θ),
forms a subring of the field Q(θ).

In order to prove the proposition, we use the following proposition from [7].

15

Proposition 2. An element α ∈ Q(θ) is an algebraic integer if and only if there
exists a nonzero Z-submodule M of Q(θ) such that αM ⊂M.

Proof. We have αk + ak−1α
k−1 + . . . + a0 = 0, ai ∈ Z, some degree k. Then the

Z-submodule M of Q(θ) with basis {1, α, . . . , αk−1} satisfy αM ⊂M.

The other way Cramer’s rule is used, stating: If
∑k
j=1 ai,jxj = bi, for 1 ≤ i ≤ k,

then xj = det(Aj)/ det(A), where Aj is obtained from A = (ai,j) by replacing the
elements in the jth column by the bi’s.

We have a Z-module M of Q(θ) such that αM ⊂M with basis {y1, y2, . . . , ym}.
We can express each basis element as

αyi =
∑

ai,jyj , ai,j ∈ Z

Combine and rewrite the linear equations into

(α− a1,1)y1 − a1,2y2 − . . .− a1,mym = 0

−a2,1y1 + (α− a2,2)y2 − . . .− a2,mym = 0

...

−am,1y1 − am,2y2 − . . .+ (α− am,m)ym = 0

Let A be the matrix of coefficients on the left side. Then Cramer’s rule gives
that det(A)yi = 0,∀i. Since not all generators are zero and Q(θ) is a field, we get
that det(A) = 0, which is the same as αk + ck−1α

k−1 + . . .+ c0 = 0, some ci ∈ Z,
when written out.

Proof of Proposition 1. First, if α and β are in Q(θ), so are αβ and α ± β, since
Q(θ) is a field.

Let α be a root of a monic polynomial h(x) with integer coefficients. Then one
of the ±h(−x) will also be a monic polynomial with integer coefficients and have
−α as an algebraic integer.

Let α and β be algebraic integers. By Proposition 2, there exists finitely
generated Z-modules M1 and M2 such that αM1 ⊂ M1 and βM2 ⊂ M2. We
define M1M2 = {

∑
m1,im2,i|m1,i ∈ M1,m2,i ∈ M2}. M1M2 will be a finitely

generated Z-submodule since its generators are just the product of the generators of
M1 and M2. It follows that (α±β)M1M2 ⊂M1M2 and αβM1M2 ⊂M1M2.

We denote OQ(θ) the ring of integers and it have some remarkable features,
some which we will outline later. To ease notation, we will just write O when we
refer to the ring of integers of Q(θ). Notice that the ring of integers of Q is simply
Z and we can make the following diagram

Q(θ) OQ(θ)

Q Z

16

We will work in a subring of O (and a ring extension of Z) given below.

Proposition 3. Given a monic, irreducible polynomial f(x) of degree d with in-
teger coefficients and a root θ ∈ C, the set of all Z-linear combinations of the
elements {1, θ, . . . , θd−1} forms a subring Z[θ] ⊆ O.

Remark that Z[θ] can be a proper subring of O, since the number field Q(θ) can
contain algebraic integers which is not a Z-linear combination of {1, θ, . . . , θd−1}
and hence is not in Z[θ] [1]. This we can easily see with the monic irreducible
polynomial x2 − 5. It produces the field extension Q(

√
5). In the subring OQ(

√
5)

we have the algebraic integer α = (1 +
√

5)/2, which is a root in x2 − x− 1. Since
it is not a Z-linear combination of {1,

√
5}, α /∈ Z[

√
5]. Hence, Z[

√
5] is a proper

subring of OQ(
√
5).

3.2 Choosing a Polynomial

We will work in Z[θ], the ring generated by one of the roots θ of f(x). Where did
f(x) come from?

We want f(x) to have small integer coefficients and in the NFS we want an
integer m ∈ Z such that f(m) is a multiple of n. In the NFS-dlog, we want it to
be a multiple of q, but it is the same procedure. It is accomplished by choosing
the degree d such that d2d

2

< n, m = bn 1
d c and writing n in base m

n = md + cd−1m
d−1 + . . .+ c0, with ci ∈ [0,m− 1]

The method gives us a monic polynomial f(x) = xd + cd−1x
d−1 + . . .+ c0 with

integer coefficients and m ∈ Z such that f(m) ≡ 0 (mod n). We discuss the degree
d in Chapter 6.

In addition we require the polynomial to be irreducible. If it is not irreducible
in the NFS, then there could exist g(x) and h(x) such that f(x) = g(x)h(x), which
implies that

n = f(m) = g(m)h(m)

This means that we have found the two nontrivial factors of n. The probability
that this situation occur is so small that f(x) will most likely be irreducible.

If f(x) is not irreducible in the NFS-dlog, we use instead an irreducible factor
of f which has m as a root mod q.

Now there exist a natural ring homomorphism

ϕ : Z[θ]→ Zn
θ 7−→ m (mod n) (3.1)

The map is well-defined and by construction f(m) ≡ 0 (mod n).
In the NFS-dlog we also want the discriminant of f(x) to be relatively prime

to q and all prime divisors of q− 1. It is not crucial for the algorithm to work, but
it simplifies the calculation. The property is explored in Chapter 5.

17

3.3 The Norm and Factoring Ideals

In order to use the ideas of QS and ICM in Z[θ], we need to generalize the notion of
primes and smooth elements. The natural idea would be to look for the ”primes”
in Z[θ], namely the irreducible elements. However, we would then need to assume
that Z[θ] is a unique factorization domain and expand the factor base with the
units. We are studying the general case, and Z[θ] is not a UFD in general, just
look at 4 ∈ Z[

√
5]. It is 2 · 2 = 4 = (3 −

√
5) · (3 +

√
5), neither being associates.

Also locating all the units and finding a proper place for them in the algorithm
could be hard. To skip this cumbersome notation and to overcome the fact that
unique factorization of irreducible elements in a ring does not apply in general, we
use this section to show that every nonzero ideal factorizes uniquely, up to order,
into a product of prime ideals, and illustrate how this is helpful [1, 15]. First some
preliminaries.

An integral domain A has a field of fractions K with the property that every
k ∈ K can be written as k = a−11 a2 for a1, a2 ∈ A and a1 6= 0. The field of
fractions of O is Q(θ) and Q is the field of fractions of Z.

Definition 3. An integral domain A is integrally closed if whenever α is in the
field of fractions of A and it satisfies a monic polynomial in A[x], then α ∈ A.

Definition 4. A Dedekind domain is an integral domain which is a Noetherian
ring, is integrally closed and every nonzero prime ideal is maximal.

Since Z is a PID, it satisfies all demands and is a Dedekind domain.

Theorem 3. O is a Dedekind domain.

Proof. O is integrally closed in Q(θ), hence O is integrally closed.
O is finitely generated as a Z-module, so it is finitely generated as a ring over

Z. Since Z is Noetherian, we can conclude from the Hilbert Basis Theorem that
O is Noetherian.

Pick an element x ∈ p, a nonzero prime ideal in O. Since x ∈ O, it satisfies

xf + af−1x
f−1 + . . .+ a0 , with ai ∈ Z

Let the degree f be as small as possible so that a0 6= 0. If we solve for a0, we
get that

a0 ∈ Ox ∩ Z ⊂ p ∩ Z

Since p∩Z is a nonzero prime ideal in Z and maximal by assumption, Z/(p ∩ Z)
is a field. Also, O/p is an integral domain containing Z/(p ∩ Z) and since all
elements in O are algebraic integers, O/p will be algebraic over Z/(p ∩ Z) and
hence a field. It follows that p is a maximal ideal in O.

Theorem 4. Every proper nonzero ideal of O can be written as a product of prime
ideals of O and this representation is unique up to order.

To prove the theorem, we need the three following lemmas from [7].

18

Lemma 5. Every ideal in a Noetherian ring contains a product of nonzero prime
ideals.

Proof. Assume there is a maximal ideal I not containing a product of prime ideals.
Then the ideal is not prime and there exist x1x2 ∈ I such that neither x1 ∈ I or
x2 ∈ I. But now I + 〈x1〉 and I + 〈x2〉 strictly contains I at the same time as their
product is in I. Since I is a maximal counterexample, both I + 〈x1〉 and I + 〈x2〉
contains a product of nonzero prime ideals, and hence so does I.

For the next lemma, recall that two ideals I1 and I2 in a ring R are relatively
prime if I1 + I2 = R.

Lemma 6. If I1 and I2 are relatively prime ideals in a ring, then so are Ii1 and
Ij2 , for some i, j ∈ N.

Proof. Assume Ii1 and Ij2 are not relatively prime. Then they are both contained
in a prime ideal. But then so are I1 and I2, a contradiction.

Definition 5. An integral domain is called a discrete valuation ring if it is a PID
and has a unique maximal ideal.

For every nonzero prime ideal p in O, we get that the local ring Op is a discrete
valuation ring.

Lemma 7. Let p be a maximal ideal in O, q = pOp and o ∈ O. Then the following
map is an isomorphism:

φ : O/pi → Op/q
i

o+ pi 7−→ o+ qi

A proof of Lemma 7 can be found in [7].

Proof of Theorem 4. Let I be an ideal in O.
By Lemma 5 we know I contains a product of distinct prime ideals, say I1 =

pfi1 · · · p
fk
k . If we let qi be the maximal ideal of Opi

, we can write

O/I1 ' O/pf11 × · · · × O/p
fk
k

' Op1
/qf11 × · · ·Opk

/qfkk

The first isomorphism is given by the Chinese Remainder Theorem and Lemma
6 and the last one of Lemma 7. Since the Opi ’s are discrete valuation rings, I/I1
will correspond to qe11 /q

f1
1 × · · · × qekk /q

fk
k , for ei ≤ fi under the last isomorphism

above. But now I = pe11 ×· · · p
ek
k inO/I1, because I/I1 is the image of pe11 ×· · ·×p

ek
k .

Since there is a one-to-one correspondence between ideals in O/I1 and the ideals
in O containing I1, we get that I = pe11 × · · · × pekk in O.

It remains to prove the uniqueness part. Assume p1p2 · · · pk = p′1p
′
2 · · · p′k′ , and

that p′i is not contained in p1, for any i. Then we have elements ai ∈ p′i such that
ai /∈ p1,∀i. But a1a2 · · · ak′ ∈ p1 · · · pk ⊂ p1, contradicting p1 being prime. Hence
p1 = p′i, for some i. Now remove both ideals from the equation and repeat the
argument to obtain uniqueness.

19

Theorem 4 will be our main tool in the search for smooth elements in Z[θ],
as we define them to be smooth if the principal ideal they generates factorizes
completely over a chosen factor base of prime ideals.

To be able to use this theory on a computer we must associate the factorization
of elements in Z[θ] to a factorization in Z. This is easily accomplished by the
function norm.

Definition 6. Let α ∈ Q(θ) define the Q-linear transformation

lα : Q(θ)→ Q(θ)

x 7−→ αx

Since Q(θ) is a free Q-module of rank d, we can make an invariant basis
{e1, . . . , ed} for Q(θ) over Q and express αei =

∑
ai,jej. The trace of α is defined

as

Tr(α) =
∑

ai,i

The norm of α is defined as

N(α) = det(lα) = det(ai,j)

Let Q be a nonsingular matrix and consider the norm of QA/Q, A a matrix.
It is the norm of Q times A/Q, or simply A. Similar matrices represent the same
linear transformation under two different bases, with Q being the change of basis
matrix, and hence the norm is invariant to the basis. Same for the trace.

