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Abstract. By means of the ungraded derived category we prove that the orbit
category of the bounded derived category of an iterated tilted algebra with respect
to translation is triangulated in such a way that the canonical functor from the
bounded derived category to the orbit category becomes a triangle functor.

Sammendrag. Ved bruk av den ugraderte deriverte kategorien viser vi at bane-
kategorien til den begrensede deriverte kategorien av en iterert tiltet algebra
med hensyn på translasjon er triangulert slik at den kanoniske funktoren fra den
begrensede deriverte kategorien til banekategorien blir en triangelfunktor.
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Introduction

Triangulated categories were introduced in the early sixties and have been growing increas-
ingly important ever since. In homological algebra, a basic fact is that derived categories
are triangulated. These categories have been intensely studied the last decades and are
in many cases well understood. Consequently, showing that a given category carries a
triangulated structure that is in some way connected to the triangulated structure of a
derived category might reveal a lot of information about the category in question.

Purpose

Given a category C and an equivalence F : C → C, the orbit category C/F has the objects
of C and morphism spaces given by HomC/F (A,B) :=

�
n∈�HomC(A,FnB). The goal

of this thesis is to show that if Λ is an iterated tilted algebra then Db(ModΛ)/(−[1]) is
triangulated in such a way that the canonical functor Db(ModΛ)→ Db(ModΛ)/(−[1]) is
a triangle functor. This result also follows from the work of Bernhard Keller in [Kel05],
but we give a proof avoiding the use of dg-categories. Along the way we will learn a lot
about the so-called ungraded derived category, as it is a key ingredient in our proof.

Overview

Chapter 1 is dedicated to introducing (or, for some of us, recalling) notions from category
theory that will be employed in the thesis. We try to keep it short, and for the reader not
familiar with additive and abelian categories there are probably other places to start that
are more suitable. The reader well acquainted with the concepts introduced might feel the
chapter is superfluous, but we prefer this to risking ambiguity1.

In Chapter 2 we look at the connection between an exact category C and its augmentation
C[�], and in particular how the projectives (injectives) of the former completely determine
the projectives (injectives) of the latter under the assumption of idempotent completeness.
Our motivation is that, in the following chapter, this will help us find a Frobenius category
as a special case by imposing a non-canonical exact structure on a module category.

In Chapter 3 we introduce the ungraded derived category and show how it becomes trian-
gulated. This happens through an exposition packed with parallels to the ’ordinary’ setup
of complexes. Indeed, we translate the concept of a mapping cone to the ungraded setup
and show how this gives essentially all triangles, even though the triangulated structure
originates from the stable category of a Frobenius category.

The merit of Chapter 4 is providing sufficient conditions on A for the objects of Dung(A)
to ’admit a grading’. We show that A being hereditary is sufficient before, using heavily
the existence of standard equivalences, we show that also A being the module category of

1A typical example justifying this approach is given by the concept of exact categories. Although most
readers probably have some intuitive feel for it, we are perhaps being unreasonable if we expect that he
or she can actually write down the correct definition.



2 Introduction

an iterated tilted algebra is enough.

In Chapter 5 the analogy to the graded setup is again striking. Here we describe the
subcategory of the ungraded homotopy category consisting of homotopically projectives,
and go on to show that this category is triangle equivalent to the ungraded derived category.
This is important as it will allow us to do calculations in the homotopy category rather
than in its localization, which is a tremendous advantage.

Our main objective is obtained in Chapter 6. After showing that the orbit category
embeds in the ungraded derived category, giving a proof of our main theorem reduces to
merely assembling some of our previous results.

The purpose of Chapter 7 is to briefly discuss the possibility of a converse of our main
result. To justify why a further investigation is meaningful and might lead to an affirmative
answer we invoke the work of Ringel in [Rin98] and Happel and Zacharia in [HZ08].

Terminology and Conventions

We call a category additive if it has finite products and each Hom-set is an abelian
group such that composition of morphisms is bilinear over �. By the term algebra we
mean an algebra over a field. For an algebra Λ we denote by ModΛ (Proj Λ, Inj Λ) the
category of left Λ-modules (projective, injective). By modΛ (proj Λ, inj Λ) we denote the
full subcategory of ModΛ (Proj Λ, Inj Λ) of finitely generated modules.

The Intended Reader

Even though we make an effort to keep the thesis self-contained, it is intended for the
reader that already knows a bit of homological algebra. Throughout, having seen derived
categories would help. For understanding what goes on in Chapter 4, familiarity with
derived functors and the existence of standard equivalences would be an advantage.
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Preliminaries

The aim of this chapter is to present some necessary preliminaries from category theory. For
the reader not accustomed to the concepts of additive and abelian categories, a reasonable
starting point may be [HJ10].

1.1 Triangulated Categories

We start by introducing some terminology. A category with translation (T ,Σ) is a
category T together with an equivalence

Σ : T → T

called the translation functor. In a category with translation, a triangle is a sequence
of objects and morphisms of the form

A
f−→ B

g−→ C
h−→ ΣA

and a morphism of triangles is a triple (α, β, γ) of morphisms in T such that each
square in

A B C ΣA

A� B� C � ΣA�

f

α

g

β

h

γ

f � g�
h�

Σα

is commutative. Such a morphism is called an isomorphism of triangles if α, β and γ
are isomorphisms.

The following definition is due to Verdier (a slightly edited version of his PhD thesis can
be found in [Ver96]).

Definition. A triangulated category is an additive category with translation (T ,Σ)
together with a collection of distinguished triangles satisfying the following axioms.

Tr1 The class of distinguished triangles is closed under isomorphism of triangles and each
morphism f : A → B embeds in a distinguished triangle

A
f−→ B → Cf → ΣA.
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Cf is called a cone of f . In particular, for each A ∈ T ,

A
1−→ A → 0→ ΣA

is distinguished.

Tr2 If

A
f−→ B

g−→ C
h−→ ΣA

is distinguished, then so is

B
g−→ C

h−→ ΣA −Σf−−−→ ΣB.

Tr3 Any diagram

A B C ΣA

A B C ΣA

whose rows are distinguished triangles and whose square is commutative embeds in
a morphism of triangles.

Tr4 Given three distinguished triangles

A
f1−→ B

g1−→ C � h1−→ ΣA

B
f2−→ C

g2−→ A� h2−→ ΣB

A
f3−→ C

g3−→ B� h3−→ ΣA

with f3 = f2f1, there is a fourth distinguished triangle

C � f4−→ B� g4−→ A� h4−→ ΣC �

such that all is commutative in

A B C � ΣA

A C B� ΣA

A� A� ΣB

ΣB ΣC �

f1

1

g1

f2

h1

f4 1

f3 g3

g2

h3

g4 Σf1

h2

1

h4

h2

Σg1
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Remark. May showed in [May01] that Tr3 can be derived from the other axioms. Fur-
ther, Tr2 can be strengthened to an ’if and only if’ statement (i.e. we may rotate in both
directions).

Now that we know what a triangulated category is, let us look at some basic properties
and related concepts. An important notion is the following.

Definition. Let T be triangulated and A abelian. An additive (covariant) functor
H : T → A is called homological if any distinguished triangle

A
f−→ B

g−→ C
h−→ ΣA

in T yields a long exact sequence

. . .
HΣi−1h−−−−−→ H(ΣiA) HΣif−−−−→ H(ΣiB) HΣig−−−→ H(ΣiC) HΣih−−−−→ H(Σi+1A) HΣi+1f−−−−−→ . . .

in A. Dually, a contravariant functor taking distinguished triangles to long exact sequences
is called cohomological.

Dealing with triangulated categories, the slogan is often ’Hom-functors are homological’.
The following two lemmas explain why.

1.1 Lemma. In a triangulated category, the composition of two consecutive maps in a
distinguished triangle vanishes.

Proof. Take a distinguished triangle

A
f−→ B

g−→ C → ΣA.

By Tr2 it suffices to show that f and g compose to zero. This follows readily, as

A A 0 ΣA

A B C ΣA

1

1 f

f g

can be completed to a morphism of triangles, i.e. gf = 0.

1.2 Lemma. Let T be a triangulated category and take any X ∈ T . Then HomT (X,−)
is a homological functor.

Proof. Let

A
f−→ B

g−→ C
h−→ ΣA
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be distinguished. By Tr2 it suffices to show that

HomT (X,A)
f∗−→ HomT (X,B)

g∗−→ HomT (X,C)

is exact. We saw in Lemma 1.1 that gf = 0, so the only implication we need to worry
about is Ker g∗ ⊆ Im f∗. Take α ∈ Ker g∗ and consider the diagram

0 X X 0

Σ−1C A B C

1

α

−Σ−1h f g

whose rows are distinguished and whose rightmost square is commutative by assumption.
This yields the existence of a morphism β : X → A such that fβ = α, i.e. α ∈ Im f∗.

Remark. A similar argument shows that HomT (−, X) is a cohomological functor.

1.3 Lemma. Let T be triangulated and let

A
f−→ B

g−→ C
h−→ ΣA

be distinguished. Then f is split mono if and only if g is split epi if and only if h = 0.

Proof. Assume f is split mono, say by f̂ : B → A. Then

A B C ΣA

A A 0 ΣA

f

1

g

f̂

h

1

embeds in a morphism of triangles, forcing h = 0.

Conversely, assume h = 0. Then

A B C ΣA

A A 0 ΣA

f g 0

1

1

embeds in a morphism of triangles, yielding the existence of f̂ : B → A such that f̂f = 1A.

The equivalence of h = 0 and g being split epi is obtained similarly.
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The next result is known as the ’triangulated five lemma’.

1.4 Lemma. Let T be triangulated and let

A B C ΣA

A� B� C � ΣA�

f

α

g

β γ

h

f � g�
h�

Σα

be a morphism of distinguished triangles. If two out of α, β and γ are isomorphisms, then
so is the third.

Proof. By Tr2 it suffices to prove that γ is an isomorphism provided that α and β are.
In this case applying HomT (C �,−) = Hom(C �,−) gives the diagram

Hom(C �, A) Hom(C �, B) Hom(C �, C) Hom(C �,ΣA) Hom(C �,ΣB)

Hom(C �, A�) Hom(C �, B�) Hom(C �, C �) Hom(C �,ΣA�) Hom(C �,ΣB�)

f∗

α∗ β∗

g∗ h∗

γ∗ Σα∗

Σf∗

f �
∗ g�

∗ h�
∗ Σf �

∗

Σβ∗

whose rows are exact and whose squares are commutative. Now γ∗ is an isomorphism by
the (ordinary) five lemma. Hence there is some γ̂ : C � → C such that γγ̂ = 1C� . Similarly,
applying HomT (−, C) yields a left inverse of γ.

Remark. By Tr3 and Lemma 1.4 it follows that the cone of a morphism is unique up to
isomorphism.

Definition. Let T be triangulated. A full, additive subcategory C ⊆ T is a triangu-
lated subcategory of T if it is closed under isomorphism and translation and if moreover
A,C ∈ C implies B ∈ C whenever there is a distinguished triangle

A → B → C → ΣA

in T .

Remark. A triangulated subcategory inherits a canonical triangulated structure.

In order to compare triangulated categories we need functors that respect the triangulated
structures. The following definition is the natural notion.

Definition. A triangle functor is an additive functor F : (T ,Σ) → (T �,Σ�) between
triangulated categories together with a natural isomorphism

φ : FΣT → ΣT �F
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such that
FA

Ff−−→ FB
Fg−−→ FC

φAFh−−−−→ ΣT �FA

is distinguished in T � whenever

A
f−→ B

g−→ C
h−→ ΣT A

is distinguished in T .

Remark. One easily verifies that the composition of two triangle functors is again a
triangle functor. Also, if C ⊆ T is a triangulated subcategory then the canonical functor
C → T is a triangle functor.

1.2 Exact Categories

The concept of exact categories is due to Quillen ([Qui73]). It captures essential properties
of short exact sequences, but does not require the presence of an abelian category. Recall
that in an additive category, a pair of composable morphisms

A
i−→ B

p−→ C

is exact if i is a kernel of p and p is a cokernel of i. A morphism of exact pairs is what
one should expect, namely a triple of morphisms making both squares commutative in

A B C

A� B� C �

i p

i� p�

The above is an isomorphism of exact pairs if the vertical morphisms are all isomor-
phisms. Keller showed in [Kel90] that the original axioms for exact categories are not
minimal, and the following definition is due to him.

Definition. An exact category (C,E ) is an additive category C with a class E of
distinguished exact pairs (we shall call (i, p) ∈ E a conflation consisting of the inflation
i and the deflation p), such that the following axioms hold.

E1 E is closed under isomorphisms of exact pairs.

E2 The identity morphism on the 0-object is a deflation and the composition of two
deflations is again a deflation.

E3 For each f : C � → C and each deflation p : B → C there is a pullback diagram

B� C �

B C

p�

p

f
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in which p� is a deflation.

E3op For each f : A → A� and each inflation i : A → B there is a pushout diagram

A B

A� B�

i

i�

f

in which i� is an inflation.

One important feature of exact categories is that there is a natural way of defining exact
functors between them. Since any abelian category can be viewed as an exact category in
the obvious way, the following definition generalizes the classical notion of exact functors.

Definition. A functor (C,E ) → (C�,E �) between exact categories is called exact if it
takes members of E to E �.

Consequently, exact categories allow equivalent formulations of the concepts of injective
and projective objects that we know from module categories.

Definition. Let Ab be the category of abelian groups with the canonical exact struc-
ture. An object P in an exact category C is called projective if HomC(P,−) : C → Ab is
an exact functor. Dually, if HomC(−, I) : C → Ab is exact then I is injective. We denote
by Proj C (Inj C) the full subcategory of projectives (injectives).

Remark. As one would expect, P ∈ C is projective if and only if each conflation ending
in P splits. Of course, the dual characterization of injectives also holds.

1.3 Stable Categories

The concept of a quotient category is similar to that of a quotient module. Given an addi-
tive category C we can impose equivalence relations on Hom-spaces, obtaining a ’version’
of C in which certain objects are annihilated. In this thesis we shall take an interest in this
construction when C admits a notion of projective and injective objects.

Definition. For an exact category C, the corresponding stable category C has the same
objects as C while the morphisms are given by, for any A,B ∈ C,

HomC(A,B) = HomC(A,B) := HomC(A,B)/I(A,B),

where I(A,B) is the subgroup of morphisms A → B that factor through a projective
object.

In other words, two morphisms f, g ∈ HomC(A,B) represent the same morphism in C if
there is a commutative diagram
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P

A B
f − g

in C with P ∈ Proj C. In particular, any projective object in C will be isomorphic to zero
in C.

For the purpose of doing homological algebra, a convenient property of module categories
is the existence of projective and injective resolutions of any object.

Definition. An exact category C has enough projectives if for any A ∈ C there is a
deflation P → A with P projective. Dually, C has enough injectives if for any A ∈ C
there is an inflation A → I with I injective.

The following property certainly does not hold for arbitrary module categories. There are
however examples where it holds, for instance mod kG for any finite group G.

Definition. An exact category is Frobenius if it has enough projectives and injectives
and moreover the projectives coincide with the injectives.

The Frobenius axioms appear quite restrictive, so one could morally expect that they
have some marvellous consequence. Indeed they do: Happel showed in [Hap88] that the
stable category C becomes triangulated whenever C is Frobenius. For the sake of self
containedness we give a description of the triangulation.

