
On Mimetic Finite Difference Methods for 
Grids with Curved Faces

Ruben Kristoffer Thomasse Bø

Master of Science in Physics and Mathematics

Supervisor: Helge Holden, MATH
Co-supervisor: Knut-Andreas Lie, SINTEF ICT, Department of Applied Mathematics

Stein Krogstad, SINTEF ICT, Department of Applied Mathematics

Department of Mathematical Sciences

Submission date: June 2012

Norwegian University of Science and Technology





Abstract

In this thesis the mimetic finite difference method for grids with curved
faces is presented, implemented and tested with an emphasis on applications
in reservoir simulation.

The thesis gives a brief introduction to reservoir modeling and intro-
duce the mimetic method for flat and for curved faces. Then the continuity
condition for the curved mimetic method is discussed. It is shown that
the suggested continuity condition is not valid for cases with a difference in
permeability between two cells separated by a curved face. An alternative
continuity condition is discussed and implemented.

Numerical examples confirm that the original continuity condition is in-
correct for general examples with heterogeneous permeability. Numerical
examples for the alternative continuity condition shows that it is correct for
simple cases, and that it gives no gain in accuracy compared to the mimetic
method. In conclusion the curved mimetic method is primarily of academic
interest.





Sammendrag

I denne oppgaven er mimetisk metode for grid med krumme flater pre-
sentert, implementert og testet med vekt på eksempler innen reservoarsimu-
lering.

Oppgaven gir en kort introduksjon til reservoarsimulering og introduserer
mimetisk metode for flate og krumme flater. Deretter diskuteres kontinuitets-
betingelsen for krumme flater. Det vises at denne kontinuitetsbetingelsen
ikke er gyldig for grid med en diskontinuitet i permeabilitet mellom to celler
som deler en krum flate. En alternativ kontinuitetsbetingelse blir presentert
og implementert.

Numeriske eksempler bekrefter at den originale kontinuitetsbetingelsen
ikke er gyldig for generelle tilfeller med heterogen permeabilitet. Numeriske
eksempler med den alternative kontinuitetsbetingelsen bekrefter at denne er
korrekt for enkle eksempler med diskontinuerlig permeabilitet, men at meto-
den med denne kontinuitetsbetingelsen ikke gir noen forbedreing i nøyak-
tighet i forhold til mimetisk metode. Det konkluderes med at mimetisk
metode for krumme flater primært er av akademisk interesse.
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Chapter 1

Introduction

Modeling of fluid flow through porous media has several applications. In this
thesis the focus will be on applications for the oil and gas industry. Oil and
gas is found in subsurface porous rock. Numerical models for how the oil
and gas flow thorough this rock, are important tools for the industry. This
is called reservoir simulation.

An important part of reservoir simulation is to solve an equation for the
pressure. This is typically an elliptic equation. For multi-phase models,
one also have a saturation equation. This is typically a hyperbolic equa-
tion. However in this thesis we will only discuss single-phase flow, and hence
consider the elliptic pressure equation. The standard method for solving
these equations is the two-point flux approximation (TPFA) method. This
is a finite volume method, and as the name suggests, it uses two points to
approximate the flux over each face, which is proportional to the pressure
gradient. TPFA is only consistent for certain grid types, in particular it as-
sumes the grid to be K-orthogonal. We will come back to what that means
later.

A lot of work has been done to construct methods that are consistent
on more general grids, e.g., multipoint flux approximation (MPFA) methods
and mimetic methods. A common assumption for these methods is that
the grid faces are flat. Real grid models used in reservoir simulation often
contain cells having curved faces. Mimetic methods that are convergent for
such cases have recently been developed [4]. The importance for practical
simulation has not yet been thoroughly investigated.

The original aim of this thesis was to implement and investigate the accu-
racy and cost of the mimetic method for curved faces. However, the method
suggested in [4] uses a naive continuity condition, and is only valid for some
special cases. This thesis will investigate how this affects the accuracy for
more realistic examples. An alternative continuity condition is also imple-
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mented, and its performance is investigated.



Chapter 2

Reservoir modeling

A reservoir model consists of a description of the geometry and petrophysical
properties of the rock, as well as a numerical approximation to the differential
equations used to describe fluid flow. In this thesis we consider a highly
simplified model: Incompressible single-phase fluid, ignoring gravity.

2.1 Reservoir rock

Reservoir rock is formed from mineral particles transported by wind and wa-
ter to lakes, river deltas, etc where they settle. Layers of sediments with
different mineral and rock content is gradually buried deeper and over time
transform to different rock types. Over time these large flat layers are often
bent, folded or displaced by geological activity, giving a complex geometry.
The layers range from a decimeter scale to tens of meters in the vertical
direction and can stretch across an entire reservoir in the horizontal direc-
tion. Similar rock formations are found in daylight at Svalbard, shown in
Figure 2.1.

On a micrometer scale the rock have pores and channels of void space.
And it is in these pores the fluid flow happen. For a small section of the reser-
voir we are able to model the flow on a pore scale, but we are not able to and
do not aim to model on a pore scale for the whole reservoir. Instead we start
with a continuum hypotheses, i.e., there exists some representative elemen-
tary volume (REV) on which the rock properties are homogeneous so that
these properties can be modeled as a continuum that the fluid flows through.
This means that we are able to model the rock properties as piecewise con-
tinuous functions in space. Usually we approximate the rock properties by
piecewise constant functions.

3
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Figure 2.1: Outcrops of sedimentary rocks from Svalbard, Norway. Length scale:
∼ 100 m. Photo: K.A. Lie

2.2 Equations

In this section we derive equations to describe fluid flow in porous medium.
Since this thesis has a focus on the continuity condition in the mimetic
method for grids with curved faces, we will not go into gravity effects, com-
pressibility effects, or multi-phase flow. Therefore, and for the simplicity of
notation, we will do simplifications on the equations in this section.

To derive equations for the fluid flow model, we start by mass conserva-
tion. We consider the Darcy velocity ~v defined as the volume flux per area.
Considering any subset Ω0 of the domain Ω, the mass conservation equation
is
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∂

∂t

∫
Ω0

(φρ) dΩ +
∫
∂Ω0

(ρ~v) · ~n dσ =
∫

Ω0

b dΩ, (2.1)

where φ is the porosity, ρ is the mass density and b is a source / sink function,
typically describing wells. For incompressible fluids, ρ is independent of time,
and assuming incompressible rock, φ is also independent of time and the first
term vanish. Then, by the divergence theorem, mass conservation can be
written in differential form

∇ · (ρ~v) = b. (2.2)

To make notation simpler, we assume that the mass density ρ equals one.
The next step is to find an equation for the velocity in terms of pressure.

Henry Darcy found a relationship from his experiments in 1856. Later it is
shown that one can also derive Darcy’s law from the Navier-Stokes equations.
Darcy’s law is analogous to Fick’s law in diffusion theory and Ohm’s law in
electromagnetic theory, and can be written as

~v = −K
µ
∇Φ, (2.3)

where K is the permeability, µ is the viscosity and Φ = p − ρgz is the
pressure potential. For the single-phase case the viscosity is a constant that
we henceforth will assume to be equal to one. And since we are ignoring
gravity effects, Darcy’s law becomes

~v = −K∇p. (2.4)

Hence we get the following set of equations

∇ · ~v = b, ~v = −K∇p. (2.5)

2.3 Reservoir characterization
The important rock properties in a reservoir model are porosity and perme-
ability. Porosity φ is the volumetric fraction of the rock that is filled with
void space. Permeability K is the rock’s ability to transmit fluid when the
rock is filled with this fluid. It is defined as the proportionality constant in
Darcy’s law. On a local scale the permeability is a diagonal tensor, although
when doing an approximation to fit a larger scale, off-diagonal terms may
appear.
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Building a good description of the reservoir rock properties is an expen-
sive and non-trivial task. Geologists use a range of techniques to determine
these properties. The most important source of information is knowledge
of the rock history and formation. This knowledge is obtained by studying
similar rock formations in open daylight, e.g., at Svalbard, as shown on the
pictures in Figure 2.1. One can also study the rock by X-ray or in an elec-
tron microscope. This can give an understanding of the size, connectedness
and distribution of the pores. Measurement of the flow versus pressure drop
on samples from well drilling will give an understanding of the permeabil-
ity in and around the well. Seismic data is another source of information.
These techniques give different information on different scales. On seismic
data, one can not expect to see formations that are thinner than 10 meters.
Likewise, it is obviously not possible to get a full model of the rock pores
on a micrometer scale for the whole reservoir. It is also not necessary. In a
reservoir model it is sufficient to determine the general flow patterns.

2.4 Grid
In order to represent the reservoir volume and the rock properties discussed
above, we partition the total reservoir volume into non-overlapping polyhe-
dral cells. Let Ω ⊂ R3 be the total volume and Ωh the partitioning of Ω.
This partitioning is called the grid.

The grid cells are defined by its vertices (corner points), edges connecting
pairs of vertices and faces. A faces is defined by a subset of vertices, and it
defines a connection between two neighboring cells. We assume the grids to
be conforming, i.e., that each internal face defines the connection between
exactly two faces. Note that grids that are non-conforming, can be made
conforming by introducing new edges and/or vertices. How the cells are
connected is called the topology of the grid.

The simplest grids are regular Cartesian grids, that is when all cells are
unit cubes. If the grid consists of rectangular cuboids, we call it a rectilinear
grid. A curvilinear grid is a grid that has the same topology as a regular
Cartesian grid, but where the cells are cuboids rather than cubes. A 2D
illustration is made in Figure 2.2. Note that a cuboid defined by eight points
in space need not have planar faces. However it is a common assumption
for numerical methods, that the grid cells do have planar faces. Depending
on the numerical method used, the grid cells will satisfy certain regularity
conditions. We will come back to that later.

On a grid, the permeability tensor K is represented as a symmetric ma-
trix for each cell. In other words, we are assuming K to be constant on
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(a) Regular (b) Rectilinear (c) Curvilinear

Figure 2.2: Grid types

each grid cell. As mentioned, it is common that the permeability tensor is
diagonal, resulting in one diagonal permeability matrix for each cell. Two
things that are important when choosing a grid, are: First one wish to match
the rock properties as good as possible, i.e., to minimize the error made by
approximating the rock properties to be constant on each grid cell. Second,
one must consider the assumptions the numerical method makes on the grid.
For instance, a regular Cartesian grid will make the construction of a numer-
ical solver easy, but will not match the rock properties as good as grids with
more complex geometries.

2.5 Discretisation
Next we need a numerical approximation method to Equation (2.5). To
this end there are several choices. In this section we introduce a general
framework for finite volume method. Then we introduce the two-point flux
approximation method.

General finite volume methods

We want to build a general finite volume discretization for Equation (2.5).
First we require the discretization to be locally conservative, i.e., conserving
mass in each cell. We also want the discretization to be exact for linear
pressure fields. For each cell i we introduce the pressure at the cell centroid
pi, the Darcy flux vi,e over each face e, and the pressure πi,e at each face
centroid. For most methods, one degree of freedom per face is used for the
Darcy flux, i.e., one approximates the flux over each face by the normal
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component of the velocity. Note that the curved mimetic method introduces
extra degrees of freedom on curved faces.

General finite-volume methods and mimetic methods can be written in
the general form

vi = Ti (eipi − πi) , ei = (1, ..., 1)T . (2.6)
for each cell i, where the elements of vi are the Darcy flux over each face.
Local conservation can be written ∑

e(vi)e = bi for all cells i. Requiring
continuity for all internal faces e shared by cells i and j gives (vi)e = −(vj)e.
Equation (2.6) together with local conservation and continuity can be written
on the following matrix formB C D

CT 0 0
DT 0 0


 v
−p
π

 =

0
b
0

 , (2.7)

where C ∈ RNe×N is a matrix where each row corresponds to a cell, having
ones at the corresponding faces; B is a block diagonal matrix of the T−1

i ’s;
and D is a matrix where each column corresponds to a face, having ones at
the corresponding faces, i.e., two non-zero entries for the internal faces and
one for boundary faces. The first row, Bv −Cp+Dπ = 0, corresponds to
Darcy’s law. The second, CTv = b, corresponds to mass conservation and
the last row, DTv = 0 asserts that the flux over internal faces are consistent.

