
A Parallel Multiscale Mixed
Finite-Element Method for the Matlab
Reservoir Simulation Toolbox

Anders Hoff

Master of Science in Physics and Mathematics

Supervisor: Helge Holden, MATH
Co-supervisor: Bård Skaflestad, SINTEF ICT

Department of Mathematical Sciences

Submission date: June 2012

Norwegian University of Science and Technology

+++Mr. Jelly! Mr. Jelly!+++

+++Error At Address: 14, Treacle Mine Road, Ankh-Morpork+++

+++MELON MELON MELON+++

+++Divide By Cucumber Error. Please Reinstall Universe And Reboot+++

+++Whoops! Here Comes The Cheese!+++

+++Oneoneoneoneoneoneone+++1

1A list of not so helpful error messages uttered by ‘HEX’, the great thinking-engine. HEX is
featured in the Discworld universe, created by Sir Terry Pratchett.

i

Problem Statement

Multiscale simulation is a promising approach to facilitate direct simu-

lation of large and complex grid-models for highly heterogeneous petroleum

reservoirs. One such method, the Multiscale Mixed Finite-Element (MsMFE)

method, has been developed by SINTEF and implemented in the Matlab

Reservoir Simulation Toolbox (MRST) [3]. The MsMFE method has an

inherent parallelism in the computation of basis functions (and correction

functions) that has so far not been demonstrated in actual computations. In

the thesis, the student will develop a prototype parallel implementation in

MRST using the Matlab Parallel Computing toolbox [2]. The performance

and scalability of the code should be tested for different configurations.

iii

Abstract

We start by giving a brief introduction to reservoirs and reservoir mod-

elling at different scales. We introduce a mathematical model for the two-

phase flow, before we look at numerical discretizations. In particular we look

at the Multiscale Mixed Finite-Element (MsMFE) Method from the Matlab

Reservoir Simulation Toolbox (MRST) [3], developed by SINTEF. Next we

introduce a mimetic method, which is used for solving the local flow prob-

lems required to construct the basis functions used in the MsMFE method.

After we have given a short introduction to parallel computing, and some

common terms, we introduce a parallel MsMFE method. The method makes

use of the Matlab Parallel Computing Toolbox [2], and it lets us calculate

the inner products, as well as construct the basis functions of the MsMFE

Method, in parallel. The new method makes use of a structure for storing the

inner products that proves to be facillitate faster construction of the required

basis functions than the regular structure used in MRST. We conclude that

the new functions performs quite well, and consequently that the MsMFE

method is well suited for parallelization. Additinally, we conclude that the

Parallel Computing Toolbox works well for this task. We note that, for

larger problems, the parallel MsMFE method displays a near linear speedup

for up to twelve Matlab workers; provided the blocks are not too large.

The new parallel prototype is released as a module for MRST, under the

GNU General Public License (GPL)2. The module can be downloaded from

http://master.andershoff.net.

2http://www.gnu.org/licenses/gpl.html

v

http://master.andershoff.net
http://www.gnu.org/licenses/gpl.html

Sammendrag

Vi starter med å gi en kort introduksjon til reservoarer og reservoar-

modellering ved ulike målestokker. Videre introduserer vi en matematisk

modell for to-faseflyt, før vi ser p̊a noen numeriske diskretiseringsmetoder.

Hovedsaklig ser vi vi p̊a en Multiscale Mixed Finite-Element (MsMFE) metode

som brukes i Matlab Reservoir Simulation Toolbox (MRST) [3]. Videre

introduserer vi en mimetisk metode, som brukes til å løse de lokale flyt-

problemene som behøves for å bygge basisfunksjonene som brukes i MsMFE

metoden. Etter dette gir vi en liten introduksjon til parallelle beregninger,

og noen sentrale begreper, før vi introduserer en parallell MsMFE metode.

Den nye metoden benytter seg av funksjonalitet fra Matlab Parallel Com-

puting Toolbox [2], og den lar oss beregne indreprodukter, og de nødvendige

basisfunksjonene parallelt. I den nye metoden benytter vi en struktur for å

lagre indreproduktene som avviker fra den tradisjonelle strukturen i MRST.

Denne nye strukturen viser seg å legge til rette for noe raskere konstruksjon

av basisfunksjoner. Vi konkluderer med at den nye prototypen har god ytelse,

og dermed at at MsMFE-metoden egner seg godt til parallellisering. I tillegg

konkluderer vi med at Parallel Computing Toolbox fungerer bra til denne

oppgaven. For tilstrekkelig store systemer har de parallelle funksjonene nær

lineær speedup, for opp til tolv kjerner; s̊a lenge blokkene ikke er for store.

Prototypen kan lastes ned som en modul for MRST, under GNU General

Public License (GPL)3, fra http://master.andershoff.net.

3http://www.gnu.org/licenses/gpl.html

vii

http://master.andershoff.net
http://www.gnu.org/licenses/gpl.html

Preface

This paper was written for my master’s thesis in Industrial Mathematics at the Nor-

wegian University of Science and Technology (NTNU). Sections 2 and 3 originate

from my term project ‘An Introduction to Reservoir Simulation and the Multiscale

Mixed Finite Element-Method’, but some changes have been made; in particular

Section 3.4 has been added. In short, the purpose of this thesis has been to de-

velop a prototype parallel Multiscale Mixed Finite-Element (MsMFE) Method for

reservoir flow simulations, using the Matlab Reservoir Simulation Toolbox, and

the Matlab Parallel Computing Toolbox. This paper is a documentation of the

relevant background, of the implementation, and of the final results.

Working on this thesis, and writing this paper, has provided me with a great

deal of knowledge when it comes to reservoirs and reservoir simulation. Addition-

ally it has given me great insights into to the functionality of the Matlab Parallel

Computing Toolbox, as well as new insights into programming. It has been both

challenging, and, at times, tiring. I do not know quite how many times I have

redesigned the provided code, but I believe that the final version turned out rather

promising.

I would like to thank my advisors, Prof. Knut-Andreas Lie4, Dr. B̊ard Skaflestad4

and Prof. Helge Holden5. All of them have provided me with valuable insights and

suggestions throughout the writing process. I would also like to thank the people

in the support team associated with the ‘Kongull’ computing cluster for their help

with testing my code, and for lightning fast replies to my queries. The same goes

for Edric Ellis and Konrad Malkowski on the mathworks forums6. Finally, I would

like to thank my friend, André Ingvaldsen, and my Nespresso machine.

Anders Hoff

June 12, 2012

Trondheim

4SINTEF ICT, Oslo.
5Department of Mathematical Sciences, NTNU, Trondheim.
6http://www.mathworks.se/matlabcentral/answers/

ix

http://www.mathworks.se/matlabcentral/answers/

Contents

Problem Statement iii

Abstract v

Sammendrag vii

Preface ix

1 Introduction 1

2 Describing Reservoirs 3

2.1 Pore Scale Model . 5

2.2 Core Scale Model . 5

2.3 Geological Model . 6

2.4 Simulation Model . 7

2.5 Mathematical Model . 7

2.5.1 Two-phase Flow . 8

3 Discretization Methods 11

3.1 Mixed Finite-Element Method . 12

3.2 Schur Complement Reduction . 15

3.3 Multiscale Mixed Finite-Element Method 17

3.4 Mimetic Discretization Methods . 19

3.4.1 Inner Products . 21

4 Parallel Computing 25

4.1 Amdahl Versus Gustafson . 25

5 Matlab Parallel Computing Toolbox 29

5.1 Setting up the Environment . 29

5.2 The Parallel For Loop . 30

5.3 The spmd Construct . 31

5.4 Scheduling Jobs . 36

5.5 Performance . 40

5.6 Some Issues . 40

xi

6 A Parallel Multiscale Mixed Finite-Element Method 43

6.1 Some Notes on the Implementation 44

6.1.1 Initializing and Broadcasting the Problem 44

6.1.2 A New Inner Product Structure 45

6.1.3 Distributing the Inner Products 48

6.1.4 Building the Basis . 49

6.2 Getting the Code . 49

7 Results and Discussion 53

7.1 Test Platform . 53

7.2 Testing Speedup on a Cartesian Grid 53

7.3 Testing Speedup on a More Realistic Geometry 56

7.4 Testing the Inner Product Structure 57

7.5 Future Work . 61

8 Concluding Remarks 65

9 References 67

Appendices 69

A A Working Example 69

xii

1 INTRODUCTION 1

1 Introduction

Recent advances in parallel computing have made sure that most computers today

have multi-core processors. This development comes, largely, as a reaction to the

fact that the tremendous increase in processing speed of the monolithic single-core

processor is beginning to come to a halt. The main reason for the halting process-

ing speed is the increasingly high heat production from circuits with higher clock

speeds [19]. Hence manufacturers have started putting several processors on the

same integrated circuits [20]. Typically each processor has a fairly small and fast

cache, slower caches are shared by several processors.

When developing serial programs in the ‘single-core era’, an increase in pro-

cessing speed would, more or less, automatically mean an increase in the speed of

the serial program. If a program was not fast enough, a developer could simply

wait for the next generation of microprocessors, and the program would speed up

with it [20]. Taking advantage of advances in parallel computing requires some

more work. This task is now in the hands of the developers, who need to adjust

their algorithms—and their programs—to utilize the new opportunities offered by

parallel environments.

A field of research that is only becoming more relevant is the area of subsurface

fluid flow in highly heterogeneous porous media. Both for simulating hydrocarbon

reservoirs, storage of carbon dioxide and utilization of groundwater. Representing

reservoirs, and simulating the fluid flow in a reservoir, is an immensely complex en-

gineering task. The main reason being that the geometry and the key properties of

a reservoir vary over a multitude of scales. That is, there are large variations in the

compositions of the involved fluids, the rock types, and the geometric compositions.

We have to weigh the possible loss of detail, when using a coarser discretization,

against the challenge of acquiring and storing the information needed for a finer

discrete representation.

Ability to obtain and store increasingly comprehensive models of these reser-

voirs requires us to adapt the way that these models are used in simulations. The

field of reservoir simulations has, unfortunately, not kept up the ability to digitally

represent reservoirs [5]. An industry grade reservoir model might have a number of

cells between 10 and 100 million, and these numbers are steadily growing. On the

other hand, the ability to run simulations on the available models is not increasing

fast enough.

Traditionally this gap has been overcome by downscaling the reservoir model

into a more manageable simulation with less cells. A promising alternative to

2 1 INTRODUCTION

this is Multiscale Mixed Finite-Element (MsMFE) method. This is a method that

facilitates direct computation pressure and velocities for large and complex grid-

models, for highly heterogeneous reservoirs. The method relies on the numerical

construction of generalised basis functions, from solving local flow-problems, that

accounts for fine-scale heterogeneity [5]. The construction of these basis functions

is an inherently parallel task. I.e. it can be done in arbitrary order. Taking ad-

vantage of this parallelism could speed up the method considerably in a multi-core

environment.

In this paper we introduce the prototype for a parallel Multiscale Mixed Finite-

Element Method that builds on The Matlab reservoir Toolbox (MRST) [3], and

the Matlab Parallel Computing Toolbox (PCT) [2]. We start by going through

the necessary background theory. First we give an introduction to the complex task

of representing heterogeneous reservoirs on multiple scales, in Section 2. We also

present some common reservoir models in Sections 2.1 to 2.4, before we present a

mathematical model for two-phase flow in Section 2.5.1.

Next we introduce the relevant discretization methods in Section 3. First we

look at the Mixed Finite-Element Method, and the corresponding hybrid form,

in Section 3.1. Furthermore, we introduce the Multiscale Mixed Finite-Element

(MsMFE) method in Section 3.3. We go through some common terms related to

parallel computing in Section 4, before we introduce the parallel prototype in Sec-

tion 6.7. We present some results in terms of performance in Section 7, along with

a discussion.

Finally we remark that the interested read can download the prototyped code

as a MRST module named ‘xmsmfem’, from http://master.andershoff.net.

7For completeness, a complete working example is included in Appendix A.

http://master.andershoff.net

2 DESCRIBING RESERVOIRS 3

Figure 1: Hydrocarbons are trapped in various layers of porous media, like sandstone,
beneath an impermeably layer. This layer can consist of for instance clay or
slate.

2 Describing Reservoirs

A petroleum reservoir is a pool of subsurface hydrocarbons trapped in a porous

medium. As living organisms died and fell to the bottom of the sea millions of

years ago they were trapped in various debris that continuously falls to the bot-

tom. This debris is known as sediments, and is a collection of various minerals,

and other naturally occurring substances in the water, as a result of erosion. As

more debris and organic material fell to the bottom, the pressure and temperature

at the bottom of the stack began to rise. This caused the layers to get gradually

more compacted. Eventually the trapped organic material began to boil, which in

turn caused the chemical structure to change. The result is a collection of liquid,

gaseous and solid hydrocarbon compounds, colloquially known as crude oil.

The sediments typically vary in size between the micrometer scale and up to

the centimeter scale. The size and composition of the sediments depend on the

surrounding environment. In turn this variation gives rise to layers with different

properties as they are compacted. Most importantly we get impermeable layers,

such as slate and clay, and highly permeable layers such as sandstone. Eventually

the hydrocarbons began to seep upwards through the porous layers, until they es-

caped through the surface, or they were trapped beneath an impermeable layer, as

illustrated in Figure 1.

A reservoir might stretch over as much as several kilometers in the horizontal

direction and as little as a few meters in the vertical direction. Within a reservoir

4 2 DESCRIBING RESERVOIRS

(a) Fracture (b) Fault; the relative motion
can be inn all directions

(c) Fold

Figure 2: Schematic examples of some ways facies can be displaced.

we will observe sedimentary beds consisting of of several laminae (layers of sedi-

ment). The thickness and composition of these beds typically vary throughout the

reservoir. Variations between a few millimeters and up to tens of meters are not

uncommon [7]. These beds are often separated by thin layers with significantly

lower permeability.

Depending on the geological activity in the reservoir, facies8 can be displaced

relative to each other by faults, or separated by fractures, as shown in Figures 2(a)

and 2(b). Folds, such as in Figure 2(c) are the results of the same forces. These

sort of structures can have a large impact on the permeability in the surrounding

area.

Representing and modelling a reservoir is a complex task with many physical

interactions and forces that span over several orders of magnitude. For this reason

there are many different types of models in use. These models act on several

different resolutions, or scales as demonstrated in Figure 3. We will look at pore

scale and core scale models, on the smaller scale, and simulation and geological

models on the larger scale. Afterwards we will define a few important physical

quantities that are essential to reservoir studies, before we give a brief introduction

to the incompressible two-phase model.

8A layer of rock formed under the same sedimentation environment.

2 DESCRIBING RESERVOIRS 5

Figure 3: Models at different scales; their typical length scales and how the data is used.
The Simulation model was generated using MRST [3], and the model is from
the SAIGUP project [1]. The illustration of the geological model was provided

by Knut-Andreas Lie.

