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Abstract

In this thesis, quantum mechanics is studied over the p-adic numbers and adeles.
In particular the harmonic oscillator is investigated. There is no Hamiltonian in
the p-adic and adelic case for this model, but an analogous theory is studied.
In addition, expectation values for some operators in the simplest ground state
are calculated. Necessary background information about p-adic numbers, adeles,
topological groups and quantum mechanics is given.
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Sammendrag

Denne oppgaven handler om kvantemekanikk over p-adiske tall og adeler. Hov-
edfokus har veert pa den harmoniske oscillatoren. For oscillatoren er det ingen
Hamilton-operator i det p-adiske og adeliske tilfellet, men en analog teori er gjen-
nomgatt. I tillegg sa er forventningsverdier funnet for noen operatorer i den enkleste
grunntilstanden. En gjennomgang av p-adiske tall, adeler, topologiske grupper og
kvantemekanikk er gitt.
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Chapter 1

Introduction

The standard for quantum mechanics is to study wave functions from R™ to C.
A problem with the current model over the real numbers is what happens at the
Planck length, which is approximately 1.6-1072°m. This is a very small size, even
compared to a proton which has a diameter which is approximately 1.6 - 10~!5m.
The Planck length is the smallest length which is possible to measure. So what hap-
pens under the Planck length? As is discussed by Volovich in his paper ”Number
Theory as the Ultimate Physical Theory” ([14]), the archimedean axiom ! becomes
questionable when dealing with lengths under the Planck length.

Over the history of physics one has accepted more and more of what can be
considered less intuitive models. That the space we live in can be anything dif-
ferent from Euclidean space was unthinkable a couple of centuries ago. Now it is
standard to work with a four-dimensional manifold as space-time. For a long time
one has taken for granted that the space consists of real numbers. The possibility
of using a p-adic space was first noted by Vladimirov and Volovich in 1983. The
p-adic numbers, denoted by Q,, and the real numbers share the property of being
fields which are completions of the rational numbers. It is convenient to have a
model which is based on Q since all physical results are rational numbers. One can
go further and consider adelic space, such that the real and p-adic numbers are
treated simultaneously. The adeles, denoted by A, are unfortunately just a ring
and not a field, but it is a locally compact abelian group.

There are several paths to go from a real model to a p-adic and adelic model.
In this thesis, I have chosen to follow Weyl’s formulation of quantum mechanics.
In this model the functions go from the adeles or p-adic numbers to the complex
numbers. In the p-adic model, mass, position, time and so on become p-adic, and
similarly these quantities become adelic in the adelic model. A problem is that Q,
is not an ordered field, and one cannot talk about before and after. That the adeles
are not a field makes things even harder to interpret. Another path is for instance

IThe archimedean axiom states that if you have a large and a small line segment, then if the
small segment is added enough times, the length will surpass the larger line segment.
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to let the time stay real. One can also consider models where the functions are
p-adic valued.

The harmonic oscillator will be the model which is investigated. The harmonic
oscillator appears often and is very important. It is also a simple model such that
the eigenvalues and eigenvectors can be found for the Hamiltonian.

In Chapter 2, p-adic numbers are introduced. Locally compact abelian groups
are studied in Chapter 3. In Chapter 4, the adeles are investigated. The treatment
of integration theory and Fourier transform follows Tate’s thesis [6]. Chapter 5
gives an introduction to quantum mechanics. In particular it contains the mathe-
matical formula of the Feynman path integral given in [13]. The one-dimensional
harmonic oscillator over real numbers, p-adic numbers and adeles is investigated
in Chapter 6. Finally in Chapter 7, one obtains eigenvalues and eigenfunctions for
the evolution operator for the harmonic oscillator, which is analogous to finding
the eigenvalues and eigenvectors for the Hamiltonian. The treatment of the p-adic
harmonic oscillator follows [5], while the treatment of adelic harmonic oscillator
follows [7].

The purpose of this thesis is to go thoroughly through all the necessary back-
ground knowledge needed for p-adic and adelic quantum mechanics, as well as
investigating the work of Vladimirov, Volovich and Zelenov on the p-adic harmonic
oscillator, and the work of Dragovich on the adelic harmonic oscillator.



Chapter 2

The p-adic Numbers

The field of p-adic numbers, denoted by Q,,, were first described by Kurt Hensel in
1897. Even though one says the field of p-adic numbers, there are actually several
fields. For each prime p, one gets one field Q,. So for instance if p = 3, one gets
the 3-adic numbers Q3. When we give a statement about Q,, it means that the
statement is true for all primes p. Each Q, is a completion of the rational numbers
Q with respect to a different norm than the usual one.

2.1 Construction of Q, by Analysis

There are several ways to give a construction of Q,. This section will be about the
construction of @, by analysis.

First it will be necessary to define an absolute value, and then define the p-adic
absolute value which will extend to be an absolute value on Q.

Definition 2.1.1. (Absolute value) An absolute value on a field, k, is a function
|-|:k — R which satisfies

(i) |z|=0if and only if x =0
(i) eyl =lzllyl Vr,y ek
(i) Jo+yl<lo|+lyl Vo ek.
The absolute value is in addition called non-archimedean if it satisfies
|z +y| < max{|z|,|y|]} Vz,ye€k. (2.1.1)

Definition 2.1.2. (The p-adic absolute value and valuation) Let x = ¢ be a

rational number different from zero. One can factorize such that x = pk‘;—: with

p1a’b’. Then the p-adic absolute value on Q is
— (2.1.2)

3
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and the p-adic valuation on Q is:
vp(x) =k (2.1.3)
For ¢ = 0, vp(z) = oo, and with the usual conventions on handling oo, |z|, =0

Here are a few examples of the absolute value.
Example [7|; =1, [1623=]2-3%3=3"%  [37°.279%; =1

It is worth noting that the p-adic absolute value actually is non-archimedean.
The next two lemmas follow easily from the definition.

Lemma 2.1.1. The p-adic valuation satisfies
(i) vp(zy) =vp(x) +vp(y) Vr,y ek
(ii) vp(x+y) > minfu,(a),v,(9)} Ve, € k.
Lemma 2.1.2. The p-adic absolute value |-|, is a non-archimedean absolute value.

As it is of no interest, the trivial absolute value will often be excluded from the
theorems.

Definition 2.1.3. The trivial absolute value is an absolute value such that |0] =0
and |z| =1 for x # 0.

The real numbers, R, is the completion of Q with respect to the usual absolute
value, denoted by | - |oo. On the other hand, Q, is obtained by completing Q with
respect to the p-adic absolute value, |- |,. It is worth to note that the completion
actually is necessary since Q is not complete with respect to | - |,.

Lemma 2.1.3. Q is not complete with respect to |- |,.

The proof of the lemma can be found in [1].

The idea for the completion process is to add all the limits which are missing.
This is done by looking at all Cauchy sequences in Q with respect to |-|,, and divide
out all such sequences which are converging to zero. This will be our definition of

Qp.

Definition 2.1.4. Define C as the set of all Cauchy sequences in Q with respect
to |- |p. Define N to be the set of all such sequences which converge to zero.

C will be a ring with pointwise addition and multiplication. It can be shown
that NV is a maximal ideal of C. Now we are ready to define Q.

Definition 2.1.5. (The p-adic numbers) We define Q, to be

Q, = C/N. (2.1.4)
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Note that Q — Q,, by letting x € Q go to the Cauchy sequence which is
constantly z. The difference between two such different sequences will be a constant
different from zero, and thus it will not tend to zero.

Theorem 2.1.4.

(i) The p-adic absolute value on Q extends to Q,.
(i) Qp has Q as a dense subset.
(111) Qp is a complete field.

Proof.
(1) Let © € Q, and let (z,,) be a coset representative (which is a Cauchy sequence)
for . One defines the p-adic absolute value on Q, by

||, = nh_)rréo |0 p- (2.1.5)

There are a few things that have to be checked. It has to independent of the choice
of coset representative and the limit must exist. Furthermore it clearly coincides
with the absolute value defined on Q. Finally, one has to check that it is a non-
archimedean absolute value.

(77) Let = € Q, and € > 0. We want to show that there exists an element in Q
such that the distance to z is less than e. Choose a Cauchy sequence (z,,) which
represents . Since it is Cauchy there exists an N such that |z, — 2|, < €/2 for
n,m > N. Let (zx) be the sequence constantly equal to zy. Then

|z — (zn)|p = nhﬂn;o |z —zN|p <€ (2.1.6)
which proves the claim.

(29¢) Since C' is a unital commutative ring and N is maximal ideal in the ring, Q,
is a field. Since Q is not complete, we went to the completion to get Q,. To show
that it actually is complete, let (x,), be a Cauchy sequence of p-adic numbers.
Since Q is dense in Qp, there exists a sequence of rational numbers (y,,), such that
limy, o0 |[n, — Ynlp = 0. We have that

[Yn — YUm| < |yn — Talp + [T — Tmlp + [Tm — Ymlp (2.1.7)

by the triangle inequality (the non-archimedean property is not needed here). This
proves that (y,), is Cauchy since (z,,), is Cauchy and lim,_, |2, — yn| = 0. But
then (yn)n is an element in Q,, and by the choice of (yn)n, n — (yn)n (To make
it clear, the sequence in Q,, (z,)n, converges to (yn)n, seen as an element in Q,).
This proves that Q, is complete. O

The properties in Theorem 2.1.4 are also true for R with the usual absolute
value. This similarity makes some of the analysis on @, quite similar to the anal-
ysis on R. But as we shall see later, there are many properties which are very
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different.

One could ask why one is looking at these special absolute values. Actually,
the only non-trivial absolute values on Q are, up to equivalence, the usual absolute
value and the p-adic ones. This makes it more natural to study these structures.

Definition 2.1.6. (Equivalence of absolute values) Two absolute values are said
to be equivalent on a field k if they define the same topology on k.

Now Ostrowski’s theorem can be stated. The proof is found in [1].

Theorem 2.1.5. (Ostrowski) Fach non-trivial absolute value on Q is either equiv-
alent to | - |, for some p or it is equivalent to the usual absolute value.

It is standard convention to write Q for R and |- | as the usual absolute
value. One can think of Q, as studying Q "locally around p”, and one thinks of R
as studying Q ”locally around oo”, and one often refers to the prime oc.

2.2 Further Properties of Q,

In this section we will establish some important properties of Q,, but also some
results which are meant to illustrate how the numbers behave. Some of the results
will be rather unintuitive at first, but it will be clearer later on.
First we will look at the product formula. This will be the first example of what is
called an adelic formula. There will be more about adeles later.

Theorem 2.2.1. (Product Formula) For every x € Q,
H|$|P = 17 p:OO72u375777-'- (221)
P

where |x|so 18 the usual absolute value of x.

Proof. We can factorize x as £p]'p5? - - pp*. Then the absolute values will all be
1 when p gets large, and hence the product is well defined. Clearly |z|,, = p~™
and |z]ec = pY'py? -+ - pp*, and the result follows. O

Lemma 2.2.2. Let z,y be elements in Q. If |z|, # |y|, then

|+ ylp = max{|zlp, |ylp}. (2.2.2)

Proof. Assume |y|, > |z|,. That |z + y|, < |y|, follows immediately from the
non-archimedean property. For the other inequality: |y, = |y + = — z|, < max
{ly+z|p, |z|p} = ly+z|, where one gets the last equality from the fact that choosing
|z|, as maximum would contradict the assumption first made in the proof. The
proof for |y|, < |z|, is similar. O

This lemma is very useful and is seen in many proofs. The next lemma is
important as well.
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Lemma 2.2.3. All triangles in Q, are isosceles.

Proof. First the claim has to be explained. A triangle will be created by three
points, x, y and z, and the length of the sides will be |z —y/|,, |z — 2|, and |y — z|,.
We know that

e —ylp =1z —2)+ (2 —y)lp- (2.2.3)

If |z — 2|, and |z — y|, are equal, we are done. If not, by Lemma 2.2.2, |z — y|, will
be equal to the longest of the two sides, and we are done.

Now we will look at open and closed balls and the topological properties of Q.

Definition 2.2.1. (Open and closed ball) Let a € Q,, and r be a positive real
number. Then define the open ball around a with radius r to be

B(a,r) ={z € Qp: |z —al, <1}, (2.2.4)

and the closed ball around a with radius r to be

B(a,r) ={z € Qp: |z —alp, <7} (2.2.5)

Notice that the bar over B(a,r) does not mean closure. It is in fact not true
that the closure of B(a,r) is B(a,r). It will be shown later that the open ball is a
closed set.

Lemma 2.2.4. Every point in an open ball is the center of the open ball, i.e. if
b € B(a,r) then
B(a,r) = B(b,r). (2.2.6)

The statement holds true for closed balls as well.
Proof. The proof will only be given for an open ball. Let « € B(a,r). Then

|b— x|, <max{|b—alp,|la—=z|,} <, (2.2.7)
so B(a,r) C B(b,r). The reverse inclusion is clear by a similar argument. O

Corollary 2.2.5. Two balls are either disjoint or contained in one another. That
18, if 1 < s are two real numbers, and b and a are two p-adic numbers, then either
B(b,r)NB(a,s) =0 or B(b,r) C B(a,s). The statement holds true for closed balls
as well.

Proof. The proof will only be given for an open ball. If they are not disjoint, then
take z € B(a, s) N B(b,r). Then

B(b,r) = B(z,r) C B(z,s) = B(a,s). (2.2.8)
O

The p-adic integers play a special role in this theory, and will be used quite
frequently.
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Definition 2.2.2. (The p-adic integers) The p-adic integers, Z,, are defined as
Zy,={x€Q:|z|, <1} (2.2.9)

Before the topological properties are stated comes an important theorem about
a representation of the p-adic numbers. This is the way of thinking about these
numbers when doing calculations.

Theorem 2.2.6. Any y in Q, can be represented uniquely on the form:
Y= anp" + Ana1p" T+ appop™ T+ (2.2.10)

where 0 < a; < p andn € Z. If y # 0, then one can assume that a,, is non-zero,
n

and then we have that |y|, = p~".

Proof. The proof follows [1]. First we will show that every element in Z, can be
written as Y ;o a;p’. Let x € Z,. The idea of the proof will be to show that there
is a Cauchy sequence (a,,) converging to z such that |a,11 — aplp < p~ ("t and
0 < a, < p"*!, and that the sequence satisfying these properties is unique. From
this sequence one can show that x has the unique representation that is stated in
the theorem. Choose an integer n > 0. Since Q is dense in QQ, there is an element
a/b € Q (written in lowest terms) such that |z — a/bl, < p~ "+, Since |a/bl, < 1
by the non-archimedean property of the absolute value, p does not divide b. Now
choose a rational integer z such that bz =1 (mod p"*1). Then

0z — aly < max{laz — T, |7 — 2y} < pmD (2.2.11)

1 n+1).

Now let o, be the unique integer less than p"*! such that «,, = az (mod p
Then |z — oy, < p~ ™. Now 0 < a, < p" ! and |11 —anl, < p~ "+ follows
from the non-archimedean property again. The sequence is clearly Cauchy and
converges to x. Now 0 < oy < p and call this integer ag. Furthermore 0 < ay < p?
and |ay — apl, < p~!. Hence a1 = aip + ap where a1 is an integer satisfying
0 < ay < p. Doing this inductively one gets the desired sum = = Y_.°  a;p’. Notice
that a; are unique since the «; are unique and that the sum converges since the
partial sums are just the «; which is a Cauchy sequence converging to x. Since
every y € Qp is equal to z/p™ for some x € Z,, of absolute value 1, and some n € Z,

y can be written as y = Z;’i,n a;p". =

This is certainly easier to work with than the definition. The representation
certainly looks similar to the decimal expansion for the real numbers. The difference
is that the ”carry” goes to the right (higher power of p) and not to the left. Addition
and multiplication are analogous to what is done for Laurent series which are finite
to the left, but with carry. For instance the sum of ag + ai1p + asp® + ... and
bop? + bsp3 + ... will be ¢g + c1p + cap® + c3p® + ..., where ¢g = ag, ¢1 = aq,
¢y = ag + by mod p, ¢3 = ((as + b3) + (az + b2 — ¢2)) mod p, and so on. The
product of these two numbers is do + d1p + dop? + dsp® + ..., where dy = 0, dy = 0,
do = apbs mod p, d3 = ((aobs + a1b2) + (apb2 — d2)) mod p. Notice the extra
terms ag + bs — co and agbs — do which one does not get with Laurent series. Let
us now see how this representation can be useful.
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Example Let z = Zin a;p* and y = Zfim b;p' with a,, and b,, non-zero. Now
it is not that hard to show that |z + y|, = max{|z|p, |y|p} if ||, # |y|,- That
|z, # |ylp just means that n # m by Theorem 2.2.6. Assume n < m. Since the
carry goes to the right, the first term in « +y is still a,,p™ and |z +y|, = |z|,. The
case m < n is similar. Note that this is just to see it from another point of view.
The first proof of this lemma was the "right” proof since it also works for arbitrary
fields with a non-archimedean absolute value, and the result is actually used for Q
when one extends the absolute value to Q.

The next example will be stated as a lemma. It will be important for the
topological properties of Q,.

Lemma 2.2.7. Every open ball is a closed and open set (which is called a clopen
set).

Proof. Let a € Q,, let r be a positive real number and let B(a,r) = {x € Q, :
|z — al, < r} be the open ball of radius r around a. Notice that since the absolute
value only takes discrete values by Theorem 2.2.6, B(a,r) is just {z € Q, : |[x—al, <
p~ ¥} = B(a,p~*) where p~* is the biggest power of p that is strictly smaller than
r. This is a closed ball, and hence a closed set. O

Example That all points in an open ball is the center of the ball can be hard
to understand. When one uses Theorem 2.2.6 it is easier to see. This example
will follow the notation from Lemma 2.2.7. It is easy to see that B(a,r) consists
of all numbers that have the same coefficients as a up to the p* term, that is
{xeQp:2—ac kap}. To say that two p-adic numbers are equivalent mod p* if
they have the same coefficients up to the p* term is clearly an equivalence relation.
Now it is apparent that the choice of center does not matter, since all elements in
the ball are equivalent with respect to this equivalence relation.

