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Abstract

This paper presents the application of self-optimizing concepts for more efficient generation of steady-state surrogate
models. Surrogate model generation generally has problems with a large number of independent variables resulting in a
large sampling space. If the surrogate model is to be used for optimization, utilizing self-optimizing variables allows to
map a close-to-optimal response surface, which reduces the model complexity. In particular, the mapped surface becomes
much “flatter”, allowing for a simpler representation, for example, a linear map or neglecting the dependency of certain
variables completely. The proposed method is studied using an ammonia reactor which for some disturbances shows
limit-cycle behaviour and/or reactor extinction. Using self-optimizing variables, it is possible to reduce the number of
manipulated variables by three and map a response surface close to the optimal response surface. With the original
variables, the response surface would include also regions in which the reactor is extinct.

Keywords: Self-optimizing control, Surrogate model, Sampling domain definition, B-splines, Optimization of
integrated processes, Steady-state optimization

1. Introduction

This paper focuses on the generation of surrogate mod-
els for steady-state process optimization. Surrogate mod-
els, also known as reduced-order models or response sur-
faces, are an emerging field in many applications (Forrester5

et al., 2008). They can be seen as mapping of a nonlin-
ear model and are in this respect similar to lookup tables.
Since the publication of Sacks et al. (1989), the investiga-
tion of surrogate models increased. Their advantage is a
simple mathematical description of a complicated system.10

The resulting simplified model can subsequently be uti-
lized in e.g. optimization routines (Forrester and Keane,
2009) or in a multi-scale modelling framework like MoD-
eNa (Karolius et al., 2016).

Chemical engineering processes are frequently modelled15

using flowsheeting software. With sequential-modular sim-
ulation packages, like Aspen Plus R©, Aspen Hysys R©, Sim-
Sci PRO/II, or UniSim Design Suite, numerical problems
may arise especially when we have large recycles. Fur-
thermore, certain unit operations like reactors or columns20

may be computationally expensive to solve. Therefore,
Caballero and Grossmann (2008) developed an “algorithm
for the use of surrogate models in modular flowsheet opti-
mization”. In this approach, the surrogate model substi-
tutes “noisy” and/or computational expensive models. By25

a “noisy” model we mean that the output from the model
may vary because of numerical issues, for example, depen-
dencies in the initial values. Their surrogate model was
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given by Kriging models (Krige, 1951) and can comprise
several unit operations. This approach was also applied30

to a sour-water stripping plant (Quirante and Caballero,
2016).

As an alternative to Kriging models and with the aim of
using the surrogate model in optimization routines, Cozad
et al. (2014) developed the ALAMO methodology. In this35

methodology, the surrogate model is based on a selec-
tion of basis functions and the model quality is improved
through error maximization sampling. The advantage of
the ALAMO approach is the simplicity of the basis func-
tions and the easy availability of derivative information40

of the surrogate model. However, it is necessary to fit a
surrogate model after each sampling iteration of the algo-
rithm.

Surrogate models can be useful in the optimization of
integrated flowsheets (Straus and Skogestad, 2016). Se-45

quential modular simulators often have problems with con-
vergence due to recycles, whereas equation-oriented solvers
simulators are difficult to initialize. Surrogate models may
be introduced for individual units or combination of units
and recycle streams may be incorporated, resulting in re-50

duced computational cost for solving the overall flowsheet.
The generation of surrogate models is more difficult, how-
ever, if the number of independent variables (nu) is high.
This so-called “curse of dimensionality” says that the num-
ber of sampling points np grows dramatically with the55

number of independent variables nu (Forrester et al., 2008).
This growth is especially pronounced for nonlinear models
where the interaction between the independent variables
affect the dependent variables. There are two ways to solve
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this problem; reduce the number of independent variables60

nu or reduce the resulting interaction between the inde-
pendent variables to obtain a simpler response surface.

One way to reduce nu is given by a factorial sampling
plan as developed by Morris (1991). This approach uti-
lizes preliminary simulations, in which it is decided which65

of the independent variables have an effect on the depen-
dent variables and whether this effect is linear. The in-
significant variables may be omitted in the latter design
of experiments, whereas linear variables require much less
sampling points. However, problems may still arise if the70

model is very nonlinear or interactions exist in-between
the independent variables.

Another alternative to reduce nu is the application of
PLS regression (Straus and Skogestad, 2017b). Through
PLS regression on the sampled space, new latent variables75

u′ with nu′ < nu are defined. The independent variables
for the surrogate model fitting are subsequently the latent
variables.

A better alternative, investigated in this paper, may be
to use the concepts of self-optimizing control (SOC) (Sko-80

gestad, 2000) to identify new independent variables (Straus
and Skogestad, 2016). Self-optimizing control is a philos-
ophy from control theory. The aim of SOC is to select
controlled variables, which, if kept constant when distur-
bances occur, give a small economic loss. It allows to focus85

on the region we are actually interested in, and hence, re-
duce the complexity of the response surface and reduce
the sampling domain. Furthermore, it allows a reduction
in nu in certain special cases.