Describing a triangulated structure on a given category amounts to specifying the transla-
tion functor Σ and the distinguished triangles. For each object A in C, choose a conflation

A
iA−→ IA

pA−−→ C

where IA is injective. Then ΣA := C. On a morphism f : A → B the translation is given
by the following commutative diagram whose rows are conflations in C.

A IA ΣA

B IB ΣB

iA pA

iB pA

f Σf

Here, the middle vertical morphism exists by injectivity of IB while Σf comes from the
cokernel property of ΣA. Further, to the morphism f , the associated standard triangle
is

A
f−→ B

cf−→ Cf
ωf−−→ Σ(A)

which is constructed via the pushout of f and iA



Localization of Categories 11

A IA

B Cf

ΣA

iA

cf

f

ωf

pA

0

Now the class of distinguished triangles in C is obtained as the closure of the class of
standard triangles with respect to isomorphism of triangles.

Remark. There is, of course, no hope of these constructions being well defined in C, as
there are choices to be made throughout. A considerable part of showing that the above
gives a triangulated structure on C is checking that these choices actually do not matter
in the latter category.

1.4 Localization of Categories

The concept of localizing a category generalises that of localizing a commutative ring
R. Indeed, viewing R as the category R with a single object · and EndR(·) = R, a
multiplicatively closed set S ⊆ R translates to what we shall call a ’multiplicative system’
of morphisms in R, and viewing S−1R as a category yields precisely the localization S−1R
of R. References for this section are [Wei94, Kra07].

We should start by making a comment to avoid ambiguity. Given a picture

C E

D

F

G

of categories and functors, we say that G ’factors uniquely’ through F if there is a functor
H : E → D, unique up to natural isomorphism, such that G is naturally isomorphic to
HF .

Definition. Let S be a class of morphisms in a category C. The localization of C with
respect to S is a category S−1C together with a functor Q : C → S−1C satistfying the
following.

L1 Qs is an isomorphism for each s ∈ S.

L2 Any functor C → D taking members of S to isomorphisms in D factors uniquely
through Q.

Remark. It follows that localizations are unique up to equivalence.
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In general, localizations are difficult to understand if they even exist. Fortunately, in this
thesis we shall only have to consider extremely well behaved ones. A key notion is the
following.

Definition. A class S of morphisms in C is a multiplicative system if

M1 S is closed under compositions and contains each identity morphism.

M2 (Ore condition) If s : A → B belongs to S, then any pair of morphisms B� → B and
A → A�� can be completed to a pair of commutative diagrams

A� A

B� B

s� s

A A��

B B��

s s��

in which s� and s�� belong to S.

M3 For any two parallel morphisms f, g : A → B, the following are equivalent.

· sf = sg for some s ∈ S.

· fs� = gs� for some s� ∈ S.

When S is multiplicative, S−1C can be described as follows, due to [GZ67]. The objects
are those of C while the morphisms A → B are equivalence classes of ’roofs’ of morphisms

X1

A B

s1 f1

where s1 ∈ S. The above roof is denoted by (s1, f1) and is said to be equivalent to (s2, f2)
if there is a third roof (s3, f3) such that both squares in

X3

X1 X2

A B

s3 f3

s2

f2

f1

s1

are commutative. If (s, f) and (t, g) are composable, using the Ore condition, we let their
composition be the roof (st�, gf �)
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Z

X Y

A B C

t� f �

fs t g

whose square is commutative. For a proof of the fact that the above relation is an equiv-
alence relation and that the composition of roofs is well defined, see for instance [GM03].
The localization functor Q : C → S−1C is the identity on objects and takes a morphism
f : A → B to the roof (1A, f).

Since we are interested in triangulated categories, it is only natural to ask what happens if
one localizes a triangulated category T . In particular, when does S−1T carry a triangulated
structure in such a way that Q : T → S−1T is a triangle functor? As Lemma 1.5 will
show, the following is a sufficient condition on the multiplicative system.

Definition. A multiplicative system S in T is compatible with the triangulation
if

M4 S is closed under Σ and Σ−1.

M5 Any commutative diagram

A B C ΣA

A� B� C � ΣA�

s s�

where s, s� ∈ S and the rows are distinguished triangles can be completed to a
morphism of triangles by s�� : C → C � in S.

1.5 Lemma. Let S be a multiplicative system compatible with the triangulation in T .
Then S−1T is triangulated in such a way that Q : T → S−1T is a triangle functor.

Proof. Since S is closed under Σ and Σ−1 (M4), the functors QΣ and QΣ−1 both make
the morphisms in S invertible. Hence, by the universal property of Q, there are unique
functors �Σ and �Σ−1 making both the following diagrams commutative.

T T

S−1T S−1T

Σ

Q

�Σ
Q

T T

S−1T S−1T

Σ−1

Q

�Σ−1

Q

Now it is easy to see that �Σ and �Σ−1 are mutually inverse equivalences. Indeed, consider
the commutative diagram
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T T

S−1T S−1T

ΣΣ−1 = 1 = Σ−1Σ

Q

1

Q

which is also completed by both �Σ�Σ−1 and �Σ−1�Σ. The universal property of Q implies
that both these functors are the identity on S−1T .

Since there is a natural isomorphism φ : QΣ → �ΣQ, it is only natural to let �Σ be the
translation functor on S−1T . This leads us to taking as distinguished triangles in S−1T
the triangles isomorphic to one of the form

A
Qf−−→ B

Qg−−→ C
φAQh−−−−→ �ΣA

where
A
f−→ B

g−→ C
h−→ ΣA

is distinguished in T . The canonical reference for the verification of axioms Tr1-Tr4 is
[Ver96, II.2.2.6]. It is clear that Q will be a triangle functor by construction.

Lemma 1.5 would be a very useful result if we knew how to get our hands on the particular
classes of morphisms it requires. The following result tells us how we can find such a class
whenever there is a homological functor around.

1.6 Lemma. Let H : T → A be a homological functor and take S to be the class of
morphisms s in T such that HΣns is an isomorphism for each n ∈ �. Then S is a
multiplicative system compatible with the triangulation.

Proof. M1 and M4 are immediate, while M5 follows from the five lemma. For M2, take
s : A → B in S and an arbitrary f : B� → B. Then, since M5 holds, the diagram

A� A Cf ΣA�

B� B Cf ΣB�

cfs

f cf

s 1

can be completed to a morphism of triangles by some s� : A� → B� in S. The remaining
half of M2 is shown in a similar manner. Lastly, to show M3, take f, g : A → B to be
arbitrary and s : A� → A in S such that fs = gs. Then

A� A Cs ΣA�

0 B B 0

s cs

1

f − g
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can be completed to a morphism of triangles, say by ψ : Cs → B. Consider the standard
triangle

Cs
ψ−→ B

r−→ Cψ → ΣCs

associated to ψ. For once, rf − rg = r(f − g) = rψcs = 0 by Lemma 1.1. Further, since
s ∈ S, HΣiCs vanishes for each i ∈ �. Indeed,

HΣiA� ∼=−→ HΣiA → HΣiCs → HΣi+1A� ∼=−→ HΣi+1A

is exact. Therefore, the HΣir must all be isomorphisms since also

HΣiCs → HΣiB HΣir−−−→ HΣiCψ → HΣi+1Cs

is exact. This means r ∈ S. The other implication in M3 is shown similarly.

If S is a triangulated subcategory of T , a natural construction called the Verdier local-
ization T /S arises. Let S(S) denote the class of morphisms in T whose cone belongs to
S. The following lemma is [Ver96, II.2.1.8].

1.7 Lemma. Let S be a triangulated subcategory of T . Then S(S) is a multiplicative
system compatible with the triangulation in T .

In light of this we define

T /S := S(S)−1T .

It follows that T /S carries a triangulated structure in such a way that the localization
functor Q : T → T /S is a triangle functor. It is easy to check that each object of S is
annihilated by Q. If S is thick in T , then also the reverse inclusion holds, i.e. each object
annihilated by Q belongs to S.
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The Categories C and C[�]

Given an additive category C, one obtains another additive category C[�] in the following
way. An object in C[�] is a pair (A, �A) where A is an object in C and �A ∈ EndC(A) has the
property �2A = 0 (and will be called the differential of A). A morphism f ∈ HomC[�](A,B)
is what one might expect, namely a morphism f ∈ HomC(A,B) that commutes with the
differentials involved. I.e. f is a morphism in C[�] if the following diagram is commutative
in C.

A B

A B

f

f

�A �B

The additive structure of C[�] should also not be a surprise. Given objects A and B in C[�],
their sum is the underlying object A ⊕ B with differential

�
�A 0
0 �B

�
.

Remark. Any object in C may be viewed as an object in C[�] by equipping it with the
zero differential.

The aim of this chapter is to investigate the relationship between C and C[�]. More ex-
plicitly, we shall see that there is a natural way of obtaining an exact structure on the
latter from one on the former. The projective and injective objects of C[�] will therefore
be completely determined by those of C.

2.1 Two-Sided Adjoints

The above setup comes with two functors we wish to examine. One is the forgetful functor
F : C[�] → C which is the identity both on underlying objects and on morphisms (i.e.
it does nothing, but forgets about differentials).1 The other is the augmenting functor
−[�] : C → C[�]. This takes an object A in C to the object A[�] in C[�], defined as

A[�] := A ⊕ A with differential �A[�] :=
�
0 0
1 0

�

1It is often convenient to write A instead of F A when A is an object in C[�] and f instead of F f when
f is a morphism in C[�]. Throughout, the reader will notice that we are not consistently using neither the
sometimes overstated F A and F f nor the potentially ambiguous A and f . Instead, we try to choose the
notation best suited for each scenario we face.
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For a morphism f : A → B in C we define f [�] : A[�] → B[�] as the matrix
� f 0

0 f
�
. It

is trivial that f [�]�A[�] = �B[�]f [�], i.e. f [�] ∈ HomC[�](A[�], B[�]), but this should still
be noted; we ought to get used to checking that maps commute with differentials before
accepting them as morphisms in C[�].

The following proposition reveals a key relationship between these functors which we shall
exploit several times in this chapter. The result might be surprising, as forgetful functors
often have left adjoints but fail to appear as left adjoints themselves.

2.1 Proposition. The functors

C
−[�]
�
F

C[�]

are two-sided adjoints, i.e. both (F,−[�]) and (−[�], F ) are adjoint pairs.

Proof. Fix C ∈ C and (A, �A) ∈ C[�].

To show why (F,−[�]) is an adjoint pair we will produce an isomorphism

φA,C : HomC(FA,C)→ HomC[�](A,C[�])

which is natural in both A and C. We will omit the indices and write φ. Let

f
φ�−→

�
f�A
f

�
.

Routine calculations show that φ(f) commutes with the differentials involved, so φ is well
defined. Further, let

φ−1 : HomC[�](A,C[�])→ HomC(FA,C)

be given by g =
� g1
g2

�
�→ g2. It is clear that φ−1φ = 1. On the other hand,

φφ−1(g) = φ(g2) =
�
g2�A
g2

�
.

But since g is a morphism in C[�],

�
0
g1

�
= �C[�]g = g�A =

�
g1�A
g2�A

�
.

This yields g1 = g2�A, i.e. φφ−1(g) = g, so φ is indeed an isomorphism. To check
naturality of φ take a morphism α : A → A� in C[�] and a morphism β : C → C � in C. For
any γ ∈ HomC(FA�, C) we have

φ((Fα)∗(γ)) = φ(γFα) = φ(γα) =
�
γα�A
γα

�
=

�
γ�A�α
γα

�
=

�
γ�A�

γ

�
α = φ(γ)α
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while also
α∗φ(γ) = φ(γ)α.

Moreover, if γ� ∈ HomC(FA,C) then

φ(β∗(γ�)) = φ(βγ�)
while

β[�]∗φ(γ�) =
� β 0

0 β
�� γ��A

γ�
�
=

� βγ��A
βγ�

�
= φ(βγ�).

This shows that both squares in the diagram

HomC(FA�, C) HomC(FA,C) HomC(FA,C �)

HomC[�](A�, C[�]) HomC[�](A,C[�]) HomC[�](A,C �[�])

(Fα)∗

α∗

β∗

β[�]∗

φ φ φ

are commutative, so (F,−[�]) is indeed an adjoint pair.

Let us turn our attention to (−[�], F ). We will find an isomorphism

ψA,C : HomC[�](C[�], A)→ HomC(C,FA)

which is natural in each argument. To ease the notation we will write ψ with no indices.
For f =

�
f1 f2

�
∈ HomC[�](C[�], A) define ψ(f) := f1. Further, let

ψ−1 : HomC(C,FA)→ HomC[�](C[�], A)

be given by ψ−1(g) :=
�
g �Ag

�
. One easily sees that ψ−1(g) commutes with the dif-

ferentials of C[�] and A, i.e. ψ−1 is well defined. It is now immediate that ψψ−1 = 1.
Also,

ψ−1ψ(f) = ψ−1(f1) =
�
f1 �Af1

�
= f.

The last equality holds because f being a morphism in C[�] means

�
f2 0

�
= f�C[�] = �Af =

�
�Af1 f2

�

i.e. �Af1 = f2. This establishes the fact that ψ is an isomorphism. Checking naturality of
ψ is done by showing commutativity of both squares in

HomC[�](C �[�], A) HomC[�](C[�], A) HomC[�](C[�], A�)

HomC(C �, FA) HomC(C,FA) HomC(C,FA�)

β[�]∗

β∗

α∗

Fα∗

ψ ψ ψ
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where α : A → A� is some morphism in C[�] and β : C → C � is some morphism in C. The
left hand square is commutative because for any γ =

�
γ1 γ2

�
∈ HomC[�](C �[�], A) we have

ψ(β[�])∗(γ) = ψ(
�
γ1β γ2β

�
) = γ1β

while
β∗ψ(γ) = β∗(γ1) = γ1β.

The right hand square is commutative because for any γ� =
�
γ�
1 γ�

2
�

∈ HomC[�](C[�], A),

ψα∗(γ�) = ψ(
�
αγ�

1 αγ�
2
�
) = αγ�

1

while
(Fα)∗ψ(γ�) = Fαγ�

1 = αγ�
1.

2.2 An Induced Exact Structure

As promised, we shall study the interplay between C and C[�] when the former possesses
an exact structure, in which case such a structure is induced on the latter in the most
natural of ways.

2.2 Lemma. Let C be an exact category, and let E be the class of pairs of composable
morphisms in C[�] that become conflations in C via the forgetful functor. Then (C[�],E ) is
an exact category.

Proof. We must first of all make sure that E is a class of exact pairs. Assume that
A

i−→ B
p−→ C is a pair of morphisms in C[�] such that (i, p) ∈ E . Then pi = 0 in C,

hence also in C[�]. Further, let p� ∈ HomC[�](B,C �) have the property p�i = 0. Since p is a
cokernel of i in C, there is a unique φ ∈ HomC(C,C �) with the property φp = p�.

A B C

C �

i p

p�
(∃!)φ

So p will be a cokernel of i also in C[�] if we can show that φ commutes with differentials.
To see why it does, we use the fact that p and p� = φp do commute with differentials,
i.e. p�B = �Cp and φp�B = �C�φp. Combining these gives �C�φp = φ�Cp, which yields
�C�φ = φ�C since p is a cokernel and hence right cancellable. The fact that i is a kernel of
p follows from the dual argument.