Theorem 8. Given a monic, irreducible polynomial f(x) of degree d with rational
coefficients and a root θ ∈ C, there are exactly d embeddings from Q(θ) to C, given
by σi(Q) = Q and σi(θ) = θi for 1 ≤ i ≤ d and the norm of α ∈ Q(θ) is

N(α) = σ1(α)σ2(α) . . . σd(α)

Proof. Each σi gives a distinct isomorphic copy of Q(θ) by σi : Q(θ)→ Q(θi), for
1 ≤ i ≤ d. Hence there is at least d embeddings. Assume we have one more such
that

σd+1 : Q(θ)→ C
θ 7−→ β , for some β ∈ C

Then

f(β) = βd + cd−1β
d−1 + . . .+ c0

= σd+1(θ)d + cd−1σd+1(θ)d−1 + . . .+ c0

= σd+1(θd + cd−1θ
d−1 + . . .+ c0)

= σd+1(0) = 0

Hence β = θi and σd+1 = σi, for some i ∈ [1, d].

20

To show the last part we compute the characteristic polynomial of α since its
constant term is |det(lα)|. Let v(x) be the minimal polynomial of α over Q. We
make the field extension Q(α) of degree deg(v) with basis {1, α, . . . , αdeg(v)−1} over
Q. The characteristic polynomial of lα acting on Q(α) is just v, since α satisfies a
polynomial if and only if lα does. Let {e1, . . . , ek} be a basis for Q(θ) over Q(α).
Now {αiej}i,j is a basis for Q(θ) over Q and lα acts invariant on {αiej}i for every
fixed j. The characteristic polynomial of lα will therefore be v[Q(θ):Q(α)], since the
matrix of lα is a block direct sum of copies of the matrix of lα acting on Q(α).
The roots of v[Q(θ):Q(α)] are the images of σi(α) with multiplicity [Q(θ) : Q(α)] and
the claim follows [15].

Proposition 4. Given a monic, irreducible polynomial f(x) of degree d with ra-
tional coefficients and a root θ ∈ C, the norm maps elements from Q(θ) to Q. In
particular, algebraic integers in Q(θ) are mapped to elements in Z.

Proof. We show the last claim, since it is the relevant part for us. By Theorem 8 we
only need to prove that the minimal polynomial has integer coefficients. Let v(x)
be the minimal polynomial to the algebraic integer α and assume v(x) /∈ Z[x].
Since α is an algebraic integer, there exists a u(x) ∈ Z[x] such that u(α) = 0.
Also u(x) = v(x)w(x) for some w(x) ∈ Q[x]. Now a prime pv will divide the
denominator of some coefficient of v. Let piv be the highest power dividing the
denominator and likewise let pjv be the highest power dividing some denominator
of a coefficient of w. Then pi+jv u = (pivv)(pjvw). Now the left side is 0 mod pv, while
the right side is a nonzero product of two nonzero polynomials, a contradiction.
Hence the minimal polynomial of α has integer coefficients and the norm maps to
Z.

Corollary 9. Given a monic, irreducible polynomial f(x) of degree d with integer
coefficients and a root θ ∈ C, the norm maps elements from Z[θ] to Z.

Since Z(θ) ⊆ O, the statement is clear.
We will see the full strength of Corollary 9 when we tie the norm of an element

in O together with the norm of the ideal generated by the same element.

Definition 7. Given a ring R and an ideal I of R, the norm of I is defined to be
[R : I] = |R/I|.

Proposition 5. Given a monic, irreducible polynomial f(x) of degree d with ra-
tional coefficients and a root θ ∈ C, then the norm maps ideals in O to positive
integers. Moreover, if α ∈ Z[θ], then N(〈α〉) = |N(α)|.

Proposition 6. If p is an ideal of O with N(p) = p for some prime integer p, then
p is a prime ideal of O. Conversely, if p is a prime ideal of O, then N(p) = pep ,
for some prime integer p and some positive integer ep.

Proof. If N(p) = p, then [O : p] = p, which implies that O/p ∼= Z/pZ, a field.
Then p is a maximal ideal and hence a prime ideal.

Every prime ideal contains a unique prime element, so let p ∈ p. Now O/p will
be a finite extension of Z/pZ of degree ep and hence N(p) = |O/p| = pep .

21

We know from Theorem 3 that O is a Dedekind domain, so if we have an
element α ∈ O, the principal ideal 〈α〉 will by Theorem 4 factorize uniquely as

〈α〉 = pd11 pd22 . . . pdkk

The prime ideals pi of O are distinct and all exponents are natural numbers.
Furthermore, by Corollary 9, Proposition 5 and Proposition 6 we get

|N(α)| = N(〈α〉) = N(pd11 pd22 . . . pdkk)

= N(p1)d1N(p2)d2 . . . N(pk)dk

= (pf11)d1(pf22)d2 . . . (pfkk)dk , fi ∈ N

= pf1+d11 pf2+d22 . . . pfk+dkk (3.2)

Notice that the primes in (3.2) not necessarily are distinct.
We defined an element to be smooth if the ideal it generates factorizes over a

chosen factor base of prime ideals and we are finally able to give the factor base.
It will consist of the prime ideals with norm divisible only by primes less than or
equal to a bound. We name it the algebraic factor base. An element in Z[θ] is
therefore smooth if when we consider the norm of the ideal the element generates
it factorizes completely over the prime integers from the norm of the prime ideals
in the algebraic factor base.

3.4 The Sieve

We have a monic, irreducible polynomial f(x) of degree d with integer coefficients,
a root θ ∈ C, an integer m such that f(m) ≡ 0 (mod n) and we have Z[θ], the
ring generated by the root θ of f . We want to find a set T of pairs (a, b) such that
both a+ bm ∈ Z and a+ bθ ∈ Z[θ] are smooth.

Let U be a bound. The overall set of pairs where we will find the T from is

U = {(a, b)|a, b ∈ Z, gcd(a, b) = 1, |a| ≤ U, 0 < b ≤ U}

The parameter U need to be sufficiently large so we can find enough elements
in T to satisfy further use of the smooth values, but also as small as possible to
avoid being a time-bottleneck. We estimate U in Chapter 6.

We will locate the smooth elements using two sieves. The first one is described
in the next section and we call it the rational sieve since it finds the smooth
elements in Z. The other is given in Section 3.4 as the algebraic sieve, locating the
smooth algebraic integers. To obtain the set T , we combine the outcome of the
two sieves.

We lastly briefly mention another more complicated method to locate the
smooth elements, the lattice sieve.

The NFS and the NFS-dlog uses the smooth elements in different ways and
therefore meet individual barriers. We will describe how to overcome these in the
chapters describing the algorithms respectively.

22

The Rational Sieve

To locate the smooth a+ bm values we proceed in the same fashion as in the QS,
the only difference is that in the QS we had just one variable. Now there are two,
both a and b. It is common to fix b and sieve over the range of a, then do the next
b until enough smooth values are found.

First we decide on a smoothness bound B and make a rational factor base
B = {p|p ≤ B, p ∈ Z, p prime}. An estimate of B is outlined in Chapter 6. Now
fix a b ∈ [0, U] and make a list of the integers a + bm for |a| ≤ U . We begin the
sieving with the first prime in B, say p1, and locate the first element in the list
such that a+ bm ≡ 0 (mod p1). Then it is easy to find the rest of the elements in
the list having p1 as a factor, as they are the elements a + bm ≡ kpi, k ∈ Z. We
also get that the a’s will be of the form a = −bm+ kpi, k ∈ Z.

The sieving works as follows, we have a sieve array of computer memory with
a single position assigned to each a and for the fixed b each position is initialized
with the suitable a + bm value. When we have located all the a’s in −u ≤ a ≤ u
such that a = −bm+kp1 with k ∈ Z, the prime p1 is divided out from the number
in the position corresponding to the a in the sieve array and the rest is stored.
When performed for all the primes in B, the array is scanned for 1’s, as they will
correspond to smooth numbers. Then the process is repeated for the next b value.

There are a few changes that will speed up the sieve. Divison can be changed
into subtraction by storing ln (a+ bm) instead of a+ bm. Then we subtract ln pi
from ln (a+ bm) whenever a + bm ≡ 0 (mod pi) and search for numbers close to
0 = ln(1) instead of 1. This rules out most nonsmooth numbers and trial division
on remaining numbers will complete the task. We could also initialize the array
by zeros and add ln pi since adding is a cheaper operation than subtraction.

If a+ bm is divisible by peii , ei > 1, a+ bm should be divided by peii not just pi.
Or equivalently, ei ln pi should be added instead of just ln pi. To make sure that
this particular smooth number is not denied as a smooth number, the search can
be switched to numbers in a range close to zero.

The different divisors should also be stored in some way, because we are not
only interested in the smooth elements, but also their factorization, as we were in
the QS.

We collect the smooth integers in T1 = {(a, b)|(a, b) ∈ U , a+ bm is B-smooth}.

The Algebraic Sieve

We are searching for a set T2 containing the smooth algebraic integers, that is

T2 = {(a, b)|(a, b) ∈ U , a+ bθ is B-smooth}

To find T2 we will use the norm defined in Section 3.3 together with the idea
of the rational sieve. In addition, we present the first degree prime ideals since
they can be represented in a way that can be stored on a computer which makes
it possible to sieve by prime ideals. And with those ideals defined we are able to
show why we want the smooth elements to have their particular shape.

23

A subset of Z[θ] is an ideal if and only if it is the kernel of some ring homo-
morphism defined on Z[θ] and it is a prime ideal if it is equal to the kernel of a
ring homomorphism from Z[θ] to a finite field. If the finite field is a prime field,
then the ideal is called a first degree prime ideal. The statement is equivalent to
saying that the norm of the prime ideal is a prime integer.

Proposition 7. Let f(x) be a monic, irreducible polynomial of degree d with
integer coefficients and a root θ ∈ C. Let the integers a and b be coprime. Then
all prime ideals p containing a+ bθ are first degree prime ideals.

Proof. Let a + bθ ∈ p and let ϕ : Z[θ] → F, F a field, such that kerϕ = p. Also,
let char(F) = p such that Fp is the prime field of F.

Now ϕ(a+ bθ) = 0 so ϕ(a) = −ϕ(b)ϕ(θ). Since a, b ∈ Z, ϕ(a), ϕ(b) ∈ Fp. Also,
ϕ(b) 6= 0 since otherwise ϕ(a) = 0 as well, contradicting gcd(a, b) = 1. Hence
ϕ(θ) ∈ Fp and we get that ϕ is a ring homomorphism from Z[θ] to Fp with kernel
p. Hence, p is a first degree prime ideal.

For the representation we define R(p) = {∀r ∈ Z/pZ|f(r) ≡ 0 (mod p)} for
each prime p in the rational factor base B. There could be as many as d elements
in R(p) for each prime, but heuristically the mean is only one per prime [4].

Proposition 8. Given a monic, irreducible polynomial f(x) of degree d with in-
teger coefficients and a root θ ∈ C. The set of all pairs (p, r), with p a prime and
r ∈ R(p), are in a bijective correspondence with all the first degree prime ideals of
Z[θ].

Proof. Pick a first degree prime ideal p of Z[θ]. Then [Z[θ] : p] = p for some prime
p ∈ Z and the map ϕ : Z[θ] → Z[θ]/p ∼= Z/pZ sends θ to r mod p and ϕ(1) = 1
with kernel p. Hence r is a root of f(x) (mod p) and p represents the unique
pair (p, r). Each first degree prime ideal gives a unique ϕ-map so every ideal will
correspond to a unique pair (p, r).

In the opposite direction, let p be a prime and r ∈ R(p). There exists a natural
epimorphism that maps polynomials in θ to polynomials in r, by ϕ(1) ≡ 1 (mod p)
and ϕ(θ) ≡ r (mod p). Let kerϕ = p, a prime ideal in Z[θ]. Since ϕ is onto and
kerϕ = p, it follows that Z[θ]/p ∼= Z/pZ and that [Z[θ] : p] = p. This implies that
p is a first degree prime ideal [1].