2.1 Pore Scale Model

A pore scale model is usually a graph, (V,E), where V denotes vertices or nodes

and E ∈ V × V , are edges that connect two vertices. This can be seen in Figure 3.

Thus we can view the vertices as pores and the edges as the mapping of the physical

connections between the pores. From this representation we can iteratively update

the model to find the way a fluid percolates (seeps) through the medium by letting

the fluid invade neighbouring nodes, depending on various physical properties. On

this scale the most important factor is usually capillary forces. But other factors,

such as gravity, may be have an impact as well [7]. As we will see next it is

impossible to model a real reservoir with this model because we can not rely on

knowing the pore structure of even a tiny fraction of the reservoir. Nor can we hope

to have the necessary computing resources. However, these models can provide

valuable information that can be put into other models.

2.2 Core Scale Model

When wells are drilled in a reservoir, the removed cores, or core, plugs can be

extracted and studied to get more information about the reservoir. Commonly,

6 2 DESCRIBING RESERVOIRS

the core plugs are examined under an electron microscope, with X-ray or with

CT-scanners. One can also do flow experiments on them. This can provide useful

information, such as relative permeability and capillary pressures. Extrapolating

this local information into the geological or simulation model is desirable, but

inherently difficult because of the heterogeneous nature of reservoirs [7]. This

is naturally also the case with the pore scale model as well as with the models

mentioned next.

2.3 Geological Model

A geological model is a discrete geometric representation of a reservoir in the form

of a set of grid cells. Each grid cell is assigned a set of properties that are constant

over that cell. Most notably, permeability and porosity, as discussed further in

Section 2.5. Typical cell sizes range between 10–50 m horizontally, and 10 cm to

10 m vertically [6]. A full geological reservoir model might contain as much as a

hundred million cells [5].

Because the geophysical data of a reservoir is not readily available, a range of

methods are utilized to acquire as much data as possible. We have already men-

tioned that core plug models and pore models can be used to estimate permeability

and capillary pressures for different rock types. It is also possible to look at other

places in the world with similar geological histories; by examining outcrops here

one can acquire information about the stratigraphy (composition of the layers) and

mechanical deformations. The combination of these methods give a model of the

reservoir, which in turn can be used to determine how the seismic surveys should

be carried out. Because seismic surveys are time-consuming and expensive, one can

not simply investigate the whole reservoir in detail. It is also important to note

that seismic surveys have limited accuracy, so you can not expect to see structures

thinner than tens of meters. It is possible to get data with somewhat higher accu-

racy from well-logs. This refers to the process of lowering different types of probes

into the well. Here the resolution can be expected to be on the centimeter scale

[7]. However, the data is limited to the area in close proximity to well.

In practice a combination of geostatistical techniques are used to estimate char-

acteristics of the field between wells. Preferably as much specific data as possible

is incorporated in this process as well as information about the environment that

the reservoir has evolved under. Stochastic simulation techniques are utilized to

emulate the missing pieces of the puzzle. All in all this makes it possible to pro-

vide predictions about various production characteristics with an estimate of the

2 DESCRIBING RESERVOIRS 7

uncertainty in the model [7].

2.4 Simulation Model

It is easy to think that the geological model is best suited for simulating flow in a

reservoir. This is, after all, the most accurate data available. There are, however,

a number of reasons why this is not desirable, or even possible, for a full-sized

reservoir.

First of all, even if the geological model was entirely accurate for the given

resolution, it leaves out potentially important data that could affect the fluid flow

on a finer scale. The various media in a reservoir are heterogeneous on all scales,

which makes it unrealistic to represent all details about it in discrete form. Next,

as much of the geological model is qualified guesswork to begin with, running

simulations on the finest scale available would give flow simulations that are more

precise, but not necessarily more accurate [7]. In addition, large-scale flow patterns

are not necessarily that heavily affected by the flow patterns on the smaller scales.

This means that simulations with a lower resolution than the available geological

model might yield good enough data for the purpose intended.

Having said this, the main reason why simulations are not run at the finest

scale available is that the required computational effort is much too large even for

the largest supercomputers available today; both when it comes to memory and

processing power. As an example, using the Finite-Element method introduced

Section 3.1 to discretize a 10 m × 1 km × 1 km reservoir, with a resolution of 1000

× 104 × 104 cells would require around 1 TB simply to store one time step of the

solution. One can see why this is impractical at best.

2.5 Mathematical Model

Porosity, commonly denoted φ, is a central quantity when modelling a reservoir.

This refers to the void volume fraction of a medium; thus we have 0 ≤ φ ≤
1. Depending on the medium not all of the porosity is connected, so we can

distinguish between effective and noneffective porosity [13]. As an example the

effective porosity can range between 0.1–0.3.

Next we have the rock compressibility,

cr =
1

φ

∂φ

∂p
, (1)

8 2 DESCRIBING RESERVOIRS

where p is the pressure in the reservoir. Because of the complicated nature of reser-

voir mechanics the compressibility of the rock is sometimes neglected or linearised

to simplify the calculations.

Porosity in a medium gives rise to the concept of permeability, K. Permeability

is a measure of the ability of the medium to let fluids pass through it. In the case of

reservoir studies K is often a tensor. In other words, a matrix where the diagonal

terms represent flow in the corresponding spatial direction as a result of a pressure

change in the same direction. Furthermore, the off-diagonal terms represent change

in flow perpendicular to the change in pressure [6].

Permeability will often vary over several orders of magnitude within the same

reservoir, and even over short distances. This will, for instance, be the case in an

intersection between two facies with different physical properties, or in a fault or

fracture. Variations between 1 mD and 10 D are not unusual [6]. The unit here is

millidarcy or darcy, after Henry Darcy; 1 D ≈ 10−12 m2. A medium is said to be

isotropic when the permeability can be written as a scalar function. Conversely, a

medium where this is not the case is said to be anisotropic. The permeability is in

many ways the most important quantity in reservoir modelling because this is the

quantity that has the strongest influence on the fluid flow.

2.5.1 Two-phase Flow

Mathematically the flow of fluids in a reservoir is governed by the well-known

continuity equations; one for each fluid’s phases, on the form

∂

∂t
(φρisi) +∇ · (ρivi) = qi. (2)

Here ρi is the density of the fluid phase i, the velocity is denoted vi, and the

saturations are written as si. The saturation refers to the volume fractions occupied

by each phase; thus we need
∑n

i=1 si = 1. This is often referred to as the closure

relation [7]. On the right-hand side we have the source term, qi, which models

injectors and wells. Commonly three phases are considered; aqueous, liquid and

vapour. Also it is common to group components together into the ‘component

groups’ water, oil and gas.

Following this we have the empirical relation known as Darcy’s law

vi = −Kkri
µi

(∇pi − ρiG) , (3)

2 DESCRIBING RESERVOIRS 9

which describes the relation between the phase velocity vi and the phase pressure

pi. As previously mentioned K is the permeability (tensor) from the geological

model; µi denotes the viscosity and kri = kri (s1, . . . , sn) is the reduced permeabil-

ity of phase i due to the presence of the other phases. So, even though we know

that the different phases are immiscible, we assume that they can be present in

the same space simultaneously and that they affect each other. This gives an ef-

fective permeability, Ki = Kkri, for phase i. Lastly, G, is the gravitational vector

pointing in the downward direction. It is also customary to introduce the phase

mobility as

λi =
kri (si)

µi

(4)

Darcy’s law and the continuity equations yields one equation for each phase to

solve for the pressure, pi, and for the phase saturation si. In addition we have the

closure relation. In the case of single-phase flow we can simplify (2) and (3) to the

following elliptic equation

−∇
(
K

µ
(∇p− ρG)

)

=
q

ρ
, (5)

provided we assume incompressibility.

For multi-phase flow this changes. Now we can only eliminate one of the satura-

tions [7, 6]. Also, we get extra equations describing the capillary pressure functions.

That is, the pressure change across the interface between immiscible (unmixable)

fluids; expressed as pcij = pi − pj . Commonly one assumes that the capillary pres-

sure functions only depends on the saturations. Some of these capillary functions

can be found from flow simulations on core plugs or from tables for a certain type

of rock with known properties.

We now present the system for two-phase flow. We assume incompressible flow

and let i = {w, o} denote water and oil respectively. Now, letting p = po + pc be

the total pressure and similarly, v = vo + vw, be the total velocity, we can write

∇ · v = q, with v = −K [λ∇p− (λwρw + λoρo)G] , (6a)

φ
∂sw
∂t

+∇ · [fw (v+Kλo∇pcow +Kλo (ρw − ρo)G)] =
qw
ρw
. (6b)

Here, λ = λw + λo, is known as the total mobility, fw = λw/λ, is the fractional

flow of water, pcow, is the capillary pressure and, q = qw/ρw + qo/ρo is the total

in- and outflow.

10 2 DESCRIBING RESERVOIRS

In Equation (6b) we can recognize three terms that each describes a different

physical force. First, fwv, stems from the viscous forces, fwKλo∇pcow comes from

capillary forces and fwKλo (ρw − ρo)G is due to gravity. Noting that G = −gnz

e.g. the gravitational pull in the vertical direction.

How much each of these forces influence the flow in a particular reservoir de-

pends on a number of things [7]. The first obvious factor is the composition and

geometry of the reservoir in question. If a reservoir has good communication in

the vertical direction gravity will tend to have a larger impact than if this is not

the case. Similarly, gravity is more likely to influence the flow if the layers are

tilted at an angle to the vertical axis. Systems with mostly gas and oil will also

tend to be more influenced by gravity because of larger differences in the density of

the involved fluids. Next we note that capillary effects tend to be of more impor-

tance in small-scale models, but also in strongly heterogeneous systems. All things

considered there are a few general rules, but no absolute ones.

3 DISCRETIZATION METHODS 11

Figure 4: Cartesian grid of 7× 4 cells divided into 3× 2 blocks.

3 Discretization Methods

As mentioned earlier it is not feasible to run flow simulations on geological models

because they require too much computational effort. Because of this, a number

of so-called upscaling techniques have been developed in order to be able to run

simulations on coarser grids. That is, grids that model the same reservoir, but with

a considerably lower resolution. Hence, requiring less computing power. We often

say that the fine grid consists of cells, whereas the coarse grid consists of blocks.

This is illustrated in Figure 4, and we will continue to use this distinction in the

rest of this paper.

Upscaling refers to the process of transferring the physical properties from all

the cells in a block into corresponding effective properties that are constant within

that block. Upscaling is one of the oldest methods to transfer data from geological

models to simulation models, hence this topic is widely described. Even so, except

from in a few special cases, there exists no rigorous answers as to how the modelling

of the PDEs at the various scales correspond to to each other. Because of this it

is difficult to know beforehand how a given upscaling will behave for a particular

case.

A different approach to handling the multiscaled nature of porous media flow,

without directly solving the PDEs on the finest scale, is the Multiscale Finite-

Element (MsFE) Method. This method was introduced by Hou and Wu in [16] in

1997. The method is described, among many places, in [14, 5, 17]. The idea behind

the MsFEM is to ‘... capture the multiscale structure of the solution via localized

basis functions.’ These basis functions are said to ‘... contain essential multiscale

information embedded in the solution ...’ [14].

We start by introducing a Mixed Finite-Element Method (MFEM) in Section 3.1

before we extend it to the Multiscale Mixed-Finite Element (MsMFE) method in

Section 3.3. Finally we give a short introduction to mimetic methods in Section 3.4.

12 3 DISCRETIZATION METHODS

3.1 Mixed Finite-Element Method

The term ’mixed method’ applies to Finite-Element Methods that have more than

one approximation space [11]. We start by letting Ω ∈ R
3 define a domain with

faces ∂Ω, and face normal, n. Then we restate Equation (5) for the case with zero

gravity

v = −K∇p, x ∈ Ω, (7a)

∇ · v = f, x ∈ Ω, (7b)

v · n = 0, x ∈ ∂Ω. (7c)

As usual v refers to the velocity and p is the pressure; f denotes the source term.

We require that
∫

Ω
f dx = 0 because we have Neumann boundary condition on the

entire border [9]. In addition we need to normalize the pressure because otherwise

the pressure is only defined up to an arbitrary constant. This is done by requiring
∫

Ω
p dx = 0 [5]. If we had imposed a Robin (or Dirichlet) boundary condition on

the whole, or a part of, ∂Ω, this extra condition would not be needed.

Next we introduce the partition, T , of Ω into arbitrary polyhedral cells T with

faces ∂T . The normals of these cells are denoted nT and interfaces, γij = ∂Ti∩∂Tj .
Here it is useful to notice the distinction between half-faces and distinct faces. That

is, we refer to half-faces in a cell, but when two half-faces of cells i and j coincide

we refer to this as the (global) face, or interface, γij . We will make a note when

this distinction becomes important.

We also need the following three function spaces [5]

Hdiv (T) =
{

v ∈ L2 (T)
d
: ∇ · v ∈ L2 (T)

}

,

Hdiv
0 (T) =

{
v ∈ Hdiv (∪T∈T T) : v · n = 0 ∈ ∂Ω

}
,

Hdiv
0 (Ω) = Hdiv

0 (T) ∩Hdiv (Ω) .

Here L2 (T) refers to all square-integrable functions in cell T . That is, all functions,

y, such that
∫

T
|y(x)|2 dx <∞.

In addition we mention the following identity

∫

Ω

[a · ∇b+ b∇ · a] dV =

∮

∂Ω

b a · n dS, (8)

where
∫

Ω
dV denotes the volume integral over Ω; e.g. in three dimensions we could

also write
∫∫∫

Ω
dx dy dz. This identity can be obtained by applying Gauss’ theo-

3 DISCRETIZATION METHODS 13

rem9 to the product of a scalar function, b, and a vector function, a.

Now we multiply Darcy’s law (7a) with an arbitrary vector function, u ∈
Hdiv

0 (Ω), and integrate over Ω to obtain

∫

Ω

u ·K−1v dV = −
∫

Ω

u · ∇p dV (8)
= −

∫

∂Ω

pu · n dS

︸ ︷︷ ︸

0

+

∫

Ω

p∇ · u dV.

Note that the surface integral is zero because of the border condition (7c). Similarly,

we multiply (7b) with an arbitrary scalar function, q ∈ L2 (Ω), and integrate over

Ω to get ∫

Ω

q∇ · v dV =

∫

Ω

qf dV.

We can now state the mixed formulation of Equations (7a) to (7c) so that we look

for (p,v) ∈ L2 (Ω)×Hdiv
0 (Ω) such that

b(u,v)− c(u, p) = 0, ∀u ∈ Hdiv
0 (Ω) ,

c(v, q) = (f, q), ∀q ∈ L2 (Ω) .
(10)

With the bilinear forms

b(·, ·) : Hdiv
0 (T)×Hdiv

0 (T) → R, b(u,v) =
∑

T∈T

∫

T

u ·K−1v dV,

c(·, ·) : Hdiv
0 (T)× L2 (Ω) → R, c(v, p) =

∑

T∈T

∫

T

p∇ · v dV,

(·, ·) : L2 (Ω)× L2 (Ω) → R, (p, q) =

∫

Ω

pq dV.