Two-point flux approximation (TPFA)
In this subsection we present the two-point flux approximation (TPFA)
method [1]. This is a finite volume method, but since it is cell centered
one need not put it into the framework of Equation (2.7). Instead it is set
up to calculate the cell pressures directly, and the face pressures and fluxes
can be reconstructed from this.

To construct the TPFA method, we start by considering each cell Ωi as a
control volume, i.e., apply Equation (2.1) on each cell. Assuming we are not
at a well, we get

Ne∑
e=1

∫
e

(~v · ~n) dσ =
Ne∑
e=1

ve = 0, (2.8)

where Ne is the number of faces for each cell, and ve is an approximation to
the flux across each face e. We consider the grid cells shown in Figure 2.3,
and consider only the flow across face e, i.e., the flow from cell i to cell j.
The other directions are analogous.
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pi

pjpe

~cie

~cje

~nie

Figure 2.3: Grid cells used to describe the TPFA method. pi and pj are the cell
pressures, pe is the face pressure, ~nie is the normal vector of face e out
of cell i and ~cie and ~cje are vectors from the cell centroid to the face
centroid.

Let Ke and ve denote the permeability and Darcy velocity at face e,
respectively. Then we use Darcy’s law (2.4) to obtain an expression for the
flux

ve =
∫
e

−Ke∇p · ~ne dσ, (2.9)

which can be written

ve =
∫
e

−Ke~ne · ∇p dσ, (2.10)

since K is symmetric. The integrand is the directional derivative of the
pressure in the direction of Ke~ne.

Since the permeability is defined to be constant within each cell, we do
not know the value of the permeability at the face, Ke, explicitly. We do
however have the permeability in each cell, so we start by considering the
flux ve from each of the cells separately

ve,l =
∫
e

−Kl~ne · ∇p dσ, l = i, j, (2.11)

where ve,i and ve,j are the flux seen from cell i and j respectively. To do an
approximation, we introduce a pressure potential pe at a fictitious point xe
on e. This can be approximated as follows
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ve,i ≈ −|e|(pe − pi)
‖Ki~ne‖
‖~cie‖

ve,j ≈ −|e|(pe − pj)
‖Kj~ne‖
‖~cje‖

. (2.12)

if and only if Kl~ne is parallel to ~cle for l = i, j [?]. Eliminating pe by sub-
tracting (pe − pi)− (pe − pj) in the equations above, we get

|e|(pj − pi) = ve,i
‖~cie‖
‖Ki~ne‖

− ve,j
‖~cje‖
‖Kj~ne‖

. (2.13)

Since the flux must be the same with opposite signs when seen from the two
sides, we have ve,i = −ve,j, and get

vij = |eij|
(
‖~cie‖
‖Ki~ne‖

+ ‖~cje‖
‖Kj~ne‖

)−1

(pj − pi). (2.14)

To set up the full system for the pressure unknowns, we introduce the
face transmissibilities defined by

tij = |eij|
(
‖~cie‖
‖Ki~ne‖

+ ‖~cje‖
‖Kj~ne‖

)−1

, (2.15)

This gives

Ne∑
j=1

tij (pi − pj) =
∫

Ωi
bdx, (2.16)

for all cells.
A more direct way to look at the two-point flux approximation is to

look at Equation (2.10) and use the following approximation to the pressure
gradient

∇p ≈ (pj − pi)
(‖~cie‖+ ‖~cej‖)

ĉij. (2.17)

where ĉij is the unit vector in the direction of ~cij which is the vector from
the centroid of cell i to the centroid of cell j, or ~cie + ~cej.

Inserting Equation (2.17) into Equation (2.10) and comparing that to
Equation (2.14) we can interpret the following harmonic average as the ef-
fective permeability at the face e

ke = (‖~cie‖+ ‖~cej‖)
(
‖~cie‖
‖Ki~ne‖

+ ‖~cje‖
‖Kj~ne‖

)−1

. (2.18)
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Note that the condition that Kl~ne is parallel to ~cle means that the grid
must be K-orthogonal [2]. Another, and perhaps more common, way to
define K-orthogonality is to require

~nkK~nl = 0 (2.19)

for all non-parallel normal vectors ~nk and ~nl to a cell with permeability K.





Chapter 3

Theory

In this chapter we introduce the mimetic method and the curved mimetic
method. Then the continuity condition proposed in [5] is discussed, and an
alternative continuity condition is proposed.

3.1 An introduction to mimetic methods
Mimetic finite-difference methods have been developed to be convergent for
very general grids. The first version [6] assumes the grid cells to be polyhe-
drons with flat faces, whereas the second version [5] allows polyhedral cells
with highly curved faces. However, as we will see, the second method is not
valid for general examples with heterogeneous permeability.

In this section we start by introducing the mimetic method for curved
faces and the standard mimetic method. Since the curved mimetic method
is built based on the mimetic method, we have chosen to introduce the curved
mimetic method and point out what terms are omitted to get the mimetic
method.

Notation and definitions
We will need some notation and definitions for the curved mimetic method.
First we introduce the average area weighted normal vector

ñeE =
∫
e

~neE dσ, (3.1)

and the unit normal

ae,1E = ñeE
|ñeE|

(3.2)

13
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where ~neE is the continuous outer unit normal vector to the face e. Note that
|ñeE| ≤ |e| with equality only when the face is flat. We can then define a face
e to be moderately curved if

‖~neE − a
e,1
E ‖ ≤ σ∗

√
|e| (3.3)

for every point on e and some chosen σ∗ independent of E and e. Faces that
are not moderately curved are called strongly curved. For each face we will
use the notation

σ = max
~x∈e

‖~neE(~x)− ae,1E ‖√
|e|

(3.4)

to characterize the curvature of the face.
Note that the mimetic method is equivalent to the curved mimetic method

on a grid where all faces are moderately curved.
We will also need a local coordinate system for each face. Let ae,2E and

ae,3E be unit vectors that are mutually orthogonal and orthogonal to ae,1E . As
for the direction of the normal vectors, we require ae,iE1 = −ae,iE2 for each face
e shared by two cells E1 and E2.

An introduction to mimetic methods on polyhedral and
generalized polyhedral grids
The idea of a mimetic finite-difference method is to mimic basic operators
and theorems in vector calculus. For our equation this means to mimic the
divergence and gradient operators, and the Greens divergence theorem. To
this end, we will build a method that is exact for linear pressure fields.

Following [3] and [4] we start by defining the following inner products

(~u,~v)X =
∫
Ω

~u ·K−1~vdV, (3.5)

and

(p, q)Q =
∫
Ω

pqdV, (3.6)

in the space X of velocities and the space Q of pressures, respectively. Using
the divergence theorem we get

(~v,−K∇p)X = (p,∇ · ~v)Q . (3.7)
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And we can consider the operator G := −K∇p as the adjoint to the diver-
gence operator with respect to the above inner products.

In our numerical approximation we consider a discrete pressure space Qh

as the set of all functions being constant on each grid cell. We write p ∈ Qh

and the elements of p as (p)E or pE. In practice we treat p as elements of
RNQ , where NQ is the number of polyhedrons in Ωh. This space is used both
for the mimetic and for the curved mimetic method.

Let Xh be the space of discrete flux unknowns. We will use face fluxes
rather then velocities, i.e., with units volume per time through each face,
since that is how it is implemented in MRST1. We write u ∈ Xh. For the
curved mimetic method the elements of u is defined as ue,jE , where ue,1E is the
flux over face e out of cell E and ue,jE , j = 2, 3 are extra degrees of freedom
related to the orthonormal vectors ae,jE . For the mimetic method, there is no
extra degrees of freedom, and we write ueE for ue,1E . Again we will consider u
as elements of the subspace of RNX satisfying Equation (3.8), where NX is
twice the number of internal faces plus the number of boundary faces for the
mimetic case.

For the curved mimetic case, NX is six times the number of strongly
curved internal faces plus twice the number of moderately curved internal
faces plus three times the number of strongly curved boundary faces plus the
number of moderately curved boundary faces. We will come back to how
boundary conditions are treated in Section 4.4, for the moment we assume
that all boundary faces are moderately curved.

Altogether we have NQ +NX degrees of freedom.
For the mimetic method we get the following continuity condition for all

internal faces e shared by cells E1 and E2

ueE1 = −ueE2 . (3.8)

For the curved mimetic method, it was suggested in [5] to use the following
continuity condition

ue,jE1 = −ue,jE2 , j = 1, 2, 3. (3.9)

However, this continuity condition is only valid if E2 and E2 have the same
permeability. We will come back to this in Section 3.2.

Now we define inner products for the discrete spaces Qh and Xh. For the
pressure, this is fairly straight forward. We take the Euclidean inner product
scaled with the cell volumes |E|,

1See Section 4.1
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[p, q]Qh =
∑
E∈Ωh

pEqE|E|. (3.10)

For the discrete flux, we define the inner product cell-wise

[u,v]Xh =
∑
E∈Ωh

[u,v]E , (3.11)

where the inner product on each cell is given by a symmetric positive definite
matrix ME ∈ RnE×nE ,

[u,v]E =
nE∑
s,r=1

ME,s,ru
s
Ev

r
E. (3.12)

For the mimetic method, nE = kE where kE is the number of faces for each
cell. For the curved mimetic method, nE = lE where lE is three times the
number of strongly curved faces plus the number of moderately curved faces.
Some regularity is required on the matrices ME that we will come back to
later. Note that in [3] and [4] they use velocities instead of fluxes, resulting
in different inner products M. However the conversion is trivial, one only
needs to pre- and post multiply by the inverse of the area for each face, see
[7].

The next step in building the mimetic method is to define discrete diver-
gence and gradient operators. Following the divergence theorem, we define

(DIVhu)E = 1
|E|

kE∑
s=1

uesE . (3.13)

This is valid for both the mimetic and the curved mimetic method, where
the ues ’s are the unknowns associated with the normal direction. Then we
define the gradient as the adjoint of the divergence operator in our discrete
inner products,

[
u,Ghp

]
Xh

=
[
p,DIVhu

]
Qh

∀p ∈ Qh ∀u ∈ Xh. (3.14)

Following this notation, a discrete version of Equation (2.5) should be

DIVhu = b, u = Ghp. (3.15)

To motivate why (3.15) is an approximation of (2.5), we start by defining
some interpolation operators. Given a pressure field p, let
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(p)IE = 1
|E|

∫
E

p dΩ, (3.16)

and for the velocity field ~v we interpolate from the continuous velocity space
to the discrete flux space. Let

((~v)I)e,jE =
∫
e

~v · ~αe,jE dσ, j = 1, 2, 3. (3.17)

where

~αe,jE =


~neE, j = 1
ae,2E , j = 2
ae,3E , j = 3.

(3.18)

Then we can derive [3]

(DIVh(~v)I)E = 1
|E|

kE∑
s=1

∫
es

~v · ~nesE dS Gauss= 1
|E|

∫
E

∇ · ~v dΩ = (∇ · ~v)IE. (3.19)

This equation is valid for both the mimetic and the curved mimetic method,
since the discrete divergence operator only considers the unknowns associated
with the normal direction, and these unknowns are equivalent for the two
methods.

