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Abstract

This master’s thesis is focussed around investigating
Massey products as tools for studying properties of links,
in particular the Brunnian property.
In the literature, there are only a few examples of the
Massey product being used to study linking, none of which
has any emphasis on links with the Brunnian property,
except for computations for the Borromean rings.
The result of the work is a number of thorough computa-
tions of Massey products in link complements, with the
negative conclusion that the Massey product does not
detect the Brunnian property.

Sammendrag

Denne mastergradsavhandlingen har Massey-produkter
som sitt hovedfokus, med det mål å studere egenskaper
hos lenker, spesielt den såkalte Brunniske egenskapen.
I litteraturen finnes der bare noen få eksempler hvor
Massey-produktet blir brukt til å studere lenker, ingen
av disse har imidlertid vekt på den Brunniske egenskapen,
bortsett fra noen beregninger gjort for de Borromeiske
ringer.
Resultatet av arbeidet er et antall grundige utregninger
av Massey-produktet i lenkekomplementer, dog med den
negative konklusjon at Massey-produkter ikke er i stand
til å oppdage den Brunniske egenskapen.
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Preface

This thesis is the result of work done under supervision of Prof. Nils
Baas and Dr. Andrew Stacey for the course “TMA4900: Master thesis
in mathematics” in the spring term of 2012 at NTNU - the Norwegian
University of Science and Technology. The workload is considered to be
equivalent to one semester of full-term studies.
The initial goal for the work leading up to this thesis was gaining a

familiarity with Massey products and how they can detect non-trivial
linking properties of first order links and then find a way to produce
analogous kinds of products detecting higher order linking, in the sense
described in [Baa10].
Surprisingly, it turned out that the triple Massey product does not

detect the non-trivial linking in the Brunnian 3-link, which is one of the
prototypical examples of first order links, so instead of extending a tool
that does not seem to do what I had expected, I decided turn the focus
to deciding which kind of linking it does detect. This resulted in a quite
large number of computations, culminating in the conclusions that higher
Massey products detect the linking inherent in the Brunnian chains but
not in the Brunnian rings.
This negative result opens up interesting alleys of investigation, as it

seems that new ideas might be necessary to tackle the problem. It also
leaves open the question of which specific property or properties of a link
the Massey products do detect, as it is not the Brunnian property.

All figures in thesis are made using TikZ, a high level macro language
using the lower-level language of PGF. I have made extensive use of the
package brunnian written by my adviser Andrew Stacey, who has also
been very helpful in explaining how to use the package for creating Figures
3.5 through to 3.9, as well as providing the code for making Figure 3.2
and the image on the cover.

During the entire endeavour that writing a master thesis is, I have had
the pleasure of working alongside my costudent and good friend Roar
Bakken Stovner. Being able to spar about mathematical ideas as well as
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exposition and language with him has improved not only this thesis but
also my general appreciation and proficiency in mathematics.
I would like to thank my advisers Nils and Andrew for an interesting

thesis problem, stimulating discussions and general help and guidance
concerning both small and bigger problems I have encountered during
the work. They have also provided helpful and sound career advice.
I have very much enjoyed working on this project and I look forward

to continuing this study as a Ph.D. student under their supervision.

Truls Bakkejord Ræder, Trondheim, June 18, 2012
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0 Introduction

The aim of this thesis is an investigation into Massey products with
particular focus on their use as tools to detect higher order linking, such
as is inherent in families of the Brunnian links described in [Baa10].
The sources providing the main inspiration for this thesis are the

articles [Baa10] by Baas, [Mas69] by Massey, [UM57] by Massey and
Uehara and [O’N79] by O’Neill; and the book [GM81] by Griffiths and
Morgan. In addition to this, a number of sources has been used as
background material, most notably Bott and Tu’s [BT82] and Hatcher’s
[Hat02].
The parts of this thesis which, to best of the author’s knowledge,

are novel are contained in Chapter 3, more specifically Section 3.4 to
Section 3.8. In these sections we compute Massey products in the com-
plements of links not previously described in the literature.
The contents of the thesis are divided into three chapters, about

the necessary algebro-topological tools, the Massey product itself, and
computations.
The first chapter introduces both the absolute and relative singular

homology and cohomology theories and dualities between them, as well
as the additional structure of cup products on cohomology. Furthermore,
we compute these in the cases of complements of links in the three-sphere.

The second chapter contains a detailed description of the Massey triple
product, including proofs of its well-definedness, naturality and homotopy
invariance; its indeterminacy and a sample computation. There is also a
discussion on generalisations of the triple product to higher products, as
well as some indications of how the Massey products are related to other
parts of mathematics.
The third chapter switches focus from singular theories to de Rham

theory, with which we compute a number of a triple and higher order
products in the complements of the Borromean rings, Brunnian links and
Brunnian chains.
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1 Singular homology and
cohomology

This chapter is devoted to introducing the theory of singular homology
and cohomology which is necessary to define the Massey product. We
will have a particular focus on the cup product, since it is essential to the
definition of the Massey products, but we will also discuss the associated
relative theories and duality theorems, which are helpful in the concrete
computation of the product.

We will mostly take for granted the part of the machinery that is purely
homological-algebraic in nature.

Throughout the thesis we shall use the Borromean rings as a motivating
and illustrating example, see Figure 1.1.

1.1 Construction
This section contains a short introduction to singular homology and
cohomology. We do this first and foremost in order to fix notation, but
also to have a setup for the later sections and an example of a differential
graded associative algebra, for which we can define Massey products.

Figure 1.1: The Borromean rings
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1 Singular homology and cohomology

1.1.1 Singular homology
We start by defining singular simplices and chains on topological spaces
and then linear functionals, or cochains, on these chains, and proceed by
giving the sets of such chains and cochains more structure.

Definition 1.1.1. The standard n-simplex ∆n is the set of points
∆n =

{
(x0, . . . , xn) ∈ Rn+1 : xi ≥ 0,

∑
xi = 1

}
. y

The low dimensional examples are a point, a line segment, a solid
triangle and a solid tetrahedron.

Remark. We could also define this as the affine hull of the points vi =
(0, . . . , 1, . . . , 0) ∈ Rn+1, with 1 in the ith place. In this case, we denote
the simplex by the alternative notation [v0 · · · vn]. Each notation has
their own merits, as we will see throughout this chapter.

Definition 1.1.2. Let X a topological space. A singular n-simplex on
X is a continuous function c : ∆n → X. y

For n ∈ N, we denote the free abelian group generated by singular
n-simplices on X by Sn(X), elements of which are called n-chains.
To make this collection of groups into a chain complex we define a

special kind of function on chains, namely face maps. These are maps of
degree −1 on the chain complex.
Intuitively the face maps restrict an n-chain to one of its faces, an

(n − 1)-chain, but the covariance forces us to define a map from an
(n− 1)-simplex to an n-simplex.

In the literature, there seems to be some minor technical issues with
defining the face maps for the standard simplices which are swept under
the carpet, typically that the (n − 1)-simplices involved are not the
standard (n− 1)-simplex, so here we shall write it out in full detail.
Let ϕi : [v0 · · · vn−1]→ [v0 · · · vi−1 0 vi+1 · · · vn−1] be the obvious map

of sets preserving the ordering of the vertices.
Furthermore, let d′i : ∆n → ∆n be defined as a map of sets:

d′i([v0 · · · vn]) = [v0 · · · vi−1 0 vi+1 · · · vn] ⊂ [v0 · · · vn],

by the following pointwise operation for (t0, . . . , tn) ∈ ∆n:

d′i((t0, . . . , tn)) = (t0+ti/n, . . . , ti−1+ti/n, 0, ti+1+ti/n, . . . , tn+ti/n, ).

4



1.1 Construction

We can then form the composition

d′i ◦ ϕi : ∆n−1 → ∆n

which has the correct domain and codomain.
This puts us in a position where we are able to rigorously define the

sought-after maps.

Definition 1.1.3. The ith face dic of an n-simplex c : ∆n → X is the
composition dic = c ◦ d′i ◦ ϕi. We extend to chains by linearity. y

Note. Compositions of face maps are also called face maps.
The key to making {Sn(X)}n∈N into a chain complex is the boundary

map ∂, defined using the face maps:

Definition 1.1.4. The singular boundary map ∂n is given by the
formula ∂n =

∑n
i=0(−1)idi, as an operator on n-chains, for n ∈ N. y

We will most often denote ∂n by ∂.

Proposition 1.1.1. The map ∂2 vanishes, making ∂ a differential.

We call chains in the kernel of ∂ cycles and chains in the image of ∂
boundaries.
We denote the resulting chain complex (S∗(X), ∂) by S•(X), the sin-

gular chain complex of X.

Definition 1.1.5. The nth singular homology of X is the quotient group

Hn(X) =
ker ∂n : Sn(X)→ Sn−1(X)

im ∂n−1 : Sn+1(X)→ Sn(X)
,

of cycles modulo boundaries. y

1.1.2 Singular cohomology
We now describe the associated cohomology theory to singular homol-
ogy. Later, we will make critical use of dualities relating these theories.
Another advantage is that the direct sum of the cohomology groups can
always be made into a ring, or even a module over a algebra.

With the definitions of the preceding subsection at hand, we can give
the following definition of cochains.

5



1 Singular homology and cohomology

We let Sn(X) = hom(Sn(X),Z) and define the coboundary map δ to
be the dual of ∂, in the following sense: Let u be a cochain and σ a chain
of appropriate degrees, then we define δ by the relation:

(δu)(σ) = u(∂u).

The fact that δ is a differential follows directly from the fact that ∂ is a
differential.

Definition 1.1.6. The elements of Sn(X), which are Z-linear maps
u : Sn(X)→ Z, are called singular n-cochains. y

Analogously to the terminology above, we call cochains in the kernel
of δ cocycles and cochains in the image of δ coboundaries.
We then arrive at the definition of the corresponding

Definition 1.1.7. The nth singular cohomology of X is the quotient
group

Hn(X) =
ker δn : Sn(X)→ Sn+1(X)

im δn−1 : Sn−1(X)→ Sn(X)

of cocycles modulo coboundaries. y

Note. We will freely use the terminology of category theory, describing
Hn(•) and Hn(•) as sequences of functors from some sufficiently nice
category of spaces into the category of abelian groups. When we have
defined a product, the former sequence will be regarded as a functor to
the category of graded rings.

1.2 Cup product
The aim of this section is to define the cup product of cohomology classes
as well as to emphasise and prove important properties that we will make
use of later. We do this by first defining cup product on the level of
cochains and then showing that it descends to a product in cohomology,
finally we show that it is commutative.

Before proceeding with this section, it will be useful to introduce some
additional notation for working with chains. For ij ∈ {0, . . . , p} with j ∈
{0, . . . , k}, let ıi0,...,ik : ∆k → ∆p be the composition of the appropriate
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1.2 Cup product

map taking the standard k-simplex to the k-simplex [vi0 . . . vik ] and the
inclusion of the standard k-simplex into the standard p-simplex. As in
the previous section, we require that the former map in the composition
preserve the ordering of the vertices.
For any p-simplex σ : ∆p → X, we can then define another k-simplex

σi0,...,ik : ∆k → X as the following composition:

σi0,...,ik = σ ◦ ıi0,...,ik ,

and extend to S•(X) by linearity.
In particular, if σ is a p-simplex then σ0,...,p = σ.

1.2.1 Definition and basic properties

This subsection introduces the cup product and proves basic yet important
properties of the cup product, such as associativity, Leibniz’ rule and
existence of an identity element.
We will first define cup product on the cochain level.

Definition 1.2.1. Let u ∈ Sp(X) and v ∈ Sq(X) be cochains. Being
cochain, and hence linear functionals, we can define the cup product
u ^ v of these two cochains by how it acts on chains: We demand that
the identity

(u ^ v)(σ) = u(σ0,...,p) ·Z v(σp,...,p+q)

hold for each (p+ q)-chain σ ∈ Sp+q(X). y

Hereafter we will not specify that the product is in Z.
We note that the identity with respect to this multiplication is the

cochain 1 ∈ hom(S∗(X),Z) taking the value 1 ∈ Z on all generating
chains of degree 0.

Since cochains are linear functionals and Z-multiplication is distributive
we get distributivity of the cup product for free.

Proving associativity is also easy, as shown by the following computa-
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1 Singular homology and cohomology

tion:

((u ^ v) ^ w) (σ) = (u ^ v)(σ0,...,p+q) · w(σp+q,...,p+q+r)

= (u(σ0,...,p) · v(σp,...,p+q)) · w(σp+q,...,p+q+r)

= u(σ0,...,p) · (v(σp,...,p+q) · w(σp+q,...,p+q+r))

= u(σ0,...,p) · (v ^ w)(σp,...,p+q+r)

= (u ^ (v ^ w)) (σ).

Since σ was arbitrary, we have the following identity of cochains:

(u ^ v) ^ w = u ^ (v ^ w).

We proceed by showing that the product on the level of cochains
descends to a Z-bilinear product in cohomology.

To show this we need to establish a formula for the interaction between
the differential and the product.

Lemma 1.2.1. For all cochains u ∈ Hp(X) and v ∈ Hq(X) the cup
product ^ satisfies the Leibniz rule with respect to δ:

δ(u ^ v) = δu ^ v + (−1)pu ^ δv. (1.1)

Proof. Each side of Equation 1.1 is a linear functional on chains, so to
prove the lemma we show that they act identically. This means that for
all chains σ ∈ Sp+q+1(X) we want to show the following:

δ(u ^ v)(σ0,...,p+q+1) = (δu)(σ0,...,p+1) · v(σp+1,...,p+q+1)

+ (−1)pu(σ0,...,p) · (δv)(σp,...,p+q+1).