This paper is structured as follows; Section 2 summa-90

rizes the application of surrogate models in the context of
optimization based on the work of Straus and Skogestad
(2016). Section 3 discusses how self-optimizing variables
can be applied in the generation of surrogate models. Sec-
tion 4 first introduces the ammonia case study and then95

shows results from the application of self-optimizing con-
trol in surrogate model generation. Section 5 discusses
the applicability of the proposed procedure and addresses
limitations and problems of utilizing self-optimizing vari-
ables. Appendix A explains the concepts of self-optimizing100

control as used within this paper.

2. Optimization using local surrogate models

Consider a large-scale steady-state process to be opti-
mized, given by

min
x,u

J (x,d,u)

s.t. 0 = g (x,d,u)

0 ≥ h (x,d,u)

(1)

where J is a scalar cost function, usually an economic
cost, d ∈ Rnd denotes the disturbances, for example feed
variables and model parameters, u ∈ Rnu are the inde-
pendent decision variables, and x ∈ Rnx are the inter-
nal model state variables. The equality constraints g :

uk

dkdi

ui

Submodel i

gi(xi,di,zk,i,ui)

Submodels k

gk(xk,dk,zi,k,uk)

zi,k

zk,i

u

d Overall Model

g(x,d,u)

Fig. 1: Example of a submodel within an overall model.

Rnx × Rnd × Rnu → Rnx are typically given by the equa-
tions in the flowsheeting software. Operational inequality
constraints h : Rnx×Rnd×Rnu → Rnh can be imposed on
the states x or inputs u. As the optimization of a large-
scale process is generally difficult, the process is split into
several submodels given by gi : Rnxi ×Rndi ×Rnui → Rnxi
and hi : Rnxi×Rndi×Rnui → Rnhi . This is exemplified for
the distinctive submodel i and the remaining submodels k
in Fig. 1. Each submodel may have individual manipu-
lated variables ui ∈ u and disturbances di ∈ d. It is pos-
sible that a disturbance or manipulated variable appears
in several submodels. In addition, each submodel has inlet
zk,i ∈ Rnzk,i and outlet connection variables zi,k ∈ Rnzi,k .
Note that the variables zi,k are states or outputs for the
submodel i they come from, yi,k = zi,k, whereas they are
disturbances for the submodel k they enter. The connec-
tion variables and the disturbance variables can be com-
bined into an augmented “disturbance” vector

d̃i =

[
di
zk,i

]
(2)

Each submodel gi may be reformulated as a surrogate
model given by

g′i,k : {d̃i,ui} 7→ yi,k (3)

The total number of independent variables for each sub-
model is ntoti = nui+nd̃i . Note that this is an input-output
model with no explicit internal states. The reformulated
optimization problem in terms of surrogate models then
becomes

min
d̃,u

J
(
d̃,u

)
s.t. 0 = yi,k − g′i,k

(
d̃i,ui

)
i ∈ 1, . . . , n, ∀k 6= i

0 = zi,k − yi,k i ∈ 1, . . . , n, ∀k 6= i

0 ≥ hi

(
d̃i,ui

)
i ∈ 1, . . . , n

(4)

The sampling domain for surrogate model generation is
given by bounds on the independent variables for each sub-
model

d̃i,min ≤d̃i ≤ d̃i,max (5)

ui,min ≤ui ≤ ui,max (6)
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Fig. 2: Block diagram illustrating the change of independent vari-
ables.

The sampling may be performed using for example Latin
hypercube sampling or regular grid sampling. Depending
on the number of independent variables ntoti and the non-105

linearity of the model, this can require a large sampling
space. Hence, a reduction in the complexity of the surro-
gate model may be necessary.

3. Surrogate model generation using self-optimizing
variables110

Consider a detailed model representation

gi

(
xi, d̃i,ui

)
= 0 (7)

of submodel i and let yi,k = fi,k

(
xi, d̃i,ui

)
represent the

variables we are interested in knowing. To avoid solving
the detailed model (7) every time, for example during op-
timization, we want to derive a surrogate model (3). To
be able to introduce self-optimizing variables ci to replace
the original independent variables ui, we assume that we

can define a a local cost function Ji

(
xi, d̃i,ui

)
. This cost

function should reflect the overall cost J in (1) because
we are not interested in arbitrary variations in ui, but in
changes along the optimal surface. That is, we want to
find instead a surrogate model

g′i,k,SOC : {d̃i, ci} 7→ yi,k (8)

where we remain close to the optimal surface for expected
variations in d̃i when the new variables ci are kept con-
stant (or strictly speaking, their setpoints ci,s).

This variable change is illustrated in Figure 2 using a
block diagram. The controller K has integral action so115

that we have perfect control at steady state (ci = ci,s).
Note that Figure 2 is just for illustrating how we can
change the independent variables from ui to ci, and there
are no dynamics present in the surrogate model. The ob-
jective is that with this change in independent variables,120

the surrogate models become much simpler, for example
linear, and in some cases we may even eliminate variables.

3.1. Motivating example

As a motivating illustration of the concept, consider
the Rosenbrock function (Rosenbrock, 1960):

Ji (ui) = (1− di)2 + 100
(
ui − d2i

)2
(9)
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Fig. 3: Example for mapping the optimal response surface using the
Rosenbrock function as case study.