To discretize this problem we need to replace L2 (Ω) andHdiv
0 (Ω) by finite-dimensional

subspaces U and V , respectively. We will use the Raviart-Thomas finite elements

as they are given in [9]. First we have

U = span {χm : Tm ∈ T } , χm (x) =

{

1, if x ∈ Tm,

0, otherwise.

9Also known as the divergence theorem. It takes the form∫
Ω

(∇ · F) dV =

∮
∂Ω

(F · n) dS (9)

where n denotes the unit normal out of the domain and F is a continuously differentiable vector
field.

14 3 DISCRETIZATION METHODS

χ2

T1 T2 T3

(a)

π2

1

T1 T2 T3

π3

2
b b

(b)

ψ1

2

ψ2

2
ψ3

1

ψ2

1

T1 T2 T3

(c)

Figure 5: Schematic illustration of all element functions ‘related’ to the two interfaces
γ12 and γ23 of the three cells T1, T2 and T3 in one dimension.

This corresponds to cell-wise constant functions as shown in Figure 5(a).

Next,

V = span
{

ψm
i : Tm ∈ T ,∇ · ψm

i ∈ U,ψm
i ∈ P0

(

γji

)}

,

as illustrated in Figure 5(c) [17]. We can now state this as a system of linear

equations

[

B CT

C 0

][

v

−p

]

=

[

0

f

]

, (11)

with

B =
[
b
(
ψm
i , ψ

n
j

)]
and C = [c (ψm

i , χn)] .

Additionally, v, corresponds to the vector of velocities at each half-face, p is the

pressure in each cell, and f is the source term in each cell. The problem with

the system given in Equation (11) is that this system is generally indefinite10

[10]; not positive (or negative) definite. This makes the system more difficult

to solve because it requires more advanced linear solvers. This problem is often

circumvented by transforming the mixed formulation in (10), and consequently in

(11), into the so-called mixed hybrid form. The idea behind the hybrid form is

to introduce an extra set of unknowns in the form of Lagrangian multipliers [5].

These Lagrangian multipliers will correspond to face pressures at γij . Restating the

mixed formulation we now look for (v, p, π) ∈ Hdiv
0 (T) × L2 (Ω) ×H

1

2 (∂T \ ∂Ω)
10A matrix, A, is indefinite if there exists non-zero vectors, x and y st. xTAx < 0 < yTAy.

3 DISCRETIZATION METHODS 15

such that

b(u,v)− c(u, p) + d(u, π) = 0, ∀u ∈ Hdiv
0 (T) ,

c(v, q) = (f, q), ∀q ∈ L2 (Ω) .

d(v, µ) = 0, ∀µ ∈ H
1

2 (∂T \ ∂Ω) .
(12)

Here we have introduced the additional bilinear form

d (·, ·) : Hdiv
0 (T)×H

1

2 (∂T) → R, d(v, π) =
∑

T∈T

∫

T

πv · nT ds.

We note that we are no longer looking for v ∈ Hdiv
0 (Ω), but v ∈ Hdiv

0 (T). Which

means that we do not enforce continuous flux with v, but by the newly introduced

π instead.

The discretization can now be achieved by introducing the finite-dimensional

space to replace H
1

2 (∂T \ ∂Ω),

Π = span
{
πi
j : |γij | > 0

}
, πi

j (x) =

{

1, if x ∈ γij ,

0, otherwise.

This corresponds to functions that are constant on each interface, as shown in

Figure 5(b). This way we can write

D =
[
d
(
ψm
k , π

i
j

)]
,

so that we get the following system






B CT DT

C 0 0

D 0 0











v

−p

π




 =






0

f

0




 . (13)

Here π is a vector of the lagrangian multipliers, π. An example of the matrix from

Equation (13) is given in Figure 6(a) [5].

3.2 Schur Complement Reduction

We will now describe the Schur complement reduction as it is presented in [21].

The first thing to note about Equation (13) is that B is block-diagonal because all

basis functions in a cell only have support within that cell. Hence the inverse of

16 3 DISCRETIZATION METHODS

(a) The resulting system matrix as given in Equa-
tion (13)

(b) The reduced system matrix, S, as given in Equa-
tion (15)

Figure 6: Resulting system matrix and corresponding Schur complement reduced matrix
when solving Equation (5) on a unit cube with 3×3×3 cells with the MFEM.

3 DISCRETIZATION METHODS 17

B, is readily available. We start by expanding (13), and note that

Bv−CTp+DT
π = 0, ⇔ v = B−1

(

CTp−DT
π

)

,

Cv = f,

Dv = 0.

We now insert v into the two remaining equations to get

Cv = CB−1
(

CTp−DT
π

)

= CB−1CT

︸ ︷︷ ︸

E

p−CB−1DT

︸ ︷︷ ︸

FT

π = f.

Similarly,

Dv = DB−1
(

CTp−DT
π

)

= DB−1CT

︸ ︷︷ ︸

F

p−DB−1DT
π = 0,

Which can be restated as

[

E FT

F DB−1DT

][

p

−π

]

=

[

f

0

]

. (14)

This process can be repeated once more to achieve a system that can be solved

solely for π,

Sπ = FE−1f, with S = DB−1DT − FE−1FT . (15)

S is called the Schur complement with respect to π. From [21, Preposition 14.1]

we know that S is symmetric positive definite (SPD), provided that the matrix in

(14) is SPD as well.

Having achieved this we can obtain p and v by back-substitution, i.e. p =

E−1
(

f+ FT
π

)

, and v = B−1
(

CTp−DT
π

)

as above.

3.3 Multiscale Mixed Finite-Element Method

In order to describe the MsMFEmethod we look at a grid with a partition, T = (T),

of arbitrary polyhedral cells, as before. However, now we let B = {B} denote coarse
grid blocks, B, so that B is a connected union of fine cells, T , in the underlying

18 3 DISCRETIZATION METHODS

Bi Bj

Ψij · nij = 0

Ψij = −K∇Φij

∇ ·Ψij = −hj∇ ·Ψij = hi

Ψij = −K∇Φij

Figure 7: Local problem for the interface Γij = ∂Bi ∩ ∂Bj between blocks Bi and Bj .
Note that nij is the normal vector pointing out of the domain Ωij = Bi∪Γij∪
Bj on ∂Ωij .

(fine) grid. We also introduce Γij = ∂Bi ∩ ∂Bj , that is, the interface between the

coarse blocks Bi and Bj .

Now we introduce basis functions Ψij for each interface, Γij . In addition we

have the Darcy equation Ψij = −K∇Φij . Each function Φij has support in Ωij =

Bi ∪ Γij ∪Bj . This is illustrated in Figure 7.

Now we can use the functions Ψij and Φij as basis for the velocity and the

pressure, respectively. Since we are now on the coarse grid, the idea is that these

basis functions will contain information about local variations in the permeability,

K.

To obtain the actual basis functions numerically we solve the elliptic problem

Ψij · nij = 0 on Ωij , ∇ ·Ψij =

{

hi (x) , for x ∈ Bi,

−hj (x) , for x ∈ Bj .
(16)

Here the source terms are defined as follows;

hi (x) =
wi (x)

∫

Bi

wi (x) dV
, wi =

{

f,
∫

Bi

f dV 6= 0,

trace (K) , otherwise.

This definition will drive force unit flow over the interface Γij [17, 5]. We now let

V ms = span {Ψij}. In the case of diagonal permeability tensor when the grid is

composed of triangles, tetrahedrons or rectangular parallelepipeds, this reduces to

the first-order Raviart-Thomas basis (RT0) when K and hi are constant [5].

3 DISCRETIZATION METHODS 19

nk

πk

Ak
ek

cikE

pi

Figure 8: An arbitrary cell, E, with surface ∂E = e1 ∪ · · · ∪ ekE
, where, ekE

, denotes
the number of faces of the current cell. pi is pressure at the cell centroid, cik
is the vector pointing from the centroid to face k, Ak is the area of face k, πk

is the corresponding face pressure, and nk is the normal vector.

Now, we quickly realize that the main computational effort in solving Equa-

tions (7a) to (7c) using the MsMFE method is spent constructing the basis func-

tions of V ms. The real saving in computational effort of the MsMFE method comes

when we solve two-phase problems over time. Here we need to solve the set of equa-

tions multiple times, but it has been shown that it is not necessary to recompute

the multiscale basis for each step [5].

Additionally we see that there is an inherent parallelism here; each basis func-

tion in V ms can be computed independently of the others. Provided all information

about the problem is available, the basis functions can be computed in an arbitrary

order. This makes the construction of the basis ‘embarrassingly parallel’.

3.4 Mimetic Discretization Methods

The default discretization method used in MRST for solving Equation (16) is a

mimetic method [18]. We recall the resulting system of linear equations from the

Mixed Finite-Element Method, as given in Equation (13). Now, for each cell, Ei,

we have the following sizes: ui, a vector of outward fluxes from each face of the cell;

pi, the pressure at the cell centroid; and, πi, a vector of face pressures. Carefully

examining the system in Equation (13), we see that for each cell we can we can

write [18]

ui = Ti (eipi − πi) , ei = (1, . . . , 1)T .

20 3 DISCRETIZATION METHODS

That is, for each cell, the centroid pressure, the face pressures, and the fluxes, are

related through a matrix, Ti, of one-sided transmissibilites. So, for a system of n

cells, we can write B as a block diagonal matrix;

B =







T1

. . .

Tn






.

Mimetic methods are also defined in this fashion. Here we use either a local inner

product, M, or the inverse local inner product, T = M−1, as above. So, if we drop

all subscripts, we have

Mu = ep− π, e = (1, . . . , 1)T . u = T (ep− π) , (17)

for each cell. In addition, mimetic methods are constructed in a fashion such that

M is Symmetric Positive Definite. They are also required to be exact for linear

pressure fields [18].

If we let, p = x · a + b, be a linear vector field with arbitrary vector, a, and

scalar, b, we see that we can write the Darcy velocity as

v = −Ka.

Additionally, we denote the area-weighted normal vector from face ek, as nk; and

the vector from the cell centroid to face ek, as cik. This is illustrated in Figure 8.

Furthermore, we now introduce the matrices, C, where each row corresponds to

cTik; and N, where each row corresponds to nT
k .

Having done this, we can write the flux from face ek as uk = −nT
kKa. Which,

for the whole cell, can be restated as

u = NKa, (18)

The pressure drop from the centroid to face ek, can be expressed as pi−πk = cik ·a.
For the whole cell this gives us

ep− πk = Ca. (19)

3 DISCRETIZATION METHODS 21

Now we can combine the first part of Equation (17) with Equation (19) to get

Mu = MNKa = ep− π = Ca.

Which means that we get the following condition for the inner products

MNK = C. (20)

We get another condition from the second part of Equation (17) by noting that

u = NKa = T (ep− π) = TCa,

which means that we must have

NK = TC. (21)

With a suiting inner product one can now construct the global (stiffness) matrix,

B (Equation (13)), as a diagonal block matrix where each block corresponds to the

inner product of a cell. Now, if we build the remaining elements of Equation (13),

as described in Section 3.1, we can solve the system for for the face pressures, πk,

using the Schur Complement Method (Section 3.2), before we substitute back to

get the pressure and the velocity.

When dealing with reservoir simulations it is customary to consider inner prod-

ucts of fluxes, rather than velocities, and the relation between the two is trivial. If

we let A be a diagonal matrix where the elements are the areas of each face, ak,

the relation is [18]

Mflux = A−1MvelA
−1,

3.4.1 Inner Products

We will now present a class of valid inner products as given in [18]. First we assume

that we have d = {2, 3}, and that the spatial variables are x1, . . . , xd. We continue

by introducing the following identity

∮

∂E

(xj∇xi) · n dS =

∫

E

∇xj · ∇xi dV. (22)

22 3 DISCRETIZATION METHODS

This is a version of the divergence theorem (Equation (9)) applied to the vector

field, xj∇xi. As noted in [12], we can now introduce the two kE × d matrices

Nk,i = ∇xi · nk and Ck,i =

∮

ek

xi dS. (23)

The first matrix is the face normals, as before, but the second matrix consists of

the centroids of E assuming, for simplicity, that the cell centroid is positioned at

the origin.

Now, by combining Equations (22) and (23) we get the following identity

CTN = |E|I; (24)

|E| denotes the volume of cell E.

And by multiplying Equation (20) by K−1CTN, and using Equation (24), we

can write

MN =
1

|E|CK−1CTN.

By introducing a symmetric positive definite matrix, M′, such that M′N = 0 we

see that valid inner products M are on the form [18]

M =
1

|E|CK−1CT +M′ = M∗ +M′. (25)

If we let, Q⊥
N, denote an orthonormal basis to the nullspace of NT , and, S, be any

symmetric positive-definite matrix, we can write write M′ = Q⊥
NSQ⊥

N

T
.

It is easy to see that M is symmetric. Furthermore, the following argument,

as provided in [12, 18], assures us that M is actually SPD. First we introduce an

arbitrary vector, z = Nz∗ + z′ 6= 0, such that NT z′ = 0. Recalling that we need

zTMz > 0 for M to be PD, we start by assuming z′ = 0. That is

zTMz = z∗NTM∗Nz∗ + z∗NT M′N
︸ ︷︷ ︸

=0

z∗ > 0.

The last part holds because we know from Equation (24) that CTN is of full rank.

Conversely, if z′ 6= 0, we see that we have

zTMz = zTM∗z
︸ ︷︷ ︸

≥0

+ z′TM′z′
︸ ︷︷ ︸

>0

> 0.

3 DISCRETIZATION METHODS 23

An argument similar to this holds for the inverse inner product given as

T =
1

|E|NKNT +Q⊥
CSQ

⊥
C

T
. (26)

Where Q⊥
C is a orthonormal basis to the nullspace CT .

In the parallel implementation, that we describe in Section 6, we will be using

the ip simple inner product, as given in [18]. Which we restate here, without proof:

Q = orth(A−1N),

M = 1
|E|CK−1CT + d|E|

6 tr(K)A
−1(I−QQT)A−1.

(27)

Here d refers to the dimension of the problem; either 2 or 3. In particular, we will

be using the approximate inverse

Q = orth(AC),

T = 1
|E|

[

NKNT + 6
d
tr(K)

(

I−QQT
)

A
]

.
(28)

4 PARALLEL COMPUTING 25

4 Parallel Computing

For a long time the continual improvement of microprocessor design has made com-

puters faster. Effectively meaning that programs written for these systems would

become gradually faster along with the developing hardware. This increase in pro-

cessing speed is often referred to as ‘Moore’s Law’. More precisely, Moore’s Law

says that the number of transistors on an integrated circuit doubles approximately

every two years. This, however, is beginning to change. The main reason is the

growing amount of heat produced from these circuits when the clock speed is in-

creased [19]. As a result the manufacturers of microprocessors have started putting

several processors on single integrated circuits [20]. This change requires develop-

ers to change the way they write code. Simply running programs on systems with

several processing cores is not likely yield better performance, that is, unless the

code is specifically written to take advantage of the parallel processing capabilities.