We do this by computing the expressions ((δu) ^ v)(σ), (u ^ (δv))(σ)
and δ(u ^ v)(σ), and then comparing the results.
We start with the first one:

((δu) ^ v)(σ) = (δu)(σ0,...,p+1) · v(σp+1,...,p+q+1)

= u(∂σ0,...,p+1) · v(σp+1,...,p+q+1)

= u

(
p+1∑
i=0

(−1)idi(σ0,...,p+1)

)
· v (σp+1,...,p+q+1)

=

p+1∑
i=0

(−1)iu (di(σ0,...,p+1)) · v (σp+1,...,p+q+1)

8



1.2 Cup product

and continue with the second one:

(u ^ (δv))(σ) = u(σ0,...,p) · (δv)(σp,...,p+q+1)

= u(σ0,...,p) · v(∂σp,...,p+q+1)

= u(σ0,...,p) · v

q+1∑
j=0

(−1)jdj(σp+1,...,p+q+1)


=

q+1∑
j=0

(−1)ju(σ0,...,p) · v (dj(σp,...,p+q+1))

=

p+q+1∑
i=p

(−1)i−pu(σ0,...,p) · v (di−p(σp,...,p+q+1))

Now we look at the terms occurring twice, namely those for which in the
first (expression) i = p+ 1 and in the second i = p:

(−1)p+1u (dp+1(σ0,...,p+1)) · v (σp+1,...,p+q+1)

= (−1)p+1u(σ0,...,p) · v(σp+1,...,p+q+1). (1.2)

Similarly, multiplying by the sign needed later:

(−1)p(−1)p−pu(σ0,...,p) · v(dp−p(σp,...,p+q+1))

= (−1)pu(σ0,...,p) · v((σp+1,...,p+q+1)). (1.3)

So they differ only by a sign and will cancel when added.
Finally, the third expression is computed as follows:

δ(u ^ v)(σ) = (u ^ v)(∂(σ))

= (u ^ v)

(
p+q+1∑
i=0

(−1)idi(σ)

)

=

p+q+1∑
i=0

(−1)i(u ^ v) (di(σ)) (1.4)

9



1 Singular homology and cohomology

We go on to manipulate the sum of Equation 1.2 and Equation 1.3:

((δu) ^ v)(σ) + (−1)p(u ^ (δv))(σ)

=

p+1∑
i=0

(−1)iu (di(σ0,...,p+1)) · v (σp+1,...,p+q+1)

+

p+q+1∑
i=p

(−1)iu(σ0,...,p) · v (di−p(σp,...,p+q+1))

=

p∑
i=0

(−1)iu (di(σ0,...,p+1)) · v (σp+1,...,p+q+1)

+

p+q+1∑
i=p+1

(−1)iu(σ0,...,p) · v (di−p(σp,...,p+q+1))

=

p+q+1∑
i=0

(−1)i(u ^ v) (di(σ)) (1.5)

We see that Equation 1.4 and Equation 1.5 are equal, hence we have
established the Leibniz rule.

We go to show how to get a product in cohomology from this product
on cochains.

Assume that u and v represent the cohomology classes [u] and [v]. In
particular, u and v are cocycles, so δu and δv are zero. It follows by
Leibniz’ rule that δ(u ^ v) is also zero, hence u ^ v is a cocycle.
This allows us to define the cup product of cohomology classes as

follows:

Definition 1.2.2. Let [u] and [v] be cohomology classes in H•(X),
then the cup product is given by [u] ^ [v] = [u ^ v]. y

Lemma 1.2.2. The cup product ^ descends to a well-defined product
on H•(X), making it a graded ring with unity.

Proof. We need to check that the product is well-defined, which we do
by choosing other representatives for [u] and [v]: If u and u′ differ by a
boundary, say δw, then

u ^ v − u′ ^ v = (u− u′) ^ v = (δw) ^ v = δ(w ^ v),

10



1.2 Cup product

hence u ^ v and u′ ^ v coincide in cohomology. The calculation for the
second factor is analogous, proving that the product is well-defined on
cohomology.

Furthermore, the class of 1, [1], is the multiplicative identity on H•(X).
To prove this, we start by showing that 1 descends to cohomology: The
cochain δ1 acts on elements of S1(X) so we pick a generator σ : ∆1 → X
and calculate the action of δ1 on it:

(δ1)(σ) = 1(∂σ) = 1(σ(1)− σ(0)) = 1(σ(1))− 1(σ(0)) = 1− 1 = 0,

so 1 is indeed a cocycle.
Now, by definition of 1, it is 1 on every generator of S0(X), so

(1 ^ u)(σ) = 1(σ0) · u(σ0,...,p) = u(σ).

This immediately carries over to cohomology:

[1] ^ [u] = [1 ^ u] = [u],

so [1] is indeed the identity with respect to ^.

1.2.2 Commutativity
The cup product is not commutative on the cochain level. The explanation
of this feature is part of the theory of cohomology operations, as they are
obstructions, in a specific way, to the cochain-level commutativity.
However, in the words of [GM81, p.110], “a somewhat grizzly com-

putation” shows that on the level of cohomology, we do get graded
commutativity.

Theorem 1.2.3. The cup product is graded commutative.

Proof. The proof of this theorem is found in for instance [Hat02, p.216-7],
but we present a slightly different version, which was given in the course
“Algebraic Topology” at the University of Cambridge in the Michaelmas
term of 2010.
To prove this result, we will make use of two claims, which we prove

later.
Let ρ : Sp(X)→ Sp(X) be defined by ρ(σ0,...,p) = εpσp,...,0, where εp =

(−1)p(p+1)/2 is the sign obtained by counting the number of transpositions
in the permutation (0, . . . , p) 7→ (p, . . . , 0).

11



1 Singular homology and cohomology

Claim 1. ρ is a chain map.

Claim 2. ρ is chain homotopic to the identity map.

Given these two claims, we prove that u ^ v = (−1)pqv ^ u by
comparing ρ∗(u) ^ ρ∗(v) to ρ∗(u ^ v). We calculate the former:

(ρ∗(u) ^ ρ∗(v))(σ0,...,p+q) = ρ∗(u)(σ0,...,p) · ρ∗(v)(σp,...,p+q)

= εpu(σp,...,0) · εqv(σp+q,...,p)

= εpεqv(σp+q,...,p) · u(σp,...,0)

= εpεq(v ^ u)(σp+q,...,0).

In the same way, the latter:

(ρ∗(u ^ v))(σ0,...,p+q) = εp+q(u ^ v)(σp+q,...,0)

Since ρ ' id, we get ρ∗ = id, this means that in cohomology, we have

εp+q(u ^ v) = εpεq(v ^ u). (1.6)

Comparing signs:

εp+q = (−1)(p+q)(p+q+1)/2

= (−1)(p
2+pq+p+qp+q2+q)/2

= (−1)pq(−1)(p
2+p)/2(−1)(q

2+q)/2

= (−1)pqεpεq. (1.7)

Combining Equation 1.6 and Equation 1.7 gives

u ^ v = (−1)pqv ^ u,

for u ∈ Hp(X) and v ∈ Hq(X), which is what we wanted to show.
To finish the proof, we have to prove the claims.

Proof of Claim 1. Recall that a map is a chain map if it commutes with
the differential, so we have to show that ρ∂ = ∂ρ.

12



1.2 Cup product

We do this by applying these maps to an arbitrary p-chain σ and
compare the results:

(ρ∂)(σ0,...,p) = ρ

p∑
i=0

(−1)idiσ0,...,p

= εp−1

0∑
i=p

(−1)p−idp−iσp,...,0

= εp−1(−1)p
p∑

j=0

(−1)jdjσp,...,0,

and reversely:

(∂ρ)(σ0,...,p) = εp∂(σp,...,0)

= εp

p∑
j=0

(−1)jdjσp,...,0.

So again we are down to comparing signs:

(−1)pεp−1 = (−1)p(−1)(p−1)(p−1+1)/2

= (−1)(2p+(p−1)p)/2

= (−1)(p+1)p/2

= εp,

so (ρ∂)(σ0,...,p) = (∂ρ)(σ0,...,p), which is what we wanted to show.

Proof of Claim 2. Recall that two chain maps f and g are homotopic if
there exists a map h such that ∂h+ h∂ = f − g. We want to show that
ρ is homotopic to id.

For the purpose of this proof we let σ : ∆p → X be denoted by [v0 · · · vp],
and [v0, . . . , vi, wp, . . . , wi] is the subsimplex of ∆p×I given by the convex
hull of the vertices v0, . . . , vi, wp, . . . , wi.
Define the chain map hp : Sp(X)→ Sp+1(X) by

hp(σ) =

p∑
i=0

εp−1 (σπ)|[v0,...,vi,wp,...,wi]
,

13



1 Singular homology and cohomology

v0 v1

v2

w2 w1

w0

Figure 1.2: ∆p × I with top and bottom oppositely oriented

with π : ∆p × [0, 1]→ ∆p, and the domain shown in Figure 1.2.
Intuitively, we sum over chains whose orientations successively approach

the reversed one.
We will compute ∂h and h∂ separately, find that most terms cancel,

and in the end see that we wind up with ρ− id.

∂hp[v0 · · · vp] =

p+1∑
j=0

(−1)jdj

p∑
i=0

(−1)iεp−i[v0 · · · viwp · · ·wi]

=

p+1∑
j=0

p∑
i=0

(−1)i+jεp−idj [v0 · · · · · · viwp · · ·wi]

=
∑
j≤i

(−1)i+jεp−i[v0 · · · v̂j · · · viwp · · ·wi]

+
∑
j>i

(−1)i+jεp−i[v0 · · · viwp · · · ŵj · · ·wi]

j 7→p+1−j
=

∑
j≤i

(−1)i+jεp−i[v0 · · · v̂j · · · viwp · · ·wi]

+
∑
j≥i

(−1)i+p+1−jεp−i[v0 · · · viwp · · · ŵj · · ·wi]

Notice that after reindexing, we have two sums with i = j. They can be
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1.2 Cup product

decomposed as follows:∑
j=i

(−1)i+jεp−i[v0 · · · v̂j · · · viwp · · ·wi]

+
∑
j=i

(−1)i+p+1−jεp−i[v0 · · · viwp · · · ŵj · · ·wi]

= εp[wp · · ·w0]− [vp · · · v0]

+
∑

εp−1[v0 · · · vi−1wp · · ·wi]

+
∑

(−1)n+i−1εp−1[v0 · · · viwp · · ·wi+1],

of which the last two terms cancel upon reindexing, say the last term by
i 7→ i− 1.
In the next calculation, some care is needed in the corner cases.

hp∂[v0 · · · vp] = hp
p∑

j=0

(−1)j [v0 · · · v̂j · · · vp]

=

p−1∑
i=0

p∑
j=0

(−1)i+jεp−(i−1)[v0 · · · v̂j · · · viwp · · ·wi]

=
∑
i<j

(−1)i+jεp−i+1[v0 · · · viwp · · · ŵj · · ·wi]

+
∑
i>j

(−1)i+jεp−i+1[v0 · · · v̂j · · · viwp · · ·wi].

By inspection, we see that the terms for which i 6= j in the sum
corresponding to ∂hp cancel the entire sum corresponding to hp∂.
Upon relabelling wi by vi, this leaves us with the following:

hp∂[v0 · · · vp] + ∂hp[v0 · · · vp] = εp[vp · · · v0]− [vp · · · v0]

= (ρ− id)[v0 · · · vp]

so ρ and id are chain homotopic, proving Claim 2.

This completes the proof of commutativity of the cup product.

15



1 Singular homology and cohomology

1.2.3 Naturality
An important property of any “operation” on cohomology functors is
naturality. In this subsection we give a proof that the cup product is
indeed natural, making it an (unstable) cohomology operation.

Lemma 1.2.4. The cup product is natural, in the sense that it commutes
with homomorphisms induced by maps of spaces. More explicitly, if
f : X → Y is a continuous function, then for all u, v ∈ H∗(Y ) we have

f∗(u ^ v) = f∗(u) ^ f∗(v) ∈ H∗(X) .

Proof. We first prove the statement on the cochain level, then show that
it descends to cohomology.
Let u ∈ Sp(Y ), v ∈ Sq(Y ) and σ ∈ Sp+q(X). We then have the

following sequence of equalities:

(f∗(u ^ v)) (σ) = (u ^ v)(f∗(σ))

= u(f∗(σ)0,...,p) · v(f∗(σ)p,...,p+q)

= u(f∗(σ0,...,p)) · v(f∗(σp,...,p+q))

= (f∗(u))(σ0,...,p) · (f∗(v))(σp,...,p+q)

= (f∗(u) ^ f∗(v))(σ).

So the induced map on the cochain level is a ring homomorphism.
We show that the same holds in cohomology:

f∗([u] ^ [v]) = f∗([u ^ v])

= [f∗(u ^ v)]

= [f∗(u) ^ f∗(v)]

= [f∗(u)] ^ [f∗(v)]

= f∗[u] ^ f∗[v],

which is what we wanted to show.

1.3 Relative homology and cohomology
In this section we introduce the relative homology and cohomology of
pairs of sufficiently nice spaces. We continue focusing on the singular
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1.3 Relative homology and cohomology

theories, but the discussion is really pure homological algebra, so the same
kind of construction goes through in other homology and cohomology
theories built from chain complexes.

The primary motivation for this section is that we will make important
use of the machinery of relative groups and associated dualities, to
be introduced later, when computing Massey products in the coming
chapters.

1.3.1 Relative chain complexes
Without further ado, we define the relative singular homology as a
quotient of chain complexes.

Definition 1.3.1. The relative singular chain complex S•(X,A) of the
pair (X,A) is the object making the following sequence of chain complexes:

0→ S•(A)→ S•(X)→ S•(X,A)→ 0

into a short exact sequence. y

The category CC(A) of chain complexes of an abelian category A is also
abelian. The category Ab of abelian groups and group homomorphisms
is the prototypical abelian category and in abelian categories cokernels al-
ways exists, so by abstract nonsense coker i∗ : S•(A)→ S•(X) ∼= S•(X,A)
exists and satisfies the property above. We then get a chain complex,
equipped with an induced differential, for free.
Similarly to how we defined the absolute singular cohomology, we

now define the relative singular cohomology, beginning with the cochain
complex.

Definition 1.3.2. The relative singular cochain complex S•(X,A) of
the pair (X,A) is defined as S•(X,A) = hom(S•(X,A),Z). y

By abuse of notation we will use the same notation for the relative
differentials as for the absolute differentials.