The consistency assumptions in [3] and [4] can be motivated by demand-
ing the discrete divergence and gradient operators to satisfy the divergence
theorem in each cell,

∫
E

~v ∇p dΩ +
∫
E

p (∇ · ~v) dΩ =
kE∑
s=1

∫
es

p ~v · ~nesE dσ. (3.20)

This can be rewritten to

(~v |
E
,K∇p |

E
)X +

∫
E

p (∇ · ~v) dΩ =
kE∑
s=1

∫
es

p ~v · ~nesE dσ. (3.21)

Let us define a discrete vector for each cell, representing the numerical ve-
locity

ueE = ve,1E
|ñeE|

ae,1E + ve,2E
|e|
ae,2E + ve,3E

|e|
ae,3E (3.22)
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for the curved mimetic method and simply

ueE = veE
|ñeE|

ae,1E (3.23)

for the mimetic method. For the discrete case Equation (3.21) means we
want to satisfy the following consistency condition

(Consistency condition). For any v ∈ Xh and any linear pressure field
p = ~a · ~x+ b

[
v, (K∇p)I

]
E

+
∫
E

p
(
DIVhv

)
E

dΩ =
kE∑
s=1

∫
es

puesE · ~nesE dσ, (3.24)

Looking at each space dimension i = 1, ..., d separately, the left hand side
reads

LHS = ai
[
v, (K∇xi)I

]
E

+
∫
E

(aixi + b)
(
DIVhv

)
E

dΩ. (3.25)

Using the definition of the discrete divergence, Equation (3.13), we get

LHS = ai
[
v, (K∇xi)I

]
E

+ ai
1
|E|

kE∑
s=1

vesE

∫
E

xi dΩ + b
kE∑
s=1

vesE . (3.26)

The middle term can be omitted using a symmetry argument assuming the
cell center to be at origo. This assumption is ok, since we can assume frame
invariance. We get

LHS = ai
[
v, (K∇xi)I

]
E

+ b
kE∑
s=1

vesE . (3.27)

The right hand side of Equation (3.24) reads

RHS =
kE∑
s=1

∫
es

(aixi + b)
(
ve,1E
|ñeE|

ae,1E + ve,2E
|e|
ae,2E + ve,3E

|e|
ae,3E

)
· ~nesE dσ. (3.28)

Since the aeE’s, the veE’s and b are constants, the dot product with the contin-
uous normal vector becomes the dot product with the average normal vector.
Then by orthogonality we get
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RHS =
kE∑
s=1

ai

∫
es

xi

(
ve,1E
|ñeE|

ae,1E + ve,2E
|e|
ae,2E + ve,3E

|e|
ae,3E

)
·~nesE dσ+b

kE∑
s=1

vesE . (3.29)

Now we simplify the notation by including all the term in one sum;

RHS =
lE∑
t=1

ai

∫
et

xi
1
βtE
vtEa

t
E · ~netE dσ + b

kE∑
s=1

vesE , (3.30)

where atE, t = 1, ..., lE is some numbering of the unknowns aes,jE , s = 1, ..., kE
and j = 1 for moderately curved faces and j = 1, 2, 3 for strongly curved
faces. And

βes,jE =


|ñesE |, j = 1
|es|, j = 2
|es|, j = 3.

(3.31)

Equation (3.27) and (3.30) are the left and right hand side of Equa-
tion (3.24) respectively. Subtracting b∑kE

s=1 v
es
E from both sides and dividing

by ai we get

LHS = RHS[
v, (K∇xi)I

]
E

=
lE∑
t=1

vtE
1
βtE

∫
es

xia
t
E · ~nE dσ, (3.32)

which for flat faces simplifies to

[
v, (K∇xi)I

]
E

=
kE∑
s=1

vesE
1
|es|

∫
es

xi dσ. (3.33)

Let ki be the i-th column of K. Now let us define N as the matrix
with (ntE)T as the rows; let C be the matrix with (ctE)T as rows, where
(ctE)i = 1

βtE

∫
et
xia

t
E · ~nE dσ and

ntE = βtEa
t
E (3.34)

Then we can write Equation (3.32) as

vTM

∫
es

K∇xi · ~αtE dσ
lE
t=1

=
lE∑
t=1

vtE
1
βtE

∫
es

xia
t
E · ~nE dσ, (3.35)
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where ( · )lEt=1 denotes a column vector of length lE. By definition of ki, nsE
and ctE this simplifies to

vTM (ki · nsE)lEs=1 =
lE∑
t=1

vtE(ctE)i

vTMNK = vTC. (3.36)

Since this is valid for all v ∈ Xh we get

MNK = C. (3.37)
For the mimetic method, this consistency condition can be derived [7]

within the framework of Equation (2.6) and M = T−1. For the linear pressure
field p = ~a · ~x + b, Darcy’s law becomes ~v = −K~a. Then we get v = −nK~a
for each cell. Inserting this, together with pE−πe = ceE ·~a into Equation (2.6)
we get

MNK = C.

The following property is valid both for the mimetic [6] and the curved
mimetic [5] method

CTN = diag(|E|). (3.38)
Following [7] we multiply Equation (3.37) by K−1CTN

MN = 1
|E|

CK−1CTN. (3.39)

Since N (and C) has full rank [6, 5], Equation (3.39) is equivalent to

M = 1
|E|

CK−1CT + M2, (3.40)

for any M2 such that M is symmetric positive definite and M2N = 0. In
particular, for any symmetric positive definite matrix SM we can use

M = 1
|E|

CK−1CT + Q⊥NSMQ⊥N
T
, (3.41)

where Q⊥N is an orthonormal basis for the null space of NT . A similar calcu-
lation can be made for T = M−1.

T = 1
|E|

NKNT + Q⊥CSTQ⊥C
T
, (3.42)
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where Q⊥C is an orthonormal basis for the null space of CT , and ST is any
symmetric positive definite matrix.

To see how this can be set up as a linear system, we consider

[u,v]Xh =
[
Ghp,v

]
Xh

∀v ∈ Xh∑
E

uTEMEvE =
[
DIVhv,p

]
Qh∑

E

uTEMEvE − pEeTEvE = 0, (3.43)

where e = (1, ..., 1, 0, ..., 0)T is the vector with ones as the first kE entries
and zeroes in the 2kE last entries for the curved mimetic method. For the
mimetic method it is simply e = (1, ..., 1)T . This can be rewritten into

∑
E

MEuE − eEpE +wE = 0, (3.44)

where w ∈ RNX is a new unknown satisfying ∑Ew
Tv = 0 ∀v ∈ Xh. This

is satisfied if we,jE1 = we,jE2 for all components j of all faces e shared by two
cells E1 and E2.

This equation can be rewritten into the form of the first line in Equa-
tion (2.7), where B is constructed as block diagonal with ME as its blocks.
We note that the interpretation of the new unknowns w will be the face pres-
sures π for the mimetic method. For the curved mimetic method, an exact
formula for the extra unknowns is given in [8]. The rest of Equation (2.7) is
straight forward.

3.2 An incorrect continuity condition
As mentioned, the curved mimetic method suggested in [4] is not valid for
general examples with heterogeneous permeability. In particular, one can not
have difference in permeability in two cells separated by a strongly curved
face. In this section we show why this is so. Numerical examples that verify
this is done in Section 5.2.

The original mimetic method has one unknown for the flux per cell face,
that is the velocity in the outer normal direction integrated over (or multi-
plied by) the area. As a constraint, the two unknowns associated with the
same global face, i.e., when seen from the two neighboring cells, must be
the same but with opposite sign. This comes from mass conservation. The
curved mimetic method suggested in [4] introduces two new unknowns for
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the velocity for each strongly curved face. For simplicity we now define all
non-planar faces as strongly curved, i.e., setting the constant σ∗ = 0 in Equa-
tion (3.3) and introduce new unknowns also for planar faces. Or think of a
close to planar face that has been defined as strongly curved. If the perme-
ability is the same for the two neighboring cells, continuity of the pressure
gradient and continuity of the velocity is equivalent by Darcy’s law. It is
also well documented that the curved mimetic method works well for homo-
geneous permeability, see e.g. Section 5.1 and the numerical experiments in
[5].

When the two neighboring cells have different permeability, there is no
reason to expect continuity of velocity in the direction parallel to the face.
Quite the contrary, if the ratio of the permeability is large one will get a
proportionally large difference in the parallel component of the velocity in
the two cells. In other words, the continuity condition (2.5) in [4] is in-
correct. The paper claims that the permeability may vary strongly across
cell faces, but it only shows numerical examples with homogeneous perme-
ability. In a newer paper [8] this error is mentioned: "For problems with
discontinuous coefficients, it is more natural to define additional discrete un-
knowns as tangential components of the gradient ∇p, rather than velocity
u. Fortunately, in practical applications, material interfaces are composed of
moderately curved faces; therefore, we did not investigate other definitions of
degrees of freedom." Unfortunately, this is not the case for the SBED model
we shall consider in Section 5.2.3.

3.3 An alternative continuity condition
In this section we explore a way to adapt the curved mimetic method to work
on heterogeneous isotropic permeability. Then we discuss if this approach
can be extended to anisotropic permeability.

As mentioned, it was suggested in [8] to define the new unknowns by the
gradient of the pressure, however the author of that paper have not explored
this option. It would require quite some work to redefine the unknowns.
Instead, we keep the unknowns and change the continuity condition.

We swap the false continuity condition with a condition for the unknowns
on the following form:

vsEβ = αvsEγ , s = 2, 3 (3.45)
for some constant α, where vsEβ and vsEγ are the velocity components associ-
ated with the face e. Here, Eβ and Eγ are two cells who share a face e. Let asβ
and asγ, s = 2, 3 be the orthonormal vectors associated with the face e. Then
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by definition asβ = −asγ. Now we define the face plane as the plane spanned
by the vectors as, s = 2, 3. As the pressure is continuous, the projection of
the pressure gradient onto the face plane must be continuous. Let

∆psEj = ∇p · asEj , for s = 2, 3 j = β, γ. (3.46)
Then ∆psEβ = −∆psEγ . Let the isotropic permeability in the two cells be kβI
and kγI respectively. We use the interpolation operator, Equation (3.17), to
get an expression for the flux unknowns

vsEj = ((~v)I)eEj
=
∫
e

~vEj · asj dσ. (3.47)

Inserting Darcy’s law

~vEj = −kjI∇p (3.48)
into Equation (3.47) we get

vsEj =
∫
e

−kj(∇p · asEj) dσ

= −kj|e|∆psEj , (3.49)

for s = 2, 3 and j = β, γ. Here, ~vEβ and ~vEγ are the exact velocity field on
each side of the face e, and vsEβ and vsEγ are flux unknowns associated with
the local coordinate system of face e defined by the vectors as, s = 1, 2, 3.
Put together, this gives us

vsEβ = −kβ
kγ
vsEγ , s = 2, 3. (3.50)

This continuity condition is exact for flat faces. How this will behave on
strongly curved faces will be investigated in Section 5.3.

We note that this continuity condition will result in a non-symmetric
hybrid formulation B C D

CT 0 0
D̃T 0 0


 v
−p
π

 =

0
b
0

 , (3.51)

where D and D̃ have the non-zero elements at the same place. But while D
is the same as before, with only unit entries, D̃ has the ratio between of the
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permeabilities as entries. Throughout this thesis, this method will be called
the new curved mimetic method.

The anisotropic case

If the above approach should work for anisotropic permeabilities, then Equa-
tion (3.49) would look

vsEj =
∫
e

−(Kj∇p) · asEj dσ

= −|e|(∇p)TKja
s
Ej
. (3.52)

If we assume ∇p to be continuous, and if we want a condition for the flux
unknowns on the form of Equation (3.45), we need

Kβ = αKγ, (3.53)

which includes the isotropic case, and cases where the anisotropy rate is the
same throughout the reservoir.

Proof: Let x = −|e|∇p and bsj = Kja
s. Equation (3.52) reads

vsEj = xTbsj (3.54)

and Equation (3.45) can be written

0 = xTbsβ − αxTbsγ
= xT (bsβ − αbsγ), s = 2, 3. (3.55)

which can only be satisfied if bsβ = αbsγ, if it is to be valid for any x.