So the first degree prime ideals can be stored on a computer as a pair (p, r) and
they are the only prime ideals occuring in the factorization of 〈a+ bθ〉. Therefore,
let the algebraic factor base consist of the first degree prime ideals instead of the
general prime ideals

A = {(p, r)|p ∈ B, r ∈ R(p)}

It remains to connect the algebraic factor base to the norm. We begin by
calculating the norm of an element a+ bθ ∈ Z[θ]. Theorem 8 gives

24

N(a+ bθ) = σ1(a+ bθ)σ2(a+ bθ) . . . σd(a+ bθ)

= (a+ bθ1)(a+ bθ2) . . . (a+ bθd)

= −bd(−a/b− θ1) . . . (−a/b− θd)
= −bdf(−a/b)

Let F (x, y) be the homogenous form of f(x) = xd + cd−1x
d−1 + . . . + c0 with

ci ∈ Z for 0 ≤ i ≤ d− 1,

F (x, y) = xd + cd−1x
d−1y + . . .+ c0y

d

= −ydf(−x/y)

We view F (a, b) = N(a + bθ) as a polynomial in the two variables a and b,
and have just found a practical way to sieve the norm values. However, as the
small example below implies, the norm does not distinguish the different primes,
so various integers can give rise to the same norm.

Let f(x) = x2+1. We make the field extension Z[i], with the norm N(a+bi) =
a2 + b2. For 3 + 4i ∈ Z[i], N(3 + 4i) = 32 + 42 = 25 = 52 = N(5i), so two different
algebraic integers have the same squared norm. Also, for 5i ∈ Z[i] we get that
5i = (2 + i)(1 + 2i) is not a square in Z[i], even though N(5i) = 25 is a square. So
a product

∏
(a + bθ) with squared norm is to weak to imply

∏
(a + bθ) square in

Z[θ]. This squared property is important in the NFS.
We need a function that keeps track of the primes and that is exactly what

Proposition 8 gave us [1].
For each prime p in our factor base, the set of zeros of f mod p, denoted by

R(p) = {∀r ∈ Z/pZ|f(r) ≡ 0 (mod p)}, are collected in A. For any fixed b,
0 < b < U , and b 6= 0 (mod p), the integers a that give N(a+ bθ) ≡ 0 (mod p) are
the a’s with a ≡ −br (mod p) for some r ∈ R(p). This is because p|N(a+ bθ) and
p - b implies that f(−a/b) ≡ 0 (mod p). We notice that if b ≡ 0 (mod p), then
gcd(a, b) 6= 1 and (a, b) /∈ U .

We fix a b and initialize an array with the numbers N(a+ bθ) for |a| ≤ U . For
every p ≤ B that does not divide b and all r ∈ R(p), the positions corresponding
to the a ≡ −br (mod p) are found, and highest power of p that divide N(a + bθ)
are divided out. The quotient replaces the previous value at this position. When
we have sieved all the primes in the factor base, we search through the list for the
1’s. These locations will contain the a + bθ values with B-smooth norm. Collect
the smooth algebraic integers in T2 and repeat with the next b value.

To speed up the sieve we can make the same changes as we did with the rational
sieve.

Finally taking the intersection of T1 and T2 we get the set T of both smooth
a+ bm and a+ bθ values.

25

The Lattice Sieve

Another more complicated approach to locate the smooth values is the lattice sieve
introduced by Pollard [4]. Compared to the strategy just given, the lattice sieve
sieves fewer integers, but still returns almost all the smooth values. The downside
is the time-consuming operations and that collisions of smooth values appear. We
sketch the idea.

If we think of all pairs (a, b) with |a| ≤ U, b ≤ U as a lattice L, we can make the
sublattice Lq with a special prime q containing all the pairs such that a+ bm ≡ 0
(mod q). We divide the factor base B into two bases. Let B0 consist of the small
primes below a limit B0 and B1 the rest of the primes ≤ B. The limit B0 separating
B0 and B1 should be such that 0.1 ≤ |B0|/|B1| ≤ 0.5. The idea is that if q is chosen
from B1, it is likely that the elements in Lq are B0-smooth.

So, the main principle of the sieve is to only sieve in this smaller region Lq
with the smaller factor base B0 for the a+ bm’s and sieve N(a+ bθ) with the usual
factor base, take the intersection to locate the B-smooth values and repeat with
as many special primes as necessary.

Find any basis for the sublattice and compute a reduced basis (V1, V2) =
((a1, b1), (a2, b2)) using the LLL basis reduction method. A reduced basis con-
sists of short vectors, meaning vectors of a small orthogonality defect. Now any
element (a, b) ∈ Lq can be represented as (c1V1, c2V2), or equivalently (a, b) =
(c1a1 + c2a2, c1b1 + c2b2), with the ci’s from a smaller interval than the a and b’s.

The basis has q as the only common factor. If one of the Vi’s has p as a factor,
we get that the whole pth row or pth column of Lq should be sieved. Now say that
gcd(V1, p) = 1. We have two choices for the sieving, depending on the size of the
special prime q. Sieving by rows is preferred when the region is large, and sieving
by vectors when the region is small. The row sieving requires a small amount of
memory compared to the vector sieving.

The row sieving is familiar, every pth element in the row is to be sieved and
by calculating the inverse of V1 mod p one finds where to start in the row.

The vector sieving is a more complicated part where one sieves the (c1, c2)-
plane. Again, the points to be sieved in Lq form a sublattice, so one can make
a reduced basis for the sublattice and sieve in this even smaller area. A good
description is given in [5] where they use the lattice sieve to split the 232-digit
RSA challenge number.

The smooth a+bm values we miss are the ones that do not have a prime factor
in B1. And since the sieve is done for several special primes, collisions are likely
to happen, meaning that a special prime is simply a regular factor base prime
for another special prime and the relations are duplicated. The time-consuming
operations are the ones involving multiplication and division, as finding the basis
and the inverse.

An advantage the lattice sieve has over the line sieve is that the line sieve has
declining rate of smooth elements as we move away from the origin, while the
lattice sieve brings the sieving region back to the origin again when the special
prime is changed. Regardless, we use and study the other approach.

26

CHAPTER

FOUR

THE NUMBER FIELD SIEVE

In this chapter we will describe the fastest known factorization algorithm to factor
large integers as used in the RSA system, known as the general number field sieve.

In the late 80s the QS began to reach its limit. The numbers to split were
becoming too big and the smooth numbers was not found fast enough anymore.
John Pollard circulated a letter in 1988 with an idea on factoring large composite
numbers via algebraic number fields. He was wondering if it was possible to change
the polynomial into a cubic, quartic or even higher powers to produce more smooth
values than what quadratic polynomials did. And perhaps other rings could have
more smooth values than Z and Z/nZ? And could these other rings be used to
produce a difference of squares?

Many contributed in improving and polishing the proposed algorithm, Carl
Pomerance, the Lenstra brothers, Brian LaMacchia and Andrew Odlyzko among
others, and in 1996 the method was used to factor a 130-digit challenge number
in about 15% of the time the quadratic sieve would have used [9]. A recent record
was in 2009 when the 232-digit RSA challenge number was split [5]. This is as yet
the largest number with cryptographic meaning ever factored and in addition it
tells us that the number field sieve is worth a study.

We will primarily follow the presentations given in [1, 4], but we also found
inspiration in [11, 14].

As the method is build on the QS, the strategy is still to find smooth elements
and combine them into a congruence of squares. In addition to the two known
steps, the sieving and the linear algebra, there is now extra work in picking a
suitable polyomial and calculating the square roots.

The strategy is outlined in the next section. Then Section 4.2 will show the
smooth numbers in action and introduce the quadratic characters. The square
roots are given in Section 4.3 and the algorithm is presented in Section 4.4.

27

4.1 Strategy

We are given a composite number n, an odd number which is not a power of a
prime integer, and we want to split it. As mentioned in the introduction, the
general number field sieve share strategy with the quadratic sieve. The idea is to
write n as a difference in squares, with a few modifications.

We construct the number ring Z[θ] from f(x) as implied in Chapter 3. To
see how the homomorphism defined in (3.1) is used in the NFS to produce the
difference in squares, assume we have a set S of coprime (a, b) pairs such that

∏
(a,b)∈S

(a+ bm) is a square in Z (4.1)

∏
(a,b)∈S

(a+ bθ) is a square in Z[θ] (4.2)

Let X ∈ Z be a square root in (4.1) and β ∈ Z[θ] a square root in (4.2). If
Y ≡ ϕ(β) (mod n), then

Y 2 ≡ ϕ(β)2 ≡ ϕ(β2)

≡ ϕ

(∏
S

(a+ bθ)

)
≡
∏
S

ϕ (a+ bθ)

≡
∏
S

(a+ bm) = X2 (mod n)

We have the desired congruence of squares Y 2 ≡ X2 (mod n) and gcd(Y ±X,n)
is hopefully a factor of n. If Y ≡ ±X (mod n) or gcd(Y ±X,n) = 1, we try again
with different numbers.

4.2 Constructing the Congruence of Squares

In Section 3.4 we described how to locate the set T = T1 ∩ T2 of coprime (a, b)
pairs such that both a+ bm and a+ bθ were smooth at the same time. The set S
satisfying (4.1) and (4.2) will be a subset of T and we will now show how to locate
it. As with the sieving we present the rational and the algebraic side separately.

We have the rational factor base B = {p|p ≤ B, p ∈ Z, p prime} and the set
T1 = {(a, b)|(a, b) ∈ U , a + bm is B-smooth}. Let y = π(B), pi denote the ith
prime in B and ei ∈ Z, for 0 ≤ i ≤ y. For the B-smooth number t ∈ T1, we get

t =

y∏
i=1

peii

28

The associated exponent vector is v(t) = (e1, e2, . . . , ey).
We require |T1| > π(B) + 1, so that when we form an exponent vector for all

(a, b) ∈ T1, the number of vectors exceed the dimension of the vectors. Then there
exists a linearly dependent relation among the vectors, a subset S1 ⊂ T1, such that∑

(a,b)∈S1

v(a+ bm) ≡ 0 (mod 2)

Hence we have located a set S1 satisfying∏
(a,b)∈S1

(a+ bm) = X2
1 ∈ Z, for some X1 ∈ Z

This is just a copy of the QS and it is rather straightforward to locate the
subset of T1 satisfying (4.1). The main work will be on the algebraic side, because
we cannot imitate what we just did with the exponent vectors. If we tried to
combine the exponent vectors of the N(a + bθ) for (a, b) ∈ T2 into a square, it
would only lead to a subset of T2 where the norm of the

∏
(a+ bθ) is squared.

By Proposition 9 we know that the norm is multiplicative. If ζ = η2 for some
ζ, η ∈ Z[θ], then N(ζ) is an integer square

N(ζ) = N(η2)

= N(η)N(η)

= N(η)2

It is therefore necessary that the norm is squared to produce a square in Z[θ],
but it is not sufficient. As we saw earlier in the small example in Section 3.4,
5i = (2 + i)(1 + 2i) is not a square in Z[i], even though N(5i) = 25 is.

We will instead try to find the powers of all the first degree prime ideals p in
〈a+ bθ〉 and mimic the rational side with prime ideals.

If Z[θ] = O we know that all ideals factors uniquely as a product of prime
ideals, and we could simply take the next defined function as exponent. Since we
look at general rings, we need in addition the next proposition to state it.

