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Abstract

In this thesis we look at how it is possible to construct models in quantum
mechanics by using p-adic numbers.

First we look closely at different quantum mechanical models using the real
numbers, as it is necessary to understand them well before moving on to p-adic
numbers. The most promising model, where Weyl systems are used, is studied in
detail. Here time translation is not generated by the Hamiltonian, but constructed
directly as an operator possessing some fundamental structure in relation to the
classical dynamics.

Then we develop the relevant theory of the field of p-adic numbers Q,, with
a focus on the properties of Q, as a locally compact abelian group. Here we
present alternative proofs to those found in the literature. In particular, we give
an independent proof of the selfduality of Q.

In the last chapters we look at some models using Q,. We generalize the idea of
Weyl systems from real to p-adic numbers, and we discuss the physical implications.
When using Weyl systems, time is p-adic.

We also produce MatLab algorithms for numerical computations in connection
with approximations of p-adic models by finite models.



Sammendrag (abstract in Norwegian)

I denne masteroppgaven ser vi pa mulighetene for & konstruere modeller i kvante-
mekanikk ved bruk av p-adiske tall.

Forst ser vi pa forskjellige kvantemekaniske modeller som bruker de reelle tall,
da det er viktig & forsta disse godt for vi prgver a generalisere dem til det p-adiske
tilfellet. Den mest lovende modellen, hvor Weyl-system benyttes, blir studert i de-
talj. Her er ikke tidstranslasjon generert av Hamiltonoperatoren, men konstruert
direkte som en operator som oppfyller likninger som knytter den til klassisk dy-
namikk.

Deretter diskuterer vi relevant teori for de p-adiske tallene Q,, med fokus pa
egenskapene til Q, som en lokalkompakt abelsk gruppe. Her presenterer vi et
uavhengig bevis for selvdualitet av Q.

I de siste kapitlene ser vi pa noen konkrete kvantemekaniske modeller som tar i
bruk Q,. Vi generaliserer Weyl-systemet til p-adiske tall, og vi diskuterer de fysiske
konsekvensene av modellene; her er tiden p-adisk.

I tillegg produserer vi MatLab-algoritmer for numeriske beregninger.
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Chapter 1

Introduction

1.1 When all you have is a hammer, everything
looks like a nail

Let us first try to tell you what we are trying to accomplish. We want to make
models in quantum mechanics using the p-adic numbers. Why? Because it might
work.! There are lots of speculations on this subject, we refer the interested reader
to the review [1] by Dragovich et. al. from 2008. In this thesis we will take a broad
perspective, and try to follow several different approaches. To do that we need
several different ways of understanding quantum mechanics; and we have devoted
an entire chapter to this. We will also need quite a bit of mathematical background,
and we will look at analysis in Q,. The presentation will also include numerical
schemes for calculations.

But what kind of problems in quantum mechanics do we want to solve? None,
our primary focus is to reinvent the wheel, to reproduce known results in the
well understood parts of quantum mechanics. The benefit will come later, when
applying p-adic numbers to unresolved problems.?

There are several papers and books focused on developing quantum theories
over the p-adic numbers and the adeles, as in [2], [3] and [4]. Here quantum
mechanics over the p-adic numbers means that the wavefunctions have as domain
the p-adic numbers and as codomain the complex numbers. Whether time is real
or p-adic varies. However, we have not found anyone showing how this can be used
to compute the results we already know from doing quantum mechanics over the
real numbers.

1But even though it does not seem unreasonable that p-adic numbers will be used in modeling
physical systems sooner or later, there must be some reason for us to promote this way of making
models, enough of a reason to spend time studying them. In some mathematical sense, p-adic
numbers is the second most natural field to study after R (and C). This is because of the
classification theorem for locally compact fields which says that any completion of Q is either R,
or Qp for some prime p. This theorem is also known as Ostrowski’s theorem.

20ne thing we can hope to accomplish in the long run is gaining insight into the bad conver-
gence properties, like renormalization.
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1.2 Mathematical background

In this section we will give a short review of the mathematical background we need.
We assume that the reader is familiar with (the definitions and basic theorems
of) groups, rings, fields, vector spaces, metric spaces, measure theory, probability
theory, Hilbert spaces and distributions.® In addition it would be helpful to have
a familiarity with p-adic numbers. For p-adic numbers we refer to Gouvea’s book
[5] (with a focus on number theory), and Vladimirov’s book [2] (with a focus
on integration theory and mathematical physics). In addition, the book [6] by
Kochubei is very readable, and deals with a slightly generalized version of the
p-adic numbers (he considers any locally compact field).

1.2.1 The p-adic numbers

Let us take a quick recap of p-adic numbers. First we define the p-adic norm | — |,.
For € Z we have |z|, = p~! if p! divides z, but p'*! does not divide z. We can
extend this norm to Q by [¢], = %. This norm gives a metric, and we call the
completion of Q under this metric for Q,. We will often write |z| = |z|, when
r € Q. It is well known that there is a unique representation of z € Q, of the

form

v(x)

where 0 < z; < p and z,(,) # 0 and v(z) € Z is a number depending on . This
also defines the valuation v : Q, — 7.4

1.2.2 Haar measure ;. and Fourier transform F on an abelian
group G

We will need integration theory and Fourier transforms on R, C, T, Q, and Z,. To
present this in a unified way, we will do it more generally. So let (G, +) be a locally
compact abelian group (for example an abelian group with a metric where addition
and inverse are continuous in said metric). First we will define a Haar measure®
on G, then we will give the Fourier transform.

A Borel measure g is a function on the sigma-algebra generated by the open
sets in (G, with the properties:

3Without this knowledge the proofs will be difficult to understand, but we will strive to make
the discussion accessible to those with an intuitive understanding of these concepts, with a special
eye to graduate level students in physics and/or mathematics.
4There are many ways to introduce the p-adic numbers, some start with the valuation and
then get a metric, while some use the algebraic inverse limit.
5The concept of measure generalizes the concepts of length, area etc. The Lebesgue measure
A on R can be written as -
AA) = / xa(@) de, (1.2)
— o0

where x4 (z) =1 for x € A and 0 otherwise.
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e u(A) e RTU{oo} for all A.
e 1(0) =0.

e Given a sequence® of pairwise disjoint sets A; then
m (U Ai) = u(A). (1.3)

Definition 1.1. The measure y is a Radon measure on G if:

e 1 is a Borel measure.

e For any compact set K we have u(K) < oo.

e Every Borel set E is outer regular, u(E) = inf{u(U) : E C U, U open}.

e Every open set O is inner regular, u(O) = sup{u(K) : K C O, K compact}.
Definition 1.2. The measure y is a Haar measure on G if:

e 1 is a Radon measure.

e 1 is translation invariant, i.e. u(A+ ) = p(A4).

Theorem 1.3. For any abelian locally compact group G there exist a Haar measure
w which is unique up to multiplication with a constant.

Proof. See theorem 2.10 (page 37) in [7], and note that we are talking about an
abelian group, so that the notions of left and right Haar measure are the same as
our definition. O

To get uniqueness of the Haar measure, what we normally do is specify a subset
H where p1(H) is not 0 or oo (for any Haar measure), and require p(H) = 1. For R
we choose H = [0,1] and get the well known Lebesgue measure. For Z we choose
H = {0}, and for Q, we choose H = Z,. For compact groups we often choose
wG) =1.

Given a group G and a Haar measure p we can define integration”, and we will
write

| 1@ dntw) = [ fia) da. (1.4)

The Fourier transform is an essential tool. To define the Fourier transform,
we need the concept of dual group. We have already assumed that G is a locally
compact abelian group. Let us also assume that the topology is second-countable,
i.e. the topology has a countable basis.®

Let T denote the set of complex numbers with absolute value 1 under multipli-
cation.

6This sequence may be finite or countable.

"For measurable functions and integration theory we refer you to McDonald and Weiss [8].

8We could define the Fourier transform for any locally compact (and Hausdorff) group, but
this will not be useful to us. Assuming G is abelian, and that the topology is second countable
makes the notation a lot simpler.
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Definition 1.4. The dual of G is the set G of continuous homomorphisms from
G to T, i.e. the collection of functions v : G — T with

(@ +y) =v(x)y(y)

y(lim z,) = lim y(z,,)

The following proposition is given without proof; see the beginning of chapter
4.1 in [7].

Proposition 1.5. The dual G can be given an abelian structure by

(11 4+ 72)(x) = 71(x)72(2). (1.5)

Furthermore, G with the topology of uniform convergence on compacts is a locally
compact group.

This means that we can take the dual of G. Before proceeding to some examples
it is natural to state the Pontryagin duality theorem.

Theorem 1.6. The natural evalulate-functorial is a group-isomorphism and a

homeomorphism between G and é, by
x> evaly = [y — y(x)]. (1.6)
Proof. See [7] section 4.3. O

Let us now look at some of the dual groups we will use. We will come back to
the dual of, and Fourier transform over, Q,, later (in chapter 3).

Proposition 1.7. We have ¥ : R ~ R by

U:xesy, = [y~ e, (1.7)
and ®:Z ~T by

D:n—y, =z 2", (1.8)
Proof. See [7] theorem 4.5. O

We note that the dual of T has the discrete topology. The following proposition
is proposition 4.4 in [7].

Proposition 1.8. If G is compact we get that G has the discrete topology.
Let L?(G) be the set of square integrable functions defined u almost everywhere.

Definition 1.9. Given G and pu, the Fourier transform of f € L?(G) gives Ff €
L*(G) by

F() = Fi(y) = /G ()" f(z) du(z), (1.9)

where z* is complex conjugation.
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Definition 1.10. The dual measure 5 on G of w1 on G, is the measure that makes
the Fourier transform

F:L*(G,p) — L*(G.0) (1.10)
unitary.

Theorem 1.11. The inverse Fourier transform off € LQ(CA?) is given by

F i) = /wmw a7, (1.11)

G

where [i is the dual of the Haar measure p. If, f is the Fourier transform of f,
then f(z) = F~'f(z) € L?.

In applications of the Fourier transform, there are several choices to be made.
Firstly there is a choice in the identification G; ~ G4, secondly there is a choice
in the Haar measure (as this is unique up to a constant), and thirdly we can put a
constant in front of the integral (which would correspond to changing the measure).

We will use unitary Fourier transforms, but there is still choices to be made.
To clarify notation, we will now present the definitions we will use when writing
F. On R we use the normal Lebesgue measure.

Definition 1.12. The Fourier transform on R is
1 .
F = —/e_my z) dz, 1.12
(FH ) oA f(x) (1.12)

with inverse

—1 _L ety f
(FPa) = o= / F(v) dy. (1.13)

On the circle T we choose p(T) = 1, or, said in another way, we have the
measure-theoretical identification ¢t — e*™* from [0,1) onto T, and we let the
measure carry over from [0, 1).