We can interpret the elements of S•(X,A) as cochains whose support
lie in X \ A, in other words, the relative cochains vanish on chains
contained in A.
The relative singular homology and cohomology are then defined in

the usual way as the homology of these chain complexes.
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1 Singular homology and cohomology

Definition 1.3.3. The relative singular homology of the pair (X,A) is
the homology of the chain complex {S•(X,A), ∂}:

Hn(X,A) =
ker ∂n : Sn(X,A)→ Sn−1(X,A)

im ∂n−1 : Sn+1(X,A)→ Sn(X,A)
,

the group of relative cycles modulo relative boundaries. y

Definition 1.3.4. The relative singular cohomology of the pair (X,A)
is the homology of the cochain complex {S•(X,A), δ}:

Hn(X,A) =
ker δn : Sn(X,A)→ Sn+1(X,A)

im δn−1 : Sn−1(X,A)→ Sn(X,A)
,

the group of relative cocycles modulo relative coboundaries. y

1.3.2 Relative cup product

We now want to extend the cup product in the cohomology of a space to
the cohomology of pairs of spaces. We can do this by the same formula
as for the absolute cohomology groups, but we have to check that the
resulting relative cochain is a relative cochain.
Given the interpretation of S•(X,A) as the set of cochains vanishing

on chains contained entirely in A, we want to show that the cup product
also vanishes on all such chains.

This is in fact easy. From the formula we see that we need to evaluate
each of the factors of the product on subsimplices. Both of the subsim-
plices are obviously entirely contained in A if and only if the full simplex
is. This implies that if the chain on which we evaluate the product is
contained entirely in A, then the result is zero. In symbols, this is:

(u ^ v)(σ) = u(σ0,...,p) · v(σp,...,p+q) = 0 · 0 = 0.

With this trifle out of the way, the properties of the relative cup product
are completely analogous to those of the absolute one.
From this discussion, we see that we have a relative cup product as

follows:
^ : Hp(X,A)×Hq(X,A)→ Hp+q(X,A) .
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There is also a refinement of the above relative product to a slightly
more general version:

^ : Hp(X,A)×Hq(X,B)→ Hp+q(X,A ∪B) .

We will not be needing this and there are a couple of subtleties to defining
it, so we will not go into any detail.

1.3.3 Relative orientations

When stating the duality theorems, we will need the notion of orientation
for manifolds with possibly non-empty boundary.

Definition 1.3.5. Let M be a compact orientable manifold with
boundary ∂M , then a relative orientation of (M,∂M) is a choice of
generator [M,∂M ] for Hn(M,∂M) ∼= Z, we call this generator a relative
fundamental class. y

1.4 Eilenberg–Steenrod Axioms

Having constructed singular homology and cohomology we claim, without
proof, that they satisfy the relevant Eilenberg–Steenrod axioms for pairs
of topological spaces.

We will make use of excision and finite additivity; excision in the proof
of Alexander duality, and additivity for the computation of the homology
and cohomology of the Borromean rings and Brunnian links.
In order to state the axioms, we need to define a couple of general

topological terms.

Definition 1.4.1. Let I be the unit interval. Two continuous maps of
pairs f, g : (X,A)→ (Y,B) are homotopic as maps of pairs if there is
another map of pairs F : (X × I, A× I)→ (Y,B) such that
F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X and F (A, t) ⊂ B for all
t ∈ I. y

Definition 1.4.2. Let (X,A) be a pair of spaces. A subset U of A is
excisive if the closure of U is contained in the interior of A. y
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1 Singular homology and cohomology

1.4.1 In homology
Let Hn(•, •) : hCW2 → Ab with n ∈ N be a sequence of functors from
the category of pairs of spaces with the homotopy type of a CW -complex
to the category of abelian groups.
If {Hn(•, •)} satisfies the following axioms, then it is an ordinary

additive homology theory.

Homotopy The induced map of a homotopy equivalence is the identity.

Excision If U is excisive in (X,A), then the induced map of the inclusion
(X \ U,A \ U) ↪→ (X,A) is an isomorphism.

Dimension For a one-point space, the homology is concentrated in the
zeroth degree.

Additivity The homology of a disjoint union is the direct sum of the
homologies of the components.

Exactness Each pair (X,A) gives a long exact sequence in homology:

· · · → Hk(A)→ Hk(X)→ Hk(X,A)→ Hk−1(A)→ · · · .

Note. Since we consider the homology groups as a sequence of functors,
we can omit the axiom of naturality. The same is true for the cohomology
groups.
To tie this in with the rest of the chapter, we state the following proposi-
tion.

Proposition 1.4.1. The relative singular homology groups form an
ordinary homology theory in the sense of Eilenberg–Steenrod.

1.4.2 In cohomology
The corresponding axioms for an ordinary cohomology theory is largely
similar, save some differences stemming from the contravariance of the
cohomology functors.

Let Hn(•, •) : hCW2 → Ab with n ∈ N be a sequence of functors from
the category of pairs of spaces with the homotopy type of a CW -complex
to the category of abelian groups.
If {Hn(•, •)} satisfies the following axioms, then it is an ordinary

additive cohomology theory.

20



1.5 Dualities

Homotopy The induced map of a homotopy equivalence is the identity.

Excision If U is excisive in (X,A), then the induced map of the inclusion
(X \ U,A \ U) ↪→ (X,A) is an isomorphism.

Dimension For a one-point space, the cohomology is concentrated in the
zeroth degree.

Additivity The cohomology of a disjoint union is the direct product of
the cohomologies of the components.

Exactness Each pair (X,A) gives a long exact sequence in cohomology:

· · · → Hk(X,A)→ Hk(X)→ Hk(A)→ Hk+1(X,A)→ · · · .

We have the analogous proposition.

Proposition 1.4.2. The relative singular cohomology groups form an
ordinary cohomology theory in the sense of Eilenberg–Steenrod.

1.5 Dualities

When computing Massey products in the complement of a link L we will
work in a space which is homotopy equivalent to S3 \ L, but which has
the structure of a compact smooth manifold-with-boundary. We obtain
such a space by replacing the link components of the complement by
non-intersecting regular neighbourhoods of these. The reason for doing
this is that then we are able to harness the power that certain duality
theorems in geometry gives us.
The material in this section is standard, and found in most books on

algebraic topology, e.g. [May99].

1.5.1 Poincaré–Lefschetz duality

Poincaré–Lefschetz duality is a generalisation of the Poincaré duality for
closed orientable manifolds to a duality for compact orientable manifolds
with boundary, as expressed precisely by the following theorem.
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Theorem 1.5.1. If M is a compact oriented n-manifold with boundary
∂M , then we have isomorphisms

D : Hp(M,∂M)→ Hn−p(M)

and
D : Hp(M)→ Hn−p(M,∂M) .

Note. When the boundary is empty, this reduces to the classical Poincaré
duality, which is why we have omitted mentioning it specifically.

Since the proof of the theorem is standard, we have not included it
here, but it can be found in [May99, p.170-171].

Cap product

In order to explicitly describe the above isomorphism, we introduce the
cap product of homology and cohomology classes of appropriate degrees.
This product is closely related to the cup product, indeed many of its
properties may be derived from the ones of the cup product. Because of
this close relationship, we will not go into the same excruciating level of
detail as for the cup product.
We define it on the chain and cochain level, and then claim that it

descends to a well-defined product in homology and cohomology.

Definition 1.5.1. Let X be a space and A and B be open subsets of X.
Furthermore, let σ ∈ Sp(X) be chain and u ∈ Sq(X) a cochain. Then the
cap product _ : Sp(X)× Sq(X)→ Sp−q(X) is defined by the following
formula:

σ _ u = u (σ0,...,q) · σq,...,p,

whenever p is greater than or equal to q. y

Proposition 1.5.2. The cap product _ descends to a well-defined Z-
bilinear product of homology and cohomology classes:

_ : Hp(X)×Hq(X)→ Hp−q(X) .

There is also a more general, relative version:

_ : Hp(X,A ∪B)×Hq(X,A)→ Hp−q(X,B) .
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1.5 Dualities

The proof can be found in [Hat02, p. 239-240].
By abuse of notation, we will denote both of these by the same symbol.
The relation between the cup and cap product is given in the following

proposition[Hat02, p. 249].

Proposition 1.5.3. Let u ∈ Hp(X,A) and v ∈ Hq(X,A) be cohomology
classes and σ ∈ Hp+q(X,A) be a homology class, then the following
identity holds:

u(σ _ v) = (v ^ u)(σ).

Proof. The proof is merely a short exercise in handling the definitions:

u(σ _ v) = u (v(σ0,...,q) · σp,...,p+q)

= v(σ0,...,q) · (u(σp,...,p+q))

= (v ^ u)(σ).

As mentioned earlier, many of the properties of the cap product can
be deduced from this relation and properties of the cup product.

Poincaré–Lefschetz duality isomorphism

We are now in a position to describe the isomorphism of the Poincaré–
Lefschetz duality theorem explicitly.

LetM be a compact n-manifold with boundary ∂M oriented by the rel-
ative fundamental class [M,∂M ] ∈ Hn(M,∂M). Then the isomorphism
in Theorem 1.5.1 is given by:

[M,∂M ] _ • : Hp(M,∂M)→ Hn−p(M) .

Intersection product

Most of the computations of Massey products in thesis will be done using
de Rham cohomology, since this provides a nice and geometric way of
understanding them. We will, however, also compute a Massey product
in the way described by Massey in his article [Mas69], using singular
theories. In order to be able to do this, we will state a theorem regarding
the relation between the cup product in cohomology and the intersection
product in homology.
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1 Singular homology and cohomology

One reference for the theory of intersection of homology classes is
Chapter 13 of Albrecht Dold’s “Lecture on Algebraic Topology”, [Dol95].
He does it in more generality than we need, since we will only need
intersections of homology classes represented of transversely intersecting
submanifolds, whereas he does it for arbitrary homology classes of a
manifold.

Even the definition of the intersection product ? is involved, and since
we will not be needing it, we will content ourselves with giving the
following heuristic explanation of how it works:

If χ and ξ are homology classes represented by sufficiently nice cycles,
then their intersection product χ?ξ is represented by a cycle corresponding
to their intersection. In Chapter 3, we will provide examples of “sufficiently
nice” cycles and their intersection products, as well as their relation to
the wedge product of de Rham cohomology classes.
In Section 2.3, however, we will perform a “classical” calculation of

a Massey product, using the singular theories and the relation we the
cup product and the intersection product, so we state it as the following
proposition, omitting the proof.

Proposition 1.5.4. If u, v ∈ H∗(M) are Poincaré duals of χ, ξ ∈
H∗(M), then u ^ v is the Poincaré dual of χ ? ξ, the intersection
product of χ and ξ.

Interpretation of cup product in terms of linking numbers

Since the vanishing of cup products is necessary to able to define the
Massey product having an interpretation of cup products in link comple-
ment in terms of linking numbers of link components is very useful.

To describe how this connection arrises we need to give precise defini-
tions of the linking number.

Linking numbers

We want to define the linking number lk(γ1, γ2) of a 2-component link
(γ1, γ2) with components γ1 and γ2 or, slightly more generally, of two
components γ1 and γ2 of a link with possibly more than two components.
In order to define it we need to put orientations, in the sense of

differential topology, on each link component.
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1.5 Dualities

(a) +1 (b) −1

Figure 1.3: Positive and negative crossings

There are several equivalent ways of defining this linking number, below
we will give two of them.

We begin with one defined in terms of knot diagrams, which enables
us to quickly calculate it in concrete examples.
Given an orientation on link components, we can assign a sign {±1}

to each crossing between different components, by the rules described in
Figure 1.3. We say that a crossing is positive and negative in the first
and second case, respectively.

Definition 1.5.2. The linking number lk(γ1, γ2) is the sum of signs of
the crossings of (γ1, γ2) where γ1 crosses over γ2. y

The definition is asymmetrical but it can be shown that it does not
depend on the ordering of link components.

Note. We will not work explicitly with orientation of links as it will
turn out that in all our examples it will be independent of choices of
orientation; furthermore, they will all be zero – a necessary condition for
being able to define the pertaining Massey products.

Another definition [BT82, p. 229] of the linking number, which is
more algebro-topological in nature, is the the following, where we restrict
ourselves to submanifolds of dimension 1.

Definition 1.5.3. The linking number of two closed, connected 1-
submanifolds L1 and L2 is given as follows. Choose a generic smooth
surface N ∈ S3 such that ∂N = L1. The linking number of lk(L1, L2) is
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1 Singular homology and cohomology

then given by
lk(L1, L2) =

∑
N∩L2

±1,

where the sign at x ∈ N ∩ L2 is determined by whether or not the direct
sum TxN ⊕ TxL2 of the tangent spaces of N and L2 has the same
orientation as TxS3, the tangent space of the ambient space. y

Note. We use the word “generic” to avoid having to discuss transversality
at this point, it will, however, be one of the topics of Section 3.1.

We are then ready to state a proposition regarding the correspondence
between cup product and linking numbers.

Proposition 1.5.5. Let L1 and L2 be embedded fattened up circles in S3,
A a chain with boundary L1, ηL2 the Poincaré–Lefschetz dual of L2 and
ηA the dual of A. Then the linking number lk(L1, L2) correspond, under
capping with the fundamental class of S3, to the cup product ηL2

^ ηA.

A proof of the corresponding statement in de Rham theory is found in
[BT82, p.229-34].

The triviality of this cup product then correspond to a linking number
which is zero.

1.5.2 Alexander duality
In this section, we state the Alexander duality theorem, which will be
useful to compute the homology and cohomology of link complements,
as well as giving us a way to compute Massey products, an example of
this is given in Section 2.3.
The following statement of the Alexander duality theorem is taken

from [Hat02, p. 254].

Theorem 1.5.6. If K is a compact, locally contractible, non-empty,
proper subspace of Sn, then

H̃i(S
n \K) ∼= H̃n−i−1(K) .

The main ingredients in the proof are Poincaré duality and excision.

Note. If we wanted to get rid of the assumption that K be locally con-
tractible, then we could replace singular cohomology by Čech cohomology.
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1.6 Link complements

1.6 Link complements

In this section we compute the cohomology ring of the complement of
the Borromean rings and Brunnian links in S3. That is, first we compute
the additive cohomology of all links and then the cup product structure
of these two links.

1.6.1 Additive cohomology

Computing the additive cohomology of link complements in S3 is quite
simple given Alexander duality.
From the Alexander duality theorem, it follows that the choice of

embedding of K in Sn does not affect the cohomology of the complement.
This means that we can deduce the additive cohomology of the comple-
ment of an arbitrary link from Alexander duality and knowledge of the
(reduced) homology of the unlinks.

The reduced homology of the disjoint union of k circles is given as
follows:

H̃∗
(
tkS1

)
=

{
Zk−1 if ∗ = 0

Zk if ∗ = 1.