Chapter 4

Implementation

In this chapter, we present the platform used for implementation. Then,
the implementation of the curved mimetic method is discussed. We then
discuss the implementation of boundary conditions for the mimetic method
and suggest a way to implement boundary conditions also for strongly curved
faces.

4.1 MRST
As a basis for implementation, we have used MATLAB Reservoir Simulation
Toolbox (MRST)1. MRST is an open-source MATLAB R© toolbox developed
by SINTEF Applied Mathematics. MRST contains routines for creating and
manipulating very general grids, as well as numerical solvers for computing
single and multi-phase flow, including TPFA, MPFA, multiscale methods and
mimetic methods. MRST is developed as a platform to implement, verify
and benchmark new numerical solvers. See [7] for an introduction to MRST.

4.2 The curved mimetic method
Implementation of the variables and matrices needed are based on approx-
imations. Instead of using some surface formula for the faces, we do a tri-
angulation of each face. Let Ne be the number of nodes defining a face e,
and let e be divided into Ne triangles by connecting all corners of the face
by the face mass center. See Figure 4.1 for an illustration. The matrix C in
Equation (3.37) is computed in the following way.

1http://www.sintef.no/MRST

25
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Figure 4.1: Triangulation of a curved face.

ctE,i = 1
βtE

∫
et
xia

t
E · ~nE dσ

≈ 1
βtE

Ne∑
k=1

∫
et,k

xia
t
E · nk dσ

= 1
βtE

Ne∑
k=1

c̃k,ia
t
E · nk (4.1)

where nk is the normal vector of the triangle et,k and c̃k,i is the i-coordinate
of the centroid of et,k

Similarly, the average normal vectors are calculated by summing up the
normal vectors of the triangles.

We also need an implementation of the curvature constant in Equa-
tion (3.3). The approximation of the curvature constant σ for each face
e is

σ = max
k=1,...,Ne

∥∥∥∥∥ nk‖nk‖ − ñ
e

|e|

∥∥∥∥∥ |e|−1/2 (4.2)

4.3 Boundary conditions for the mimetic method

We will investigate the implementation of pressure and flux boundary con-
ditions for the mimetic method, when set up on the form of Equation (4.3).
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B C D
CT 0 0
DT 0 0


 v
−p
π

 =

fg
h

 , (4.3)

For the flux case, we put the boundary flux values into the vector h.
The last line of Equation (4.3) reads DTv = h, and for all internal faces e,
he = 0 and the corresponding line becomes veE1 + veE2 = 0. That is the mass
conservation condition. For a boundary face eb however, the matrix D has
only one unit entry, and the corresponding line becomes veb = heb .

The pressure boundary condition is implemented by removing the columns
in D corresponding to pressure boundary faces. The corresponding un-
knowns in π are also removed. Recall that the first line of Equation (4.3)
reads Bv = Cp−Dπ + f . Since the corresponding pressures are removed
form Dπ it is moved into the vector f with a negative sign.

4.4 Boundary conditions for the curved mimetic
method

In this section we discuss possible solutions on how to treat boundary con-
ditions for curved boundary faces.

The mimetic approach

One possible solution is to increase the threshold level σ∗ for the boundary
faces, i.e., treating all boundary faces as moderately curved faces. In that
case, the curved mimetic method and the mimetic method are equivalent for
these boundary faces, and the implementation of boundary conditions is as
discussed above. In our implementations, this is the standard way to treat
boundary conditions.

Solutions with extra degrees of freedom on curved bound-
ary faces

Another option would be to implement boundary conditions on strongly
curved faces. We will now investigate how this can be done.

For the curved mimetic method the hybrid formulation reads:
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B1 0 0 C D1 0 0
0 B2 0 0 0 D2 0
0 0 B3 0 0 0 D3
CT 0 0 0 0 0 0
D̃T

1 0 0 0 0 0 0
0 D̃T

2 0 0 0 0 0
0 0 D̃T

3 0 0 0 0





v1
v2
v3
−p
π1
π2
π3


=



f1
f2
f3
g
h1
h2
h3


. (4.4)

We start by looking at the case of zero flux boundary, ~v · ~n = 0 on ∂ΩN ,
where ∂ΩN is the part of the boundary with zero flux and curved faces.
The last three lines of Equation (4.4) reads D̃T

1 v1 = h1, D̃T
2 v2 = h2 and

D̃T
3 v3 = h3 respectively. The first of these corresponds to the velocity in the

normal direction, and should be zero, i.e., letting the corresponding values
of h1 equal zero. For the corresponding elements of D̃T

i vi for i = 2, 3 there
is no reason to constrain these unknowns to equal zero. Recall that the
interpretation of the v2 and v3 unknowns is

vs =
∫
e

~v · ae,s dS, for s = 2, 3, (4.5)

where ~v is the velocity field. If the velocity field has a non-zero component in
the direction parallel to the face, then the new unknowns are also non-zero.

Some condition on the new unknowns

One option would be to find some restriction or equation for the new un-
knowns on the boundary. However, the condition ~v · ~n = 0 does not tell
us what the parallel component of the velocity field should be, so we can
not simply put in a numerical value in the h2 and h3 vectors. Options for
restrictions or equations have not been investigated in this thesis.

Deletion of rows and columns

Another option is to delete the corresponding rows in the system, i.e., the
corresponding columns of D̃i, i = 2, 3 and elements of hi, i = 2, 3.

Now the system matrix is no longer square, since we have more unknowns
than equations. Since we do want a square system, we have chosen to delete
the corresponding columns in D2 and D3 and elements of π2 and π3. This
changes the second and third line of Equation (4.4), which reads Bivi =
−Diπi + fi, i = 2, 3. We know from [8] that the unknowns πi, i = 2, 3 can
be interpreted as
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πe,sE =
∫
e

peE(~n · ae,sE ) dσ. (4.6)

Removing these unknowns is then equivalent to setting πe,sE = 0, and that
can be interpreted as assuming ~n · ae,sE = 0, i.e., assuming the face to be
flat. Intuitively this could be just as bad as treating the face to be flat or
moderately curved. This approach has been implemented, and numerical
experiments to test this is done in Section 5.4.2. Throughout this thesis, this
way to implement boundary conditions on curved boundary faces are called
the curved boundary condition.

Note also that the deletion of rows in the D matrices will result in a
reduced Schur system of the same size as the case where the mimetic method
is used on the boundary.

4.5 Grid refinement strategies
Later, we will be needing a mean of comparing the solutions by the different
numerical solvers on models that do not yield an easy analytical solution. To
this mean we use a grid refinement strategy. Since the examples used here
have flat vertical faces, the grids are only refined in the x- and y-directions.
The examples here are also Cartesian in the x- and y-direction, so choosing
the x- and y-coordinates of the new nodes that define the division of the cells,
is straight forward. The choice of z-coordinates do involve a choice. The first
and simplest choice is to first refine in the x-direction using a linear inter-
polation of all coordinates, and then refine in the y-direction using a linear
interpolation of the new points. However, this smooth refinement approach
does not converge towards the interpretation of the geometry that is used in
MRST. Recall that for curved faces, MRST interprets the geometry to be
peace-wise flat following a triangulation.

We have also implemented a piecewise flat refinement method. In Fig-
ure 4.2 a curved face is plotted both as a triangulation and refined by the
two different refinement strategies.

To be able to compare the face flux results, we sum the face flux multiplied
by the unit normal vector for the refined faces that make up each original
face, and then take the dot product with the average unit normal vector of
the original face.

We note that the curvature constant σ for each face, as defined in Equa-
tion (3.4), will be approximately equal for all refined subfaces for the smooth
approach. For the second approach, as shown in the middle plot of Figure 4.2,
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Figure 4.2: Plot of a curved face. Left: Triangulation that MRST use as interpre-
tation of the face. Middle: Piecewise flat 16x16 refinement that follow
this triangulation. Right: Smooth 16x16 refinement following a linear
interpolation in x- and then y-direction.

the off-diagonal refined subfaces will be flat, and the refined subfaces on the
diagonal will have an increasing curvature constant for finer refinements.



Chapter 5

Numerical experiments and
results

In this chapter, the numerical experiments and results are presented. First,
several test cases for the homogeneous case is presented. Then, two sim-
ple examples are run to verify that the naive continuity condition is invalid
for the heterogeneous case. Then, the same two examples are run with the
alternative continuity condition. We then explore more examples with the al-
ternative continuity condition. Lastly, an example with a non-linear pressure
field is presented.

5.1 The homogeneous case
In this section, we will look at some numerical experiments for the curved
mimetic method on grids with homogeneous permeability. The first experi-
ment is meant to motivate why we look into curved mimetic methods. Then
we look at the efficiency for using the curved mimetic method on this ex-
ample, and a similar example. Lastly we look at the efficiency for an SBED
model. The aim of these experiments is to verify the accuracy of the curved
mimetic method for the homogeneous case, and to investigate the efficiency
of the curved mimetic method for these cases, i.e., we are looking at how
much accuracy we can gain at what cost.

In these tests, we have chosen to measure the cost as the number of
unknowns in the main system of equations that needs to be solved, and not
the run-time of the solver. For the mimetic methods, this means the reduced
Schur complement, and for the TPFA method the size of the system to be
solved corresponds to the number of cells in the grid. This choice is made,
because it is easy to measure, it is independent of the computer we run on,

31
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and because the implementation might not be optimally implemented.
The Schur complement is a block-wise Gaussian elimination of Equa-

tion (2.7), see [7]. For both mimetic methods, solving the reduced Schur
system is the major workload in the numerical method.

5.1.1 The simplest test

��
��

��
��

��
���1

Figure 5.1: Global geometry of the test case. Prescribed Dirichlet boundaries (yel-
low) and homogeneous Neumann boundaries (blue). The analytical
solution yields linear pressure drop and constant velocity field in the
direction of the arrow.

We start with a simple example. The geometry of the example is a rect-
angular box. We use homogeneous permeability. The boundary conditions
are Dirichlet boundary conditions for the pressure on two opposing sides, and
homogeneous Neumann conditions on the other four sides. See Figure 5.1.
The first grid on this example is a 8 × 6 × 6 Cartesian grid. We have also
compared this to a perturbed version of this grid. The perturbation is done
by adding a random number in the region (−γ, γ) to each of the coordinates
to all internal nodes. For the nodes on the global boundary this perturba-
tion is only done in the plane of the global face, and hence keeping the same
global geometry.
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Figure 5.2: log10 plot of relative error in the pressure field.

Figure 5.3: log10 plot of relative error in the flux.
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Figure 5.4: log10 plot of relative error in the pressure field.

A comparison

To motivate why we want to look into mimetic methods for curved faces, we
compare the Cartesian grid with a perturbed Cartesian (curvilinear) grid.
Since the boundary and boundary conditions are the same, both grids yield
an exact solution with linear pressure drop and constant velocity field. In
Figure 5.2 we compare the TPFA and the mimetic method on a Cartesian
grid, giving a point-wise absolute error relative to the max-norm of the exact
solution of order 10−14 and 10−12 respectively. Then we perturb all internal
nodes, and compare the same two methods. The perturbation is done using
a random uniform distribution of γ = 30 cm. The reservoir in the plots have
dimension 30 × 10 × 10 meters, with the flow along the longest direction.
This time the TPFA has an error of order 10−3 and the mimetic method an
error of order 10−4. In Figure 5.3 we see the same plot for the flux.

This example has 8×6×6 = 288 cells. To compare the efficiency of these
solvers, we compare the number of unknowns in the system. For the mimetic
solver the size of the system (2.7) is B : 1728 × 1728, C : 1728 × 288, D :
1728 × 996 giving a total of 3012 unknowns in the full system. After Schur
complement the mimetic system is reduced to 924 unknowns. In comparison,
the size of the TPFA system is 288. In other words, for this example, the
difference between the TPFA method and the mimetic method is significant
for the pressure and slight for the flux. And the advantage of the TPFA
method is clearly its cost.