Along with the desire for code that makes greater use of parallel hardware

comes the corresponding requirement that the algorithms can be parallelized. For

instance if we wish to sort a sequence of numbers, we can not simply distribute

the numbers across the available processors and then sort each ‘sublist’. If we

put these sorted sublists together again we will quickly see that the list is in fact

not sorted at all. Hence, some form of communication between the processors is

needed to get the correct result. On the other hand, some problems do not require

any communication to take place. An example is numerically finding the value of
∫ b

a
f (x) dx. Here we can simply have each each core calculate the value of subsec-

tions of the interval [a, b]. But also here we need to sum the partial sums of the

integral when all processes have finished calculating their part. Problems where

there is no communication needed between the processing cores are often said to

be ‘embarrassingly parallel’. We note, however, that at the very least, some of the

execution time is spent preparing for the parallel operations to be executed.

4.1 Amdahl Versus Gustafson

A central term when when discussing parallel software is ‘speedup’. Speedup is

commonly denoted, Sp. This refers to the ratio between the execution time of the

sequential (serial) algorithm, T1, and the execution time of the parallel algorithm,

Tp, using p processors. That is, we have

Sp =
T1
Tp
.

26 4 PARALLEL COMPUTING

0 100 200 300 400

0

50

100

150

200

250

300

350

400

Processors

S
p
e
e
d
u
p

α=0.999

α=0.995

α=0.98

α=0.95

Figure 9: Speedups for programs with different serial fractions as given by Amdahl’s law
(29).

0 100 200 300 400
0

50

100

150

200

250

300

350

400

Processors

S
p
e
e
d
u
p

α=0.9

α=0.8

α=0.7

α=0.5

Figure 10: Speedups for programs with different serial fractions as given by Gustafson’s
law (30).

4 PARALLEL COMPUTING 27

So, if the execution time when using two processors is half of the execution time

when using only one processor, we say that we get a speedup of two. When Sp = p,

we say that the speedup is ideal. In rare cases one can observe so-called ‘super

linear’ speedup, that is, Sp > p. The most common cause of this is that when a

problem is split into smaller parts, more of the subproblems can be stored in faster

cache on the processor. Thus speeding up the calculations relative to solving on

one processor.

Most of the time, however, we can not hope to be that lucky. This brings us to

another useful metric; namely ‘parallel efficiency’,

Ep =
Sp

p
=

T1
pTp

,

which tells us something about how much of the parallel potential of the hardware

we are utilizing.

In 1976 Gene Amdahl published his paper ‘Validity of the Single Processor

Approach to Achieving Large Scale Computing Capabilities’ [8], which gave rise

to what today is known as ‘Amdahl’s law’. Essentially, Amdahl’s law states that

the highest possible speedup achieved by parallelizing a program, is limited by the

serial section of the program. This has later been described mathematically, and

is presented, among many places in [20]. If we assume that the parallel fraction of

a program is α, that the serial section is 1 − α, and that we use p processors, we

get the following expression for the speedup:

Sp =
execution time on one processor

parallell execution time
=

1

(1− α) + α
p

. (29)

We see that when p → ∞ we can write the maximum available speedup for a

program with a certain serial fraction as

S∞ =
1

1− α
.

Now, if we have a program which is 99% parallelizable, we see that S∞ is 100.

This drops alarmingly quick for larger serial sections. For instance, it is halved for

a program which is 98% parallelizable. A plot of Sp for programs with different

values of α is given in Figure 9. Having said this, one could quickly start to wonder

why we would be very interested in parallelizing code at all. However, there are a

few more things to consider.

In 1988 John L. Gustafson presented an article called ‘Reevaluating Amdahl’s

28 4 PARALLEL COMPUTING

Law’ [15], where he introduces an idea that has since come to be known as ‘Gustafson’s

law’. Gustafson’s law suggests that larger data sets can be more efficiently paral-

lelized. Now, we introduce the idea that on a parallel computer, the time spent in

the serial section of the program is 1 − ᾱ, whereas the time spent in the parallel

section is ᾱ. The serial execution time would then be (1 − ᾱ) + pᾱ. This yields a

speedup

S̄p =
1− ᾱ+ pᾱ

(1− ᾱ) + ᾱ
= 1− ᾱ+ pᾱ. (30)

This is a linear function, but we have plotted S̄p for a few different values of ᾱ

in Figure 10 nonetheless. If we compare this with the speedups from Amdahl’s

law in Figure 9 this looks rather more promising. We also note that if the parallel

section, ᾱ, approaches 1, as we could hope for when the problem size is increased,

the speedup approaches p.

What we can conclude from this is that there are several things to think about

when writing parallel code. Simply having the most powerful computers is not

enough if too much of the code needs to be run serially. However, we can hope to

solve problems in greater detail by increasing the size of the calculation and at the

same time using more computing power. As Gustafson states:

One does not take a fixed-sized problem and run it on various numbers

of processors except when doing academic research; in practice, the

problem size scales with the number of processors. [15]

5 MATLAB PARALLEL COMPUTING TOOLBOX 29

5 Matlab Parallel Computing Toolbox

The Matlab Parallel Computing Toolbox (PCT) is a comprehensive parallel ex-

tension to Matlab. It allows for up to twelve local parallel processes, or Matlab

workers, on a multi-core desktop. If accompanied by the Matlab Distributed

Computing Server software you can also run parallel jobs across a cluster of com-

puters [2]. PCT has several parallel constructs that makes it possible to run jobs

in batches, or to run interactive parallel code. There are two different constructs

that can be used within Matlab scripts, as well as within batch jobs, namely the

parfor loop, and the spmd construct. Here parfor, naturally, is short for ‘parallel

for loop’, whereas spmd is short for Single Program Multiple Data. The parfor loop

is in many ways similar to the parallel for directive used in OpenMP. Whereas

the latter is a common programming model used in, among others, the Message

Passing Interface (MPI) for C and Fortran.

We now give an introduction to the Parallel Computing Toolbox, some exam-

ples of use, and some issues to be aware of. The performance of the PCT is likely

to depend heavily upon the hardware, and on the algorithms in question. For

this reason, we present some performance benchmarks, but we note that these are

meant as examples of behaviour, and of what we can hope to achieve, rather than

objective measurements of performance. We have focused on features of PCT that

are important for the development of the parallel Multiscale Mixed Finite-Element

Method that we describe in 6, although we briefly describe some other functionality

as well. The interested reader is advised to review the more comprehensive guide

to PCT, which can be found in [2]. The code in the following sections has been

tested in Matlab 2011b, with Parallel Computing Toolbox version 5.2.

5.1 Setting up the Environment

In the rest of this Section we will look at some examples of how the Parallel Com-

puting Toolbox can be used on a multi-core computer; not on a distributed cluster

of computers. The programming techniques are similar, but distributed systems

carry with them some extra considerations especially with regards to distribution

of data, to reduce communication overhead. The contents of the following sections

are based on [2], on the documentation in Matlab, and on our experiences when

developing the code presented in Section 6.

Both the parfor loop, as described in Section 5.2, and the spmd construct,

as described in Section 5.3, require a Matlab pool to be running. However, we

30 5 MATLAB PARALLEL COMPUTING TOOLBOX

Listing 1: Simple example of how the parfor loop is used.

A = r❛♥❞(n,1)

♣❛r❢♦r k = 1:n

A(k) = A(k) + 1; % allowed

❡♥❞

♣❛r❢♦r k = 1:n

% not allowed as it will yield unpredictable results

A(k) = A(k+1) + 1;

❡♥❞

note that a parfor loop can be written such that if there are no active workers it

will simply execute as an ordinary for-loop. The spmd construct will also execute

the block in serial if there is no Matlab pool running, but this might result in

unexpected results if care has not been taken to handle this case. In particular

for more complicated code. Starting a matlabpool is done with the matlabpool

command. This will start up as many as twelve local workers, depending on the

architecture. The number of workers can also be overridden when invoking the

command. PCT also allows for scheduling jobs to run in parallel, this is described

further in Section 5.4.

When starting any number of workers these workers will be separate Matlab

processes in addition to the main, or host, process. They require an amount of

memory similar to the host process. In addition there is no way to directly share

memory between these processes, meaning that if the whole of an array is to be

used on several of the processes, it will be copied in memory to all relevant workers.

In the remainder of the text we will refer to an ordinary Matlab instance as the

‘host’, and Matlab instances started via the matlabppol command, as ‘workers’.

Finally, we mention that PCT allows for a so-called parallel mode, or pmode.

This gives you access to a terminal interface for each worker. This will not be

discussed any further in this paper.

5.2 The Parallel For Loop

The simplest construct is the parfor loop. This behaves much like an ordinary

for loop, but there is one important restriction: when accessing different indices

of a variable in a parfor loop, one iteration of the loop can not depend on other

iterations of the same loop. A variable that has this property is called a sliced

variable. This is illustrated in Listing 1.

5 MATLAB PARALLEL COMPUTING TOOLBOX 31

Listing 2: Classification of variables in a parfor loop.

a = 999;

c = ♣✐;

z = 0;

r = r❛♥❞(1,10); % sliced variable

♣❛r❢♦r i = 1:10 % i is a loop variable

a = i; % a is a temporary variable

z = x+i; % z is a reduction variable

b(i) = r(i) % b is a sliced variable

✐❢ i <= c % c is a broadcast variable

d = 2*a; % d is a temporary variable

❡♥❞

❡♥❞

❞✐s♣(a) % will display 999

There are also a few other considerations to make when using a parfor loop.

Matlab will automatically understand if you are using a variable as a reduc-

tion variable, provided that you remember to initiate the variable outside of the

loop. Similarly, Matlab will understand if you use a variable inside the loop as a

temporary variable, and the last value assigned to temporary variable will not be

accessible after the loop has finished execution. If a variable is given a value before

the parfor loop, and used as a constant within the loop, the variable is known as

a broadcast variable. An illustration of these distinctions is given in Listing 2.

We can see how this construct could be used to speed up for loops by sim-

ply changing them into parfor loops, or at least without having to do any major

changes to the existing code. The parfor loop is also useful if one wants to do

things like Monte Carlo simulations where a great amount of data is needed.

5.3 The spmd Construct

The spmd construct is considerably more powerful than the parfor loop. spmd

is short for Single Program Multiple Data, which hints that construct allows us

to run the same section of code in parallel, with different input data. Unlike the

parfor loop the spmd construct does not recognize reduction variables, but it has

a number of features that are not supported in parfor loops.

To access data across workers, when using the spmd construct, one can use

either composite or distributed variables. An example of how composite variables

32 5 MATLAB PARALLEL COMPUTING TOOLBOX

Listing 3: Example of how the spmd construct is used.

s♣♠❞(p) % p is number of wanted workers

b = ❧❛❜✐♥❞❡①; % assign thread number to b (composite)

A = 10*b+r❛♥❞(); % assign value to A (composite)

❡♥❞

❢♦r i = 1:p

❞✐s♣(A{i}) % access values assigned to A (composite)

❡♥❞

are used is given in Listing 3. A composite variable that has the same name and

content on all workers is known as a replicated array. On the other hand, if the

content of the array varies across the workers, the array is said to be variant. It

is not necessary to create a composite array on all workers, thus if an array only

exists on some of the workers, the array is called a private array.

Combined with labBroadcast, composite variables provide a convenient way

of distributing replicated variables. This is illustrated in Listing 4. Distributing a

variable in this way is considerably more memory efficient than simply introducing

a variable on the host and then naively using it on the workers. This naive solution

seems to work well, and requires less code, but yields unpredictable results for

larger variables. We illustrate this in Listing 5. The naive solution causes spikes in

memory that reach around the double of the amount of memory that is required

to actually store the broadcast variable on all workers11. Using labBroadcast, on

the other hand, causes a considerably smaller spike in memory usage, if at all.

Naturally it is not always enough to simply broadcast variables to all workers.

PCT also provides functions for sending and receiving data on each worker. Namely

labSend and labReceive. The usage is quite intuitive, as we see in Listing 6. When

sending and receiving messages between parallel workers like this, it is essential to

note that calls to labReceive will block until a corresponding call is made to

labSend. Sending and receiving in this fashion does not cause the previously

mentioned spikes in memory usage.

Another useful feature is the ability to partition arrays across workers with

the codistributed and distributed commands. By default the partitioning will

happen column-wise for a two-dimensional array, but this can easily be manipu-

lated with ordinary Matlab commands, or by using other distribution constructs.

11Most likely these spikes are because of send and receive buffers on the host/workers. These
spikes are evident when using parfor loops as well.

5 MATLAB PARALLEL COMPUTING TOOLBOX 33

Listing 4: Distributing variables using Composite.

% initiate variable , c1 , on worker 1,

% and distribute to the others

c1 = ❈♦♠♣♦s✐t❡(); c1(:) = ❝❡❧❧(1,♠❛t❧❛❜♣♦♦❧(’size’));

s♣♠❞

✐❢ ❧❛❜✐♥❞❡① == 1

c1 = r❛♥❞(10 ,1);

❡♥❞

c1 = ❧❛❜❇r♦❛❞❝❛st(1,c1);

% use c1

❡♥❞

% initiate variable , c2 , on the host ,

% and distribute to the workers

c2 = ❈♦♠♣♦s✐t❡(); c2(:) = ❝❡❧❧(1,♠❛t❧❛❜♣♦♦❧(’size’));

c2{1} = r❛♥❞(10 ,1);

s♣♠❞

c2 = ❧❛❜❇r♦❛❞❝❛st(1,c2);

% use c2 for something

❡♥❞

34 5 MATLAB PARALLEL COMPUTING TOOLBOX

Listing 5: Example of spike in memory when ‘distributing’ a large variable to workers
naively, compared to using labBroadcast. Notice the comparably high usage
of memory required by part 2.

% assuming there are no active workers

N = 2^27; % 2^27 doubles requires 1 GB of memory.

% part 1

♠❛t❧❛❜♣♦♦❧(’open’ ,4);

c1 = ❈♦♠♣♦s✐t❡(); c1(:) = ❝❡❧❧(1,4);

s♣♠❞ % highest amount of memory used inside block: 4.5 GB

✐❢ ❧❛❜✐♥❞❡① == 1

c1 = r❛♥❞(1,N);

❡♥❞

c1 = ❧❛❜❇r♦❛❞❝❛st(1,c1);

x1 = s✉♠(c1(:)); % do something with c1

❡♥❞

% memory used by MATLAB here: 4.5 GB

% part 2

♠❛t❧❛❜♣♦♦❧(’close’); ♠❛t❧❛❜♣♦♦❧(’open’ ,4);

c1 = r❛♥❞(1,N);

s♣♠❞ % highest amount of memory used inside block: 11 GB

x2 = s✉♠(c1(:)); % do something with c1

❡♥❞

% memory used by MATLAB here: 5.5 GB

% +1 GB because c1 is initialized on host

Listing 6: Using labSend and labReceive.