Let us show E1. Let (i, p) ∈ E and assume there is an isomorphism of pairs
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A B C

A� B� C �

i p

i� p�

∼= ∼= ∼=

in C[�]. This must be an isomorphism also in C, which means (i�, p�) is a conflation in C,
so (i�, p�) ∈ E .

To show E2, start by noting that since the identity on 0 is a deflation in C, 0 → 0 → 0
must be a conflation in C. This obviously means that the identity on 0 is a deflation also
in C[�]. Further, assume p1 : B → M and p2 : M → C are deflations in C[�]. We wish
to show that p := p2p1 is also a deflation. By assumption, p is a deflation in C, i.e. it is
part of some conflation K i−→ B

p−→ C. It suffices to equip K with a differential such that
i : K → B becomes a morphism in C[�]. To see why such a differential exists, consider the
diagram

K B C

K B C

i p

i p

�B �C

in which the square is commutative. Hence p�Y i = �Zpi = 0. Since i is a kernel of p, this
means that �Y i must factor (uniquely) through i, i.e. there is some morphism �K making

K B

K B

i

i

�K �B

commutative. Thus, if �K squares to zero, then it is the desired differential of K. Com-
mutativity of the latter diagram ensures i�2K = �2Y i = 0, which yields �2K = 0 since i is a
kernel and hence left cancellable.

Verifying E3 and its dual now remains. Given any f ∈ HomC[�](C �, C) and a deflation
p ∈ HomC[�](B,C) there does exist a pullback diagram

B� C �

B C

p�

p

f � f
(2.1)

in C such that p� is a deflation. The first step towards showing that this is a pullback also
in C[�] is to equip B� with a differential. (2.1) is commutative, hence f�C�p� = �Cfp

� =
�Cpf

� = p�Bf
�, since f and p are morphisms in C[�]. So by the universal property of the

pullback in C, there is a unique morphism �B� : B� → B� such that all is commutative in



22 The Categories C and C[�]

B�

B� C �

B C

�B�

�C�p�

�Bf
�

p�

f � f

p

Before proceeding, we should note that �B� squares to zero. Consider the diagram

B�

B� C �

B C

∃!

0

0
p�

f � f

p

in C. Of course, the zero morphism makes all commutative, but so does �2B� . Indeed,
f ��2B� = �Bf

��B� = �2Bf
� = 0 and p��2B� = �C�p��B� = �2C�p� = 0. This forces �2B� = 0. So

by the construction of �B� it is clear that f � and p� are morphisms in C[�]. Since p� is a
deflation in C, the dual construction of the one used in showing E2 will ensure that p� is
a deflation also in C[�]. The only piece missing is showing that diagram (2.1) enjoys the
appropriate universal property also in C[�]. Assume there is a diagram

X

B� C �

B C

β

α

p�

f � f

p

in C[�] in which fβ = pα. The diagram can be completed uniquely in C by φ : X → B�

and it suffices to show that φ is a morphism in C[�]. This amounts to showing that
φ�X − �B�φ = 0. To see why this equality holds, invoke the following diagram in C.

B�

B� C �

B C

∃!

0

0
p�

f � f

p
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The zero morphism completes this, of course, but so does φ�X − �B�φ:

f �(φ�X − �B�φ) = f �φ�X − f ��B�φ = f �φ�X − �Bf
�φ = α�X − �Bα = 0

and
p�(φ�X − �B�φ) = p�φ�X − p��B�φ = p�φ�X − �C�p�φ = β�X − �C�β = 0.

This forces the conclusion φ�X − �B�φ = 0, completing the argument.

A dual argument to the previous one applies to prove E3op.

In homological algebra it is a standard fact that any functor between abelian categories
which has a left adjoint commutes with limits, and consequently is left exact. Similarly, a
functor with a right adjoint commutes with colimits, making it right exact. One could hope
that this translates neatly to the setup where the categories involved are merely exact. In
particular, from what we know about F and −[�], the following lemma might not come as
a surprise.

2.3 Lemma. The functors F : C[�]→ C and −[�] : C → C[�] are both exact.

Proof. The exactness of F is immediate from the definition of exact functors and the
way we imposed the exact structure on C[�] in Lemma 2.2.

Given a conflation A i−→ B
p−→ C in C, its image under −[�] is of course

A ⊕ A

�
i 0
0 i

�
−−−−→ B ⊕ B

�
p 0
0 p

�
−−−−→ C ⊕ C.

Being the direct sum of two conflations when restricted to C, it is itself a conflation therein,
hence also in C[�].

2.3 Projective and Injective Objects in C[�]

In this section we shall assume that C is idempotent complete. This will enable us to reveal
an appealing relationship between C and C[�], namely that the projectives (injectives) of
C[�] are completely determined by the projectives (injectives) of C. Intuitively, this is
hardly a surprise, as projectives and injectives are determined by exact structure, and the
exact structure of C[�] is determined by that of C. Let us start by recalling the definition.

Definition. An additive category C is idempotent complete if idempotents split, i.e.
when e = e2 ∈ EndC(X), then there is an object Y ∈ C and morphisms X π−→ Y and
Y

µ−→ X such that πµ = 1Y and µπ = e.

An immediate consequence of the assumption on C is the following.

2.4 Lemma. C[�] is idempotent complete.
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Proof. Take e = e2 ∈ EndC[�](X). Restricting to C, there is an object Y and morphisms
X

π−→ Y and Y µ−→ X such that πµ = 1Y and µπ = e. Hence, it suffices to equip Y with
a differential such that π and µ become morphisms in C[�]. To this end let �Y := π�Xµ.
Note that �Y is a differential, as

�2Y = π�Xµπ�Xµ = π�Xe�Xµ = πe�X�Xµ = 0.

It is easy to check that π and µ become morphisms in C[�]:

π�X = πµπ�X = πe�X = π�Xe = π�Xµπ = �Y π

and
�Xµ = �Xµπµ = �Xeµ = e�Xµ = µπ�Xµ = µ�Y .

We employ a notation where (S)[�] denotes the ’essential image’ of the subcategory S
of C under the functor −[�]. I.e. we take the closure of the image of S with respect to
isomorphisms. In particular

(Proj C)[�] := {M ∈ C[�] :M ∼= P [�] for some P ∈ Proj C}
and

(Inj C)[�] := {M ∈ C[�] :M ∼= I[�] for some I ∈ Inj C}.

In the process of showing the envisioned relationship between projectives we will need that
the functor −[�] preserves thickness, i.e. that (S)[�] is closed under taking direct summands
in C[�] whenever S enjoys the same property in C. This is established in the following two
lemmas.

2.5 Lemma. For any X ∈ C, the direct summands of X are in 1-1 correspondence with
the direct summands of X[�] up to conjugation.

Proof. Because of Lemma 2.4 it suffices to show that the idempotents of EndC(X) are
in 1-1 correspondence (up to conjugation) with the idempotents of EndC[�](X[�]). Clearly,
there is an injective map EndC(X)→ EndC[�](X[�]) given by

h �→
�
h 0
0 h

�

taking idempotents to idempotents. So to prove the lemma it suffices to show that any
idempotent in EndC[�](X[�]) can be brought by conjugation to the form

�
e 0
0 e

�
with e an

idempotent in EndC(X). For f =
�
a b
c d

�
∈ EndC[�](X[�]), the requirement f�X[�] = �X[�]f

translates to

�
a b
c d

� �
0 0
1 0

�
=

�
b 0
d 0

�
=

�
0 0
a b

�
=

�
0 0
1 0

� �
a b
c d

�
,
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i.e. b = 0 and a = d. If we further impose the requirement that f should be idempotent,
then also

�
a 0
c a

�
=

�
a 0
c a

�2
=

�
a2 0

ac+ ca a2

�
.

must hold.

An arbitrary idempotent f ∈ EndC[�](X[�]) must therefore be of the form f =
�
e 0
φ e

�
where

e2 = e and φ = eφ + φe. The proof will be complete if we can find an automorphism
g of X[�] satisfying gfg−1 =

�
e 0
0 e

�
. Before proceeding, note that the criteria e2 = e and

φ = eφ+φe imply the vanishing of a certain product which will be crucial in the following
calculation, namely eφe = 0. This follows from

eφe = e(φe+ eφ)e
= eφe+ eφe.

As it turns out, letting

g :=
�

1 0
eφ − φe 1

�

does the job. g is obviously invertible, with

g−1 =
�

1 0
φe − eφ 1

�

Hence,

gfg−1 =
�

1 0
eφ − φe 1

� �
e 0
φ e

� �
1 0

φe − eφ 1

�

=
�

1 0
eφ − φe 1

� �
e 0

φ+ eφe − e2φ e

�

=
�

1 0
eφ − φe 1

� �
e 0

φ − eφ e

�

=
�

e 0
eφe − φe2 + φ − eφ e

�

=
�

e 0
φ − (eφ+ φe) e

�

=
�
e 0
0 e

�

2.6 Lemma. If S is thick in C, then (S)[�] is thick in C[�].

Proof. Let X ∈ S and suppose A is a direct summand of X[�]. It suffices to show that
A ∈ (S)[�]. Let e ∈ EndC[�] be the idempotent corresponding to A and note that we may
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assume e =
�
e 0
0 e

�
by Lemma 2.5. Since e ∈ EndC(X) is an idempotent, there is some

Y ∈ C with morphisms X π−→ Y and Y µ−→ X such that πµ = 1 and µπ = e. This means
Y is a summand of X, so Y ∈ S by thickness. It follows that A = Y [�], which belongs to
(S)[�].

Together with Proposition 2.1, the following result constitutes the main contribution of
this chapter.

2.7 Proposition. In C[�], we have

i) Proj C[�] = (Proj C)[�]

ii) Inj C[�] = (Inj C)[�]

Proof. i) To show the inclusion (Proj C)[�] ⊆ Proj C[�], take P ∈ Proj C. By the ad-
jointness of −[�] and F we have

HomC[�](P [�],−) = HomC(P, F (−)) = HomC(P,−) ◦ F,

which is an exact functor. Indeed, HomC(P,−) is exact by assumption, so it is the com-
position of two exact functors. This shows P [�] ∈ Proj C[�], hence (Proj C)[�] ⊆ Proj C[�].

For the reverse inclusion, let Q ∈ Proj C[�]. We will show that Q ∈ (Proj C)[�] by finding a
deflation X → Q in C[�] with X ∈ (Proj C)[�]. This will suffice since the deflation must split
by projectivity of Q and (Proj C)[�] is thick in C[�] by Lemma 2.6. The natural candidate
for X is FQ[�], so let us see if it works. First of all, FQ is certainly in Proj C, since the
appropriate Hom-functor

HomC(FQ,−) = HomC[�](Q,−[�]) = HomC[�](Q,−) ◦ −[�]

is exact. Indeed, HomC[�](Q,−) is exact by assumption, so the above is the composition
of two exact functors. Next, consider

σ : FQ[�] = Q ⊕ Q
( 1 �Q )−−−−→ Q

which commutes with the differentials involved by a routine calculation. Showing that σ
is a deflation in C[�] will suffice. To see why it is, invoke the canonical exact pair

Q

�
1
0
�

−−−→ Q ⊕ Q
( 0 1 )−−−→ Q

in C, which is allways a conflation. By including a kernel of σ we get the exact pair

Q̂

� −�Q
1

�
−−−−−→ Q ⊕ Q

( 1 �Q )−−−−→ Q
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of morphisms in C[�] which we would like to be a conflation. Here, Q̂ is the underlying
object Q equipped with the differential �Q̂ := −�Q.2 Passing to C the differentials are
forgotten and, since the class of conflations is closed under isomorphism, it suffices to note
that the diagram

Q Q ⊕ Q Q

Q Q ⊕ Q Q

� −�Q
1

�
( 1 �Q )

�
1
0

�
( 0 1 )

1
� 0 1

1 �Q

�
1

is an isomorphism of exact pairs in C.

ii) We turn our attention to the injectives. The argument for the second part of the
proposition is dual to that of the first one, but we wish to give a complete proof. Assume
I ∈ Inj C. By adjointness of F and −[�] we have

HomC[�](−, I[�]) = HomC(F−, I) = HomC(−, I) ◦ F,

which is exact because HomC(−, I) is exact by assumption. This ensures C[�] ∈ Inj C[�],
i.e. (Inj C)[�] ⊆ Inj C[�].

For the remaining inclusion, take J ∈ Inj C[�]. To prove that J ∈ (Inj C)[�], we will find
an inflation J → Y in C[�] such that Y ∈ (Inj C)[�]. The injectivity of J will make the
inflation split, so the proof will be complete by thickness of (Inj C)[�] in C[�] (Lemma 2.6).
To construct such an inflation, start by observing that FJ ∈ Inj C. This follows from
exactness of the functor

HomC(−, FJ) = HomC[�](−[�], J) = HomC[�](−, J) ◦ −[�],

where HomC[�](−, J) is exact by assumption. Define

γ : J
�
�J
1

�
−−−→ J ⊕ J = FJ [�].

A routine calculation shows that γ commutes with the differentials involved, so the only
piece missing from a complete proof is a demonstration of why γ is in fact an inflation in
C[�]. To this end, turn to the canonical conflation

J

�
1
0
�

−−−→ J ⊕ J
( 0 1 )−−−→ J

in C. Defining Ĵ as the underlying object J equipped with the differential �Ĵ := −�J ,3 we
obtain

2We introduce Q̂ because Q̂

� −�Q
1

�
−−−−−−→ Q ⊕ Q is a morphism in C[�] while Q

� −�Q
1

�
−−−−−−→ Q ⊕ Q is not.

3We introduce Ĵ because J ⊕ J
( −1 �J )−−−−−−→ Ĵ is a morphism in C[�] while J ⊕ J

( −1 �J )−−−−−−→ J is not.
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J

�
�J
1

�
−−−→ J ⊕ J

( −1 �J )−−−−−→ Ĵ

which is an exact pair in C[�]. Again, differentials are forgotten when we pass to C, so the
latter pair is even a conflation since the diagram

J J ⊕ J J

J J ⊕ J J

�
1
0

�
( 0 1 )

�
�J
1

�
( −1 �J )

1
�

�J −1
1 0

�
1

is an isomorphism of exact pairs in C.

We end the chapter with showing that C[�] is Frobenius whenever C is. This should not be
surprising as the Frobenius properties are defined in terms of exact structure.

2.8 Lemma. If C has enough projectives (injectives), then also C[�] has enough projectives
(injectives).

Proof. We only deal with the projectives, as the injectives can be handled dually. So
take (M, �M ) ∈ C[�] and consider

FM [�] ( 1 �M )−−−−−→ M

which is a deflation in C[�] by the proof of Proposition 2.7. Since C has enough injectives
there is a deflation p : P → FM with P ∈ Proj C. But by Proposition 2.7 again, P [�]
belongs to Proj C[�]. Since the composition

P [�] p[�]−−→ FM [�] ( 1 �M )−−−−−→ M

is a deflation, C[�] has enough projectives.

2.9 Corollary. If C is Frobenius, then so is C[�].

Proof. If Proj C = Inj C then Proj C[�] = Inj C[�] by Proposition 2.7. The remaining
Frobenius property is Lemma 2.8.



chapter 3

The Ungraded Derived Category

In this chapter we shall introduce and try to understand the ungraded derived category of
an algebra. In particular, we will see that this is a triangulated category. Throughout our
presentation we will encounter parallels to the graded setup. Ungraded derived categories
will appear frequently also in chapters to follow.