The cost function is in this case also the outlet dependent
variable yi. The contour map for Ji as a function of ui and
di is shown in Figure 3. For a given disturbance value di,
it would not make sense to map the whole region for ui as
it includes regions with a high value of the cost function.
Instead, it is preferable to map only the region around the
optimal input ui,opt (di) as given by the yellow line. Note,
by introducing

ci = ui − d2i (10)

and setting ci,s = 0, the cost function is minimized in-
dependently of the value of di as we indirectly get ui =
ui,opt (di) = d2i . This allows to map along the optimal re-
sponse surface as shown by the dashed lines. These bounds
correspond to ci = ±0.5. The close-to-optimal response
surface has a simpler structure compared to the complete
response surface. Compared to the optimal response sur-
face approach, it is possible to vary the setpoint of the new
variable, ci,s as well. The surrogate models according to
Eqs. (3) and (8) are then given by

g′i : {di, ui} 7→ Ji (11)

g′i,SOC : {di, ci} 7→ Ji (12)

in which g′i would include interaction terms between ui and
di and fourth-order terms in di. On the other hand, g′i,SOC125

does not include interaction terms and at most second-
order terms are needed in the model. Correspondingly,
less points have to be sampled due to the simpler structure
of the model. Note that this illustrative example does not
correspond to the linear self-optimizing variables ci as used130

in this paper. Unfortunately, it is in general difficult to
obtain nonlinear self-optimizing variables. Hence, linear
combinations of measurements are used as self-optimizing
variables as outlined in the next section.
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3.2. Prcoedure for selecting self-optimizing variables135

Let the “measurements”

yi =

xid̃i
ui

 (13)

represent all the system variables and assume that we use
self-optimizing control ideas to find a linear measurement
combination

ci = Hiyi (14)

where yi ∈ Rnyi are the selected measurements to replace
the independent variables ui and ci ∈ Rnui are the local
self-optimizing variables

To this effect, we define a local cost function Ji (xi,di,ui)
and consider the following local optimization problem

min
xi,ui

Ji (xi,di,ui)

s.t. 0 = gi (xi,di,ui)

0 ≥ hi (xi,di,ui)

(15)

As shown in Appendix A, we need to define the expected
disturbance set through the weight Wd and the expected140

“noise” (caused by numerical errors) in the measurements
yi through the weight Wny . The self-optimizing vari-
ables are then obtained as the set ci = Hiyi which min-

imizes
∣∣∣Ji (ci, d̃i)− Ji,opt (d̃i)∣∣∣. If we neglect “noise”,

then we may use the nullspace method (Alstad and Sko-145

gestad, 2007), but in this paper we include “noise” and use
the exact local method, (Alstad et al., 2009) as described
in more detail in Appendix A.

Note that we include the inlet connection variables zk,i
as disturbances in the calculation of Hi, that is

d̃i =

[
di
zk,i

]
(16)

and nd̃i = ndi + nzk,i . The calculation of the SOC selec-
tion matrix Hi according to optimization problem (A.9)150

requires the solution to 1 (or nd̃i + 1 if the optimal sensi-
tivity matrix is calculated using finite differences) nonlin-
ear problem(s) and nui mixed integer quadratic problems.
Furthermore, ntoti nonlinear systems of equations have to
be solved to obtain the gain matrix Gy and the distur-155

bance gain matrix Gy
d. The sampling for the calculation

of the surrogate model then consists of solving np nonlin-
ear systems of equations.

Based on the sampling domain in (5), we suggest using
as scaling matrices

Wd = diag
(

max
(
d̃i − d̃i,min, d̃i,max − d̃i

))
(17)

as this results in minimizing the loss within the surrogate
model domain. The “measurement noise” scaling matrix
should be set to the expected numerical noise in yi. If this

noise is small compared to the disturbance scaling matrix,
we can set the measurement noise scaling matrix to

Wny = wnydiag (1) (18)

where wny is small and 1 is a vector of ones with length
ny. However, two necessities arise for the parameter wny160

1. wny is large enough so that YYT in (A.8) is nonsin-
gular;

2. wny should be small compared to the entries of Wd

to reduce the effect of measurement noise in the cal-
culation of the selection matrix H.165

It is often preferable to use a block diagonal selection
matrix Hi. The advantage of a block diagonal matrix
is to reduce the computational load of adjusting the set-
points iteratively in the flowsheeting software. This corre-
sponds to Problem 3 described by Yelchuru and Skogestad170

(2012) and cannot be solved using the MIQP approach of
(Yelchuru and Skogestad, 2012) as it violates the convex
formulation theorem. However, it is possible to calculate a
“local” selection matrix Hi,l for each input ui,l using only
measurements in the vicinity of ui,l, see Appendix A.2 for175

details. The resulting block diagonal matrix is due to ne-
glecting interactions not optimal, but is sufficient for the
subsequent application. A discussion of the scaling ma-
trices and the use of a structured selection matrix Hi is
provided in Section 5.2.180

In summary, the procedure for utilizing self-optimizing
variables in the context of surrogate model generation can
be summarized as follows:

1. Set up a nonlinear problem (15) for submodel i and
identify the connection variables zk,i and yi,k.185

2. Construct the augmented disturbance vector

d̃i =

[
di
zk,i

]
and the measurement vector

yi =

xid̃i
ui


and define the sampling domain in (5) and (6).