The absolute value is non-archimedean has a huge impact on the topology. We
know that R is a connected Hausdorff space, but we will see that @Q, is not only
disconnected, but totally disconnected.

Lemma 2.2.8. Q, is totally disconnected and Hausdorff.

Proof. Since Q, is a metric space, it is Hausdorff. Now assume that a set X
contains two distinct points, x and y in Q. Their distance is |z —y|, = r. The ball
B(z,r/2) in Q, is also open and closed in the subspace topology when intersected
with X. The complement of this set in X is also open and closed. Both these sets
are non-empty and do not intersect, thus X is disconnected. Hence, the connected
components of Q, must consist of just one point which means that Q, is totally
disconnected. O

Now comes a result which will be very important for the integration theory.

Theorem 2.2.9. Z, is compact and Q, is locally compact.
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Proof. That Q,, is locally compact means that every point of Q, has a compact
neighborhood. Note that to prove that @, is locally compact it is enough to prove
that the closed unit ball of 0 is compact (translation is a homeomorphism and
continuous maps take compact sets to compact sets). So what is left to prove
is that Z, is compact. To prove that it is compact, we have to prove that it is
complete and totally bounded. It is a closed subset of Q, which is complete, hence
it is complete. Now to prove that it is totally bounded, let € > 0, and p~—* be the
highest power of p strictly less than e. Remember that any = € Z, can be written
as

T = ag+ aip+ azp® + ... (2.2.12)

Also remember that two numbers having distance less than or equal p~* means

that the first k coefficients are the same. There are p* possible combinations for
the first k coefficients. So take p* e-balls with each of these combinations as center.
This will clearly cover all of Z,, and we are done. O

2.3 Elementary Functions on Q,

On the real numbers we have the functions sinx, cosz, Inxz and e*. We want to
define the p-adic analog of these functions. We will define these functions by power
series, and the power series will look identical to the real ones. To be able to do
this, we first have to develop some results about convergence of p-adic series.

We will start with two lemmas which do not hold in R.
Lemma 2.3.1. A sequence (a,) in Q, converges if and only if

lim |ap41 — anlp = 0. (2.3.1)

n—oo

Proof. We have that for m > n,

|am — anlp < max{|am — am—1lp;s - [Gnt1 — anlp}- (2.3.2)

This shows that if equation (2.3.1) holds, then (a,) is Cauchy, and hence conver-
gent. U

Lemma 2.3.2. The absolute value of the elements in a Cauchy sequence (a,) in
Qp, not converging to 0, will eventually be constant.

Proof. Since the sequence is not converging to 0, then there exists an € > 0 and an
N such that |a,|, > € for n > N. Since it is Cauchy, there exists an M such that
|an, — am| < € for n,m > M. But then if n,m > max{N, M},

|a”ﬂ|p = |an —am + am‘p = |am|p (233)

by Lemma 2.2.2. O
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Lemma 2.3.3. Let (a,) be a sequence in Q,. Then the infinite series > .- an
converges if and only if lim,_, ., a, = 0. Furthermore, in this case we get that

1> anlp < max{janl,}. (2.3.4)
n=0

Proof. That the sum converges follows immediately from the previous lemma. The
inequality follows from the fact that the absolute value of the elements in a se-
quence, not converging to 0, will eventually be constant. This reduces the inequal-
ity to the finite case which follows from induction. O

We want to look at functions on the form
f(z)= Z anz", (2.3.5)
n=0

and determine when the series converges. We know that the series converges for
those x which satisfy lim,, o |an2™|, = 0. The next proposition will be useful to
determine for which x that condition is satisfied. The proof is pretty straightfor-
ward and will be omitted here (it is found in [1]).

Proposition 2.3.4. Let f(z) = Y07 a,a™, and define p = (limsup {/]a,[p) "
with the usual convention when dealing with oo.

(i) If p =0, then the power series converges only for x = 0.
(i1) If p = oo, then the power series converges for all x € Q.

(111) If0 < p < 0o and lim, o |an|pp™ = 0, then the power series converges for x
if and only if |x|, < p.

() If0 < p< oo andlim, o |an|pp™ # 0, then the power series converges for x
if and only if |x|, < p.

Let us now define the functions. We will first define the logarithm by

e n
(1 +z) =Y ()i (2.3.6)
n=1 "
After a few calculations we get that /|a,|, — 1 as n — oo, and thus p = 1. It
is clear that the power series diverges for |z|, = 1 since |a,z"|, = |anl, = ||, so
the power series defining In(1 + x) converges if and only if |z|, < 1.

The results about power series in x are of course true for power series in * — «
too. Now we can define the logarithm.

Definition 2.3.1. (Logarithm Function) The p-adic logarithm is defined as

(oo}

In(z) = Z(_mﬂw (2.3.7)
n=1

which is defined only for z € Z, such that |z — 1|, < 1.
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We continue to use the power series which are used in R to define the functions.

Definition 2.3.2. (Exponential Function) The p-adic exponential function is de-
fined as

=3 T (2.3.8)

Definition 2.3.3. (Trigonometric Functions) The p-adic trigonometric functions

are defined as
0 (_l)nx2n+l

sinx = Z W, (2.3.9)
n=0
e (71)7117277,
COST = Z W, (2310)
n=0
tan z = z:;x (2.3.11)
X

Lemma 2.3.5. The region of convergence for sinx, cosz, tanx and e* is {z :
_a
|z, <p~ P T}

Proof. A proof will only be given for e”. Recall that we write |z|, = p~*»(*). We
want to calculate vy(n!). It is easily seen that

oo

OEDY LZJ < i; = ;%' (2.3.12)

i=1

Then ||, < p7-T so we know that the series for e® converges when |z|, <
p~/®=1) To prove divergence when ||, = p~ /(=1 we will look at the terms in
the sum when n = p™. Then

m—1
vp(n)) =p™ L4 pm i 1= pp_l , (2.3.13)
and this gives us
x 1
— )= —. 2.3.14
" (pm!) p—1 ( )
The power series for e* clearly diverges, and the result follows. O

This is very different from the real numbers, where functions like e” converge
for all z. In the real case |#| goes to 0 as n goes to infinity. However, in the p-adic
case |%|p will go to infinity as n goes to infinity, and the region of convergence is
then expected to be much smaller. Also note that the region of convergence for

these functions is {x : |z|, < p~'} for p > 3 since the absolute value does not take

1

any values between p~* and piﬁ(and it is {z : |z|, < p~?} for p=2).
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Definition 2.3.4. We define G, to be the additive group where the exponential
function is defined,

B {{ac €Qp:lzl, <p™'} ifp#2, (2.3.15)

P l{z ez, <p?} ifp=2.

Definition 2.3.5. We define L, to be the multiplicative group where the logarithm
function is defined,
Ly={z€Q,:1—-z¢€G,} (2.3.16)

It can be shown that In(ab) = In(a) + In(b) and e**¥ = e%e¥ (z,y € G,) as we
expect from the logarithm and exponential. The p-adic logarithm is the analog of
the natural logarithm on the real numbers. From [5] we get the next results.

Lemma 2.3.6. The function e is an isomorphism from G\, to L, with Inx as the
inverse function.

Lemma 2.3.7.
e, =1, [|sinz|, = |z]p, |cosz|, =1, z€G,. (2.3.17)

Proof. For instance, let us prove that |sinz|, = |z[,, or that [¥2Z|, = 1. We have

that
2 > (_l)n 2n

sinx T T
=1——+4..= — .
z T 7;) @2n+ 1)

(2.3.18)

By using a bit stronger approximation than we did in Lemma 2.3.5, one can show
that |I:Jl |, < 1. Now, by Lemma 2.3.3, the series for is 1 minus a p-adic
number of absolute value less than 1, and the result follows. O

sina

Definition 2.3.6. (Legendre Symbol) Let p be an odd prime, and a an integer.
Then the Legendre symbol is defined as

1 if a is a quadratic residue mod p and a # 0 (mod p)
a
<) =4 —1 if a is a quadratic non-residue (mod p) (2.3.19)
b 0 ifa=0(mod p)
It can be shown that an equivalent definition is that (%) = a®=1/2 (mod p)

where (%) is in the set {—1,0,1} . It can also be shown that the Legendre symbol

£)C)-(2)

Lemma 2.3.8. Let a = p?(@ (ap +aip+ ...) be a p-adic number, where 0 < a; < p
and ag # 0. Then the equation

is multiplicative, that is,

¥ =a (2.3.21)
has a solution for p # 2 if and only if
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(i) ~(a) is even.

(i) (%) =1,
and a solution for p =2 if and only if
(i) ~(a) is even.
(i) a1 =as=0.
Proof. We will prove the lemma for p # 2. Let = be on the standard form x =
p" @) (zg + 21p + ...). Then 22 = a becomes
PP @ (g + 21p+..)% =" D(ag +arp+ ...). (2.3.22)

Then we immediately see that y(a) must be even and that ag = 22 (mod p).
Conversely, assume that 7(a) is even and that (<) = 1. Then we can choose

v(z) = 37v(a). Also, there exists an z¢ such that 23 = ag (mod p). From the above
equation we also get that

20z + Nj =a;  (modp), (2.3.23)

where N; is an integer which is only a function of xg,1,...,2;-1. The equation
has a unique solution x; for each j. This proves the lemma. O

Lemma 2.3.9. The functions

cosz, smx’ (2.3.24)
x

are squares of p-adic functions on Gp.

Proof. From the proof in Lemma 2.3.7 we get that v = 0 and a¢ = 1 for % The

result follows from Lemma 2.3.8. The proof for cos z is similar. O

Definition 2.3.7. (p-adic Units) The p-adic units, Z), are defined to be the
invertible elements in Z,, which are

Zy ={x€Qy: x|, =1}. (2.3.25)

The p-adic units form a multiplicative group. The proof of the next lemma is
found in [1].

Lemma 2.3.10. Let V be the set of roots of unity. For all p, V is a subset of
Zy. For p # 2 this is a cyclic group of order p— 1, and for p = 2 thz:s 8 a cy;lic
group of order 2. Furthermore Ly, is a subset of Z,', and we have the isomorphism
Zy =V x Ly.

The next corollary then follows immediately.
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Corollary 2.3.11. Every p-adic number, z, can be represented uniquely as
z=preFe, (2.3.26)

where v € Z, € is a generator for the group V , k is in the additive group {0,1,...,p—

2} for p # 2 and in {0,1} forp =2, and a € G,.

Lemma 2.3.12. The equation > = —1 has a solution in Qp if and only ifp=1

(mod 4).

Proof. Obviously |z|, = 1. From Lemma 2.3.8 this reduces to if (_?1) = 1. From

the alternative definition of the Legendre symbol, we get that

-1\ e )1 p=1(mod4)
<p> (=1) {_1 p=3 (2.3.27)

O

An element that satisfies this equation is sometimes denoted by i as we do in the
real numbers. One should keep in mind the next definition as it will be frequently
used in the integration theory.

Definition 2.3.8. (Fractional Part) The fractional part of a p-adic number, z =
Zfin a;p*, is defined as

{2} = i a:p’ (2.3.28)

when |z| > 1 and defined as 0 when |z| < 1.

2.4 A Useful Function

The function, A,, which will be defined here is very useful since it occurs in the
Gaussian integrals which will be defined later.

Let x be a p-adic number different from zero. Recall that it can be written on
the form

z=p"(ao + a1p + azp” + ...), (2.4.1)

where v € Z and 0 < a; < p (ag # 0).
We will also denote the multiplicative group of p-adic numbers by Qj. Since
Qy is a field, Qy, consists of all p-adic numbers except for 0.

Definition 2.4.1. Define the function A, : Q — C as

Ao(a) = {\}5(1 + (=1)®4) if y is even (2.4.2)

%i“l(—l)“z if v is odd
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1 if y is even
Ap(a) = (‘?) ifyisoddand p=1 (mod 4) (2.4.3)
z(‘?) if yisodd and p=3  (mod 4)

where v, ag, a; and ay are given in equation (2.4.1), and p in equation (2.4.3) is
not equal to 2. Also define the function A\, : R* — C as

Aso(a) = %(1 — sign a), (2.4.4)

where R* is the multiplicative group of real numbers.
The next two lemmas are found in [5].
Lemma 2.4.1. Some important properties are
Ap(@)lp =1, Ap(a)Ap(—a) =1, a#0,
Mp(ac?) = My(a), ,c# 0.

1. If v is even, it is trivially true. If
p(—a) if p =1 (mod 4), and My(a) =

(2.4.5)

)

Proof. Let us prove that A,(a)\,(—a)
is odd, then by Lemma 2.3.12, A\,(a) =

—Ap(—a) if p=3 (mod 4). O
Lemma 2.4.2.
(@A (b) = Ay(a+ b))\p(% + %)7 abatbeqQ (2.4.6)
Lemma 2.4.3. We have the adelic product
[[Ma@=1acq, (2.4.7)

where v = 00,2,3,5, ...
Proof. The product converges for all a € Q* since A, (a) is eventually 1. Since
M) (—a) =1, N (ac®) =\, (a) (2.4.8)
it is enough to prove the lemma for a of the form
a=2%p1pa -+ pn, (2.4.9)

where « is 0 or 1. We will only prove the lemma for o = 0 since the case o =1 is
similar, but with longer calculations. So let &« = 0. One gets that

(M) p;j=1 (mod 4)

pj

i(nk;j pk) p; =3 (mod 4).

Ap, (@) = (2.4.10)
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One also gets that A\,(a) = 1if p # 2 and p # p;, and that A(a) = exp(—i%). To
calculate \y(a), let I denote the number of primes in the set {p1, ..., p,} which are
of the form 4N + 3. Note that the product of k primes of the form 4N + 3 is equal
to an integer of the form 4N + 3 if k is odd, and of the form 4N + 1 if k is even.
This gives that Ay(a) = %(1 + (—1)%). By the quadratic reciprocity law

P\ (4 p=1a-1
( ) = ()t (2.4.11)
()
for odd primes p and ¢, we get that
I (%5™)= 10 (%)= 1 (2)(%)
1<j<n N Pi 1<55<n NPT/ 1< lpen NPT/ \PE
S (_1)%71%71:(_1)71“5”'

1<j<k<n

(2.4.12)

The last equation follows from the fact that Z&— 12 72 is odd only if both p;, and p;
are of the form 4N 4 3, and this will happen l(l —1)/2 times. Now we can combine

the results to get

1(1—1)

H)\ = exp ( 4)\[(1+z( DY)~ =1 (2.4.13)

by just checking the cases | = 4k, 4k + 1,4k + 2, 4k + 3. This proves the result. [
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Chapter 3

Locally Compact Abelian
Groups

In this chapter we will give an introduction to locally compact abelian groups and
integration on these groups. At the end we will do integration on Q,.

3.1 Locally Compact Abelian Groups and the Haar
Measure

Definition 3.1.1. (Topological Group) A topological group is a group G with a
topology such that o — 2! is a continuous operation from G to G, and (x,y) — zy
is a continuous operation from G x G to G.

Definition 3.1.2. (Compact Group) A compact group is a topological group whose
topology is compact.

Definition 3.1.3. (Locally Compact Group) A locally compact group is a topo-
logical group whose topology is locally compact.

In this thesis we will assume that all compact and locally compact groups have
a topology which is Hausdorff.

A locally compact abelian group is a locally compact group with an abelian
group operation. These definitions are important because the p-adic numbers and
the adeles are locally compact abelian groups.

Locally compact groups have a measure called the Haar measure. Since Q,, is a
locally compact abelian group, it has a Haar measure. This measure will give rise
to an integration theory on Q.

Definition 3.1.4. (Outer and Inner Regular Measure) Let X be a set and let E
be a Borel subset of X. Let ;1 be a Borel measure on X. Then p is called outer

regular on F if
w(E) =inf{u(0): O D E,O open} (3.1.1)

19
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and called inner regular on F if
w(E) =sup{u(K) : K C E, K compact}. (3.1.2)

Definition 3.1.5. (Radon Measure) A Radon measure on a set X is a Borel
measure, j, such that that p is finite on all compact sets, inner regular on all open
sets and outer regular on all Borel sets.

Now the Haar measure can be defined along with a very important theorem
which asserts that every locally compact group has a Haar measure.

Definition 3.1.6. (Haar Measure) Let G be a locally compact group. Also let E
be a Borel set. A Borel measure, u, on G is left-invariant if u(zE) = p(E) for all
x € G. Similarly it is right-invariant if yu(Ez) = pu(E). A left(right) Haar measure
is a non-zero left(right)-invariant Radon measure on G.

An example of a Haar measure is the Lebesgue measure on R restricted to the
Borel sets.

Theorem 3.1.1. FEvery locally compact group G has a left Haar measure. More-
over, a left Haar measure is unique up to a positive scalar.

The proof of the theorem can be found in [2]. A direct consequence of this is
that Q, has a unique left Haar measure up to a constant. Notice that the left Haar
measure will also be a right Haar measure since Q, is abelian. We will refer to it
as the Haar measure.

3.2 The Pontryagin Dual Group

Definition 3.2.1. (Character) Let G be a locally compact abelian group. A char-
acter on G is a continuous homomorphism from G to T which is the multiplicative
group of complex numbers of absolute value 1.

Definition 3.2.2. (Pontryagin Dual Group) Let G be a group. The set of char-
acters of G under pointwise multiplication is called the Pontryagin dual group and
is denoted by G. The topology on G will be the compact-open topology, viewing
G as a subset of all continuous functions from G to T. This is the topology where
convergence is given as uniform convergence on compact sets.

Lemma 3.2.1. If G is a locally compact abelian group. Then Gisa locally compact
abelian group.