Remark. Replacing Mod (Mod, Proj, Inj) by mod (mod, proj, inj) throughout this
chapter, each result remains valid.

3.1 A Rudimentary Definition

Although we shall later restrict to module categories, we define the ungraded derived
category of an arbitrary abelian category A. Consider the augmentation A[�] as described
in Chapter 2. Since the objects in the latter category are equipped with differentials, they
admit a notion of homology. Indeed, since any differential � squares to zero there is a
canonical monomorphism Im � → Ker � in A.

Definition. Let (A, �A) ∈ A[�]. The homology H(A) ∈ A of A is the cokernel of the
canonical monomorphism Im �A → Ker �A. If H(A) = 0 we say that A is acyclic.

Homology even defines a functor H : A[�]→ A as one would expect. Given f : A → B in
A[�], the square is commutative in the diagram

Im �A Ker �A H(A)

Im �B Ker �B H(B)

f f

in A, where we by abuse of notation have written f instead of its restriction. By the
cokernel property of H(A) there is a unique morphism H(A) → H(B) completing the
diagram, which we define to be Hf .

Definition. A morphism f in A[�] is called a quasi-isomorphism if Hf is an isomor-
phism.

Denote by S the class of quasi-isomorphisms in A[�]. The ungraded derived category
of A is

Dung(A) := S−1A[�].
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The analogy between the ungraded and the ’ordinary’ derived category should be clear.
Recall that in the ordinary setup, the derived category is the localization of the category of
complexes with respect to quasi-isomorphisms, but may also be viewed as a localization of
the homotopy category. One often prefers the latter approach, since the homotopy category
itself is triangulated and therefore reveals information about a triangulated structure on the
derived category. As we shall see, also this phenomenon has an analogue in the ungraded
setup.

So what we seem to need is a homotopy category with a triangulated structure. Our
strategy will be to construct a Frobenius category and consider its stable category. Then
we show that this stable category conicides with what should morally be the notion of a
homotopy category in the ungraded setup.

Remark. At this point the alert reader will raise the question of whether Dung(A) is
even a category. It is not immediate that HomDung(A)(A,B) is a set. At least in the case
of A being a module category we will rid ourselves of this concern in Chapter 5, when we
show that Dung(ModΛ) is equivalent to a particular category.

3.2 Obtaining a Frobenius Category

ModΛ, being an abelian category, comes with a canonical exact structure. Other exact
structures may be imposed, though, for instance the trivial one, where the conflations are
the split exact pairs. I.e. the sequence

0→ A → B → C → 0

of Λ-modules and -homomorphisms is to be considered exact only if it splits.

3.1 Lemma. The trivial structure on ModΛ is an exact structure.

Proof. Each axiom in the definition of exact structures is easily verified.

At this point we should note that the augmentation (ModΛ)[�] coincides with the category
ModΛ[�] of modules over the ring of dual numbers Λ[�] = Λ[X]/(X2). Indeed, to an object
(M, �M ) ∈ (ModΛ)[�], associate the Λ[�]-module M with (λ1+λ2�)m := λ1m+λ2�M (m).
Conversely, given a Λ[�]-module M we let the associated object in (ModΛ)[�] be (M, �M )
where �M (m) := �m. These constructions are clearly mutually inverse.

By Lemma 2.2 the trivial exact structure on ModΛ induces an exact structure on ModΛ[�].
This is given by letting the sequence

0→ A → B → C → 0

in ModΛ[�] be a conflation if and only if it is split exact when restricted to a sequence
in ModΛ. From now on, this will be the exact structure we equip ModΛ[�] with. As the
next proposition shows, there are severe ramifications.

3.2 Proposition. ModΛ[�] is a Frobenius category.
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Proof. By Corollary 2.9 it suffices to show that ModΛ with the trivial exact structure
is Frobenius. But since every conflation in ModΛ splits, each Λ-module is both projective
and injective.

Hence, by [Hap88], the stable category ModΛ[�] is triangulated. We are able to give an
explicit description of its translation functor.

3.3 Lemma. Let M = (M, �M ) ∈ ModΛ[�]. Then ΣM = (M,−�M ). For a morphism
f :M → N in ModΛ[�], we have Σf = f .

Proof. We know from Chapter 2 that

i :M → M [�]

given by m �→ (�M (m),m) is an inflation in ModΛ[�] where M [�] = FM [�] is injective. If
we let ΣM = (M,−�M ) then the sequence

0→ M
i−→ M [�] p−→ ΣM → 0

is easily seen to be a conflation for p : (m1,m2) �→ m1 − �M (m2). By the definition of the
translation functor in ModΛ[�] this proves the first statement of the lemma.

For f :M → N recall that Σf is given by the cokernel morphism in

M M [�] ΣM

N N [�] ΣN

iM

iN

pM

pN

f f̃ Σf

where f̃ :M [�]→ N [�] is any Λ[�]-morphism making the left hand square commutative. It
is straight forward to verify that such an f̃ is given by the matrix

�
f 0
0 f

�
.

Now, for any m ∈ ΣM , we know that Σf(m) = pN f̃p
−1
M (m) where p

−1
M (m) is any choice

of a pre-image of m, for instance p−1
M (m) = (m, 0). Hence

Σf(m) = pN f̃((m, 0)) = pN ((f(m), 0)) = f(m),

completing the proof.

Remark. It immediately follows that Σ2 is the identity on ModΛ[�], i.e. Σ−1 = Σ.
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Remark. An equally evident consequence is that translation does not affect homology.
More precisely, H(M) = H(ΣM) for each M ∈ ModΛ[�] and Hf = HΣf for any Λ[�]-
homomorphism f .

Before we move on to ungraded homotopy, let us see why the seemingly self-evident state-
ment ’homology is a homological functor’ is true in ModΛ[�].

3.4 Lemma. H : ModΛ[�]→ ModΛ is a homological functor.

Proof. The strategy is to show that H(−) ∼= HomΛ[�](Λ,−). This will suffice, since
Hom-functors are allways homological (Lemma 1.2). So let M be any Λ[�]-module.

First, we claim that HomΛ[�](Λ,M) can be identified with the kernel of �M . To see why
this is true, note that if m ∈ Ker �M then the associated f : Λ → M determined by
1 �→ m belongs to HomΛ[�](Λ,M). Indeed, for any λ ∈ Λ, f�Λ(λ) = 0 since Λ is endowed
with the trivial differential when we view it as a Λ[�]-module, while �Mf(λ) = �Mλf(1) =
λ�M (m) = 0 by assumption. Conversely, for any g ∈ HomΛ[�](Λ,M), the associated
m� := g(1) is annihilated by �M since �M (m�) = �Mg(1) = g(�Λ · 1) = g(0) = 0. We have
established

HomΛ[�](Λ,M) = Ker �M ,

proving the claim.

We proceed to observe that a morphism f : Λ→ M in ModΛ[�] factors through an injective
object if and only if it factors through the injective hull of Λ, i.e.

φ : Λ→ Λ[�]

given by λ �→ (0, λ). Obviously, only one implication needs to be shown. So assume f
factors as Λ α−→ I → M . By injectivity of I there is some γ : Λ[�]→ I making

0 Λ Λ[�]

I

φ

α γ

commutative, which means that f factors through φ. This observation enables yet another
description of the morphisms Λ→ M factoring through an injective, namely as the image
of �M . To verify this assertion, start with some f : Λ→ M factoring through an injective.
Then it factors through φ, i.e. there is a commutative diagram

Λ M

Λ[�]

f

φ g
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in ModΛ[�]. It now follows that m := f(1) belongs to Im �M since m = f(1) = gφ(1) =
g(0, 1) = g�Λ[�](1, 0) = �Mg(1, 0). On the other hand, take some arbitrary �M (x) ∈ Im �M .
Then the Λ[�]-homomorphism (easily verified) f : Λ → M determined by 1 �→ �M (x)
certainly factors through φ. Indeed, consider the Λ[�]-linear (also easy to check)

ψ : Λ[�]→ M

given by (λ1, λ2) �→ λ1x + λ1�M (x). This has the property f = ψφ, furnishing a proof of
the fact that

{f : Λ→ M : f factors through an injective} = Im �M .

In total we have shown

HomΛ[�](Λ,M) :=
HomΛ[�](Λ,M)

{f : Λ→ M : f factors through an injective}
= Ker �M/ Im �M

= H(M)

as sought.

3.3 Comparing The Stable Category to The Homotopy Category

As one would expect, if C is an additive category then the notion of homotopy in C[�] is
given by the following definition.

Definition. A morphism f : A → B in C[�] is nullhomotopic if there is a morphism
s : A → B in C such that f = �Bs+ s�A. Two parallel morphisms f, g : A → B in C[�] are
called homotopic, denoted by f ∼ g, if f − g is nullhomotopic.

The following lemma should not come as a surprise.

3.5 Lemma. Given a pair of composable morphisms

A
f−→ B

g−→ C

in C[�], if either f ∼ 0 or g ∼ 0 then also the composition gf ∼ 0.

Proof. Assume f ∼ 0, so there is some s : A → B in C with the property f = �Bs+s�A.
Letting s̃ := gs we get gf = g(�Bs+ s�A) = g�Bs+ gs�A = �Cgs+ gs�A = �C s̃+ s̃�A, i.e.
gf ∼ 0.

Assume now that g ∼ 0, meaning g = �Cr + r�B for some r : B → C in C. Then r̃ := rf
does the job as gf = (�Cr+r�B)f = �Crf+r�Bf = �Crf+rf�A = �C r̃+ r̃�A. This means
gf ∼ 0.
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Lemma 3.5 ensures that the following construction actually gives a category.

Definition. The homotopy category Kung(C) of C[�] has the objects of C[�] and mor-
phism spaces given by

HomKung(C)(A,B) := HomC[�](A,B)
�

∼ .

Recall that we are equipping ModΛ[�] with the exact structure induced by the trivial
structure on ModΛ. This makes the following lemma possible.

3.6 Lemma. Let (A, �A) ∈ ModΛ[�]. Then 1A ∼ 0 if and only if A is projective.

Proof. Assume there is some s : A → A such that 1A = �As+ s�A. Take the Λ-module
Y := Im �A and define

φ : A → Y [�]

by a �→ (�A(a), �As(a)). Note that φ is a morphism in ModΛ[�] since

φ�A(a) = (0, �As�A(a)) = (0, �A(1A − �As)(a)) = (0, �A(a)) = �Y [�]φ(a).

First, assume φ(a) = 0. This means �A(a) = 0 = �As(a), which yields a = 1A(a) =
�As(a)+ s�A(a) = 0, i.e. φ is a monomorphism. Next, take any b ∈ Y . Then b = �A(a) for
some a ∈ A, hence

b = (�As+ s�A)�A(a) = �As�A(a) = �As(b)

while

�Ass(b) = �Ass�A(a) = (1A − s�A)(1A − �As)(a) = (1A − (s�A + �As)(a) = 0.

This means

φ(b) = (�A(b), �As(b)) = (0, b)

and
φ(s(b)) = (�As(b), �Ass(b)) = (b, 0),

i.e. φ is an epimorphism, hence an isomorphism, establishing projectivity of A (since
Proj Λ[�] = (ModΛ)[�] by the proof of Proposition 3.2).

For the remaining implication, assume A is projective. Consider the morphism

p : A[�]→ A
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defined by (a1, a2) �→ a1 + �A(a2), which we now know is a deflation in ModΛ[�]. By
projectivity of A, p splits (this time over Λ[�]). Let q be the Λ[�]-linear splitting of p. Of
course, we may write

q =
�
t
s

�

for t, s ∈ EndΛ(A). We claim that s gives the desired homotopy 1A ∼ 0. To see why this
is the case we exploit the fact that q commutes with the differentials involved to obtain,
for any a ∈ A,

(t�A(a), s�A(a)) = q�A(a) = �A[�]q(a) = (0, t(a))

implying t(a) = s�A(a). Combined with the property pq = 1A this yields

a = pq(a) = t(a) + �As(a) = s�A(a) + �As(a)

as required.

In Section 3.1 we alluded to the fact that the stable category ModΛ[�] and the homotopy
category Kung(ModΛ) are the same. We are now up to the task of giving a proof.

3.7 Proposition. The categories ModΛ[�] and Kung(ModΛ) coincide.

Proof. Both categories in question coincide with ModΛ[�] on objects, so it is sufficient
to show that a morphism f : A → B in ModΛ[�] is nullhomotopic if and only if it factors
through a projective Λ[�]-module.

For the ’if’ part, assume the diagram

P

A B

α β

f

is commutative with P ∈ Proj Λ[�]. By Lemma 3.6 1P is nullhomotopic. By Lemma 3.5
this means that also α = 1Pα is nullhomotopic. Yet another application of Lemma 3.5
gives that f = βα is nullhomotopic.

Conversely, assume there is some Λ-linear s : A → B such that f = �Bs+s�A. The natural
candidate for f to factor through is the projective Λ[�]-module B[�] = FB[�] along with

p : B[�]→ B

given by (b1, b2) �→ b1 + �B(b2). The proof will be complete if we can find a morphism
γ : A → B[�] in ModΛ[�] making
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B[�]

A B

γ p

f

commutative. It is a straight forward calculation to verify that

γ :=
�
s�A
s

�

is Λ[�]-linear. Further, γ does make the above triangle commutative. Indeed, for any
a ∈ A,

pγ(a) = s�A(a) + �Bs(a) = f(a)

which completes the proof.

3.4 Computing Cones

In the graded setup there is the concept of the mapping cone of a morphism of complexes,
yielding essentially all distinguished triangles in the homotopy category. The first result
of this section shows how this translates neatly to the ungraded setup. The natural notion
of an ungraded mapping cone is the following.

Definition. Let f : A → B be a morphism of Λ[�]-modules. The mapping cone of f
is the Λ[�]-module

Mf := (A ⊕ B,
� −�A 0
f �B

�
).

Recall that cones in Kung(ModΛ) are given by finding an inflation and constructing a
pushout. This seems like a bit of work, at least compared to the simple construction of a
mapping cone. The following lemma makes life easier.

3.8 Lemma. The cone of a Λ[�]-morphism f : A → B is given by its mapping cone. In
particular, the standard triangle associated to f is

A
f−→ B

�
0
1
�

−−−→ Mf
( 1 0 )−−−→ ΣA.

Proof. To show that Mf is the cone of f it suffices to verify that
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A A[�]

B Mf

�
�A
1

�

f f̂ :=
�

1 −�A
0 f

�
�

0
1

�

is a pushout. A straight forward calculation shows that the 2×2-matrix is a Λ[�]-morphism,
and another one shows that the square is commutative. We are left to check the universal
property. So take some X with Λ[�]-linear

�
α1 α2

�
: A[�]→ X and β : B → X such that

α1�A + α2 = βf .

A A[�]

B Mf

X

�
�A
1

�

�
0
1

�f f̂

( α1 α2 )

β

One easily checks that ω :=
�
α1 β

�
: Mf → X is Λ[�]-linear. Also, ω clearly makes all

commutative and is unique with this property.

The second claim of the lemma is now immediate. Indeed, the standard triangle associated
to f is by definition

A
f−→ B

�
0
1
�

−−−→ Mf
ω−→ ΣA

where ω is the unique morphism making all commutative in

A A[�]

B Mf

ΣA

�
�A
1

�

�
0
1

�f f̂

( 1 −�A )

0

By the above, this is given by ω =
�
1 0

�
.