3. Define the scaling matrices Wd and Wny , for exam-
ple using (17) and (18).

4. Solve the nonlinear problem (15) for the nominal in-
put variables and calculate the sensitivity matrix F190

either using Eq. (A.5) or through finite differences.
This requires the solution of 1 or 1+nd̃i optimization
problems, depending on the availability of analytic
expressions for Gy, Gy

d, Juu, and Jud.

5. Define the local measurements around the manip-195

ulated variables used for the calculation of the self-
optimizing variables based on the total measurement
yi.
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Fig. 4: Heat-integrated 3 bed reactor system of the ammonia syn-
thesis gas loop.

6. Define the maximum number of measurements used
for each manipulated variable ul.200

7. Calculate the optimal selection matrices Hi,l for the
different manipulated variables ui,l using the MIQP (A.9).

8. Add the linear equality constraints given by Eq. (14)
to the model gi and sample np points.

9. Construct the surrogate models g′i,k,SOC for the de-205

pendent variables yi,k as given in Eq. (8).

4. Case study - ammonia reactor

The case study is a heat-integrated ammonia reactor,
shown in Figure 4. This reactor was previously used for
stability analysis (Morud and Skogestad, 1998) and appli-210

cation of economic nonlinear model predictive control (Straus
and Skogestad, 2017a). A detailed model description can
be found in Morud and Skogestad (1998). The subscript
i is dropped in the following for the sake of simplicity.
At the steady-state optimal operation point, small distur-215

bances lead to limit-cycle behaviour and/or reactor ex-
tinction (Straus and Skogestad, 2017a). Varying the ma-
nipulated variables u individually results in creating a re-
sponse surface that includes undesirable operating regions
with reactor extinction and limit cycle behaviour. Hence,220

the response surface is complicated and it is necessary to
sample a lot of points to achieve a good surrogate model.

4.1. Model description and modification

The aim of the reactor is to maximize the conversion
per pass, which can be expressed in this example as the
extent of reaction ξ [kg/s],

ξ = ṁin (wNH3,30 − wNH3,in) (19)

Table 1: Bounds and units for the connection variables.

ṁin pin Tin wNH3,in RH2/N2,in

[kg/s] [bar] [◦C] [wt.%] [-]
Lower Bound 59.5 185 235 7 2.8
Nominal Value 70.0 200 250 8 3.0
Upper Bound 80.5 215 265 9 3.2

where ṁ [kg/s] is the mass flow and wNH3,i the ammonia
mass fraction. Correspondingly, the cost function for the
optimization problem (15), which is posed as minimization
problem, is given by

J = −ξ (20)

The equality constraints are given by the ammonia mass
balance and the energy balance described by Straus and225

Skogestad (2017a) for each CSTR j in the CSTR cascade
used to represent each reactor bed. The number of CSTRs
in each bed is n = 10.

In order to increase the applicability of the resulting
surrogate model, the hydrogen to nitrogen molar ratio is
not considered to be fixed as in (Straus and Skogestad,
2017a) and (Morud and Skogestad, 1998). Instead, the
molar ratio of hydrogen to nitrogen,

RH2/N2,j =
ṅH2,j

ṅN2,j
(21)

in each reaction section j is introduced as an algebraic
state. This results in 30 additional algebraic constraints

0 = RH2/N2,j −
ṅH2,j−1 + rH2,jmcat,j/MH2

ṅN2,j−1 + rN2,jmcat,j/MN2

(22)

in which Mi is the respective molar mass and ri,j the re-
action rate in [kg i/kgcat h].230

For this system, the independent variables are given by
the three split ratios

u =
[
u1 u2 u3

]T
(23)

which may be viewed as the real manipulated variables.
The five disturbances are the inlet conditions to the system

d̃ =
[
ṁin pin Tin wNH3,in RH2/N2,in

]T
(24)

These are the connection variables zk,i. If desired, it is
as well possible to include parameter changes as distur-
bances, for example in the reaction rate constant, but this
was not done in this case study. The bounds on the dis-
turbance variables are given in Table 1. Two output vari-
ables have to be fitted in the surrogate model. These are
the (mass) extent of reaction ξ and the outlet tempera-
ture Tout. The outlet ratio RH2/N2,out can be calculated
through the respective outlet molar flows ṅi,out which in
turn are calculated from exact mass balances using ξ. This
furthermore guarantees mass conservation in the resulting
surrogate model. To summarize,

yi,k =

[
ξ

Tout

]
(25)
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The system was modelled using CasADi (Andersson,
2013) and optimized using IPOPT (Wächter and Biegler,
2006).