An important class of functions is the class of integrable functions.

Definition 3.2.3. (Integrable Function or L!-function) A measurable function f
is integrable on a locally compact group G if

£l = /G 1F(@)ldulg) < oo. (3.2.1)

The space L'(G) is the set of integrable functions, where one identifies functions
which are equal almost everywhere.
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Definition 3.2.4. (Square-integrable Function or L2-function) Similarly to the
definition of L*(G), we define L?(G) to be the set of measurable functions on G
such that

113 = /G F(@)Pdu(g) < oo, (3.2.2)

where two functions are the same if they are equal almost everywhere. This is a
Hilbert space with inner product

By = /G F@R@dulg).  f.he LX), (3.2.3)

The Fourier transform is a very useful tool.

Definition 3.2.5. (Fourier Transform) Let G be a locally compact abelian group,
and let f € L1(G). Then the Fourier transform F takes f to a function Ff on G
given by

3) =/Gf(g)@du(g)7 ¢ed. (3.2.4)

We will often write f instead of Ff.

Theorem 3.2.2. (Plancherel) The Fourier transform on L*(G) N L*(G) extends
uniquely to a unitary isomorphism from L*(G) to L*(G).

The above theorem is found in [3].

Proposition 3.2.3. Let G be a compact group and let p be its Haar measure
normalized such that p(G) = 1. Then G form an orthonormal basis in L*(G).

Proof. Let x € G. We know that Jo x(9)x(g9)du(g) = 1 since x(g)x(g) = 1.

Now let n € G be different from y. Then there exists an element h such that
xn~t(h) # 1. Then

/ X7(g)du(g) = / xn~ ' (g)du(g)
G G

(3.2.5)
=xn""(h) /G xn (g — h)du(g).

We will make the substitution ¢’ = g — h. By the invariance of the Haar measure
we get that the integral equals

D /G Mg )du(a). (3.2.6)

Since xn~'(h) # 1, we get that [, xn~'(g9)du(g) = 0, which proves that the
characters form an orthonormal set. Now, let f € L*(G). If

| H@dnts) = Foo - (3.27)

for all x € G, then we get that f = 0 by Theorem 3.2.2. This proves the proposition.
O
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Proposition 3.2.4. If G is compact, then G is discrete.

The proof is found in [3].
Finally we will state a big theorem called the Pontryagin duality theorem. We
will not need it, but it is included here for completeness. A proof is given in [3].

Theorem 3.2.5. (Pontryagin Duality Theorem) Let G be a locally compact abelian
group. Define @, to be the element in the double dual of G acting as

P, (&) = {(2). (3.2.8)

Then ® : G — G, x +— @, is a topological and algebraic isomorphism.

3.3 Integration on Q,

All functions on the p-adic numbers will be complex valued.

The Haar measure is unique up to a scalar. Then the Haar measure p which
satisfies p(Z,) = 1 is unique, and this is the Haar measure which will be used. By
Lebesgue theory this gives a p-adic integral. So with this measure we have

/ du(z) =1 (3.3.1)
zZ

P

Then it is possible to find the volume of balls of radius p¥ which we will denote
by Bj. Note that By = p‘kZp. A p-adic integer z can be written as ¢ = ag+aip+...
.For0<ab<p—1let A={x €Z,:a0=0a}and B={x €Z,:ay=0>}. By
translation invariance, p(A) = p(B). This gives that u(A4) = u(pZ,) = 1/p. Doing
this inductively one gets that

p(B_y) =p~*, (3.3.2)

where B_j, is the ball of radius p~* and k is a positive integer. One can do this in

the same way for balls of radius p¥, with k a positive integer, by noticing that all
numbers on the form a_ip~ ! +ag+aip+..., with a_; fixed, differ from ag+ai1p+...
by a constant a_1p~'. Again by induction one gets

pw(By) = p*. (3.3.3)

To sum it up, u(By) = p* for k € Z. By translation invariance, the result extends
to balls around an arbitrary element. Since two balls are either disjoint or contained
in one another, an open set is a disjoint union of open balls. Since every open set
is a disjoint union of balls, we know the measure of open sets. Finally, the Haar
measure on Borel sets is determined by outer regularity of the Haar measure.

Lemma 3.3.1. The measure p. giwen by p.(X) = p(cX) for a Borel set X in Q,
is also a Haar measure on Q,. Furthermore we have that

1e(X) = pleX) = eln(X). (3.3.4)
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Proof. We see that for a,c € Q, and X C Q,
pela+ X) = plea + X) = p(eX) = ro(X) (3:35)

so it is a (left) Haar measure. From Theorem 3.1.1 the Haar measure is unique up
to a constant so p.(X) = f(c)u(X). Let the p-adic number ¢ have absolute value
p~". Since ¢ can be written uniquely as up”, |u|, = 1 and uZ, = Z, we get that

pe(Zyp) = u(cZy) = p(p"uZy) = p(p"Zy) = |clpp(Zy)- (3.3.6)

Hence, f(c) = |¢|, and
pre(X) = p(eX) = [elpp(X) (3:3.7)

which was what we wanted. O

To know the integral over a ”circle” in Q, will be useful. By defining Sy, = {z €
Qp : |z| = p*} one gets that

dp(x) = p* —p*! (3.3.8)
Sk

by noticing that S is the difference between By and Bjy_1.
Lemma 3.3.2. The dual group of Q, is Q.

Proof. In this proof we will follow [3]. The main goal of the proof is to show that
every character on QQ, can be written as

Yulz) = e?miturt (3.3.9)
with u € Q,. In particular we define
Xp(x) = 2™}, (3.3.10)

Recall that {a_,p ™" +a_pip "+ .. +apt+as+ap+..}=a_,p "+
a—nt1p” "+ ...+ a_1p~!. The isomorphism (topological and algebraic) from Q,
to Q, is then given by u — y,. One can show that {z +y} = {z} + {y} = N
where N is 1 or 0. Using this, it is not hard to show that x,(z) = e?™{ue} is a
character on @, as an additive group, and that the map u — e2mi{uz} ig a group
homomorphism. It is also clear that the map is injective.

Now we will prove that all characters are of the form x,(z) = e2mi{ur} et y
be a character. Since a character is continuous and maps 0 to 1, there exists a ball
By, such that x maps By into {z € T : |z — 1| < 1}. Since By, is a subgroup of Q,,
{z € T:|z—1] < 1} must be a subgroup of T, and hence is the set {1}. This shows
that there exists a ball By such that x is equal to 1 on this ball.

Since x is a homomorphism, if one knows the values it takes on the numbers
{p*} where k € Z, then one knows how it acts on finite sums like a,p* + ... + a,p™.
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Since it is continuous, one also knows its values on infinite sums, and hence all
p-adic numbers, namely as

X(nILII;O gaip )= nl;rrgo X(Zk a;p"). (3.3.11)

Let Y be a character which is 1 on p* for k > 0, but is not equal to 1 on p~*

(such a character exists, for instance e2™*{#}). We want to prove that there is a
sequence (c,,)g° where ¢, € {0,1,...,p — 1} for n > 0 and ¢o € {1,2,...,p — 1} such
that x(p~*) = *™ Ei=1ex=2"" for k> 0. One has that
X~V = x(07h). (3.3.12)
With k£ = 0, we get that
X =1, (3.3.13)

27ricop71

so X(p7!) is a pth root of unity, and thus y(p~!) = e for some ¢y €
{1,2,...,p—1}. Proceeding inductively, by equation (3.3.12), one gets that ¥ (p~*) =
2™ Ejm1 -3 for some sequence (c¢,) which satisfies what we claimed. Now we
want to show that there exists a u € Q,, with |u|, = 1, such that x = x,, with x,
as in equation (3.3.9). Define u = Y°7°; ¢;p’. Then |ul, = 1 and for k >0

. . . -1 ;
)NC(pik) — 2y ok 2TIN crs?

= Xp( Z Ck+jpj) = Xp(piku) _ Xu(pfk). (3.3.14)
i=—k

So to finally prove that all characters are on the form x,(z) = e2m{ur} et € be an
arbitrary character different from 1. Then there is an integer k such that £(p?) = 1
for j > k and £(p*~1) # 1. Let n(x) = £(p*x). Then n(x) = x,(z) for some y € Q,
with |y|, = 1. But then

5(17) = n(pfkl") = Xy(pikx) = Xp—ky(x)’ (3315)

which proves that all characters are on the given form.

Finally we must show that u — e>7{%*} is a homeomorphism. A neighbourhood
base for 0 in Q,, is the set {By} with k € Z. A neighbourhood base for 1 in Q, is
the set ~ R

N(K,U) = {x € @ : x(K) U}, (3.3.16)

where K is a compact set and U is a neighbourhood of 1. Since all compact sets
are contained in a ball By which also is compact, we can use the set

N(j. k) = {x € Qp: |x(2) = 1| <" for |z| < p"}, (3.3.17)

where j runs through the positive integers and k € Z. Note that it is enough to
look at neighbourhoods around the identities since translation is a homeomorphism
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in a topological group. x,(Bx) is equal to {1} if k¥ < 0, and equal to the set of p*th
roots of unity if ¥ > 0. Thus, the image of By, is contained in {z € T : [z—1| < 7'}
if and only if £ < 0. Similarly one gets that x,(Bg) is equal to {1} if |u|, < p~F,
and equal to the set of p'~*th roots of unity if |u|, = p' > p*. Thus, x, € N(j,k)

if and only if |ul, < p~ %, and this proves that the map is a homeomorphism. [J

Lemma 3.3.3. The integral fSk e? =t dp(x) is equal to —1 for k = 1 and equal
to 0 when k > 1.

Proof. The integral will first be calculated for k = 1. Here b_; will be the notation
for the p~! coefficient for a p-adic number. The notation b_; = a_; in the integral
means that the integration goes over all p-adic numbers of absolute value p~! where
the p~! coefficient is a_;.

/627ri{:1:}d‘u($) _ / e27ria,1/pd‘u(l,)
Sl 1 b71:a71

_ 627rza71/p -1

by using the fact that it is a geometric series.
For k& > 1 one gets by a similar argument

/ e27ri{z}du(x) — Z 627rib71p—1+..‘+b_kp—k —0, (3.3.18)
Sk b_1,...,b_g

where the sum is a sum over all p-adic numbers of absolute value p* and where
b_; varies from 0 to p — 1 (b_y, is of course bigger than 0). The sum becomes zero
because if one fixes b_s, ... , b_; and sums over b_; it becomes zero. O

Definition 3.3.1. (Tate-Gel’fand-Graev p-adic Gamma Function) The p-adic gamma
function [4] (also called the Tate-Gel’fand-Graev p-adic gamma function) is defined
as

0s) = [ xolo)lel; duta) (33.19)

P
where y,(z) = 2™{#} and s is a complex number.
By [z[57!, we mean e(*~D™(zl») where In is the real logarithm. This can
be written in terms of elementary functions. We will now calculate this integral
to show an example of how integration is done over the p-adic numbers. It is
convenient to calculate the integral over Z, and Q, \ Z, separately. This is because
Xp is equal to 1 in Z,. Also notice that |z|, is constant on each S (by definition
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of Si). So

/ yo(@lals du(z)
7.

D

S [ el tdute)

k=07 5~k

S [ du)
S_k

k=0

Now by using equation (3.3.8) we get

— —k(s— - —k(s— — — p—1 —s
> p ke 1)/ dp(z) = Y p ek —phh Zp k
k=0 Sk k=0

p—1 1

p 1—p-

if Res > 0. The other part of the integral becomes by similar reasoning

| ellely duta) Zp“S V[ i) (3:3.20)
Qp\Zyp

This sum is equal to —p*~! by Lemma, 3.3.3.
By adding up all the parts one gets if Res > 0,

o p—1 1
Fs:/xxméldux =
() 0, P( )l |p () D lipfsipsfl
17p571
= —— 3.21
e (3321)

It is very important to know how to compute the Gaussian integrals. These
integrals are time consuming to calculate, but they are done in detail in [5].

Theorem 3.3.4. For a # 0 and p # 2,

PYQp7[bly), |al,p*" <1,
| xolas? + boyintz) = K7 v
5, M@l (~E)007 L), > 1,
(3.3.22)

where Q(|z|) =1 if [z|, <1 and Q(|z]) =0 if |z], > 1.
Theorem 3.3.5. For a # 0,

279(27|b|2) lals22 < 1,
2al7Y 20 (—E\s(1b —91-), 921 — 9
/ Yo (az® + bx)du(z) = Aa(a) a\z_me( ‘ég) ([b]2 ), lals :
B, A2(a)|2aly 2 (= Z)0(27[bl2), 227 = 4,
2
Ao(a >|2a‘21/2 2(— 52775 l),  al22*7 =8,
(3.3.23)

where §(0) = 1 and & is zero otherwise.
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Letting v — 0o, one gets the next theorem.
Theorem 3.3.6. For all p,

2
/ xp(az? 4 bx)du(z) = Ap(a)\2a|,;1/2xp(fiia), a#0. (3.3.24)

Qp

3.4 The Fourier Transform on Q,

First comes the definition of a test function. These are functions which have a
well defined Fourier transform, and the set of test functions is invariant under
the Fourier transform. This is the analog of the Schwartz functions on the real
numbers.

Definition 3.4.1. (Test Function or Schwartz-Bruhat Function) A test function,
¢, on Q,, is a function which is locally constant with compact support. To be locally
constant means that there is an m € Z such that for each € Qp, ¢(z +1t) = ¢(z)
if |¢| < p™. This is also called a Schwartz-Bruhat function. The space of test
functions is denoted by D(Q))

To have compact support on Q,, is equivalent to there being an n € Z such that
¢(x) = 0if |z|, > p™. This is the same since a set is compact in Q, if and only if
it is closed and bounded in Q,. The proof of this is found in [5].

Definition 3.4.2. (Fourier Transform) The Fourier transform of an integrable
function ¢ is defined as

d(u) = / @)@ dp(z),  ueQ, (3.4.1)

P

where x,, is as given in equation (3.3.9).

Notice here that we have used the identification between Q, and (@p given as
U Xu-

Lemma 3.4.1. The Fourier transform of a p-adic test function is again a p-adic
test function.

Proof. Let ¢(x) be zero when |z|, > p™ and ¢(x +t) = ¢(x) for |¢t| < p™. To prove
that ¢(x) is compactly supported we call the integration variable for y, and do the

substitution y = x + ¢t where [t|, = p™ to obtain

$u) = Xu(t)/ Xu(@)d(@)dp(x) = xu () (u)- (3.4.2)
Qp

If |ul, > p~™ then x.(t) # 1 so that d(u) = 0.

Since ¢(z) = 0 for |z|, > p"

b= [ val@ote)ina) (343
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Then
Golu+ 1) = / @) (3.4.4)

which is equal to ¢(u) for [t], < p~™ because then x.(z) is constantly equal to 1.
This proves the lemma. O

It can be shown that the space of test functions is dense in the Hilbert space
L?*(Q,) in the L%norm. The inner product on L?*(Q,) is of course given by

(6,0) = / S@) @ du(e), 6.0 € LA(Qy). (3.4.5)

We know from Theorem 3.2.2 that the Fourier transform extends to L?(Q,).
The Fourier transform on L?(Q,) is given by

$(u) = lim [ ¢(w)xu(z)du(z), (3.4.6)

—00
ol B,

where ¢ € L?(Q,) and the limit is in the L*-sense.



Chapter 4

The Adeles

In this chapter we will look at the adeles. The adeles are in some sense the product
of all Q, where p ranges over all primes and oo, and Qo = R. This will be a way
to look at all the completions of @@ at the same time, such that no Q, is special.
The notation will be as follows: When indexing with p, it will denote all primes,
and not include co. Indexing with v will give all primes and oo.

4.1 Introduction to the Adeles

Definition 4.1.1. (Restricted Direct Product) Let A be an indexing set, and let
{Gx} be a family of locally compact abelian groups, where A € A. For all but a
finite number of X let Hy be an subgroup of G, which is open and compact. Call
the subset of A where there is no Hy for A’. Let G be the group consisting of all
sequences (gx)x where gy € G for all A and g, € H) for all but a finite number of
. We get the topology of G by letting the basis of the topology be [], Ux where
U, is an open set in G for each A and Uy = Hy for all but a finite number of .
With this topology, G is called the restricted direct product of (G)x with respect
to (Hx)x. The restricted direct product will be written as

GZIL[G)\. (4.1.1)
A

Lemma 4.1.1. Let S be a finite subset of A where A’ C S. Define Ggs to be

Gs =[] Gxx [] Hx (4.1.2)

Aes AgS
Then Gg is an open subset of X (it is in the basis of the topology).

The product topology on G is different from the topology that it was given.
The subspace topology on Gg however, is the same as the product topology on
Gs. A set in the standard basis for the product topology is a product of open sets

29
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(some are in a H), and some are in a G) where all but a finite number of sets are
H). A basic open set in the subspace topology is a basic open set in G intersected
with Gg. This set will be a product of open sets where all but a finite numbers is
equal to Hy. Now it is easily seen that these two topologies coincide.

Lemma 4.1.2. If all Gy are locally compact abelian groups and all Hy are compact
and open, then the restricted product of (Gx)x with respect to (Hyx)x is a locally
compact abelian group.

Proof. Let S be a finite subset of A containing A’. Then the infinite product in
Gs (I] s ) is compact by Tychonoff’s theorem. Hence Gy is locally compact
because it is a finite product of locally compact sets. Since G = (J¢ G's and each
G's is open, G is locally compact. What is left to prove is that the group operations
are continuous. We will prove that addition is continuous, and then the proof of
continuity of inversion will be similar. First we want to prove that addition is
continuous on G's. Let z, and yz be nets in Gg. We want to prove that if x, — =
and yg — y, then z, +yg — = + y. Since Gs has the product topology, one needs
to show that z) + yg‘ — 2™ + y* for each \. But this is true since each G, is a
topological group. Define the function ¢ : G x G — G by ¢(a,b) = a+b. This is the
function we want to prove is continuous. To prove that it is continuous, take an open
set O in G. Clearly G x G = US,T Gs X G, and since Gg x Gt C Gsur X Gsur,
G x G =JgGs x Gg. Then we have that ¢~1(0) = Ug[¢~(0) N (Gs x Gg)].
Finally since ¢~1(0) N (Gs x Gg) = ¢~ (O N Gs) N (Gs x Gg), we have that
¢71(O) = US[¢71(O NGg)N(Gs x Gg)]. Since ¢71(O NGs)N(Gs x Gg) is open
in Gg X Gg, and hence in G x G, ¢ is continuous.