Definition 1.13. The Fourier transform on T is

Ff(n) = /Tz*"f(z) dz, (1.14)
with inverse
F i) = > 2"f(n). (1.15)

Sometimes we want to consider (T,+) = R/Z (that is the interval [0,1) with
operations modulo 1), which is naturally isomorphic to the torus. To avoid con-
fusion we will use T for the complex numbers under multiplication, and (T, +) for
the periodic interval.
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Definition 1.14. The Fourier transform on (T, +) is

1 .
Ff(n)= / e 2T f (1) du, (1.16)
0
with inverse -
Flf(x) = Z 2T f(p). (1.17)

We have natural isomorphisms between €Z and Z, and between €Z,, and Z,, (for
any € € R). The Fourier transform can be transported by using these isomorphisms.

Definition 1.15. The Fourier transform on €Z, (¢ € R) is

(Ff)(e) Z 2T f(ek), (1.18)

;g:

with inverse

(F1)(e)) Z 27 fek). (1.19)

Let us take a look at the general behavior when we have something akin to
Fourier series; when we have summation instead of integration in the inverse Fourier
transform.

Proposition 1.16. Assume G is compact, and pu(G) = 1. Then G is a basis for
L?(G).

Proof. By proposition 1.8 we see that equation 1.11 becomes

f=F1F=> Ffo (1.20)

'yea‘

The Fourier transform is invertible, hence every f € L?(G) can be written uniquely
in this form. Hence G is a complete set.
Orthonormality follows from the fact that F is an isometry, so that

mlr2) = (FnlFr2)
— 1 T=my 1 =2y
0 else 0 else
—Z Ly=n J1 v=mn
else 0 else
'yEG
:5(’)’1*72)
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Proposition 1.17. Let f : R — C, and F the Fourier transform on R. Then

FO = ) F (1.21)

for any f in the Schwartz space.’

Proof.
1 —ixy
FNW = = [ @) ar

dr 1 [ dn
Fimhw = o= [ i@ ar
dﬂ»

n 1 —izyY T
= ()= / fla) e d

n 1 -\, —iTY
= (1= [iyre @) ar

-\ 1 —izy T T
= (i)' [ pa) 4
= (iy)"(F)y)

O

1.3 Unitary representations of groups in Hilbert
spaces

Definition 1.18. A strongly continuous unitary representation, also known as a
unitary representation, of the locally compact group G on the Hilbert space H is
a homomorphism

7:G—=>UH)={U:H—-HU'=U"}, (1.22)

where the group operation on U(#H) is composition, and where the function g
7(g)f is continuous for any f € H. The group G is represented as the image of .

1.4 Classical physics

Before we end this chapter, let us review some classical physics. Newton’s three
laws is the first formulation of physics seen by a student. In addition we have the
principle of least action together with the Lagrangian, and we have the Hamilton
formulation.

In this section let V(z,p,t) denote the potential energy of the mechanical sys-
tem, dependent on the position 2 € R, the momentum p € R3, and the time ¢ € R.
Further, T'(x, p,t) is the kinetic energy.

9We use the Schwartz space S when physicists write ’sufficiently nice’. This is the space of
infinitely differentiable functions decaying faster than any z—2k.
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Newton’s equation now gives a second order differential equation where we have
initial values [z(¢1), p(t1)] or boundary values [z(t1), z(t2)] (for 1 # t2), and which
can be solved both forwards and backwards in time.

A different approach is via the Lagrangian and the action.

Definition 1.19. The Lagrangian of a physical system is
L=T-Y, (1.23)

and depends on a parameter x, and its derivative . The action of a path x(t)

(from t =t to t = tq) is
to

A= L dt. (1.24)
t1
Understanding the action is difficult, but what we need is the fact that the
action is minimal in any legal classical path. The principle of least action is that
given endpoints x(¢1) and x(t2) the path x(t) taken by the system is the one with
a stationary action. If you look at the space of (differentiable) paths (f : R — R3),
and A as a function on this space, the system chooses the path where the Gateaux
derivative of A (in all directions) is zero.
It is important to note that the configuration x of the system need not be
represented by using the Cartesian coordinates of the position, but one can use
any set of parameters that completely describes the system.

Proposition 1.20. Writing z1,x2, x5 for the parameters describing the system
the path of least action satisfies the equations

oL d oL

Hamiltonian mechanics use the Hamiltonian, which is the energy of the system.

We will only do these mechanics on a closed system, that is a system without
external forces and where no energy is added to the system.

(1.25)

Definition 1.21. The Hamiltonian of a closed system is
H=T+YV, (1.26)

which depends on the (generalized) position [¢1, g2, ¢3] and momentum [p1, p2, p3],
but it is independent of time ¢. The equations of motion are

OH

y = — 1.2
P % (1.27)
OH
= _ 1.2
q ; (1.28)

This can be generalized slightly through the use of Poisson brackets, as follows.
Proposition 1.22. The time evolution of an observable A = A(p, q,t) is

d 94 OAOH OAOH OA
Qa2 94 _ o4 1.2
A=A+ Z 0. Op;  Op; 0q; | ot (1.29)
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Note how the Lagrangian formulation gives a system of n second order equa-
tions, while the Hamiltonian formulation gives a system of 2n first order equations
(and requires initial values for [¢(¢1),p(t1)]). Note also that we don’t need Newton’s
formulation when we have Hamilton’s. Using the Newtonian equations one would
have to do experiments to determine the forces, like gravity and spring constants.
When using the Hamiltonian equations one needs to determine the Hamiltonian
by doing experiments.

Let us now give our main examples. These will be used throughout the text.

Example 1.23. For a free 1-dimensional particle we get the following equations.

1
T = §ma'c2
V =0
1
L = 57’711‘2
d
&mx = O,

where the last equation comes from equation 1.25, and tells us that the velocity &
is constant.
From the Hamiltonian equations we get

1
H = —p°

2mp
po= —0
A 4
r = —,

m

giving the solution
(;8) _ <w(t1> ;(;/S z dt) _ (x(tl) +]§1(tt:)t1)p(;1>>. a0

Example 1.24. For a harmonic oscillator (mass-spring system) we get the follow-

ing equations, where k is the spring constant and w? = %
1
T = -mi’
5™
1
Vo= ska?
5k
1 1
L = -mi®— -ka?
2 2
d
—kx — &mi = 0
k
P = ——x
m

z(t) = a’cw sin(wt) + x(0) cos(wt),
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where the third last equation comes from equation 1.25.
From the Hamiltonian equations we get

1

H =
2mp
= —kz

1
2 2
+ -k
5 kT

P
m’

giving the solution

(x(t)> :< 20O i (wt) + x(0) cos(wt) > (1.31)

p(t) p(0) cos(wt) — z(0)mw sin(wt)

1.5 Classical mechanics and generators of time-translations

We want to emphasize a different view of the classical mechanics, which will be
useful when understanding Weyl-systems.
To begin, note that
(e*Pv)(t) = v(t + s), (1.32)

where v can be a vector, as long as Du(t) = 0(t) is the differential operator, and we
use exponentiation of matrices. To see this, write out the Taylor expansion. This
can be used to calculate z(t) and p(t) by

()= Gw) 139

For example, take the harmonic oscillator,

(Z) - <€/1ch> - ( o ) (;) (1.34)

D= ( _Ok 1/0m ) (1.35)

so that

Then we can compute

etD:< cos(y/k/mt) % ) (1.36)
—VEmsin(y/k/mt) cos(y/k/mt)

which is a different way of presenting the solution to the problem; here we have
given the generator of time-translations (the operator that sends the position and
momentum a time t into the future). It is common to write T} = e for this
operator.



Chapter 2

Formulations of quantum
mechanics

In quantum mechanics we model systems with a Hilbert space H. A vector ¢ €
‘H is called a wave-function. The name is sometimes reserved for a normalized
vector, or the 1-dimensional subspace spanned by 1. We can only get experimental
information about subspaces, so in a 1-dimensional subspace any vector is a good
representative. But since the integral of a probability distribution is 1 and the
probability distribution is P(z) = [¢(x)|?> we use unit vectors (with respect to
= 2)-

Here we feel the compulsion to clarify what the probability distribution means.
It is not a result of an uncertainty on our part, not of flawed measurements, but
something far deeper.! Let us think of a particle (like an electron), and a physical
description (wave) 1 such that the probability of finding the electron in the interval
[z, 2 +dx] is [¢(z)|? dz. Then this is the result of theoretically perfect experiments.
The probabilities come from the fact that the electron does not know where it is,
the uncertainty is a basic property of the electron. Even worse, a probability with
phase ¢ will cancel out a probability with the phase e=*. Even though it may
seem counter-intuitive, this model is extremely successful at predicting behavior at
the Planck scale.

We want to note that the Hilbert space we use is always L? with complex
valued functions, but it is not necessarily L?(R). We will use L?(G) for any (locally
compact Hausdorff second countable) group G, and the theory is stated for any
separable Hilbert space.

Let us first look at the physical implications when there is no time evolution.
Let us say that we know the state of the system to be ¥ € H. What happens if

IThe notion of probability comes from modeling everyday experiences with too many inputs.
For example, when we throw a die we say there is a 1/6 chance of getting a six. But this
uncertainty is not in the nature of the die, as we could calculate exactly where the die would land
(given sufficiently precise input information). So everyday probability and uncertainty is in our
maps and models, and not in reality itself. In quantum mechanics, however, the uncertainty is
the nature of reality itself.

17
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we do a measurement asking whether the state is ¢ € H? We get the answer ’yes’
with probability

Py = [(ly) ], (2.1)
and 'no’ with probability
=@ )P = > [ulv)? (2:2)
nEPL

where the last sum is over an orthonormal basis of ¢-. We see that P, + P, = 1,
and note that the answer to the experiment can have a nonzero probability of being
'yes” even though ¢ # 1.2

In this chapter we will first look at the basics of quantum mechanics, then we
will look at different formulations. All of this will be done without considering
the p-adic numbers. Later we will draw inspiration from the different formulations
when trying to define quantum mechanics over Q.

2.1 Schrodinger equation as a differential equation

Let us now consider the time-evolution of a physical system by using the Scrodinger
picture, i.e. we let the wave-functions depend on time. Given #(t = 0) we find
¥ (t) by solving the Schrodinger equation

0 ~
iho b = Hy, (2.3)

where H is the energy observable. The operator H will depend on the system under
consideration, we will assume it is independent of time. In classical mechanics we
use H = T'(p) + V (&), so an analog can be constructed given that p(v) and Z(¢)
are understood. Given that 1 is the position representation of the system, so
that [1(2)|?dx is the probability of observing the particle in [z, 2 + dz], we define
ZY(x) = x - (x). Note that this is natural because, given a 1) with support in
[a — €,a + €] (where € small),
Wlel) ~a. (2.4)
But what about py? There are several ways to define py, and we will come
back to this, but the two most common are

D= —zh% (2.5)
p=FzF !, (2.6)

where the latter is much easier to generalize than the former. We also have the
formula
[Z,p] = 2p — px = ih. (2.7)
A different way to define Z, and p is by viewing them as generators of 1-
parameter unitary groups. We will come back to this in the section on Weyl
formulation.