By Alexander duality this data translates to information about the
additive cohomology of the complement X ′ = S3 \ L of link L with k
components in S3, which is the case we are interested in:

H∗(X ′) =

{
Zk if ∗ = 1

Zk−1 if ∗ = 2.

Additionally, we know that since a codimension 2 submanifold cannot
separate its ambient manifold, X ′ is path connected, which is equivalent
to H0(X ′) = Z.

Now, we could try to figure out the top cohomology group of this space
or we can replace it with a topologically equivalent space. We will do
the latter, as hinted to earlier.
We replace the link components by open non-intersecting tubular

neighbourhoods, the complement of this space in S3 can be given the
structure of a compact oriented manifold-with-boundary. This space, call
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1 Singular homology and cohomology

it X, is a deformation retract of the original space, so they have the same
cohomology.
This allows us to use the Poincaré–Lefschetz duality theorem to com-

pute the top cohomology group: Since X ′ is path connected, so is X,
hence H0(X) ∼= Z and H0(X, ∂X) ∼= 0. By Poincaré–Lefschetz duality
we have the following isomorphisms:

H0(X) ∼= H3(X, ∂X) ∼= Z

and
H0(X, ∂X) ∼= H3(X) ∼= 0.

Since there are no torsion phenomena involved, the universal coefficient
theorem for cohomology gives us a perfect pairing between homology and
cohomology groups, resulting in the following isomorphism:

Hi(X) ∼= Hi(X) .

We also have the corresponding result for relative homology and coho-
mology:

Hi(X, ∂X) ∼= Hi(X, ∂X) .

We summarise the results of this section in the following lemma.

Lemma 1.6.1. Let X be the space obtained by taking the complement
in S3 of open non-intersecting tubular neighbourhoods of a link L with
k components. We then have the following homology and cohomology
groups:

H0(X) ∼= H3(X, ∂X) ∼= H3(X, ∂X) ∼= H0(X) ∼= Z,

H1(X) ∼= H2(X, ∂X) ∼= H2(X, ∂X) ∼= H1(X) ∼= Zk,

H2(X) ∼= H1(X, ∂X) ∼= H1(X, ∂X) ∼= H2(X) ∼= Zk−1,

H0(X, ∂X) ∼= H3(X) ∼= H3(X) ∼= H0(X, ∂X) ∼= 0.

Proof. The seeding, leftmost information is described above.
The first and third isomorphisms in each row come from Poincaré–

Lefschetz duality and the second isomorphism in each row comes from a
universal coefficients theorem.

In particular, since X is a compact 3-manifold and H3(X, ∂X) ∼= Z,
X is orientable.
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1.6 Link complements

Some generators

There is a particularly nice way of choosing a basis for H1(X, ∂X), which
we will now describe.

To do this, we take some ordering L1, . . . , Lk of the k link components
and denote the fattened up versions of these by L1, . . . ,Lk. We then
denote by µij the relative homology class represented by some embedded
oriented compact 1-submanifold whose two boundary components lie on
∂X, the first on ∂Li and the second on ∂Lj .
The orientation is such that the orientation on the first boundary

component is negative and on the second boundary component is positive.
In other words, we have a path from Li to Lj .
We have the relation µij = −µji ∈ H1(X, ∂X), corresponding to

reversing the orientation of the representatives.
From these, the choice of generating set that we will on occasion refer

to is {µ1j}j∈{2,...,k}, which indeed has cardinality (k − 1).
We can easily express the other µij in terms of these. Indeed, let i be

greater than or equal to j, then we have the following relation:

µij = µ1j − µ1i.

1.6.2 Cup product structure
The cup product structure of a link complement can be computed using
the result on cup product in terms of linking numbers of cycles discussed
in Section 1.5.
Below we will do this computation for the Borromean rings and the

Brunnian 3-link, resting assured that the other links we consider will
have pairwise zero linking numbers for similar reasons.

1.6.3 Borromean rings
From the discussion above, we know additive cohomology of the space
X obtained from the Borromean rings. The content of this subsection
is to determine the multiplicative structure, more specifically: making
sure that all cup products of 1-cochains vanish, enabling us to define the
triple Massey product for these.
Referring to Figure 1.1, we pick a pair of components and choose

arbitrary orientations on each of them. There are only two crossings
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1 Singular homology and cohomology

and we immediately see that they must have opposite signs and that the
choice of orientations will not change this. We conclude that the linking
numbers are zero, hence the cup products are trivial.

1.6.4 Brunnian 3-link
By the remarks in this section, we know the cohomology groups of the
complement of the Brunnian 3-link are the same as those of the 3-unlink
and the Borromean rings.
The cup product structure is easily calculated by using the linking

number interpretation of the cup product. Again, by symmetry consider-
ations it suffices to look at any single pair of link components. Perusing
Figure 3.5, we realise that we have to find the signs at four crossings and
that these signs are pairwise opposite, so they cancel. Furthermore, they
are independent of choices of orientations.
Since the linking numbers are zero, the relevant cup products are

trivial.
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2 Massey products
In this chapter, we will introduce the Massey product of triples of coho-
mology classes, with the aim of showing that it detects the non-trivial
linking inherent in the Borromean rings and Brunnian 3-link.

It will, however, turn out the Massey products for the Brunnian 3-link
are trivial. This is surprising and warrants further investigation into
what kind of linking it does detect, this is done using the Massey product
for de Rham cohomology, which in this case is computationally simpler
than the one for singular cohomology.

The Massey product was first introduced in 1957 by Massey and Uehara
in [UM57]. In a later article [Mas69], Massey gives interpretations of
these products in terms of linking numbers of spheres.
The work in this section can be carried out in the cohomology ring
H∗(Γ) of any associative differential graded algebra Γ, where we denote
our product, the cup product, by ^ .
By abuse of notation, we will also denote the induced product in

cohomology by ^ .
An advantage with taking this somewhat general starting point is

that it makes it possible to discuss the Massey product for other chain
complexes with an associative product, such as the relative singular
cochain complex or the de Rham complex of differential forms.
The Massey product 〈u, v, w〉 of cohomology classes u ∈ Hp(Γ), v ∈
Hq(Γ) and w ∈ Hr(Γ) is defined when the cup products u ^ v and
v ^ w vanish. When defined, it is an element in the quotient group

Hp+q+r−1(Γ) /
(
u ^ Hq+r−1(Γ) +Hp+q−1(Γ) ^ w

)
.

2.1 Definition
In this section we give a first attempt on a definition of the triple product,
check whether or not it is well-defined, modify it slightly and in the end
give a valid definition.
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2 Massey products

At this stage it will be useful to introduce some notation. If u is a
homogeneous cohomology class, then define ũ by ũ = (−1)deg uu. We use
the usual notation for equivalence classes, namely [a] is the equivalence
class containing a. Furthermore, u′ will be a generic representative of u,
so that [u′] = u.
First, recall that if a cohomology class is zero, then, on the cochain

level, it is the coboundary of some cochain.
In the case where u ^ v and v ^ w vanish, there exist cochains a and

b such that the following relations are satisfied:

u′ ^ v′ = δa (2.1)
v′ ^ w′ = δb. (2.2)

Note that u′, v′ and w′ are cochains representing the cohomology classes
u, v and w, in accordance with the notation introduced above.
Continuing to work on the level of cochains, we define a new cochain

z′ = a ^ w′ − ũ′ ^ b, (2.3)

whose class in cohomology will be the initial attempt of a definition of
the triple product. To somewhat anticipate where we will be headed,
I will note here that the product will not be well-defined without a
modification.

2.1.1 Closedness
We need to check that this cochain descends to cohomology, that is, that
δz′ = 0. This is a purely mechanical task, using the linearity of the
differential, Leibniz’ rule and the relations above, but we include it here
for completeness.

δz′ = δ
(
a ^ w′ − ũ′ ^ b

)
= δ (a ^ w′)− δ

(
ũ′ ^ b

)
= (δa ^ w′ − ã ^ δw′)−

(
δũ′ ^ b− u′ ^ δb

)
= (u′ ^ v′) ^ w′ − u′ ^ (v′ ^ w′)

= 0
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2.1 Definition

The reason why δw′ and δu′ are zero is that they represent cohomology
classes, so they are closed.
The last equality comes form associativity of the cup product on the

cochain level, shown in Section 1.2.

2.1.2 Indeterminacy

The next thing to check is that the product is well-defined on the level
of cohomology, that is, independent of any choices made on the cochain
level
Normally, this would mean taking different representatives in the

definition and checking that the product defined in terms of different
representatives coincide in cohomology.

This is not the case for the Massey product. Comparing the products
of different representatives, we will find that they differ by cochains that
descend to potentially non-trivial cohomology classes. We will, however,
see that we have enough control over the indeterminacies for the product
to be useful.
We will do this in three steps:

Step 1 We add a coboundary to each of u′, v′ and w′, find cochains a′
and b′ satisfying Equation 2.1 and Equation 2.2 for the altered cup
products and compute the difference of the original product with
the new one.

Step 2 We show that if we add a cocycle to each of a and b it may result
in a non-cohomologous class.

Step 3 We show that the indeterminacies have certain nice properties.

We will make repeated use of the following two forms of the Leibniz
rule:

δ(a ^ b) = δ(a) ^ b+ ã ^ δ(b)

δ(a) ^ δ(b) = δ(a ^ δ(b)) = −δ(δã ^ b).
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2 Massey products

Step 1

We begin by changing u′, v′, w′ as follows:

u′ 7→ u′ + δu2

v′ 7→ v′ + δv2

w′ 7→ w′ + δw2

There are cochains bounding the cup products (u′ + δu2) ^ (v′ + δv2)
and (v′ + δv2) ^ (w′ + δw2). These cochains will differ from a and b by
more than a coboundary, as shown by the following computations:

(u′ + δu2) ^ (v′ + δv2) = u′ ^ v′ + δu2 ^ v′ + u′ ^ δv2 + δu2 ^ δv2

= δa+ δ(u2 ^ v′)− ũ2 ^ δv′

+ (δ(ũ′ ^ v2)− δũ′ ^ v2) + δ(u2 ^ δ(v2))

= δ(a+ (u2 ^ v′ + ũ′ ^ v2 + u2 ^ δ(v2)))

So we let a 7→ a+ a1, with

a1 = u2 ^ v′ + ũ′ ^ v2 + u2 ^ δv2.

Similarly, we let b 7→ b+ b1, with

b1 = v2 ^ w′ + ṽ′ ^ w2 + (−1)deg v′δv2 ^ w2.

To sum this up:

(u′ + δu2) ^ (v′ + δv2) = δ(a+ a1), (2.4)
(v′ + δv2) ^ (w′ + δw2) = δ(b+ b1). (2.5)

We can do a considerable amount of simplification before needing the
exact form of a1 and b1.

Inserting this into the definition of z′, we get the following:

z′′ = (a+ a1) ^ (w′ + δw2)− ( ˜u′ + δu2) ^ (b+ b1)

= a ^ w′ + a1 ^ w′ + (a+ a1) ^ δw2

−
(
δ̃u2 ^ (b+ b1) + ũ′ ^ b+ ũ′ ^ b1

)
,
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2.1 Definition

by distributivity.
Next, we use the definition of z′ and Leibniz’ rule on the two terms
(a+ a1) ^ δw2 and δ̃u2 ^ (b+ b1) and cancel some signs to get:

z′′ = z′ − ũ′ ^ b1 + a1 ^ w′

+ (δ((ã+ a1) ^ w2)− δ(ã+ a1) ^ w2)

+ (δ(ũ2 ^ (b+ b1))− u2 ^ δ(b+ b1)).

We proceed by using Equations (2.4) and (2.5) and collecting terms:

z′′ − z′ = −ũ′ ^ b1 + a1 ^ w′

+ ( ˜u′ + δu2) ^ ( ˜v′ + δv2) ^ w2

− u2 ^ (v′ + δv2) ^ (w′ + δw2)

+ δ
(

(ã+ a1) ^ w2 + ũ2 ^ (b+ b1)
)
.

Here it becomes worthwhile to introduce some auxiliary variables to help
highlight where something is actually happening, so let

c′1 = −(−1)deg u′b1

and
c′3 = (ã+ a1) ^ w2 + ũ2 ^ (b+ b1).

With these placeholders, strategically expanding some of the parentheses
gives the following:

z′′ − z′ = u′ ^ c′1 + a1 ^ w′ + δc′3

+
(
ũ′ ^ ( ˜v′ + δv2) ^ w2 + δ̃u2 ^ ( ˜v′ + δv2) ^ w2

)
− (u2 ^ (v′ + δv2) ^ w′ + u2 ^ (v′ + δv2) ^ δw2) .

From which inserting the definition of a1 and b1, introducing

c′′1 = c′1 + (−1)deg u′( ˜v′ + δv2) ^ w2

and
c′2 = a1 − u2 ^ (v′ + δv2),
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2 Massey products

and using the (triple) Leibniz’ rule

δu2 ^ (v′ + δv2) ^ w2 = δ(u2 ^ (v′ + δv2) ^ w2)

− ũ2 ^ δ(v′ + δv2) ^ w2

− ũ2 ^ ( ˜v′ + δv2) ^ δw2,

where the second term vanishes, gives

z′′ − z′ = u′ ^ c′′1 + c′2 ^ w′ + δc′3

+ (−1)deg u′+deg v′
[
δ(u2 ^ (v′ + δv2) ^ w2)

− ũ2 ^ ( ˜v′ + δv2) ^ δw2

]
− u2 ^ (v′ + δv2) ^ δw2.