O

Definition 4.1.2. (Adeles) Let (G\)x consist of the additive groups R and Q, for
all primes p. Furthermore, let Hy be Z, for all primes p (remember that Z, is
a compact and open set). The adeles are then defined to be the restricted direct
product of (Gy)x with respect to (Hx)x and are denoted by A. In other words, =
is an adele if it is an element of R x Q3 x Q3 x Q5 X ...

T = (Too, T2, .o Tp, --.) (4.1.3)

where 2o, € R and z, € Q, for each p, and |z,|, <1 for all but a finite number of
Zp.

The adeles form a ring with pointwise addition and multiplication, and it is
called the adele ring. It is not a field because not every element has an inverse (for
instance if one component is 0).

Definition 4.1.3. (Principal Adeles) There is an inclusion
Q—=4A, r—(rmrr..). (4.1.4)

The element (r,7,7,...) is an adele since eventually |r|, = 1. The image of this
inclusion is called the ring of principal adeles. It can be shown that Q is discrete
in A.



4.1. INTRODUCTION TO THE ADELES 31

By Theorem 2.2.1 we see that for every principal adele r £ 0 we have

Irla = 1, (4.1.5)

where |r|s =[], ||,

An additive character on the adeles is a continuous homomorphism to the unit
circle in C. The character which will be used here is given by

xa(z) = HXV(QUV) = Hexp 2mi{x,}y) (4.1.6)

Here {Z s }oo means —, such that exp (2mi{Zoo o) Will be exp (—27izs). Again,
all the factors except for a finite number will be one since {z} = 0 for = € Z,, and
the product converges. We will show that this additive character is continuous. We
know that each exp (2mi{x,},) is continuous on Q,, and then it will be continuous
on each Gg in the product topology, and hence in the subspace topology. The
product of all these functions will be a continuous function on Gg since all but
a finite number of functions are constantly equal to 1, and a finite product of
continuous functions is a continuous function. Since it is continuous on each Gg in
the subspace topology and G are open sets, it is continuous on the whole space

G.

Lemma 4.1.3. For a principal adele v = (r,r,....), the additive character xa is
equal to 1. In other words we have the adelic relation

xa(r) = Hexp mi{r},) =1 (4.1.7)

Proof. The rational number r can be written as » = Np, *'p; *? - - p, ** where N
is an integer and «; are positive integers. Now r can be written in the form
N1 | Ny Ng
T =

+ 2+t (4.1.8)
per - po P

N;
pi

where M is an integer and 1 < N; < p® for ¢ = 1...k. Since {r}, = for p = p;

and 0 otherwise,

S{rlp=r—-M. (4.1.9)

Since {r}. = —r by the definition above, > {r}, = —M, and the result follows.
O

Let S be a finite set such that it contains the coordinate for Q. in the restricted
direct product. Define Ag to be

Ag = H Q, x H Z,. (4.1.10)
ves vgsS

A useful result is that a sequence of adeles a,, converges to a € Ag if and only if it
converges component-wise and that a, eventually is in Ag.
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4.2 The Haar Measure on A

The additive structure of the adele ring is a locally compact group, and thus it has
a Haar measure. The restriction that |x,|, < 1 for all but a finite number of =z,
was used to make the space locally compact.

It would be nice if the Haar measure would be (with the right scaling) just
p =11, v where each g, is the Haar measure on Q,. This is not the case, but it
will be the product of the measures in some sense. For the next theorem about the
Haar measure on A we will need two results from the section on Radon measures
in [2].

Theorem 4.2.1. If X and Y are second countable spaces and p and v are Radon
measures on X and Y respectively, then p X v is a Radon measure on X x Y.

Theorem 4.2.2. Let (X, )aca be a collection of compact Hausdorff spaces, and for
each a let jo be a Radon measure on X, such that po (X)) =1. Foraq,...,a, € A,
let T(ay,....an) be the projection m, o) (®) = (Tay,..,Za,). Then there is a
unique Radon measure pu on X =[] Xqo such that for any a1, ...,a, € A and any
Borel set E in []}_| Xa,, we have that

pomt o (B) = (tay X+ X o, )(E).! (4.2.1)

Theorem 4.2.3. Let S be a finite set such that it contains the coordinate for Qu
in the restricted direct product. Define Ag to be

Ag = H Q, x H Z,. (4.2.2)

ves vegS

Then the Haar measure on A restricted to Ag, denoted by ug, is equal to the
product of the measures i, where the measures are scaled such that p,(Z,) =1 and

poo ([0, 1]) = 1.

Proof. We will look at Ag as a finite product of the compact group sz g2, and
the groups Q, for v € S. Then we can use Theorem 4.2.2 to get a Radon measure
on HV¢S Z,, and then use Theorem 4.2.1 to get a Radon measure ps on Ag. Since
the measures p, are left invariant, so is p, and hence it is a left Haar measure
on Ag. Let i be a Haar measure on A, and denote the restriction of i to Ag by
fis. Since the two measures are both Haar measures on Ag, the two measures only
differ by a scalar. Then choose the measure p on A such that the restriction of
to Ag is equal to y’. Call the restricted measure pg. The question now is if p is
independent of the choice of the set S. We will show that it is. So let T" be a finite
set such that S C T. By the same procedure for the set T" as we did for S, we get

n Folland’s book, the symbol X is used instead of x because the product is actually a Radon
product(which is different in the general case), but in our case all the spaces are second countable
and the measures are o-finite, and then the Radon product coincides with the normal product.
For more, see chapter 7.4 in the book.
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a measure uy. Now we will define A7 in a similar fashion as for Ag. So define it
as

Ar =@ =[] .. (4.2.3)

veT vgT

and then we can see that Ag is a subgroup of Ap. The restriction of ur to Ag
is again a Haar measure, and it is easily seen that it must be equal to pg (just
evaluate them on [0,1] x [[, Z,). Hence the measure p is the same for the bigger
set T. Then let U be another finite set that contains the index for Q.. By what
we have just seen, we will choose the same measure u for the sets S and SUU to
get the product of the measures. Restricting pusuy to Ay gives the product of the
measures, and hence the choice of u is independent of the set S. O

Because of this result one often writes

[ = Hoollaftz " - (4.2.4)

or p=1], pn. We will use this measure in the next sections, and we will keep the
scaling that 1, (Z,) =1 and (5 ([0,1]) = 1.

4.3 Integration on the Adeles

All the functions defined over the adeles will be complex valued unless something
else is explicitly stated. We will look at integration of special types of function on
the form f(a) =[], fv(a,) where a is an adele. We can then make use of Theorem
4.2.3.

Lemma 4.3.1. For a function f(a) on A we have that if f is a real non-negative
measurable function or is in L*(A), then

/ (o) =t [ f)ine) (4.3.1)

where the limit is taken over larger and larger finite sets of indices S (it is a limit
of the net where inclusion of sets is the binary relation). In the case of a real
non-negative measurable function, the integrals are allowed to take the value co.

Proof. We know that for such functions,

/A f(a)dp(a) = lim /K f(a)du(a) (43.2)

where the limit is taken over larger and larger compact sets K in A. Since every
compact set is contained in some Ag (since the sets Ap are open sets covering A),
we have that

hm/f Ydp(a <hm f() 1u(a) (4.3.3)



34 CHAPTER 4. THE ADELES

when f is a positive measurable function. The other inequality (when f is a positive
measurable function) comes from the fact that

hm ASf /f Ydu(a (4.3.4)

If fis in L'(A), then one can write it as f = fi — fo +if3 — ifs where f; is a
positive measurable function for each i, and the result follows. O

Lemma 4.3.2. Let S be a finite set of indices containing the index for Q. For
each v define a continuous function f, € L'(Q,) such that forv ¢ S, f,(a,) =1
on Z,. Define the function f on A to be f(a) =[], fu(av). Then

(i) The function f is continuous on A.

(ii) We have
Proof

(7) The proof is similar to the proof that the characteristic function x, is contin-
uous. It comes from the fact that f is a finite product of continuous functions on
each A7 where T contains the index for Q..

0) = / F(a)dps(a)

_ H U Folay)dpun (a, ] [/ fulay duu(au)} (4.3.6)

(i1) We have that

ves vgsS
= H |: fu(ay) dﬂu(au)]
ves
since f(a) =[], fv(ay,) and p =[], p. One gets the last line from the fact that
all the integrals when v ¢ S are equal to 1. O

Theorem 4.3.3. Let the notation be as in the preceding lemma and define

11 U Ify(au)duu(ay)} = 1i§n{ 11 [/Q |fu(al,)|d,ul,(al,)] } (4.3.7)

v Qv Jes
If
I [ el (e)] <. @38

v v

then f € L*(A) and

| f@inta [ / fula) dma»} (13.9)
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Proof. Since f is a continuous function, it is measurable, and hence | f]| is measur-
able. Since |f(a)| and |f, (a, )| satisfy the conditions of the two preceding lemmas,

[ 11@duta —hm/ 0)ldp(a

~i{ 1| [ Ify(ay)lduu(ay)]} <co.

ves

(4.3.10)

Applying the two lemmas again (but now using the other condition in Lemma
4.3.1) on the function f(a) itself gives the result. O

4.4 Fourier Transform on the Adeles

Lemma 4.4.1. Let G be the restricted direct product of locally compact abelian
groups G with respect to the subgroups Hy. Then G is isomorphic, topologically
and algebraically, to the restricted direct product of the Gy’s, that is

G~ HG,\ (4.4.1)

Here the product is with respect to Hi- c GA(\ ¢ A) where Hy- is the subgroup
consisting of all characters in Gy that are equal to 1 on Hy. The subgroups H)\
are open and compact such that they satisfy the conditions for the restricted direct
product.

The proof is found in [6].
Lemma 4.4.2. A is self-dual. That is, A>~A as groups and topological spaces.

Proof. From Lemma 4.4.1 we have that A = T, Q,, with respect to Z1 for v # oc.
From Lemma 3.3.2 we have an isomorphism from @Q, to @p given by & — 1,(§),
where [1,(€)](x) = exp (2mi{{x}). We also know that an isomorphism from R to
R is given by & — oo (), where [1hoo(€)](2) = exp (—2mi¢z). Then for an adele
a = (a,), we have the isomorphism from A to A, namely

ar (Yu(ay))u- (4.4.2)

It is easy to see that it is an algebraic isomorphism. To see that it is a topological
isomorphism, one just has to note that ¢,(Z,) = Zlf and w;l(Zé) = Zp. This is
because an element in the base of the topology of A is of the form [], O, where O,
are open for all v and equal to Z, for all but a finite number number of p, and an
element in the base of the topology of A is of the form [1, O, where O, are open
for all v and equal to Z; for all but a finite number number of p.

O

Next comes a class of functions called Schwartz-Bruhat functions. This space
is in many ways analogous to the Schwartz functions.
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Definition 4.4.1. (Schwartz-Bruhat functions) The Schwartz-Bruhat functions
on A are the functions which are finite linear combinations of functions ®, which
satisfy

1. (I)A(CL‘) = HV (bu(xu)

2. ¢oo(To) is function on R which is infinitely differentiable and such that the
function and all its derivatives decrease faster than any power of |x.| as
|€oo| — 00. This is called a Schwartz function.

3. ¢p(xp) is a Schwartz-Bruhat function on Q,. In other words, it is a p-adic
test function.

4. ¢p(zp) = Q(|xp|p) for all but a finite number of p.

The functions ®4 (x) are called elementary functions. The space of Schwartz-Bruhat
functions is often denoted by S(A).

The last condition will make the product in the first condition converge. We
want to define the Fourier transform on the group of adeles.

Definition 4.4.2. (Fourier Transform on the Adeles) The adelic Fourier transform
of a function f € L1(A) is defined to be

flu) = /AXA(u:v)f(sc)du(x), u € A (4.4.3)

Lemma 4.4.3. Let S be a finite set of indices containing the index for Q. For
each v define a continuous function f, € L*(Q,) such that for v ¢ S, f.(a,) =
Qlaplp). Define the function f on A to be f(a) =11, fv(av). Then

fw) =] fo(w). (4.4.4)

Proof. Note that all f,(z,)exp (2mi{u,x,},) satisfy the conditions in Theorem
4.3.3 and that proves the equation f(u) =[], f(u,). O

The Fourier transform acts extra nicely on Schwartz-Bruhat functions.

Lemma 4.4.4. The Fourier transform of a Schwartz-Bruhat function is a Schwartz-
Bruhat function.

Proof. By the linearity of the integral, it suffices to show that the Fourier transform
of an elementary function is an elementary function. Let f(x) be an elementary
function. Then

fw) =T] fo(w). (4.4.5)

such that it satisfies the first condition.
We will now show that the Fourier transform of Q(|x,|,) is Q(|zp|p). Since Q(|xp|p)
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is zero outside of Z, we just integrate over Z,. Let u, be a p-adic number where
|up| = p™. Then by the substitution y = u,z we get

) = [ x)dntw) (146)

If Jup|, <1, then x is constantly equal to 1 so the integral is p™. If |u,|, > 1, then
the integral is zero by Lemma 3.3.3.

That the Fourier transform of f., will be a Schwartz function is known from Fourier
analysis on the real line.

Finally, from Lemma 3.4.1, the set of p-adic test functions is invariant under the
Fourier transform. This proves the lemma. O

Theorem 4.4.5. (Fourier Inversion Theorem) Let G be a locally compact abelian
group, and let x be the character in the Fourier transform. There exists a Haar
measure on G, denoted by fi, such that for all f € L*(G) such that f € Ll(é), we
have for almost all x in G

f(z) = /G () f(u)dfu). (4.4.7)

If f is continuous, it holds for all x € G.

The proof of this theorem is found in [3]. The measure i on G is called the
dual measure of p.

If 11 is the Haar measure on the adeles, we have that p is self dual (4 = u). To
see this, we will first prove that the measure on each Q, is self dual.

Lemma 4.4.6. The measure u, on Q,, scaled such that p,(Z,) = 1, is self dual
with respect to the isomorphism from Q,, to Q, given by [0, (€)](x) = exp (2mi{€x}).

Proof. Let f(x) = Q(|zplp) - The dual measure is a positive constant ¢, times .
Then by the inversion theorem used on f, we get

f(z) = cp/ exp (—2mi{uzx})du(z). (4.4.8)

P

For © € Z,, the left hand side is 1, and the right hand side is ¢,. For |z| > 1 both
sides are 0 by Lemma 3.3.3. Hence ¢, must be equal to 1. O

Lemma 4.4.7. The Haar measure p on A is self dual with respect to the isomor-
phism in Lemma 4.4.2.

Proof. We know that i = cu for some scalar positive ¢ since A is self dual. Let f be
a non-zero Schwartz-Bruhat function, f =[], f,(z,). By the inversion theorem,

f(z)=c / o) £ (u)dpu(u). (4.4.9)
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Then by Lemma 4.4.3,
/Amf(wdu(w = 1:[/ o (o) fo () dpn (). (4.4.10)
By the inversion theorem on each Q, this becomes
[T [ wadfutw)du, ) = ] fte.) (44.11)
since each p, is self dual. We are then left with the equation

f@) =[] (@), (4.4.12)

so ¢ = 1 since f is non-zero. O

Then we have that the inverse Fourier transform is given by

flz) = /AXA(um)f(u)du(u), x €A (4.4.13)

It can be shown that the space of Schwartz-Bruhat functions is dense in the
Hilbert space L?(A) in the L?-norm. The inner product on L?(A) is of course given
by

(f.0) = / F@)g@du(x),  f.g € L*(A). (4.4.14)

The Fourier transform extends to L?(A) by Theorem 3.2.2.

4.5 Orthonormal Basis for L?(A)

We will look at how an orthonormal basis for the Hilbert space L?(A) looks like.
This is done by showing that L?(A) is an infinite tensor product of the Hilbert
spaces L?(Q,). In this section we will follow [12].

We begin by defining an infinite tensor product of Hilbert spaces.

Definition 4.5.1. (Stabilizing Sequence) Let (H,)nen be a sequence of Hilbert
spaces. A sequence (e"),ecn where e € H, is called a stabilizing sequence if
[le™]| =1 for all n € N,

Now, let (H,)nen be a sequence of separable Hilbert spaces with a stabilizing
sequence (e"), and with orthonormal bases (e}})ren such that e} = e™. Let a =
(an)nen be a sequence of positive integer, and let A be the set of all a such that
a, eventually is equal to 1. Then define the formal product

ea=€h Qel R, (4.5.1)
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where o € A. Notice that since a, eventually is one, e, is eventually e} = e".