2To see how this gives experimental results, look at the double-slit experiment for electrons.
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Example 2.1. The classical Hamiltonian for the free particle (example 1.23) is

1
H=—"p 2.8
5P (2.8)

Using equation 2.5 we get

fe) = 5 (;C) F(@). (29)

Example 2.2. The classical Hamiltonian for the harmonic oscillator (example
1.24) is

1 1
Using equation 2.5 we get
- 1?9\ 1
Here one usually takes w? = k/m and gets
- 1 9\? 1
Af@) =30 (a) Fla) + Smata? f(a), (2.12)
with eigenfunctions
n — mw 1/4 —mwx?
Ynle) = ()72 (T2) et/ P, (), (2.13)
where P,, are the Hermite polynomials
2 d" 2
Po(z) = (~1)"e® g}ﬁr(e*f ). (2.14)

Example 2.3. When writing about the harmonic oscillator it is common to con-
sider H = p?/2+22%/2. Let us look at how redefining the units gives this equation.?

Let now
A 1/2
- (2)
mw

F = hw
x=Xa
H=EH

then the equation becomes

5= ) () G () s eyt (1) S

mw 2m mw /) 2
(2.15)

3Physicists often just set m = 1 or w = 1 or even & = 1 (natural units), but this might lead to
confusion as the units do not really disappear.
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where most of the stuff cancels and we get

2
Hf(X 'z) = 1 <a> f(X o)+ 1x2f(X—1x), (2.16)
2 \ Oz 2

after renaming. It is important to note that Hamilton’s equations (equation 1.27
and 1.28) do not change when multiplying the energy by a constant, as it is inde-
pendent of the choice of units. The function f is not given directly as a function
of the space variable, but as a function of the space variable divided by X. With
different masses m and angular frequencies w we get different arguments in the
function f, that is, we get different Hilbert spaces.

2.1.1 Time evolution

We did assume that H is independent of time.# This gives us a simple time evo-
lution process, as equation 2.3 becomes separable. Let |n) be an eigenvector of H
with eigenvalue FE,,, then

0
hip = Ent), 2.17
= B (217)
with the initial value 1(0) = |n). This has solution
P(t) = e /). (2.18)

In general ¥(0) = |¢) would give, if we have a complete ortonormal set of eigen-
vectors |n),

D(t) =) (nlg)e "/ ). (2.19)

n

2.2 Operator algebra - how to construct observ-
ables

The Hamilton operator we just described is an example of an observable, an entity
that can be determined by doing experiments. Now we want to show how any
observable can be constructed from yes/no questions, and that we end up with
self-adjoint (or as physicists say: Hermetian) operators on the Hilbert space.

Let us first take the simplest form of observables, yes/no questions about
whether 1 is in the closed subspace E C H, where ’'yes’ has value 1, and 'no’
has value 0 (and your answer in the state ¢ can only be 0 or 1). What self-adjoint
projection is the observable to this question?

Proposition 2.4. There is a 1-1 correspondence between the set of self-adjoint
projections and the set of all closed subspaces of H. Let C : P +— Im(P) be this
correspondence and observe that:

4We do this for simplicity, as we are looking for simple applications in this thesis.
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e C(0)=0

e C(I-P)=C(P)*

e C(P,P,) =C(P)NC(Py)

e PP, =0=C(P, + Py) =C(P) ®C(Py)

The answer to the question is: "The self-adjoint projection with image E".
Let us take a more complicated example, working on L?((T,+)), (as before
(T,+) denotes [0,1) = R/Z).

Example 2.5. We want to combine three observations, giving them one value
from R for a ’yes’-answer, and 0 for a 'no’ answer.

The first observation is whether the particle is in [0, 4

'3
the second observation is whether v is sin(z) and ’yes’ has value v/2, the third
observation is whether 1 is constant (almost everywhere) and ’yes’ has value 7.

First we will create one projection operator for each observation

) and ’yes’ has value 1,

Prip = xp0,1)¢
Py = (sin(z)|4)) - | sin())

Py = / () dz = (1])]1),

but these projections do not have the correct values associated with them. Per
definition, projections are self-adjoint operators, and so is any linear combination
with real valued coefficients. Let us first scale (here Pjy; = 1);):

(1|Pi[tn) = 1 = Prp = xjo,1)%
(2| Py|tha) = V2 = Potp = 4v/2 - (sin(z)[¢)) - | sin(z))

1
(Y3|Pslips) = m = Payp = 77/0 U(z) da.

In total this gives us the observable corresponding to the self-adjoint operator
A H — H where
1 1
Ay = ZPi’w = X[o,%)¢+4\/§”/ sin(x)y(z) dz|sin(z)) —|—7r/ Y(z) dz (2.20)
p 0 0
What is the general picture of the situation in this example? We want to
assign subspaces of A to real numbers (experimental results). This is exactly the

definition of a projection valued measure, a measure on the set of reals giving
projection operators on H.
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Definition 2.6. Let (2, M) be a measurable space, and H a Hilbert space. The
map F : M — B(H) is a resolution of identity, also known as a projection-valued
measure, on (€2, M) if the following six items hold

° E(@) =0
° E(Q) = 1B(7—L)

e E(w) is a self-adjoint projection for all measurable w.

Ewnuw') = E(w)E(w")

wNw =0= EwuUw)=FEw)+ E)

For all z,y € H the function E, , : w — (E(w)z,y) is a complex measure.

Remark: In the last item, only countable additivity of disjoint sets needs to be
shown.

We know that there is a one to one correspondence between projection-valued
measures and self-adjoint operators on the Hilbert space (from the spectral theo-
rem).> So when we are talking about an observable, we will often think of it as a
projection-valued measure.

This definition also clears up the hassle about the eigenvectors of the position
operator. In physics we often write

I'= Z vi) (il (2:21)

given an operator A with eigenvalues A; and eigenvectors v;, where (v;); is an or-
thonormal basis for 7. This is close to the definition of projection-valued measure,
and shows why it is also called resolution of identity. There is nothing wrong with
this equation, but let us consider the position operator z in the Hilbert space over
(T, +). Then physicists often write

I= /dk|k><k|, (2.22)

where (k|k’) is the delta distribution dy (k).

How does this look from the mathematical point of view? Given the well known
measure space ([0,1),M), the resolution of identity E : M — H is defined by
E(A)(¢) = 149, where 14 is the characteristic function of A. Note that E([0,1)) =
I with this definition. What happens here hints to the general case. If we have a
continuous spectrum (no eigenvectors), so that dim(E({A})) = 0, we cannot write
the identity as a sum of projections. Instead we have to use a projection-valued
measure.

Even though we did not give an example of this, we can have an eigenvalue A
with a degenerated eigenspace, so that dim(E({\})) > 1

5The reason we have not included the spectral theorem is that it would require several pages
to get through all the definitions and preliminaries, like the Gelfand-Naimark transform.
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Before we leave this topic, let us comment on unbounded operators. quantum
mechanics in L?(R) requires the unbounded operators g and p (unbounded because
R is not compact), which have a domain that is dense in H. This makes the theory
a lot more technical, but the results are similar.

2.2.1 Doing experiments

An observable has its name because it can be observed, by doing experiments.
Given an observable T, we can set up an experiment that measures 7' (at least in
theory). What kind of experimental values will we get?

Let us prepare the system in a state ¢ € H, and observe the self-adjoint operator
T. Let v; 1, be a basis for ‘H of eigenvectors of T' with eigenvalue \; where k is the
index for having degenerate eigenvalues (yes, this requires some assumptions on
T, but within physical precision we can do this). Then the probability of our
experimental machine printing a is 0 if ¢ is not an eigenvalue \;. If, on the other
hand a = A\, for some b then the probability of measuring a is

S (v il) 2. (2.23)
k

Confusion can arise when people talk about the experimental value of A in state
1 as the expected value. We will come back to this, but please note that it may
not at all be possible to get the expected value as a result when doing a single
experiment.

2.2.2 Functions on the spectrum

To construct H we need to understand what f (T') means (for example with f : z —
2?). When we view the operator T as partitioning the Hilbert space into closed
subspaces (resolution of identity), so that H = ), F; where E; has eigenvalue \;,
then f(T) is the operator partitioning the Hilbert space into H = ), E; where E;
has eigenvalue f()\;). Let T denote this correspondence between E; and A; (the
inverse of the resolution of identity) for the operator 7. Then

T f
E1 — /\1 — f()\l) (224)
Ey — X —  f(A\)

and so on. For this to work when the spectrum is more complicated (not just
eigenvectors) we need that the function f is Borel measurable. Note that this can
be used to take the square root of a positive operator, the logarithm of some unitary
operators and more. For precise formulation and proofs we recommend chapter 1
in Folland’s book on abstract harmonic analysis [7]. We will end with a simple
example.

Example 2.7. Why is the square of the observable T actually T o T'?
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Let v for simplicity be an eigenvector of T' with eigenvalue A. Then the square
of T should give the experimental result A\?. Fortunately

ToTy =TI = AT = AMp = A2, (2.25)

So what we call T? is actually the observable with the property of being the square
of the observable T

2.2.3 Combining Hilbert spaces (or underlying groups)

The Hilbert space in consideration depends on what we want to model. For example
one could model an electron in a Coulomb-potential. If you only care about the
radial part, you can use L?(R), but if you also need the angular momentum you
would work in L?(R3). If you also desire to know the spin of the electron, you
would need to add on a Hilbert space describing the spin. To describe the spin we
use a finite group (the group of Pauli spin matrices).

To see how this works in general we give the following definition and proposition
using the tensor product.

Definition 2.8. The tensor product of L?(G;) and L?(G3), L*(G1) ® L*(Gs), is
the dense linear span in L?(G; ® Gq) of

{hlh(z,y) = f(2)g(y) with f € L*(Gs) and g € L2(G1)}.  (2.26)
Proposition 2.9. We have that

L*(G1 @ Go) = L*(G1) @ L*(Gy). (2.27)

2.3 Uncertainty principle and commutators

The commutators and the uncertainty relation are fundamental to understanding
the consequences of quantum mechanics. If two observables commute, it is theoret-
ically possible to design an experiment in which they are measured simultaneously.
When developing a p-adic model it is essential that we end up with the same
physical implications. So it is natural to take a short review of how this works.