Recall that in the setup of complexes any short exact sequence that is split in each degree
(i.e. the splitting maps need not constitute maps of complexes) embeds in a distinguished
triangle in the homotopy category. The next result, which is a rather easy consequence
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of Lemma 3.8, shows that also this translates in a natural way to the ungraded setup.
Indeed, the concept of ’split in each degree’ should correspond to ’split when restricted to
Λ’.

3.9 Corollary. Each conflation in ModΛ[�] embeds in a distinguished triangle in the
homotopy category Kung(ModΛ).

Proof. Any conflation in ModΛ[�] is a split exact sequence when restricted to ModΛ,
so it is of the form

0→ A

�
0
1
�

−−−→ C ⊕ A
( 1 0 )−−−→ C → 0.

In order for the morphisms appearing to be Λ[�]-linear, one easily checks that the dif-
ferential of C ⊕ A must be a matrix of the form

� �C 0
f �A

�
where f : C → A is some

Λ-homomorphism. Since the matrix must square to zero we get the additional require-
ment f�C + �Af = 0. This means f : ΣC → A is even a Λ[�]-homomorphism, as
f�ΣC = −f�C = �Af by Lemma 3.3. Since Σ2C = C the standard triangle associated
to f is

ΣC f−→ A

�
0
1
�

−−−→ Mf
( 1 0 )−−−→ C

whereMf is the underlying Λ-module ΣC⊕A with differential
� −�ΣC 0

f �A

�
. Of course, since

−�ΣC = �C , Mf is precisely the Λ[�]-module C ⊕A appearing in the above conflation, i.e.

ΣC f−→ A

�
0
1
�

−−−→ C ⊕ A
( 1 0 )−−−→ C

is a distinguished triangle, completing the proof.

3.5 The Triangulated Structure of Dung(ModΛ)

Recall that we took Dung(ModΛ) as S−1ModΛ[�] where S denotes the class of quasi-
isomorphisms in ModΛ[�], but hinted that there might be a ’better’ way of defining the
ungraded derived category. The most important reason why the initial definition is sub
optimal, is that it gives no reason for Dung(ModΛ) to be triangulated. The improvement
we have in mind is localizing with respect to the class T of quasi-isomorphisms in ModΛ[�]
instead.

Our first concern should be whether S−1ModΛ[�] and T−1ModΛ[�] are even linked. As
the reader would suspect, the answer is a resounding ’yes’. Indeed, denoting by QS and
QT the respective localization functors we have the following.

3.10 Lemma. The canonical projection P : ModΛ[�]→ ModΛ[�] induces a unique equiv-
alence P̃ making the following diagram commutative.
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ModΛ[�] S−1ModΛ[�]

ModΛ[�] T−1ModΛ[�]

QS

P P̃

QT

Proof. It is clear that S = P−1(T ). Consequently, QTP makes each s ∈ S invertible
and hence factors uniquely through QT via P̃ : S−1ModΛ[�] → T−1ModΛ[�]. It is easy
to check that homotopic Λ[�]-morphisms induce the same map on homology modules.
Since ModΛ[�] = Kung(ModΛ) this means that QS factors through P via some functor
G : ModΛ[�] → S−1ModΛ[�]. Now G makes each t ∈ T invertible and hence factors
uniquely through QT via

G̃ : T−1ModΛ[�]→ S−1ModΛ[�].

We claim that P̃ and G̃ are mutually inverse. First, notice that P̃ G̃QT = P̃G = QT .
This means QT factors through both the identity functor and P̃ G̃, so P̃ G̃ = id by the
universal property. Second, G̃P̃QS = G̃QTP = GP = QS . So, using universality again,
QS factoring through both the identity functor and G̃P̃ implies G̃P̃ = id.

Hence, we could just as well take Dung(ModΛ) := T−1ModΛ[�].

3.11 Lemma. T is closed under Σi for each i ∈ �.

Proof. Take A t−→ B in T . Since Σ−1 = Σ by Lemma 3.3, it suffices to show Σt ∈ T .
But this is immediate from the same lemma.

So Lemma 1.6 tells us that T is a multiplicative system compatible with the triangulation
in ModΛ[�], and we suddenly know a whole lot about Dung(ModΛ). Indeed, the following
corollary is now an immediate consequence of Lemma 1.5 and its proof.

3.12Corollary. Dung(ModΛ) is a triangulated category. Its distinguished triangles
are those isomorphic to the image of some distinguished triangle in ModΛ[�] under the
localization functor QT , which becomes a triangle functor. Our results on the translation
functor and cones in ModΛ[�] carry over to Dung(ModΛ).

Further, by [GZ67], Dung(ModΛ) admits a calculus of roofs.

Remark. Equivalently, Dung(ModΛ) is the Verdier localization ModΛ[�] /S where S
denotes the thick triangulated subcategory of acyclic Λ[�]-modules.





chapter 4

The Density of Certain Functors

Given an additive category C with countable coproducts, there is a natural functor from
the category of complexes of objects in C to C[�] which we shall call the ⊕-functor. Given
a complex

A = · · · → Ai+1
di+1−−−→ Ai

di−→ Ai−1 → · · ·

we let ⊕A be the underlying object �
i∈�

Ai with differential �A given by

Ai
di−→ Ai−1 �→ ⊕A.

on summands of ⊕A. To a morphism f =
�
fi

�
: A → B of complexes we assign the obvious

morphism ⊕f : ⊕A → ⊕B in C[�] whose components are

Ai
fi−→ Bi �→ ⊕B.

It is easy to verify that the same construction gives a functor

⊕ : K(C)→ Kung(C)

and even, given an abelian category A, a functor

⊕ : D(A)→ Dung(A).

The result from this chapter that will be used later in the thesis is Corollary 4.8, stating
that the restriction of the latter functor to Db(ModΛ) is dense whenever Λ is an iterated
tilted algebra.

We are however able to prove more than this. Roughly speaking, we shall see that the
existence of a standard equivalence between derived categories implies the existence of an
equivalence on the level of ungraded derived categories making a certain diagram commu-
tative (Proposition 4.3 and, by applying the very same argument, Corollary 4.7). This
combined with an appealing structural property of the ungraded derived category of a
hereditary abelian category (see Section 4.1) will give Corollary 4.8 as an immediate con-
sequence.



42 The Density of Certain Functors

4.1 Dung(H) for Hereditary H

Recall the following well known fact. If H is a hereditary abelian category then any object
in D(H) can be represented by a direct sum of shifts of objects in H. To be more precise,
in D(H) there is an isomorphism

X ∼=
�

n

Hn(X)[n]

for each X. We shall see that a similar statement is true about Dung(H).
4.1 Lemma. Let H be a hereditary abelian category. Then any (M, �M ) ∈ H[�] is iso-
morphic in Dung(H) to its homology (H(M), 0).

Proof. The lemma will be shown by constructing a third object in H[�] which is quasi-
isomorphic to both M and H(M).

The assumption on H means Ext1H(X,−) is right exact for each X ∈ H. So the exactness
of

M
�M−−→ Im �M → 0

implies exactness of

Ext1H(H(M),M)
�M∗−−→ Ext1H(H(M), Im �M )→ 0.

This means that any extension of Im �M by H(M) is equivalent to the image under �M∗
of some extension of M by H(M). In particular, there is a commutative diagram in H in
which the rows are exact:

0 M E H(M) 0

0 Im �M Ker �M H(M) 0

i p

�M s 1 (4.1)

The object in H[�] that saves the day is (M ⊕ E, �⊕ :=
� 0 0
i 0

�
).

To see why M ⊕ E and M are quasi-isomorphic, consider

φ :M ⊕ E
( 1 s )−−−→ M

which is a morphism in H[�] by commutativity of the left hand square in diagram (4.1).
Clearly, 0⊕ Im i is an image and 0⊕ E is a kernel of �⊕. So Hφ is given by the diagram

0 0⊕ Im i 0⊕ E H(M ⊕ E) 0

0 Im �M Ker �M H(M) 0

( 0 s ) ( 0 s ) Hφ
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However, this is just diagram (4.1) in disguise, which means that Hφ is indeed an isomor-
phism.

Showing that M ⊕ E and H(M) are quasi-isomorphic is perhaps easier, as both ’admit a
grading’. I.e. M ⊕ E is the image of the complex

· · · → 0→ M
i−→ E → 0→ · · ·

under the ⊕-functor while H(M) is the image of

· · · → 0→ H(M)→ 0→ · · · .

There is an obvious quasi-isomorphism if complexes

· · · 0 M E 0 · · ·

· · · 0 0 H(M) 0 · · ·

i

p

which means that their images under ⊕ are quasi-isomorphic viaM ⊕E
( 0 p )−−−→ H(M).

We have essentially shown what was the aim of this section. For later reference, we give
an explicit statement of an immediate consequence.

4.2 Proposition. If H is a hereditary abelian category, then

⊕ : Db(H)→ Dung(H)

is dense.

Proof. Take (M, �M ) ∈ H[�]. By Lemma 4.1 any stalk complex in Db(H) with H(M) in
its non-vanishing degree will be sent by ⊕ to an object isomorphic in Dung(H) to M .

4.2 Using Standard Equivalences

This section is devoted to proving the following.

4.3 Proposition. Let Λ and Γ be algebras and T a complex of Γ-Λ-bimodules such that

T ⊗L
Λ − : D(ModΛ)→ D(ModΓ)

is an equivalence. Then there is an equivalence
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T �⊗Λ− : Dung(ModΛ)→ Dung(ModΓ)

making the diagram

D(ModΛ) D(ModΓ)

Dung(ModΛ) Dung(ModΓ)

T ⊗L
Λ −

⊕ ⊕

T�⊗Λ−

(4.2)

commutative.

The default strategy in the setup of bounded derived categories would be to first replace
T by a projective resoultion. Essentially the same strategy works also when we face
unbounded complexes, but we need the following notion.

Definition. A complex P of Λ-modules is called homotopically projective if

HomK(ModΛ)(P,K) = 0

for each acyclic complex K.

The concept of homotopically projective resolutions extends that of (bounded) projective
resolutions and hence provides a way for us to calculate total derived functors. By the
work of Keller in [Kel98] there is a homotopically projective complex pT quasi-isomorphic
to T such that

HomD(ModΛ)(T,M) ∼= HomK(ModΛ)(pT,M)

for each complex M , which means we can think of pT as a resolution of T .

In particular, we are justified in assuming that T is the homotopically projective complex

· · · → Ti+1
dT

i+1−−−→ Ti
dT

i−−→ Ti−1 → · · · .

Naturally, the first step towards proving Proposition 4.3 is defining the functor T �⊗Λ−. To
this end, given some (M, �M ) ∈ ModΛ[�], consider the diagram

· · · Ti+1 ⊗Λ M Ti ⊗Λ M Ti−1 ⊗Λ M · · ·

· · · Ti+1 ⊗Λ M Ti ⊗Λ M Ti−1 ⊗Λ M · · ·

dT
i+1 ⊗ 1 dT

i ⊗ 1

dT
i+1 ⊗ 1 dT

i ⊗ 1

1 ⊗ �M1 ⊗ �M 1 ⊗ �M
(4.3)
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whose squares are clearly commutative. This leads us to defining

T �⊗ΛM = (T �⊗Λ−)(M) :=
�

i∈�
(Ti ⊗Λ M)

with differential �
T�⊗ΛM

given on simple tensors by

ti ⊗ m �→ dTi (ti)⊗ m+ (−1)iti ⊗ �M (m).

An easy calculation shows that �2
T�⊗ΛM

vanishes because of commutativity of the squares
in diagram (4.3). For a morphism f : (M, �M )→ (N, �N ) in ModΛ[�] we let

1�⊗Λf := (T �⊗Λ−)(f) : T �⊗ΛM → T �⊗ΛN

be given by
�
ti ⊗ m

�
�→

�
ti ⊗ f(m)

�
which is clearly Γ[�]-linear. To show that this con-

struction gives a well defined functor Dung(ModΛ) → Dung(ModΓ) it suffices to observe
that 1�⊗Λf is a quasi-isomorphism whenever f is.

The following lemma settles one part on Proposition 4.3.

4.4 Lemma. The functor T �⊗Λ− : Dung(ModΛ) → Dung(ModΓ) makes diagram (4.2)
commutative.

Proof. Take some complex

X = · · · → Xi+1
dX

i+1−−−→ Xi
dX

i−−→ Xi−1 → · · ·

in D(ModΛ). Applying T ⊗L
Λ − yields the complex

P = · · · → Pi+1
dP

i+1−−−→ Pi
dP

i−−→ Pi−1 → · · ·

where Pk =
�
i+j=k

Ti ⊗Λ Xj for each k ∈ �. Its differentials are given by

ti ⊗ xj �→ dTi (ti)⊗ xj + (−1)iti ⊗ dXj (xj).

Passing to Dung(ModΓ) yields the Γ[�]-module

⊕P =
�

k∈�

� �

i+j=k
Ti ⊗Λ Xj

�
,

i.e. the module consisting of precisely one copy of Ti ⊗Λ Xj for each (i, j) ∈ � × �. Of
course, the action of the differential of ⊕P on the simple tensors ti ⊗ xj is precisely the
action of each differential of P on the simple tensors of Pk.

Going the other way around diagram (4.2) yields the Γ[�]-module
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�

i∈�

�
Ti ⊗Λ (⊕X)

�
.

Of course, as a Γ-module, this is the same as

�

i∈�

� �

j∈�
Ti ⊗Λ Xj

�

which is also precisely one copy of Ti ⊗Λ Xj for each (i, j) ∈ � × �. And if one is not
intimidated by the notation, then it is a simple matter to read off that the differential acts
on the simple tensors of each summand as

ti ⊗ xj �→ dTi (ti)⊗ xj + (−1)iti ⊗ dXj (xj).

To complete the proof of Proposition 4.3 we will find an inverse functor of T �⊗Λ−. Cer-
tainly, on the level of ordinary derived categories there is an inverse functor of T ⊗L

Λ −
given by

RHomΓ(T,−) : D(ModΓ)→ D(ModΛ).

If the inverse of T ⊗L
Λ − was also some derived tensor product, say S ⊗L

Γ −, then we could
repeat the above construction to obtain a functor

S �⊗Γ− : Dung(ModΓ)→ Dung(ModΛ).

Morally, it would not be unreasonable to hope for the latter to be an inverse of T �⊗Λ−.
The next lemma shows why we actually have derived tensor products in both directions
on the level of ordinary derived categories.

4.5 Lemma. The functors RHomΓ(T,−) and HomΓ(T,Γ)⊗L
Γ − are naturally isomorphic.

Proof. It is sufficient to show that the functors

HomΓ(T,−) , HomΓ(T,Γ)⊗Γ − : ModΓ→ ModΛ

coincide on Proj Γ, as this means they will give rise to the same derived functor. But this
follows readily, as the functors in question agree on Γ via the natural isomorphism

HomΓ(T,Γ) ∼= HomΓ(T,Γ)⊗Γ Γ.

Naturality means that idempotents are preserved, which again implies that direct sum-
mands of Γ are preserved. Thus, the functors in question coincide on Proj Γ = AddΓ.
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Hence there is the diagram

D(ModΛ) D(ModΓ)

Dung(ModΛ) Dung(ModΓ)

T ⊗L
Λ −

HomΓ(T,Γ)⊗L
Γ −

⊕ ⊕

T �⊗Λ−

HomΓ(T,Γ)�⊗Γ−

which is commutative in two ways (i.e. in both the ’top left → bottom right’ and the
’top right → bottom left’ sense). If we can show that the �⊗-functors on the level of
ungraded derived categories compose to the respective identity functors then the proof of
Propopsition 4.3 is complete. By the symmetry of the situation it suffices to handle one
of these compositions.