% contents (and size) of A will be different on each worker

getArrForWorker = @(w) r❛♥❞(1,w);

s♣♠❞

✐❢ ❧❛❜✐♥❞❡① == 1

A = getArrForWorker (1);

❢♦r lab = 2: numlabs

% may return before corresponding call to labReceive

❧❛❜❙❡♥❞(getArrForWorker(lab),lab); % send to lab

❡♥❞

❡❧s❡

% blocking function

A = ❧❛❜❘❡❝❡✐✈❡(1); % receive from worker 1

❡♥❞

% use A on workers

❡♥❞

5 MATLAB PARALLEL COMPUTING TOOLBOX 35

Listing 7: Distributing and accessing distributed arrays.

% two blocks that result in the same distributed array B

% with the same local array C

% note that there might be differences in efficiency

% depending on the systems and operations involved

A = ♠❛❣✐❝(10);

B = ❞✐str✐❜✉t❡❞(A);

s♣♠❞

C = ❣❡t▲♦❝❛❧P❛rt(B);

❡♥❞

% gives same result as the section above

s♣♠❞

A = ♠❛❣✐❝(10);

B = ❝♦❞✐str✐❜✉t❡❞(A);

C = ❣❡t▲♦❝❛❧P❛rt(B);

❡♥❞

Listing 8: Reconstructing a distributed array.

% reconstructing the distributed array A

% cell arrays behave in a similar fashion

A = ❞✐str✐❜✉t❡❞.r❛♥❞(2^10 ,1);

% assign entire A to B, on host

B = gather(A);

% assign entire A to composite variable , B, on worker i

s♣♠❞ , B = gather(A,i); ❡♥❞

% assign entire A to composite variable , B, on workers

s♣♠❞ , B = gather(A); ❡♥❞

36 5 MATLAB PARALLEL COMPUTING TOOLBOX

The difference between the two commands is a subtle one, but essentially using

codistributed within a spmd block gives the same result as using distributed

outside a spmd block [2]. When an array is distributed in this fashion, only a

part of the array is stored in local memory on each worker. For this reason, the

PCT framework provides useful commands to get the part of a distributed array

associated with each lab. An example is given in Listing 7. Similarly, one can

reconstruct a distributed array, either on the host, or on any worker, as we show in

Listing 8. Note that when indexing distributed arrays one always uses the global

indices. To get the global indices for a distributed array on a worker one can use

the globalIndices command. We also note that iterating over a distributed array

within an spmd-block is likely to be slow, and as such, in most cases it will be faster

to iterate over the local part. We illustrate this difference in Listing 9.

5.4 Scheduling Jobs

With PCT one can run jobs in parallel through a scheduler, as well as with the

already discussed parallel blocks. For instance, it is possible to schedule a number

of completely serial jobs to run in parallel on the available workers. When run-

ning scheduled jobs there is some overhead associated with starting the necessary

workers. This will be particularly noticeable when the jobs does not have long

execution time. Jobs can naturally be parallel, as well as serial in nature; they can

contain parfor loops, spmd blocks, or they can be so-called parallel-jobs that have

an environment for communication between the workers.

The simplest available form of a parallel job is provided by the dfeval function.

This lets you evaluate a function handle in parallel, and provide different input for

each worker. The number of executed workers depends on the number of input

arguments to the function handle.

A more flexible way of scheduling jobs is provided by the createJob and the

createParallelJob commands. The difference between the two commands is that

the latter allows for communication between the workers, whereas the former does

not. For this reason parallel jobs are synchronized, whilst non-parallel jobs will

run as soon as the scheduler has ‘room’ for the job. To give an example of how a

parallel job is executed we provide the code in Listing 10.

5 MATLAB PARALLEL COMPUTING TOOLBOX 37

Listing 9: Iterating over local parts of a distributed array.

% (very) slow

B = ❞✐str✐❜✉t❡❞(r❛♥❞(2^15 ,1));

t✐❝

s♣♠❞

indices = ❣❧♦❜❛❧■♥❞✐❝❡s(B,1);

❢♦r i = indices

B(i,1) = 1;

❡♥❞

❡♥❞

t♦❝

% the following is more than 200 times faster

% on our test machine

B = ❞✐str✐❜✉t❡❞(r❛♥❞(2^15 ,1));

t✐❝

s♣♠❞

dist = ❣❡t❈♦❞✐str✐❜✉t♦r(B);

lpB = ❣❡t▲♦❝❛❧P❛rt(B);

❢♦r i = 1:❧❡♥❣t❤(lpB)

lpB(i,1) = 1;

❡♥❞

% rebuild the codistributed array.

% the ’noCommunication ’ flag has an impact

% on performance for larger matrices.

B = ❝♦❞✐str✐❜✉t❡❞.❜✉✐❧❞(lpB ,dist ,’noCommunication ’);

❡♥❞

t♦❝

38 5 MATLAB PARALLEL COMPUTING TOOLBOX

Listing 10: Scheduling a parallel job.

❢✉♥❝t✐♦♥ res = t❡stP❛r()

h = @myfunk;

sched = ❢✐♥❞❘❡s♦✉r❝❡(’scheduler ’, ’type’, ’local’);

pjob = ❝r❡❛t❡P❛r❛❧❧❡❧❏♦❜(sched);

s❡t(pjob , ’FileDependencies ’, {’tmp.m’});

s❡t(pjob , ’MaximumNumberOfWorkers ’, 4);

s❡t(pjob , ’MinimumNumberOfWorkers ’, 4);

t = ❝r❡❛t❡❚❛s❦(pjob , h, 1, {});

s✉❜♠✐t(pjob);

✇❛✐t❋♦r❙t❛t❡(pjob);

res = ❣❡t❆❧❧❖✉t♣✉t❆r❣✉♠❡♥ts(pjob);

❞❡str♦②(pjob);

❢✉♥❝t✐♦♥ res = ♠②❢✉♥❦(varargin)

snd = [2 3 4 1]; % i sends to snd(i)

rcv = [4 1 2 3]; % i receives from rcv(i)

❧❛❜❙❡♥❞(❧❛❜✐♥❞❡①*10,snd(❧❛❜✐♥❞❡①));

A = ❧❛❜❘❡❝❡✐✈❡(rcv(❧❛❜✐♥❞❡①));

res = A;

❡♥❞

❡♥❞

5 MATLAB PARALLEL COMPUTING TOOLBOX 39

2 4 6 8 10 12

2

4

6

8

10

12

Number of workers

S
p
e
e
d
u
p

 n=16

 N=0.1 M

 N=0.3 M
 N=1.0 M

 N=1.5 M

2 4 6 8 10 12

2

4

6

8

10

12

Number of workers

S
p
e
e
d
u
p

 n=225

 N=0.1 M

 N=0.3 M
 N=1.0 M

 N=1.5 M

2 4 6 8 10 12

2

4

6

8

10

12

Number of workers

S
p
e
e
d
u
p

 n=64

 N=0.1 M

 N=0.3 M
 N=1.0 M

 N=1.5 M

Figure 11: Speedup when using PCT to solve sparse n× n systems.

40 5 MATLAB PARALLEL COMPUTING TOOLBOX

5.5 Performance

Because Matlab is a high-level programming environment it is not surprising

if it sometimes does not give as good a performance as more low-level, compiled,

programming languages such as C/C++ and Fortran. The same caveat is naturally

also an issue when using PCT. The parallel environment provided by PCT provides

easy-to-use functions for distributing jobs, running blocks of code in parallel, as

well as communication between workers. This ease of use might be at the expense

of performance, in terms of execution speed. On the other hand, programming

within Matlab and PCT means that many things are more easily available; for

instance plotting, profiling and debugging.

To get some idea of how well PCT performs we have solved N systems of

equations, Ax = b, where A ∈ R
n×n, and b = (1, . . . , 1)

T
. The systems have

been solved for x using mldivide. We dividing the N systems across p workers.

We have used matrices, A, that are sparse, symmetric, and block tri-diagonal,

with a block size of
√
n × √

n. The number of non-zero elements is O (5n), and

the bandwidth is n. The resulting speedups, for p = {1, 2, 4, . . . 10, 12} workers,

when varying problem sizes, n = {16, 64, 225}, and number of equation systems,

N =
{
105, 3 · 105, 5 · 105, 106, 1.5 · 106

}
, are given in Figure 11. We see that we get

quite good speedup as long as the amount of work is large enough. That is, we need

the the work to be load balanced, and the overhead, associated with setting up the

parallel workers, to be small compared to the time spent solving the problems.

5.6 Some Issues

When working with PCT we have experienced two issues worth mentioning. Both

are related to Matlab’s implicit parallelism. That is, they arise because Matlab

has parallel implementations of many built-in functions. Among others we mention

matrix-matrix multiplication (mult), and Gauss elimination (mldivide). Most of

these functions utilizes Basic Linear Algebra Subroutines (BLAS).

Utilization of multi-core environments is now default behaviour in Matlab,

but all workers are still single-threaded. This means that performing the exact

same actions, involving implicitly parallel operations, is likely to have different run

times on workers compared to in the ‘regular’ Matlab environment. Hence, when

parallelizing code that already makes good use of implicit parallelism it will be

more difficult, or even impossible, to achieve any significant speedup. It is possible

to run all code in Matlab in single threaded mode by starting Matlab with the

flag -singleCompThread.

5 MATLAB PARALLEL COMPUTING TOOLBOX 41

121 256 484 1024 2025 4096 8100

0

1

2

3

4

5

6

7

n

S
p

e
e

d
u

p

sparse A

full A

Figure 12: Implicit speedup for Matlab’s mldivide when solving Ax = b for x for both
full and sparse A. A is of size n × n. The test was performed on a system
with 12 CPUs.

In order to test the efficiency of the implicit parallelism of mldivide we have

solved two different systems of equations. Both on a Matlab worker, and on

the host. One system is a full, random matrix, A, and the other is a sparse,

symmetric, block tri-diagonal matrix As. In both systems b is a vector of ones.

The measured speedups for various matrix sizes, n×n, are given in Figure 12. We

see that the implicit speedup is quite good for the full system, whereas we get a

speedup of less than 1 for the sparse system. We know that the algorithm used by

mldivide depends on the properties of the systems involved. For this reason it is

not surprising that there is a difference in performance. The fact that there is such

a large difference is however useful knowledge12.

The other issue we feel is worth mentioning, is that one might experience nu-

merical deviations between identical operations performed on a worker and in the

regular Matlab environment. This is in no way unexpected behaviour, as floating

point operations on computers are not generally commutative. However it might

be useful to be aware if this behaviour when comparing results. We illustrate this

behaviour by solving the system Ax = b for random matrix, A, with, b, as a

vector of ones. We do this for various sizes of A, both on a worker, and in the

12The low speedup associated with the implicit parallelism, when solving even fairly large,
sparse systems, means that we can hope for a considerable gain in speedup when using PCT in
the parallel Multiscale Mixed Finite-Element Method that we introduce in Section 6.

42 5 MATLAB PARALLEL COMPUTING TOOLBOX

128 256 512 1024 2048 4096 8192
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

n

| x− x
w

|/| x|

| Ax− b|/| b|
κ

∞
 ⋅ ε

Figure 13: Resulting relative residuals, Ax − b when the mldivide function is used to
solve a random system of equations of size, n, as well as the relative deviation
introduced to the answer as a result of floating point commutativity. x is the
answer obtained in the regular Matlab environment, and xw is obtained on
a worker. The norm in question is the infinity norm, || · ||∞. κ∞ refers to
the condition number of A, and ε is the floating point relative accuracy of
Matlab. We note that the relative residuals are proportional to κ∞, as they
should be.

regular Matlab environment, using mldivide.

Now, we compare the relative magnitude of the residuals, r = Ax− b, as well

as the relative difference between the two obtained unknown vectors; x, from the

regular Matlab environment, and xw, as obtained on the worker. The results are

given in Figure 13. We observe that there are deviations between the serial and

the implicitly parallel results. We can also note that the relative deviations are

smaller than the relative magnitude of the residuals.

One possible way of avoiding having to deal with this discrepancy is to run

Matlab with the -singleCompthread flag, as indicated above. Another option is

to run the implicitly parallel code inside an spmd block, and on one worker only.

Since the workers are single-threaded this will keep multi-threaded BLAS from

being invoked.

6 A PARALLEL MULTISCALE MIXED FINITE-ELEMENT METHOD 43

6 A Parallel Multiscale Mixed Finite-Element Method

As we note in Section 3.3, the construction of the basis functions in Equation (16) in

the Multiscale Mixed Finite-Element Method is a so-called embarrassingly parallel

task. That is, there is no communication needed between the workers that are

involved in constructing the required basis functions for a system. The same is the

case for calculating inner products, T of each cell, or the corresponding inverse inner

products M (See Equation (13)). Now, with the Matlab Reservoir Simulation

Toolbox [3] as a starting point, along with the Parallel Computing Toolbox as

described in Section 5, we have developed a series of functions that let us take

advantage of parallel computing environments with up to twelve workers.

We have implemented code that together performs the following tasks:

• initiate workers

• initiate variables that define the problem,

• distribute variables that define the problem,

• calculate mimetic inner products in parallel,

• distribute the inner products,

• construct basis functions in parallel.

For brevity we will refer to this new set of functions as xmsmfem. The functions

that make up xmsmfem utilizes functionality and data structures from the Matlab

Reservoir Simulation Toolbox to the largest extent possible. That is, we make use

of the grid structure, rock structure, fluid structure, partitioning structure, bound-

ary condition and source structure, and coarse grid structure from MRST.

In addition, a new structure, for storing the inner products, has been introduced

(See Section 6.1.2). It should be quite possible to understand the main features of

xmsmfem without being intimately familiar with MRST, however, some basic knowl-

edge is recommended. In particular about the previously mentioned structures.

We recommend [18], or http://www.sintef.no/Projectweb/MRST/Tutorials/,

for some examples and tutorials on MRST.

First we will discuss the key elements of xmsmfem. Here we also present some

pseudocode that highlight the key elements of the implementation. If you wish

to obtain the code you should see Section 6.2. The interested reader can find a

complete working example in Appendix A. We present the results, in terms of

http://www.sintef.no/Projectweb/MRST/Tutorials/

44 6 A PARALLEL MULTISCALE MIXED FINITE-ELEMENT METHOD

performance, in Section 7, along with a discussion. A brief conclusion is given in

Section 8.

6.1 Some Notes on the Implementation

We have made an attempt to use as much of the built-in functionality in the Parallel

Computing Toolbox as is possible. When considering the operation of computing

inner products, and then constructing basis functions for each coarse face in light

of the discussion of PCT in Section 5, it would seem ideal to simply use parfor

loops for all these operations. This way one could simply iterate over all cells,

when computing inner products. And similarly, one could iterate over all faces

when building the basis functions. This method could be very sparse in the way

of code, and thus, easy to understand. After some testing, however, we settled on

using the spmd construct in all functions. This provides somewhat more control,

and is not much more complicated. Additionally, using spmd for everything, makes

the structure of the code more similar across the various functions of xmsmfem.