2.3.1 Expectation and variance

Given an observable A the expected value for an observation when preparing the
system in state 9 is

(A)y = (W|Al) = / $*AW) da, (2.25)

where the last equality is only for L?(R). When it is clear which state is considered,
we often write (A).
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Experimentally, given an infinite sequence of experimental values a; (to get this
sequence you have to do an infinite number of identical and independent experi-
ments measuring A in the state ¢), we get

(A)y = limM, (2.29)

n n

from the law of large numbers.

2.3.2 Deriving the uncertainty relation

Let H be any separable Hilbert space.

Definition 2.10. The variance 04 € R of a symmetric operator A given a state
Y e His
o4 =/(A?) = (4)? = (A (4)) (2.30)

Note that we do not write ¥ when it is understood from the context.

Definition 2.11. The commutator of A and B is
[A,B] = AB — BA, (2.31)
where the multiplication is composition.

The domain of the commutator can be much smaller than the domain of A or
B, but this will not be a problem in the quantum mechanical applications as the
resulting domain usually is dense in H.

Theorem 2.12. Assume A and B are symmetric operators on H. Then the Robin-
son uncertainty relation,

oa0p > ’ -([A, B])|, (2.32)

holds for any v € H whenever both sides of the inequality makes sense.

Proof. The Cauchy-Schwartz inequality for |(A — (A))v) and |(B — (B))y) gives

o40h = (YI(A = (A))?[¥) (WI(B = (B))*[¢)
> [(Y[(A — (A)(B — (B))[)[*
:|z|27

defining z = (¢|(A — (A))(B — (B))|¢y)) € C. Further

= (YA = (A)(B = (B)|Y) = WI(B = (B))(A = (A)[¥)
= (Y|AB — A(B) — B(A) + (A)(B)|¢)) — (¢|BA — A(B) — B(A) + (A)(B)|¢))
= (Y|AB — BAJY)
= ([4, B]).

z—2"
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Now, |z| > [Im(2)| = |(z — 2*)/2i| gives us
oaop > |2 > [Im(2)| = |(z — 27) /2]
1
> | = .
> |- (4. B))|
O

It is very interesting that this last theorem (and proof) has nothing to do with
the domain of the function 1, so that it will work equally well for the Hilbert space
L?*(Q,) using the p-adic numbers.

Example 2.13. Let us use the last theorem on Z and p on L?(R).

1, 1. h
020y 2 5[, B = |3 i) = 5, (233)

which is a well known fact.5

Summing up, if we can make a model that has [g, p] = kil we automatically get
an uncertainty relation for g and p.

2.4 Generator of translations

A common term for the momentum operator p is the generator of translations. In
this section we will look at how the operators ¢ and p can be viewed as generators
of groups of unitary operators. This will lead to the formulation of a Weyl system,
which is essentially a product of the U and V' in the first definition.

Definition 2.14. Define U,V : R — U(H) by U(t) = Uy, V(s) = Vs, and

Unf(a) = & f(2)
Vof(@) = fla+5)

Proposition 2.15. We have
UV, = eV, U,

. U —1 ) o
}1_% ; Y =iz = 1Y
V-1 i
lim Y = D = ipy
s—0 S
V:e = eSD7

where D f(z) = f'(x), for ¥ in a dense subspace of H.

6This is sometimes known as Heisenberg’s uncertainty relation, and is usually interpreted as
"you cannot both know the position and the momentum of your particle".
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Proposition 2.16. The Fourier transform of U; is V;, and the Fourier transform
of pis 7, that is

FV, =UF (2.34)

Fp=1aF. (2.35)

Proof. Let all integrals be from minus infinity to infinity, and see that

(FVif)(y) = %27 / I {1 1) da

= \/%/e*i(w*t)yf(m) dz
7r

V%eity/e_”yf(x) dz

= (U:Ff)(y).

O

The Stone-von Neumann theorem says something about how this is the only
way to do quantum mechanics, and that there is a correspondence between U, V'
-systems and pairs of operators satisfying [q, p] = kil.

2.5 Weyl formulation

A Weyl system is essentially a choice of coordinates in our Hilbert space. In this
section we give a definition of Weyl systems over R, and we give a very nice choice
in L?(R).

Definition 2.17. A Weyl system” on L?(R) is a function W : R x R — U(H), so
that W (q,p) is a unitary operator, with the property that

W(z+2')= B(z,2YW(z)W(2), (2.36)
where B :R? x R? 5 T, and 2z = (¢,p) € R

Proposition 2.18. Let x(z) = e** for some real a,® then

Wiap)(a) = x (% +4z) (@ +p) (2.37)
is a Weyl system on H = L?(R), where
B((g:p),(d',p") = x <W;M) : (2.38)

"What we call a Weyl system is more commonly called a multiplicative projection, or a pro-
jective representation. In the literature one finds that the U; and Vs from the previous section
is called a Weyl system. However, the example W we present in the next proposition is actually
just a combination of Uz and V.

8We do not want to specify which character in the dual group to use, because the good choice
depends on the physical system under consideration.
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Proof. To see that W (g, p) is a unitary operator, note that W(q, p) = x (2) UaiV,,
is a combination of unitary operators.
Next we want to show that W satisfies equation 2.36: Note that

W(p,q)™" = x (@ - q:v) P(z = p), (2.39)
and calculate B by

W ()W ()W (= + )" = W(g,p)W(d,p)W(a+ ¢ p+p) "0

X (—q(z+p)) x (* + qx) Y(x)
=X (q/p;qp/> Y(z)
= B(z, 2" )y(x),

where B has the required form. O

2.6 Time evolution by propagator

Weyl systems are useful in general, but time evolution depends on the physical
systems we want to describe. If you have a bad choice of coordinates (i.e. Weyl
system) then the time evolution operator is very difficult to use.

If we know the Hamiltonian, we get a unitary group

U, = et (2.40)
defining time evolution of a wave 1, so that

This can be reformulated as

U)(w) = [ K)ot d, (242
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for some propagator K;(z,y). This can be calculated without knowing H.°
For the nondimensionalized Harmonic oscillator (H = p%/2 + ¢%/2) we get

1—1¢ sign(sint) 22+ . TY
K N=K _ 2 —2mi—= 2.43
(1’73/) ) t(xay) ( (2‘811’1“)1/2 ) €xXp ( UK 2tant Wzsint ( )

from Dragovich [3]. We will not use the Hamiltonian or the Feynman-Kac formula
to get this. What we will do is take a guess, and prove that it satisfies certain
important conditions.'® We will not use the equation for the nondimensionalized
system, because nondimensionalization might not make sense for wavefunctions in
L*(Q,) as p(37A) = p(A) (for p # 37), and the order is not necessarily preserved
when multiplying with a scalar.

We claim that the propagator for the full Harmonic oscillator is

mw 1/2 mw x? y? 2xy
K(z,y,1) = (7 . ) (— ) - - : (244
(9,%) 2mihsinwt P [ 2ih tanwt  tanwt * sinwt (2.44)

In the following, we often use the formula (a,b,c € C)

b2 —4
/Rexp(—ax2 tbxr—c) = \/jexp <4aac) ) (2.45)

where the real part of a is greater than 0, and where i~1/2 is defined so that the
formula holds.

Example 2.19. The lowest eigenstate of the harmonic oscillator
mw\ /4 mwaz? /(2h)
)= |— e . 2.46
vo() = (=) (2:46)
We want to show that the two different time evolutions of this state gives the
same result. When doing this we can drop the constants in front of the exponential,
because what we are doing is really a time evolution of the 1-dimensional subspace

spanned by ).
Using equation 2.18 we get the following time evolution

o, t) = eI Mpg () = e 2a)y (). (2.47)
Using the propagator in equation 2.44, time evolution of ¢ gives
Yo(z,t) = (U)y)(x)
— [ Kutw.vw) dy

_( mw )1/2 T b2
-~ \2mihsinwt P P

9This is sometimes known as the Feynman-Kac formula. For more information, see wikipedia’s
page 'propagator’.

10In the same way that you can guess the solution of a differential equation, and then show
that it satisfies your equation.
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using equation 2.45, with

mw 1 .
a=— —1
2th \ tanwt

mw 2z
b= ——

2ih sin wt

mw 2
c= ———.

2ih tan wt

Then we get

1/2
MW b?
Volz, ) = <2m'7isinwt (M ( L z))) P [4(1 B C}

2ih \tanwt

1 1/2 (mw) 22 (sinwt) 2 x?
[ ex g _
cos wt — i sin wt P 2ih 7 L__ tan wt
anwt

ity —1/2 mwa? 1
= (6 ) exXp Pra— — — coswt
2th sin wt coswt — 1 sinwt

2
= e 2 exp [(W> (i sinwt)]

2ih sin wt

2
_ efiwt/2 exp (m;uhx ) _ efiwt/Qw(x),

which is the same as before, so the propagator gives time evolution for the vacuum
state 1.

As we mentioned before, we do not want to calculate the propagator, but what
is the alternative? We look for some propagator K satisfying the equations in the
following proposition.

Proposition 2.20. The operator U; defined by equation 2.42 and 2.44 satisfies
UU)=U(t+1t), (2.48)

and

U)W ()U@) ™! = W(Tiz2), (2.49)

where T; comes from the classical time evolution (equation 1.36) and is

Ti(q,p) =( coswt) =l ) (q>. (2.50)

—mwsin(wt) cos(wt) P
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Proof.
U( /Ktl‘y/Kt/ Y,z dde
o) 2
= = x idtad NN O
2mwihsin wt P 2ih tanwt tanwt sin wt
mw 1/2 mw y? 22
"\ 2rihsinwt’ 55 )\~ - dy d
(27rihsinwt’) b [(2271) ( tanwt’  tanwt’ smwt’)} Y(2) dy dz

b2
= / ;?ﬁ(sinssinp)_l/Q\/jeXP [4@ - C} ¥(2) dy dz,

with
s =wt
p=uwt
mw( 5+ cotp)
a= cot s 4 co
2ih P
=3 :(smpsm s)"tsin(p + s)
mw [ T z
b=—
2ih (sins * sinp)
mw [ 2? n 22
c=—|—
2ih \tans tanp/’
so that
b? mw [ (@ > in s(sin(p + 5))~1 x2+22
— —c=— sin p sin s(sin s -
4a 2th | \sins = sinp b P tans = tanp
mw [ sinp 9 sin s 2rz
=— || ———F— —cots |+ | ———— —cotp | - ———
2ih | sin s sin(p + s) sin psin(p + s) sin(p + s)
_omw [ z? 22 N 2xz
2k | tan(p+s) tan(p+s)  sin(p+s)