At this stage, we notice that

−(−1)deg u′+deg v′ · (−1)deg u2+deg v′ = +1

and introduce yet another auxiliary variable:

c3 = c′3 + (−1)deg u′+deg v′δ(u2 ^ (v′ + δv2) ^ w2),

to get

z′′ − z′ = u′ ^ c′′1 + c′2 ^ w′ + δc3

+ u2 ^ (v′ + δv2) ^ δw2 − u2 ^ (v′ + δv2) ^ δw2

= u′ ^ c′′1 + c′2 ^ w′ + δc3

For reasons we will see in a moment, we alter c′′1 and c′2 slightly by doing
the following

c1 = c′′1 + (−1)deg u′v2 ^ w′

c2 = c′2 − (−1)deg u′u′ ^ v2,

which amounts to adding and subtracting the same term in z′′ − z′.
Cancelling terms and using these variables, we get the following equation
relating z′′ and z′:

z′′ − z′ = u′ ^ c1 + c2 ^ w′ + δc3
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where, to sum up, letting ε = (−1)deg u′ , we have

c1 = ε
(
−b1 + ( ˜v′ + δv2) ^ w2 + v2 ^ w′

)
= −ε

(
v2 ^ w′ + ṽ′ ^ w2 + (−1)deg v′δv2 ^ w2

)
+ ε

(
( ˜v′ + δv2) ^ w2 + v2 ^ w′

)
= 0

and

c2 = a1 − u2 ^ (v′ + δv2)− εu′ ^ v2

=
(
u2 ^ v′ + ũ′ ^ v2 + u2 ^ δv2

)
− (u2 ^ (v′ + δv2) + εu′ ^ v2)

= 0.

The above implies that z′ and z′′ differ only by a coboundary, we conclude
that the indeterminacy does not arise from choices of representatives of
the factors of the product.

Step 2

We do the following transformations and show that the difference between
the original and the altered product results in an indeterminacy in
cohomology:

a 7→ a+ a2

b 7→ b+ b2,

where a2 and b2 are cocycles. This allows us to define the altered product:

z′′′ = (a+ a2) ^ w′ − ũ′ ^ (b+ b2) (2.6)

In what follows, we compare z′ and z′′′:

z′′′ − z′ = (a+ a2) ^ w′ − ũ′ ^ (b+ b2)−
[
a ^ w′ − ũ′ ^ b

]
(2.7)

= a2 ^ w′ − u′ ^ b2. (2.8)
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2 Massey products

Since z′ and z′′′ differ by a cochain which is not necessarily a coboundary
their difference is in general not zero in cohomology.
From this we see that the proposed Massey product is indeed not

necessarily well-defined.

Note. In Chapter 3 we will see geometric examples of why and how the
indeterminacy stems from the choices of a and b.

Step 3

We can resolve this problem by taking the quotient of the cohomology
ring by the ideal generated by the possible indeterminacies u ^ H∗(Γ)
and H∗(Γ) ^ w, then we will have a well-defined object: a “coset of the
quotient group” in the appropriate degree.
Following [UM57], we define

J ∗(u,w) = u ^ H∗(Γ) +H∗(Γ) ^ w, (2.9)

giving a graded ideal in the cohomology ring. The fact that this is
actually an ideal follows from the commutativity of the cup product on
cohomology. We also define the (additive) group J n(u,w) as the direct
summand of J ∗(u,w) containing the homogeneous elements of degree n:

J n(u,w) = u ^ Hn−p(Γ) +Hn−r(Γ) ^ w.

We want to show that the two indeterminacies u′ ^ b2 and a2 ^ w′ in
Equation 2.8 land in J p+q+r−1(u,w).
Since a2 and b2 are cocycles they descend to cohomology. Then, by

general properties of the cup product, we get the classes we want:

[u′ ^ a2] = u ^ [a2] ∈ u ^ Hq+r−1(Γ)

and
[b2 ^ w′] = [b2] ^ w ∈ Hp+q−1(Γ) ^ w.

From this we can finally give a precise definition of the Massey product.

Definition 2.1.1. The Massey product

〈u, v, w〉 ∈ Hp+q+r−1(Γ) /J p+q+r−1(u,w)
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of cohomology classes u ∈ Hp(Γ), v ∈ Hq(Γ) and w ∈ Hr(Γ) is the coset
of the cohomology class represented by z′ = a ^ w′ − ũ′ ^ b in the
quotient of the cohomology group Hp+q+r−1(Γ) by the subgroup
J p+q+r−1(u,w). y

If the indeterminacy is trivial, for instance if all cup products vanish,
then the product is strictly defined.

We will say that the product contains zero if there are choices of a and
b in z′ above such that z′ represents the zero class in H∗(Γ) . Furthermore,
we say that the product is zero if it is strictly defined and contains zero.

2.2 Key properties of the triple product
In the original article of Uehara and Massey, they also state the following
two properties of the Massey product, leaving proofs to the interested
reader.
Throughout this section, we let f : Γ1 → Γ2 be a homomorphism

of differential graded associative algebras. We also assume that for
u, v, w ∈ H∗(Γ1), we have u ^ v = 0 = v ^ w so that the Massey
product 〈u, v, w〉 is defined.

2.2.1 Naturality
Naturality means something slightly different from usual in this case.

Proposition 2.2.1. If u, v, w are homogeneous classes in H∗(Γ1) then
the following inclusion holds:

f∗(〈u, v, w〉) ⊂ 〈f∗(u), f∗(v), f∗(w)〉.

Proof. We will first check that the indeterminacy ideals are compatible:

f∗ (J ∗(u,w)) = f∗ (u ^ H∗(Γ1) +H∗(Γ1) ^ w)

= f∗(u) ^ f∗ (H∗(Γ1)) + f∗ (H∗(Γ1)) ^ f∗(w)

⊂ f∗(u) ^ H∗(Γ2) +H∗(Γ2) ^ f∗(w)

= J ∗ (f∗(u), f∗(w)) .

This ensures that f∗ : H∗(Γ1)→ H∗(Γ2) descends to a map

f∗ : H∗(Γ1)
/
J ∗(u,w)→ H∗(Γ2)

/
J ∗ (f∗(u), f∗(w)) .
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2 Massey products

We now look at what happens on the cochain level, making repeated
use of the fact that f is a differential graded associative algebra homo-
morphism, that is, it is a an algebra homomorphism and it commutes
with the differential δ.

Let u′, v′, w′ ∈ Γ1 represent homogeneous cohomology classes u, v, w ∈
H∗(Γ1). Then the Massey product 〈u, v, w〉 is represented by z′1 = a ^

w′− ũ′ ^ b with a and b cochains so that δ1a = u ^ v and δ2b = v ^ w.
Similarly, the Massey product 〈f∗(u), f∗(v), f∗(w)〉 is represented by

z′2 = a2 ^ f∗(w)′ − f̃∗(u)′ ^ b2 with δ2a2 = f∗(u)′ ^ f∗(v)′ and
δ2b2 = f∗(v)′ ^ f∗(w)′. Here, the relation between a2 and a is found as
follows: f(δ1a) = f(u′ ^ v′) = f(u′) ^ f(v′) and f(δ1a) = δ2(f(a)), so
δ2(f(a)) = f(u′) ^ f(v′), which means that we can choose a2 = f(a).
The corresponding computation for b and b2 is completely analogous.
We also get the following sequence of equalities:

f(z′1) = f(a ^ w′ − ũ′ ^ b)

= f(a ^ w′)− f(ũ′ ^ b)

= f(a) ^ f(w′)− f(ũ′) ^ f(b)

= a2 ^ f(w′)− f(ũ′) ^ b2 = z′2

so for the given choices of a, b, a2 and b2, f(z′1) agrees with z′2.
Since the original choices of a and b were arbitrary, this means that

we can always find a2 and b2 so that the above holds.
The reason that we get an inclusion and not an equality is that whereas

we can find a2 corresponding to each a, we cannot guarantee that there
is an a for each a2.
This implies that

f∗(〈u, v, w〉) ⊂ 〈f∗(u), f∗(v), f∗(w)〉,

which is what we wanted to show.

2.2.2 Homotopy invariance

Homotopy invariance of the Massey product is in fact easy to show given
naturality and the proof of naturality presented above.
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2.3 Borromean rings computation

Proposition 2.2.2. If f : Γ1 → Γ2 is a quasi-isomorphism and u, v, w
homogeneous classes in H∗(Y ), then f∗ is a ring isomorphism and

f∗(〈u, v, w〉) ∼= 〈f∗(u), f∗(v), f∗(w)〉.

Proof. First, if f∗ is an isomorphism the indeterminacy ideals are isomor-
phic. Also, with the notation as in the proof above, the inverse element
of a2 under the isomorphism correspond to some element which satisfy
the same equation as a and similarly for b and b2. This implies that there
is a bijective correspondence of sets, giving

f∗(〈u, v, w〉) = 〈f∗(u), f∗(v), f∗(w)〉
∼= 〈u, v, w〉,

as required.

The upshot to this discussion is that we can calculate the Massey
product using any reasonable construction of cochains complexes and
cohomology that we would like. In particular, in the next chapter we
will use computations of Massey products in de Rham cohomology to
make conclusions about Massey products in singular cohomology with
real coefficients.

2.3 Borromean rings computation
Whenever we use it in formulae, we will denote by B the Borromean rings,
possibly embedded in some manifold. To compute the Massey product
of the generators of H1

(
S3 \B

)
we follow Massey’s article [Mas69] on

“Higher order linking numbers” and finish the details left to the reader.
At the time when the article was published the Alexander polynomial

of knots and links was the only polynomial invariant, and the Alexander
polynomial of the Borromean rings is trivial, so being able to detect the
non-triviality of this link using cohomology was an achievement.

2.3.1 Preliminaries

Before initiating the computation, Massey states a theorem helpful in
computing the Massey product, we reproduce it here after have introduced
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2 Massey products

the necessary notation and at the same time repeat some of the theory
of Section 1.6. Let S1, S2 and S3 be oriented spheres of dimensions d1,
d2 and d3 embedded disjointly in Sn so that the dimensions satisfy

1 ≤ di < n− 2

and
d1 + d2 + d3 = 2n− 3.

Furthermore, we let X ′ = Sn \ (S1 ∪ S2 ∪ S3) be the complement of the
link and denote the Alexander dual of Si in Hn−di−1(X ′) by wi.

Note. A three-link embedded in S3 satisfies all dimension conditions and
gives Alexander duals in the first cohomology group of the complement.
This means that the Massey product of the wi’s will not be trivial for
degree reasons, indeed it will land in the second cohomology group of the
complement, which we have seen is non-trivial.

From here on, we diverge slightly from Massey exposition, by taking
all embedded spheres to be one-dimensional, in other words, we consider
only ordinary links.

Similarly to what we did in Section 1.6, Massey introduces the manifold-
with-boundary M which is the complement of regular neighbourhoods of
the embedded link. For consistency of notation we will denote it by X
and its boundary by ∂X. In the same way as described earlier, X is a
deformation retract of X ′, so their cohomologies are naturally isomorphic.
The last piece of notation needed is the morphism g∗ : H2(X) →
H2(∂X) which fits into the end part of the cohomology exact sequence
of the pair:

H2(X)→ H2(∂X)→ H3(X, ∂X)→ 0.

From the computations in Section 1.6, we know that these groups are
free abelian of ranks two, three and one, respectively; hence g∗ must be
a monomorphism.
Since we consider X as an oriented manifold, each of its boundary

components will also inherit an orientation. We denote these orientation
classes by µi, for i ∈ {1, 2, 3}. This set is a natural basis for H2(∂X).
Since g∗ is a monomorphism the elements of its domain are uniquely

determined by their image.
This brings us the theorem indicated above, which we quote verbatim.
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Theorem 2.3.1. Let (i, j, k) be any permutation of the integers (1, 2, 3).
Then there exists an integer mik such that

g∗(wi, wj , wk) = mik (µi − µk) .

We also state a corollary describing the relation between these mik’s.
For ease of notation, we first define qi = n− d1 − 1.

Corollary. The six integers mik thus obtained are all equal in absolute
value; to be precise,

(−1)qiqkmik = (−1)qjqimji = (−1)qkqjmkj ,

mik = (−1)qiqj+qjqk+qkqimki.

Note. In the cases we are considering, all qi are equal to 1, so all signs
end up being −1.

2.3.2 The computation

We now want to do the computation of the singular Massey product of
Alexander duals of the link components of the Borromean rings, shown
in Figure 1.1.

Massey suggests doing this using duality and intersection theory, and
suggest taking what he calls “singular disks” to be cones whose apices are
at ∞, regarding S3 as the one-point compactification of R3, and whose
bases lie on the boundaries of each of the link components.

We number the link components by Li and denote by Di a singular disk
with Li as its boundary, as indicated in Figure 2.1. These disks represent
relative cycles [Di] ∈ H2

(
S3,B

)
, from which we get cohomology classes

αi in H1
(
S3 \B

)
by Poincaré–Lefschetz duality.

These are the classes whose Massey product we wish to compute, we
state the result of the computation as a proposition.

Proposition 2.3.2. With the classes αi as above, the triple Massey
product 〈α1, α2, α〉 ∈ H2

(
S3 \B

)
is non-trivial.

Proof. Let ai be a representative of αi. By Section 1.6, the cup products
α1 ^ α2 and α2 ^ α3 vanish, so there exist cochains a and b such
δa = a1 ^ a2 and δb = a2 ^ a3.
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∞

D1

D2 D3

I ′12 I ′123

C12

I ′′12

Figure 2.1: Borromean rings for singular Massey computation
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Recall that the cochain z′ defining the Massey product is given by
z′ = a ^ a3 − ã1 ^ b. By the intersection theory, a1 ^ a2 and a2 ^ a3
correspond to intersections

[D1] ∩ [D2] = [D1 ∩D2] = [I12]

and
[D2] ∩ [D3] = [D2 ∩D3] = [I23]

of singular disks.
From here on, we will focus on only one of the terms, the one corre-

sponding to I12 = I ′12 ∪ I ′′12. In cohomology, we want to find the cochain
a described above, this corresponds to finding a relative class [C12] in
H2

(
S3,B

)
whose boundary is [I12]. In Figure 2.1, this is the area filled

with light purple.
We then need to take the intersection product corresponding to the

cup product a ^ a3, this is

[C12] ∩ [D3] = [C12 ∩D3] = I123 = I ′123 ∪ I ′′12,

in the figure, this is the union of the black line and the purple line to the
right, joining the first and second component of the Borromean rings.

The other term would contribute a term joining the second and third
components of the rings, and the middle lines then cancel. This results
in a line joining the first and third component of rings. This interval
represent the non-zero class µ13 in H1

(
S3 \B

)
, by Poincaré duality, this

gives a non-zero class in H2
(
S3 \B

)
, so the wanted Massey product is

non-zero.
In Massey’s terminology, this gives mik = ±1.

Note. We will discuss in detail the indeterminacy of the Massey product
for the Borromean rings in Section 3.2.
Note. The technology used by Massey differs from the modern one that
we will use in the next chapter, where he uses singular disks we will use
embedded compact 2-submanifolds.