4.2. Application of SOC

As nu = 3, three SOC variables c = Hy have to be ob-
tained. We want to use local variables for each reactor bed
to simplify the calculations when using a flowsheet simu-
lator. Hence, the MIQP approach in (A.9) as proposed
by Yelchuru and Skogestad (2012) is applied individually
for each bed resulting in a block diagonal matrix given by

H =

H1 0 0
0 H2 0
0 0 H3

 (26)

In order to have a small number of measurements, we con-
sider for each bed ny = 1 and ny = 2. This is compared
to a more intuitive control structure, where the the inlet
temperatures (In) as well as the inlet and outlet tempera-
tures of the respective beds are used (In,Out). The scaling
matrix Wd according to Eq. (17) and Table 1 is

Wd = diag
([

10.5 15 15 1 0.2
])

(27)

whereas the parameter wny in the calculation of Wny is235

selected as wny = 10−3.
The candidate measurements for the MIQP approach

are

y1 =

[
TIn,1
T1:10

]
for Bed 1, u1 (28)

y2 =

[
TIn,2
T11:20

]
for Bed 2, u2 (29)

y3 =

[
TIn,3
T21:30

]
for Bed 3, u3 (30)

Therefore, each of the three selection matrices considers
11 measurements. The mass fraction measurements wNH3

would not be viable measurements for control purposes.
However, in the case of surrogate model generation, they
can still be used. We found that including the mass frac-
tions in the measurements did not change the selected
subset of measurements. Hence, the mass fractions are
excluded in the candidate measurements. The optimiza-
tion problem (A.9) was solved using m = 100 in the big-m
approach of Eq. (A.11). The solution to the problem with
one measurement (ny = 1, MIQP1) for each bed gives as
chosen measurements:

Bed 1: T9 Bed 2: T18 Bed 3: T25 (31)

The solution to the optimization problem (A.9) with ny =
2 is given in Table 2 (MIQP2). Similar to the results
reported by Yelchuru and Skogestad (2012), the chosen
measurements change depending on the chosen number of240

measurements ny. That means that a measurement which
is optimal with only one measurement is not necessarily
included with two measurements.

Table 2: Optimal selection matrix for a fixed selection (In,Out) as
well as the optimal measurement subset for each input and the cor-
responding optimal selection matrix Hi with ny = 2 (MIQP2).

Chosen Variables Selection Matrix Hi

In
,O

u
t Bed 1 TIn,1, T10

[
0.067 −1.000

]
Bed 2 TIn,2, T20

[
0.098 1.000

]
Bed 3 TIn,3, T30

[
1.000 0.721

]

M
IQ

P
2 Bed 1 T4, T6

[
0.952 −1.000

]
Bed 2 TIn,2, T11

[
0.982 −1.000

]
Bed 3 T28, T30

[
1.000 −0.994

]

Table 3: Estimation error ε with fixing the three SOC variables using
different selection matrices H.

H definition
Extent of Reaction ξ Outlet Temperature Tout

max |ε| |ε| max |ε| |ε|
In 4.353 % 0.742 % 8.00 K 1.457 K

In,Out 0.540 % 0.092 % 1.02 K 0.184 K
MIQP1 0.211 % 0.027 % 0.41 K 0.055 K
MIQP2 0.022 % 0.003 % 0.04 K 0.005 K

4.3. Fitting of the surrogate model

The surrogate models are cubic B-splines fitted through245

the application of the SPLINTER library (Grimstad et al.,
2015), which requires a regular grid in the independent
variables c (which here replace u) and d̃. In this case
study, the overall cost function is minimized by optimiz-
ing locally the degrees of freedom (c = Hy), that is, the250

local cost Ji is equal to the global cost J , so it is not neces-
sary to include the setpoints cs as degrees of freedom as it
normally would be. The regular grid is given by four points
for each of the varied variable d̃, ṁin, pin, Tin, wNH3,in,
and RH2/N2,in. This results in np = 45 = 1024 sampling255

points. The advantage of using B-splines of order two or
higher is that it gives continuity of the first derivative of
the surrogate model. This gives advantages for the sub-
sequent optimization. If self-optimizing variables are not
used, we would need to consider all variables (d̃ and u)260

simultaneously giving 48 = 65536 sampling points. Alter-
natively, other surrogate model structures like Kriging or
the ALAMO approach (Cozad et al., 2014) could be used.

4.4. Evaluation of the surrogate model performance

The resulting surrogate models for the outlet tempera-265

ture Tout and ξ were evaluated using 5000 randomly sam-
pled validation points. These validation points are the
optimal response surface for this model. This implies that
the surrogate model may theoretically give perfect fit for
the self-optimizing variables response surface. However,270

this is only of minor interest as the aim of the surrogate
model is to utilize it in further optimization.

In order to compare the different methods, the maxi-
mum absolute error max |ε| and the mean absolute error
|ε| are calculated with respect to the optimal response sur-
face. The results of the four different combination matri-
ces can be found in Table 3. We can see that arbitrarily
chosen measurements (In and In,Out) do not necessarily

6



result in a good surrogate model fit. Using only the three
inlet temperatures (In) results in a training space with in-
feasible points. For example, two of the split ratios are
negative for

d̃ =
[
80.5 185 235 9 2.8

]T
(32)

Adding the outlet temperature of each bed to the selected
measurements (In,Out) reduces the error by one order of
magnitude. Furthermore, all points in the training space275

are feasible. Selecting only one optimal measurement in
each bed (MIQP1, see (31)) reduces the error by more than
a factor two compared to using two “arbitrary” measure-
ments (In,Out) in each bed. Finally, increasing the num-
ber of measurements in the MIQP approach from ny = 1280

(MIQP1) to ny = 2 (MIQP2) in each bed gives a further
decrease by one order of magnitude. This shows that it is
important to select the best measurements. Otherwise, the
resulting surface is more complicated and it may be even
necessary to reduce the sampling space to avoid sampling285

infeasible points.
Importantly, the resulting response surface is simple.