A first approach; triangulation

The perturbed grid in Figure 5.2 clearly contains cells having curved faces.
One improvement on accuracy for the mimetic method is to split each face
into four triangles, giving back flat faces, but increasing the number of faces
in our grid. As we see in Figure 5.4 this gives the same accuracy as for the
Cartesian grid for the mimetic method. However, since each face is split in
four, we increasing the number of unknowns. As expected, the TPFA method
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Figure 5.5: log10 plot of relative error in L2 norm in the flux (blue) and pressure
(red) as a function of the number of unknowns in the Schur complement

does not improve accuracy by triangulation.
The size of the full mimetic system for the triangulated example isB : 6912×

6912, C : 6912 × 288, D : 6912 × 3984, giving a total of 11184 unknowns.
After Schur complement this system reduces to 3696 unknowns versus 924
before triangulation. For the TPFA case the system still has 288 unknowns.
Here, the cost of the mimetic method is very high, and hence we do not
investigate triangulation any further. The TPFA system do not grow in size
due to triangulation, but does not gain any accuracy either.

A test of the curved mimetic method

Now we want to look into the efficiency of the curved mimetic method. We
start by running the same test as above; the rectangular grid with perturbed
faces.

In Figure 5.5 we see the relative error plotted against the number of
unknowns in the reduced Schur system. The plot is made by varying the
curvature constant σ∗. Recall that σ∗ is the threshold limit for which faces
are treated as highly curved, i.e., given extra degrees of freedom. That is,
all faces having a higher curvature than σ∗ is treated as highly curved. By
varying σ∗ form over the value of the most curved face in the grid, to zero,
i.e., treating all non-flat faces as highly curved, we gradually include more
degrees of freedom. That way we get systems of increasing size and increasing
accuracy.

In Figure 5.5 we see that there is no real gain in accuracy from just
treating some of the faces as highly curved, i.e., in order to get a large
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Figure 5.6: Plot of the highly curved faces.

improvement in accuracy, we need to treat all the faces as highly curved. We
also see that when all the faces are treated as highly curved, we get a large
improvement in accuracy. This improvement; the difference between the two
rightmost data-points in Figure 5.5, is coming when going form treating just
one curved face as moderately curved, to all curved faces as highly curved.
It is reasonable that most of Figure 5.5 is a more or less straight line, since
when all the faces have curvature of the same magnitude, we can expect them
all to contribute equally to the error.

Variable curvature on the faces

To investigate if there are cases where one can find a significant improvement,
without treating all the faces as highly curved, we look at the following case:
We look at the same global geometry and boundary conditions as above. This
time we have perturbed all nodes just slightly, giving a curvature constant
of magnitude σ∗ ∼ 10−4. And at one subsection across the flow direction,
in the middle of the two Dirichlet boundaries, the faces are perturbed with
a curvature constant of magnitude σ∗ ∼ 0.05. In Figure 5.6 one can see the
positioning of the faces that have higher curvature.

As we can see from Figure 5.7 the gain in accuracy when just treating the
faces with high curvature as highly curved we gain two orders of magnitude
in the relative L2 norm with the cost of going from approximately 900 to 1100
unknowns. The rest of Figure 5.7 looks similar to Figure 5.5. We also see a
large gain in accuracy in the last step, 4 to 5 orders of magnitude. Again,
this difference comes from only treating the face with the lowest curvature
as moderately curved, and all other as highly curved versus all curved faces
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Figure 5.7: log10 plot of relative error in L2 norm in the flux (blue) and pressure
(red) as a function of the number of unknowns in the Schur complement

as highly curved. In other words, for this model we see a significant gain in
accuracy when treating just the worst faces with higher degrees of freedom.

In Table 5.1 we have listed the accuracy and number of unknowns for
different models and methods. For model 1) and 2) in Table 5.1, the results
are plotted point-wise in Figure 5.2 and 5.3 and Figure 5.4 respectively. For
model 1) and 3) the results are plotted in Figure 5.5 and 5.7 respectively.
These results show that for these simple examples, we are able to achieve
machine precision by using the curved mimetic method. However the cost
is high. For model 3) we have been able to achieve a significant gain in
accuracy (relative error of order ∼ 10−5) by introducing just some extra
degrees of freedom, i.e., just slightly higher cost. This is a promising result,
however, these example grids are very simple. In the next subsection we run
a test that are both bigger and more realistic.

5.1.2 SBED model

As this thesis intended to investigate the usefulness of the curved mimetic
method for reservoir simulation, we run an SBED model. SBED models
simulate the sedimentary structures with cell dimensions from millimeters to
centimeters. Specific SBED grids can be made to represent what is found
from core samples. From an SBED model one is able to calculate an approx-
imation for the effective permeability for single and multi-phase flow as well
as getting an estimate of the Representative Elementary Volume and thereby
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rel. L2-norm rel. L2-norm # of
of pressure of flux unknowns Model

TPFA 1.2e-3 7.5e-2 288 # 1
Mimetic 2.6e-4 8.6e-2 924
Curved mimetic 2.3e-13 2.5e-14 2388
TPFA 1.2e-3 1.5e-1 288 # 2
Mimetic 1.3e-15 4.3e-14 3696
Mimetic 1.1e-4 5.8e-3 924 # 3
Curved mimetic 2.8e-3 9.8e-4 924
Curved mimetic 3.7e-5 1.5e-5 1104
Curved mimetic 2.3e-13 2.5e-14 2388

Table 5.1: Relative L2-norm of the flux and pressure and number of unknowns for
different methods and different models. The models are: 1) The model
as in the bottom two plots in Figure 5.2. 2) Is the triangulated model,
Figure 5.4. 3) Is the model with variably curved faces, from Figure 5.7.

Figure 5.8: Plot of the SBEDmodel. The physical size of this model is 20×20×5.64
centimeters. It contains 18213 cells, of different shapes and sizes.
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an optimal cell size for the reservoir grid. This SBED model1 is a synthetic
model, and the grid is plotted in Figure 5.8.

To verify that the curved mimetic method is accurate for homogeneous
permeability, and to test the efficiency of the curved mimetic method on this
grid, we have used the same boundary conditions as above; Dirichlet pressure
conditions on two opposing sides, and homogeneous Neumann conditions on
the other. Since we have homogeneous permeability and a linear pressure
filed, we have a simple analytical solution to compare with. The relative
error in the L2-norm is plotted in Figure 5.9. The plot is made by running
the simulation for different curvature constants σ∗. We see that when going
form approximately 50 000 to 70 000 unknowns in the reduced Schur system,
we gain one order of accuracy for the flux. And we see that when treating all
faces as strongly curved, we gain machine precision with the curved mimetic
method for the homogeneous case.

Figure 5.9: SBED model with homogeneous permeability. Total flux over the left
Dirichlet boundary is plotted against the total number of unknowns
in the Schur complement for the curved mimetic method. Values from
the mimetic method is marked as a red circle and the mimetic method
after a triangulation of the faces as a red cross. The left plot shows the
values in (m3/s) = (volume / time), and the right plot shows a log10
of the relative error. The value for the TPFA method is also included
in the right plot.

1This Generic SBED model is copyright 2010 Statoil ASA, with Creative Commons
license BY-SA 3.0. For more information about SBED, see: www.geomodeling.com
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5.2 Tests of the naive continuity condition for
the heterogeneous case

In this section we verify numerically that the naive continuity condition is
incorrect for examples with discontinuous permeability over a strongly curved
face. We first run a simple test with flat faces, where we force the curved
mimetic method to use extra degrees of freedom on all internal faces. Then
we run an example with curved faces.

5.2.1 A simple test case
As a first simple test, consider a 5×1×3 Cartesian grid. We run this example
because it is simple, and because the mimetic method yields the analytical
solution. The permeability used is 1 milli Darcy in the top and bottom layers,
and 50 milli Darcy in the middle layer. The grid and permeability is plotted
in Figure 5.10. The boundary conditions are Dirichlet pressure on the left
and right sides, and zero flux on the other four sides. This yields an exact
solution of linear pressure drop, and a constant velocity field in each layer
with a discontinuity across the layer of changing permeability. Since the faces
are flat and the pressure field linear, the mimetic method will produce the
exact solution to machine precision. Since all faces are planar, we have forced
the curved mimetic method to treat all internal faces as strongly curved.

The flux for all faces is plotted in Figure 5.11 for the mimetic and the
curved mimetic method. We see that the flux is significantly lower for the
curved mimetic method in the high-permeable layer, and slightly higher in
the low-permeable layers. This fits well with the enforced continuity of the
velocity components parallel to the faces dividing cells of different perme-
ability, and verifies that this continuity condition is incorrect.

Figure 5.10: Plot of grid. Left: Cells with low permeability in dark yellow and cells
with high permeability in transparent yellow. Right: Faces where the
relative difference is larger than 5% in dark yellow.
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Figure 5.11: Plot of flux. Left: Flux across faces computed by mimetic method
(green) and curved mimetic (blue). Right: Difference in flux by
mimetic and curved mimetic relative to the max-norm of the mimetic
solution.

To investigate the size of the error produced, we run the above test with
varying ratio of permeability. We keep the permeability in the top and bot-
tom layers constant at 1 milli Darcy, and vary the permeability in the mid-
dle. In Figure 5.12 we plot the maximum difference in the flux between the
mimetic and the curved mimetic method, relative to the maximum of the
mimetic method. We observe that the error is quickly converging to a stable
limit as the ratio of permeability is increasing. The error is converging to
approximately 25%.

Figure 5.12: Semilogx plot of the maximum difference in the flux between the
mimetic and curved mimetic method relative to the max-norm of the
flux for the mimetic method versus the ratio of the permeability.

5.2.2 A test with curved faces
As the above test is done on flat faces, where we force the method to use full
degrees of freedom on all internal faces, we now look at a grid with curved
faces. We use a curvilinear grid, and the same boundary conditions and per-
meability as above; Dirichlet pressure on the left and right boundary, and
zero flux elsewhere. Permeability is 1 milli Darcy in the top and bottom
layers, and 50 milli Darcy in the middle. We now only use more degrees of
freedom on curved faces. The grid and permeability is plotted in Figure 5.13



42 CHAPTER 5. NUMERICAL EXPERIMENTS AND RESULTS

together with the faces where the difference between the mimetic and the
curved mimetic method is large. This model does not have a simple analyt-
ical solution, but is compared to a solution using a refinement strategy as
discussed in Section 4.5.

The grid is refined in x and y direction only, since all vertical faces are flat.
We have refined each grid in 2x2, 4x4, 8x8 and 16x16 in the x and y directions.
Assuming the 16x16 refined solution is the most accurate, we have plotted
the L2-norm of the difference between the intermediate refinements and the
16x16 refinement solution relative to the L2 norm of the 16x16 refinement
solution in Figure 5.15. We observe that the solution appears to converge
as we refine. This supports our assumption that the 16x16 refinement is the
most accurate.

We see that the same trend appears when the curved mimetic method is
used as intended; on curved faces. The flux for each face is plotted in Fig-
ure 5.14. We observe that the difference in flux between the refined mimetic
and the curved mimetic method in the faces perpendicular to the layer of
changing permeability. In particular, the flux is significantly smaller in the
cells with high permeability and slightly larger in the cells with low perme-
ability. This fits well with the enforced continuity of the velocity components
parallel to the faces dividing cells of different permeability. But since the ve-
locity field is expected to be discontinuous here, this continuity condition is
incorrect and the mimetic method produces a more accurate result.

Figure 5.13: Plot of grid. Left: Cells with low permeability in dark yellow and cells
with high permeability in transparent yellow. Right: Faces where the
relative difference is larger than 5% in dark yellow.