6.1.1 Initializing and Broadcasting the Problem

The typical flow of a program using xmsmfem is given in Listing 11. We note that

indexing in the pseudocode is done mimicking the way indexing is done in Matlab.

In particular, if we write A[i], then i can be either a single index, or a range of

indices. We start by initializing the number of wanted workers. Then we initialize

the variables that define the problem. This involves geometry and permeability, as

well as boundary conditions and well structures, and is done on worker 1 only. We

have chosen to do the initialization of the problem on only one worker before we

broadcast the variables. This simplifies things if, for instance, one is generating a

random permeability field, or reading a geometry from disk.

Matlab workers are completely separate processes. Hence they have com-

pletely separate blocks of memory as well. Even if they are running on the same

machine as the host. For this reason one would benefit memory-wise from hav-

ing only the parts of each variable that will used, stored on the relevant worker.

Particularly since the memory footprint of each Matlab process, whether host or

worker, is fairly large. However, we have decided to distribute the structures to all

workers, for simplicity. This way we can use the available functions in MRST on

the workers easily. The main structures that are distributed are the following:

• fine geometry structure,

6 A PARALLEL MULTISCALE MIXED FINITE-ELEMENT METHOD 45

• coarse geometry structure,

• partitioning,

• rock structure,

• fluid structure,

• boundary conditions and source structures.

One reason in particular that made us decide to abandon the parfor loop is this

decision to broadcast the key structures. Composite variables are well suited for

this, as we illustrate in Listing 5, however, parfor loops do not accept composite

variables. In addition, we note that parfor loops suffer from the same spikes in

memory usage, as illustrated in Listing 5, when broadcasting variables in the naive

way.13

6.1.2 A New Inner Product Structure

First, we note that we have chosen to implement the Multiscale Mixed Finite-

Element Method with the ip simple inner product [18]. Allowing only one inner

product simplifies the code a little, whilst at the same time demonstrating the ideas.

Extending the code to utilize other local flow problem solvers, when constructing

the basis functions, should not be too extensive a task. However, it is outside the

scope of this project.

In MRST the inner products are stored in the sparse block diagonal matrix

BI, where each block matrix contains the inner product associated with one cell.

Remembering the formulation of the mimetic method from Equation (17), and

assuming we have n cells, we can write this as

BI =







T1

. . .

Tn






.

We illustrate the process of constructing BI in Listing 12. One possible way of using

BI when constructing basis functions in parallel is to simply distribute the matrix

to all workers; much in the same way as the ‘problem variables’ are distributed.

If one wishes to avoid the overhead of storing the inner products of all cells on

13When the amount of required memory got larger than the available memory on ‘Kongull’
because of the memory spikes, the compute node would become entirely unresponsive. And a
complete manual restart was necessary.

46 6 A PARALLEL MULTISCALE MIXED FINITE-ELEMENT METHOD

Listing 11: Pseudocode that describes the typical main program of xmsmfem. Note that
some details have been omitted for simplicity. A complete working example
of xmsmfem can be seen in Appendix A.

❢✉♥❝t✐♦♥ ♠❛✐♥():

initiateWorkers(procs) % start procs workers

♣❛r❛❧❧❡❧:

✐❢ worker == 1:

n := [n1 ,n2 ,n3] % number of cells

N := [N1 ,N2 ,N3] % number of blocks

G := ❧♦❛❞●❡♦♠❡tr②(n)

rock := ❧♦❛❞P❡r♠❡❛❜✐❧✐t②(N)

p := ♣❛rt✐t✐♦♥❈♦❛rs❡●r✐❞(G,N)

CG := ❣❡♥❡r❛t❡❈♦❛rs❡●❡♦♠❡tr②(G,p)

fluid := ✐♥✐t✐❛t❡❋❧✉✐❞(G)

bc := s❡t❇♦✉♥❞❛r②❈♦♥❞✐t✐♦♥s(G)

mob := ❝❛❧❝✉❧❛t❡▼♦❜✐❧✐t②(G,rock ,fluid)

❡♥❞ ✐❢

% The broadcasted variables can be used on

% workers as normal , local , variables.

% They are , however , still listed in the following

% function calls

❜r♦❛❞❝❛st❱❛r✐❛❜❧❡s(G,rock ,p,CG ,fluid ,bc)

❡♥❞ ♣❛r❛❧❧❡❧

% XBI is a distributed array

XBI := ❝♦♠♣✉t❡▼✐♠❡t✐❝■P(G,rock)

% XBI[w] represents inner products needed on worker , w.

% C[w] contains indices of cells in worker , w.

% F[w] contains indices of faces on worker , w.

% Hence if C[w][i] == k we know that the inner product of

% the global cell with index k is stored in XBI[w][i].

% Similarly , if F[w][f] == j we know that the basis

% function of global coarse face j will be

% computed on worker w.

[XBI C F] := ❞✐str✐❜✉t❡■P(XBI ,G,p,CG ,bc)

XCS := ❜✉✐❧❞❇❛s✐s(G,CG,p,rock ,mob ,bc,XBI ,C,F)

❡♥❞ ❢✉♥❝t✐♦♥

6 A PARALLEL MULTISCALE MIXED FINITE-ELEMENT METHOD 47

Listing 12: Pseudocode that illustrates the computation, and storage, of inner products
in MRST

❢✉♥❝t✐♦♥ ❝♦♠♣✉t❡▼✐♠❡t✐❝■P(G,rock)

❢♦r i ✐♥ [1,...,♥✉♠❜❡r❖❢❈❡❧❧s]:

f := ❢❛❝❡■♥❞✐❝❡s❖❢❈❡❧❧(i,G)

BI[f][f] = ✐♣(i,G,rock)

❡♥❞ ❢♦r

r❡t✉r♥ BI

❡♥❞ ❢✉♥❝t✐♦♥

Listing 13: Pseudocode that describes the parallel computation if inner products.

❢✉♥❝t✐♦♥ ❝♦♠♣✉t❡▼✐♠❡t✐❝■P(G,rock):

♣❛r❛❧❧❡❧:

% Cells are distributed block -wise , and in such a fashion

% that the number of cells on each worker is as similar

% as possible.

c := ❝❡❧❧s❖♥❲♦r❦❡r(worker ,G)

❢♦r i ✐♥ c:

XBI[i] := ✐♣(i,G,rock)

❡♥❞ ❢♦r

❡♥❞ ♣❛r❛❧❧❡❧

r❡t✉r♥ XBI

❡♥❞ ❢✉♥❝t✐♦♥

48 6 A PARALLEL MULTISCALE MIXED FINITE-ELEMENT METHOD

all workers, however, this is not an option. Additionally, distributing the relevant

parts of BI to each worker is quite possible, but somewhat complex. Storing parts

of BI on each worker will also cause us to perform a lot of indexing into sparse

matrices.

Another concern is that, if we wish to compute inner products in parallel,

neither composite variables nor distributed variables seem that well suited to let

us store the resulting inner products directly into a sparse matrix. One would need

to store the inner products one by one, before constructing the final matrix serially

when all inner products had been computed. For these reasons we started looking

for a different solution.

Having already experimented with storing each inner product separately, before

reconstructing BI, the answer came quite readily: we decided to store all the inner

products individually, in a distributed cell array. That is, we spread the cells across

the available number of workers, compute the inner products in parallel, and store

them in a distributed cell array. Assuming we have n cells and p workers, we assign

the first n/p workers to worker 1, the next n/p cells to worker 2, and so forth. If

n does not divide into p we distribute the cells so that the number of cells on each

worker is as even as possible. We refer to the new structure as XBI and, as an

illustration, we can write

XBI = [T1, . . . ,Tn] .

We show the pseudocode for calculating the inner products using the new cell

structure in Listing 13. We also note that when storing the inner products in this

way, in addition to making it easier to distribute and store them, it is also quite

easy to reconstruct the matrix BI because of the way distributed arrays can be

reconstructed, as we show in Listing 8.

6.1.3 Distributing the Inner Products

Next, we need to distribute the inner products. Before we can do that, however,

we need to decide which workers will compute which basis functions. We have

chosen to simply distribute blocks of faces with consecutive indices, whilst trying

to keep the number of faces on each worker as even as possible. Thus, if we have 10

faces and four workers, we will have the following distribution: worker 1 will have

faces {1, 2, 3}, worker 2 will have faces {4, 5, 6}, worker 3 will have faces {7, 8}, and
worker will have faces{9, 10}.

With the newly introduced inner product structure, and using the spmd con-

struct, it proves quite straightforward to distribute only the inner products that

6 A PARALLEL MULTISCALE MIXED FINITE-ELEMENT METHOD 49

E1

E2

E3

E4

e1

e2

e3

e4

Figure 14: Four blocks, E1, . . . E4, and global (internal) interfaces, e1, . . . , e4.

will be used on each worker to that particular worker. There is some redundancy

involved in this, however. Some inner products will need to be stored on several

workers (in most cases). The easiest way of visualizing this redundancy is by con-

sidering Figure 14. Assuming that we calculate the basis functions for the four

internal faces, ei, concurrently on four workers, we see that we will need all inner

products associated with two of the blocks, on each worker. This redundancy is

addressed further in Section 7.4.

We distribute the inner products, using the PCT functions labSend and labReceive,

in a similar fashion to the example given in Listing 6. The pseudocode can be seen

Listing 14.

6.1.4 Building the Basis

Once the distribution of coarse faces has been decided, and the corresponding inner

products have been distributed, we are ready to compute the basis functions. The

pseudocode for this can be seen in Listing 15. We note that this function takes the

arrays C and F, containing the information about the distribution, as well as XBI,

which contains the inner products. Finally, the resulting system of basis functions

is gathered to worker 1 and returned as the structure XCS. Now XCS can be used

to solve the actual coarse system with the MsMFE method.

6.2 Getting the Code

xmsmfem is constructed as a module for MRST, and can be downloaded from http:

//master.andershoff.net. As with MRST, the code is released under the terms

http://master.andershoff.net
http://master.andershoff.net

50 6 A PARALLEL MULTISCALE MIXED FINITE-ELEMENT METHOD

Listing 14: Pseudocode that describes the distribution of inner products. Note that
this function also decides which basis functions will be computed on which
workers. That is, the coarse faces are distributed among the workers in this
function.

❢✉♥❝t✐♦♥ ❞✐str✐❜✉t❡■P(XBI ,G,p,CG ,bc):

♣❛r❛❧❧❡❧:

% Faces are distributed block -wise and such that

% the number of faces on all workers is as similar

% as possible.

F[worker] := ❝♦❛rs❡❋❛❝❡s❖♥❲♦r❦❡r(worker ,G,CG ,bc)

b := ❜❧♦❝❦s❈♦♥♥❡❝t❡❞❚♦❈♦❛rs❡❋❛❝❡(f,CG)

C[worker] := ❝❡❧❧s■♥❇❧♦❝❦(b,p)

% F[w] contains indices of global coarse

% faces in worker , w

% C[w] contains indices of cells on worker , w

BI := ❣❛t❤❡r(XBI ,1) % gather XBI to worker 1

✐❢ worker == 1:

❢♦r w ✐♥ [1,..., numberOfWorkers]:

s❡♥❞❚♦(w,BI[C[w]])

❡♥❞ ❢♦r

❡♥❞ ✐❢

XBI[worker] := r❡❝❡✐✈❡❋r♦♠(1)

❡♥❞ ♣❛r❛❧❧❡❧

r❡t✉r♥ [XBI ,C,F]

❡♥❞ ❢✉♥❝t✐♦♥

6 A PARALLEL MULTISCALE MIXED FINITE-ELEMENT METHOD 51

Listing 15: Pseudocode that describes the construction of basis functions. Note that
some details have been omitted for simplicity.

❢✉♥❝t✐♦♥ ❜✉✐❧❞❇❛s✐s(G,CG ,p,rock ,mob ,bc ,XBI ,C,F):

♣❛r❛❧❧❡❧:

❢♦r f ✐♥ F[worker]:

b := ❜❧♦❝❦s❈♦♥♥❡❝t❡❞❚♦❈♦❛rs❡❋❛❝❡(f,CG)

c := ❝❡❧❧s■♥❇❧♦❝❦(b,p)

i := ❧♦❝❛❧■♥❞✐❝❡s❖❢■Ps(c,C[worker])

% corresponds to local hybrid system

[sBI ,sC,sD,sF,sG,sH] := ❜✉✐❧❞▲♦❝❛❧❙②st❡♠ (...

XBI[worker][i],G,CG ,bc ,mob ,rock)

[v,p] := s♦❧✈❡▲♦❝❛❧❙②st❡♠(sBI ,sC,sD,sF,sG,sH)

CS[f] := ❛ss✐❣♥❇❛s✐s❋✉♥❝t✐♦♥(v,p)

❡♥❞ ❢♦r

❡♥❞ ♣❛r❛❧❧❡❧

% gather CS in worker 1

XCS = gather(CS ,1)

r❡t✉r♥ XCS

❡♥❞ ❢✉♥❝t✐♦♥

of the GNU General Public License (GPL)14. To use the code, first make sure

you have MRST installed. Then you can copy the folder containing the xmsmfem

module into MRSTROOT/modules/xmsmfem. After starting MRST, xmsmfem can be

initialized in Matlab by running mrstModule add xmsmfem.

14http://www.gnu.org/licenses/gpl.html

http://www.gnu.org/licenses/gpl.html

7 RESULTS AND DISCUSSION 53

7 Results and Discussion

To test the performance of xmsmfem we will look at two different geometries. We

have measured the execution time of constructing basis functions using different

numbers of workers, cells and block sizes. We decided to use the execution times

associated with both distributing the problem variables, calculating and distribut-

ing the inner products, as well as constructing the basis functions. This is the

time we refer to as the ‘total execution time’. There is, however, also a consid-

erable amount of execution time associated with both initiating the problem and

constructing the geometry structure, as well as solving the actual coarse system.

Since the parallelization of these operations have not been the focus of this paper,

we do not consider these execution times.

7.1 Test Platform

The measurements of speedups, and other performance have been done on the

computing cluster ‘Kongull’. This system has 93 computing nodes; 44 of which has

48 GiB RAM, and the remaining 49 nodes have 24 GiB. Each node has two AMD

2431 Istanbul processors with six cores each, as well as 149 GiB 15000 RPM SAS

hard drives.

The system in question runs Matlab 2011b, with Parallel Computing Toolbox

version 5.2, and Matlab Reservoir Simulation Toolbox 2011b. This is also the

configuration used for testing all the provided code. More details about the config-

uration of the system can be found here: http://docs.notur.no/Members/hrn/

kongull.hpc.ntnu.no/kongull-hardware-1/.

7.2 Testing Speedup on a Cartesian Grid

We start by considering a quite artificial geometry, and some slightly extreme block

sizes. We partition a perfectly cubic block into 144 × 144 × 144 cells (just below 3

million cells). Furthermore, we divide the domain into equally sized, square blocks,

consisting of n cells. We also generate a random, full, symmetric permeability

tensor for each cell. Now, for n =
{
63, 83, 93, 123, 183, 243

}
, the resulting runtimes

and speedups can be seen in Figure 15. We note that the speedups are compared

to the runtime of xmsmfem on one worker, not the serial version that can be found

in MRST.