To show this, the surrogate models were validated using
a response surface created through incorporation of con-
straints (14). The comparison to this validation space re-290

sults in a maximum absolute error for the surrogate model
using the inlet temperatures (In) of 0.37 % in ξ and 0.7 K
in Tout. Compared to the optimal response surface, this
error is one order of magnitude smaller. In comparison,
with the MIQP approach with ny = 2 (MIQP2), the max-295

imum absolute error is given by 0.001 % in ξ and 0.001 K
in Tout. This indicates, that the resulting response surface
is indeed simpler and it is possible to reduce the number of
sampling points. Using instead quadratic B-splines with
three points for each variable d̃ , np = 53 = 243 points300

have to be sampled. The maximum absolute error is then
given by 0.01 % in ξ and 0.02 K in Tout which is still below
the error of using the inlet temperatures with 4 points for
each variable.

Sampling the space without variable transformation,
i.e. selecting c = u, is not advisable for this case study.
First, as already mentioned, it would require the sampling
of much more sampling points. In addition, the resulting
surface is more complicated. To illustrate this, consider
the case when all disturbance variables are at their lower
bound (Table 1)

d̃ =
[
59.5 185 235 7 2.8

]T
(33)

and the manipulated variables are fixed at their nominal305

optimum (u = uopt

(
d̃nom

)
). In this situation, the reactor

is extinct. Hence, using the split ratios u as independent
variables would require the mapping of regions in which
the reactor is extinct as well as crossing the limit-cycle
region (Morud and Skogestad, 1998). This region is exem-310

plified in Figure 5 where the inlet pressure is at its lower
bound and the other disturbances at their nominal value.

Fig. 5: Outlet temperature of Bed 3 with a pressure drop of ∆pin =
−15 bar at t = 10 min with a constant input u at the optimal point.

We can see that the system displays limit-cycle behaviour
and it is not possible to define a steady-state value for this
operating point. However, these regions are not impor-315

tant for the subsequent optimization, and hence, should
not be sampled. These regions are avoided through the
application of self-optimizing variables.

5. Discussion

5.1. Advantages of the proposed method320

The proposed utilization of self-optimizing variables
to map the optimal response surface is a promising new
method in the generation of surrogate models. The main
advantages are given by

1. A response surface which is close to the optimal re-325

sponse surface but does not require the solution of a
large number of nonlinear problems;

2. Potentially a reduced number of sampling points com-
pared to sampling with the original independent vari-
ables.330

This allows us to sample only regions we are interested in,
and to neglect regions that are not encountered in prac-
tice. In the case study, it is in fact not possible to use the
original inputs ui (split ratios) as independent variables.
Thus, a variable transformation would be required inde-335

pendently of the application of self-optimizing control. For
example, one could use the variable transformation utiliz-
ing the existing control structure as proposed by Straus
and Skogestad (2016). If it is necessary to have surrogate
models for other states than the dependent variables yi,k,340

it is possible to calculate them as well, e.g. for the actual
split ratios ui or for additional potential measurements.
In certain cases, as for our case study, it is as well feasible
to reduce the number of independent variables.

An alternative to utilizing self-optimizing variables is
to directly sample the optimal response surface given by

g′i,opt : {d̃i} 7→ yi,k (34)
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This approach is however computationally expensive. It345

would require the solution to np nonlinear problems whereas
in the application of the proposed method, only nd̃+1 have
to be solved in the calculation of the optimal sensitivity
matrix F. In addition, this approach does not allow for
having the set points cs as degree of freedom for solving350

the overall optimization problem as it is allowed with sur-
rogate model (8).

Certain limitations of the proposed method can be
identified and need to be addressed.

5.2. Practical use of the proposed method355

A first important point is the selection of the distur-
bance and measurement scaling matrices, Wd and Wny .
These matrices will influence the performance of the re-
sulting surrogate model. The 2-norm is used for scaling
of the disturbances and measurement noises as we can see360

in Eq. (A.7). This implies that all disturbances and mea-
surement noises may not be at their upper or lower limit
simultaneously. In the case of control, this seems reason-
able and a detailed discussion for using the 2-norm is given
by Halvorsen et al. (2003). However, this is not the case,365

if we want to use the self-optimizing variables in the cal-
culation of surrogate models. We actually want to sample
these so-called corner points to avoid extrapolation. The
best would be to use another norm, for example the 1-
norm, but it can be partly circumvented by multiplying370

Wd by
√
nd̃.