4.6 Lemma. There is an isomorphism of functors

HomΓ(T,Γ)�⊗Γ(T �⊗Λ−) ∼= idDung(ModΛ) .

Proof. We start by claiming that the proof reduces to showing commutativity of

Dung(ModΛ) Dung(ModΛ)

Dung(ModΓ)

(HomΓ(T,Γ) ⊗L
Γ T )�⊗Λ−

HomΓ(T,Γ)�⊗Γ−
T�⊗Λ−

(4.4)

To see why this does suffice, observe that

HomΓ(T,Γ)⊗L
Γ T

∼= RHomΓ(T, T ) ∼= HomΓ(T, T ) = Λ

in D(ModΛ) by Lemma 4.5. Combined with the natural isomorphism

Λ�⊗Λ− ∼= idDung(ModΛ)

this proves the claim made. Here we used that quasi-isomorphic complexes give natu-
rally isomorphic �⊗-functor, which is easily checked. Indeed, if

�
fi

�
: A → B is a quasi-

isomorphism of complexes then, for any M ∈ ModΛ[�], there is a quasi-isomorphism

A�⊗ΛM → B�⊗ΛM

given on simple tensors by ai ⊗ m �→ fi(ai) ⊗ m which clearly commutes with induced
maps.
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So let us check commutativity of diagram (4.4). Take (M, �M ) ∈ Dung(ModΛ) and recall
that

T �⊗ΛM =
�

i∈�
(Ti ⊗Λ M)

with differential given by

ti ⊗ m �→ dTi (ti)⊗ m+ (−1)iti ⊗ �M (m).

For the sake of notation we write Ai := HomΓ(Ti,Γ). Then HomΓ(T,Γ) is the complex

A = · · · → Ai+1
dA

i+1−−−→ Ai
dA

i−−→ Ai−1 → · · ·

where dAi = (dTi )∗. So going via Dung(ModΓ) in diagram (4.4) yields the underlying
Λ-module

A�⊗Γ(T �⊗ΛM) =
�

j∈�
Aj ⊗Γ (T �⊗ΛM) =

�

(j,i)∈�×�
Aj ⊗Γ Ti ⊗Λ M

with differential acting on each simple tensor of the form aj ⊗ ti ⊗ m as

aj ⊗ ti ⊗ m �→ dAj (aj)⊗ ti ⊗ m+ (−1)jaj ⊗ d
T�⊗ΛM

(ti ⊗ m)

= dAj (aj)⊗ ti ⊗ m+ (−1)jaj ⊗
�
dTi (ti)⊗ m+ (−1)iti ⊗ �M (m)

�

=
�
dAj (aj)⊗ ti + (−1)jaj ⊗ dTi (ti)

�
⊗ m+ (−1)j+iaj ⊗ ti ⊗ �M (m).

To see what happens if we go ’straight across’ diagram (4.4), start by observing that
A⊗L

Γ T is the complex

· · · → Bp+1
dB

p+1−−−→ Bp
dB

p−−→ Bp−1 → · · ·

in which Bp =
�
j+i=p

Aj ⊗Γ Ti and

aj ⊗ ti
dB

p�−→ dAj (aj)⊗ ti + (−1)jaj ⊗ dTi (ti).

Hence

(A⊗L
Γ T )�⊗ΛM =

�

p∈�
Bp ⊗Λ M

with differential given by

bp ⊗ m �→ dBp (bp)⊗ m+ (−1)pbp ⊗ �M (m).
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An equally valid way of writing the latter is of course as the Λ-module

�

p∈�

� �

j+i=p
Aj ⊗Γ Ti ⊗Λ M

�
=

�

(j,i)∈�×�
Aj ⊗Γ Ti ⊗Λ M

with differential

aj ⊗ ti ⊗ m �→
�
dAj (aj)⊗ ti + (−1)jaj ⊗ dTi (ti)

�
⊗ m+ (−1)j+iaj ⊗ ti ⊗ �M (m)

(since j + i = p). This means diagram (4.4) is indeed commutative.

4.3 Density of The ⊕-Functor for Iterated Tilted Algebras

Observe that the validity of the results in the previous section depends neither on the
derived categories being unbounded nor on the fact that modules are allowed to be infinitely
generated. We may therefore conclude the following.

4.7Corollary. Replacing the derived categories in Proposition 4.3 by bounded derived
categories, the statement remains true. Further replacing the categories of modules by their
full subcategories of finitely generated modules, the statement remains true.

Using the theory of tilting complexes, in particular [Kel98, Kön98], the particular result
mentioned at the start of this chapter now follows readily.

4.8 Corollary. If Γ is an iterated tilted algebra, then ⊕ : Db(ModΓ) → Dung(ModΓ)
is dense.

Proof. Γ being iterated tilted means there is a hereditary algebra Λ such that the
categories D(ModΛ) and D(ModΓ) are equivalent. This holds only if the categories
Db(ModΛ) and Db(ModΓ) admit a standard equivalence, in which case we are precisely
in the setup of Corollary 4.7. Thus, there is a complex T and a commutative diagram

Db(ModΛ) Db(ModΓ)

Dung(ModΛ) Dung(ModΓ)

T ⊗L
Λ −

⊕ ⊕

T�⊗Λ−

in which both the horizontal functors are equivalences. Moreover, Propopsition 4.2 says
that ⊕ : Db(ModΛ) → Dung(ModΛ) is dense. This clearly implies density of the right
hand ⊕-functor.
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Remark. Γ is iterated tilted if and only if Db(modΓ) ∼= Db(modΛ) for a hereditary
algebra Λ (see for instance [Kel98]). Since equivalence of these categories also implies
the existence of a standard equivalence, the proof of Corollary 4.8 will adapt to show that
⊕ : Db(modΓ)→ Dung(modΓ) is dense under the additional assumption that the algebras
are noetherian1.

1Of course, any assumption implying that the categories of finitiely generated modules are abelian will
do.



chapter 5

A New Description of Dung(Mod Λ)

The aim of this chapter is to give a different description of the triangulated category
Dung(ModΛ). To be more precise, we shall find a triangle equivalence

Dung(ModΛ) ∼= Hp(ModΛ[�])

where Hp denotes the restriction to the full subcategory of ’homotopically projective’ Λ[�]-
modules. The reason why this equivalence is useful should be evident. Even though we
formally know what Dung(ModΛ) looks like, the fact that it is a localization can make
computations difficult. This has its analogue in the setup of complexes, where we often
prefer working in Kb,+(Proj Λ) rather than in Db(ModΛ). A further advantage of this
description of Dung(ModΛ) is that we in some sense know all the homotopically projective
Λ[�]-modules, as we shall see in Section 5.2.

Remark. The results of this chapter do not carry over if we replace Mod by mod. In
particular Proposition 5.1, which is necessary for the rest of the discussion to make sense,
fails if we only allow finitely generated modules.

5.1 A Projective Resoultion

This section is dedicated to a construction that will be key later in this chapter.

5.1 Proposition. For any M = (M, �M ) ∈ ModΛ[�] there is an exact sequence

· · · → (P2, �̂2)
d2−→ (P1, �̂1)

d1−→ (P0, �̂0)
d0−→ (M, �M )→ 0

in ModΛ[�] satisfying the following.

i) Each Pi restricts to ProjΛ.

ii) We have a decomposition Pi = P �
i ⊕ P ��

i such that �i := (−1)i�̂i is given by a matrix
of the form

� 0 �i
0 0

�
for each i ≥ 0.

iii) The sum of underlying Λ-modules pM :=
�
i≥0

Pi admits a differential �pM making it

quasi-isomorphic to M .

Proof. In ModΛ, fix epimorphisms

X
f−→ Im �M and Y

g−→ H(M)
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with X and Y in Proj Λ. Our construction starts with combining X and Y into a larger
projective module with an epimorphism onto M by using extensions. Consider the follow-
ing diagram with exact rows.

0 X X ⊕ Y Y 0

0 Im �M Ker �M H(M) 0

i1 p1

i2 p2

f h gσ

i1 and p1 are the canonical split monomorphism and epimorphism, respectively, while σ
has the property p2σ = g (such a σ can be found by projectivity of Y ). h is defined by
h(x, y) := i2f(x)+ σ(y) and clearly makes both squares commutative. Further, h must be
an epimorphism by the five lemma. Now the following diagram also has exact rows, where
P0 := X ⊕ Y ⊕ X.

0 X ⊕ Y P0 X 0

0 Ker �M M Im �M 0

i3 p3

i4 �M

h d0 fγ

Here i3(x, y) := (x, y, 0) and p3(x1, y, x2) := x2, while γ has the property �Mγ = f by
projectivity of X. As one should expect by now, d0(x1, y, x2) := i4h(x1, y) + γ(x2) and
makes both squares commutative. By the five lemma again, d0 is an epimorphism, which
is what we were aiming for.

The next step in our construction is equipping P0 with a differential �̂0 in such a way that
d0 becomes a morphism in ModΛ[�]. A natural candidate seems to be �̂0 := i3i1p3, which
is clearly a differential as p3i3 = 0. Further, we have commutativity of each square in

P0 X X ⊕ Y P0

M Im �M Ker �M M

p3 i1 i3

�M i2 i4

d0 f h d0

by the above, so d0 has the desired property of commuting with the differentials of P0 and
M . Note that letting P �

0 := X and P ��
0 := Y ⊕X yields P0 = P �

0 ⊕P ��
0 . Also, the differential

�̂0 is given by the matrix



0 0 1
0 0 0
0 0 0


 : (x1, y, x2) �→ (x2, 0, 0).

Since �̂0 restricts as

�̂0|Ker d0 : Ker d0 → Ker d0
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a Λ[�]-structure is imposed on Ker d0. Thus the above process may be repeated, replacing
M by Ker d0. This produces P1 made from Λ-projective summands with differential �̂1,
accompanied by a Λ[�]-linear map P1 → Ker d0. So we obtain a Λ[�]-homomorphism
d1 : P1 → P0 as the composition

P1 P0

Ker d0

d1

Continuing this process results in the diagram

· · · P2 P1 P0 M 0

· · · P2 P1 P0 M 0

d2 d1 d0

d2 d1 d0

�̂2 �̂1 �̂0 �M

in which each square is commutative and the rows are exact. This shows i) of the propo-
sition.

Since each Pi was constructed using the recipe that gave P0, we have a decomposition
Pi = P �

i ⊕ P ��
i such that �̂i is given by the same elementary matrix as �̂0. This obviously

means that �i := (−1)i�̂i is given by a matrix of the form
� 0 �i

0 0
�
, showing ii) of the

proposition.

The important consequence of altering the signs of the differentials is the diagram

· · · P2 P1 P0 M 0

· · · P2 P1 P0 M 0

d2 d1 d0

d2 d1 d0

�2 �1 �0 �M (5.1)

with exact rows and each square anticommutative, except for the rightmost one which is
still commutative. Let

pM :=
�

i≥0
Pi ∈ ModΛ.1

Completing the proof amounts to equipping pM with a differential making it quasi-
isomorphic to M . Clearly, for this purpose the differential induced on pM by taking
direct sums in ModΛ[�] does not work. Instead, for

�
ai

�
=

�
ai

�
i∈� ∈ pM define

�
ai

� �pM�−→
�
di+1(ai+1) + �i(ai)

�
.

1This is the point where the argument would fail if we tried to translate it to modΛ. Indeed, there
is no reason why the projective resolution we constructed should terminate after finitely many steps. So
regardless of whether or not the Pi are finitely generated, it is not true that pM ∈ modΛ.
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It is clear that this is a differential:

�
ai

� �pM�−→
�
di+1(ai+1) + �i(ai)

�

�pM�−→
�
di+1(di+2(ai+2) + �i+1(ai+1)) + �i(di+1(ai+1) + �i(ai))

�

=
�
di+1�i+1(ai+1) + �idi+1(ai+1)

�

=
�
0
�

where the last equality holds because of the ’sign trick’ pulled above.

Consider

φ : (pM, �pM )→ (M, �M )

given by
�
ai

�
�→ d0(a0). The fact that φ is a Λ[�]-homomorphism is simply restating

commutativity of the rightmost square in diagram (5.1). We claim that φ is a quasi-
isomorphism, i.e. that

Hφ : H(pM)→ H(M)

given by
�
ai

�
+ Im �pM �→ d0(a0) + Im �M is an isomorphism.

Let us show that Hφ is surjective. Take m ∈ Ker �M and pick some a0 ∈ P0 such that
d0(a0) = m. Then 0 = �M (m) = �Md0(a0) = d0�0(a0), i.e. �0(a0) ∈ Ker d0 = Im d1.
Therefore, we can choose a1 ∈ P1 such that d1(a1) = �0(a0). Now d1�1(a1) = −�0d1(a1) =
0, hence �1(a1) ∈ Ker d1 = Im d2. This continues, of course, yielding for each i ≥ 1 an
ai ∈ Pi satisfying

di(ai) = �i−1(ai−1).

This leads us to considering

a :=
�
(−1)iai

�
.

Note that a belongs to Ker �pM :

�pM (a) =
�
di+1((−1)i+1ai+1) + �i((−1)iai)

�

=
�
(−1)i+1di+1(ai+1) + (−1)i�i(ai)

�

=
�
(−1)i+1�i(ai) + (−1)i�i(ai)

�

=
�
0
�
.

Surjectivity of Hφ now follows, as Hφ(a+ Im �pM ) = m+Ker �M .

For injectivity of Hφ take a =
�
ai

�
∈ Ker �pM and assume Hφ(a+ Im �pM ) = 0. We must

show that a ∈ Im �pM . The assumptions mean
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di+1(ai+1) + �i(ai) = 0

for each i ≥ 0 and also that d0(a0) ∈ Im �M . So let m ∈ M be such that �M (m) = d0(a0)
and pick b0 ∈ P0 satisfying d0(b0) = m. Then 0 = d0(a0)− �Md0(b0) = d0(a0)− d0�0(b0),
i.e. a0 − �0(b0) ∈ Ker d0 = Im d1. Now we may pick b1 ∈ P1 such that d1(b1) = a0 − �0(b0),
i.e.

a0 = d1(b1) + �0(b0).

Further, d1(a1) = −�0(a0) = −�0(d1(b1) + �0(b1)) = −�0d1(b1) = d1�1(b1) which means
a1 − �1(b1) ∈ Ker d1 = Im d2. So we can pick b2 ∈ P2 such that d2(b2) = a1 − �1(b1), i.e.

a1 = d2(b2) + �1(b1).

Continuing this we obtain b :=
�
bi

�
with the property

ai = di+1(bi+1) + �i(bi)

for each i ≥ 0. Thus a = �pM (b).

Remark. An important consequence of ii) is that Im �i ⊂ P �
i ⊂ Ker �i (if we identify P �

i

with the submodule P �
i ⊕ 0 of Pi), since

(p�
i, p

��
i )

�i�−→ (�i(p��
i ), 0).

By the above proof we even have Im �i = P �
i . But since we shall only need an inclusion

later on, the statement of Proposition 5.1 is satisfactory.