First we emphasize that there are no effects from implicit speedups in this test.

All operations that have potential implicit speedup have been run on workers, so

http://docs.notur.no/Members/hrn/kongull.hpc.ntnu.no/kongull-hardware-1/
http://docs.notur.no/Members/hrn/kongull.hpc.ntnu.no/kongull-hardware-1/

54 7 RESULTS AND DISCUSSION

0 1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

Number of workers

R
u
n
ti
m

e

6
3
 cells per block

8
3
 cells per block

9
3
 cells per block

12
3
 cells per block

18
3
 cells per block

24
3
 cells per block

1 2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9

10

11

12

13

Number of workers

S
p
e
e
d
u
p

6
3
 cells per block

8
3
 cells per block

9
3
 cells per block

12
3
 cells per block

18
3
 cells per block

24
3
 cells per block

Figure 15: Speedups and runtimes on a cubic Cartesian grid.

0 2000 4000 6000 8000 100001200014000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Cells per block

R
u
n
ti
m

e

 p=1

 p=4
 p=8

 p=12

0 2000 4000 6000 8000 10000 12000 14000

2

3

4

5

6

7

8

9

10

11

12

Cells per block

S
p
e
e
d
u
p

 p=2

 p=4
 p=8

 p=12

Figure 16: Execution times and corresponding speedups, for different combinations of
block sizes and workers.

7 RESULTS AND DISCUSSION 55

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Number of workers

R
u
n
ti
m

e

6
3
 cells per block

9
3
 cells per block

12
3
 cells per block

24
3
 cells per block

Figure 17: Amount of time associated with communications (distributing problem vari-
ables and inner products) relative to the total execution time.

they have been run with a single thread (See Section 5.6). The first thing we note

is that all configurations have a significant speedup, ranging from just above 6 to

just below 11, for twelve workers. The best speedup is for the smallest blocks,

and the speedup decreases steadily with increasing block size. If we examine the

execution times, however, the behaviour is somewhat surprising. In particular,

the two overall highest runtimes belong to the smallest, and the largest block

configurations respectively. This is displayed more clearly in Figure 16. Here we

also see that there is a notable drop in execution time for block sizes around 1500

to 2500, before they steadily climb again.

Furthermore, we plot the fractions of the runtimes associated with communica-

tion in Figure 17. Here we also notice that the largest and the smallest block con-

figuration stands out. They have quite small fractions for twelve workers, whereas

the middle configurations are considerable larger. For 12 workers, the communi-

cation fraction is close to 0.1, for the medium-sized block configurations, around

0.03 for the largest block, and 0.06 for the smallest block configuration. If we,

on the other hand compare the time spent computing and distributing the inner

products, relative to the total execution time, the result is quite different. We see

this in Figure 18. This is a suggestion that for the very large block configurations

the computation of basis functions dominate the execution time.

For all but the largest block configurations we consider these results to be quite

good. The perhaps most interesting result is that the speedup decreases with

increasing block size. That is, when we solve fewer, larger, systems. We have been

56 7 RESULTS AND DISCUSSION

0 2000 4000 6000 8000 10000 12000 14000
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Cells per block

R
e
la

ti
v
e
 r

u
n
ti
m

e

 p=1

 p=4
 p=8

 p=12

Figure 18: Time spent computing and distributing inner products relative to total exe-
cution time.

unable to find a satisfactory explanation for this behaviour. However, we speculate

that it could be due to cache effects, since mldivide is called on larger systems.

7.3 Testing Speedup on a More Realistic Geometry

Now, we look at a slightly more realistic geometry. We have generated a mesh

using the makeModel3 function from MRST. This function lets us generate ge-

ometries of arbitrary resolution. An example of a partitioned geometry resulting

from this function can be seen in Figure 19. We note that the geometry has two

faults, and a layered structure. We have used a randomly distributed log-normal

permeability distribution. All off-diagonal elements of the permeability tensor are

zero. In all test cases we have used a resolution of x × 200 × 15 cells, where

x = {400, 600, 800, 1000}. This corresponds to around 1.0 · 106, 1.5 · 106, 2.0 · 106
and 2.4 · 106 cells. We have measured the runtimes for coarse partitions that cor-

respond to, approximately, 260, 500 and 900 cells per block. The results, using

mldivide as the main solver in the Schur Complement Reduction for solving the

local flow problems, can be seen in Figure 20.

We have also run the exact same tests using the AGMG solver [4] in the Schur

Complement Reduction. The AGMG solver was called with a tolerance of 1011 and

a maximum of 1000 iterations. The results are given in Figure 21.

All in all the results in Figures 20 and 21 are quite similar to each other. We

also recognize the same decrease in speedup for increasing block sizes as we saw

7 RESULTS AND DISCUSSION 57

Figure 19: Geometry generated using makeModel3 as demonstrated in Appendix A. The
structure is partitioned into 30× 10× 15 cells, grouped into 3× 4× 5 blocks.

in Section 7.2. We consider these results to be quite good; in particular, the two

smaller block configurations.

7.4 Testing the Inner Product Structure

In Section 6.1.2 we described a new structure for storing and distributing the inner

products; the pseudocode of which can be seen in Listing 13. Now, with the geom-

etry described in Section 7.3 in mind, we compare the execution time of running

xmsmfem using one worker, for the largest and the smallest block sizes considered

in Section 7.3, with the corresponding runtime of the serial MsMFE method im-

plemented in MRST. We compare the runtime of computing inner products, and

of constructing basis functions separately. Additionally, we highlight that there

is little communication overhead associated with running xmsmfem on one worker.

The results of this comparison can be seen in Figure 22.

We see that, for this case, the new structure facilitates considerably faster con-

struction of basis functions for larger number of cells. In particular for smaller

blocks. For the smallest block configuration, xmsmfem is three times as fast, and

for the largest block configuration, xmsmfem is twice as fast. We only display the

run times of computing the inner products for the smaller block configuration. Be-

cause there is no distribution of inner products taking place, the execution times

are mostly independent of block size. We also note that the serial computation of

inner products in xmsmfem is nearly as fast as the regular function in MRST. The

58 7 RESULTS AND DISCUSSION

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of workers

R
u
n
ti
m

e
260 cells per block

1 M
1.5 M
2.0 M
2.4 M

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of workers

R
u
n
ti
m

e

500 cells per block

1 M
1.5 M
2.0 M
2.4 M

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of workers

R
u
n
ti
m

e

950 cells per block

1 M
1.5 M
2.0 M
2.4 M

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

13

Number of workers

S
p
e
e
d
u
p

260 cells per block

1 M
1.5 M
2.0 M
2.4 M

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

13

Number of workers

S
p
e
e
d
u
p

500 cells per block

1 M
1.5 M
2.0 M
2.4 M

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

13

Number of workers

S
p
e
e
d
u
p

950 cells per block

1 M
1.5 M
2.0 M
2.4 M

Figure 20: Runtimes and speedups using mldivide.

7 RESULTS AND DISCUSSION 59

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of workers

R
u
n
ti
m

e

260 cells per block

1 M
1.5 M
2.0 M
2.4 M

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of workers

R
u
n
ti
m

e

500 cells per block

1 M
1.5 M
2.0 M
2.4 M

0 2 4 6 8 10 12
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of workers

R
u
n
ti
m

e

950 cells per block

1 M
1.5 M
2.0 M
2.4 M

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

13

Number of workers
S

p
e
e
d
u
p

260 cells per block

1 M
1.5 M
2.0 M
2.4 M

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

13

Number of workers

S
p
e
e
d
u
p

500 cells per block

1 M
1.5 M
2.0 M
2.4 M

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

13

Number of workers

S
p
e
e
d
u
p

950 cells per block

1 M
1.5 M
2.0 M
2.4 M

Figure 21: Runtimes and speedups using the AGMG solver [4].

60 7 RESULTS AND DISCUSSION

0.5 1 1.5 2 2.5

x 10
6

100

150

200

250

300

350

Number of cells

R
u
n
ti
m

e

Constructing Basis

regular, block size 260

new, block size 260

0.5 1 1.5 2 2.5

x 10
6

0

2000

4000

6000

8000

10000

12000

Number of cells

R
u
n
ti
m

e

Computing IP

regular, block size 950
regular, block size 260
new, block size 950
new, block size 260

Figure 22: Comparison of execution times in regular MRST, and when using the new
cell structure from Section 6.1.2.

main reason for the little difference that we observe is probably that calling the

functions of xmsmfem on one worker will still result some function calls that will

only yield an improved runtime when we have more workers available. I.e. parallel

overhead.

As for the reason for the considerable speedup when using the new structure,

we believe this is due to the fact that we now avoid getting elements from a large

sparse matrix by using (sparse) indexing in Matlab. As a test we have timed

the process of extracting and concatenating n = {10, 20, . . . , 100} block matrices

of size 6 × 6 from a block diagonal matrix of 1000 × 1000 blocks. For comparison

we repeated the same process with a 1× 1000 cell array that contains matrices of

size 6 × 6. The resulting ‘speedup’ is given in Figure 23. We see that there is a

considerable difference in the performance of these two operations, which probably

accounts for most of the difference when comparing xmsmfem with MRST.

The final issue related to the cell structure that warrants an examination is

redundancy in storage. As explained in Section 6.1.2 there will be instances of

the same inner products stored on several of the workers. We have counted the

total number of stored inner products for the example in Section 7.2 in Figure 24.

Similarly, the total number of stored inner products for the example in Section 7.3

is given in Figure 25.

For both cases there is a considerable amount of redundancy. However, we

still believe that the overhead of transmitting inner products back and forth would

slow everything down way too much for this to be an option. An alternative is to

7 RESULTS AND DISCUSSION 61

20 40 60 80 100

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

 n

S
p
e
e
d
u
p

Figure 23: Plot of Sc = Tc/Ts. Here, Tc, refers to the time it took to extract n block
matrices of size 6 × 6 from a sparse, block diagonal, matrix, A, of size 6000
× 6000. Similarly, Tc refers to the time it took to extract n matrices of size
6× 6 from a cell array with 1000 × 1 matrices. This is nearly analogous to
the new inner product structure.

examine the possibility of distributing faces among workers in a way that minimizes

the amount of overlap in the necessary inner product storage.

7.5 Future Work

Since the results of this prototype must be considered quite promising the perhaps

most obvious ‘next’ step is an implementation of a similar algorithm in a more

low-level programming language. For instance using MPI and C++. MPI has the

necessary constructs for this job. Most notably: it is based on the ‘single program

multiple data’ philosophy, and it supports transmitting data between the labs. It

would be convenient to make use of the C++ version of MRST, which is currently

under development. This way one could make use of the geometry, fluid, and

rock structures, as well as the other useful parts of MRST that we have utilized

in xmsmfem. It is at least not unreasonable to hope that a C++ implementation—

making use of linear algebra libraries—could perform better than xmsmfem, whilst

at the same time require less memory. In particular, because one could avoid the

fairly large memory footprint that Matlab has for each worker.

Another alternative worth considering, in light of the recent advances in Graph-

ics Processing Unit (GPU) computing, is adapting the code to make use of OpenCL15

15http://www.khronos.org/opencl/

http://www.khronos.org/opencl/

62 7 RESULTS AND DISCUSSION

2 4 6 8 10 12

1

1.2

1.4

1.6

1.8

2

2.2

Number of workers

R
e
la

ti
v
e
 n

u
m

b
e
r

o
f
IP

s
 s

to
re

d

6
3
 blocks per cell

8
3
 blocks per cell

12
3
 blocks per cell

18
3
 blocks per cell

Figure 24: Relative memory usage for a cubic Cartesian grid with 3 million cells. This
corresponds to the example given in Section 7.2.

2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of workers

R
e
la

ti
v
e
 n

u
m

b
e
r

o
f
IP

s
 s

to
re

d

950 blocks per cell

500 blocks per cell

260 blocks per cell

Figure 25: Relative memory usage of the example given in Section 7.3.

7 RESULTS AND DISCUSSION 63

or CUDA16. CUDA is a parallel computing platform developed by Nvidia. It en-

ables you to write code that executes on CUDA enabled graphics cards, letting you

take advantage of the vast potential computing power available on todays GPUs.

OpenCL is an open source alternative to CUDA that not only lets you write code

for the GPU, but aims to let you write code for heterogeneous computing clusters.

Even todays notebooks are available with hundreds of CUDA computing cores,

hence there is considerable potential for speeding up code.

One possible model is to construct one massive system of Schur complement

reduced systems for each basis function. That is, remembering Equation (15), one

could build a system on the following form; assuming we have n basis functions:

Sπ = f =







S1

. . .

Sn













π1

...

πn






=







F1E
−1
1 f1
...

FnE
−1
n fn






.

Here Si, πi, Ei, Fi and fi corresponds to S, π, E, F and f from Equation (15) for

a i = 1, . . . , n local systems. The local parts of this system can be constructed in

parallel, the complete system, Sπ = f, can then be constructed and then solved

on a GPU. This system would both be sparse and SPD, and should therefore be

easily solvable. Furthermore, we see that the back substitutions that need to be

done in order to get the pressures, p, and velocities, v, could be calculated as a

total systems in much the same way. That is

p =







p1

...

pn






=







E−1
1 (f1 + FT

1 π1)
...

E−1
n (fn + FT

nπn)






,

and

v =







v1

...

vn






=







B−1
1 (CT

1 p1 −DT
1 π1)

...

B−1
n (CT

npn −DT
nπn)






,

where Bi, Ci and Di corresponds to B, C and D from Equation (15).

A compromise of the method outlined here is to use the GPU support of PCT

to solve Sπ = f. One could then modify the implemented basis construction of

16http://www.nvidia.com/object/cuda_home_new.html

http://www.nvidia.com/object/cuda_home_new.html

64 7 RESULTS AND DISCUSSION

xmsmfem to use this method before building the basis functions as before.

8 CONCLUDING REMARKS 65

8 Concluding Remarks

We have seen that the field of reservoir simulations is a complicated and extensive

area of research. With challenges ranging from surveying and gathering informa-

tion about a reservoir, through to representing and modelling the reservoir using

as much as possible of the available data. One of the larger challenges, perhaps

surprisingly, is related to the required computational effort resulting from the in-

herent heterogeneity and size of most reservoirs. This heterogeneity, as we have

seen, ranges from the micro scale, with interactions between pores and fluids, and

through to the macro scale, with geometric composition such as layers, fractures

and faults. Next we have described some aspects of the mathematical model with

focus on single-phase flow, and the extension to a two-phase model.

The Multiscale Mixed Finite-Element Method has been introduced as a method

to facilitate direct simulation of large and complex grid-models for these highly

heterogeneous petroleum reservoirs. We have also seen that this method has an in-

herent parallelism that could speed up the computations considerably in a parallel

computing environment.

the Matlab Parallel Computing Toolbox has been introduced to remedy this.