As done for the example in Section 5.2.1 we have also for this example
investigated the size of the error produced for varying ratio of permeability.
Also for this example, we see a quick convergence, and this time the error
converges to 12%, see Figure 5.16.
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Figure 5.14: Plot of flux. Left: Flux across faces computed by refined mimetic
method (green) and curved mimetic (blue). Right: Difference in flux
by mimetic and curved mimetic relative to the max-norm of the re-
fined mimetic solution.

Figure 5.15: Convergence plot for the refinement strategy. Relative L2-norm of
the difference to the solution for the 16x16 refinement on the y-axis.
The x-axis shows the number of refinements in x- and y-direction,
where 1 means no refinement.

Figure 5.16: Semilogx plot of the maximum difference in the flux between the
mimetic and curved mimetic method relative to the max-norm of the
flux for the mimetic method versus the ratio of the permeability.
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5.2.3 SBED model
In Section 5.1.2 we have tested the curved mimetic method on an example
with homogeneous permeability and a realistic grid from reservoir simulation;
an SBED grid. The grid is plotted in figure 5.8. In this subsection we will
test the curved mimetic method with the naive continuity condition on this
grid, with the same boundary conditions, but with realistic heterogeneous
permeability. The ratio of the highest and lowest permeability is ∼ 1000.

This example is included to illustrate the effect of the naive continuity
condition on a realistic example, and because it illustrates that the curved
mimetic method do not behave as expected for heterogeneous permeability.

The total flux over the left pressure boundary is plotted against the num-
ber of unknowns in the Schur complement in Figure 5.17. We see that the
difference between the methods increases in a linear fashion as more faces are
treated with higher degrees of freedom. A comparison is run by triangulating
all faces and running the mimetic method, yielding a similar solution as the
mimetic method before triangulation. After triangulating, all faces are flat,
and the mimetic method should then be exact for linear pressure fields. Even
though this solution is not linear, we expect the solution to be a reasonable
approximation. We note that the large drop in flux that appear when using
the full curved mimetic method fits well with the above simple examples.

Figure 5.17: SBED model with heterogeneous permeability. Plot of total flux on
the left Dirichlet boundary against number of unknowns in reduced
Schur complement.

We note that for the SBED model, we do have curved faces at which
the permeability is varying strongly across. The ratio of the permeability
is plotted against the curvature of all internal faces in the SBED model in
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Figure 5.18. Here we see that a large proportion of the faces are curved and
have a ratio of permeability between 10 and 100.

Figure 5.18: A dot is plotted for each internal face. On the y-axis is the ratio
of permeability in the two neighboring cells. On the x-axis is the
curvature constant σ from Equation (3.4).
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5.3 Tests of the new curved mimetic method
In this section we run numerical experiments to test the new curved mimetic
method. First, we run the same simple test cases as in Section 5.2. We then
run a test case with curved faces for several choices of permeability, both
isotropic and anisotropic.

5.3.1 A simple test case
The idea outlined in Section 3.3 has been implemented. First, we run the
tests in Section 5.2.1 and 5.2.2. These tests are included to illustrate that
the new curved mimetic method is correct for simple examples. The results
are plotted in Figure 5.19 and 5.20. We observe that the new curved mimetic
method gives an accurate result to machine precision for the first test. This
is as expected, however on this example, the mimetic method is sufficient,
and there is no gain in using the new curved mimetic method since the faces
are flat.

Figure 5.19: Same model as in Section 5.2.1. Plot of flux. Left: Flux across faces
computed by mimetic method (green) and the new curved mimetic
(blue). Right: Difference in flux by mimetic and the new curved
mimetic relative to the max-norm of the mimetic solution.

The second test gives a relative difference of order 10−3 between the so-
lutions obtained by the mimetic and the new curved mimetic methods. Here
the faces are curved, and to determine which one is the most accurate, we
compare the results using a refinement of the grid, as done in Section 5.2.2.

In Figure 5.21 we have plotted the point-wise difference between the flux
solution in the original model and the refined model relative to the max-norm
of the refined model. We observe that both models have an error of the same
order (∼ 1 · 10−2), and that this error is larger than the difference between
the two methods (∼ 1 · 10−3, see right plot in Figure 5.20). Also in relative
L2 norm the difference to the refined model is similar for the two methods,
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Figure 5.20: Same model as in Section 5.2.2. Plot of flux. Left: Flux across faces
computed by mimetic method (green) and the new curved mimetic
(blue). Right: Difference in flux by mimetic and the new curved
mimetic relative to the max-norm of the mimetic solution.

they are 1.1 · 10−2 for the new curved mimetic method, and 1.0 · 10−2 for the
mimetic method.

Figure 5.21: Point-wise difference to the refined model relative to the max-norm
of the refined model in the mimetic method (left) and the new curved
mimetic method (right).

So far the new curved mimetic method yield a similar result as the
mimetic method, so more testing is needed. However if this result holds, i.e.,
that the two methods are equally accurate, then the new curved mimetic
method is primarily of academic interest since it is more computationally
demanding.

5.3.2 A test with curved faces
In this subsection we run a numerical experiment to investigate the difference
between the mimetic and the new curved mimetic method. We test one grid
with different permeabilities and geometrical ratios. This example is run to
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investigate the accuracy of the new curved mimetic method and compare it
to the accuracy of the mimetic method.

The model

The model we shall investigate, is a model where the boundary faces are flat,
but with curved layers similar to those in Section 5.2.2. The grid is plotted
in Figure 5.22. One motivation to run this model, is that it is similar to
one common property in reservoir simulation. Typically long reservoirs that
curve slightly in the horizontal directions. This is common, because oil and
gas is found where it is trapped under a harder layer, typically concave. This
means that the most realistic permeabilities for this model, is to have low
permeability in the top and bottom layers, and higher permeabilities in the
middle layers. We also test for different aspect ratios for the grid. The grid
as plotted in Figure 5.22 has approximate cell dimensions of 1×1×1 meters.
In these examples we have used the smooth refinement method.

Figure 5.22: Plot of grid. The horizontal layers are given different permeabilities.
We use the notation K1 for the blue, K2 for the yellow, and K3 for
the red layers permeability respectively.

As boundary condition, we use Dirichlet pressure conditions on the left
and right side, and zero flux conditions on the other four sides on all examples
in this chapter.
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Testing for different permeabilities.

We have run the test with different values for the permeability, different
cell size ratios and compared to different methods run on the refined grid.
In Table 5.3 the results is shown. The two first columns show ‖vmim −
vref‖L2/‖vref‖L2 and ‖vcur − vref‖L2/‖vref‖L2 respectively. Where vmim is
the solution from the mimetic method, vcur is the solution form the new
curved mimetic method and vref is the solution from the refined grid summed
up to match the original gird.

In each block of rows, the same type of permeabilities are used, i.e.,
isotropic or anisotropic. The isotropic permeabilities are on the form Ki =
kiI. For the anisotropic case with anisotropy rate α, the permeability is
Ki = diag(αki, ki, ki), which satisfies Equation (3.53). Note that stretching
the grid gives a similar behavior as an anisotropy; compare block 2 and 5 in
Table 5.3.

The first block of rows is the case of isotropic permeability and close to
square grid cells. For all ratios of permeability between the layers, we see
that the two methods are approximately equally accurate. In fact the new
curved mimetic method is slightly better for the homogeneous case, but this
is also the least interesting case, since it has an analytical solution.

The second block of rows is the case where the grid is stretched. As
mentioned, this is similar to block 5, where the permeability in the x-direction
is reduced by a factor 100. In both cases, we see that the new curved mimetic
method is more accurate for the homogenous case. When the top and bottom
layers have low permeability, the two methods are approximately equal in
accuracy. However, these cases are not typical in real life reservoirs. Quite
the contrary, one would typically find that the permeability in the direction
of the flow is higher than the vertical permeability. A more realistic case
would be to run the example with grid ratios of order 10x10x1 to 100x100x1
and an anisotropy rate of 1 or greater. These cases are very similar to the
uniform grid ratio (1x1x1).

The third and fourth block of rows is the case where the grid ratio is
uniform, and an anisotropy rate of 100. As mentioned, anisotropies where
the permeability is higher in the flow direction, is more common in reservoirs.
In these cases, we see that the difference between the methods is small for
the large differences in permeabilities, and for the homogeneous case. For
the intermediate lines, colored in yellow, we note that when comparing to the
mimetic method on the refined grid, the mimetic method is more accurate.
And when comparing to the new curved mimetic method on the refined grid,
the new curved mimetic method is more accurate. This suggests that when
refining, the two methods converge to two different solutions for that set of
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permeabilities. The same is not observed for the inverse anisotropy rate in
the two bottom block of rows.

Table 5.2: Table of relative difference in the pressures for the examples of the first
block of rows in Table 5.3. As a reference, the mimetic method on the
refined grid is used.

Mimetic Curved mimetic

9.86e-05 1.40e-04
9.17e-05 1.37e-04
5.21e-05 8.46e-05
3.83e-06 7.99e-06
2.56e-06 4.01e-08

In Table 5.2 the error in the pressure is estimated for the examples run
in Table 5.3. The relative pressure difference is first calculated using the
volume weighted norm. Then the mean of the 5 layers for each block of rows
is plotted in Table 5.2. We observe that the accuracy in the pressure for
the layers are more or less the same for all cases except for the last line, the
homogeneous case, where the curved mimetic method is more accurate by
two orders of magnitude.
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Table 5.3: Table of the L2-norm of the difference between the methods and a
refined reference solution relative to the L2-norm of the refined solu-
tion. We use either the mimetic method (*) or the new curved mimetic
method (**) on the refined grid.

Mimetic New curved mimetic K1 K2 K3
relative L2-norm relative L2-norm (mD) (mD) (mD)

Isotropic,
cell ratio:
1x1x1 (*)

2.2 · 10−3 3.1 · 10−3 1000 500 1
2.0 · 10−3 2.8 · 10−3 1000 900 1
1.0 · 10−3 1.5 · 10−3 1000 900 300
6.6 · 10−4 1.6 · 10−4 1000 950 900
6.9 · 10−4 1.0 · 10−5 1000 1000 1000

Isotropic,
cell ratio:
10x1x1 (*)

2.4 · 10−3 2.4 · 10−3 1000 500 1
2.7 · 10−3 2.7 · 10−3 1000 900 1
3.0 · 10−2 1.8 · 10−3 1000 900 300
5.8 · 10−2 9.1 · 10−4 1000 950 900
6.0 · 10−2 9.1 · 10−4 1000 1000 1000

Anisotropi
rate 100,
cell ratio:
1x1x1 (*)

2.2 · 10−3 7.0 · 10−3 1000 500 1
2.3 · 10−3 2.8 · 10−2 1000 900 1
1.2 · 10−3 1.4 · 10−2 1000 900 300
1.1 · 10−4 7.5 · 10−4 1000 950 900
1.9 · 10−5 1.6 · 10−6 1000 1000 1000

Anisotropi
rate 100,
cell ratio:
1x1x1 (**)

7.3 · 10−3 1.8 · 10−3 1000 500 1
3.1 · 10−2 2.0 · 10−3 1000 900 1
1.5 · 10−2 1.0 · 10−3 1000 900 300
6.3 · 10−4 8.1 · 10−5 1000 950 900
1.9 · 10−5 1.6 · 10−6 1000 1000 1000

Anisotropi
rate 0.01,
cell ratio:
1x1x1 (*)

6.3 · 10−3 6.3 · 10−3 1000 500 1
6.7 · 10−3 6.7 · 10−3 1000 900 1
3.0 · 10−2 4.1 · 10−3 1000 900 300
5.7 · 10−2 9.5 · 10−4 1000 950 900
5.8 · 10−2 9.0 · 10−4 1000 1000 1000

Anisotropi
rate 0.01,
cell ratio:
1x1x1 (**)

6.3 · 10−3 6.3 · 10−3 1000 500 1
6.7 · 10−3 6.7 · 10−3 1000 900 1
3.0 · 10−2 4.1 · 10−3 1000 900 300
5.8 · 10−2 3.6 · 10−4 1000 950 900
5.9 · 10−2 1.6 · 10−6 1000 1000 1000
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5.4 Curved mimetic method on strongly curved
boundary faces

In this section we test the curved boundary condition suggested in Section 4.4.
First, we run a test to verify that the method achieves a correct result on a
simple example. Then we run an example similar to the one in Section 5.3.2.