2.4 Generalisations
There is an extension of the triple product to products of higher arity.
These are called higher order Massey products and are defined only when
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certain lower order products vanish.
In this section we will describe these higher products, with some

emphasis on the fourfold product, by giving the conditions for when they
are defined and the formulae for computing them. All proofs are omitted.

We will avoid explicitly stating the expressions for the indeterminacies
of the higher products, since these are ghastly.
Remark. Another generalisation is the Matric Massey products of May,
introduced in [May69]. This is a different direction of extension of the
Massey product than the one we wish to pursue, so we will not go into
any greater detail. Examples of calculations of these products in link
complements are given in [O’N79].

2.4.1 Fourfold Massey products
We want to define 〈α1, α2, α3, α4〉, for αi in H∗(Γ). This is possible when
the two triple products 〈α1, α2, α3〉 and 〈α2, α3, α4〉 both contain zero.
This is the same type of condition as the vanishing of cup products for
triple products.
For reasons that will become clearer in Subsection 2.4.2 on n-fold

products we introduce and use a piece of convenient, though seemingly
cumbersome, notation inspired by May’s article “Matric Massey products”
[May69].
Denote by ai−1,i a representative for αi. Since the triple product is

defined, the relevant cup products in cohomology must vanish, and we
denote by ai−1,i+1 some cochain satisfying δ(ai−1,i+1) = ãi−1,i ^ ai,i+1.
With this notation, we can define the triple product as the coset of
cohomology classes represented by cochains of the form

bi−1,i+2 = ˜ai−1,i+1 ^ ai+1,i+2 + ãi−1,i ^ ai,i+2.

Furthermore, since 〈αi, αi+1, αi+2〉 contains zero we can make choices in
such a way that we can find a cochain ai−1,i+2 satisfying δ(ai−1,i+2) =
bi−1,i+2. Then we arrive at the definition of the fourfold product.

Definition 2.4.1. With notation as above, the fourfold Massey product
〈α1, α2, α3, α4〉 ∈ H∗(Γ) is defined when 〈α1, α2, α3〉 and 〈α2, α3, α4〉
contains zero, and is then represented by the cocycle

b0,4 = ã0,3 ^ a3,4 + ã0,2 ^ a2,4 + ã0,1 ^ a1,4 ∈ Γ.
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We say that the product is strictly defined if the two triple products
have trivial indeterminacies, i.e., they contain only zero. y

We will give an example of the computation of a fourfold product in
Section 3.5 and Section 3.6.

In the literature I have only managed to find one example of a compu-
tation of a non-trivial fourfold Massey product, it is found in the article
[O’N79] by Edward J. O’Neill, a doctoral student of Massey’s.

Note. In the cases we are interested in, products of degree 1 cohomology
classes, the fourfold product will have degree 2.

2.4.2 n-fold Massey products

Despite having seen the formula for the fourfold Massey product, it is
not obvious how to extend this to higher products. Defining these will
perhaps also make it clearer how the fourfold product is related to the
usual Massey product as well as how these fit into a greater framework.

In this subsection, we will give the definition of higher Massey products,
as well as necessary and sufficient condition for their being well-defined.
In line with the notation for the triple and fourfold products, we

denote the n-fold Massey product of cohomology classes αi ∈ Hji(Γ) by
〈α1, . . . , αn〉.

Definition 2.4.2. A defining system for the n-fold Massey product
〈α1, . . . , αn〉 is a collection of cochains ai,j ∈ Γ defined iteratively by the
following relations:

[ai−1,i] = αi (2.10)

δ(ai,j) =
∑

i<k<j

ã0,k ^ ak,n, (2.11)

where the indices i ≤ j runs from 0 through n, except (i, j) = (0, n). y

Note that the sum in Equation 2.10 is empty if i− j < 2 holds, which
is exactly the case for Equation 2.11. It is in fact consistent even in this
case, since then we only get that ai−1,i is a cocycle.
We are now in a position to give the definition.
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2 Massey products

Definition 2.4.3. The n-fold Massey product 〈α1, . . . , αn〉 of cohomology
classes αi ∈ Hji(Γ) is defined when the two (n− 1)-fold Massey products
〈α0, . . . , αn−1〉 and 〈α1, . . . , αn〉 vanish simultaneously. When defined, it
the set of classes in H∗(Γ) of the form

a0,n =
∑

0<k<n

ã0,k ^ ak,n ∈ Γ.

y

Note. As with the fourfold product, n-fold products of degree 1 cohomol-
ogy classes will have degree 2.

2.5 Context
The triple Massey product is an example of a higher order cohomology
operations, more specifically, a secondary cohomology operations.

To define these, we first need to define ordinary, or primary, cohomology
operations.

2.5.1 Primary cohomology operations
Definition 2.5.1. Let G1 and G2 groups. A cohomology operation θ is
a natural transformation

θ : Hp(•;G1)→ Hq(•;G2) ,

for some p, q ∈ Z. y

The most familiar example is the cup product squaring of a cohomology
class, which can be seen as an operation •^ • : Hp(X;R)→ H2p(X;R)
given by u 7→ u ^ u, with deg u = p, for each p ∈ Z.

Steenrod squares

Another family of cohomology operations are the Steenrod squares and
Steenrod reduced pth powers. These are examples of stable cohomology
operations, meaning that they commute with the suspension isomorphism.
The Steenrod squares are the ones explaining the non-commutativity

of the cup product on the chain level.

48



2.5 Context

Furthermore, the set of Steenrod operations for any given prime can
be given the structure of a Hopf algebra and the relevant cohomology
ring can be made into a module over this algebra, making it an even
stronger invariant.

2.5.2 Higher order cohomology operations
The triple Massey product specifically, and the higher Massey products
in general, cannot be a cohomology operation in the sense above, since it
is not defined for all triples of cohomology classes. Indeed, we require
the vanishing of cup products for the triple products, and lower order
Massey products for higher Massey products.

Definition 2.5.2. A secondary cohomology operation is a natural
transformation whose domain is the kernel of some primary cohomology
operation and whose codomain is the cokernel of some other primary
cohomology operation. y

The higher order operations are defined iteratively:

Definition 2.5.3. An n-ary cohomology operation is a natural
transformation whose domain is the kernel of some (n− 1)-ary
cohomology operations and whose codomain is the cokernel of some
other (n− 1)-ary cohomology operation. y

We will not prove it, but the Massey products are examples of such
operations, as summed up in the following proposition.

Proposition 2.5.1. For each n ≥ 3, the n-fold Massey product is an
(n− 1)-fold cohomology operation.

It is immediate from the vanishing conditions that the triple product
is defined only in the kernel of the operation given by cupping with the
middle class in the product, but it is not obvious to which cokernel the
codomain, the quotient of the cohomology ring by the indeterminacy
ideal, correspond to.

2.5.3 Applications
It seems that the most common uses of Massey products, both triple
and higher, is a differentials in certain spectral sequences. For instance
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in the Eilenberg–Moore spectral sequence, which is a generalisation of
the Künneth formula and relates the cohomology of a pullback to the
cohomology of each the three spaces involved.

This type of application of the product is important enough to warrant
a section exclusively on Massey product in the appendix of the book
“Complex Cobordism and Stable Homotopy Groups of Spheres” [Rav86]
by Douglas Ravenel, which to a large extend uses the technique of spectral
sequences to deduce information about the stable homotopy groups of
maps of spaces from knowledge of the Steenrod algebras and generalised
cohomology modules of the spaces, the pertinent sequence is called the
Adams–Novikov spectral sequence.

2.5.4 Toda brackets
Another construction which has similarities with the Massey product
is the Toda bracket, introduced by Hirosi Toda in [Tod62] to compute
stable homotopy groups of spheres. This is a homotopical analogue to
the Massey product having as input three composable homotopy classes
of maps whose suitable compositions vanish, in the same way as the
relevant cup products vanish for Massey products.
More precisely, for the following sequence of maps of spaces:

A
f−→ B

g−→ C
h−→ D,

we demand that g ◦ f and h ◦ g are nullhomotopic. We can then form the
product 〈f, g, h〉, possibly with indeterminacy.

In the same way as for the n-fold Massey product, there exists “higher”
Toda brackets with more entries, defined when “lower” Toda brackets
vanish.

The author regards Toda brackets as a possible new avenue of research
into tools for studying link complements.
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3 de Rham computations

In the book “Rational homotopy theory and differential” by Griffiths and
Morgan, [GM81], they perform a computation showing that the Massey
products of the natural generators of the first de Rham cohomology group
of S3 \B is non-trivial.

In this chapter we go through this and a number of other computations,
showing a geometric and visually pleasing way of understanding the
Massey products.
We begin by presenting a number of theoretical results on which

Griffiths and Morgan’s exposition rests, such as Thom classes, Thom’s
isomorphism theorem, tubular neighbourhoods and transversality. We do
this assuming basic knowledge of de Rham cohomology and compactly
supported de Rham cohomology, denoted H∗dR(•) and H∗c(•) respectively.

The reader familiar with these notions or only interested in getting an
impression of how the computation runs may skip ahead to Section 3.2,
since the details are not essential to understanding the arguments.
Recall that by the de Rham theorem the singular cohomology ring
H•(•;R) with coefficients in R is isomorphic to the de Rham cohomology
ring H•dR(•). By a universal coefficient theorem we then have

H•dR(•) ∼= H•(•;R) ∼= H•(•;Z)⊗Z R.

These results paired with Poincaré–Lefschetz duality for singular theo-
ries means that singular homology with real coefficients and de Rham
cohomology are dual.

Note. In this chapter everything is assumed to be smooth and all sub-
manifolds are embedded, orientable and compact.

Note. The manifolds we are working with have boundaries and we assume
that all differential forms vanish on the boundary.
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3 de Rham computations

3.1 Technical preliminaries

The goal of this section is to state the Thom isomorphism theorem and
define Thom classes in de Rham cohomology and explain their relation
to Poincaré–Lefschetz duals. Most of the material is found in [BT82], Ch.
I, §6.

3.1.1 Vertically compact cohomology

We begin by describing a third cohomology theory on vector bundles,
namely de Rham cohomology with compact support in the vertical direc-
tion.

The name captures the intuition, namely that the restriction of a form
to a fibre should have compact support.

Definition 3.1.1. Let π : E →M be a vector bundle. An n-form
ω ∈ Ωn(E) is in Ωn

cv(E) if π−1(K) ∩ supp(ω) is compact for all compact
K ⊂M . y

In particular, the restriction of a form ω in Ω∗cv(E) to any fibre F has
compact support, so that ω|F ∈ Ωn

c (F ).
Having defined these vector spaces for each natural n and using the

ordinary de Rham differential, we obtain a cochain complex.

Definition 3.1.2. The homology of the de Rham cochain complex
(Ω•cv(E), δ) is called the cohomology of E with compact support in the
vertical direction. y

The following theorem relates this cohomology of the vector bundle E
to the cohomology of the base manifold M .

Theorem 3.1.1 (Thom isomorphism theorem). If π : E → M is an
orientable vector bundle of rank n over a manifold M , then

H∗cv(E) ∼= H∗−ndR (M) .

The proof in [BT82] uses a Mayer-Vietoris argument combined with
induction on the cardinality of the good cover, so they need to assume
M to be of finite type.
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3.1.2 Thom classes

There are a number of ways of defining Thom classes, but given Thom’s
isomorphism theorem, there is a particularly simple one.

Definition 3.1.3. Let φ : H∗dR(M)→ H∗+n
cv (E) be the Thom

isomorphism, then the Thom class Φ of E is the image of 1 under φ. y

We give another characterisation, in the form of a proposition.

Proposition 3.1.2. The Thom class Φ of a rank n vector bundle E is
the unique vertically compact cohomology class restricting to the generator
of Hn

c (F ) for each fibre F of E.

Having defined the Thom class, we can do quite a lot better than
merely stating that there is some isomorphism in the Thom isomorphism
theorem, we can actually give explicit isomorphisms in each direction:
From left to right, the map is the so-called integration along the fibre,
which integrates the class in the fibre direction and from right to left, the
map is given by wedging with the Thom class Φ.
The reason we introduced Thom classes was to be able to compute

Massey products in the context of de Rham cohomology, and Thom
classes allow us to do this by performing the required operations on
submanifolds and translating the information back to forms via the
notion of Poincaré–Lefschetz duals.

Thom classes and Poincaré–Lefschetz duality

To explain the relation between Thom classes and Poincaré–Lefschetz
duals we need some definitions, which we will give in quick succession.
From [BT82] we have the following definition.

Definition 3.1.4. The Poincaré–Lefschetz dual of an oriented subman-
ifold Nn in an oriented ambient manifold-with-boundary Mm is the
unique cohomology class of any closed (m− n)-form ηN satisfying∫

N

ω =

∫
M

ω ∧ ηN ,

for all compactly supported n-forms ω on M . y
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Definition 3.1.5. The normal bundle N of a submanifold N in M is the
vector bundle over N such that the following sequence of vector bundles
is exact:

0→ T N → TM → N → 0,

meaning that at each point of N , it restricts to a short exact sequence of
vector spaces. y

The normal bundle will, in a canonical way, inherit its orientation
from the orientation of the tangent bundles of the submanifold and the
ambient manifold.
Furthermore, given the following definition, we can state a result on

localisation of the support of the Poincaré–Lefschetz dual.

Definition 3.1.6. With N as above, a tubular neighbourhood of N is a
neighbourhood of N diffeomorphic to the normal bundle of N in M so
that N is diffeomorphic to its zero section. y

Proposition 3.1.3 (Localisation principle). The support of the Poincaré–
Lefschetz dual of a submanifold N can be shrunk into any given tubular
neighbourhood of N.

For the above to be useful in computations, we need a result on the
existence of tubular neighbourhoods, this is the content of the following
theorem.

Theorem 3.1.4 (Tubular neighbourhood theorem). If N is a compact
submanifold in a manifold-with-boundary M then N has a tubular neigh-
bourhood in M.

Finally we have arrived at the central result in this section, Prop. 6.24.
in [BT82].

Lemma 3.1.5. The Poincaré–Lefschetz dual ηN of an oriented subman-
ifold N in an oriented manifold-with-boundary M and the Thom class Φ
of the normal bundle of N in M can be represented by the same form.

From which the following theorem follows.