For the part of the integrand in front of the exponential we get

—1/2
;:Zjh(sinssinp)l\/j = Z\T/n;;h(sinssinp) 1/2 (2271 (cot s +cotp)>

1/2
= (2mwh> (sin p cos s + sin s cos p) /2
i

mw \1/2 . _
= (3pip)  Gnl+s)™
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In total this gives that

mw
2mih

mw z? 22 2z (=) d
FOXP {2@% (_tan(p—i— s)  tan(p+ s) * sin(p + s))} ¥lz) da

:/mwmnwaw

U = [ ()" sty )

Showing the second equation is a bit difficult to do directly, so what we will do
is first to show it for p = 0, and then for ¢ = 0. This will be sufficient as
W (Tiz) = W(Ti(q,0) + T:(0, p))
Ti(q,0), T:(0,p)) W (T3(g, 0))W (13(0, p))
4,0), T,(0, p)U (&)W (g, 0)U () U (&)W (0,p)U ()~
t)B(T(¢,0), T:(0,p))W (¢, OW (0, p)U ()"

—~

because

B(Ty(q,0),T:(0,p)) = B((qcoswt, —gmwsinwt), (p(mw) " sinwt), p coswt))
—pgsin® wt — pq cos? wt)

Let us now show equation 2.49 for z = (¢,0). Since
1
W (T (q,0)¢(x) = x <2qu2 coswt sinwt + ¢ cos wtx) Y(z — gmwsinwt),
what we need to show is that

1
Ki(z,y)x(qy) = Ki(x — gmw sinwt, y)x (—2qu2 cos wt sin wt + qx cos wt) .

Given that 5 5
m w mw
a= o x(z) = e 2IMWIRT, (2.51)
we need to show that
x? > 2xy (x — gmw sin wt)? y? 2(x — gmw sinwt)y
- - - = 2qymw = | — - + -
tanwt tanwt sinwt tan wt tan wt sin wt

+ m2w?q? cos wt sin wt — 2qzmw cos wt,
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which is equivalent to
—2qymw = (2zgmw cos wt—g?>m3w? sin wt cos wt—2qmwy)+m2w2q2 cos wt sin wt—2gxmw cos wt,
which is true (for all z and y) if and only if all

0 = —¢*m’w? sinwt cos wt + ¢*m>w? sin wt cos wt
—2qmw = —2gmw

0 = 2gmw cos wt — 2gmuw cos wt

are true (the first equation is for the constant, the second for y, the third for x).
It is easy to see that these three equations hold.
Let us now show equation 2.49 for z = (0, p). Since

W(T(0,p))¢(z) = x ((2mw)~'p* coswt sinwt + (mw) ' apsinwt) 1(z + pcoswt),
what we need to show is that
Ki(x,y —p) = Ki(x + pcoswt, y)x ((Qmw)*po cos wt sin wt + (mw)*lxpsinwt) .

Given that a is the same as above, we need to show that

2ypcoswt  p?coswt 2rzp  2xp cos?wt  p?cosdwt
sin wt sin wt sinwt sin wt sin wt
cos wt 2 . .
+ 2yp— — p“ coswtsinwt — 2xpsinwt
sin wt

which is true (for all z and y) if and only if all

p? coswt p? cos® wt 9 .
—— = — - — p” coswtsinwt
sin wt sin wt
2p cos wt coswt
: = zp—;
sin wt sin wt
2p 2p cos? wt .
—— = —— — 2psinwt
sin wt sin wt

are true (the first equation is for the constant, the second for y, the third for x).
Showing these equations is easy. O

2.7 Finite approximations in L*(R)

One of the main problems with Z and p is that their spectrum is continuous, so
that we don’t get an orthonormal basis of H from the eigenvectors. (Note: Z is
the same operator as g, just emphasizing the coordinate description ¢(x).) We can
consider finite approximations of Z and p.

Given n > 0 (1 some big precision) we can define a position operator z, as
multiplication with the n-stair function

: 1 -
stair, (z) = ;LnxJ = Zzn ! XJin—1,(i+1)n-1) (2.52)

This approximates the position operator .
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Proposition 2.21. The #-stair function converges uniformly to f(xz) =z as n —
oo. Furthermore z,, — Z in the operator norm.

Proof. First see that

1 1
o = stairy (@) = _(ne = L)) < - =0, (2.53)

= E(
then note that for any ¢ € Dz = {f € L3(R) : xf(z) € L*(R)} we have

1@y =) (W)* = /R |(stairy (z) — 2)?|v(2)]* dz < %II@ZJHQ- (2.54)

O

Note that this also holds in L*(T).

2.7.1 Schwinger approximations

Here we will look at the Schwinger approximation, which approximates H = L?(R)
by H2 = L?(G) with a finite group G using periodic boundary conditions.

Here we will consider only approximations over the reals, a similar approach
will be seen later for the p-adic numbers. The following presentation owes heavily
to [9], and a complete proof of convergence can be found in [10].

The numerical idea is to avoid a discretization scheme for the derivatives (p and
p?), and use the Fourier transform instead. To be able to use the finite Fourier
transform we need to have periodic boundary conditions. This is a good approx-
imation if the original problem is periodic (like for a free particle on a periodic
interval), or if the wave-functions have decayed to some very small value at the
boundary (which will be the case for the harmonic oscillator).

In order to have a scheme that will converge, we choose to increase the length
of the interval at the same time as we decrease the step-size. Given n we model
approximately the interval from —y/n to ++/n with step-size approximately 1/y/n.

Definition 2.22. Given a Hamiltonian H on L?(R), and an integer n, we define
a grid G,, and a step size €,, by

JE
M, =[-(n—-1)/2],=(n—=3)/2,—=(n=5)/2,...,(n = 3)/2,(n - 1)/2]
G, = ¢, M,.

To get a finite cyclic group we define addition on G, modulo €,n. Then we
want an inclusion L?(G,,) C L*(R).

Definition 2.23. Define the real Schwinger inclusion to be the following unitary
linear injection:
Lsmm : L?(Gn) = L*(R) (2.55)
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Table 2.1: Results for the Schwinger approximation for the harmonic oscillator in
L?(R). For N = 81 the error may be due to machine precision or the precision of
the MatLab eigenvalue solver.

Analytical n=12 n =81
0.5 0.500000065379456  0.500000000000050
1.5 1.499997524117474  1.499999999999974
2.5 2.500038664576120  2.499999999999966
3.5 3.499548442356141  3.499999999999972
4.5  4.502914300652827  4.499999999999973
5.5 5.481199032508385  5.500000000000019
6.5  6.561903192170472  6.500000000000021
7.5 7.270244513931606  7.499999999999971
8.5 8.750364859037072  8.499999999999986
9.5 9.078011293650551  9.499999999999957

10.5  10.935958083327678  10.499999999999948
11.5  14.294444938848978  11.499999999999970

by
s (f) =€, 2 Y (1) X6 (0),Gn(i41) - (2.56)
1€Gn
Definition 2.24. The position operator on L?(G,,) is
zf(a) = af(a), (2.57)

where a takes values in G,, C R.

When we look at this operator in Z g r ) (L*(G)), it is the T, operator from

equation 2.52.

2.7.2 Results

We used MatLab to implement the ideas for Schwinger approximation on the har-
monic oscillator. The files are attached in the appendix, and it is possible to copy
paste them from this thesis into MatLab. For the results with n = 12 and n = 81,
together with the well known analytical results, see table 2.1. For the corresponding
plots see figure B.1 and B.2 in the appendix.
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Chapter 3

Analysis on Q)

As we mentioned in the introduction, any p-adic number x can be written uniquely

as .

i=v(x)

(with @,z > 0, and 0 < 2; < p for all i) where addition and multiplication works
in the obvious way. The metric is given by

d(z,y) = |z —y| =p "), (3.2)

and we have the strong triangle inequality making d an ultrametric:
| Z Zn| < max || (3.3)
n

There is a very nice reformulation of the open ball with centre x and radius r
Ox,r)={yeQp:lz—yl<r}={y€Qp:a; =y Vi < —log,(r)}, (3.4)

which clearly gives that any point in an open ball is a center of that ball. Further-
more, since the function v takes values in Z, we see that the open ball of radius r
is the same as the closed ball of radius r — ¢ (for a sufficiently small ¢ depending
on r) which is compact.

3.1 Integration theory on Q,

To get integration we need a measure. From the introduction we know that Q, has
a unique Haar measure x (as we have chosen u(Z,) = 1).!

Now we want to look at some properties of the measure p, and then some
properties of the integral. First let us establish some notation.

IThis is because Qp is a group where the topology is a separable metric space. Remember
that Zp, = {z € Qp : v(z) > 0}.

37
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Let us write

Bi(z) ={y € Qy : |z —y| <p"} = 2+ p"Z, = O(x,p""), (3.5)
and
By, = By(0), (3.6)
for the ball of radius p*. From equation 3.4 we see that
p—1
Bi(z) = | Be—1(z +ip"), (3.7)
i=0

where the union is disjoint. The sphere Si(z) around z is

Su(z) ={y € Qy : o —y| = p*}, (3.8)
and we get
Sk(z) = Bi(x) \By-1(2), (3.9)
Let also
Sk = Sk(0). (3.10)

What is then p on these sets?
Proposition 3.1. We have that

p(By(z)) = p", (3.11)

and
p(Sk(x)) = (p— 1P, (3.12)
Note that this is all we need to know about the measure p (in addition to the

measure axioms) as it determines g uniquely (the set of balls generates the sigma-
algebra).

Proof. By translation invariance pu(By(z)) = pu(Bg). For k = 0 we have u(By) =
1(Zy,) = 1 by definition. Using equation 3.7 together with translation invariance
we get

w(Bi) = i (O Bk_lupk))

=0

= Z 1(Bi—1(ip"))
i=0
= pu(Br—1),

hence
1(By) = p" 11(Br—m)
for any m € Z. By choosing m = k we get
1(By) = p"u(Bo) = p"u(Zy) = p.

The second equation follows from additivity of the measure. O



3.1. INTEGRATION THEORY ON Qp 39

There is another useful equation, with a rich theoretical background.? We will
now show that

p(wA) = |l u(A), (3.13)

for any = € Q, and measurable set A.

Lemma 3.2. For any open ball U = b+ p"Z, and any a € Q, we have p(al) =
|alpu(U)

Proof. Write a = p™u where |u| = 1. Then aU = ab + p™*"Z,. By proposition
3.1 w(U) =p~™ and p(al) = p~™ ™. By remembering that |a|, = p~™ we get the
required equality. O

Theorem 3.3. For any measurable set E we have p(aF) = |a|pp(E)
Proof. By now, we know that u(aZ,) = |a|x(Z,) = |a|. Let us define a new measure
Vo(E) = p(aE) (3.14)

for any a € Q. Clearly this is a Haar measure, so there exist a constant ¢ with
the property that

Vg = Cl. (3.15)

This ¢ can be determined by ¢ = cu(Z,) = vo(Zp) = p(aZ,) = |al. So for any
measurable F, we get

(aE) = va(E) = cu(E) = |alpp(E). (3.16)

O

We end this section with another similarity between Q, and R.