The infinite tensor product of the Hilbert spaces (H,) with respect to the
stabilizing sequence (e™), denoted by ®E,n H,, is defined to be the Hilbert space
which has the set {e,}aca as an orthonormal basis by definition. All elements in
&.., Hn are thus of the form

f=>" fata, (4.5.2)
acA

where (fq) is a sequence of complex numbers such that > . [fa]® < co. The
inner product of two elements f = .\ fa€q and g =3\ gata is

(f,9) =" foTa- (4.5.3)

a€cA

Let X,, be a closed subspace of H,, and let (e})rez be an orthonormal basis
for H,, such that (e}})ren is an orthonormal basis for X,,, and e} = €™ such that
the stabilizing sequence (e™) lies in (X,,). Define the spaces

He = Q) Ha, (4.5.4)

and

l
H=QRH® R X =H1 OH2®  OH @ X131 ® X2 ® -+ . (4.5.5)

n=1 e,n>l

Lemma 4.5.1. The spaces H. and H' satisfy

He = (4.5.6)

1>1

Proof. Since H! C H, for all I, we have that H. D [J;», HL. For the converse, we
see that the element B

ea:e}h®ei2®-~-®ef§k®ek+1®ek+2®-~- (4.5.7)
in H, is also in H¥. It follows that H. C U;>1 HL which proves the lemma. O

Our goal is to show that L2(A) = @, , L*(Q,) for some stabilizing sequence
(e™). The measures on the spaces we work with will be the measures obtained in
Section 4.2. Remember that to define the integral for Schwartz-Bruhat functions
we first did it for the set Ag =[], 4 Q. x HV¢S Z,,. We will use a similar strategy

here. Define
An=Rx ] @ x [] % (4.5.8)

P<Pn P>Pn

where p,, is the nth prime.
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Theorem 4.5.2. We have that

R 12(z,) = 12(] 20, (4.5.9)
e.p P
where eP(x) = Q(|z]p) = 1 for all primes p.
From this theorem we get the next corollary.
Corollary 4.5.3. We have that
LR o Q) L(Q)e Q) L*(Z,) = L*(A,), (4.5.10)
P<pn €,p>pn
where e = Q(|z|,) =1 for all primes p > p,.

Theorem 4.5.4. The space L*(A) is isomorphic to the infinite tensor product of
L?(Q,), that is

L*(A) = Q)L (@), (4.5.11)
where the elements in the stabilizing sequence (eP) are given as eP(z) = Q(|xp),

and e is any element in the orthonormal basis for L*(R).

Proof. By Lemma 4.5.1 and Corollary 4.5.3, we get that

QR L2 (Q,) = L2 (An). (4.5.12)

What is left to show is that |J,, L2(A,,) = L?(A). The inclusion |J,, L?(A,) C L*(A)
is obvious. For the converse, since the Schwartz-Bruhat functions are dense in
L?(A) an element f € L?(A) is a limit of Schwartz-Bruhat functions f;. Each f;
is an element in L?(A,,) for some n. Hence the limit must be in (J,, L?(A,), and

thus {J,, L?(A,,) D L*(A). This proves the theorem. O

Now for each L?(Q,) fix an orthonormal basis (€% )en such that (e}), is the sta-
bilizing sequence in Theorem 4.5.4. Then the orthonormal basis for L%(A) consists
of elements

2
€a =€q Q€5 -, (4.5.13)

where a@ = () ranges over all sequences of positive integers which eventually
become 1. So all elements are of the form

e =eX ®el Qe ®-® e’;pk ® ePrl @ ePrt2 @ - .. | (4.5.14)
where e?(z) = Q(|z|,). It is evaluated on an adele z = (Too, T2, ...) by
alt) = 2 (200)e2 (32) €8 (@) ziilp) W onsaly) - (A5.15)

Notice that it is a finite product.



Chapter 5

Quantum Mechanics

5.1 Some Classical Mechanics

Before one enters the world of quantum mechanics, one needs to understand some
basic facts from classical mechanics. One can say that the main contributor to
classical mechanics was Sir Isaac Newton. After Newton we have had two major
reformulations, the Lagrangian formulation after Joseph Louis Lagrange, and the
Hamiltonian formulation after William Rowan Hamilton.

The position of a particle is denoted by q, and the momentum of a particle with
mass m is given by p = mv. The total energy of a particle moving in a potential
V(which is only a function of the position), considered as a function of position
and momentum, is called the Hamiltonian and is given by

H(q,p) = % +V(a). (5.1.1)

Here T' = % is the kinetic energy of the particle.

Generally, the position q is a point on a manifold M, and the momentum is
a cotangent vector in the cotangent space TgM. We will simplify this, and let
M = R"™. The space of all possible positions of a particle is called the configuration
space. According to Newtonian mechanics, if one knows all the forces acting on
a particle, then the motion of the particle is completely determined by the mo-
mentum and position at an initial time. Having the position and momentum at a
certain time gives us the state of the particle. The space of all possible pairs of
position and momentum (R™ x R™) is thus called the state space (or phase space).
We will later refer to this as the classical state space or classical phase space.

The Lagrangian of a particle is the function

mv2

L(g,v) = mv* = H(q,mv) = —— = V(a) = T(v) = V(a). (5.1.2)

41
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Let v(t) be a smooth path in the configuration space, parametrized by the time
t, such that v(t9) = qo and 7(t1) = q1. Then the action functional S is defined as

S(y) = / "Lyt (1))t (5.1.3)

to

An important principle in classical mechanics is the principle of least action.
It states that a path (¢) describes the motion of the particle if and only if it is
a critical point of the action functional S. A critical point is where the action
is stationary to first order. Note that the name principle of least action is a bit
unfortunate as the action does not need to be a minimum. We will later see a
quantum mechanical analog to the action integral called the Feynman path integral.

5.2 Introduction

In this section a few terms from quantum mechanics will be introduced, and the
theory will be given for a particle moving in R™. As we will see, quantum mechanics
is quite different from classical mechanics. It explains how small particles behave,
that is, systems on an atomic scale. There are three concepts which are very im-
portant in quantum mechanics, and those are observables, states and the dynamics
of a system. In quantum mechanics a particle in the space R™ is described by a
complex valued wave function v¥(q,t), where q € R"™ and ¢t € R is the time. For
a fixed time ¢, [1)(q,t)|? can be interpreted as the probability density function for
the position of the particle at time ¢, so the integral of this function is 1. This
probabilistic view of the particle is at the heart of quantum mechanics, and is quite
different from classical mechanics where a particle is at a given place at a given
time. Position is something we can measure, or in other words, something we can
observe. Thus, measurable quantities will be called observables.

The state space, or phase space, for a particle is a complex separable Hilbert
space H, and the possible states of the quantum system are represented by unit
vectors in H. The state of a quantum system at a given time is described by a wave
function. From the probabilistic nature of the observables, we want to be able take
their expectations. An observable will correspond to an operator on H.

Definition 5.2.1. (Expectation of an Observable) The expectation of an observ-
able which corresponds to the operator A in the state v is given as

Ey[A] = (A, ). (5.2.1)

Physicists often prefer the inner product to be linear in the second argument,
but we will not follow this convention. The operators corresponding to position
and momentum are important. We will not show the derivation of these operators.
Q; is the position operator for the jth coordinate and is densely defined on L?(R"™)
by

Q;v(a) = g;¢(a), (5.2.2)
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and P; is the momentum operator for the jth coordinate and is defined densely on
L?(R™) by

Pip(a) = —ihaaqu(q) (5.2.3)

These operators correspond to classical position and momentum. Now we can
for instance calculate the expectation of the jth coordinate of a particle with wave
function . The expectation at time ¢ becomes

Ey|Q;] = /}R g;|(a, t)]*d"q. (5.2.4)

With the wave function, we can also find the probability of finding a particle inside
a region in space. The probability of finding a particle in the state 1(q,t), in a
region S, is

/SW(% t)[*d"q (5.2.5)

Another important concept is the momentum space. The momentum space
is R™ just as the configuration space, except that the space now consists of all
possible momenta and not positions. The two spaces are closely related by the
Fourier transform. Define the Fourier transform on L?(R") as

Fy(p) = () = (2mh) /> / Py (q)d g, (5.2.6)

n

which is understood in the L2-sense. It is a unitary operator with inverse

Fl(q) = (20h) /2 / Py (p)dp, (5.2.7)

n

and the Parseval formula is
/ [d(p)|d"p = /R [Y(a)ld"q. (5.2.8)

Then from integration by parts,

_npoh _ipg O "
Frwp) = (a8 [ el y@da = pFue). (6529
n ‘]

We can then define Pj = ]—'Pj]-"1 which acts as multiplication by p;, and this
is analogous with (); acting as multiplication by ¢; in the configuration space.
Similarly Qj = FQ,;F ! acts as z‘ha%j. If the wave function in configuration space

is 9, then 1 is the wave function in the momentum space. There is no new physics
in this, it is just a different representation of the same physical system. As an
example, the probability that the momentum of a particle in a state 9 is in the set
S at time t is

/Sllﬁ(p,t)lzd"p. (5.2.10)
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We can not expect all the operators to be bounded. For instance the position
operator is not bounded. Since the operators are unbounded, they will be defined
on a smaller space. Let D(A) denote the domain of the operator A. D(A) is a
linear subspace of H, and since it is convenient for the operator to be defined for
most states, D(A) will also be assumed to be dense in H.

Definition 5.2.2. (Adjoint Operator) Let A be an operator on the Hilbert space
‘H with dense domain D(A). The domain of the adjoint of A is the set of all ¢ € H
such that the map ¢ — (¢, Ap) (¢ € D(A)) extends to a bounded linear functional
on all of H. Let 1; be the element corresponding to the functional such that
(¢, ) = (1, Ag). The adjoint of A, A*, is the operator which satisfies A*¢) = .

Note that A* is well defined since D(A) is dense.

Definition 5.2.3. (Symmetric Operator) Let A be an operator on the Hilbert
space H with dense domain D(A). Then it is called symmetric (or Hermitian) if

(, Ag) = (A¢, ¢) (5.2.11)
for all ¢, € D(A).
For a symmetric operator, clearly D(A) C D(A*).

Definition 5.2.4. (Self-Adjoint Operator) Let A be a symmetric operator on H.
A is called a self-adjoint operator if D(A*) = D(A).

Since the operator is symmetric, A and A* will also coincide on their domain.
We then write A = A*. Another important class of operators are the essentially
self-adjoint operators.

Definition 5.2.5. (Essentially Self-Adjoint Operator) Let A be a symmetric op-
erator on H. A is called an essentially self-adjoint operator if it has a unique
self-adjoint extension.

Now that we are done with general definitions, let us go back to operators asso-
ciated with an observable. When doing measurements one wants results from the
real numbers. Hence, it is convenient to assume that our operators are symmetric
so they satisfy

(v, AY) = (A, ¢), (5.2.12)

which is the expectation of A in the state ). We will not go into deeper detail, but
we will require the operators corresponding to an observable to be self-adjoint.
We can of course also calculate the variance of the observables.

Definition 5.2.6. (Mean Square Deviation of an Observable) The mean square
deviation of an observable corresponding to the operator A, in the state v, is

Ay(A) = Ey[A%) - B, [AP = |[(A - B, [A)y]” (5.2.13)
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Note that Ay (A)? = 0 if and only if ¢ is an eigenvector of A and Ey[A] is the
corresponding eigenvalue. When doing measurements of an observable, one can
only obtain the eigenvalues of the operator corresponding to the observable. This
is a reason why finding the eigenvalues is very important. If the set of eigenvalues
is discrete, the observable can only obtain discrete value. This can for instance
happen for the energy operator which is another surprising and unintuitive result
in quantum mechanics.

Let us now turn to the dynamics of a quantum system. We want to know how
the system changes over time. A state 1(q,t) will change as

Y(a,t) = U(t)(q,0). (5.2.14)

There are certain properties U(t) should have, based on the mathematical frame-
work and on physical experiments. Since it should take states to states,

U@l = [I1]- (5.2.15)

Moreover, it is reasonable to assume that it is linear and continuous in the strong
operator topology. Now we again need to state a few definitions.

Definition 5.2.7. (Unitary Representation) A unitary representation of a locally
compact group G on a Hilbert space H is a homomorphism G +— U(H), where
U(H) is the set of unitary operators on H.

Definition 5.2.8. (Strongly Continuous Unitary Representation) A strongly con-
tinuous unitary representation is unitary representation such that z — U(x)f is
continuous for all f € H.

Definition 5.2.9. (Strongly Continuous One-Parameter Unitary Group) Let U
be strongly continuous unitary representation of G. Then the family of operators
U(zx),x € G is called a strongly continuous one-parameter unitary group.

We require U to be a strongly continuous unitary representation of G = R on
H. We call U (or U(t)) the evolution operator or time evolution.

The Hamilton operator H should also be mentioned. The Hamilton operator is
the self-adjoint operator which corresponds to the energy of the system. In quan-
tum mechanics we will look at Hamiltonians of the form H = 7-P?+V(Q), where
P2=P+ ..+ P2 Q= (Q1,...,Qn), V is the potential and m is the mass of the
particle. In classical mechanics in the case where a particle is moving in space with
no potential (V. =0), H=T = %. In quantum mechanics, H = ﬁPQ. In both
classical physics and quantum mechanics, this is called a free particle.

An important equation in quantum mechanics is the (time dependent) Schrodinger
equation

ol 1) = Hila, o), (5.2.16)



46 CHAPTER 5. QUANTUM MECHANICS

where h = % with h being Planck’s constant!. This differential equation describes
how the state of the system changes with time.

One can ask what the connection is between U(t) and H. Equation (5.2.14) is
the (weak) solution of equation (5.2.16) with U(t) = e ="t/ (we will look closer at
this in Section 5.4). A theorem of Stone [9] gives the relation between self-adjoint
operators and strongly continuous one-parameter unitary groups.

Theorem 5.2.1. (Stone) Let U(t) be a strongly continuous one-parameter unitary
group. Then there exists a unique self-adjoint operator A such that

U(t) = ™4, (5.2.17)

Conversely, let A be a self-adjoint operator. Then {U(t) = e~ ™4} is a strongly
continuous one-parameter unitary group.

Another important concept in quantum mechanics is Heisenberg’s uncertainty
principle. First define [A, B] = AB — BA.

Theorem 5.2.2. (Heisenberg’s Uncertainty Principle) Let A and B be two sym-
metric operators. Then

Au(A)Au(B) > LBy (4,B)) (5:218)

for allyp € D(AB) N D(BA).

As a corollary, we get that
1
Ay(Py)Ay(Qy) 2 5h (5.2.19)

for all ¢ € D(P;Q;) N D(Q;P;). So, if one measures the position of a particle
very well, one knows little about its momentum, and conversely, if one knows the
momentum very well, one knows little about the position. The error is not due to
bad measurement equipment, but due to the nature of quantum mechanics.

5.3 Weyl System

An equivalent way to describe quantum mechanics, is to describe it by a Weyl sys-
tem which is Hermann Weyl’s formulation of quantum mechanics. In the previous
section, we saw Heisenberg’s uncertainty relation, which comes from the fact that

[Q;, Pj] = ih. (5.3.1)

We would like to describe this relation in another way. In this section we
will work in one dimension and denote by @ and P the position and momentum
operator. Define

Ulz) =e @9 V() =e %P, (5.3.2)

1h is approximately equal to 6.63 - 10734 Js (joule seconds).
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where z,£ € R. U and V are strongly continuous unitary representations.
These operators will act in the following way.

U@))(t) = e "o(t),  (V(EF)() = o[t — he). (5.3.3)
The operators satisfy
U)V(y) =™V (y)U(z), z,yeR. (5.3.4)

Under suitable conditions on P and @ this equation is equivalent to Heisenberg’s
commutation relation. The pair (U, V') form what is called a Weyl system.

Definition 5.3.1. (Weyl System, first definition) Let G be a locally compact
abelian group. Let R be a strongly continuous unitary representation of G, and S
a strongly continuous unitary representation of G. The pair (R, S) is called a Weyl
system if it satisfies

R(x)S(x) = x(z)'S(x)R(z), zeGyecd. (5.3.5)

Notice that in equation (5.3.4), the pair becomes a Weyl system from the fact
that R is isomorphic to R.

Furthermore we can define W on R x R as

.[/I/v((]’j7 y) = e_(ih/Q)IyU(x)V(y)’ (536)
It satisfies the equation
W (z, )W (') = 2@ 2" DW (x4 oy +4), (5.3.7)

where x,y,2’,y € R. Now we will give a second definition of a Weyl system, using
W instead of U and V.

Definition 5.3.2. (Weyl System, second definition) Let G be a separable locally
compact abelian group. A Weyl system on G x G is a pair (H, W) where H is a
Hilbert space and W is a strongly continuous function from G x G to the unitary
operators on H such that

W ()W (y) = m(z,y)W(z +y), (5.3.8)

where m is a Borel function on G x G to the complex numbers of absolute value
one, and it is called the multiplier of W.

The above equation is called the Weyl relation. Notice here that W is not a
representation if m # 1, but it is instead called a projective representation.
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5.4 Feynman Path Integral

Feynman’s path integral formulation is another equivalent way to describe quan-
tum mechanics. It is the quantum mechanical analog of the action principle in
classical mechanics.

It can be shown that when the Hamiltonian is of the form H = % +V(Q) and
V is bounded on compact subsets of R” and bounded from below, then ¢ (q’,t) =
U(t)¥(q) is a weak solution of time-dependent Schrédinger equation, and the time
evolution U (t) is on the form

v(d't) =Ut)y() = | Kid,q)¢(a)d"q, (5.4.1)

R™

where 1 € L2(R"). ICgOO) is called the kernel or propagator, and is in general

a distribution with initial condition IC(()DO) = 0(q — q') where ¢ is Dirac’s delta
function. The equation also has to be understood in the L?-sense. That is,

U(t)y(q) = lim Ki(d',q)y(q)d"q, (5.4.2)

R=o0 JiqI<R

where the limit is in the L?-norm. Also note that U(t) has been extended to act
on distributions.
Since U(t' +t) = U(¢')U(t), we get that

v(d,t) =U(t' —t)d(q,t) = . Ki—i(d',q)(q, t)d"q. (5.4.3)

The physical interpretation of |y _¢(q’, q)|? is that it gives the probability density
for the probability of a particle being at position q’ at time ¢’ given that it was at
position q at time t.