Let the ordp(x) be the number of times p divides x. We define the function
ep,r(a+ bθ) by

ep,r(a+ bθ) =

{
ordp(N(a+ bθ)) if a+ br ≡ 0 (mod p)
0 otherwise

(4.3)

If we use this, then

N(a+ bθ) = ±
∏
p,r

pep,r(a+bθ)

The next nontrivial result that depends upon the Jordan-Hölder theorem es-
tablishes a homomorphism of prime ideals.

Proposition 9. For every prime ideal p ∈ Z[θ], there exists a group homomor-
phism lp : Q(θ)∗ → Z such that:

29

1. lp(α) ≥ for all α ∈ Z, α 6= 0

2. lp(α) > 0 if and only if α ∈ p for α 6= 0

3. For each α ∈ Q(θ)∗, lp(α) = 0 for all but finitely many p and∏
pN(p)lp(α) = |N(α)|, where p are all prime ideals in Z[θ]

A proof can be found in [4]. Since we only use principal ideals, the following
lemma restrict ep,r to the first degree prime ideals.

Lemma 10. Let a and b be coprime integers and let p ∈ Z[θ]. If p is not a first
degree prime ideal, then lp(a + bθ) = 0. If p is a first degree prime ideal in a
bijective correspondence with (p, r), then lp(a+ bθ) = ep,r(a+ bθ).

Proposition 9 and Lemma 10 can be used to prove the next proposition.

Proposition 10. If S2 is a finite set of coprime integer pairs (a, b) such that a+bθ
is B-smooth for each pair and

∏
(a,b)∈S2

(a+ bθ) is the square of an element of O,

then, for each prime number p and r ∈ R(p), we have

∑
(a,b)∈S2

ep,r(a+ bθ) ≡ 0 (mod 2) (4.4)

What we really seek is the opposite of Proposition 10. We will see that the
opposite can be assumed to be true if we consider quadratic characters, described
later in Section 4.2 [1, 4, 11]. There is now just four small obstructions left in the
description of the algebraic side.

Four Barriers

We have a subset S2 ⊂ T2 such that

∑
(a,b)∈S2

ep,r(a+ bθ) ≡ 0 (mod 2) (4.5)

There are four barriers keeping this from being enough to conclude (4.2). Let∏
(a,b)∈S2

(a+ bθ) = γ

1. The ideal 〈γ〉 does not need to be a square of an ideal, since we are working
in Z[θ], not O.

2. Even if 〈γ〉 = I2 for some ideal I ∈ O, I need not be principal.

3. Even if 〈γ〉 = 〈δ〉2 for some δ ∈ O, it may not be that γ = δ2.

4. Even if γ = δ2 for some δ ∈ O, it may not be that δ ∈ Z[θ] [11].

30

Note that if Z[θ] = O, then (1) and (4) would not be a problem. If O was
a PID, then (2) would be fixed. And if O is a PID and we have all the units
of O, then (3) could be solved by including the units in a linear algebra step.
Since we study the general case, none of these assumptions can be made. Luckily
two modifications take care of these obstructions. The fourth problem is easily
overcome by the following lemma.

Lemma 11. Let f(x) be a monic, irreducible polynomial with integer coefficients
and a root θ ∈ C. Let γ ∈ O. Then f ′(θ)γ ∈ Z[θ].

Proof. A proposition by Euler states that: If we have f(x) = xd+. . .+c0 ∈ Z[x] and

the basis {1, θ, . . . , θd−1} for Z[θ] over Z and also f(x)
x−θ = bd−1x

d−1+. . .+b0 ∈ Z[θ][x]
and the basis {b0/f ′(θ), b1/f ′(θ), . . . , bd−1/f ′(θ)} for Q(θ) over Q, then the two

bases are complementary, meaning Tr
(
θi

bj
f ′(θ)

)
= δij , the Kronecker delta [17].

The trace is the sum of the embeddings outlined in Theorem 8, and as the
norm it takes elements from Q(θ) to Q. In particular, elements in O are sent to Z.

For γ ∈ O, let γ = ad−1
bd−1

f ′(θ) + . . .+ a0
b0
f ′(θ) , ai ∈ Q. We want ai ∈ Z. But

Tr(γθk) = Tr

(∑
i

ai
bi

f ′(θ)
θk

)
=
∑
i

aiTr

(
bi

f ′(θ)
θk
)

=
∑
i

aiδik = ak

Hence ai ∈ Z,∀i, and we can conclude that f ′(θ)γ ∈ Z[θ] [11]

Because of Lemma 11 we replace (4.1) and (4.2) with

f ′(m)2
∏

(a,b)∈S

(a+ bm) being a square in Z (4.6)

f ′(θ)2
∏

(a,b)∈S

(a+ bθ) being a square in Z[θ] (4.7)

We can assume that for 1 < f ′(m) < n, the gcd(f ′(m), n) = 1, otherwise n is
split. The other obstructions are overcome by the quadratic characters.

The Quadratic Characters

It was Adleman who introduced the quadratic characters and the idea was based

upon the Legendre symbols. A general fact about the Legendre symbol
(
w
q

)
is

that if q is an odd prime, w an integer and
(
w
q

)
= −1, then w is not a square.

Adleman stated the converse, even though it does not hold in general [11].
That is, we have the integer w and k randomly chosen odd primes qi, such that(

w
qi

)
= 1,∀i. The probability that w is not a square is heuristically 2−k.

This is easily seen. Let ln = q1q2 . . . qk. Then Z∗ln ∼= Z∗q1 × . . .× Z∗qk , where(
w

ln

)
=

k∏
i=1

(
w

qi

)

31

To be a square in Z∗ln is identical to being a square in all the Z∗qi ’s. Exactly
half the elements in Z∗qi are squares and we have k primes to check. Therefore, if

k is reasonably large and
(
w
q

)
= 1 for all k primes, then it is highly likely that w

is square, so we assume it is.
We use this idea to make a squareness test for

∏
(a,b)∈S2

(a + bθ), since we

have that it is a square of an ideal in Z[θ], but we want it to be a square of an
element in Z[θ]. The Legendre symbol will hold for the primes in the factor base,
because

∑
(a,b)∈S2

ep,r(a+ bθ) ≡ 0 (mod 2). If we test enough primes outside the
factor base and the Legendre symbols are all 1, then we can assume with high
probability that

∏
(a,b)∈S2

(a+ bθ) is a square of an element of Z[θ]. Because of the
next proposition, we can do the squareness test with algebraic integers a+ bθ.

Proposition 11. Let f(x) be a monic, irreducible polynomial of degree d with
integer coefficients and a root θ ∈ C. Let q be an odd prime integer and s ∈ R(q)
such that f ′(s) 6= 0 (mod q). Let S2 be a set of coprime integers (a, b) such that
f ′(θ)2

∏
(a,b)∈S2

(a+ bθ) is a square in Z[θ]. Let q - a+ bs for any pair (a, b) ∈ S2.
Then ∏

(a,b)∈S2

(
a+ bs

q

)
= 1 (4.8)

Proof. Let ϕ : Z[θ]→ Z/qZ with kerϕ = q be the epimorphism defined in Propo-
sition 8, which maps θ to s (mod q). Then q is a first degree prime ideal in
bijective correspondence with (q, s). Restrict ϕ to elements in Z[θ] not in q,

such that the composition χ : Z[θ] − q → {±1} defined as χ(α) =
(
ϕ(α)
q

)
is

well-defined. We have f ′(θ)2
∏

(a,b)∈S2
(a + bθ) = γ2 for some γ ∈ Z[θ]. Then

ϕ(γ2) ≡ f ′(s)2
∏

(a,b)∈S2
(a + bs) 6≡ 0 (mod q), by assumption. Hence, χ(γ2) =(

ϕ(γ2)
q

)
=
(
ϕ(γ)ϕ(γ)

q

)
=
(
ϕ(γ)
q

)2
= 1. Also χ(f ′(θ)2) = 1. By taking χ on both

sides of our assumption it follows that
∏

(a,b)∈S2

(
a+bs
q

)
= 1.

The proposition states another necessary condition for squareness, not a suf-
ficient one. But if we have k odd primes that do not divide N(a + bθ) for any
(a, b) ∈ S2 and si ∈ R(qi), for 1 ≤ i ≤ k, where f ′(si) 6≡ 0 (mod qi), then with
high probability (4.5) and (4.8) will imply that∏

(a,b)∈S2

(a+ bθ) = γ2 for some γ ∈ O

It is conjectured that k = b3 lnnc primes chosen as small as possible will be
enough.

If we now make the associated exponent vectors of the factorization of the
smooth N(a + bθ)’s and include the quadratic characters it will be sufficient to
construct a square [4, 11].

To do so the multiplicative Lagrange symbol group {±1} is changed into an
additive group over Z2 by

32

(
a+ bsi
qi

)
=

{
1 enter 0
−1 enter 1

We name the base of the first degree primes ideals q the quadratic character
base Q and the function χ corresponding to each q the quadratic character [1].

To sum up the algebraic side, we want to find (4.7). From the sieving we have
a set T2 of B-smooth elements (a, b) over the factor base A. This means that the
norm N(a + bθ) factors completely over the primes occurring in the (p, r) pairs
corresponding to the first degree prime ideals in the algebraic factor base.

We select a quadratic character base Q with a finite number of first degree
prime ideals q where the corresponding pairs (q, s) satisfy Proposition 11.

When we have more (a, b) pairs than the number of first degree prime ideals
in the algebraic factor base and in the quadratic factor base, it is possible to find
a subset S2 ⊂ T2 such that (4.4) is satisfied for all p ∈ A and (4.8) for all q ∈ Q.
Since satisfying (4.4) and (4.8) is sufficient, we will find a subset satisfying (4.7).

The Linear System

In the above we outlined the rational and the algebraic use of the smooth numbers
separately, but the linear algebra is performed on the set T . We have

T = T1 ∩ T2 = {(a, b)|(a, b) ∈ U , a+ bm,N(a+ bθ) is B-smooth}

From T we locate the corresponding exponent vectors and they are divided into
three parts of respectively y + 1 = π(B) + 1, y′ = |A| and k elements as follows.

The rational factor base B consists of y primes p1, p2, . . . , py, all below the
limit B. The algebraic factor base the y′ pairs (pi, ri), with pi ∈ B and ri ∈ R(pi),
1 ≤ i ≤ y. And the quadratic character base is the first k pairs (qi, si) such that
qi > B and si ∈ R(qi) with f ′(si) 6≡ 0 (mod qi), 1 ≤ i ≤ k.

Define

v̂ : T → Z1+y+y′+k
2

Let (a, b) ∈ T . The first coordinate of v̂(a, b) is the sign of a + bm. It is 1 if
a+ bm < 0 and 0 if a+ bm > 0. We found in Section 4.2 that a+ bm =

∏y
i=1 p

ei
i ,

with pi ∈ B, ei ∈ Z, 1 ≤ i ≤ y, and the associated exponent vector gives the next
y coordinates of v̂ as v(a+ bm) = (e1, e2, . . . , ey).

The next y′ coordinates of v̂ are given by ep,r(a + bθ) mod 2 as (p, r) runs
through A, as outlined in Section 4.2.

The last k coordinates of v̂ are determined by
(
a+bs
q

)
as (q, s) goes through

Q. It is 0 if
(
a+bs
q

)
= 1 and 1 if

(
a+bs
q

)
= −1.

If |T | > 1 + y + y′ + k, then the vectors v̂ with (a, b) ∈ T are linearly depen-
dent. Then there exist a subset S ⊂ T such that

∑
(a,b)∈S v̂ is the zero vector

in Z1+y+y′+k
2 . This set will satisfy (4.6) and (4.7) simultaneously [4]. There are

various ways to solve the linear algebra step, but we will not outline any as they
are out of scope for this thesis.

33

4.3 The Square Roots

We have X2 ∈ Z and β2 ∈ Z[θ] such that ϕ(β2) ≡ Y 2 (mod n) and now we need
the square roots to be able to calculate the gcd(Y ±X,n).