A second important point relates to the selection of the
“measurements” y as they influence the loss when distur-
bances are present. In the case of surrogate model gen-
eration, the measurements do not need to be actual mea-
surement as it is in the control application of SOC. Hence,
it is possible to extend the measurements to states that
are generally not considered as they are hard to measure,
e.g. concentrations. As a result, the number of possible
measurements nytot can be high. This requires the ap-
plication of the MIQP approach as developed by Yelchuru
and Skogestad (2012) and described in Appendix A.2. Un-
fortunately, the MIQP approach for measurement selection
does not handle structural zeros in the selection matrix H.
The reason is that the the convex reformulation for obtain-
ing the optimization problem (A.3) does not hold in this
case as a pre-multiplication of H with a non-singular ma-
trix Q will not preserve the structure of H. Consequently,
it is necessary to minimize the nonlinear loss expression

L =
1

2

∥∥∥J1/2
uu (HGy)

−1
HY

∥∥∥2
F

(35)

This optimization could be performed using a global non-
linear mixed integer optimization solver like BARON (Tawar-
malani and Sahinidis, 2005) or ANTIGONE (Misener and
Floudas, 2014). Unfortunately, there are no simple meth-375

ods for solving this problem in a convincing way as high-
lighted by Jäschke et al. (2017). The development of an
approach to include structural zeros is not the scope of this

paper and will therefore not be discussed further. When
we used alternatively a full selection matrix H, we found380

that complicated adjustments in the flowsheet solver oc-
curred. The proposed “local” approach and the result-
ing block diagonal selection matrix does not guarantee the
optimal measurement combination in the combined mea-
surement matrix and may lead to cases, where problems385

may arise. However, it is not possible to generalize when
problems may occur and when not.

5.3. Number of independent variables

It is in general not possible to say, when the application
of self-optimizing variables allows a reduction in the num-390

ber of independent variables. There are however certain
conditions, which have to be fulfilled as it is the case in
the case study. One prerequisite is that the cost function
Ji corresponds to the overall cost function J . In addition,
it is necessary that the cost function is flat with respect395

to the self-optimizing variables as it was already stated
by Skogestad (2000). The simpler response surface as aim
of the introduction of self-optimizing variables is still likely
to hold, independently of whether it is possible to reduce
the number of independent variables. Especially if there400

are many disturbances (or connection variables), this may
give a much simpler surrogate model which requires fewer
sampling points to get a desired accuracy, as in the case
study.

5.4. Application in flowsheeting software405

The application of self-optimizing variables ci in flow-
sheeting software can be difficult. It requires the use of ad-
ditional equality constraints which can cause problems be-
cause it may require many iterations in sequential-modular
simulators. As a result, the computational expense is in-410

creased. Hence, we proposed to use a structured selection
matrix Hi with measurements in the vicinity of the re-
spective manipulated variables. The variables ci are then
more decoupled and it is not necessary to converge the
complete flowsheet for each adjustment. This problem is415

less pronounced in equation-oriented simulators. There,
the application of surrogate model-based optimization re-
sults in smaller models, and hence, a simpler initialization
of the models. The application of self-optimizing variables
will then only increase the number of equality constraints.420

5.5. Local cost function

The application of self-optimizing variables requires the
definition of a local cost Ji corresponding to the overall
cost J . This is possible for the investigated case study
as it is general advantageous to maximize the conversion425

per pass of a chemical reactor. If this is not the case,
the self-optimizing variables must be obtained using the
overall cost and optimization problem (1). In the investi-
gated case study, the introduction of an additional heat-
exchanger with external cooling duty would for example430

complicate the cost function as there is no direct cost
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linked to the conversion per pass. This brings us back
to the starting point of the application of surrogate model
generation and is similar to the “hen and egg” problem.
If it is not possible to optimize the overall flowsheet, how435

can we then calculate the self-optimizing variables for each
submodel gi?

One approach to achieve this is the utilization of a
simplified overall model for the calculation of the self-
optimizing variables. These can then be used in the gener-440

ation of the surrogate models for the submodels. In addi-
tion, this would require the incorporation of the setpoints
cs of the self-optimizing variables into the sampling do-
main as they do not correspond to the actual optimal val-
ues due to the simplified overall model. The advantage445

here is the simplified response surface. Another approach,
which is is probably better, is to define a reasonable local
cost function, for example, based on physical arguments.

5.6. Manipulated variables and disturbances affecting sev-
eral submodels450

As mentioned in Section 2, it possible that disturbances
and manipulated variables affect several submodels. This
can include, for example, a disturbance in the cooling wa-
ter temperature or if several compressors are connected to
the same turbine shaft. This leads to the question if we455

can apply the procedure in these cases as well.
On one hand, it is not a problem with a disturbance

affecting several submodels. The reason is that the distur-
bances are included as independent variables in the surro-
gate model generation (see Eqs. (8) and (2)). Therefore,460

the connection of the submodels for optimization will pro-
vide to all surrogate models the same disturbance value.

On the other hand, manipulated variables u∗i , which
affect several submodels, have to be handled more care-
fully. Due to the variable transformation, it is not possible
to calculate self-optimizing variables for these manipulated
variables in each submodel. Instead, the manipulated vari-
ables must be assigned to one submodel. In addition, it is
required in this submodel to fit a surrogate model

g′ui : {d̃i, ci} 7→ u∗i (36)

to calculate the value of u∗i . This value is then used as
connection variable in the other submodels that contain
u∗i as independent variable.465

It has to be noted that it is more common in chemical
process that disturbances affect several submodels. Fur-
thermore, the developer of the surrogate models can decide
to include all unit operations with the same manipulated
variables u∗i into one submodel. Then, it is not necessary470

to fit a surrogate model (36) to the manipulated variables
u∗i .