The kernel is obtained for a free particle by solving the Schrédinger equation
in the momentum space, which is

0 -~ 1 . R .
ihe (pit) = 5P 0(p,t), (P, 0) = v(p). (5.4.4)
The solution is .
7 p ~
b(p,1) = exp (—5 1) (p)- (5.4.5)

In the configuration space this becomes

exp (i(q/ p- LPQ)(t’ _ t))z[;(p,t)d”p. (5.4.6)

'(/J(qut/) _ (Qﬂ_h)—n/Q/ - o

n

One obtains the kernel

1 i N "
Kv-i(d',a) = (27Tﬁ)”/ er (P —a)= 55 (=) gnp, (5.4.7)



5.4. FEYNMAN PATH INTEGRAL 49

By the Fresnel integral (Lemma 5.4.1), one gets

m ’I’L/2 __im I _ )2
Ko-ildsa) = ( 2mih(t' — 1) ) e, (5.4.8)

where i"/2 = =" and T > 0.

Lemma 5.4.1. (Fresnel Integral) For a real number a # 0,

o0 .
/ gor’ — g [T (5.4.9)
lal

where the left side has to be interpreted as the principal value of the integral.

The lemma can be proved by contour integration.

Further on we will assume the space to be one dimensional (R). Now that the
kernel is found for a free particle, one could hope that the kernel for a Hamiltonian
H = Hy+V, where Hy is the Hamiltonian for a free particle and V' is the potential,
is obtained by using e~ #tH = e~ #tHoe= 7tV This is however not the case since
Hy and V' do not commute. Fortunately we have the Lie-Kato-Trotter product
formula.

Theorem 5.4.2. (Lie-Kato-Trotter product formula) Let A and B be two self-
adjoint operators on H such that A+ B is essentially self-adjoint on D(A)ND(B).
Then o

el ATB)y, = nler;o(e%Ae%B)”w (5.4.10)

for ally € H.

We will assume that the Hamiltonian is essentially self-adjoint on D(Hp)ND(V),
so the Lie-Kato-Trotter product formula can be used. Denote the time difference
t' —t by T, and let At =T /n. Then

—iTH Bt H,

e”n 7 = lim (e” »
n— oo

0= w V), (5.4.11)

in the strong operator topology. From the kernel for et Ho

iAt 1At
e~ Hoe

, the kernel for

» V then becomes

m i(_m ’
Kv-i(d',q) = (mmt)eﬂ(m(q —0* V@AY, (5.4.12)

Note that

_ilta—ty) _i(ta—ty) _ilt1—tg) _ilt1—tg)
e o Hog Ve o Hog o Vap(q,t)

:/R’Ctrtl(%,m)/R/Ctlfto(qhqO)lﬁ(tho)dqd% (5.4.13)

://’Ctgftl(fhaQI>ICt17tO(QI7QO)d(hw(QO,tO)d(JO
R JR
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where Fubini is used for the last equality. The kernel for (e_%H‘)e_AhtV)2 is then

/ Kiy—t, (g2, Q1)Kt1—to((J1, QO)dQ1- (5.4.14)
R

Continuing inductively one obtains the kernel for (e‘AhtHOe_ xa V)" which is

n—1 n—1
/ I Caclarrr, @) T dar (5.4.15)
R k=0 k=1

where go = ¢ (obtained at time t) and ¢, = ¢’ (obtained at time ¢).
Finally the kernel for U(#' — t) is obtained by taking the limit,

o i (T
Ict/,t (q 7Q) - nll)ngo (QWZhAt)

. n—1 - 2 n—1
S (G (25 ) - via)a) TTon

The convergence is in the distributional sense, such that the integral fR,L,l is to be
understood as n — 1 integrals of the form limp_, f‘ where the limit is in the

(5.4.16)

qr|<R
L?-norm.

Now we will look at the physical interpretation and see why it is called a path
integral. If there is a smooth path «(t) such that y(tx) = ¢(tx) = g, then we get
that,

n—1

Jim S0 [ ( BTNy g ar = 5(), (5.4.17)

where

S = [ gmite) = Viatrir= [ Latr).dtr)ir (5.418)

is the classical action.

The integral can then be interpreted as integration over all smooth paths which
start in g at time ¢ and end in ¢’ at time ¢’. We then write the kernel as a Feynman
path integral

Ki—i(d',q) = / e# S Dq, (5.4.19)

! I
PR

where P(R)g:;y denotes the set of all smooth paths which start in ¢ at time ¢ and
end in ¢’ at time #’. Notice the difference between classical mechanics where the
particle follows a path, and quantum mechanics where one takes a weighted sum
over all possible paths. This is in accordance with the fact that one deals with

randomness and uncertainty in quantum mechanics. The "measure” ©q given by

n—1
m

— 1 n/2
Dq = lim (527 A7) kl;[l da (5.4.20)
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is not measure; because if it were, it would be a complex measure, but with a
total variation which diverges, and this is impossible. The mathematical meaning
of the path integral is equation (5.4.16). Notice that the integrand has absolute
value 1, so one only gets convergence if the phases cancel each other out. When
the classical action S is almost constant, the phases will almost be the same, and
will not cancel. Because we divide by a small number A, the phase oscillates very
fast when S changes, and the phases will tend to cancel each other out. Recall the
principle of least action from classical mechanics which states that a path describes
the motion of the particle if and only if it is a critical point of the action functional
S. Thus, the main contribution to the integral will be the paths which are close to
the classical path. Later we will find the kernel for U(t) for the harmonic oscillator
in one dimension.
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Chapter 6

One-Dimensional Harmonic
Oscillator

We will look at the harmonic oscillator over the real numbers, p-adic numbers
and adeles. Most of the results in the section about the oscillator over the real
numbers will not be proved since they are well known and because it only is meant
as motivation for the p-adic and adelic oscillator.

6.1 Introduction to the Classical Harmonic Oscil-
lator

In this section we will give a brief introduction to the harmonic oscillator in one di-
mension. In classical mechanics, the harmonic oscillator is characterized by some-
thing which oscillates around an equilibrium. It could for instance be a simple
pendulum. We will describe the harmonic oscillator by the Hamiltonian. For the
harmonic oscillator (in one dimension), the Hamiltonian for a particle becomes
1p2 1 9

H = 50 + 5 MW (6.1.1)
where w is the angular frequency and ¢ is the displacement from the equilibrium.
One can see that the first term is the kinetic energy, while the second term is the
potential energy. One wants to know how the system changes over time. The
equations of motion are given as

p(t) =md'(t),  p'(t) = —mwiq(t), (6.1.2)

with initial conditions ¢(0) = ¢ and p(0) = p.
By differentiating the left equation and putting it in the right equation one gets

q"(t) + w?q(t) = 0. (6.1.3)

93
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This is easily solved, and with the initial conditions one obtains

(]qjgg) =1 (Z) ’ (6.1.4)

—1 .
T, — cos szt (mw) ™! sinwt . (6.1.5)
—mw sin wt coswt

where

This can be referred to as the time evolution in the phase space. Even though
this was done in R, the equations (6.1.4) and (6.1.5) are also true in Q, but in the
p-adic case, all the quantities are p-adic. That is, p,m,q,w and t are p-adic and
cos and sin are the p-adic cosine and sine functions. Note that in the p-adic case
wt € Gy so the sine and cosine functions are well defined. An important relation
which is easy to show is that T3 Ty = Ty .

6.2 Real Quantum Oscillator

As already mentioned, the Hamiltonian is the operator which corresponds to the
total energy of the system. The Hamiltonian in this case is the operator H given
by

1P?2 1

_ i/~ 1 2
H= 57 + 2mwQ . (6.2.1)
We wish to find the eigenvectors and eigenvalues of the operator. The equation
Hy(q) = EY(q), (6.2.2)

where F is the (energy) eigenvalue, becomes
h? d? muw?

— E— =0. 6.2.3
s 3 V@) + (B = () (623

This equation is the (time independent) Schrodinger equation for the harmonic
oscillator. We will simplify by setting m = w = h = 1. Then we get

d? 1
— E— - =0. 6.2.4
1@ + (B = 3)0() (62.4)
The equation has a non-trivial solution if and only if £ = FE,,, where
1
E, = — 1/2), 6.2.5
o= (n+1/2) (625)
and the solution for £ = F,, is then
2l/4
Unlq) = 5o qe™ ™ Hulqv2m), (6.2.6)
where H,, are the Hermite polynomials given by
d’ﬂ
Hy(q) = (—1)"e? ~—e 7. (6.2.7)

dq™
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Earlier we saw that we can describe quantum mechanics by using a Weyl system.
An equivalent formulation of quantum mechanics is given by the triple

(LA(R), W(2), U (£)). (6.2.8)
Here W is the projective unitary representation of R x R acting on L?(R) by

W(2)Y(2) = Xoo(kq/2 + kq)Y(2 + q), (6.2.9)

where z = (¢,p) € R x R is a point in the classical phase space. Notice here that
we used a different scaling for W compared to what we did in the section on Weyl
systems. It satisfies the Weyl relation

W)W (') = Xoo (;B(z, z’))W(z +2), (6.2.10)

where z = (¢,p),2' = (¢/,p’) € Rx R and B(z,2') = —pq’ + gp’. In other words,
(L?(R),W(z)) defines a Weyl system.

U is the time evolution operator from R to U(L?(R)) (the unitary operators on
L?(R)) and is defined as

wamzémmmwww (6.2.11)

We wish to find the kernel KCi(z,y) by using the Feynman path integral. The
important step in finding it is the next proposition taken from [13].

Proposition 6.2.1. Let A be real symmetric non-degenerate n X n matrixz. Then

[ etz ()BT o (11w,

where the integral is understood in the distributional sense as limp_; oo fIQI<R'

Remember the notation T'=t' — ¢t and At = T'/n. For this proposition we will
not use m =w =h = 1.

Proposition 6.2.2. The kernel K for the harmonic oscillator is given as

mw 1w
Kr(qd',q) = ( > 4+q” ~T—2’),
r(d’q) orhsnoT O Zhsmor (@ +d7) coswT = 24q)

for % =T, <T <Thy = M, v € N. In the limit T — T, the kernel is

w

6_%6((] —¢') for even v and e_%"yé(q +q') for odd v.

Proof. We want to use Proposition 6.2.1 on equation (5.4.16). Starting with the
mwQ?

expression in equation (5.4.16) with V = =5

and by the substitution ¢ =
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V 7AT Ik We get

Kr(d'q)
n—1 n—1
~(ria) [ e Gl (™) 55180 T o

. n—1 n—1
m 7 - - 2 ~2 ~
— _— — _ _ d
\ @ri)nhAt /RH xp (2 2 (qu q’“) Eq’f) kll @

where € = wAt.
With the tridiagonal (n — 1) x (n — 1) matrix

22 -1 0 0 0
-1 2-€e -1 ... 0 0
0 -1 2—-€& ... 0 0
Ap—1 = ) : ) , . , , (6.2.12)
0 0 0 22 —1
0 0 0 -1 2-¢
one gets that
n—1
S (@1 — @)* — €3) = (Anr@) -q +2p - a+ Go° — @* + ¢, (6.2.13)
k=0

where q = (G1, G2, -+, @n—1) and p = (—qo, 0, ...,0,—G,) are n — 1 dimensional vec-
tors.
Then by Proposition 6.2.1,

9 n—1
- / exp (Cjk-s-l - ‘ik) - ezji) H ddx
(27i) hAt Rn—1 k=1 (6.2.14)

2 2.2 2 _ (A1 ) .
\/mmtdemnl (zmt(q g +¢7 = (4,2,p) p))

We will not go into detail on how to do the rest of the calculations (see [13]). For
large n one obtains

sin wT

wAt
and also that A, _; has v negative elgenvalues when T, < T < T,41. Furthermore
one sees that the corner elements in A, 1 are just given by determinants of A,_1
and A, _s. One gets the kernel

det A,_; = (1+0(n™1)), (6.2.15)

mw ( Tmw

Shsim o (@ + ) cosT =24 ). (6:2.16)

dmihsinwT P

When T, < T < T,41, we get what we wanted.
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The result for T — T, is obtained by

. 1 i(z—y)?
1m e 2t
t—0 2t

eT 8z —y). (6.2.17)

When m=w=h=1,

1 1T
Krlq'a) = | ——= exp (= (0 + q) cosT — 24q) ). (6.2.18)

It can be shown that

UMW (2) = W(T2)U (%) (6.2.19)

which shows a relation between quantum and classical time evolution.
It can also be shown that

where E, = 5-(n + 1/2) as in equation (6.2.5) and t,(q) = 22;/:, e™™4" H,,(q\/2n)
as in equation (6.2.6). We have found the same eigenvalues as we get in the
Schrodinger equation by using a Weyl system. The strategy to find eigenvalues in
the p-adic and adelic case will then be to formulate quantum mechanics by Weyl’s
formulation.

The states corresponding to the 0 eigenvalue are called ground states. The
ground state is given by

bolq) = 21/4e (6.2.21)

and it is invariant under the Fourier transform.
The expectation of an observable A in the state vy will be denoted by

(A) = (Ao, o). (6.2.22)

When an expectation is taken of an expression in ¢, it means that it is the
expectation of the operator which acts as multiplication with that expression in q.
Then for instance the expectation of the position operator is written (gq), and the
expectation is qu|w0(q)|2dq. Similarly an expression in p means multiplication
with that expression in the momentum space. Since the ground state is invariant
under the Fourier transform, we can use our results from the configuration space.
Now we will do some calculations. By symmetry

(g) = (p) = 0. (6.2.23)

For Res > —1 one gets by a simple substitution,

() = l%) = VA (132 ) om0, (6.2.2)
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where IT' is the regular complex gamma function given by
I'(z) :/ e~ 't*7ldt, Rez>0. (6.2.25)
0

Then we get that

Ag=Ap = (g*)'/* = (V2I(=3/2)(2m)*/*)/?
. 1 (6.2.26)

\/7? —3/2\1/2 _
VR (am) ) 2 =

and by similar calculations,

Alpl = Algl = == (1= 2172, (6.2.27)

f T
6.3 p-adic Quantum Oscillator

For simplicity, we will continue to use m = w = h = 1. As already mentioned,
a Weyl system can be used for other locally compact abelian groups than R. To
define p-adic quantum mechanics we will use the idea of a Weyl system. When one
wants to generalize the harmonic oscillator to the p-adic numbers, one might try
to define it as H = 2 T mwQ2 as in the real case, but where @ is given as
QY (x) = zp(x). When z is a p-adic number and v is complex-valued, this makes
no sense. One can instead define Q2 directly as Q2v(z) = |z|?¢(z) which would
be an analog of the operator on the real numbers. As stated above, we will instead
use Weyl systems. p-adic quantum mechanics will be given by the triple

(L*(Qp), W(2),U(1)). (6.3.1)

The projective unitary representation W on L?(Q,) is given by

W (=2)(x) = xp (5 +pr)(a +aq), (6.3.2)

where z = (g, p) is a point in the classical phase space. It satisfies the Weyl relation
1
W W () = (5B 2 )W (= +2), (6.3.3)

where z = (¢,p), 2/ = (¢/,p) and B(z,2') = —pq’ + ¢qp’ just as in the real case.
The p-adic evolution operator U is a function on G}, given as

U(t)b(z) = / Ko(, 9 () dpp () (6.3.4)

P

where ¢ € L?(Q,) and K; is the kernel for the harmonic oscillator and is given as

€ :v2—|— 2
Kale,y) = Ap(20)t]- 1%( v _ Tty

sint 2tant

) teGpt#0 (6.3.5)
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Ko(z,y) = dp(z —y) (6.3.6)

where 6, is the p-adic Dirac delta function. A derivation of the propagator is given
in [15] by a p-adic analog of the Feynman path integral.

The equation has to be understood in the L?-sense since the integral is generally
not convergent for a L?-function. The process of extending U(t) from L'(Q,) N
L*(Q,) to L*(Q,) is similar to what was done for the Fourier transform. Since
U (t) preserves the L2-norm, the extension is unique.

Theorem 6.3.1. U(t) is strongly continuous unitary representation of the group
G, on the Hilbert space L*(Q,). Moreover, it maps D(Q,) (the space of test func-
tions) into itself.

Proof. We have that

22 N\, (2t) y?

Ut)p(z) = xp( K (6.3.7)

sint

where F is the p-adic Fourier transform. This is a composition of four unitary
operators which map D(Q,) into itself. When ¢ = 0 we get that U(¢)y(z) = ¥(x).
What is left to prove is

Ult+t)=U@)U{). (6.3.8)

We will prove equation (6.3.8) for p > 3. The case p = 2 is similar. We will also
not look at the case where t,¢ or t +t' are equal to zero as it will be just a simpler
case. Let 1) € D(Q,) and assume that 1(x) = 0 for |z| > p" and U(t)y(z) = 0 for
|z| > p™. Then

U@U(t)d(x)

- /ypspM fuley) /|z|pspw Koy, 2)l2)dpap(2)dpap (0] (6.3.9)

= / ¥(2) / Ke(z, y)Ke (y, 2)dpp (y)dpy(2)
|z]p<pN lylp <pM
by Fubini’s theorem.