5.2 Homotopically Projective Λ[�]-modules

Our next aim is introducing the notion of homotopically projective Λ[�]-modules and un-
derstanding the subcategory of ModΛ[�] that they constitute. Our work in this section is
inspired by Keller’s results on homotopically projective complexes in [Kel98].

Definition. A Λ[�]-module K is homotopically projective if

HomΛ[�](K,N) = 0

for each acyclic N . The full subcategory of ModΛ[�] consisting of homotopically projective
Λ[�]-modules is denoted by Hp(ModΛ[�]).

We start with an easy observation.
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5.2 Lemma. Hp(ModΛ[�]) is a triangulated subcategory of ModΛ[�].

Proof. Hp(ModΛ[�]) is clearly closed under isomorphisms and translation. Further,
assume

A → B → C → ΣA

is distinguished in ModΛ[�] with A and B homotopically projective. Let N be any acyclic
Λ[�]-module. Applying HomΛ[�](−, N) yields exactness of

HomΛ[�](ΣA,N)→ HomΛ[�](C,N)→ HomΛ[�](B,N).

The outer terms vanish by assumption, hence also the middle term is zero, meaning C is
homotopically projective.

We immediately also get the following.

5.3 Lemma. Hp(ModΛ[�]) is closed under split extensions, i.e. if

0→ A → E → B → 0

is a conflation in ModΛ[�] with A and B homotopically projective, then also E is homo-
topically projective.

Proof. By Corollary 3.9, there is a distinguished triangle

A → E → B → ΣA

in ModΛ[�]. Since Hp(ModΛ[�]) is a triangulated subcategory by Lemma 5.2, this means
E is homotopically projective.

We turn our attention towards describing Hp(ModΛ[�]) more explicitly. The next two
results should not be surprising.

5.4 Lemma. If P ∈ ProjΛ, then (P, 0) ∈ ModΛ[�] is homotopically projective.

Proof. Take f ∈ HomΛ[�](P,N) with N acyclic. This means the diagram

P N

P N

f

0 �N

f
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is commutative in ModΛ, yielding Im f ⊆ Ker �N = Im �N . So by projectivity of P there
is a Λ-linear s : P → N such that

P

N Im �N 0

s

�N

f

is commutative. Hence f is nullhomotopic as f = �Ns = s�P + �Ns.

5.5 Lemma. Let K be a homotopically projective complex of Λ-modules. Then ⊕K is a
homotopically projective Λ[�]-module.

Proof. Let

K = · · · → Ki+1
di+1−−−→ Ki

di−→ Ki−1 → · · ·

and assume (N, �N ) ∈ ModΛ[�] is acyclic.

Take f ∈ HomΛ[�](⊕K,N). Of course, we can write f =
�
fi

�
where fi is the restriction of

f to Ki. f being a Λ[�]-homomorphism means that each square in

· · · Ki+1 Ki Ki−1 · · ·

· · · N N N · · ·

di+1 di

�N �N

fifi+1 fi−1

is commutative. Since K is a homotopically projective complex, this yields the existence
of a family of morphisms si : Ki → N satisfying fi = �Nsi + si−1di. So the si constitute
a Λ-linear s : ⊕K → N such that f = �Ns+ s�K , meaning f is nullhomotopic.

What is more, we can produce homotopically projectives using the following recipe. Con-
sider a directed system in ModΛ[�]

0→ P0
i0−→ P1

i1−→ P2 → · · · → Pq
iq−→ Pq+1 → . . . (5.2)

in which each iq is an inflation and moreover each quotient Pq+1/Pq has vanishing differen-
tial and restricts to Proj Λ. It is immediate from Lemma 5.4 that each Pq+1/Pq, including
P0, is homotopically projective. Under the assumption that Pq is homotopically projective,
also Pq+1 enjoys this property. Indeed, there is a conflation

0→ Pq
iq−→ Pq+1 → Pq+1/Pq → 0
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which means Pq+1 is homotopically projective by Lemma 5.3. Thus, the assertion that each
Pq is homotopically projective holds by induction. It is the limit of the system, however,
that we are really interested in.

5.6 Lemma. Let {Pq} be the directed system (5.2). Then lim−→Pq is homotopically projec-
tive.

Proof. There is an isomorphism

HomΛ[�](lim−→Pq, N) ∼= lim←−HomΛ[�](Pq, N).

If N is acyclic, then each HomΛ[�](Pq, N) vanishes, so the limit is zero.

The next lemma reveals how the concept of (homotopically) projective resolutions of com-
plexes translates to the ungraded setup.

5.7 Lemma. Any (M, �M ) ∈ ModΛ[�] is quasi-isomorphic to a homotopically projective
Λ[�]-module.

Proof. We saw in the proof of Proposition 5.1 how to construct a ’projective resolution’

· · · → P2
d2−→ P1

d1−→ P0
d0−→ M → 0

and a differential on the Λ-module pM :=
�
i∈�

Pi such that pM is quasi-isomorphic to M .

We will show that pM is homotopically projective. To this end we will realize pM as the
limit of a directed system with the properties of (5.2). Lemma 5.6 says this is sufficient.

For each n ∈ � equip
n�
i=0

Pi with the differential ��n given by

�
pi

�n
i=0 �→

�
�n(pn), dn(pn) + �n−1(pn−1), . . . , d1(p1) + �0(a0)

�

where �i ∈ EndΛ(Pi) is the differential constructed in the proof of Proposition 5.1. Hence
we have the directed system

0 ⊆ (P0,��0) ⊆ (P0 ⊕ P1,��1) ⊆ (P0 ⊕ P1 ⊕ P2,��2) ⊆ · · · (5.3)

of inclusions in ModΛ[�] whose limit is clearly pM . The strategy for completing the proof
is to refine system (5.3) into one that satisfies the properties of (5.2), but whose limit also
equals pM .

Recall ii) of Proposition 5.1. This inspires us to look at

0 ⊆ (P �
0,��0|) ⊆ (P0,��0) ⊆ (P0 ⊕ P �

1,��1|) ⊆ (P0 ⊕ P1,��1) ⊆ (P0 ⊕ P1 ⊕ P �
2,��2|) ⊆ . . . (5.4)
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where ��n| denotes the restriction of ��n to P0⊕P1⊕· · ·⊕Pn−1⊕P �
n. We claim that the latter

directed system is of type (5.2). Clearly, each inclusion is split over Λ and the quotient of
any term modulo its immediate predecessor restricts to Proj Λ. We are left to prove that
these quotients even have vanishing differential. There are two scenarios to consider. One
is when the quotient is of the form

(P0 ⊕ · · · ⊕ Pn−1 ⊕ P �
n)

�
(P0 ⊕ · · · ⊕ Pn−1).

Write D = P0 ⊕ · · · ⊕ Pn−1. Then the differential of the quotient is given by

�
p0, . . . , pn−1, p

�
n

�
+D �→

�
d1(p1) + �0(p0), . . . , dn(p�

n) + �n−1(pn−1), �n(p�
n)

�
+D

=
�
0, . . . , 0, �n(p�

n)
�
+D

=
�
0
�
+D.

The first equality is obvious, while the second one holds because P �
n ⊂ Ker �n by the remark

following Proposition 5.1. The other case is when the quotient is of the form

(P0 ⊕ · · · ⊕ Pn−1 ⊕ Pn)
�
(P0 ⊕ · · · ⊕ Pn−1 ⊕ P �

n).

Writing D� = P0 ⊕ · · · ⊕ Pn−1 ⊕ P �
n the differential of the quotient is given by

�
p0, . . . , pn−1, pn

�
+D� �→

�
d1(p1) + �0(p0), . . . , dn(pn) + �n−1(pn−1), �n(pn)

�
+D�

=
�
0, . . . , 0, �n(pn)

�
+D�

=
�
0
�
+D�.

Again, the first equality is trivial. But since the remark following Proposition 5.1 also gives
Im �n ⊂ P �

n, so is the last one. This means that system (5.4) satisfies all the properties of
(5.2). The limit of (5.4) is obviously the same as that of (5.3), so the proof is complete.

Finally, let us prove the main result of this section, which gives a description of all homo-
topically projective Λ[�]-modules.

5.8 Proposition. Any homotopically projective Λ[�]-module is isomorphic in ModΛ[�]
to the direct limit of a directed system with the properties of (5.2).

Proof. Let K ∈ ModΛ[�]. By Proposition 5.1 there is a quasi-isomorphism

φ : pK → K

where, by the proof of Lemma 5.7, pK is a limit of the desired form. Under the assumption
that K is homotopically projective, we can show that φ is an isomorphism already in
ModΛ[�].
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We claim that φ is universal among morphisms P → K with P homotopically projective
(pK is homotopically projective by Lemma 5.6). To see why this is true, consider the
distinguished triangle

pK
φ−→ K → Cφ → ΣpK

in which Cφ is acyclic. Applying the homological functor HomΛ[�](P,−) gives an exact
sequence

HomΛ[�](P,Σ−1Cφ)→ HomΛ[�](P, pK)
φ∗−→ HomΛ[�](P,K)→ HomΛ[�](P,Cφ).

The outer terms vanish, so φ∗ is an isomorphism. This means the claim holds, as any
morphism P → K must factor uniquely through φ. So when K itself is homotopically
projective there is a commutative diagram

K K

pK

1

φ

Hence K is isomorphic in ModΛ[�] to a direct summand of pK, say pK ∼= K ⊕ X for
some X. But since H(pK) = H(K) we must conclude that X is acyclic. This, however,
means X = 0. Indeed, otherwise the projection pK → X would be non-zero and contradict
HomΛ�(pK,X) = 0. So pK ∼= K in ModΛ[�].

5.3 Restricting QT to an Equivalence

The main objective of this chapter is now within our grasp. Indeed, consider the restriction

F : Hp(ModΛ[�]) �→ ModΛ[�] QT−−→ Dung(ModΛ)

of the localization functor QT . The following is what we have been aiming for.

5.9 Proposition. The functor F : Hp(ModΛ[�]) → Dung(ModΛ) is a triangle equiva-
lence.

Proof. The fact that F is a triangle functor is immediate, as it is the composition of
two triangle functors. Density follows from Lemma 5.7 since F is the identity on objects.

For faithfulness, take f ∈ HomΛ[�](A,B) with A,B ∈ Hp(ModΛ[�]) and assume F maps
f to the zero morphism in Dung(ModΛ). This means f factors as
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N

A B
f

for some acyclic N , yielding f = 0 already in Hp(ModΛ[�]) since HomΛ[�](A,N) = 0.

Lastly, let us see why F is full. To this end let A,B ∈ Hp(ModΛ[�]) and take some
morphism A → B in Dung(ModΛ), i.e. a roof

X

A B

q f

in which q is a quasi-isomorphism. Let the standard triangle associated to q be

X
q−→ A

cq−→ Cq → ΣX

where Cq must be acyclic. This means cq = 0 since A is homotopically projective. So by
Lemma 1.3 q is a split epimorphism in ModΛ[�], i.e. qq̂ = 1A for some Λ[�]-homomorphism
q̂ : A → X which must also be a quasi-isomorphism. Therefore, the diagram

A

X A

A B

q̂ 1

1

fq̂

f

q

has two commutative squares and implies that the roofs

X

A B

q f

A

A B

1 fq̂

are equivalent. Since the right hand roof is the image of f q̂ under F , this suffices.

Remark. It is clear from the above proof that if A is homotopically projective then
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HomDung(ModΛ)(A,B) ∼= HomKung(ModΛ)(A,B)

with no assumption on B. We will use this fact in the proof of Lemma 6.2.



chapter 6

Our Main Result

Given a category C and an automorphism F : C → C the associated orbit category is the
category C/F whose objects are those of C and whose morphisms are given by

HomC/F (A,B) :=
�

n∈�
HomC(A,FnB).

In this chapter we prove the following theorem, where (−[1]) denotes the translation functor
on the derived category.

6.1 Theorem. If Λ is an iterated tilted algebra then Db(ModΛ)/(−[1]) is triangulated
in such a way that the canonical projection

π : Db(ModΛ)→ Db(ModΛ)/(−[1])

is a triangle functor.

6.1 An Embedding of The Strong Orbit Category

In this section we prove a result (Proposition 6.2) that will enable us to compare Hom-
spaces in the orbit category Db(ModΛ)/(−[1]) to Hom-spaces in Dung(ModΛ), modulo
a slight technical difficulty. In particular it will follow that Db(ModΛ)/(−[1]) embeds in
Dung(ModΛ) whenever Λ is iterated tilted, which will help us prove Theorem 6.1.

To overcome the first technical obstacle we will need a version of the ⊕-functor that allows
the graded Λ[�]-modules it produces to be non-zero in infinitely many degrees.

Definition. The Π-functor takes a complex of Λ-modules

A = · · · → Ai+1
di+1−−−→ Ai

di−→ Ai−1 → · · · ,

to the underlying Λ-module
�
i∈�

Ai. The differential of ΠA, which we by abuse of notation1

denote by �A, is given by

�
ai

�
�→

�
di+1(ai+1)

�
.

On morphisms, Π acts as ⊕.
1This is abusive because �A also denotes the differential of ⊕A.
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Remark. If A is a bounded complex then ⊕A = ΠA.

6.2 Lemma. For each M,N ∈ D(ModΛ) there is an isomorphism

�

i∈�
HomD(ModΛ)(M,N [i]) ∼= HomDung(ModΛ)(⊕M,ΠN).

Proof. Our first instinct should be that we would like to work with homotopy categories
rather than with localizations. This can be obtained by replacing M by a homotopically
projective resolution, in which case there is a natural isomorphism

HomD(ModΛ)(M,N) ∼= HomK(ModΛ)(M,N).

Lemma 5.5 says that ⊕M will be a homotopically projective Λ[�]-module, so there is a
natural isomorphism

HomDung(ModΛ)(⊕M,ΠN) ∼= HomKung(ModΛ)(⊕M,ΠN).

by the proof of Theorem 5.9. Therefore, proving the proposition reduces to showing

�

i∈�
HomK(ModΛ)(M,N [i]) ∼= HomKung(ModΛ)(⊕M,ΠN)

which we will manage.

We start by describing a map

Φ :
�

i∈�
HomK(ModΛ)(M,N [i])→ HomKung(ModΛ)(⊕M,ΠN).

Let f =
�
f i

�
∈ �

i∈�HomK(ModΛ)(M,N [i]) where f i : M → N [i] is the morphism of
complexes

· · · Mj+1 Mj Mj−1 · · ·

· · · N [i]j+1 N [i]j N [i]j−1 · · ·

dM
j+1 dM

j

d
N[i]
j+1 d

N[i]
i

fi
jfi

j+1 fi
j−1

Define Φ(f) : ⊕M → ΠN as the morphism whose component Mj → ΠN is given by

mj �→
�
f ij(mj)

�
i∈�.

2

2This is why we use ΠN and not ⊕N . Since
�

f i
j(mj)

�
will in general not have only finitely many

non-zero entries, Φ will not be a map to HomKung(Mod Λ)(⊕M, ⊕N).
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It is immediate that Φ(f) is Λ[�]-linear. We should also check that Φ is well defined in the
sense that it is ’compatible with homotopy’. So assume f = 0, which means that each f i
is nullhomotopic. We need to find a Λ-linear s : ⊕M → ΠN such that Φ(f) = s�M + �Ns.
The assumption means that, for each i, there is a morphism si =

�
sij

�
: M → N [i] of

degree 1 (i.e. sij :Mj → N [i]j+1) such that

f ij = d
N [i]
j+1s

i
j + sij−1d

M
j .