5.7. Alternative approaches for independent variable re-
duction

Self-optimizing control is a “direct” approach that ap-475

plies optimization explicitly in the calculation of the op-

timal sensitivity matrix F. There exist several other ap-
proaches for optimization in the context of real-time op-
timization with parameter uncertainty. One “indirect” ap-
proach is (adaptive) directional modifier adaptation (Costello480

et al., 2016; Singhal et al., 2017). This approach utilizes
the conditions of optimality expressed by the derivative of
the Langrangian with respect to the inputs and parameters
instead of using optimization explicitly for variable reduc-
tion. Through the application of singular-value decompo-485

sition to the derivative of the Lagrangian, it is possible to
identify input directions in which the cost function is sensi-
tive with respect to the uncertain parameters. In the case
of surrogate model generation, the uncertain parameters
would correspond to the augmented disturbances.490

Using directional derivatives is advantageous in com-
parison to the proposed procedure using self-optimizing
variables if there are many input connection streams, and
hence, the number of independent variables is very large.
In this situation, it may not be possible to calculate the495

optimal sensitivity matrix F explicitly and a reduction in
independent variables may be necessary.

6. Conclusion

Combining principles from control theory and surro-
gate modelling, a new method was developed to simplify500

the structure of surrogate models. The main idea is to
replace the original independent variables ui by a better
set ci using the approach of self-optimizing control, see
Section 3.2 for details. This approach allows for omitting
regions in which the submodel is suboptimal, for example505

because a reactor is extinct. In addition, it may in some
cases result in fewer independent variables.

Appendix A. Previous results on self-optimizing con-
trol

Consider the following optimization problem

min
x,u

J (x,d,u)

s.t. 0 = g (x,d,u)

0 ≥ h (x,d,u)

(A.1)

For example, this could be the local optimization prob-
lem in (15), but with subscript i omitted. The aim of
self-optimizing control is to identify controlled variables c
which, when kept constant, result in a minimum loss in
the presence of disturbances (d). Frequently, linear com-
binations of measurements y are used

c = Hy (A.2)

where H ∈ Rnu×ny is a combination matrix. The question510

is: how can we identify the optimal selection matrix and
correspondingly the self-optimizing variables? A detailed
review answering this question can be found in Jäschke
et al. (2017).
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Appendix A.1. Summary of self-optimizing control approaches515

for obtaining H

The optimal selection matrix H as introduced in Eq. (A.2)
that minimizes the expected value of |J (c,d)− Jopt (d)|
can be calculated using the nullspace method (Alstad and
Skogestad, 2007) or the exact-local method (Alstad et al.,
2009). The latter is given by the solution to the following
optimization problem

min
H

∥∥HY
∥∥
F

s.t. HGy = J1/2
uu

(A.3)

with Gy ∈ Rny×nu representing the measurement gain
matrix with respect to the input u. Y is given by

Y =
[
FWd Wny

]
(A.4)

The optimal sensitivity matrix F = ∂yopt

∂d can be calculated
as

F = −
(
GyJ−1uuJud −Gy

d

)
(A.5)

where Juu ∈ Rnu×nu is the Hessian of the cost function,
and Jud ∈ Rnu×nd which is the second order derivative of
J with respect u and d. Alternatively, if it is not possible
to easily obtain the analytic matrices of the cost function
Juu and Jud, the optimal sensitivity matrix F can also
be calculated using finite differences. This results in nd
additional optimization problems. Wd and Wny are the
disturbance and measurement noise scaling matrices given
by

∆d = Wdd
′; ny = Wnyny′

(A.6)

The vectors d′ and ny′
are assumed to satisfy∥∥∥∥[ d′ny′

]∥∥∥∥
2

≤ 1 (A.7)

Thus, Wd and Wny represent the magnitude of the ex-
pected variations in d and y. The solution to problem (A.3)
when H is a full matrix is (Yelchuru and Skogestad, 2012):

HT =
(
YYT

)−1
Gy (A.8)

Appendix A.2. Measurement selection for H

It is in general desirable to use few measurements y.
In order to select the an optimal subset of measurements
ny, Yelchuru and Skogestad (2012) developed a mixed in-
teger quadratic programming approach. It requires the
reformulation of the problem given in Eq. (A.3) in vector-
ized form:

min
hδσδ

hT
δFδhδ

s.t. Gy
δ
T
hδ = jδ

nytot∑
k=1

σk = ny

(A.9)

where σk ∈ {0, 1} with k = 1 . . . nytot are binary variables
to indicate, whether measurements are used in the selec-
tion matrix. The quadratic cost term is given by

Fδ = YδY
T
δ (A.10)

and is block diagonal. The same holds true for Gy
δ
T

whereas
hδ and jδ are a vectorized form of H and Juu respectively.
Further constraints have to be imposed on hδ to guarantee
that hjk = 0 for σk = 0 and input uj and measurement
yk. In this problem, the big-m approach is chosen. This
results in bounds for the entries in the selection matrix H
given by

−


m
m
...
m

σk ≤

h1k
h2k

...
hnuk

 ≤

m
m
...
m

σk, ∀k ∈ 1, 2, . . . , nytot

(A.11)
For a detailed description and derivation of the MIQP ap-
proach for measurement selection, the reader is referred
to Yelchuru and Skogestad (2012).520
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