5.4.1 A simple test
To test if the boundary condition is correct, we run a simple example. A
reservoir shaped as a cylinder. The grid is plotted in Figure 5.23. We have
chosen this example beacause it has curved boundary faces and yield an
analytical solution. We use pressure boundary conditions on the two ends
of the cylinder, and zero flux on the rest of the boundary. With a constant
permeability this yields an analytical solution of linear pressure drop and
constant velocity field.

Figure 5.23: Plot of grid.

As we see from Table 5.4, the curved boundary condition yields a similar
result as the mimetic boundary condition, i.e., treating curved boundary faces
as moderately curved. In other words the curved boundary condition yield
a reasonable result for this example, but has no benefit since the accuracy is
of the same order but slightly worse than the standard approach.
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Table 5.4: Table of relative error in flux and pressure for different numerical meth-
ods on the boundary.

Flux Pressure
rel. L2-norm rel. L2-norm

Mimetic 1.03 · 10−3 5.60 · 10−6

Curved mimetic 7.33 · 10−3 8.15 · 10−5

Curved mimetic with new BC 7.41 · 10−3 8.12 · 10−5

5.4.2 A test with curved faces
In this subsection we run a test case with variable permeability to see if
we can find a case where the curved boundary condition will give a more
accurate result than the mimetic approach. We use a similar example as in
Section 5.3.2, a reservoir with curved layers in the horizontal direction. It
coincides with the middle three layers of the example from Section 5.3.2. The
grid is plotted in Figure 5.24.

Figure 5.24: Plot of grid. The horizontal layers are given different permeabilities.
We use the notation K1 for the red and K2 for the yellow layers
permeability respectively.

As a reference solution, two strategies have been used. First, a refinement
strategy on the grid and second to use the grid as plotted in Figure 5.22 with
a very low value of permeability for the blue layers, simulating a close to zero
flux boundary condition.
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Table 5.5: Table of the L2-norm of the difference between the methods and a
reference solution relative to the L2-norm of the reference solution. As
a reference solution we use either the mimetic method with extra layers
with very low permeability (*) or a refined grid and the mimetic method
(**).

New curved mimetic Mimetic K1 K2 K3
curved BC mimetic BC
rel. L2-norm rel. L2-norm rel. L2-norm (mD) (mD) (mD)

Isotropic,
cell ratio:
1x1x1 (*)

4.5 · 10−5 4.5 · 10−5 1.7 · 10−7 1000 10 0.001
9.5 · 10−4 9.5 · 10−4 1.6 · 10−7 1000 300 0.001
1.3 · 10−3 1.3 · 10−3 1.4 · 10−7 1000 500 0.001
1.5 · 10−3 1.5 · 10−3 1.0 · 10−7 1000 900 0.001
1.3 · 10−3 1.6 · 10−3 9.8 · 10−8 1000 1000 0.001

Isotropic,
cell ratio:
10x1x1 (*)

1.7 · 10−3 1.7 · 10−3 1.4 · 10−7 1000 10 0.001
4.3 · 10−2 4.3 · 10−2 1.3 · 10−7 1000 300 0.001
6.2 · 10−2 6.2 · 10−2 1.1 · 10−7 1000 500 0.001
7.9 · 10−2 7.9 · 10−2 8.4 · 10−8 1000 900 0.001
8.1 · 10−2 8.1 · 10−2 7.8 · 10−8 1000 1000 0.001

Anisotropi
rate 100,
cell ratio:
1x1x1 (*)

1.3 · 10−1 1.3 · 10−1 3.4 · 10−7 1000 10 0.001
2.2 · 10−2 2.2 · 10−2 4.1 · 10−7 1000 300 0.001
7.7 · 10−3 7.7 · 10−3 4.0 · 10−7 1000 500 0.001
2.6 · 10−2 2.6 · 10−2 3.5 · 10−7 1000 900 0.001
3.8 · 10−2 2.8 · 10−2 3.4 · 10−7 1000 1000 0.001

Anisotropi
rate 100,
cell ratio:
1x1x1 (**)

1.3 · 10−1 1.3 · 10−1 2.7 · 10−3 1000 10 n/a
2.2 · 10−2 2.2 · 10−2 2.2 · 10−3 1000 300 n/a
9.0 · 10−3 9.0 · 10−3 2.2 · 10−2 1000 500 n/a
2.5 · 10−2 2.5 · 10−2 2.3 · 10−3 1000 900 n/a
2.8 · 10−2 2.8 · 10−2 2.3 · 10−3 1000 1000 n/a

Anisotropi
rate 0.01,
cell ratio:
1x1x1 (*)

1.6 · 10−3 1.6 · 10−3 1.3 · 10−7 1000 10 0.001
4.1 · 10−2 4.1 · 10−2 1.2 · 10−7 1000 300 0.001
5.9 · 10−2 5.9 · 10−2 1.1 · 10−7 1000 500 0.001
7.5 · 10−2 7.5 · 10−2 8.2 · 10−8 1000 900 0.001
7.7 · 10−2 7.7 · 10−2 7.7 · 10−8 1000 1000 0.001

Anisotropi
rate 0.01,
cell ratio:
1x1x1 (**)

1.6 · 10−3 1.6 · 10−3 2.8 · 10−4 1000 10 n/a
4.1 · 10−2 4.1 · 10−2 5.0 · 10−3 1000 300 n/a
5.9 · 10−2 5.9 · 10−2 6.3 · 10−3 1000 500 n/a
7.5 · 10−2 7.5 · 10−2 6.7 · 10−3 1000 900 n/a
7.7 · 10−2 7.7 · 10−2 6.5 · 10−3 1000 1000 n/a
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From Table 5.5 we see that the curved boundary condition does not gain
any accuracy to the version where the mimetic method is used on the bound-
ary. This confirms our assumption in Section 4.4 that it involves the assump-
tion of a flat boundary face, and hence no accuracy is gained. It is also worth
noticing that for all cases, the standard mimetic method is better. What can
not be seen from the table, is that the relative difference in L2-norm between
the two boundary strategies, were of order ∼ 10−3 for all examples.
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5.5 An example with wells
In this section we will run an example with wells. The example is based on a
2D analytical solution, and is extended to 3D. This test is run to investigate
the behavior of the curved mimetic method on solutions with non-linear pres-
sure field and non-constant velocity field. Since the mimetic and the curved
mimetic methods only are exact for linear pressure fields, it is interesting to
test and compare their behavior when this criteria is not fulfilled. Especially
since all practical applications involve non-linear pressure fields. Throughout
this section, homogeneous permeability is used.

5.5.1 The model
In an infinitely large 2D reservoir, with a finite number of point wells qi,
i = 1, ..., N , the following solution for the pressure is exact [9].

p(x, y) =
∑
i

qi
2πK/µ ln(

√
(x− xi)2 + (y − yi)2). (5.1)

To extend this to three dimensions, we place point sources / sinks in a finite
number of columns of cells, and evaluate the pressure in only one layer of
cells in the middle of the reservoir. The analytical pressure solution is used
on the boundary that coincide with the 2D boundary, and zero flux boundary
condition is used on the top and bottom boundary.

5.5.2 A first test with flat faces
As a first test, we run a 49 × 49 × 5 Cartesian grid with three columns of
point sources. This test is run to ensure that the extension to three space
dimensions is reasonable. A plot of the cells with the columns of point
sources / sinks are plotted in Figure 5.25. We have also run the curved
mimetic method on this grid to investigate if it behaves differently than the
mimetic method for this example. Since this example has flat faces, we force
the method to apply extra degrees of freedom on all internal faces.

In Figure 5.26, the resulting pressure in the cells in the middle layer is
plotted as a scatter plot against the approximate analytical solution. If the
method is exact, this plot should be a straight line. A point-wise difference
between the methods relative to the approximate analytical solution is shown
in Figure 5.27. We note that the mimetic method differ from the approximate
analytical solution of order 1% point-wise relative to the max-norm of the
approximate analytical solution, and that the error is small away from the
wells.
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Figure 5.25: Plot of the grid. The cells that contain point sources / sinks are
plotted in dark yellow. Two of the columns have a source rate of 1,
and the third a source rate of -2 (i.e. a sink).

Figure 5.26: Scatter plot of the pressure solution against the approximate ana-
lytical solution for the mid section of the grid. Left: The mimetic
method. Right: The curved mimetic method.

In Figure 5.28 we have plotted the point-wise difference between the two
methods relative to the max-norm of the mimetic solution. As we can see
from this figure, the relative point-wise difference between the pressure solu-
tion of the two methods are of order ∼ 10−3, which is 2 orders of magnitude
smaller than the respective methods’ relative difference to the approximate
analytical solution. In Table 5.6 the relative L2-norm of the pressure is
shown. Also here, we see that the two methods give approximately the same
result relative to the approximate analytical solution. And that the relative
difference between the two methods are less, but not a full order smaller.
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Figure 5.27: Plot of the relative difference in pressure between the approximate
analytical solution and the mimetic solution for the mid-section. Left:
Mimetic method. Right: Curved mimetic method.

Figure 5.28: Plot of cell wise relative difference in pressure for the cells in the mid-
section. The plot shows the the difference in pressures between the
solution from the mimetic and the curved mimetic method relative
to the max-norm of the solution from the mimetic method.

Table 5.6: Table of relative difference in the pressures.

Methods Relative L2-norm

Mimetic vs approx. analytical 7.14e-3
Curved mimetic vs approx. analytical 8.68e-3
Mimetic vs curved mimetic 2.50e-3

5.5.3 A test with curved faces
Since the above example are run on a grid with flat faces, we will now in-
troduce an example with curved faces. The grid is plotted in Figure 5.29.
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We observe from Table 5.7 that the relative L2-norm of the difference in
pressure between the mimetic and the curved mimetic method is 3 orders of
magnitude smaller than the difference between either of the two method and
the approximate analytical solution. In other words, there is little difference
between the two methods in this example.

Figure 5.29: Plot of the grid. The cells that contain point sources / sinks are
plotted in dark yellow. Two of the columns have a source rate of 1,
and the third a source rate of -2 (i.e. a sink). Note that the axis in
this plot is scaled differently in the z-direction.

Table 5.7: Table of relative difference in the pressures for the well example with
curved faces.

Methods Relative L2-norm

Mimetic vs approx. analytical 1.01e-2
Curved mimetic vs approx. analytical 1.02e-2
Mimetic vs curved mimetic 7.65e-5

Scatter plots of the pressure against the approximate analytical solution
is shown in Figure 5.30. In Figure 5.31 the point-wise relative difference to
the approximate analytical solution is shown. From these two plots, we see
that the mimetic and the curved mimetic method yield a similar result. And
that they both differ from the approximate analytical solution point-wise of
order ∼ 1%
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Figure 5.30: Scatter plot of the pressure solution against the approximate analyt-
ical solution for the mid section of the grid with curved faces. Left:
The mimetic method. Right: The curved mimetic method.

Figure 5.31: Plot of the relative difference in pressure between the approximate
analytical solution and the mimetic solution for the mid-section of
the grid with curved faces. Left: Mimetic method. Right: Curved
mimetic method.