Proposition 3.4. Any open set in Q, can be written as a (countable) disjoint
union of open balls.

Proof. Let U be an open set, then U = J;; W; with W; open balls and I countable
(as Q, is a separable metric space). Given any two balls with nonempty intersec-
tion, B, () and B,(y), and z an element in the intersection, we can write them as
B,.(z) and Bg(z), so that one is contained in the other.

Hence for any overlapping W; and W, we can remove one of them from the
union, while still covering U. In this way we get an index-set J C I such that
U = J;e; Wi is a disjoint union. O

2This equation can be used to define the norm given that you have a locally compact field.
This gives a very different way to develop the theory.
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3.2 Fourier transform on Q,

3.2.1 The rational part
As a preparation we need the following function on Q,.
Definition 3.5. The rational part function is
0o —1
x = Z xpt = {z} = Z xp', (3.17)
v(z) v(z)
and can be considered a function from Q, into Q, R, C, or Q,.

A locally constant function f on @, has the property that there is some By so
that f(z) = f(x + h) for h € By.

Proposition 3.6. The rational part function is locally constant, and satisfies

{e+yt ={z} +{y} + Nay, (3.18)
where N, ,, is either 0 or -1.

Proof. Clearly {2z} = 0 for z € Z,, and because carry in Q,, is to the right, {x+2} =
{z} for z € Z,.

The equation comes from the fact that carry may only influence {—} if we
carry from (z +y)_1 to (z+y)o, in which case, the difference between {x +y} and
{z} +{y}is 1. O

For the rest of this thesis we will write
Yo (y) = 7V (3.19)
for any x € Q,
Proposition 3.7. The function v, is a continuous homomorphism from @, to T.

Proof. The continuity follows from that the rational part function is locally con-
stant. The homomorphism property follows from

e27r7,'{x+y} _ e27ri({r}+{y}+Nz,y) _ 627r7i{x}€27r7,'{y}. (320)

O

3.2.2 Characters on Q,

In this section we present an independent proof that Q) is self-dual. Let us first
recall the definition of a character.

Definition 3.8. A character, or additive character, on Q, is a continuous group
homomorphism v : (Qp,+) — (T,-). Here T = {2z € C: |z| = 1}. Denote the set of
all characters on Q, by Q,.
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We already have a continuum of examples by proposition 3.7. We want to show
that these are all the possibilities.

Proposition 3.9. For a character v € @p we have for any n € Z

A(nw) = A(z)" (3:21)
Proof. This follows easily from the definition. U
Proposition 3.10. Assume v(p") = 1, then y(pVZ,) = 1.3

Proof. We have that pVZ is dense in pVZ,. By continuity of v we need only
show that for any 2 = p¥z (2 € Z) we have y(z) = 1. But this is trivial as

V(@) =) =1 O
Lemma 3.11. For any character v on Qp or p_KZp there is some N such that
1Y) = 1.
Proof.

1=~(0) = ILm ~y(p™) = ILm y(1)P T (3.22)

We see that this sequence must be eventually constant, i.e. there is some N such
that 7(p") = (1" = 1.

Why is this?* Let z, = v(1)?" = e ¥ with 0, € (—m,7]. As z, — 1
we can assume 6, € (—p~!,p~!) by considering n > M for some big M. Now,
if 057 # 0, then for some k we must have p~! < |pFfy| < 1, so that Oy =
pk0r ¢ (—p~1,p~1) (even modulo 27), which is a contradiction. Hence 65, = 0

and 'y(l)pM =1. O
Lemma 3.12. Given any x € Q,, the function v, : Q, — T defined by

Ya(y) = €7V} (3.23)
is a character on Q, and on p~XZ, (for all K).

Proof. The first part follows from proposition 3.7. Finally, p~% Zy is an open
subgroup of Q,. O

Lemma 3.13. Any character on p~%7Z,, is on the form ~, where z = ZiK:__lN x;pt.

Proof. Given 7 there exist N such that v(p"¥) = 1. Note that v is determined
by v(p~%). The equation v(p_K)pN“( =1 has at most® pV+&
there are at most pV & different characters (given N and K).

solutions in C, so

All v, where x = Zfi IN x;p’ are unique characters on p~%Z, with the property

that v, (pY¥) = 1. Since there are pV % of them, we get that v must be one of

them. 0

3Here v of a set A is the set {y(a) : a € A}, and 1 denotes the set {1}.

4This can be made into a general statement in C: Let z € C, if 2" — 1 as n — oo then z
for some N € N.

5Well, it’s ’exactly’ that many solutions, but we only need ’at most’ in our proof.

N _1
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Theorem 3.14. Any character on Q, is on the form ~, where x =Y~y x;p'.

Proof. First we see that v is a character on p~ %7, for any K. So on all these sets
there exist ax € Q, such that v = 74, on the set. For any K and L with K < L,

both ax and aj, are characters on p_KZp, hence ax = a;, mod p. Hence we can
define

a= Klgnoo arx € Qp. (3.24)

Since v = v, on all the sets p~%7Z,,, we get v =, on Q,. O
Corollary 3.15. We have that Q, is self-dual, i.e. The function

Uz, (3.25)

is an isomorphism and a homeomorphism between Q, and Q.

Proof. First, because of the previous theorem it is easy to see that ¥ is a bijection.
Second, notice that

= 2rilata} — 2ri({oy}+{zy}+ Ny,

= eZ‘fri{xy}e27ri{zy} =Yz (y)'yz (y)

Ya+2(Y)

To show continuity, let ,, =+ 2 € Q,. Choose any compact set K in Q. Then
K C B, for some r € Z. Take N so large that x, —x € B_, for n > N. Then
Yen!Vz = Vo, -z, and for all y € K we have y(x,, —x) € By = Zj so that v, _, =1
on K. Hence for any compact K there exist N such that for n > N we have
Vo = Yz on K. It follows that v;, — 7. € Q, (where the topology is uniform
convergence on compacts).

To show that the inverse is continuous, assume that v, — v, € @p. Consider
the compacts p~5Z,. First we will establish that
M)

Ve (P =1= v, (pM> =1, (3-26)

for n > N. So let M be so that v(p™) = 1, and take € so small that |w — 1| > €

when w? =1 (and w # 1). By convergence in Q, we have some N (depending on
K and €) such that |y, — ., | < € on p~%Z, (when n > N). Let [,, be the biggest
number in Z so that v, (p'*) # 1.° Then

Yoo (01 = (9, ()P = 1, (3.27)

and s0 7,, (p') is a p-th root of unity (what we called w). By our choice of ¢, when
n > N we get that v, (p'") # 1, hence

I, < M. (3.28)

Let us now drop the first N terms of the sequence by re-indexing (we can do
that without changing any convergence properties of the sequence), and we have a
sequence with the property in equation 3.26 for all n.

8Do not think of I, as a sequence, only as a number depending on the n you are considering.
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Both 7, and 7,, are characters on p~& Z,, and the values of v, converge
uniformly on p~%7Z, to the values of 7,. According to lemma 3.13 there is a finite
number of different characters on p~%7Z, with the property that v(p*) = 1, hence
for some big N we get

Yo (Y) = Y, (y) for y € piKZp and for n > Ng. (3.29)

In other words, v, —z, (y) = 1 for y = p~& and n > N, hence y(z — z,,) € Z, and

x—x, € pXZ,. For any e = p~K we get Nk 1 with the property that |z, — x| < €
for n > Ng1. This is the same as z, — x € Q. O

3.2.3 Onwards to the Fourier transform
The Fourier transform on Q, is
FD) = [ e f(a) da, (3:30

with inverse
F @ = [ i) dy, (3.31)
3.2.4 Properties of the Fourier transform on L?*(Q,)

For the real Fourier transform there are several invariant subspaces, like the space
spanned by Gaussian functions (e® / 2).  Are there any invariant subspaces in
L?(Q,)? Yes, let us look at some particularly interesting subspaces.

Definition 3.16. Define the following subspaces of L?(Q,):

Cr = {f € L*(Qp) : support(f) C By}.
Si={f € I*Q,) : flz +a) = f(x) Ya € B_x).
W, = CLNSy.

Proposition 3.17. We have that
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Proof. Given f with support(f) C By, and a € B_j we have

() +a) = / e~ 2 ) f(g) de

Qp

_ / 6727ri{xy}6727ri{a:a}f(x) dz
By,

_ / e—27ri{xy}e—27ri~0f(x) dx
By,

:/ 672’”{”}]"(@ dx
By,

= (FNy)-
Similarly, given f with f(z 4+ a) = f(2) Va € B_g, and y ¢ By

FD) = [ e @) do

By

— / 6727ri{zy}f(l, . pfkr) dz
By,

:/ e~ 2m il tr ™) £() da
By

:/ e—%i{xy}e—?ﬂi{p’ky}f(x) dx
By

= e 2T E ).

Since p~*y ¢ Z, we get 0 < {p~*y} < 1, and e=27{P "4} £ 1. Hence (Ff)(y) = 0.
Finally

.F(Wk) Z]:(Ck ﬂSk) :]:(Ck)ﬂ]:(Sk) =S, NCL =W,.

3.3 Ordering and intervals on Q,

One of the arguments that we can’t have p-adic time is because time must be
ordered for it to make any sense to us. Apart from using ¢ as a real parameter on
our complex Hilbert space, we can use p-adic time with the following lexicographic
ordering. These ideas can be found in [11].

In this section, indexing will be used to denote the canonical expansion in
equation 3.1 without comment.

Definition 3.18. We say that x < y for z,y € Q,, if
e v(x) < v(y), or

e v(z) =v(y) and z; = y; for v(z) <i < k and zx < yi (for some k).
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Of course, z <yifx <yorz=y.

Note that this gives a total ordering, and that 0 < z for all z # 0 € Q,.
We can define
[a,0] ={z € Qp:a <z < b}, (3.32)

but we get
[1,2] —2#[1-2,2—-2]=[-1,0], (3.33)

as the last set is empty.
This is really bad, but can we remedy it? For example by restricting the z we
add with to be from Z*?

Proposition 3.19. For any a < b € Q, there is some z € pFZF so that
b+z<a+z, (3.34)

where we can choose k = min{v(a),v(b)} — 1.

Proof. Assume v(a) = v(b). Then there is a least ¢ such that a(i) < b(i). Let
z = (p—b;)p". Then (a+ 2); #0, and (b+ z); = 0, while (a + 2)x = (b+ 2)x for
k <i. Henceb+ 2z <a+ z.