Now by Theorem 3.3.6 we get that
[ @ [ Kot i) du )
lzlp<p™ lylp<p™

_ Ap20)N,(2t) x? 22
- = ‘tt/|1[;2 Xp(_2tant)/zp<pN ¢(Z)Xp(—m) (6310)

0 iy * ) Vi + )0 )

2tant 2tant’ sint = sint’

We will first calculate the inner integral. To do this, define

1 1 T z
_ _ b= L * 3.11
@ 2tant 2tant’’ sint * sint/ (6.3.11)
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By the fact that tan(a + 3) = %, |tan()|, = ||, and Lemma 2.2.2,

we get that
tan(t 4+ t')(1 — tan(¢) tan(t’))
lal, = | - |p- (6.3.12)
tan(t) tan(t')
By similar reasoning
b _anesin(t’) + zsin(t)
_ = ) 6.3.13
|2ap p=p" 1 lp ( )

The left part in equation (6.3.9) will not change if one takes a larger M. Since one
can choose M as big as one wants, we get by choosing M sufficiently big and by
Theorem 3.3.4,

2tant  2tant’ sint

tt' 19 b?

e e gg)

[ ol G + g ¥ + 5o i)
lylp<p™ (6.3.14)

= Ap(a)]

It follows from Lemma 2.4.2, A(a3?) = A(a), \p(a@)A\p(—a) =1, and Lemma
2.3.9, that

1 1 tan(t + t')(1 — tan(t) tan(t'))
M=o — 5 —) =M= ; )
2tant 2tant 2 tan(t) tan(t’) (63.15)
o t—I—t’)_ ( 2t+2t’)_ Ap(2t +2t") o
TP o S TP opp T N\ (20)A,(28)
‘We also have that
b2 T z 2 2
—— = (== + =) + !
4a sint  sint tant tant (6.3.16)
22 + 22 2wz x? 22 e

T 2tan(t+t') * 2sin(t + t/) * 2tant * 2tant/

by using the equation sin(a + ) = sin(«) cos(3) + cos(a) sin(8). Then we get the
result

U@U ' )(z)
_ Ap(2t+2t7) x? 4 22 T2
B It +t/|5/2 /p xe(= 2tan(t +t) + sin(t + t/) ¥ (2)dup(2) (6.3.17)
=U(t+t)().
The result extends to L?-functions. B

From this calculation we also get that

Kive (2, y) = A Ki(z, 2)ICo (2, y)dpp(2). (6.3.18)
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It can be shown that the operators W, (z) and U,(t) satisfy
U)W (z) = W(Ti2)U(t). (6.3.19)

Chapter 7 is devoted to finding the eigenvalues and eigenfunctions of the evo-
lution operator U(¢). The only result needed for now is that the simplest ground
state (there are several ground states) is

Yoo () = Q(|z|p)- (6.3.20)

Note that it is invariant under the Fourier transform. To avoid confusion z is
position, k£ is momentum and p is a prime number.
The expectation of an observable A in the state 1o will be denoted by

(A) = (Avoo, Yoo)- (6.3.21)
The mean square deviation is given by
AA = ((4%) = (A2, (6.3.22)

just like in the real case.
Note that (z) and (k) are not defined, while (|z|,) and (|k|,) are. We get that

s s 1 _p_l
<|x|p> = <|k‘p> = m7 Res > —1, (6323)

by the calculations which were done on the p-adic I'-function in section 3.3. Fur-
thermore we get that

L-p™' (1—p H)2\'?
Alkl, = Alz|, = <1 —p3 - (1—p2)2

)

6.4 Adelic Quantum Oscillator

(6.3.24)

When we are dealing with real and p-adic functions at the same time, there will
be an extra index p, co or v to make it clear which functions we are using. To
define an adelic quantum mechanics we will again use a Weyl system. The Hilbert
space will be L?(A). Then we have the projective unitary representation of A x A,
denoted by W, together with the adelic evolution operator U. So we have the triple

(L2(A), W (2),U(t)). (6.4.1)
The operator W (z) is defined as

W(2)p(x) = xa(pq/2 + px)(z + q), (6.4.2)
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where z = (g,p) is in the adelic classical phase space and 1 € L?(A). One often
writes W (z) =[], W, (z,), where W is the W we used in the real case and W,
is the W we used in the p-adic case, since this is how it acts on Schwartz-Bruhat
functions. It satisfies the Weyl relation

1
W ()W (') = XA(gB(z,z’))W(z +2'), (6.4.3)
where z = (¢,p) and 2z’ = (¢/,p') are in the adelic classical phase space and

B(z,2") = —pq' +qp'.
The evolution operator U is defined as

Utwta) = [ Kule)ol)dnty). (6.4.4)

where K; is defined as
Ki(z,y) = HKt(f) (Tu,y0), t#0 (6.4.5)
Ko(z,y) = 0(Too — Yoo)d2(w2 — y2)d3(w3 —y3) - -, (6.4.6)

and Kt(f) are given by equation (6.2.18) and (6.3.5).

It is easily seen that &C;(x,y) makes no sense as a function, even when t # 0,
and must be seen as a distribution. The next definition shows how U(t) acts on
elementary functions.

Definition 6.4.1. For an elementary function ¢, U(t) is given as
U(t)(z) = K8 @y, v )0 (o) dpiw (). (6.4.7)
0 t vy Yv Yv )oYy

One can then write U(t) =[], U, (t,), where U (too) and U,(t,) are the real
and p-adic evolution operators respectively. One of course has to check that the
infinite product converges. Also note that the time ¢ must be in

Gy =R xGyxG3x---. (6.4.8)

Lemma 6.4.1. For large enough p,

/ Kgf)(xmyp)wp(i‘/p)dﬂp(yp) =1, (6.4.9)

P
where Y(y) =[], ¥ (y) is an elementary function (see section 4.4).

Proof. If t, = 0, then the result is easily shown. So assume that ¢, # 0. Since x
is a fixed adele, |zp|, < 1 for p > N; for some natural number N; . We also have
that 9P is the characteristic function on Z, for p > N, for some natural number
N3 since 1 is an elementary function. Then for p > max{Ny, No} we have
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/Kg)(zpvyp)@bp(yp)dﬂp(yp):/ Kg)(zpvyp)d:“p(yp)

P yy

~1/2 xf, Yo ZpYp
= )‘p(ztp)ltp‘p Xp( ) ; Xp(_ + 7)dﬂp(yp)

 2tant 2tant, = sint
' e X Bip o Sl (6.4.10)
= M\p(2tp) Ay (— ——)|tp |52 — ———|1/2
2yl = |
a:% mf, tant, xptant,
“Xp\ — Xp : 5 | ———=——1),
2tant, 2(sint,) sint,
by Theorem 3.3.4.
First notice that since |sint,| = [t,|, | costp| = 1 and |z,|, < 1, we have that
[tp] 12| — #rl/? =1, (6.4.11)
i 2tant,
tant
Q<y-%1“1ﬂ):1 (6.4.12)
sin ty,
Furthermore we have that
1
A2t ) Ap(———) =1 6.4.13
2y~ ) (6.4.13)

since A\p(ac®) = A(a) and A(a)A(—a) = 1, and by Lemma 2.3.9. Finally we have to
look at

x2 x2tant x? 1
P P P P
_ = P — cost
Xp( 2tantp)xp<2(sintp)2) Xp(2sintp(costp o8 p)> (6.4.14)

= Xp(xf, tant,/2) = 1,

since |z,|, < 1 and |tant,/2|, < 1. This proves equation (6.4.9). O

The lemma proves that the product in Definition 6.4.1 makes sense. Since
Uso(t +1') = Uso(t)Uso (t') and U, (¢t + t') = Up(t)U,(t'), it follows that

Ut +t') = U@)U). (6.4.15)

Similarly to what is done earlier, U(t) extends uniquely to L*(A). U(t) is a unitary
operator since U, (t,) are unitary operators. What is left to prove is that it is
strongly continuous. Since [], U, (t,)¥"(x,) actually is a finite product when
is an elementary function, and since each U,(t,) is strongly continuous, U(t) is
strongly continuous on the space of Schwartz-Bruhat functions (S(A)). Let ¢ €
L?(A). Since S(A) is dense in L?(Q,), there is a function ¢ € S(A) such that

[ — || < €/3. Let t, be a sequence of adeles converging to the adele t. There
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exists a positive integer N such that for n > N, [|[U(t)Y — U(t,)¥|| < €/3. Then
forn > N

U (1) = Uta)wll < U@ — U@ + U — Ultn)id| (6.416)
+H|U () = Ulta)¥ll < €/3+€/3+¢/3 = h

since U is a unitary representation. Thus, U is a strongly continuous unitary
representation of G on L?(A). As in the real and p-adic case, we get that

U)W (z) = W(Ti2)U (%), (6.4.17)

where W(T;z) =[], W, (T} z,) and T} are the real and p-adic T; from equation
(6.1.5).

The eigenstates and eigenvalues are found in Section 7.4. The simplest ground
state is given by

Yoo (x) = U5 (wo0) [T 0% (2p) = 2127 [T (1), (6.4.18)
p p

which is invariant under the adelic Fourier transform.
The expectation of an observable A in the simplest ground state is denoted by

(A) = (Avboo, Yoo) (6.4.19)

Analogously we also define the mean square deviation as
AA = ((A%) — (A)2)1/2, (6.4.20)

We will use x as position, k£ as momentum and p as a prime. We want to find
(|=]*) and {|k|*) where

2l =T lzolo, 1kl =] Ikl (6.4.21)

v v

These products do not always converge. Therefore one instead computes (|z|*)
and (|k|*) as limits of |x|fpn) and |k|fpn) which are given as

Pn P
‘xlfpn) = [Too % H |5Cp|;>7 |k‘fpn) = [kool36 H |kp|1sm (6.4.22)
p=2 p=2

where s is a complex number such that Res > —1 and p,, denotes the nth prime.
This does not solve the mathematical problem that the products do not converge,
but it may give an answer which makes sense physically.

By equation (6.3.23) and (6.2.24) we get that

(E[tp,)) = (2lip,) = \@F(s ; 1) (2m) =% H Lo (6.4.23)
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where Res > —1. One also gets that

A“d(p? A"/‘El Pn

R e

The limit lim, o [T}_, # is equal to the Riemann zeta function ((s) if
i
Res > 1. So for Res > 0,

nlggonol_ — =S+ 1), (6.4.25)

Mertens’ Theorem ([11]) states that

1 1
lim — [[ —F =¢, (6.4.26)

where v is the Euler-Mascheroni constant’.
Since the Riemann zeta function is convergent for Re s > 0, we get that

1

(k]°) = (Jo[*) = lim_ H ” =0 (6.4.27)

Pk<n (S+1)

for Res > 0.
Similarly
Alk| = Alz| = 0. (6.4.28)

An infinite product is said to converge if the sequence of partial products is conver-
gent to a limit not equal to 0. Even though the limit in our case does not satisfy
the condition, we will still interpret the answer as 0.

Ly 2 0.5772
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Chapter 7

Spectral Analysis of the
Evolution Operator

As in the real case we want to find the eigenvectors of the p-adic evolution operator
and the corresponding eigenvalues. The problem is not trivial because the propa-
gator is not so easy to deal with. We will begin by finding the eigenvalues, then
the dimensions of the eigenspaces, and finally the eigenvectors. To do this we first
need some theory from harmonic analysis.

7.1 Eigenvalues and Eigenspaces

Let G be a compact abelian group. From Proposition 3.2.4 we know that G is
discrete. We will enumerate the characters from an index set I, so we can write
the set of characters as G = {xa, @ € I}. We want to split the Hilbert space L?(G)
as an orthogonal sum L?(G) = @, Ha, and define the projection on each H,.
The projections are defined as vector-valued integrals, so we will first need some
theory on this subject.

Definition 7.1.1. (Vector-Valued Integral) Let = be a locally convex topological
vector space, and let Z* be the space of continuous linear functionals on =. Fur-
thermore, let (X, ) be a measure space. A function F' : X — = is called weakly
integrable if ¢ o F' € LY(X,u) for all ¢ € =*. If F is weakly integrable and there
exists an element v in Z such that

b(v) = / 6o F(x)dp(z) (7.1.1)

for all ¢ € =, then v is called the integral of F' and we write
v= /F(x)du(:r) (7.1.2)

67
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Lemma 7.1.1. Let = and (X, p) be as in the above definition. Let F: X — 2
be weakly integrable, and assume that v = [ F(z)du(z) exists. Let Z' be another
locally convex topological vector space and let T : = — Z' be a continuous linear
map. Then T o F' is weakly integrable and

T/F(m)du(x) = /ToF(m)du(m). (7.1.3)

Proof. We know that ¢ o T € Z* if ¢ € (E')* which shows that T o F is weakly
integrable. Since we have assumed that

v0) = [ 4o Pla)du(a) (7.1.4)

for all ) € E*, we get that
$oT(v) = /¢ o T o Fz)du(z) (7.1.5)
for all ¢ € (=')*. This proves the lemma. O

One wants to know when the element v exists, and if it in this case is unique.
The next lemma is taken from [8].

Lemma 7.1.2. Let = be a locally convex topological vector space. Given two dis-
tinct vectors x,y in Z, there exists a continuous linear functional x such that

x(x) # x(y)-

The next Corollary is a direct consequence of the lemma.
Corollary 7.1.3. If the vector v = [ F(x)du(x) ezists, then it is unique.
Existence is harder to show, and we will need a theorem from [3].

Theorem 7.1.4. Let Z be a Banach space and let i be a Radon measure on the
locally compact Hausdorff space X . If g is a scalar-valued function in L*(X, ) and
H : X — E is bounded and continuous, then [ gH(x)du(x) exists and belongs to
the closed linear span of the range of H, and

| [ ar@inte)| < swp @I [ lo@)iduto) (7.16)

Let U be a strongly continuous unitary representation of the group G, and let
‘H be the corresponding Hilbert space. The projection operator P, is defined as

Py = / Xa@U (9)du(g). (7.1.7)
G

Existence of this integral is not immediate from Theorem 7.1.4 since U only is
assumed to be continuous in the strong operator topology, and B(#) (bounded
linear operators on H) is not a Banach space with this topology. However, we can
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use the theorem to define the integral pointwise. For each v € H, the function
g — U(g)v is a continuous and bounded function from G to H. So equation (7.1.7)
actually means that

Pav= [ Xa@Ulg)odu(e). Vo€ H (7.1.8)
G

Again, by Theorem 7.1.4 we have that
[Pav|| < Sup{IIU(g)vH}/ Ldp(g) = [[v]|, (7.1.9)
geG G

since U(g) is a unitary operator. Hence, P, is bounded. We need to show that
P =P, and P, Pg = P03, where d,p is the Kronecker delta. We will show that
P = P,. By the definition of the vector-valued integral, and by the substitution
h = g—! we have that

(v, Paw) = (Paw,v) = /G X (@) (U(g)w, v)du(g)

=/ xa(g)mdu(g):/XT(h)<U(h)v,w>du(h) (7.1.10)
G G

= <Po/U7 w>

It is not hard to show that P,u =0 Va € I = u = 0, and we have that
U)Pw = [ Xal@Ula-+ hvdito)
= /GmU(h')udu(h') (7.1.11)
N /G Xalg)U (W yodp(R') = xa (1) Pav.

Then we have that H can we written as the orthogonal sum

H =P, (7.1.12)

acl

where H, = P,H. Finally we can write

U(9) = Xal(9)Pa- (7.1.13)

acl

Our next goal will be to find the dimensions of the spaces H,, for the case when
U is the evolution operator on G, and where H = L?(G). By what we just showed,
all eigenvalues of U(g) must be of the form y,(g), and they are eigenvalues if the
dimension of H,, is bigger than 0. We need a result from [5] which says that the
characters of G, are x,(at) where for p # 2

a=0or a:p_'y(ao+a1p+...+a7,2p’7_2), (7.1.14)
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where v =2,3,4,..., ag # 0, 0 < a; < p. For p=2
a=0o0ra=2"1+a2+ ... +a, 3277?), (7.1.15)

where v = 3,4,5,... and 0 < o; < 2. The set of these o will for each p be denoted
by I,.

Notice that adding higher terms of p to « will not change the character. An «
which is in I, is thus a special choice of a.

We will also use the Haar measure on @Q,, so

_Jlp p#2
pp(Gp) = {1/4 p=2. (7.1.16)

The projection must then be normalized, so we define it as

P = plGp) ™" [ (—atiU (O (7.1.17)

P

For the next proposition, we have to define the trace of an operator.

Definition 7.1.2. (Trace) Let H be a separable Hilbert space, and let {e;} be an
orthonormal basis for H. Then the trace of a bounded linear operator A on H is
defined as

o0

Tr(A) =) (Aeje;). (7.1.18)

If A is a positive element in the C*-algebra of bounded linear operators, then
the above sum is independent of the choice of basis, and converges (including oo).

Proposition 7.1.5. For all o in I,
dim H, = Tr P,. (7.1.19)

This is seen by choosing a suitable basis. Now we can state the main theorem
of this section.

Theorem 7.1.6. The spaces H, have the following dimensions: If p =1 (mod 4),
then dim Ho = oo for all o € I,. If p=3 (mod 4), then

1, a=0,
dimH, = {p+1, |al,=p" andy#0 is even, (7.1.20)
0, else.