As always, the rational side is fairly easy. We just look at the adjoint rational
exponent vector to the product X2 ∈ Z. The vector gives us the factorization
of X2 and by dividing through it with 2 we obtain the prime factorization of X.
Remark that we do not want to nor need to calculate the huge number X, since
we seek its residue modulo n. We therefore reduce all the prime power divisors
of X and then multiply them together to obtain X mod n, instead of multiplying
them together and then reducing it.

There is more work to do on the algebraic side. We have the factorization of
β2 as an ideal, it is the prime ideals found in Section 3.4 together with Lemma
10. However, it is not true in general that all prime ideals have generators and
computing the units is still hard. We will instead try to compute β as a polynomial
combined with Hensel’s lifting and the Chinese Remainder Theorem.

Let β2 be expressed as
∑d−1
i=0 biθ

i for bi ∈ Z. Then for some unique ai ∈ Z,

β =
∑d−1
i=0 aiθ

i and by using the homomorphism (3.1) we get ϕ(β) =
∑d−1
i=0 aim

i.

To gain this we make a new homomorphism with a prime q̃, where f(x) is
irreducible modulo q̃

ηq̃ : Z[θ]→ Zq̃[x]/(f(x))

d−1∑
i=0

αiθ
i 7−→

d−1∑
i=0

αix
i + (f(x))

The prime q̃ lies below a prime ideal q̃ and Zq̃[x]/(f(x)) ∼= Z[θ]/q̃.

We have ηq̃(β
2) =

∑d−1
i=0 bix

i + (f(x)) and call it b. We want to find ηq̃(β) =∑d−1
i=0 aix

i + (f(x)) = a, so the square root of b must be calculated. Luckily, it is
easy to calculate it in the finite field Zq̃[x]/(f(x)) using for instance the Tonelli-
Shanks algorithm. We express the root as

√
b = c =

d−1∑
i=0

cix
i + (f(x))

The algorithm gives c ≡ ±a, that is, ci ≡ ±ai (mod q̃). We now use Hensel’s
Lemma which is a construction method that allows us to ”lift” a solution mod q̃
to a solution mod q̃2 and so on. We give an example before stating the theorem.

We have g(x) = x2−e and x1 such that x21 ≡ e (mod q̃). Let x2 ≡ (x21+e)/2x1
(mod q̃2). This particular x2 is located with Newton’s method as follows

x2 = x1 −
g(x1)

g′(x1)
= x1 −

x21 − e
2x1

=
x21 + e

2x1

Then x22 ≡ e (mod q̃2) and hence x2 is a solution to g(x) mod q̃2.

34

Theorem 12 (Hensel’s Lemma). Let q̃ be a prime, g(x) ∈ Z[x] with x1 ∈ Z such
that g(x1) ≡ 0 (mod q̃k) for some k and g′(x1) 6≡ 0 (mod q̃). Then there is a
unique solution x2 mod q̃2k such that g(x2) ≡ 0 (mod q̃2k) and x2 ≡ x1 (mod q̃k),

given as x2 ≡ x1 − g(x1)
g′(x1)

(mod q̃2k).

Proof. x2 = x1 + tq̃k, for some t, since x2 ≡ x1 (mod q̃k). We get

g(x2) = g(x1 + tq̃k) = g(x1) + g′(x1)tq̃k + higher terms

≡ g(x1) + g′(x1)tq̃k mod q̃2k

The first line is the Taylor series of g(x) around x1 or simply the finite expansion
and regrouping of terms around x1, since g(x) is a polynomial.

For g(x2) ≡ 0 (mod q̃2k) to hold, we need g(x1)+g′(x1)tq̃k ≡ 0 (mod q̃2k). We
are given g(x1) = sq̃k, for some s, so we get (s+ g′(x1)t)q̃k ≡ 0 (mod q̃2k), which
is equivalent to s + g′(x1)t ≡ 0 (mod q̃k). Since g′(x1) 6≡ 0 (mod q̃) it has an
inverse in Zq̃, and t ≡ −sg′(x1)−1 (mod q̃k). This t is uniquely given in [1, q̃k − 1]
and we get the unique x2 mod q̃2k.

Now g(x1)+g′(x1)tq̃k ≡ 0 (mod q̃2k) give −tq̃k ≡ g(x1)/g′(x1) and by rephras-

ing x2 = x1 + tq̃k, x2 ≡ x1 − g(x1)
g′(x1)

(mod q̃2k) follows.

We could now choose one of the square roots and lift it to a square root mod
q̃2, q̃4, q̃8 . . . until the modulo are above an estimate of the coefficients ai of ηq̃(β).
However, the size of the last modulo will be extremely large and in a worst-case
scenario it will use as much time as the rest of the number field sieve. The solution
is that we want the answer modulo n.

Locate j different primes q̃i such that f(x) is irreducible mod q̃i,∀i, and cal-
culate the square root of β2 in the various fields Zq̃i [x]/(f(x)), for all q̃i. Now
we choose one of the square roots and lift it to a square root mod mi,∀i, where
mi = q̃ki for suitable ki’s for every q̃i [2]. We name the different square roots
βi mod mi. The various square roots will be much smaller than the single one
above. If we assume we picked the right square root for all i, we get

β ≡ β1 (mod m1)

β ≡ β2 (mod m2)

...

β ≡ βj (mod mj)

If we have the product m1m2 . . .mj bigger than the ai estimate, we obtain the
unique solution β by the Chinese Remainder Theorem.

The sign of the different square roots should be the same as the sign of β. If
the degree of f(x) is odd, we can use N(−α) = −N(α) to test all the βi’s, since
N(−α) = σ1(−α) . . . σd(−α) = (−1)dσ1(α) . . . σd(α) = −N(α).

Now we use ϕ to obtain the solution in Zn, ϕ(β) ≡ Y (mod n), and hopefully
gcd(Y ±X,n) is a nontrivial factor of n.

35

4.4 The Algorithm

In summary, we have n, an odd integer which is not a power of a prime integer,
and we want to split it.

1. Choose m and d. Find a monic polynomial f(x) ∈ Z[x] of degree d such that
f(m) ≡ 0 (mod n) and find a root θ of f(x). Test to see if f(x) is reducible.
If so, return the splitting and we are done.

2. Compute gcd(f ′(m), n). If this is a nontrivial factor, we are done.

3. For ∀p ≤ B, calculate R(p) = {∀r ∈ Zp|f(r) ≡ 0 (mod p)}.

4. Locate the first k pairs (qi, si) such that qi > B, si ∈ R(qi) and f ′(si) 6≡ 0
(mod qi), for all i ∈ [1, . . . , k].

5. Find T = {(a, b)|a, b ∈ Z, gcd(a, b) = 1, |a|, b < U, a+bm,N(a+bθ)B-smooth}
using the sieves described in Section 3.4.

6. Make the matrix consisting of the vectors v̂(a, b), ∀(a, b) ∈ T as outlined in
Section 4.2.

7. Find a nonempty subset S ⊂ T such that
∑
S v̂(a, b) ≡ 0 (mod 2), using

linear algebra.

8. Compute the residue X mod n from X2 = f ′(m)2
∏

(a,b)∈S(a+ bm).

9. From f ′(θ)2
∏

(a,b)∈S(a+ bθ), find a square root β =
∑d−1
i=0 aiθ

i as described

in Section 4.3. Compute ϕ(β) ≡ Y (mod n).

10. Calculate gcd(X ± Y, n) = D.

If D is trivial, go back to the linear algebra and find another linear dependencie
in the matrix. If no such dependencie is located, expand the boundaries and sieve
until more smooth values are found.

The boundaries and the overall complexity of the NFS are discussed in Chapter
6.

36

CHAPTER

FIVE

THE NUMBER FIELD SIEVE AND THE DISCRETE
LOGARITHM PROBLEM

We will now explore an algorithm to solve the discrete logarithm problem using the
number field sieve (NFS-dlog). As the name reveals, it derives from the number
field sieve algorithm for splitting composite numbers. It is also a great modifica-
tion of the index-calculus method, with crossover point at approximately 66-digit
primes.

There are given different variations of the NFS-dlog with the desired running
time and some of these are more heavily based on the ICM. Daniel M. Gordon gives
one in [3], where he calculates the discrete logarithms of the primes in the factor
base, then finds the discrete logarithms of ”medium-sized” primes and combines
these into the discrete logarithm. Oliver Schirokauer improved Gordon’s algorithm
and we will mainly follow his presentation given in [12, 13]. We also found some
inspiration in [16].

A recent record using the number field sieve to compute the discrete logarithm
in a prime field is held by Thorsten Kleinjung who in 2007 managed to compute
a discrete logarithm in a prime field where the prime had 160 digits [12]. As the
record proclaims, the development in the discrete logarithm algorithm lacks behind
the improvements done in the factorization algorithms.

So, we are given Fq, a field of q elements, q prime. We also have two elements
g, t ∈ F∗q such that t is in the subgroup of F∗q generated by g. The discrete logarithm
problem of t with respect to the generator g is finding the least nonnegative integer
z such that gz ≡ t (mod q). It is written as z ≡ logg t mod q − 1.

The rest of this chapter is as follows. The next section contains a strategy for
solving the problem and an overview on how the algorithm works. Then in Section
5.2 we see the smooth numbers in action, before we build the linear equations in
Section 5.3 and solves the problem. In Section 5.4 we study some complications
concerning smooth generator, smooth t, ramified primes and prime powers and
lastly, in Section 5.5 we present the algorithm.

37

5.1 Strategy

Given the problem in the introduction, we could go rock hard and try to directly
locate the discrete logarithm modulo the order of the group. However, several
problems would arise, the most severe of them is that the complexity would collapse
due to the sizes of the estimates and numbers used. So a bit more clever approach
is preferred. We will instead find the discrete logarithm modulo primes l, where
l|(q − 1), and glue the solutions together to obtain the z ≡ logg t mod q − 1.

We start by choosing a polynomial f(x) of degree d such that f(m) ≡ 0 (mod q)
and construct the number ring Z[θ] of a root θ ∈ C of f as described in Chapter
3. We want f to be a monic, irreducible polynomial. We repeat the idea, let
m = bq1/dc and write q in base m with ci ∈ Z such that

q = md + cd−1m
d−1 + . . .+ c0

The demands will most likely be satisfied by the polynomial f(x) = xd+. . .+c0,
otherwise one of its irreducible polynomial factors having m as a root mod q will
work. An estimate of the degree d is presented in Chapter 6. We also want the
prime divisors of q − 1 to be unramified in Q(θ). This is discussed in Section 5.2.

The polynomial defines the number ring Z[θ] and the homomorphism (3.1) as

ϕ : Z[θ]→ Zq
θ 7→ m (mod q)

Together with the norm map N : Z[θ]→ Z from Section 3.3, we have our setup.
To find the discrete logarithm modulo l we combine the smooth elements into

a multiplicative relation of lth powers. That is, obtain lth powers ω ∈ Z[θ] and
τ ∈ Z with the property that ϕ(τ) = gyltϕ(ω) for some yl. The sieve defined in
Section 3.4 will help us with the task. We construct a set T of B-smooth integers
a+ bm ∈ Z and a+ bθ ∈ Z[θ] and from it we locate a subset S such that

τ = gylt
∏

(a,b)∈S

(a+ bm)y(a,b) is an lth power in Z (5.1)

ω =
∏

(a,b)∈S

(a+ bθ)y(a,b) is an lth power in Z[θ] (5.2)

To be able to include the g and t in (5.1), they must have smooth preimages.
This small complication is discussed in Section 5.4.