Theorem 3.1.6. The Poincaré–Lefschetz dual of N in M is the Thom
class of the normal bundle of N :

ηN = j∗(Φ ∧ 1) = j∗Φ ∈ Hm−n(M),

where j : N ↪→M is the inclusion map.
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We will denote by ŨN the Thom class of the normal bundle of the
submanifold N ⊂M extended by zero outside its support. We suppress
the dependence of M , since it will usually be apparent from the context.

3.1.3 Intersection product

Keeping the goal of computing Massey products in mind, we are interested
in an operation on submanifolds corresponding to the wedge product of
Thom classes of normal bundles.

The wedge product of forms gives a form whose degree is the sum of the
degrees of the individual forms. Thinking in terms of the codimensions
of corresponding submanifolds, this would mean that the codimensions
should add as well. In certain nice cases, this is indeed what happens
when you take intersections. The key notion here is transverse intersection
of submanifolds.

Transversality

Intuitively, transverse intersection of two submanifolds should mean that
the intersection is not too far from being orthogonal, but its interpretation
depends on the sum of dimensions of the submanifolds.

Definition 3.1.7. Two submanifolds N and L in M intersect
transversely if for each point in their intersection, the (not necessarily
direct) sum of their tangent spaces is the tangent space of M at that
point. y

We use the symbol t to denote transverse intersection of submanifolds.
In symbols, the definition then becomes:

N t L⇔ ∀p ∈ N ∩ L : TpN + TpL = TpM.

Note. It is important to notice that the condition depends crucially on
the (dimension of the) ambient manifold.

As an example, if dimN + dimL < dimM , then

N t L⇔ N ∩ L = ∅,

since the dimensions of the tangent spaces does not add up.
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The condition that submanifolds intersect transversely in a given
ambient manifold is sufficient to ensure that their intersection is again
a submanifold. This is a very elementary version of the transversality
theorem, where the notion of transversality has been generalised from
submanifolds to certain maps of manifolds.
Additionally, for transverse intersection of submanifolds we have the

following formula relating their codimensions:

codimN + codimL = codimN ∩ L.

We are now ready to express the Thom class of the normal bundle of
the transverse intersection of the submanifolds N and L, Φ(NN∩L) in
terms of the Thom classes Φ(NN ) and Φ(NL) of their respective normal
bundles :

Φ(NN∩L) = Φ(NN ⊕NL) = Φ(NN ) ∧ Φ(NL)

Translating using the notation of Poincaré–Lefschetz duals, we have

ηN∩L = Φ(NN∩L) = Φ(NN ) ∧ Φ(NL) = ηN ∧ ηL,

so by Poincaré–Lefschetz duality the transverse intersection of submani-
folds corresponds to wedge product of forms.

3.1.4 Differential equations
The last thing we need to do is figuring out what solving the differential
equation δa = b corresponds to in terms of submanifolds. This is needed
when computing the Massey product 〈ω1, ω2, ω3〉, because then we have
to solve the coupled differential equations

δa = ω′1 ∧ ω′2 and δb = ω′2 ∧ ω′3
for a and b.

This material is not presented in [BT82], but can be found in [GM81],
where it is stated without proof.

We are particularly interested in solving the equation δγ = ŨN when
N is an oriented submanifold of M. The surprisingly simple answer is
that if L is a submanifold of M whose boundary is N , then γ = ŨL

solves the above equation. That is: δŨL = Ũ∂L, this is the key geometric
observation making all subsequent computations feasible and therefore
important enough to warrant a theorem.
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Theorem 3.1.7. With notation as above, if N ⊂ M is a submanifold
with boundary ∂N then

δŨN = Ũ∂N .

Before giving the proof, we need the following theorem, which we state
without proof.

Theorem 3.1.8 (Smooth collaring theorem). If N is a manifold with
compact boundary ∂N , then there exists a neighbourhood U , with ∂N ⊂
U ⊂ N , such that that U is diffeomorphic to ∂N × [0, 1).

Proof of Theorem 3.1.7 . We will prove this theorem using using the
smooth collaring theorem and existence of smooth step functions. Let U
be the collaring neigbourhood.
In this proof, we regard all forms and classes as belonging to the de

Rham cohomology ring of the ambient manifold, smoothly extended by
zero outside their supports if necessary.
We begin by defining our step function to some smooth function

f̃ : [0, 1)→ [0, 1] with the following properties: f̃(0) = 0, f̃(t) = 1 for t
in a neighbourhood of 1 ∈ [0, 1) and the derivative satisfies f̃ ′(0.5) = 1
and is non-negative.
From this, we extend to a function f : N → [0, 1] by f(x) = 1 for

x ∈ N \ U and f̃(t) on the fibres of the collaring neighbourhood.
We let u be representative for the Thom class of N ⊂ M and recall

that we have required all our differential forms to vanish on the pertinent
boundaries.

To go from the 0-form f on N to a form on the normal bundle p : NN →
N we take the wedge with the form representing the Thom class u∧f. This
form represents the same form as u since f is only zero on the boundary.
The differential of this form is δ(u∧f) = u∧δf , supported in the collaring
neighbourhood U . Intuitively, this form has non-zero components normal
to N from the first factor, and one non-zero component in the direction
normal to ∂N and parallel to N .

Now we want to show that the Thom class U∂N of the normal bundle
of the boundary ∂N can be represented by u ∧ δf .

First, U∂N is supported in a tubular (m−n+ 1)-neighbourhood of ∂N ,
so it is of degree (m− n+ 1). Furthermore ∂N homotopic to ∂N ×{0.5}
in ∂N × [0, 1), so their Thom classes are the same.
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We will use the characterisation of the Thom class given in Propo-
sition 3.1.2. The class UN restricts to a generator for the vertically
compactly cohomology of each fibre of the normal bundle of N and the
representative u can then be thought of as bump functions in each of the
directions normal to N .

We would like a similar form for the Thom class of the boundary and
notice that u is missing the direction parallel to N , but δf has exactly
this shape: it is a bump function supported in ∂N × [0, 1). It follows that
u∧ δf represent the class restricting to a vertically compact generator on
each fibre of the normal bundle of ∂N , seen as a tubular neighbourhood
in M .

The identity δUN = U∂N follows.

This finishes the technical section.

3.2 The Borromean rings
The aim of this section is to compute a non-trivial Massey product in
X, where X is the complement in S3 of open non-intersecting tubular
neighbourhoods of the Borromean rings.

Note. In [GM81] the motivation for doing this computation is to give an
example of the Sullivan minimal model of differential graded associative
algebras.

Of the above technicalities, the most important aspects are the cor-
respondence between Thom classes and submanifolds, wedge products
and transverse intersections, and taking the coboundary of forms and
taking the geometric boundary of submanifolds; which we will be making
repeated use of throughout the rest of this chapter.

It is not immediately obvious that the link in Figure 3.1 is equivalent to
the Borromean rings. This is, however, illustrated in [Baa10, p.30], Figure
41. Reproduced here with permission from the creator, see Figure 3.2.

Figure 3.1 is inspired by [GM81, p.156], but I have made an effort to
make it easier to “parse” and understand than the original one.
The notation we use for submanifolds and forms is the same as in

[GM81] and is illustrated in Figure 3.1. Denote by Ũi the Thom class of
the normal bundle of the relative disk Di extended by zero outside its
support in H1

dR(X). Furthermore, the interval I12 is the intersection of
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D3

D2D1 I12

I123
C12

Figure 3.1: The Borromean rings with annotations

(a) Borromean rings (b) Stage 1 of deformation

(c) Stage 2 of deformation (d) Brunnian 3-chain

Figure 3.2: Mutation of the Borromean rings from the usual symmetric
presentation to a chain-like presentation
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D1 and D2, the disk-with-boundary C12 is the filled in area, and I123 is
the intersection of C12 and D3.

Theorem 3.2.1. The following Massey product is non-trivial:

〈Ũ1, Ũ2, Ũ3〉 6= 0 ∈ H2
dR(X) .

Proof. In order to compute the Massey product, we have to find

z′ = a ∧ ω3 + ω1 ∧ b,

where a and b are forms satisfying ω1 ∧ ω2 = δa and ω2 ∧ ω3 = δb. This
means that we need to compute the wedge products ω1 ∧ ω2, ω2 ∧ ω3,
a∧ω3 and b∧ω1, and find the solutions to ω1∧ω2 = δa and ω2∧ω3 = δb.
The first thing we do is find the forms a and b: The wedge product

Ũ1 ∧ Ũ2 corresponds to the intersection of disks D1 and D2. This is the
interval I12. Furthermore, we choose the disk C12 as the manifold with
boundary I12, so that ŨC12 = a is a solution to δa = Ũ1 ∧ Ũ2.
Finding a suitable b is easier. Since we have chosen the disks D2 and

D3 to have empty intersection, we can also make the corresponding forms
have non-intersecting supports. In detail, this is because we can make
Poincaré–Lefschetz duals have support in any tubular neighbourhood.
The Poincaré–Lefschetz dual of the empty set can be represented by the
zero form, hence we can take b = 0 to be a solution to δb = U2 ∧ U3.
This gives z′ = a ∧ Ũ3 + Ũ1 ∧ b = ŨC12

∧ Ũ3, so we are left with
computing this one wedge product, corresponding to the intersection of
C12 and D3. In Figure 3.1, this intersection is the interval denoted I123,
so z′ = ŨI123 .

We have to make sure that the cohomology class we get is non-trivial.
The interval connects different components of ∂X, hence by a remark
made in Section 1.6 it is the generator µ13 ofH1(X, ∂X). By the Poincaré–
Lefschetz duality theorem, this means that the cohomology class, which
belongs to H2

dR(X), representing the product is also non-trivial.
Whence we conclude that 〈Ũ1, Ũ2, Ũ3〉 ∈ H2

dR(X) is non-zero.

We conclude this section by making a remark on the indeterminacy in
the computation above.
Note. We could have chosen C12 differently, namely the other part of D3.
This other choice is the filled area shown in Figure 3.3. This would not
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D1

D2D3 I12

I123

C12

Figure 3.3: The Borromean rings with another choice of C12

have made a difference, since there is a 2-submanifold having these two
intervals as its boundary, hence they are homologous, see Figure 3.4.
This shows that this Massey product has trivial indeterminacy.

3.3 The unlink

In [GM81] it is suggested doing the same computation for the unlink
with three components. This is actually straight-forward, using the same
argument as we did for Ũ2 ∧ Ũ3 above we find that both a and b can
be taken to be zero. It is possible since for the unlinks we can choose
non-intersecting proper disks whose boundaries are the link components.

This implies that the Massey product (of the Thom classes of the disks
whose boundaries are the link components) is trivial.

Note. We could have taken any permutation of the factors, and the result
would be the same.

3.4 The Brunnian 3-link

The de Rham version of the Massey product for the Brunnian 3-link,
shown in Figure 3.5, can actually be computed quite easily in the same
way as for the Borromean rings.
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D1

D2D3

I ′123

I123

Figure 3.4: The Borromean rings with a bounding relative disk

We repeat the necessary preliminary introduction of notation. Denote
by X the complement in S3 of open non-intersecting tubular neighbour-
hoods of the link components of the Brunnian 3-link and number the
link components counter clockwise, with the leftmost one being number
1. As above, we denote the submanifolds having their boundaries on the
fattened up link components by Di and the Thom classes of the normal
bundles of these by Ũi.

Theorem 3.4.1. The Massey product structure on X is trivial.

Proof. We will focus on the product 〈Ũ1, Ũ2, Ũ3〉 ∈ H2
dR(X) , since the

other permutations of {1, 2, 3} are equivalent or easier.
To make sure that the Massey product is zero, we have to check that for

all the possible choices of a and b in the definition of z′, we get something
which is trivial in cohomology.

There are 22 choices of a and b, corresponding to choices of submanifolds
having the intersection of disks as their boundaries. One will make the
product trivially trivial, whereas the others will make it non-trivially
trivial. We will do the trivial case and one non-trivial case, since one
suffices to illustrate the issues we run into.

The problem in the non-trivial case is to ensure that different compo-
nents of an intersection has opposite orientations. See Figure 3.5.
Again we insert the relevant forms in the definition of z′:

z′ = a ∧ Ũ3 + Ũ1 ∧ b = ŨC∗12
∧ Ũ3 + Ũ1 ∧ ŨC∗23

.
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I12

I23I31

D1 D2

D3

I12

I23I31

D1 D2

D3

Figure 3.5: The Brunnian 3-link
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Let us begin with the easy case: choosing C ′12 and C ′23. Both the
intersection of C ′12 and D3 and the intersection of C ′23 and D1 are empty,
so in this case the Massey product is trivial.
We proceed to do one non-trivial case: If we choose C ′′12 and C ′23, we

take the intersection of C ′12 and D3 to obtain

C ′12 ∩D3 = I23 = I ′23 t I ′′23.

The other intersection is still empty.
We want to prove that the intervals I ′23 and I ′′23 have opposite orienta-

tions, since then they will cancel in homology.
Recall that we define the orientation of the normal bundle NN of a

submanifold N ⊂ M to be so that the direct sum orientation of the
Whitney sum NN ⊕ T N is the same as the orientation of TM restricted
to N .

One way of specifying an orientation of C12 is choosing to have outward
pointing normal vectors on the boundary. Without loss of generality, we
can also let the “third direction” be pointing out of the paper plane. This
leaves us with picking a positive direction on, say, I ′23. If we take it to
be to the right in Figure 3.5, then for the orientation to be coherent the
positive direction on I ′′23 needs to be up in the figure.

Similarly, if we choose left for I ′23, then by coherence we need to take
down for I ′′23.
Both choices give opposite orientations on I ′23 and I ′′23, which means

that their union is zero in H1(X, ∂X).
This in turn implies that the Massey product is trivial for these choices

of a and b.
For the remaining two choices, the product is zero for the same reasons

as above. It is the disjoint union of oppositely oriented submanifolds,
which cancels in relative homology.

By Poincaré–Lefschetz duality, we conclude that

〈Ũ1, Ũ2, Ũ3〉 = 0 ∈ H2
dR(X) .

Furthermore, the cyclic symmetry of link components show that another
two of the Massey products are zero. As for non-cyclic permutations of
link component, they will again make all products trivial.
From this discussion, we get that the Massey product structure of X

is trivial, which is what we wanted to show.
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Since the Massey product structure of the complements of the Bor-
romean rings and the Brunnian 3-link are different the links themselves
are not isotopic.
The result that the Massey product structure on the Brunnian 3-link

is trivial is both surprising and interesting. One of the initial aims of
this thesis was to find tools with which to study the linking and higher
order linking structures introduced in [Baa10]. If the Massey product
does not detect the Brunnian linking, this means that it is probably not
the correct tool for the task.