PCT proves to be a powerful tool for a vast range of parallel computations, and an

excellent platform for developing prototypes such as the parallel Multiscale Mixed

Finite-Element method (xmsmfem) that we introduced in Section 6.

We conclude that the results we have seen are very promising, that the construc-

tion of basis functions for the MsMFE method can parallelized readily, as expected,

and that MRST and the Matlab Parallel Computing Toolbox is a useful combi-

nation. We have been able to implement a parallel MsMFE method with good, to

excellent, speedup for reasonably large systems. The highlight is that we get near

linear speedup for larger geometries when using xmsmfem on a system with twelve

cores. The speedup is highest for small to medium-sized block configurations, but

it is considerable for all tested configurations.

9 REFERENCES 67

9 References

[1] Sensistivity Analysis of the Impact of Geological Uncertainties on Produc-

tion (SAIGUP) project. http://www.nr.no/pages/sand/area_res_char_

saigup, 0ctober 2011.

[2] Matlab Parallel Computing Toolbox - User’s Guide R2011b. http://www.

mathworks.com/help/pdf_doc/distcomp/distcomp.pdf, September 2011.

[3] Matlab Reservoir Simulation Toolbox (MRST). http://www.sintef.no/

MRST/, October 2011.

[4] AGgregation-based algebraic MultiGrid. http://homepages.ulb.ac.be/

~ynotay/AGMG/, June 2012.

[5] J. Aarnes, S. Krogstad, and K.-A. Lie. Multiscale Mixed/Mimetic Methods

on Corner-point Grids. Computational Geosciences 12, 3, 297-315, 2008.

[6] J. Aarnes, K.-A. Lie, V. Kippe, and S. Krogstad. Multiscale Methods for

Subsurface Flow. Multiscale Modeling and Simulation in Science. (s. 3-48).

Berlin: Springer, 2009.

[7] J. Aarnes, K.-A. Lie, V. Kippe, and A. B. Rustad. Modelling of Multiscale

Structures in Flow Simulations for Petroleum Reservoirs. Geometrical Mod-

eling, Numerical Simulation, and Optimization: Industrial Mathematics at

SINTEF. (s. 303-356). Berlin: Springer, 2007.

[8] G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities. In Proceedings of the April 18-20, 1967, spring

joint computer conference, AFIPS ’67 (Spring), pages 483–485, New York, NY,

USA, 1967. ACM.

[9] T. Arbogast. Implementation of a Locally Conservative Numerical Subgrid

Upscaling Scheme for Two-phase Darcy Flow. Computational Geosciences 6,

pages 453 – 481, 2002.

[10] D. N. Arnold and F. Brezzi. Mixed and Nonconforming Finite Element

Methods: Implementation, Postprocessing and Error Estimates. RAIRO:

Modélisation mathématique et analyse numérique, tome 19, pages 7 – 32, 1985.

[11] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element

Methods. Springer, Chicago, IL, USA, 2007.

http://www.nr.no/pages/sand/area_res_char_saigup
http://www.nr.no/pages/sand/area_res_char_saigup
http://www.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf
http://www.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf
http://www.sintef.no/MRST/
http://www.sintef.no/MRST/
http://homepages.ulb.ac.be/~ynotay/AGMG/
http://homepages.ulb.ac.be/~ynotay/AGMG/

68 9 REFERENCES

[12] F. Brezzi, K. Lipnikov, and V. Simoncini. A Family of Mimetic Finite Differ-

ence Methods on Polygonal and Polyhedral Meshes. March 2005.

[13] L. Cosentino. Integrated Reservoir Studies. Institut Fracais du Pétrole Publi-

cations, Paris, 2001.

[14] Y. Efendiev and T. Y. Hou. Multiscale Finite Element Methods: Theory and

Applications; Electronic Version. Surveys and Tutorials in the Applied Math-

ematical Sciences. Springer, Dordrecht, 2008.

[15] J. L. Gustafson. Reevaluating Amdahl’s Law. Commun. ACM, 31:532–533,

May 1988.

[16] T. Y. Hou and X.-H. Wu. A Multiscale Finite Element Method for Elliptic

Problems in Composite Materials and Porous Media. Journal of Computa-

tional Physics, 134(1):169 – 189, 1997.

[17] V. Kippe, J. Aarnes, and K.-A. Lie. A Comparison of Multiscale Methods for

Elliptic Problems in Porous Media Flow. Computational Geosciences 12, 3,

377-398, 2008.

[18] K.-A. Lie, S. Krogstad, I. Ligaarden, J. Natvig, H. Nilsen, and B. Skaflestad.

Open-source matlab implementation of consistent discretisations on complex

grids. Computational Geosciences, pages 1–26. 10.1007/s10596-011-9244-4.

[19] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.

Morgan Kaufmann Publishers, Massachusetts, USA, 2008.

[20] P. S. Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann

Publishers, Burlington, MA, USA, 2011.

[21] Y. Saad. Iterative Methods for Sparse Linear Systems; 2nd Ed. SIAM,

Philadelphia, PA, 2003.

A A WORKING EXAMPLE 69

Appendices

A A Working Example

We present a working example of xmsmfem, as introduced in Section 6, after we

look at some of the naming conventions. We use most of the naming conventions,

and structures, from MRST. These are more thoroughly described in [18]. In short

this means that we use the following variables:

• G, structure that contains the geometry;

• rock, structure that contains the cell-wise properties of the medium;

• S, structure that contains the inner products associated with the geometry;

• CG, structure that contains the geometry if the coarse structure, as well as

the partitioning;

• mob, array that contains the mobility associated with each cell;

• bc, structure that contains boundary conditions;

• src, structure that contains sources;

• fluid, structure that contains the fluid properties of each cell;

• CS, structure that contains basis functions and topology matrices of the coarse

system;

• xMs, structure that contains the solution structure.

As well as a few others.

Additionally, MRST stores the ip simple inner product in the struct S, as the

sparse matrix S.BI. This corresponds to a block diagonal matrix of T from Equa-

tion (28), for each cell in the structure.17. In xmsmfem we use a slightly different

structure, as described in Section 6.1.2, but essentially the inner products are stored

in the variable named XBI.

Furthermore, we make quite extensive use of both composite and distributed

variables, as described in Section 5. Composite variables are named as they would

be in MRST, provided there is a corresponding variable. However, distributed

17If the inner products are not inverted the sparse matrix is stored in S.B.

70 A A WORKING EXAMPLE

variables are prepended with ‘co-’. Local parts of the same distributed array are

prepended with ‘lp-’.

A working example can be seen in Listing 16, and a flowchart that describes

the example can be seen in Figure 26.

Listing 16: xMain.m

% code assumes MRST and xmsmfem is already initiated

% helper function to initiate workers

% and construct composite variables

% all returned variables are Composite

% the following variables are assigned default values:

% overlap = 0;

% bc = [];

% src = [];

% facetrans = zeros (0,2);

% activeBnd = [];

% weighting = ’perm ’;

% the remaining variables are empty.

% they need to be initialized as in the example below.

% afterwards xBroadcast needs to be called.

procs = 4 ; % 4 workers

[g,rock ,cg ,mob ,bc ,src ,overlap ,facetrans ,weighting ,...

activeBnd] = ①■♥✐t❲♦r❦❡rs(procs);

% disable gravity on all workers

♣❝t❘✉♥❖♥❆❧❧ gravity off;

% parallel block.

% variables that define the problem are initialized on

% worker 1

% they are then broadcasted using xBroadcast.

s♣♠❞

% initialization of the problem only on worker 1

✐❢ ❧❛❜✐♥❞❡① == 1,

❢♣r✐♥t❢(’initializing on worker 1 ... ’);

% size of fine and coarse geometry

nx = 100; ny = 50; nz = 15;

A A WORKING EXAMPLE 71

Nx = 10; Ny = 5; Nz = 5;

% geometry and rock properties

g = ❝♦♠♣✉t❡●❡♦♠❡tr②(♣r♦❝❡ss●❘❉❊❈▲(♠❛❦❡▼♦❞❡❧✸ (...

[nx, ny, nz])));

K = ❧♦❣◆♦r♠▲❛②❡rs(g.cartDims , [10, 300, 40, 0.1, 100]);

rock.perm = ❜s①❢✉♥(@times , [1, 100, 0.1], K(:));

rock.perm = ❝♦♥✈❡rt❋r♦♠(rock.perm(g.cells.indexMap , :) ,...

milli*darcy);

% coarse partition

p = ♣❛rt✐t✐♦♥❯■(g, [Nx , Ny , Nz]);

p = ♣r♦❝❡ssP❛rt✐t✐♦♥(g,p);

cg = ❣❡♥❡r❛t❡❈♦❛rs❡●r✐❞(g,p);

% fluid properties

fluid = ✐♥✐t❙✐♥❣❧❡❋❧✉✐❞(’mu’ ,1*centi*poise , ...

’rho’ ,1000* kilogram/meter ^3);

% solution structure

xMs = ✐♥✐t❙t❛t❡(g, [], 0, [0, 1]);

% get mobility

mu = fluid.properties(xMs);

kr = fluid.relperm(ones([g.cells.num ,1]),xMs);

mob = kr ./ mu;

% some driving forces.

% sources can be added in a similar fashion here

bc = ♣s✐❞❡(bc ,g,’East’ ,1);

bc = ♣s✐❞❡(bc ,g,’West’ ,0);

❢♣r✐♥t❢(’done\n’);

% should you wish to call functions

% from regular MRST for comparison

% they can be called on one worker

% inside spmd blocks such as this ,

% using the same composite variables;

% eg:

72 A A WORKING EXAMPLE

%

% ss = computeMimeticIP(g,rock);

% cs = generateCoarseSystem(g,rock ,ss ,cg ,mob ,’bc ’,bc);

❡♥❞

% distribute Composite variables to *all* workers

✐❢ ❧❛❜✐♥❞❡① == 1, t✐❝; ❡♥❞ % time on worker 1.

[g,rock ,cg ,mob ,bc ,src ,overlap ,facetrans ,...

weighting ,activeBnd] = ①❇r♦❛❞❝❛st (...

g,rock ,cg,mob ,bc,src ,overlap ,facetrans ,...

weighting ,activeBnd);

✐❢ ❧❛❜✐♥❞❡① == 1,

❢♣r✐♥t❢(’time xBroadcast :\t%.5f\n’,t♦❝);

❡♥❞

❡♥❞

% calculate inner products.

% - XBI -- distributed cell array.

% XBI{i} contains inner product of cell i.

t✐❝;

XBI = ①❈♦♠♣✉t❡▼✐♠❡t✐❝■P(g,rock ,facetrans);

❢♣r✐♥t❢(’time xComputeMimeticIP :\t%.5f\n’,t♦❝);

% distribution of inner products

% - coX -- distributed cell array.

% contains inner products

% - coiG -- distributed cell array.

% contains global numbering of cells

% - coFaces -- distributed array.

% contains global numbering of faces

t✐❝;

[coXBI ,coiG ,coFaces] = ①❉✐str✐❜✉t❡■P(XBI ,g,cg ,overlap ,...

bc ,activeBnd);

❢♣r✐♥t❢(’time xDistributeIP :\t%.5f\n’,t♦❝);

% construct basis functions

% - xCS -- composite array

% non -empty only on worker 1.

% contains coarse basis functions.

t✐❝;

A A WORKING EXAMPLE 73

XCS = ①●❡♥❡r❛t❡❈♦❛rs❡❙②st❡♠(g,rock ,cg,overlap ,...

bc ,src ,weighting ,mob ,...

coXBI ,coiG ,coFaces);

❢♣r✐♥t❢(’time xGenerateCoarseSystem :\t%.5f\n’,t♦❝);

% build BI and S from X, and solve coarse system:

s♣♠❞

BI = ❣❛t❤❡r(XBI ,1);

✐❢ ❧❛❜✐♥❞❡① == 1

dimProd = ❞♦✉❜❧❡(❞✐❢❢(g.cells.facePos));

[ind1 , ind2] = ❜❧♦❝❦❉✐❛❣■♥❞❡①(dimProd , dimProd);

n = s✐③❡(g.cells.faces , 1);

S.BI = s♣❛rs❡(ind1 ,ind2 ,✈❡rt❝❛t(BI{:}),n,n);

S.t②♣❡ = ’hybrid ’; S.ip = ’ip_simple ’;

xMs = s♦❧✈❡■♥❝♦♠♣❋❧♦✇▼❙(xMs ,g,cg,p,S,XCS ,fluid ,...

’bc’,bc ,’Solver ’,S.t②♣❡);

❡♥❞

❡♥❞

% can not plot from workers

% transport xMs and g to host

xxMs = xMs {1}; gg = g{1};

% note that composite variables do not

% support accessing structure fields

% using ’.’, such as myStruct.field

❝❧❢,

♣❧♦t❈❡❧❧❉❛t❛(gg , ❝♦♥✈❡rt❚♦(xxMs.pressure , barsa()));

✈✐❡✇(3), ❝❛♠♣r♦❥ perspective , ❛①✐s equal tight off ,

camlight headlight

cax = ❝❛①✐s; cobar = ❝♦❧♦r❜❛r;

74 A A WORKING EXAMPLE

xMain

xBroadcast

xInitWorkers

xComputeMimeticIP

xGenerageCoarseSystem

load geometry and initate variables

calculate inner products

xEvalBasisFunc

prepare local flow problems

schurComplementSymm

xDistributeIP

gather inner products

plot solution

solveIncompFlowMS

Figure 26: Simplified flowchart that describes the structure of a main script running
xmsmfem. A full working example can be seen in Appendix A. Execution order
is top to bottom. Matlab functions are underlined. Entries in italics are
executed on one worker only, whereas functions in bold are run (in parallel)
inside spmd blocks. All other entries are executed from the host.

	Title Page
	Problem Statement
	Abstract
	Sammendrag
	Preface
	Introduction
	Describing Reservoirs
	Pore Scale Model
	Core Scale Model
	Geological Model
	Simulation Model
	Mathematical Model
	Two-phase Flow

	Discretization Methods
	Mixed Finite-Element Method
	Schur Complement Reduction
	Multiscale Mixed Finite-Element Method
	Mimetic Discretization Methods
	Inner Products

	Parallel Computing
	Amdahl Versus Gustafson

	Matlab Parallel Computing Toolbox
	Setting up the Environment
	The Parallel For Loop
	The spmd Construct
	Scheduling Jobs
	Performance
	Some Issues

	A Parallel Multiscale Mixed Finite-Element Method
	Some Notes on the Implementation
	Initializing and Broadcasting the Problem
	A New Inner Product Structure
	Distributing the Inner Products
	Building the Basis

	Getting the Code

	Results and Discussion
	Test Platform
	Testing Speedup on a Cartesian Grid
	Testing Speedup on a More Realistic Geometry
	Testing the Inner Product Structure
	Future Work

	Concluding Remarks
	References
	Appendices
	A Working Example