When the set S is found, we get the equation

ϕ(τ) = gyltϕ(ω)

Since both τ and ω are lth powers, we get that gylt also is an lth power in F∗q
and hence yl ≡ − logg t (mod l). Lastly, combining the different l solutions via
the Chinese Remainder Theorem will reveal the z ≡ logg t (mod q − 1).

38

5.2 Smooth Numbers in Action

In Section 3.4 we gave a description on how to locate a set T = T1 ∩T2 of coprime
integers (a, b) such that both a+bm and a+bθ are B-smooth. To locate the subset
S such that (5.1) and (5.2) are satisfied, we use a similar method as we used in the
NFS. We begin the presentation with a brief repetition of the setup for the sieve.

The smoothness bound B provides two factor bases, the rational and the alge-
braic factor base

B = {p|p ≤ B, p ∈ Z, p prime}
A = {(p, r)|p ∈ B, r ∈ R(p)}

The set R(p) we defined in Section 3.4 as all pth roots of f(x). We have the
universe U = {(a, b)|a, b ∈ Z, gcd(a, b) = 1, |a| ≤ U, 0 < b ≤ U}, where we sieve
with the two factor bases to locate the set

T = {(a, b)|(a, b) ∈ U , a+ bm,N(a+ bθ) is B-smooth}

Both the parameters B and U are discussed and estimated in Chapter 6.
The fact that we are able to use a sieve to detect the smooth values in the

NFS-dlog is one of the reasons why the algorithm is faster than other methods.
Recall that at this stage the strategy in the NFS is to do linear algebra on the

exponent vectors corresponding to the elements in T together with the quadratic
characters to locate a subset S with the squared property. Now seeking the lth
powers, we will see that the rational side is again rather straightforward. The
work is on the algebraic side, because it is not sufficient to know that the norm
of an algebraic element is an lth power, we need to know that the element itself
is an lth power. Sounds familiar? It was Oliver Schirokauer who in his paper [13]
came with the major theoretical breakthrough of the following maps to replace the
quadratic characters in the NFS.

The Character Maps

Let Γ = {ω ∈ O|N(ω) 6≡ 0 (mod l)} be a multiplicative subgroup of O and find
the least integer ε such that for all ω in Γ we have ωε ≡ 1 (mod l). We claim that
the optimal ε is the least common multiple of the orders |(O/`)∗|, where ` are all
prime ideals above l. We will prove the statement in a moment, but recall that we
wanted l to be unramified.

Definition 8. We have a finite extension Q(θ)/Q. A prime ideal 〈l〉 ∈ Z generates
the ideal lO of O and it has a unique representation

lO =
∏
i

`fii

The `i’s are distinct prime ideals of O above l and the powers fi are called the
ramification indices. If fi = 1,∀i, then the prime l is said to unramify in O.

39

Lemma 13. Let l be unramified in O. The least nonnegative integer ε such that
for every element ω ∈ Γ we have that ωε ≡ 1 mod l is

ε = lcm{|(O/`)∗||` all prime ideals dividing 〈l〉}

Proof. Let `1, `2, . . . , `k denote the k prime ideals dividing 〈l〉.
The ε will be divisible by |(O/`1)∗|, because then ε = k1|(O/`1)∗| for some

integer k1 and for all ω + `1 ∈ O/`1 we get (ω + `1)ε = 1 + `1 ∈ O/`1.
Hence ε is divisible by every |(O/`i)∗|, because for all elements ω in O and for

all `i, we get that ωε = 1 + ω′, where ω′ ∈ `i,∀i. Since l is unramified, we can
write the ideal as 〈l〉 =

∏k
i=1 `i =

⋂
i `i. But if ω′ ∈ `i,∀i, then ω′ ∈ 〈l〉 and hence

ωε ≡ 1 (mod l). The least integer dividing all the orders is precisely the least
common multiple.

If l ramified in O, we could not find such an ε. How do we test whether l
ramifies or not?

A prime l ramifies if it divides the discriminant. To calculate the discriminant of
Q(θ) we use a basis forO as a Z-module, say {a1, a2, . . . , ad}, and the d embeddings
from Q(θ) into C defined in Theorem 8. The discriminant will be the square of
the determinant of the matrix given as

∆Q(θ) = det


σ1(a1) . . . σ1(ad)
σ2(a1) . . . σ2(ad)

...
. . .

...
σd(a1) . . . σd(ad)


2

As the determinant, the discriminant is invariant to the basis for O as a Z-
module.

Say we found that l is uramified and have located ε. Now define

λ : Γ→ lO/l2O
ω 7→ ωε − 1 + l2O

The mapping λ is a well-defined homomorphism since

λ(ωω̂) = (ωω̂)ε − 1 + l2O
= (ωε − 1) + (ω̂ε − 1) + (ωε − 1)(ω̂ε − 1) + l2O
= λ(ω) + λ(ω̂)

(ωε − 1)(ω̂ε − 1) will lie in l2O since ωε − 1 = lk′ and ω̂ε − 1 = lk′′, for some
k′, k′′ ∈ O, so (ωε − 1)(ω̂ε − 1) = l2k′k′′ ∈ l2O.

The group lO/l2O is a Z-module and lZ lies in Ann(lO/l2O), so lO/l2O is
a Z/lZ-module. If we now represent lO as a direct sum lZ ⊕ lZ . . . ⊕ lZ of d
copies of lZ and the same for l2O as the direct sum of d copies of l2Z, we see that
lO/l2O ∼= lZ/l2Z ⊕ . . . ⊕ lZ/l2Z. Hence lO/l2O is a free Z/lZ-module of rank d
and we can make the basis {bil + l2O}di=1 for lO/l2O over Z/lZ.

We have the following important theorem from Galois theory.

40

Theorem 14. Let lO/l2O be a free Z/lZ-module with rank d. Then

lO/l2O ∼= (Z/lZ)d

The two ways to represent lO/l2O by are isomorphic. We see it easily with the
map η : lZ→ Z/lZ sending lk to k+ lZ, for k ∈ Z. The map η is onto with kernel
{l2k} = l2Z.

From the theorem we get that λ consists of d maps λi : Γ → Z/lZ. They are
determined by the congruence

ωε − 1 ≡
d∑
i=1

λi(ω)bil mod l2

The λi’s are well-defined homomorphisms by a similar argument as for λ. We
call them the character maps and they will help us construct lth powers in the
number ring Z[θ], because any lth power is mapped to 0 by the λi’s. How?

Let ω be an lth power in Z[θ]. Then there exists a ω̄ ∈ Z[θ] such that ω = ω̄l.

We know λ(ω) ≡
∑d
i=1 λi(ω)bil mod l2. Also λ(ω) = λ(ω̄l) = lλ(ω̄) ≡ 0. Hence

all λi(ω) = 0,∀i, when ω is an lth power.

The Linear System

We have all the tools to make the corresponding exponent vectors to the elements
in T . As with the NFS, the vectors have three parts consisting of y = π(B),
y′ = |A| and d elements defined as follows.

The rational factor base B consists of the y primes, p1, p2, . . . , py and the alge-
braic factor base A the y′ pairs (pi, ri), where pi ∈ B and ri ∈ R(pi), 0 ≤ i ≤ y,
and the last d values we defined in the section above as the character maps λi.

For (a, b) ∈ T , we have

a+ bm =

y∏
i=1

peii

N(a+ bθ) =
∏

(p,r)∈A

pep,r(a+bθ)

The function ep,r was defined in (4.3).
The corresponding exponent vector v̂(a, b) consist of the values (e1, e2, . . . , ey)

as the first y coordinates, then the next y′ coordinates are given by ep,r(a+ bθ) as
(p, r) runs through A. The last d values are (λ1(a+bθ), λ2(a+bθ), . . . , λd(a+bθ)).

If |T | > y + y′ + d, we get more rows than columns in the matrix consisting
of the vectors just defined and could use linear algebra to find the subset S of lth
powers. We formalize the statement in the next section.

41

5.3 Constructing The Solution

Every pair in T has a fitting exponent vector of length y + y′ + d. In Section 5.1
we urged the need for smooth preimages of t and g. Assume there exists some
kg, kt ∈ Z such that

g + kgq =

y∏
i=1

pgii ∈ Z (5.3)

t+ ktq =

y∏
i=1

ptii ∈ Z (5.4)

The corresponding vector v(g) has (g1, g2, . . . , gy) as first y coordinates and
zero on the last y′ + d places. The v(t) is defined in the same way.

We make the system Y ᵀ
l A ≡ −v(t) (mod l) where

A =


v(g)

v̂(a1, b1)
v̂(a2, b2)

...
v̂(a|T |, b|T |)


Linear algebra solves the system and returns

Y ᵀ
l =

[
yl y(a1,b1) y(a2,b2) . . . y(a|T |,b|T |)

]
Some of the entries in Yl will be zero, and the desired S ⊂ T is found. Actually,

we have solved our problem and the solution is

yl ≡ − logg t (mod l)

To see this, express the solution to the matrix as

−v(t) ≡ ylv(g) + ya1,b1 v̂(a1, b1) + . . .+ ya|T |,b|T | v̂(a|T |, b|T |) (mod l)

Now make the corresponding τ and ω

τ = gylt
∏

(a,b)∈S

(a+ bm)y(a,b) (5.5)

ω =
∏

(a,b)∈S

(a+ bθ)y(a,b) (5.6)

Since g, t and a+ bm are all B-smooth in Z, we can rewrite (5.5) as

42

τ =

y∏
i=1

peii

Clearly τ is an lth power of an element in Z ⊂ Z[θ], since ei ≡ 0 (mod l),∀i.
Similarly, e(p,r) ≡ 0 (mod l),∀(p, r) ∈ A, and δi(ω) ≡ 0 (mod l) for i ∈ [1, d]

in (5.6), so ω is an lth power in O. To make ω an lth power of an element in
Z[θ], we revisit Lemma 11 and see that f ′(θ)lω and f ′(θ)lτ are lth powers of some
elements in Z[θ].

Finally, using (3.1) and that ϕ(m) = ϕ(θ) we get

ϕ
(
f ′(θ)lτ

)
= ϕ

f ′(θ)lgylt ∏
(a,b)∈S

(a+ bm)y(a,b)


= gyltϕ

f ′(θ)l ∏
(a,b)∈S

(a+ bθ)y(a,b)


= gyltϕ

(
f ′(θ)lω

)
Hence we find that gylt is an lth power in Zq as ϕ(f ′(θ)lτ) and ϕ(f ′(θ)lω) are

and the solution is yl ≡ − logg t (mod l).
After repeating for all prime divisors of (q−1), the Chinese Remainder Theorem

will glue the solutions modulo the different prime divisors together and we find
the z ≡ logg t (mod q − 1).

43

5.4 Some Complications

Smoothness

We require g and t to be smooth in Z to be able to include them in (5.5) and (5.6).
It will be sufficient to know two elements g and t being the preimage of g and t
in Z[θ] such that the ideal they generates 〈g〉 and 〈t〉 factorizes completely over
the algebraic factor base A. Then we define the vectors v(g) and v(t) to contain
the exponents of the prime ideals in the factorization and the values λi(g) and
λi(t) replace v(g) and v(t) in Y ᵀ

l A ≡ −v(t) (mod l). Then linear algebra would
produce the lth powers

τ =
∏

(a,b)∈S

(a+ bm)y(a,b)

ω =gyl t
∏

(a,b)∈S

(a+ bθ)y(a,b)

The solution yl ≡ − logg t (mod l) would follow.
If we cannot find smooth preimages of g in neither Z nor Z[θ], there is a third

solution. If we manage to find another generator g′ with a smooth preimage in
either Z or Z[θ], the logarithm of t is easily located by

logg t ≡
logg′ t

logg′ g
mod (q − 1) (5.7)

There are other ways to get around the difficulty of smooth preimages of t and
g, see [12] for more details.