If p =2, then
2, a=0 orlalz =23,
dimH, =<4, |as>2* and a; =1, (7.1.21)

0, else.
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Proof. The proof will only be given for p # 2. The case p = 2 is similar. We
will prove the theorem by using Proposition 7.1.5. So the goal will be to calculate
Tr(P,). It can be shown that if A is a positive operator and (7},) is a sequence of
positive elements converging strongly to the identity operator, then

lim Te(T, AT,) = Tr(A). (7.1.22)
Define w,, on L?(Q,) by
wpt(x) = Qp~"z|p) ¢ (2). (7.1.23)

This operator converges strongly to the identity operator, and we get that

lim Tr(wy, Pawy) = Tr(Py). (7.1.24)
n—0o0
The next goal is then to calculate Tr(w, Pywy) and to take the limit. By Lemma
7.1.1 it becomes

Tr(wy Pawn) = ! /G Xp(—at) Tr(wp U (t)wr)dpp (t). (7.1.25)

pp(Gp) v

Now we will look closer at Tr(w,U(t)wy,). When K is a compact set, p is
a measure on K and A is an integral operator on K with kernel K(z,x), then
TrA= [, K(z,z)du(zx) if K(x,z) is continuous on K x K. One then gets

Tl Oun) = [ 0 el 020 ey )

(7.1.26)
Ap (2t t
= [ kPG = 22 [ (5)edn o)
|z]p<pm |t|p |z|p<pm
By Theorem 3.3.4 with ¢ = tan (%) we get that
t " lal, < p~2",
Xp(tan (f)xz)d,u (x) = —_1/2 Com (7.1.27)
/|$|p§pn : 2 ’ Ap(a)|2alp / lalp > p~?".
By Lemma 2.3.7 and 2.3.9 this can be written as
t P [ty <p7*",
Xp(tan (7)x2)d/¢ (x) = _1/9 o (7.1.28)
/ﬂﬂlpﬁp" : 2 : Ap(28)[t]p / [ty > p~2"
Then we get that
Ap(2t
TronPan) = [ 2Bty o
lthh<p=2" [¢[p
(7.1.29)

A, (2t)2
+p / p207 oty (t)
ltlp>p-2n [ty
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By some calculations, one gets that the first term becomes

A, (2t
p"H/I p(l/Q) Xp(—at)du,(t) = p, (7.1.30)
t p

|p§p_2n |t‘

and that the second term, denoted by J, becomes

(p—1)2n-1) if « =0,p = 1(mod 4)
7o (p—1)(2n—N)-1 %f\a|p:pN72§N§2n,p£1(mod4) (7.1.31)
1—p if « =0,p = 3(mod 4)
(-1)Nedd e if ||, = p"V,2 < N < 2n,p = 3(mod 4).
Letting n — oo one gets the desired result.
O

Corollary 7.1.7. The eigenvalues of the p-adic evolution operator U(t) are of the
form xp(at) where

a=0o0ra=p "(ag+ap+ ..+ ay,_op’?), (7.1.32)

where ag # 0, 0 < a; < p and v = 2,3,4,... forp =1 (mod 4), v = 2,4,6, ... for
p=1(modd). Forp=2

a=0o0ra=2""1+a2+ ..+ a,_32773), (7.1.33)

where 0 < a; < 2, v = 3,4,5,... and a; = 1 for |a|, > 2*. The set of these o will
for each p be denoted by J,.

When there are several eigenvectors corresponding to the same eigenvalue, it is
called degeneracy. When this is the case for the Hamiltonian, it is called energy
degeneracy. It means that two or more different states are possible for the same
energy level.

The problem of finding the eigenfunctions for the eigenvalues is done in three
parts. It is done for p =2, p =1 (mod 4) and p = 3 (mod 4). We will not look at
the case p = 2.

7.2 The Case p=1 (mod 4)

By Lemma 2.3.12 there exists an element 7 in Q, such that 7> = —1 when p =
1 (mod 4). The analysis of the eigenfunctions will be greatly simplified by the
operator J, which for a p-adic Schwartz-Bruhat function f, is defined as

3NN = [ xolra® = 522 + 20 (2)dn2). (7.2.1)

Qp

It extends to L2-functions by the usual process.
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Proposition 7.2.1. J is a unitary operator on L*(Q,) and maps D(Q,) to itself.
Proof. We have that

, (7.2.2)
2z

31)(@) = xp(ra?) F [ £ (Dxn(—52)]

where F is the p-adic Fourier transform. This is a composition of four unitary
operators which map D(Q,) to itself. O

Theorem 7.2.2. For all f € L*(Q,), we have that
U®)3[fl(x) = 3[f(e™2)](x), (7.2.3)
wheret € Gp and p=1 (mod 4).

A full proof of this theorem is found in [5]. It mostly consists of the same
calculations and techniques which were used to prove that U is a unitary represen-
tation. This theorem will simplify the problem greatly. Let us begin by finding the
eigenvectors corresponding to the ground state. To solve

Uty =14, (7.2.4)
we use the fact that J is unitary to write ¢ = J[f], and this reduces to
fle™™2) = f(2), teaq,. (7.2.5)

By Lemma 2.3.11, we have that a p-adic number z can be written as z = pYeFe®
so then e "tz = pYefe®~ . Thus, we have to solve

f(preber™mh) = f(pTever). (7.2.6)

A general solution of this equation is the set of all functions in L?(Q,) which are
on the form f(z) = f(v,k). Furthermore we see that this is equivalent to f being
on the form f(z) = f(|z|p,20) where z = p~7 (20 +z1p+ ...) since [e* —1[, < 1. We
then get that all eigenvectors corresponding to the ground state are of the form

wle) = [ xplra® = 3+ 2000 (2l )iy (). (7.2.7)

Qp

It is not straightforward to find the eigenvectors corresponding to the ground state
explicitly. By using

| xolra? = 252 + 20901 (2l 20) iy (2
Q

= > D [k (7.2.8)

—oo<y<oo 1<k<p—1

.
: / Xp(T2? — 2% + 2w2)dp, (2),
|2lp=p",20=k 2
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and

r
/ Xp(T2% — =22 + 222)dp,(2)
|2l =p,20=k 2

= xp(r2® + 2p k)T QY alp), v <0

(7.2.9)

we can get some eigenvectors corresponding to the ground state. If we choose
F(2lps 20) = Q|21,) we get Go(x) = Qlel,). I F(|zly,20) = 3(p7 — |2l,) (where
v=1,2,...) we get 1, = xp(—72%)5(p7 — |z|,) (Where v = 1,2,...), where 6(0) = 1
and §(z) = 0 for x # 0. Thus, the dimension of the eigenspace is infinite, in accor-
dance with Theorem 7.1.6.

The other eigenfunctions are found from the equation

U(t)a(z) = xplat)a(z), (7.2.10)

where « is a non-zero element in I, and t € Gp. Again, by using ¢, = J[fa], we
get

fale™™2) = xp(at) fal(z), tE€G). (7.2.11)

We know that the general solution of equation (7.2.5) is any function in L?(Q,)
such that ¢(z) = ¢(|2|p, 20). Now write ¢(z) = f(2)xp(—aTa). By inserting this
function in equation (7.2.5), we see that ¢(z) satisfies equation (7.2.5) if and only
if f(z) satisfies equation (7.2.11). Then f(z) satisfies equation (7.2.11) if and only
if f(z) = ¢(|z]p,20)xp(aTa) where ¢ € L*(Q,). Thus, the general solution of
equation (7.2.11) is

fa(z) = da(2lp, 20)xp(aTa). (7.2.12)

Then we get the excited states

Vo= [ xplra® = 35 4 205 4 ara)dallzlos s0)diy (). (7.213)

Qp

These are all the eigenvectors, but they are not on a particularly nice form. For
the adelic oscillator, these eigenvectors will be useful, but it will be important to
know whether they are in D(Q,). It turns out that we can pick an orthonormal
basis for H, consisting of Schwartz-Bruhat functions. From [10], we get the next
theorem.

Theorem 7.2.3. Let H be a separable Hilbert space. Then any dense subspace of
H contains an orthonormal basis for H.

Since the set of p-adic Schwartz-Bruhat functions is a dense subspace of L?(Q,),
the set of Schwartz-Bruhat functions in H,, is a dense subspace of H,, and we can
thus choose an orthonormal basis for H, consisting of Schwartz-Bruhat functions.
We will choose an orthonormal basis for LZ(QP) given by 1,5, where «, is the
eigenvalue and [, corresponds to the energy degeneracy.
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7.3 The Case p =3 (mod 4)

The case p = 3 (mod 4) is harder than the case p =1 (mod 4), because there is no
2 such that 22 = —1, so we can not use the same trick as we did in the other case.
Instead we will first calculate the eigenvectors for a different Weyl system, and ob-
tain the eigenvectors for the oscillator through a unitary operator. In this section
we will view the classical phase space Q, x Q,, as the quadratic extension Q,(v/—1).
We will write ¢ for v/—1, and write any element 2z € Q,(v/—1) as z = x + iy, where
z,y € Qp. Continuing the analogy to the complex numbers, we define z7 = z — y.
The norm of z is defined as ||z|| = max{|x|p, |y|p}-

Define T = {e',t € G,}. We also define the bigger group Y to be {z €
Qp(v/—1) : 2z = 1}. The above definitions will be used to get what is called the
polar decomposition of the elements in Q,(v/—1).

Fix an element € € Q,(v/—1) such that e = —1. Also define Q, = {z € Q, :

(5) =1
Lemma 7.3.1. Forp=3 (mod 4) all z € Qy(v/—1) can be written on the form
2z =refcel, (7.3.1)

where T is a non-zero element in Q,1, k € {0,1}, ¢ is a generator of the cyclic
group of order p+ 1 denoted by Z,+1, n € {0,1,....,p} and 7 € G,,.

Proof. It can be shown that Y is isomorphic to Z,.1 x T. Let z = = + iy be an
element in Qp(\/jl). Then 2z = 2% + y? is either a square or —1 times a square.
To see this, first notice that if a number a # 0 in the finite field of p elements, F,,
is not a square, then —1 times a will be a square since —1 is not a square when
p =3 (mod 4). Then 7 in Lemma 2.3.8 must be even, and by the same lemma, we
see that 2 + y2? or —1(2% + y?) must be a square. Assume that 2Z is not a square.
Then —zZ is a square and define r = \/—2zZ, where r is defined to be the square

root which is in Qp. Then
Z\ [/ 2\
—J{—)=1 7.3.2
(7“6) (re) ’ ( )

so that = = c"e’. The case where 2Z is a square is similar. O

This decomposition is called the polar decomposition. The next lemma contains
some important properties of r, k and n as functions of z.

Lemma 7.3.2. Let 2,2’ € Qy(v/—1) such that ||z]| > p and |[2'|| < 1. Then
(i) Ir(z+2) —r(z)lp <1.
(ii) Ek(z+2') =k(2).

(i) n(z+2") =n(z).
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Let 6j,, be the Kronecker delta,

1 ifk=
6k: n = 1 " (733)
' 0 ifk#n.

Define 6%, (z) = 65, (refc"e’™) = &,, 1, for m = 0, 1, and define 65(z) = &5(recme'™) =
dp.n for 6 =0,1,...,p. It is easily checked that for a # b,

supp 85 (z) Nsupp d;(z) =0,  suppds(z) Nsuppdp(z) = 0. (7.3.4)
Now we will look at a different Weyl system. The Hilbert space is
Ly ={p € L(Q x Q) : #(2 + &) = xp(B(2,))e(2)},  (7.3.5)

where 2,2/ € Q, x Qp,[|7'|| < 1, and B(z + iy,2’ + iy') = —ya’' + xy'. We
define the unitary operator W(z) by W(z)d(w) = x,(B(z,w))¢(w — z), where
¢ € LY and z,w € Q, x Q. This gives us the Weyl system (L3, W (z)). An
analog to the evolution operator is U (t) which for t € G, and ¢ € L3 is given by
U(t)p(w) = ¢p(e " w). In addition it satisfies U(t)W (z) = W (e*2)U(t). Similarly
to what we did for our original Weyl system, this Weyl system can also be split
into an orthogonal sum of eigenspaces with the same eigenvalues as in the original
Weyl system. We will later see a unitary operator between the Hilbert spaces
which takes eigenvectors corresponding to the eigenvalue x,(at) to eigenvectors
corresponding to the eigenvalue x,(—at), and this shows that the eigenspaces for
the two Weyl systems have the same dimensions. We want to find the solution of
U(t)p = xp(at)¢, which becomes

Ble7"2) = xplat)d(z). Oz +2) = xp(B(2.2)o(2), 1] 1. (7.36)

Theorem 7.3.3. The eigenvector corresponding to the ground state for U(t) on
LY is

po(z) = Q([2l]), (7.3.7)
and the p+ 1 eigenvectors for the eigenvalue x(at), o € J, \ {0}, are given by
Pa(2) = 6,,(2)0, (2)Q(|r(2) — alp)xp(—aT(2)), (7.3.8)
where )
a
m= 1+ (;0)), a= /(1) (7.3.9)

andn=0,1,...,p.

Proof. First it is easily seen that ¢g is a solution of equation (7.3.6). So from now
assume that o # 0. From equation (7.3.4) it follows that the p 4+ 1 eigenvectors
are orthogonal. Since we know the dimensions of the eigenspaces, it is sufficient to
check if the functions satisfy equation (7.3.6). That ¢ satisfy the first equation in
equation (7.3.6) follows from the fact that multiplication with e~% just sends 7 to
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T —t. Also notice that since |a|, > p? (since a € J, \ 0), |a|, > p. Putting ¢7 in
the second equation in equation (7.3.6) yields by Lemma 7.3.2,

07 (2)07,(2)2(|7(2) — alp)xp(—aT(z + 2))

" (7.3.10)
= Xp(B(2,2))07,(2) 0, (2)2|r(2) — alp)xp(—aT(2)).
This equation is equivalent to
Xp(aAT 4 B(z,2')) =1 (7.3.11)
with z = 7(2)e™ce™®)| 2 + 2 = r(z + 2/)em ") r(z) —al, < 1 and

AT = 7(2 + 2') — 7(2). Since |a|, > p, this implies that |r(z)|, = |al,. Since B is
linear in the second argument and conjugate linear in the first, one gets that

2,2') = B(z,z+ %)
r(2)r(z 4 2') (€)™ (@) e B(e'T?), i+ (7.3.12)
=7r(2)r(z + 2")(—=1)"sin A,

/U\:Jl

where the last equation follows from sin(a — ) = sin« cos 8 — cos asin 3.
It is important to show that certain expressions are smaller than 1 in absolute
value since then yx; of that expression is equal to 1. It is not hard to show that

laAT], < 1. (7.3.13)

Since |r(z) —alp, <1, [r(z+2') —al, <1, |aAT7|, <1 and |r(z)AT], < 1, we get
that
Xp(QAT + B(z,2")) = xp(aAT + r(2)r(z + 2')(=1)™ sin A7)

; _ (7.3.14)
= Xp(@AT +a”(—1)" sin AT).

One can easily show that |sin A7 — A7l, < |%| » which together with equation
(7.3.13) gives
p((a+ (=1)™a?)AT) = 1. (7.3.15)

This equation holds for all A7 € G, if the equation
a+(=1)ma* =0 (7.3.16)

is satisfied. Notice that the choice of m makes (—1)™*'a a square. The theorem
is proved.
O

Theorem 7.3.4. Let 1y be the eigenvector corresponding to the ground state for
the Weyl system (L*(Q,), W). Then the n+1 eigenfunctions for U(t) corresponding
to the eigenvalue xp(—at) (o # 0) are given as

Yo = / Xp(—at' )W (ae™ e Yodp, ('), (7.3.17)

Gp

and for a = 0, to(x) = QJz],).
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Proof. Define the operator S : LY — L?(Q,) by

S¢ = _— (&, W (2)do) W (2)thodz (7.3.18)

which can be shown to be unitary. It can also be shown that

Sl = const / Xp(—at’)W(aemc"eit,)wodup(t’). (7.3.19)

Gp

Since U ()W (z) = W (T:2)U(t) we get that

U0 = [ xal-at UOW (e und ¢
Gr / (7.3.20)
:/ Xp(—at YW (ae™c"Tye™ U (t)hodpu, ().

Gp

Since Tieit" = €'~ and U(t)iy = tho, from the substitution s = ¢ — ¢, we get
that

| xol-at )W aeme e U 0o ()

p

=/ Xp(—at YW (ae™ e = )hodpu, (1) (7.3.21)

- / Xp(—ax(s + )W (@e™e" e oy () = xp(—at).

Gp

Since 97 are just a factor times S¢7, and since S is a unitary operator, we get that
the eigenvectors are p + 1 different eigenvectors. O

It is easily checked that these eigenvectors are Schwartz-Bruhat functions. As
in the previous section we write 14,5, for the eigenvectors, where ), is the corre-
sponding eigenvalue and (3, is the energy degeneracy.

7.4 Eigenvalues and Eigenvectors on the Adeles

To find eigenvalues and eigenvectors of the evolution operator, we will use our
results from the real and p-adic oscillator. Define

21/4
2nn/!

VYap(t) = s ™ Hy (200 V27) [ [ Yaps, (@0). (7.4.1)

Here o and (8 are adelic indices

a=(n,a,as,...), B=1(0,0s,05s,..), (7.4.2)
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with the restriction that 4,5, = Q(|z[,) for all but a finite number of p. In the
previous sections we saw that all the p-adic eigenvectors 1,5, are p-adic Schwartz-
Bruhat functions. This is also the case for p = 2 even though we did not show
it. Thus, 1, are adelic Schwartz-Bruhat functions. It is easily seen that these
functions are eigenfunctions of the adelic evolution operator, and one obtains

U(t)¢ap(x) = X(Et)Pas(x), (7.4.3)

where F is the adele (E,,, ag, as,...). The adele E can be interpreted as the energy
value. The set of eigenvectors form an orthonormal basis for L?(A) by Section 4.5.
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Chapter 8

Concluding Remarks

The first chapters cover p-adic numbers, topological groups, adeles and quantum
mechanics. These chapters should cover the necessary knowledge needed to study
p-adic and adelic quantum mechanics. The last two chapters give an analysis of
the one-dimensional harmonic oscillator in the p-adic and adelic case. One cannot
immediately define a Hamiltonian in these cases, since multiplication of a p-adic
number or an adele with a complex number is not well-defined. There are several
ways to define an analog, and this thesis has used Weyl’s formulation of quantum
mechanics. From this formulation, eigenvalues and eigenvectors are obtained for
the time evolution operator U(t). In contrast to the real case, the eigenvalues are
degenerate, and for p = 1 (mod 4), there is even an infinite degeneration. In the
adelic case, the degeneration is infinite for all eigenvalues.

It is still too early to say if the p-adic or adelic model is the ”correct” model
for the universe. One of the problems with the real model is that it does not work
under the Planck scale. One sees that the uncertainty in an analog of the position
and momentum operator in the simplest ground state is 0 (see equation (6.4.28)),
which may or may not be good news.

In future work one can consider other models than the harmonic oscillator. A
still open problem is to find a good relationship between the p-adic and the real
model. For instance that one can obtain eigenvalues for the real model by knowing
the eigenvalues for all the p-adic numbers. There may be models where the p-adic
cases are simpler such that solving these cases will solve real case. The adelic
model is some sort of relationship between these numbers, but it does not solve
the problem. The methods used in this thesis for the adelic case were based on
knowing the solutions to the real and p-adic cases.
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