5.5.4 A test on a perturbed grid

We have now tested one example with curved faces. Since we want to say
something about the accuracy of the method, and since we do this by running
experiments, then the more experiments we run, the more confidence we can
have in our findings. Therefor we run another example with curved faces. The
grid is plotted in Figure 5.32. This is the same grid as in Section 5.5.2 with
the same columns of point sources / sinks as above but with a perturbation
of the inner nodes.

Scatter plots of the pressure is shown in Figure 5.33. We see that both the
mimetic and the curved mimetic method results in a reasonable equally good
result. Relative L2-norm for the pressure solutions are shown in Table 5.8.
Again we see that there is little difference between the two methods, and that
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Figure 5.32: Plot of the grid. The cells that contain point sources / sinks are
plotted in dark yellow. Two of the columns have a source rate of 1,
and the third a source rate of -2 (i.e. a sink). Note that the axis in
this plot is scaled differently in the z-direction.

the relative difference between them is one order smaller then their respective
accuracy to the approximate analytical solution. This support our findings
that the curved mimetic method has little gain in accuracy compared to the
mimetic method.

Figure 5.33: Scatter plot of the pressure solution against the approximate ana-
lytical solution for the mid section of the grid. Left: The mimetic
method. Right: The curved mimetic method.
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Table 5.8: Table of relative difference in the pressures for the well example with
perturbed grid nodes.

Methods Relative L2-norm

Mimetic vs approx. analytical 1.73e-2
Curved mimetic vs approx. analytical 1.86e-2
Mimetic vs curved mimetic 2.98e-3

Figure 5.34: Plot of the relative difference in pressure between the approximate
analytical solution and the mimetic solution for the mid-section of the
grid with perturbed nodes. Left: Mimetic method. Right: Curved
mimetic method.



Chapter 6

Conclusion and further work

In this chapter, we sum up the conclusions and present ideas for further work.

Conclusion
In this thesis, we have implemented the curved mimetic method, and inves-
tigated its performance with an emphasis on applications in reservoir sim-
ulation. The continuity condition suggested in [4, 5] is discussed. For the
special case of homogeneous permeability, the curved mimetic method and
its continuity condition is correct. However, for grids which has a discontinu-
ity in the permeability over a curved face, the continuity condition suggested
in [4, 5] is incorrect. And unfortunately, in reservoir simulation there are no
or few applications with homogeneous permeability.

We have suggested and implemented an alternative continuity condition,
and investigated the performance of this new curved mimetic method. The
findings were that this new curved mimetic method had a very similar but
slightly worse accuracy than the mimetic method. We also know that the
(new) curved mimetic method introduces new unknowns, and hence is more
computationally expensive than the mimetic method. The cost of the new
curved mimetic method is discussed for the homogeneous case, and the num-
ber of unknowns will be the same for the new curved mimetic method for
the heterogeneous case.

For the homogeneous case, the curved mimetic method is more accurate
than the mimetic method. And cases where the gain in accuracy is significant
for only a slight increase in cost is found. However, homogeneous cases is as
mentioned not common in realistic examples.

The curved mimetic method is also tested on an example with a non-
linear pressure field. Also for this case, the difference between the mimetic
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and the curved mimetic method was small. And since the curved mimetic
method is more computationally expensive, it is not recommended to be used
in practical applications for this case either.

In other words, for realistic examples, the new curved mimetic method is
significantly more expensive and has slightly lower accuracy, and based on
the examples run in this thesis we conclude that the method is primarily of
academic interest.

Further work
Since the conclusions about the accuracy of the new curved mimetic method
is based on numerical examples, one could always wish for more test cases
to see if it is possible to find cases where the new curved mimetic method
is more accurate. However, the examples run in this thesis do show a clear
indication that this method has no gain in accuracy compared to the mimetic
method.

A more interesting topic for further work, would be to redefine the un-
knowns to be unknowns in the pressure gradient rather than the flux as
suggested in [8]. However, we do not know how or if this can be done.

Finding other possibilities for continuity conditions for the new unknowns
is also an area where it could be possible to improve the method.
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Appendix A

The Curved Mimetic
Finite-Difference module for
MRST

In this appendix we present how to obtain the implementation of the curved
mimetic method, and give a tutorial to the implementation.

A.1 The implementation in MATLAB
All implementations in this thesis is done using the MATLAB Reservoir
Simulation Toolbox (MRST). The main parts of the code for the curved
mimetic method has been made available as a module for MRST.1

A.2 Tutorial for the CMFD module
This tutorial is largly based on the MRST tutorial found here: http://www.
sintef.no/Projectweb/MRST/Tutorials/Flow-Solver-Tutorial/

The purpose of this example is to give an overview of how to set up and
use the single-phase curved mimetic pressure solver to solve the single-phase
pressure equation

∇ · v, v = −K
µ
∇p (A.1)

for a flow driven by Dirichlet and Neumann boundary conditions. Our ge-
ological model will be simple; a perturbed Cartesian (curvilinear) grid with

1To obtain the module, contact SINTEF thorough http://www.sintef.no/MRST.
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isotropic, homogeneous permeability.

Define geometry

Construct a Cartesian grid of size 10-by-10-by-4 cells, where each cell has
dimension 1-by-1-by-1. Because our flow solvers are applicable for general
unstructured grids, the Cartesian grid is here represented using an unstruc-
tured format, in which cells, faces, nodes, etc. are given explicitly.

nx = 10; ny = 10; nz = 4;
G = cartGrid([nx, ny, nz]);

Then the nodes of the grid is perturbed so that the inner faces are curved,
but the global shape of the reservoir is unchanged.

G = perturbate(G,nx,ny,nz,false,0.5);
display(G);

After the grid structure is generated, we plot the geometry.

plotGrid(G);
view(3), camproj orthographic, axis tight, camlight headlight

Figure A.1: Plot of the grid.
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Process geometry

Having set up the basic structure, we continue to compute centroids and
volumes of the cells and centroids, normals, and areas for the faces. For
a Cartesian grid, this information can trivially be computed, but is given
explicitly so that the flow solver is compatible with fully unstructured grids.

G = computeGeometry(G);

The mimetic method uses one degree of freedom for the flux over each
face. In the curved mimetic method, two extra degrees of freedom for the
velocity are added for each face. These new unknowns are associated with
the flow orthogonal to the normal direction. We therefor compute orthogonal
vectors a2 and a3 for each face. A plot of a single grid cell and the normal
and orthogonal vectors are shown and the relevant constants needed are
calculated.

tutorialGridCell

G = computeCmatrix(G);

Figure A.2: Plot of a grid cell with curved faces and the normal and orthonogonal
vectors.

Set rock and fluid data

The only parameters in the single-phase pressure equation are the permeabil-
ity and the fluid viscosity. We set the permeability to be homogeneous and
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isotropic. The viscosity is specified by saying that the reservoir is filled with
a single fluid, for which the default viscosity value equals unity. Our flow
solver is written for a general incompressible flow and requires the evaluation
of a total mobility, which is provided by the fluid object.

rock.perm = repmat(100*milli*darcy(), [G.cells.num, 1]);

fluid = initSingleFluid(’mu’ , 1*centi*poise , ...
’rho’, 1014*kilogram/meter^3);

For heterogeneous permeability we calculate the constants needed for the
new continuity condition. This step is not necessary for the homogeneous
case, where the naive continuity condition and the new continuity condition
are the same. Note that the method only is valid for isotropic permeability,
or permeabilities that has the same anisotropy rate for the entire reservoir,
i.e., that satisfy Equation (3.53).

G = makeKalpha(G, rock);

Initialize reservoir simulator

To simplify communication among different flow and transport solvers, all
unknowns are collected in a structure. Here this structure is initialized with
uniform initial reservoir pressure equal 0 and (single-phase) saturation equal
0.0 (using the default behavior of initResSol).

resSol = initResSol(G, 0.0);
display(resSol);

Impose Dirichlet boundary conditions

Our flow solvers automatically assume no-flow conditions on all outer (and
inner) boundaries; other type of boundary conditions need to be specified
explicitly. Here, we impose Neumann conditions (flux of 1 m3/day) on the
global left-hand side. The fluxes must be given in units of m3/s, and thus
we need to divide by the number of seconds in a day. Similarly, we set
Dirichlet boundary conditions p = 0 on the global right-hand side of the
grid, respectively. For a single-phase flow, we need not specify the saturation
at inflow boundaries. Similarly, fluid composition over outflow faces (here,
right) is ignored by pside.

bc = fluxside([], G, ’LEFT’, 1*meter^3/day());
bc = pside (bc, G, ’RIGHT’, 0);
display(bc);
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Construct linear system

Construct mimetic pressure linear system components for the system Ax =
b where B1, C, D1 are the same as for the mimetic method and E1 = D1.
For the homogeneous case, E2 = D2 and E3 = D3, but for the new continu-
ity condition, the E2 and E3 contain the ratio of permeability, computed by
makeKalpha.m. v1 is the flux and cp1 the face pressures, as in the mimetic
method. v2, v3, cp2 and cp3 are new unknowns associated with the or-
thogonal vectors a2 and a3 as in the figure from tutorialGridCell.

[ B1 0 0 C D1 0 0 ] [ v1 ] [ f1 ]
[ 0 B2 0 0 0 D2 0 ] [ v2 ] [ f2 ]
[ 0 0 B3 0 0 0 D3 ] [ v3 ] [ f3 ]

A = [ C’ 0 0 0 0 0 0 ] [ -p ] = [ g ] = b.
[ E1’ 0 0 0 0 0 0 ] [ cp1 ] [ h1 ]
[ 0 E2’ 0 0 0 0 0 ] [ cp2 ] [ h2 ]
[ 0 0 E3’ 0 0 0 0 ] [ cp3 ] [ h3 ]

The A matrix and the b vector is constructed based on input grid and rock
properties for the case with no gravity.

gravity off;
S = computeCurMimeticIP(G, rock);

Plot the structure of the matrix (here we use BI, the inverse of B, rather
than B)

clf, subplot(1,2,1)
cellNo = rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .’;
C = sparse(1:numel(cellNo), cellNo, 1);
D = sparse(1:numel(cellNo), double(G.cells.faces(:,1)), 1, ...

numel(cellNo), G.faces.num);

C = [C;zeros(2*S.ncuF,G.cells.num)];
D = blkdiag(D,D(S.cuF,G.faces.cufg),D(S.cuF,G.faces.cufg));

spy([S.BI , C , D ; ...
C’, zeros(size(C,2), size(C,2) + size(D,2)); ...
D’, zeros(size(D,2), size(C,2) + size(D,2))]);

title(’Hybrid pressure system matrix’)
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The block structure can clearly be seen in the sparse matrix A, which is
never formed in full. Indeed, rather than storing B, we store its inverse B−1.
Similarly, the C and D blocks are not represented in the S structure; they
can easily be formed explicitly whenever needed, or their action can easily
be computed.

display(S);

Solve the linear system

Solve linear system construced from S and bc to obtain solution for flow and
pressure in the reservoir. The option ’MatrixOutput=true’ adds the system
matrix A to resSol to enable inspection of the matrix.

resSol = solveIncompFlowCMFD(resSol, G, S, fluid, ...
’bc’, bc, ’MatrixOutput’, true);

display(resSol);

Inspect results

The resSol object contains the Schur complement matrix used to solve the
hybrid system.

subplot(1,2,2), spy(resSol.A);
title(’Schur complement system matrix’);

Figure A.3: Spy plot of the system matrix and the shur complement.

We then convert the computed pressure to unit ’bar’ before plotting re-
sult.
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figure
plotCellData(G, convertTo(resSol.pressure(1:G.cells.num), barsa()), ...

’EdgeColor’, ’k’);
title(’Cell Pressure [bar]’)
xlabel(’x’), ylabel(’y’), zlabel(’Depth’);
view(3); shading faceted; camproj perspective; axis tight;
colorbar

Figure A.4: Plot of the pressure solution.
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