Ramification

If l ramified in O, Lemma 13 cannot be used and the character maps fails. Then
we need a different map to do the same work [13]. Let l =

∏
i `i, where `i are all

prime ideals of O above l. Then

ωε ≡ 1 (mod l)

The character map λ can now be replaced by

Λ : Γ→ l/ll

ω 7→ ωε − 1 + ll

The rest of the steps in the algorithm must also be modified to fit the new map.
The complication is minor, since it is only the few primes dividing the determinant
which ramifies.

44

The Primes Dividing the Order

There are two issues concerning the primes dividing the order. The small primes
and the larger prime powers.

We can use the NFS or other methods to get that q− 1 =
∏
i l
eli
i , some eli ∈ Z

and li primes.
Now, we know that the NFS is the optimal choice to split n when n is big, say

more than 110 digits, and that the algorithm is too extravagant for smaller n’s and
then other methods should be used. The same rule holds for the NFS-dlog. The
algorithm is to cumbersome for small numbers. Hence, other methods should be
applied, for instance the already discussed ICM. As mentioned in the introduction
the crossover point between the NFS-dlog and the ICM is at approximately 66-
digit primes. There exists a lot of methods to solve the discrete logarithm modulo
small primes, but in this thesis we have only cared for the large primes.

The NFS-dlog will be the best choice for the big primes and one should proceed
as we have outlined in this chapter. However, there is extra work for the prime
powers, that is, if lel |(q − 1) for el > 1 and l a large prime.

The first issue is the character maps. In Section 5.2 we defined the group
Γ = {ω ∈ O|N(ω) 6≡ 0 (mod l)} and the map

λ : Γ→ lO/l2O
ω 7→ ωε − 1 + l2O

This will only help us to determine whether ω is an lth power or not. Now
seeking the lelth power, further use of the λ is required. Let Γ = Γ1 and λ = λ1.
Define Γ2 = {ω ∈ Γ1|λ1(ω) = 0} and the map

λ2 : Γ2 → l2O/l2
2

O

ω 7→ ωε − 1 + l2
2

O

With the same argument as in Section 5.2 we get that l2O/l22O is a free Z/l2Z-

module of rank d and can make the basis {b′il2 + l2
2O}di=1. We use Theorem 14

and get that λ2 is given by the d maps λ2,i : Γ2 → Z/l2Z. They are determined
by the congruence

ωε − 1 ≡
d∑
i=1

λ2,i(ω)b′il
2 mod l2

2

So λ2 helps us decide which values are l2th powers. The next map is given as
λ3 : Γ3 → l2

2O/l23O with Γ3 = {ω ∈ Γ2|λ2(ω) = 0} and so on. We repeat until
we have reached a power of l greater than el. Since l is a large prime divisor of the
order of the group, el will most likely not be a big integer and we will only need a
few new maps.

Now the last d λj,i’s from above are included in the exponent vectors instead
of the d λi’s from Section 5.2 and the usual linear algebra will reveal a solution

45

AᵀYl,1 ≡ −v(t)ᵀ (mod l) as in Section 5.3. But again the prime powers compli-
cates the situation, since we want to find AᵀYl,k ≡ −v(t)ᵀ (mod lel), for the power
el. So we need to lift the already found solution Yl,1 (mod l) to this higher power.
We begin by writing AᵀYl,1 − (−v(t)ᵀ) = lv(Yl,1) for some integer vector v(Yl,1)
and solves AᵀYl,2 ≡ v(Yl,1) (mod l). Then it follows that Aᵀ(Yl,1−lYl,2) ≡ −v(t)ᵀ

(mod l2).
From the last equation we get that Aᵀ(Yl,1 − lYl,2) − (−v(t)ᵀ) = l2v(Yl,2) for

some integer vector v(Yl,2). Then there exist a Yl,3 such that AᵀYl,3 ≡ v(Yl,2)
(mod l) and hence Aᵀ(Yl,1 − lYl,2 − l2Yl,3) ≡ −v(t)ᵀ (mod l3) [13].

We continue the process until the solution modulo the desired power is found.
Again, if l ramified, then Λi : Γi → l2

i−2

l/l2
i−1

l replaces λi : Γi → l2
i−1O/l2iO

and so on [13].
The issue with the prime powers is rather small, since in most cases the biggest

primes occure once in the order and the smaller primes are handled with other
effective algorithms.

Notice that if the order has a lot of small primes and only a few medium
sized ones, then the discrete logarithm will be easier to find than if one took care
of choosing the order properly. So if one wish to make the discrete logarithm
problem as hard as possible one should make sure that p = (q − 1)/2 is a prime.

We sum up the NFS-dlog in the next section and we do it for a single l, not
considering the small complications discussed in this section.

5.5 The Algorithm

In summary, we want to find the least nonnegative z such that gz ≡ t (mod q)

1. Find a prime l dividing the order q − 1.

2. Choose m and d. Find a monic irreducible polynomial f(x) ∈ Z[x] of degree
d such that f(m) ≡ 0 (mod q).

3. For ∀p ≤ B, calculate R(p) = {∀r ∈ Zp|f(r) ≡ 0 (mod p)}.

4. Find T = {(a, b)|a, b ∈ Z, gcd(a, b) = 1, |a|, b < U, a+bm,N(a+bθ) B-smooth}
using the sieve described in Section 3.4.

5. Find smooth preimages of g and t.

6. Calculate the character maps given in Section 5.2 for all a+ bθ in T .

7. Make the matrix A consisting of the vectors v̂(a, b), ∀(a, b) ∈ T .

8. Find a nonempty subset S ⊂ T such that Y ᵀ
l A ≡ −v(t) (mod l), using linear

algebra as explained in Section 5.3.

9. Locate the solution yl mod l.

46

CHAPTER

SIX

THE ANALYSIS OF THE NFS AND THE NFS-DLOG

The topic of this chapter is an analysis of the two main algorithms, the number
field sieve for factorization and the number field sieve for the discrete logarithm
problem. As the analysis of the QS, it will be a rough and heuristic analysis.

We analyse the number field sieves together since their shared parts uses ap-
proximately the same amount of time. And at the end we will see that they
actually have the same complexity.

Analysis

We begin with the estimate of the running time of the number field sieves and
along the way we will also estimate the degree d of f(x), look at the bounds B
and U and locate the upper bound of the (a + bm)N(a + bθ)’s. We will do it for
the splitting algorithm and spesify when there are special cases for the discrete
logarithm case.

The analysis will build upon the analysis of the QS from Section 2.2 since the
number field sieve is an extended quadratic sieve. In the QS, we found the optimal

limit for B to be approximately L(n)1/2 = e
1
2

√
lnn ln lnn and that the running time

to split n was L(n)1+o(1) = e
√
lnn ln lnn = B2+o(1).

Both algorithms have two main phases, the sieving and the linear algebra.
They use approximately the same amount of time and one should divide the work
between them to match the available software. The sieving can be parted and
divided onto a lot of computers while the linear algebra needs a huge computer
to manage the big matrix. This different software use should therefore make an
impact on the boundaries when one wants to use the two algorithms. We will
study the sieving and briefly mention the linear algebra.

Now being able to choose the polynomial and its degree will lower the run-
ning time compared to the QS. The polynomial should be chosen such that the
coefficients are small, because then it is more likely that N(a + bθ) is small and
hence smooth. In addition we want the polynomial to have many real roots, its
Galois group should be relatively small and it should have many roots modulo

47

small primes [14]. If we choose the polynomial randomly, it will most likely not
have any of the quantities. It should therefore be spend some time on picking a
polynomial. With that said, the time used to choose a good polynomial will still
be small compared to the two most time-consuming parts in the algorithms.

Further in this section we will mainly follow the presentations given in [4, 11].
We will use Theorem 2 in the analysis and need therefore an estimate for the

bound K of smooth elements in T . Since we want a + bm and N(a + bθ) to be
smooth simultaneously, we study them together.

The probability that an element below the limit K is B-smooth we get from
Theorem 1 and it is still valid as Ψ(K,B)/K.

So, if we have a random list of integers bounded by K, how large must K be
so that a subsequence returns a square? In the quadratic sieve, K = n1/2+o(1).

Take a random element (a+bm)N(a+bθ) from T . Recall from Section 3.4 that
N(a+bθ) is equal to the homogenous form of f(x). With m ≤ n1/d, all coefficients
ci ≤ n1/d and |a|, b ≤ U we get an estimate for the bound of (a+ bm)N(a+ bθ)

(a+ bm)N(a+ bθ) = (a+ bm)F (a, b)

= (a+ bm)(ad + cd−1a
d−1b+ . . .+ c0b

d)

= ad+1 + cd−1a
db+ . . .+ c0ab

d . . .

. . .+ adbm+ cd−1a
d−1b2m+ . . .+ c0b

d+1m

< 2(d+ 1)Ud+1n2/d (6.1)

We call the bound 2(d + 1)Ud+1n2/d = K. In the NFS-dlog the coefficients
are bounded by q1/d, m ≤ q1/d so it has the bound 2(d + 1)Ud+1q2/d. Anyway,

from Theorem 2 we get that L(K)
√
2+o(1) pairs of a and b’s will be sufficient. If

we let the bounds B and U be equal we say that U2 = L(K)
√
2+o(1). We put this

assumption into (6.1), take the logarithm and get

K = 2(d+ 1)
(
L(K)1/

√
2
)d+1

n2/d

lnK = ln(2(d+ 1)) + (d+ 1)

√
1

2
lnK ln lnK +

2

d
lnn (6.2)

We will first make an observation about the degree d. Let d be fixed. The first
term on the right side in (6.2) is now insignificant compared to the last term. Also

lnK > (d+ 1)
√

1
2 lnK ln lnK, so we can simplify (6.2) into

lnK ≈ 2

d
lnn

The running time for a fixed d is therefore

L(K)
√
2+o(1) = L(n)

√
4/d+o(1)

48

Hence, if one picks a polynomial purely based on the bounds of the smooth
integers and Theorem 2, then the number field sieve will not do better than the
quadratic sieve unless d > 4. We give a finite estimate later, but first we will finish
the estimate of the bound K.

Since we are trying to find an optimal bound, let n, d→∞. Notice that d will
have a much slower rate than n, so the first term in (6.2) can still be neglected,
but the second term is no longer negligible

lnK = (d+ 1)

√
1

2
lnK ln lnK +

2

d
lnn (6.3)

We want to find the d that minimizes the bound K in (6.3). To accomplish
that we take the derivative with respect to d and get

0 =

√
1

2
lnK ln lnK +

−2

d2
lnn

Hence

d =

√
2 lnn

(1
2 lnK ln lnK)1/4

(6.4)

Replace d in (6.3) with (6.4)

lnK =
2(1

2 lnK ln lnK)1/4

(2 lnn)1/2
lnn+

(2 lnn)1/2

(1
2 lnn)1/4

√
1

2
lnK ln lnK

=
2√
2

(lnn)1/2
(

1

2
lnK ln lnK

)1/4

+
√

2(lnn)
1/2

(
1

2
lnK ln lnK

)1/4

= 2
√

2(lnn)1/2
(

1

2
lnK ln lnK

)1/4

Collect the lnK term on one side and take the logarithm

(lnK)3/4 = 2
√

2(lnn)1/2
(

1

2
ln lnK

)1/4

3

4
ln lnK = ln 2

√
2 +

1

2
ln lnn+

1

4
ln(

1

2
ln lnK)

The first and last term on the right are small compared to the term on the left
side, so we say that 3

4 ln lnK ≈ 1
2 ln lnn and hence

(lnK)3/4 = 2
√

2 (lnn)
1/2

(
1

3
ln lnn

)1/4

49

Consequently

lnK =
(

2
√

2
)4/3

(lnn)2/3
(

1

3
ln lnn

)1/3

=
4

31/3
(lnn)2/3(ln lnn)1/3

This is an estimate of the bound K. We want to find the running time for the
overall sieving, so we place the estimate for K into Theorem 2

L(K)
√
2 = exp

(√
lnK ln lnK

)
= exp

(
√

2

√
4

32/3
(lnn)2/3(ln lnn)1/3 ln

(
4

32/3
(lnn)2/3(ln lnn)1/3

))

= exp

(
√

2
2

31/6
(lnn)1/3(ln lnn)1/6

(
2

3
ln lnn

)1/2
)

= exp

(
√

2
2

31/6

√
2

31/3
(lnn)1/3(ln lnn)2/3

)
= exp

(
(64/9)1/3(lnn)1/3(ln lnn)2/3

)
We made a simplification by using only the dominate term 2

3 ln lnn from

ln
(

4
32/3

(lnn)2/3(ln lnn)1/3
)
. Since L(K)

√
2 now only depends on n, we rename

it L(n)
√
2.