3.5 The Brunnian 4-link

In this section, we continue investigating whether or not we can detect
the linking inherent in the family B(1, n) of Brunnian rings described in
[Baa10].

We will now calculate the fourfold Massey product of the complement
of open non-intersecting tubular neighbourhoods of the Brunnian 4-link
in S3, see Figure 3.6. Again, for ease of notation, we call this compact
manifold-with-boundary X.

The recipe for computing the fourfold product in de Rham cohomology
is similar to that of the triple product, though with additional operations
to perform.

As usual, we denote our submanifolds by Di, but in order to conform
with the notation introduced in Section 2.4.2, we denote the corresponding
Thom classes previous denoted Ũi by αi.

Lemma 3.5.1. The following fourfold Massey product is trivial:

〈α1, α2, α3, α4〉 = {0} ⊂ H2
dR(X) .

Proof. The fourfold product is defined only when the two relevant triple
products vanish, hence we need to check this condition first. By symmetry
considerations we only need to check this for one of the products, say
〈α1, α2, α3〉.
The intersection of D1 and D2 is the boundary of C ′12 and C ′′12. The

intersection of the C ′12 and D3 is empty, so it does not contribute to the
product. The intersection of the C ′′12 and D3 is non-empty, but zero in
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I12

I23

I34

I41

D1 D2

D3D4

Figure 3.6: The Brunnian 4-link
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homology, for the same reason as the one explained in the case of the
Brunnian 3-link.
For the other term of z′, none of the submanifolds with D2 ∩D3 as

their boundary intersects D1.
This implies that 〈α1, α2, α3〉 vanishes strictly, hence the fourfold

product 〈α1, α2, α3, α4〉 is strictly defined.
Recall from Subsection 2.4.1, that we defined it as the class of

b0,4 = ã0,3 ∧ a3,4 + ã0,2 ∧ a2,4 + ã0,1 ∧ a1,4 ∈ Ω•(X).

The defining system, as well as correspondences to submanifolds are listed
below:

[a0,1] = α1 ! D1,

[a1,2] = α2 ! D2,

[a2,3] = α3 ! D3,

[a3,4] = α4 ! D4,

δa0,2 = a0,1 ∧ a1,2 ! ∂C∗12 = I12,

δa1,3 = a1,2 ∧ a2,3 ! ∂C∗23 = I23,

δa2,4 = a2,3 ∧ a3,4 ! ∂C∗34 = I34,

δa0,3 = ã0,2 ∧ a2,3 + ã0,1 ∧ a1,3 ! ∂C ′34 = I34,

δa1,4 = ã1,3 ∧ a3,4 + ã1,2 ∧ a2,4 ! ∂C ′41 = I41,

with ∗ denoting either ′ or ′′.
Thus we have to take three intersections to do the calculation:

C ′34 ∩D4 = I34 = I ′34 t I ′′34
I12 ∩ I34 = ∅
D1 ∩ C ′41 = I41 = I ′41 t I ′′41.

As we have seen many times by now, these oriented submanifolds represent
the zero homology class in H1(X, ∂X). So by Poincaré–Lefschetz duality,
H1(X, ∂X) ∼= H2

dR(X), the product is therefore again the trivial class in
H2

dR(X).
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It is to be expected that n-fold Massey product applied in the same
way as above to the Brunnian n-link will vanish for exactly the same
reasons. We will study both this problem, and the corresponding one for
the Brunnian n-chain in Section 3.7 and Section 3.8.

3.6 The Brunnian 5-chain
Our goal for this section is to compute a non-trivial fivefold Massey
product, showing that higher Massey products can detect the linking in
the family of Brunnian n-chains.
In Figure 3.7, we see the Brunnian chain with 5 components. This

link belongs to the family of links obtained by adding more components
in the middle. This family may be regarded as natural extension of the
Borromean rings, as seen in Figure 3.2.
We denote by X the compact manifold-with-boundary obtained by

removing open non-intersecting tubular neighbourhoods of each link
component in S3. Looking at the Figure 3.7, let us denote, from left
to right, the 2-submanifolds with boundaries on the boundary of each
fattened up link component by Di for i between 1 and 5.
As earlier, we let αi be the Thom class of the normal bundle of Di,

extended by zero outside its support.
We can then form three different triple products which are not trivially

zero, namely those with consecutive and increasing indices. For those with
non-consecutive indices the corresponding intersections of submanifolds
are empty, leading to trivial products.
In this section we will not explain each step as thoroughly as above.
To ensure that the fivefold product is defined, we have to compute

some lower order products. We state the result of the computations as
lemmas.

Lemma 3.6.1. The following Massey product is trivial:

〈α1, α2, α3〉 = 0 ∈ H2
dR(X) .

Proof. The intersection of D1 and D2 is I12. I12 is the boundary of C ′12
and C ′′12, but C ′12 ∩D3 = I ′123 and C ′′12 ∩D3 = I ′′123 are homotopic, so the
product has no indeterminacy. We can find a submanifold representing
a class in H2(X, ∂X) whose boundary is I ′123, so the homology class it
represents is trivial. By duality it follows that the product is zero.
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D1 D2 D3 D4 D5

I12

I ′23

I ′′23

I ′34

I ′′34

I ′45

I ′′45

C12 C23 C34

Figure 3.7: The Brunnian 5-chain

Lemma 3.6.2. The following Massey product is trivial:

〈α2, α3, α4〉 = 0 ∈ H2
dR(X) .

Proof. The intersection of D2 and D3 is I23, which is the boundary of
C ′23 and C ′′23. C ′23 ∩D4 = ∅ and C ′′23 ∩D4 = I234 = I ′234 t I ′′234, but as in
the computation for Brunnian 3-link, I ′234 and I ′′234 cancels in homology,
hence the product is trivial.

Lemma 3.6.3. The following Massey product is trivial:

〈α3, α4, α5〉 = 0 ∈ H2
dR(X) .

Proof. The intersection of D3 and D4 is I34, which is the boundary of
C ′34 and C ′′34. C ′34 ∩D4 = ∅ and C ′′34 ∩D5 = I345 = I ′345 t I ′′345. We can
find a submanifold having I345 as its boundary so by the same arguments
as before the product is trivial.

We continue by computing the relevant fourfold products:

Lemma 3.6.4. The following fourfold Massey product is trivial:

〈α1, α2, α3, α4〉 = {0} ⊂ H2
dR(X) .
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Proof. By the previous lemmas this fourfold product is well-defined. For
the readers’ convenience, we recall the expression for the defining cochain:

b0,4 = ã0,3 ∧ a3,4 + ã0,2 ∧ a2,4 + ã0,1 ∧ a1,4.

One can check that the intersections corresponding to the two last terms of
the above expression are zero, so we only need to consider b0,4 = ã0,3∧a3,4.
The wedge product corresponds to the intersection C23∩D4 = I34, which
represents the zero class in H1(X, ∂X) since it is the boundary of a
submanifold representing a class in H1(X, ∂X), e.g. C34.

Lemma 3.6.5. The following fourfold Massey product is trivial:

〈α2, α3, α4, α5〉 = {0} ⊂ H2
dR(X) .

Proof. Again, by the previous lemmas this fourfold product is well-defined,
and the expression for the defining cochain is:

b1,5 = ã1,4 ∧ a4,5 + ã1,3 ∧ a3,5 + ã1,2 ∧ a2,5,

and only the first term is not trivially trivial, so b1,5 = ã1,4 ∧ a4,5,
corresponding to (C34 ∪C ′34)∩D5. This intersection has two components
and there exists a 2-submanifold representing a class in H2(X, ∂X) and
having these as its boundary, oppositely oriented, which means that in
H1(X, ∂X) they cancel. By the Poincaré–Lefschetz duality theorem the
product, which is the corresponding class in H2(X), is zero.

Finally, we will compute the fivefold product, showing that it is non-
trivial:

Theorem 3.6.6. The following fivefold Massey product is non-trivial:

〈α1, α2, α3, α4, α5〉 6= {0} ⊂ H2
dR(X) .

Proof. By the previous five lemmas the fivefold product is well-defined.
The defining cochain is given as follows:

b0,5 = ã0,4 ∧ a4,5 + ã0,3 ∧ a3,5 + ã0,2 ∧ a2,5 + ã0,1 ∧ a1,5.

As before, only the first term corresponds to a non-empty intersection,
that of C34 and D5. This intersection, I45, is a 1-submanifold whose
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boundary components lie on the fourth and fifth components of ∂X. The
class µ45 represented by I45 is non-trivial since it is the difference between
the two distinct generators µ15 and µ14 of H1(X, ∂X), as described in
Section 1.6.
By the Poincaré–Lefschetz duality theorem the product, which is the

corresponding class in H2(X), is non-trivial.

This result is good news, as it provides evidence that higher Massey
products detects the non-trivial linking in “higher” Borromean rings, or
longer Brunnian chains.

3.7 The Brunnian n-link

In this and the next section we will see that the so-called higher Massey
products really could be called longer products. Indeed, there is nothing
in the behaviour of the longer products that separates them from the
shorter ones, except the feature of taking more link components into
account.

It turns out that the computations of the threefold and fourfold prod-
ucts of Brunnian links captures all the issues we encounter when calcu-
lating the n-fold products.

We exemplify such a link by one with n = 9 components, Figure 3.8.
We number the link components in the Brunnian n-link in counter

clockwise order and let Xn denote the compact manifold-with-boundary
obtained by removing non-intersecting open tubular neighbourhoods of
an embedding of the Brunnian n-link in S3. For i ∈ {1, . . . , n}, denote by
αi ∈ H1

dR(Xn) the Thom class of the normal bundle of the 2-submanifold
whose boundary lies on the ith component of ∂Xn.

Theorem 3.7.1. The following n-fold Massey product is trivial:

〈α1, . . . , αn〉 = {0} ⊂ H2
dR(Xn) .

Proof. This proof will only be a brief sketch of how the computation
runs, since doing it in full would require introducing a lot of notation
without a corresponding gain of understanding and insight.

The key technical point is that in the sum of terms defining the
cochain b0,n whose equivalence class is the n-fold product only one term
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Figure 3.8: The Brunnian 9-link

corresponds to a non-empty intersection of submanifolds, in exactly the
same way as for threefold and fourfold products. The intersection it
corresponds to can be found iteratively:
- The non-zero term at the kth stage is of the form

b0,k = ã0,k−1 ∧ ak−1,k,

corresponding to the intersection of a 2-submanifold of Xn whose bound-
ary is the Poincaré–Lefschetz dual of a representative of the (k − 1)-fold
product of Alexander duals of the k− 1 first link components, relative to
the numbering described above.

This intersection is of the same form as the one described in detail in
the computation for the Brunnian 3-link.

We can continue this process up to and including the nth stage, where
we end up with a two-component 1-submanifold representing a relative
homology class. This class is the zero class by the argument concerning
orientations in Section 3.4.

In the above proof we implicitly assumed that n ≥ 3 and the proof
holds for all such natural n.
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Figure 3.9: The Brunnian n-chain

3.8 The Brunnian n-chain
The computation we are about the perform is closely modelled on the one
for the 5-chain; the only difference being that in the more general case of
n link components we will need an inductive argument. See Figure 3.9

We number the link components in the Brunnian n-chain from left to
right and let Xn denote the compact manifold-with-boundary obtained by
removing non-intersecting open tubular neighbourhoods of an embedding
of the Brunnian n-chain in S3. For i ∈ {1, . . . , n}, denote by αi ∈
H1

dR(Xn) the Thom class of normal bundle of the 2-submanifold whose
boundary lies on the kth component of ∂Xn.

Theorem 3.8.1. The following n-fold Massey product is non-trivial:

〈α1, . . . , αn〉 = {0} ⊂ H2
dR(Xn) .

Proof. This proof is analogous to the one in Section 3.7, iteratively
realising that only one term in the defining cochain b0,k corresponds to a
non-empty intersection of submanifolds and only these can contribute to
the product.
Going through the motions, we arrive at the result that the final

defining cochain b0,n is equal to a0,n−1 ∧ an−1,n, corresponding to the
intersection In−1,n = Cn−2,n−1 ∩Dn. This 1-submanifold represents the
relative homology class

µn−1,n = µ1n − µ1,n−1 6= 0 ∈ H1(X, ∂X) .

By Poincaré–Lefschetz duality, the product in H2
dR(X) is non-trivial.

Note. In the above computations we repeatedly made use of the fact that
we could represent relative homology classes by submanifolds. The reader
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may feel uneasy about when this is actually possible. The question is
commonly referred to as “Steenrod’s problem”, and were studied in detail
by René Thom; a discussion of this work is found in Dennis Sullivan’s
homage [Sul04] to René Thom.
The question is partially, and sufficiently for our use, resolved using

Steenrod squares. The result we can use is that for manifolds the smallest
degree for which there is a homology class not representable by an
embedded compact submanifold is 7. This is clearly sufficient to ensure
that classes in the homology of the complement of a link in S3 is always
representable by compact submanifolds.

3.9 Discussion on results of computations
The initial plan for this thesis was to define Massey products and com-
pute them for a number of examples, especially the Borromean rings
and the Brunnian 3-link, showing that these exhibit non-trivial Massey
products. This would give good evidence that the triple product detects
the “Brunnian property”. From the results above, this appears not to be
the case, which means that another tool, or invariant, is needed to detect
this specific property of a link.

In the literature, there are a small number of computations of Massey
products in link complements. I have only been able to find such com-
putations in Massey’s article [Mas69], where he calculates a product in
the complement of the Borromean rings and the complement of a link
similar to the Borromean rings; in Griffiths’s [GM81], where they also
calculate a product in the complement of the Borromean rings; and in
O’Neill’s [O’N79], where he calculates the fourfold product of a pair of
“bracelets”; all cited above.

It was therefore not known whether or not there were non-trivial
Massey products in the complement the Brunnian 3-link, although we
expected there to be. The result of the computation above is that the
Massey products of Brunnian rings are trivial. This means that there is a
need for some other set of tools to detect them, this is a possible path to
be followed. However, time constraints have prevented us from doing so.
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