If v(a) # v(b) we can add p™n{v(@)v()}=1 to hoth a and b. After this, if b > a
we are done. If ¢ is still smaller than b we can do the same procedure as above. [

Assuming a,b € pZ, (which is the domain of the p-adic sine, and therefore will
be the domain of our p-adic time - all of this will come later, in chapter 6), we get
some z € ZT with the property that translating with z changes the time-order of
a and b.

We rephrase this result and get the following proposition.

Proposition 3.20. For any a < b € Q, there is some z € p*Z

[a,b] + 2z # [a+ 2z,b+ z]. 3.35)

(
Proof. By the previous proposition, we can find a z so that [a + z,b+ 2] =0. O

3.4 Important maps between R and Q,

In this section we will focus on three interesting maps, the first we saw in [11] and
can be used to transfer the Haar measure between R and Q,, but is not order-
preserving. The second was presented in [2] and does preserve the ordering, but
maps the p-adic numbers to a Cantor-like (nowhere dense and measure zero) subset
of R. The third is a slight generalization of the rational part function.

Definition 3.21. The simple almost-inclusion of Q, into R is

P, : i z;pt — i xip " (3.36)

i=v(z) i=v(z)
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Definition 3.22. The Vladimirov inclusion of @, into R is

o0 o0
Py : Z x;pt — Z xip~ 2.

i=v(x) i=v(x)

Definition 3.23. The k-rational part function from Q, to Q is

00 k—1
Pry Z zip' = pH{pFa} = Z zip'.

i=v()
Proposition 3.24. The function P; is
e not injective,
e injective almost everywhere,
e surjective onto the positive real numbers
e continuous,

e unable to preserve the ordering.

Proof. Note that

is mapped to

and

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

is also mapped to p. This makes P, not injective, but these counterexamples
requires the ambiguity in the notation of the real numbers (i.e. 1 = 0.99999...),
and the set of these ambiguous numbers is countable. The preimage under P is

also countable, hence of measure zero.

For surjectivity, it is enough to note that every positive real number can be
written as an infinite positive expansion with base p (where p does not need to be

a prime, e.g. the decimal system).

Let us now show continuity. Let |P(x) — P(y)| < ¢ = p~, choose § = p~

N-1

)
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then

|z —ylp <0 =2 =y Vicnt1 =

f@) = f@)l =1 ap™ = Dyl
i=v(x) i=v(y)

= | Z (i —yi)p~'|

i=min{v(z),v(y)}

= | Z (i —yi)p™"|
i=N+1
o0
< Z |z — yilp™
i=N+1
o0
< > 2opp
i=N+1
< NSl 9N <o
p—1

This concludes the proof of continuity.
To see that it does not preserve the ordering, the fact that it is not injective is
sufficient. O

Proposition 3.25. The function P, preserves the measure of a set, that is

pux(P(B)) = pug, (B) (3.42)

Proof. This is the result by Minggen et. al in [11], where they define the measure
g, using the above equation (after dividing out a set of measure zero) in their
definition 2.1. Then they prove that it actually is a Haar measure in Theorem 2.3.
Since it is a Haar measure with puq,(Z,) = 1 it is the same as our measure. O

Proposition 3.26. The inclusion Py is

e injective,

e not surjective,

e maps onto a Cantor-set (nowhere dense and measure zero),

e continuous,

e able to preserve the ordering.
Proof. See chapter 1.6 in [2]. O
Proposition 3.27. The k-rational part function from Q, to R

e can be considered a function onto Q,, (p*Z,)
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e satisfies limy, P (z) — € Qp (where the limit is in | — |,)
e locally constant.

Proof. The first three points are easy to see. The last point follows from proposition
3.6. O

3.5 Differentiation and anti-integration

In this section we want to point out the many notions of differentiation in Q,.
The fact that we have several ways to generalize differentiation is a problem, both
when trying to define position and momentum operators, and when describing the
generator of a unitary representation.

3.5.1 Banach differentiation

With f: Q, — C we can define derivative between the two spaces in a similar way
to what we do between two Banach spaces. For some f and some points € Q,,
define (Dpf)(x) whenever

_Nfl@+h) - fx) - (Dpf)@)] _
lim Ty =0, (3.43)

where h € Qp, the numerator uses complex absolute value and the denominator
p-adic absolute value.

3.5.2 Fourier transform of the p-norm

By looking at proposition 2.16 we get the idea for the following definition.

Definition 3.28. The Fourier-Norm (FN) derivative Dpy of f is
Dpn(f) = (F7 2l F)(f). (3.44)

3.5.3 Fourier transform of the fractional part

By looking at proposition 2.16 we get the idea for the following definition.

Definition 3.29. The Fourier-Character (FC) derivative Dpc of f is
Drc(f) = (F~Ha}F)(f). (3.45)
We can also use the k-rational part from definition 3.23

Drc(f) = (Fpp~ 2} F)(f), (3.46)

or perhaps the limit as k — oo in some sense.
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3.5.4 The anti-integration

From [11] we have a notion of integration from 0 to z, so we can define differentiation
to be the opposite of integration.

Definition 3.30. The Anti-Integration (AI) derivative of f : Q, — C (when it
exists) is the function D 4;7(f) defined almost everywhere satisfying

/O " Da(P) i = f(x). (3.47)

3.6 Finite approximations in L*(Q,)

When we want to use a compact subgroup of R we use addition modulo 1 on [0, 1),
but in Q,, the compact set Z,, is already a group. To discretize (in R) this compact
group into a finite group, we can use the set 4, = {£]0 < i < n} C [0,1) with
addition modulo 1. Similarly we can use

Gn =p "Zp/(P"Zyp) (3.48)

in the p-adic case.

3.6.1 Approximating H

Similarly to what we did in the real case, we define a position operator Z on Q,.
Then we take the momentum operator to be the Fourier transform of Z. Both of
these operators can also be considered operators on (,. The Fourier transform
factors nicely, i.e.

ﬁ: ]:nf-/—'gl on Gn7 (349)

where F,, is the finite Fourier transform on G,,.

We have constructed a MatLab algorithm that can be found in the appendix. In
table 3.1 and 3.2 you can find the numerical results, together with the analythical
results from chapter X.9 and X.10 in [2].

For p = 3 the multiplicity is calculated as follows. According to [2] (page 181 -
182) we get that

Ny =32V 4 322N NezZ 1=23,.. (3.50)

has multiplicity at least

43" gvi?, (3.51)

1<i<d

where {(z;,y;) : i =1,2,...,d} are the solutions for x € Z and y = 2,3, ... of

Ny = 3% 4 3227, (3.52)
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Table 3.1: Results for the approximation for the harmonic oscillator on L?(Q,) with
p = 3, and with the position operator chosen as Zf(x) = |z|,f(z) (the momentum

operator is the Fourier transform of the position operator).

Analytical

n=1

n=2

< 4.5

0.681874953487972
4.703703703703697
4.725532453919437

0.669253240146968
4.692719683556841
4.716187293920393

5 4.999999999999997  4.999999999999983

5 5.000000000000003  5.000000000000011

9 8.999999999999991  8.999999999999979

9 8.999999999999995  8.999999999999980

9 8.999999999999998  9.000000000000018

9 9.000000000000000  9.000000000000025

- - 40.522643828102950

- - 40.522652744396467

40 + 12 - 40.555555555555586
40 + 1—2 - 40.555555555555770
41 - 40.999999999999865

41 - 41.000000000000000

41 - 41.000000000000057

41 - 41.000000000000078

41 - 41.000000000000163

41 - 41.000000000000171

41 - 41.000000000000185

By the first lemma in chapter X.10 in [2] (o = 2) we get that the only solutions
of the previous equation are t = N and y =l — N,orz =]l— N and y = N so
that the multiplicity of A} is no less than

4 (3N=2 4 3N2). (3.53)
Further we are given p — 2 = 1 eigenvectors with eigenvalue
Ay =32V 43272, (3.54)

so that the multiplicity here is at least 1.
In the numerical calculations we used H = %52 + %ﬁQ, so that our eigenvalues

are
My

5 (3.55)
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Table 3.2: Results for harmonic oscillator using n = 4, for p = 3, Zf(z) = |z|, f ().
L. mult. stands for least multiplicity, and e.v. for eigenvalue.

Analytical e.v. L. mult. Numerical e.v.  Mult.
<4.5 - 0.6688

- - 4.6923

4.7158
5.0000
9.0000
- - 40.5214
40.5556
41.0000
45.0000
81.0000
- - 364.5000

- - 364.5100

- - 364.5600
365 13 365.0000
- - 369.0000

- - 405.0000 216

- - 729 324

- - 3000<x<3700 2916

- - 6165 >2900
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Chapter 4

Classical mechanics and Weyl
quantization in Q,

In this chapter we want to generalize classical mechanics to the p-adic case, and to
look at a generalization of the Weyl system usable over Q.

4.1 Classical mechanics

Let us first use p-adic numbers in classical mechanics. Using the same Hamiltonian
as in the real case, but with p-adic coordinates and time; according to [12] (equation
3.4-3.5) we get
1 1
H=— 21 ~mwle® =
o T M
. .1
b= —mw’q, ¢=—p; p(0) =p, 4(0) = g,

with the analytic solution

(q(t)> _ <mlwpsinwt+QCOSwt)’ (4.1)

p(t) P coswt — gmw sin wt
where
e 2n—1
T 1
i = -1 <1, < =
smx ;( ) (277, . 1)| |$|P |$‘2 2
oo 2n
x 1
cosx = —1)"——, <1, < -

Several questions come naturally. The first is, 'Does this give the same physical
results as in the real case?’. One of the main motivations for using Q, is that we
need the rationals, because any result of a physical measurement can be interpreted
in Q. So let us look at this solution from that point of view.
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Proposition 4.1. We see that equation 4.1 looks the same but is not the same as
the solution in example 1.24.

Proof. The expression in equation 4.1, is the same as in 1.31, even the expressions
for the definition of sine and cosine are the same in the real and the p-adic case.
However, the sum to infinity has a different interpretation in the real numbers

(convergence in | — |o) and the p-adic (convergence in | —|,). E.g.
D oo 1 p 2n—1
i = -1 4.2
which clearly converges both in | — | and in | — |,. As long as none of these are
in Q, they live in completely different number fields. O

4.2 Weyl systems in the general case

Assume that G is a locally compact abelian group, which is also self-dual. Definition
2.17 can be generalized to the following definition.

Definition 4.2. A Weyl system on H = L?(G) is a function W : G x G — U(H),
so that W (g, p) is a unitary operator, with the property that

W(z+2')= B(z,2YW()W(2), (4.3)
where B: G? x G2 — T, and z = (q,p) € G
Proposition 4.3. Let x(z) = e*™{*} for some a € Qp,* then

Wiap)(a) = x (& +az) (@ +p) (4.4)

is a Weyl system on H = L?*(Q,), where

Bl ) =x (571). (4.5

Proof. The proof is exactly the same as the proof of proposition 2.18. O

The following theorem shows how the system we just defined is the best choice;
all other choices are essentially the same as this, possibly with redundancy.