An estimate for the bound B is easily found, since B2 = L(n)
√
2

B = L(n)
√
2/2

= exp

(
1

2
· (64/9)1/3(lnn)1/3(ln lnn)2/3

)
= exp

(
(8/9)1/3(lnn)1/3(ln lnn)2/3

)
In the estimation we assumed that the a and b’s were bounded by the same

limit U . In the sieving we begin at the smallest b value and increase it until enough
smooth values are found. It will typically be before we reach b = U , so the upper
bound for the b is a good overestimate. This will not be a problem in practise,
regardless of how many available computers for the parallel activity one have, since
one just sieves the smallest b’s first and increase until enough values are found.

So U is an overestimate for b. Now look at a. Could it be that the limit on the
a’s would benefit from being less rigid? For instance could different limits on the
a’s speed up the sieve by returning smooth numbers more frequently? If we look at
the shape of the a+ bm, we see that b contributes more to the total size of a+ bm

50

than the a value. That means that increasing b values have a more decreasing
probability to return a smooth number compared to the growing a values. The
same could be said about the N(a + bθ). So if we let the interval for a for a
b decrease as b increase, we will save time on the most unlikely numbers. This
activity will change the sieving from a ”rectangle” into a ”trapezium”.

An estimate for d satisfying the estimated running time remains. We put our
estimate for K into (6.4) and use the same simplifications given above. Then

d =

√
2 lnn(

1
24/31/3(lnn)2/3

)1/4 (2
3 ln lnn

)1/4
=

√
2 lnn

41/4/31/3(lnn)1/6(ln lnn)1/3

=

(
3 lnn

ln lnn

)1/3

Our estimation on d does not consider the other qualities we mentioned that
f(x) should have. For instance the odd degree of f(x) used to the test if we have
chosen the right square root in the NFS. When implementations of the algorithms
are done, polynomials of degree 3−6 are often chosen. See [5] for an explanation to
why the polynomial of degree 6 was chosen when they split the 232-digit number
RSA-768 and how they located the square root.

The other huge part is finding the linearly dependent set in the matrix. For
the purpose of this work, it was not implemented, but we will discuss some of its
complexity.

Both algorithms requires solutions over large sets of linear equations over finite
fields, and it has long been regarded as the possible bottlenecks of the algorithms.
There exists different algorithms to solve the linear algebra, as the structured
Gaussian elimination, the finite field versions of the Lanczos and conjugate gradient
algorithms and the Wiedemann algorithm. They are all surveyed in [8].

The key is that the linear systems are sparse. It is therefore beneficial to first
use the structured Gaussian elimination in both algorithms, since it uses the fact
that the system is sparse to reduce the system. For the method to be optimal the
linear system should contain a lot more equations than unknows. It is therefore
worth spending extra time on collecting relations, since the sieving is a cheaper
operation than the linear algebra. One downside of the method is that it may
produce dense equations, which is harder to solve.

After the preliminary step with the structured Gaussian elimination a combi-
nation of the remaining methods solves the system.

In the NFS-dlog, the linear algebra is a more difficult problem, since it is done
modulo a large prime, not modulo 2. Again, the matrix will be sparse, and in
addition the entries in the matrix will be not very big, due to the fact that not
many smooth integers contains a huge prime power. The methods to solve the
matrix take advantage of this, but the overall time will still be bigger than in the
NFS. The linear algebra in the NFS-dlog is the main reason why the algorithm is
considered harder than the NFS.

51

Overall, we have that the linear algebra is likely to be a significant, but not an
unmasterable problem when computing discrete logarithms modulo a large prime.
As already said, the sieving can be distributed among a lot of computer resources,
but this is not possible for the linear algebra. It requires either a fast processor or
could use a closely related set of processors. It is therefore beneficial to overdo the
sieving part and obtain many excess equations. This will increase the time spend
on the sieving, but be positive for the overall running time.

Using the methods mentioned it can be shown that the overall time spend on
the linear algebra is approximately B2+o(1).

Now the overall running time for the number field sieve is

L(n)
√
2+o(1) = exp

(
(64/9)1/3 + o(1))(lnn)1/3(ln lnn)2/3

)
The L(n)

√
2 shows the dominate term and the L(n)o(1) takes care of all smaller

terms. If we now replace n with q in the estimation, we get the optimal boundaries
and time for the NFS-dlog, as

B = exp
(

(8/9)1/3(ln q)1/3(ln ln q)2/3
)

d =

(
3 ln q

ln ln q

)1/3

L(q)
√
2+o(1) = exp

(
(64/9)1/3 + o(1))(ln q)1/3(ln ln q)2/3

)
The estimated boundaries considered as optimal must yield for the practical

boundaries given by the available computers, but they are the reason why the NFS
and the NFS-dlog are considered as the fastest algorithms to solve their respective
problems as of today.

52

CHAPTER

SEVEN

CONCLUDING REMARKS

We have outlined the NFS and the NFS-dlog in this thesis, but we have not studied
all the details in the implemented versions of them as used today. And there is
also always potensial for further development. We briefly discuss some aspects in
this final chapter.

There exists different versions of both sieves, depending on the given infor-
mation about the composite number to split or the group in which to locate the
discrete logarithm. The approaches also depend on the available computers and
the purpose of the action. The last point refers to for instance seeking several dis-
crete logarithms in a field, not just one. Some variations of the sieves uses different
setup when it comes to the polynomial, for example using two polynomials instead
of one. In the description of the QS in Chapter 2 we presented a variation of
the polynomial known as the Montgomery’s multiple polynomial variations which
collected the smooth numbers faster. Could a family of polynomials improve the
number field sieves?

The polynomial selection is in a trial and error phase for now and more guiding
lines in finding the best polynomials would decrease the sieving time. Both the de-
gree of the polynomial and the other parameters are chosen before the algorithms
are implemented, which makes it hard to choose the most effective ones. The guid-
ing lines as of today are the heuristic analysis and the implementer’s experience.
We cannot affect the last one, but the analysis could be improved. One of the
reasons why it is heuristic, is the heuristic Theorem 1, stating the propability that
a random number less than a limit is smooth.

We spent a lot of time on the sieving method and more or less built it from
the ground and up. We briefly mentioned the lattice sieve in Section 3.4, where
the main principle is to make a sublattice with a special prime and sieve in this
smaller region, using either line sieving or vector sieving. The method is more
effective than usual sieving methods, regardless of its time-consuming operations
and collisions, and it is the method of choice when the algorithms are implemented
today.

There is another interesting sieving approach that for now works in the NFS-

53

dlog for fields of degree 6, namely the 3D sieve. It extends the sieving region to a
box and expands either the line sieve or the lattice sieve to fit the new sieving area.
A use of the 3D sieve seems too slow for gains yet because of its slow factor base
transformation and norm estimation, but it has potensial. It is an open question
whether there exists an algorithm to identify the special primes best suited for the
sieve.

After a thorough description of one of the two main steps in both algorithms,
a discussion of the implementation and the complexity of the linear algebra step
was left out. The linear algebra is an important step in both algorithms, but also
more intuitive than the sieving. However, as the numbers to split and the order
of the fields in which to locate the discrete logarithm grows, the complexity of the
linear algebra step will continue to increase, so an in-depth study of this highly
nontrivial step is necessary.

The development in the discrete logarithm problem algorithms lies far behind
the factorization algorithms, as spotted when comparing the record of the NFS-
dlog to the NFS record. Some of this can be explained by the fact that not many
people are working with the discrete logarithm problem. There is simply not as
much work and energy being put into the problem as with the splitting. Also,
there are a lot more variations due to the different fields. In particular the fields
of order q = pk, p a prime, and the fields of order 2k are considered as interesting.
And also some recent work in finite fields has mainly been in modifying, analysing
and implementing different versions of the ICM.

Although there are different discrete logarithm algorithms of the desired run-
ning time developed for many fields, there still exists finite fields where the time
bound does not hold. It is an open question whether or not it is possible to locate
an algorithm for all fields with the desired running time.

Lastly we mention the computers. The development of the algorithms has been
marvelous since the problems became interesting, and already the records have
gone far beyond what was estimated to be possible at this point. The development
of the algorithms is of course a major reason, but also the bigger, faster and
stronger computers play a huge role. With the computers continuing to develope,
the algorithms as they are today will also increase their limits.

54

BIBLIOGRAPHY

[1] Matthew E. Briggs. An Introduction to the General Number Field Sieve.
Master’s thesis, Virginia Polytechnic Institute and State University, 1998.

[2] Jean-Marc Couveignes. Computing a square root for the number field sieve,
pages 95–102 in [4]. Springer-Verlag, 1993.

[3] Daniel M. Gordon. Discrete Logarithms in GF(p) using the Number Field
Sieve. SIAM J. Discrete Math, 6, University of Georgia, February 1992.

[4] A.K. Lenstra & H.W. Lenstra Jr. The development of the number field sieve.
Lecture Notes in Mathematics, Volume 1554. Springer-Verlag, Berlin, 1993.

[5] Thorsten Kleinjung. Factorization of a 768-bit RSA modulus. (1.4), EMC
Corporation, February 2010.

[6] Neal Koblitz. A course in Number Theory and Cryptography. Springer, second
edition, 1994.

[7] James S. Milne. Algebraic Number Theory (v3.00). pages 155 + viii, 2008.
Available at www.jmilne.org/math/.

[8] B.A. LaMacchia & A.M. Odlyzko. Solving Large Sparse Linear Systems Over
Finite Fields. AT&T Bell Laboratories, Springer, 1990.

[9] Carl Pomerance. A Tale of Two sieves. Notices of the AMS, (43), 1996.

[10] Carl Pomerance. Fast, Rigorous Factorization and Discret Logarithm Algo-
rithms. Discrete Algorithms and Complexity, (9), Academic Press, 1987.

[11] Richard Crandall & Carl Pomerance. Prime Numbers, A computational Per-
spective. Second Edition, Springer, 2000.

[12] Oliver Schirokauer. The impact of the number field sieve on the discrete
logarithm problem in finite fields. Algorithmic Number Theory, (44), MSRI
Publications, 2008.

55

[13] Oliver Schirokauer. Discrete Logarithms and Local Units. Philosophical
Transactions: Physical Sciences and Engineering, (345), The Royal Society,
1993.

[14] Nigel Smart. Cryptography: An introduction. McGraw-Hill College, 2003.

[15] William Stein. Introduction to Algebraic Number Theory. Springer, 2005.

[16] Chris Studholme. The Discrete Log Problem. University of Toronto, June
2002.

[17] Edwin Weiss. Algebraic Number Theory. McGraw-Hill College, 1963.

56

	Title Page
	masteroppgave.pdf