It is only natural to choose s as the morphism whose component Mj → ΠN is given by

mj �→
�
sij(mj)

�
i∈�.

Since the differentials of ⊕M and ΠN restricted to direct summands are by definition the
differentials of M and N , respectively, it immediately follows that Φ(f) = s�M + �Ns.

To show that Φ is an isomorphism we will produce an inverse

Ψ : HomKung(ModΛ)(⊕M,ΠN)→
�

i∈�
HomK(ModΛ)(M,N [i]).

Let g : ⊕M → ΠN be a morphism in Kung(ModΛ) and denote by gij the composition

Mj
µ−→ ⊕M g−→ ΠN π−→ N [i]j

where µ and π are the canonical inclusion and projection, respectively. Fixing i we obtain
the following diagram.

· · · Mj+1 Mj Mj−1 · · ·

· · · N [i]j+1 N [i]j N [i]j−1 · · ·

dM
j+1 dM

j

d
N[i]
j+1 d

N[i]
i

gi
jgi

j+1 gi
j−1

This will be denoted by
�
gi

�
and is a morphism of complexes because g is Λ[�]-linear. We

let Ψ(g) :=
�
gi

�
i∈�.

To see why Ψ is compatible with homotopy, assume g is nullhomotopic. We need to show
that

�
gi

�
is nullhomotopic for each i. By assumption there is a Λ-linear s : ⊕M → ΠN

such that g = �Ns+ s�M . Denote by sij the composition

Mj
µ−→ ⊕M s−→ ΠN π−→ N [i]j+1

with the canonical inclusion and projection on the flanks. This gives

gij = d
N [i]
j+1s

i
j + sij−1d

M
j
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for each j ∈ � by the assumption on g. The corresponding diagram making it clear that�
gi

�
is nullhomotopic is

Mj Mj−1

N [i]j+1 N [i]j

dM
j

d
N[i]
j+1

gi
jsi

j si
j−1

Now we have well defined maps in both directions and what remains is checking that they
are mutually inverse. This, however, is now evident.

For technical reasons again, we employ the following construction.

Definition. Given a category C and an equivalence F : C → C the associated strong or-
bit category is the category C/Fstrong whose objects are those of C and whose morphisms
are given by

HomC/Fstrong(A,B) :=
�

n∈�
HomC(A,FnB).

Remark. If Λ is an iterated tilted algebra then only finitely many HomD(ModΛ)(M,N [i])
are non-zero and hence

Db(ModΛ)/(−[1])strong = Db(ModΛ)/(−[1]).

We turn our attention towards describing a functor

E : Db(ModΛ)/(−[1])strong → Dung(ModΛ).

Since Db(ModΛ)/(−[1])strong coincides with Db(ModΛ) on objects we take E to be given
by ⊕ on these. On morphisms we essentially use Φ from the proof of Lemma 6.2. To
be more explicit, take M,N ∈ Db(ModΛ) (note that this means ΠN = ⊕N) and some
f ∈ �

i∈�HomDb(ModΛ)(M,N [i]). Identify f with f̂ ∈ �
i∈�HomK(ModΛ)(M,N [i]) and

map it by Φ into HomKung(ModΛ)(⊕M,⊕N) ∼= HomDung(ModΛ)(⊕M,⊕N).

6.3 Corollary. E is full and faithful.

Proof. Since E is given by Φ on morphisms, the fact that it is full and faithful is just
a different way of stating Lemma 6.2.
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6.2 Arriving at Our Main Result

We are almost able to prove Theorem 6.1. The only ingredient missing is provided by the
following result.

6.4 Lemma. ⊕ : D(ModΛ)→ Dung(ModΛ) is a triangle functor.

Proof. Take a morphism f : A → B of complexes. Recall that the mapping cone of f
is the complex A[1]⊕ B with differential given by the matrix

� −dA 0
f dB

�
and that this fits

into the standard triangle

A
f−→ B

�
0
1
�

−−−→ A[1]⊕ B
( 1 0 )−−−→ A[1].

It is sufficient to check that this triangle gets mapped by the ⊕-functor to a distinguished
triangle in Dung(ModΛ).

Start by noting that for each complex A we have

⊕(A[1]) = (
�

i∈�
Ai,−�A) = Σ(⊕A).

Further, the mapping cone of ⊕f (in the sense of Section 3.4) is the underlying Λ-module
M⊕f = (⊕A)⊕ (⊕B) with differential

� −�A 0
⊕f �B

�
, which clearly coincides with ⊕(A[1]⊕B).

Hence, proving the lemma reduces to showing that

⊕A ⊕f−−→ ⊕B
�
0
1
�

−−−→ M⊕f
( 1 0 )−−−→ Σ(⊕A).

is distinguished. But by Lemma 3.8, this is the standard triangle associated to ⊕f .

Now finishing the chapter is just a matter of combining some of our results.

Proof of Theorem 6.1. Since Λ is iterated tilted Db(ModΛ)/(−[1]) coincides with
Db(ModΛ)/(−[1])strong and there is a commutative diagram

Db(ModΛ) Dung(ModΛ)

Db(ModΛ)/(−[1])

⊕

π E

Together with the density of ⊕ : Db(ModΛ)→ Dung(ModΛ) (Corollary 4.8), this implies
that also E must be dense. The latter is therefore an equivalence (it is already full and
faithful by Corollary 6.3), so a triangulated structure is imposed by Dung(ModΛ) on
Db(ModΛ)/(−[1]). Since ⊕ is a triangle functor by Lemma 6.4, this triangulated structure
makes π a triangle functor.
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As a final remark we write down an easy consequence.

6.5 Corollary. Let Λ be noetherian and iterated tilted. Then Db(modΛ)/(−[1]) is
triangulated in such a way that the canonical projection

π : Db(modΛ)→ Db(modΛ)/(−[1])

is a triangle functor.

Proof. By the remark following Corollary 4.8, ⊕ : Db(modΛ)→ Dung(modΛ) is dense.
Clearly, by the same argument that was used to show Lemma 6.4, this is a triangle functor.
Further, if M,N ∈ Db(modΛ) then

�

i∈�
HomDb(modΛ)(M,N [i]) ∼= HomDung(modΛ)(⊕M,⊕N)

by simply restricting the discussion of the previous section to Db(modΛ). So we get an
embedding E� : Db(modΛ)/(−[1]) → Dung(modΛ) as above, and with it a commutative
triangle

Db(modΛ) Dung(modΛ)

Db(modΛ)/(−[1])

⊕

π E�

Now we are in the setup of the proof of Theorem 6.1 and the corollary follows.
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Further Research

This last chapter of the thesis differs from chapters 2 through 6 as we do not present
results of our own. The main objective is discussing briefly the possibility of a converse of
Theorem 6.1, so a somewhat imprecise style is necessary. The papers [Rin98] by Ringel and
[HZ08] by Happel and Zacharia give some reasons why one could expect such a converse
to be true. Therefore, we start by giving a short summary of these.

7.1 Piecewise Hereditary Algebras

The aim of the following summary is not to give a complete account of [Rin98] and [HZ08],
but rather to build a sketch of the proof of the main result of the latter. Both papers
give characterizations of piecewise hereditary algebras, a class of algebras that includes
the iterated tilted algebras.

Definition. An algebra Λ is piecewise hereditary if there is a hereditary abelian
category H such that Db(modΛ) is triangle equivalent to Db(H).

A key notion will be that of a path in a triangulated category.

Definition. Let T be a triangulated category with translation −[1]. A path in T of
length n is a sequence X0, . . . , Xn of indecomposable objects such that either Xi = Xi−1[1]
or HomT (Xi−1, Xi) �= 0 for each 1 ≤ i ≤ n. The path is strong if HomT (Xi−1, Xi) �= 0
for each 1 ≤ i ≤ n.

Remark. Using only elementary concepts one can show that if Λ is a connected algebra
which is not semi-simple then any path in Db(modΛ) can be refined to a strong path.

Ringel gives a characterization of piecewise hereditary algebras in terms of the nonexistence
of certain paths. To obtain this he first shows that a well known structural property of
Db(H) for H hereditary abelian is in fact characteristic. To be precise, if T is triangulated
and H is a full subcategory such that T = add

� �
i∈Z H[i]

�
and HomT (H[i],H[j]) = 0

for i > j, then H is hereditary abelian and canonically embedded in T = Db(H). The
non-trivial implication of the below theorem then follows from a somewhat tedious but
straight forward argument.

We should note that the original version of the following theorem also includes a homo-
geneity property. Namely, the existence of a single indecomposable X ∈ Db(modΛ) with
no path from X[1] to X implies that this property holds for all indecomposables.
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Main Result of [Rin98]. An algebra Λ is piecewise hereditary if and only if for each
indecomposable X ∈ Db(modΛ) there is no path from X[1] to X.

We shall soon see how this paves the way for the main theorem of Happel and Zacharia.

The main technical tool developed in [HZ08] is concerned with shortening strong paths.
The proof involves a ’trick’ in the form of making a choice that may seem uncalled-for
at first glance, and is well worth a read. However, to keep this section from getting too
lengthy we do not include it here. The following version is formulated in less generality
than the one appearing in the paper, but sufficient for our purpose.

Lemma From [HZ08]. If X0, . . . , Xn is a strong path in Kb(proj Λ), then there is some
0 ≤ t ≤ n − 2, an indecomposable Y in Kb(proj Λ) and a strong path X0[t]→ Y → Xn.

To state the main result of Happel and Zacharia we must first establish the concept of
strong global dimension. In the category Cb(modΛ) of bounded complexes, one easily
checks that the indecomposable projective objects are the complexes

· · · → 0→ P
1−→ P → 0→ · · ·

where P ∈ modΛ is indecomposable. In analogue to the ungraded setup in which we
worked in the previous chapters, the homotopy category Kb(modΛ) conicides with the
stable category of Cb(modΛ) modulo projectives. Given a complex X ∈ Kb(modΛ) we
say that its pre-image in Cb(modΛ) is the complex X̂ with no projective summands
satisfying X ∼= X̂ in Kb(modΛ). Note that the pre-image is uniquely determined up to
isomorphism in Cb(modΛ) and hence allows the following definition. If X �= 0 then there
are integers r ≥ s such that X̂r �= 0 �= X̂s and X̂i = 0 for each i ≥ r and i ≤ s. The
length of X is �(X) := r − s.

Definition. The strong global dimension of an algebra Λ is

s. gl.dimΛ := sup{�(X) : X ∈ Kb(proj Λ) indecomposable}.

We are now ready for the final result of this summary. Because it is the important one for
the purpose of the next section, and because the argument is elegant and demonstrates
the value of the discussion of paths, we include a proof.

Main Result of [HZ08]. An algebra is piecewise hereditary if and only if its strong global
dimension is finite.

Proof. Assume Λ has finite strong global dimension. This means in particular that the
global dimension of Λ is finite, hence Db(modΛ) ∼= Kb(proj Λ). Let P be an indecom-
posable projective Λ-module. If Λ is not piecewise hereditary then by [Rin98] there is a
path in Kb(proj Λ) from P [1] to P which we may refine to a strong path (we can clearly
assume that Λ is connected and different from k). This yields the existence of a strong
path from P [n] to P for any n ≥ 1. By the above lemma there is a positive integer t, an
indecomposable Qn,t ∈ Kb(proj Λ) and a strong path
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P [n+ t]→ Qn,t → P.

This means Qn,tn+t �= 0 �= Qn,t0 , hence �(Qn,t) ≥ n+t, so there are indecomposable complexes
in Kb(proj Λ) of arbitrary length, contradicting s. gl. dimΛ < ∞.

Before proceeding, note that if F : Db(modΛ) → Db(H) is an equivalence with H hered-
itary, then we may with no loss of generality assume F is normalized. I.e. there is some
r ≥ 0 such that each indecomposable Λ-module is contained in �r

i=0 H[i] and further there
are indecomposable X,Y ∈ modΛ such that FX ∈ H[0] and FY ∈ H[r]. It is shown in
[Hap88, IV.1] that for each 0 ≤ i ≤ r there is a simple Λ-module Si such that FSi ∈ H[i].
Thus r ≤ rankK0(Λ)− 1 where K0(Λ) is the Grothendieck group of Λ.

This sets up the proof of the remaining implication1 nicely. Let P ∈ Kb(proj Λ) be
indecomposable with �(P ) = t. Up to shifting we can assume P0 �= 0 �= Pt and hence
Pi = 0 for each i > t and i < 0. Thus, there is the diagram

P0 = · · · 0 P0 0 · · ·

P = · · · 0 Pt Pt−1 · · · P1 P0 0 · · ·

Pt[t] = · · · 0 Pt 0 · · ·

1

1

showing that

HomKb(modΛ)(P0, P ) �= 0 �= HomKb(modΛ)(P, Pt[t])

as we can assume P has no projective summands. If Λ is piecewise hereditary there is
a normalized equivalence F : Db(ModΛ) → Db(H), so we have FP0 ∈ �r

i=0 H[i] and
FPt[t] ∈ �r+t

i=t H[i]. Because P is indecomposable we also have FP ∈ H[s] for some s.
Since

HomDb(H)(H[n],H[m]) �= 0 =⇒ m ∈ {n, n+ 1}

we get s ≤ r+ 1 and t− 1 ≤ s. Combining these gives t ≤ r+ 2, i.e. s. gl.dimΛ < ∞.

7.2 Connection to Our Work

In [Kel05]2 Keller provides examples of algebras of both infinite and finite global dimension
for which the conclusion of Theorem 6.1 does not hold. This raises the natural question

1In fact, finiteness of the strong global dimension of a piecewise hereditary algebra was shown already
in [KSYZ04]. We give a different proof.

2In this paper Keller actually shows a result that implies our Theorem 6.1, but in a different way from
us entirely. His approach involves a construction called the ’triangulated hull’ of the orbit category using
the formalism of dg categories.
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of whether Theorem 6.1 can be strengthened to an if and only if statement.

Question. Let Λ be an algebra and assume Db(ModΛ)/(−[1]) admits a triangulation
such that the canonical functor

π : Db(ModΛ)→ Db(ModΛ)/(−[1])

is a triangle functor. Does it follow that Λ is iterated tilted?

By the main result of [HZ08] the statment ’each indecomposable in Db(ModΛ) is a stalk
complex’ is utterly false unless Λ is piecewise hereditary. Recall that a crucial point in
our proof of Theorem 6.1 was showing an ungraded analogue of this statement in the
hereditary case, saying that any indecomposable in the ungraded derived category has
vanishing differential. Consequently, any Λ[�]-module admits a grading as long as Λ is
piecewise hereditary. If the analogy between the graded and the ungraded setups extends
to the non-hereditary case, then it would essentially read ’there are Λ[�]-modules that do
not admit a grading’, i.e. ⊕ : Db(ModΛ) → Dung(ModΛ) is not dense. By our proof of
Theorem 6.1, this would imply that Db(ModΛ)/(−[1]) � Dung(ModΛ).

A priori, of course, this does not mean that the conclusion of Theorem 6.1 fails. How-
ever, the construction of the triangulated hull by Keller in [Kel05] seems to indicate that
Dung(ModΛ) is the only candidate among triangulated categories for Db(ModΛ)/(−[1])
to be equivalent to in order for the projection π to be a triangle functor.
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