Theorem 4.4. There is only one irreducible Weyl-system over Q, up to unitary
isomorphisms, namely W(q,p). All Weyl systems over Q, can be written as a direct
sum of copies of this.

IThis x is what we called the character v, in chapter 3. This a will become —mw in proposition
6.1.
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Proof. Using Theorem 3, and corollaries 1 and 2 on pages 247-249 in Vladimirov
[2], we only need to show that W (q,p) has a one-dimensional vacuum space, i.e.
that there is only one invariant wavefunction in L?(Q,) (up to multiplication with
a constant). The a we write in this proof is the a in the definition of W (see the
previous proposition).

So let ¥ be so that

Wig.p)(a) = x (& +g2) via+p) = ¥(@), (4.6)

where (q,p) € a"'By x By. Then we get

Y(x +p) = ¥(x) Ypen,
X (gz) ¥(x) = Y(x) Y4ea—18,
support () C {z : x (¢z) = 1} Y4eq-18,

We choose ¢ = a~! € a~ !By, and get
support (1) C {z : 2"} =1} = B, (4.7)

As y(z) = ¢(0) for x € By with ¢(z) = 0 for x ¢ By we have that 1 is constant.
Hence the vacuum space is one-dimensional.

Let us comment why Vladimirov use (g,p) € Vo = By X By, but we use (¢,p) €
a"'By x By. If you look at their symplectic form, it is the same as ours if you
scale our ¢ by a~! to cancel the a hidden in our symplectic form B (the notation
differs considerably, and they write the symplectic form on the other side of their
equations). O

4.3 Weyl quantization

Weyl quantization? is another way to interpret f(Q, P) for operators @ and P (the
first way is to use f as a function on the spectrum of the operators, as mentioned
in section 2.2.2). Intuitively, given f: C? — C

£(Q.P) = / / £(4:)60(a)5p () dg dp

://f((bp)//(627ria(Q—q)e27rib(P—p)> da db dq dp
=////f(q,p) (eQ”i“(Q_Q)eQ’”b(P_p)) dq dp da db,

2Also known as phase-space quantization.
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which can be made rigorous over L?(R). To be able to use this over L*(Q,) we
continue the calculations

f(@Q,P)= / / / / f(q.p) (e—z’”'aqe—zmmUm) dg dp da db
= //UaVb//f(q,p) (e_z”i“qe‘z”“”)) dg dp da db

- / / Flg,p)e "2, , da db,

where W, = €271%/21J,V, is the Weyl system with character y(z) = e>™®, and f
is the two dimensional Fourier transform. This can be generalized to Q,.

Definition 4.5. Given f : Q,xQ, — C, the quantization of (the classical function)
fis
Ay =/ / Pxo(=ap/2)W,,p ds dt, (4.8)
Qp JQp

where f = Fg, ® Fg, (f), and the character in the Weyl system is x,,(z) = e?7{s}.



Chapter 5

Quantum mechanics with real
time using Schrodinger-like
operators

In this chapter we will look at what Vladimirov et. al. calls Schrodinger-like
operators. Let

QU(f)(@) = [=[; f(x) (5.1)
on L*(Q,). Further P* = Q* = FQ®F~'. Then we can define an operator that
seems to correspond to the Schrédinger operator for a harmonic oscillator,

H=Q*+ P (5.2)

5.1 Generators of time translation

How can operators like H be used to generate time translation on L?(Q,)? We can
define

U, = et (5.3)
or use x(tH) for any character x on R. If we regard L*(Q,) as a complex (sep-
arable) Hilbert space, there is only one operator generating time translations (up
to multiples of I, and unitary transformations), namely the one we already know
from L?(R). We can hope to find nicer descriptions of some quantum systems in
this way (especially those with fractal properties), but merely using the isomor-
phism between L?(R) and L?(Q,) as separable Hilbert spaces to find the required
H seems artificial at best.

5.2 Basis for L?(Q,) of eigenvectors of P

Let us find a basis of eigenvectors for D% and for |z|% that is also invariant under
the Fourier transform. The material in this section is taken from [2] (chapter IX.5

o7
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and onwards) and [6] (Chapter 3).!
Proposition 5.1. H is self-adjoint and densely defined.

It is natural to look for locally constant compactly supported functions. So let
them be supported on a sphere Sj.

Given that [ > 2, N € Z,k € {1,2,...,p—1}, and € (given an [) can be written
uniquely as €y = €0 + e1p' + ... + ¢_op' 2.

N+1-—-1

LN ke, (@) =p~ 7 6|z — p' = N)S(z0 — k)xpleyp' >N a?) (5.4)

where 29 = (x — {z},) mod p. Define also

N—-1

p1nk(@) =p 7 Qlzl, —p' NV )xp(kp V). (5.5)
Then the Fourier transforms are
- N— 1
LN ke (T) = PP_TI(S(|33| — )6 (w0 + 2€0k) x,p <€(l)p2N_l;f> (5.6)

where p is a constant (not important for us - it can be found in Kochubei chapter
3), and

-1

Suna(a) =p~ 7 8(aly — p™)d (o — k). (5.7)
Proposition 5.2. The set {¢} is a basis for L?(Q,) of eigenvectors of P*.

Proof. According to Vladimirov (page 163-165) This is a complete orthornormal
set in L?(Q,), i.e. a basis. It is easy to see that any function multiplied with
§(|lz| —p") is an eigenfunction of Q* with eigenvalue p®". Since all the ¢ look like
this, we get that all ¢ are eigenfunctions of D®.2 O

5.3 Commutator of () and P

For all the functions
¢17N(x) > 1, (5.8)

from the previous section, we argued why they are eigenfunctions of P* with eigen-
values p®V. As they contain §(|z| — p'~%), they are eigenfunctions of Q% with
eigenvalue p@(=N),

Proposition 5.3. For all the functions
oin(z) 1>1 (5.9)

the operators @ and P commute, i.e. QP¢ = PQ¢.

1The book by Vladimirov is frequently cited, but the book by Kochubei is more clearly written.
2This is also theorem 3.1 in Volovich.
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Proof. We have

Q, Ployn = QP n — PQér N

=p=pN gy n = pNp=NMgy x
-0

O

This proposition states that the commutator is 0 for an infinite dimensional
subspace, and its closed span. There is no way to repair this, and get a true
commutator for most of L?(Q,), which is what we would expect from a theory in
quantum mechanics with position operator ¢ and momentum operator P. To sum
up, we claim that this choice of H is not only bad for the Harmonic oscillator, but
for any quantum mechanical system.
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Chapter 6

Quantum mechanics with
p-adic time using Weyl systems

Whether we should use real or p-adic time is not evident. There are two strong
arguments for using p-adic time. The first is that relativity theory suggests that
space and time should be easily comparable. The second is that the time evolution
corresponding with the Weyl system and the classical physics is easily generalized.
This is the first thing we will look at in this chapter.

There is also a strong argument against using p-adic time, namely that there is
no good total ordering on Q,; we will also look at this.

6.1 Time evolution using the Weyl system

In this section we use the character y = e2™{#}. Let us define, as before, the time
evolution to be

(U)(z) = . Ki(z,y) dy. (6.1)

For the full Harmonic oscillator we will take the following propagator as our guess.
(We found it in Dragovich [3])

2 2
-~ Ty r°+y
Ki(,y) = Ap(2wb)lwt] /2 (Sm - 2tanwt) , (6.2)

with (write a = p*(*)(ag + a1p' + agp® + ...))

1, v(a) =2k
Ap(a) = (% ,v(a)=2k+1, pmod4=3 | (6.3)
7 "’;), v(a) =2k+1, pmod 4 =3
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for p # 2, and
VAL 4 (=1)1), v(a) = 2k
Nola) — . 6.4
2(a) {( 1)ate22=1/2(1 4 (~1)44), v(a) =2k + 1 (6.4)
Here
1, \/EGFP
(a) =a? V2 modp =<0, amodp =0 (6.5)
p —1, else

is the Legendre symbol.
Similarly to proposition 2.20 we now show the following.

Proposition 6.1. The operator U; defined by equation 6.1 and 6.2 satisfies

UUi)y=Ut+t), (6.6)
and
UOW (U™ = W(Tiz), (6.7)
where T; comes from the classical time evolution (equation 4.1) and is
. sin(wt)
T _ cos(wt) o Ay '
i(a:p) ( —mwsin(wt) cos(wt) D (6:8)
Here we choose the Weyl-system
= (- a
W(g,p) = x ( mw ( 5+ qff)) ¥(z +p). (6.9)

Proof. First we show that K/ /0(z,y) = fKt/w(x,z)Kt//w(z,y) (since w is
fixed, this is equivalent to what we want to get). First observe that

| sin(t)| = [¢]
|cos(t)| =1
|sin(t + t)] ,
tan(t +t')| = ———— =t +¢
tan(t + )] = ey = [t
for all ¢,t" where sin is defined (Jt| < 1). If we write
t+t _
S =P Aag + arp + agp® + ...) (6.10)
and tan(t tan(t’
an(?) + tan
M :piB(b0+b1p+b2p2 +...) (6.11)

2 tan(t) tan(t’)

we see that A = B and ag = by, hence
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Consider now

/Kt/w z,2) Ky (2, y) /)\p L (2t [t] Y2 |71/
Tz x? + 22 2y 2% +y?
X sint  2tant sint’  2tant’

Ap(20A(28)]1t| 720 (@) 20|71/

92 2 2
- X £ Y dz,
2 2tant 2tant’

where
-1 —1sin(t+t)
= —(cot t tt)= ——————
= 5 (eott+eott) = o it
_ T Y
f= sin ¢ + sint’”
Then

tant + tant’ —1/2

-1
[ Bl 2K ulev) = M ON RO |20 ot + cort) [P LR

_n2 2 2
X gty ds
4o 2tant 2tant’
= A2t + 26"\, (1/2t + 1/2t)) |t + /| 1/2)\( (cott+cott))
_p2 2 2
X g at oy ds
4o 2tant 2tant’

2 2 2
—p =y ds
4o 2tant 2tant’

= A (2t 4 20|t + | 7Y/2 (

This equals K/t (z,y) if and only if

— 32 22 yz B Ty x2+y2 (613)
4o 2tant 2tant’  sin(t+t/)  tan(t +t')’ '

where the left side is

(ac LY )2 sin(t+¢)\ "1 x? >
sint = sint’ sintsin ¢/ 2  2tant 2tant’

which equals

Ty -1 sint’ y2 [ -1 sint
— = +— +Z + ,
sin(t+t) 2 \tant sintsin(¢+¢) 2 \tant’  sint’sin(t +t)

which equals the right side of equation 6.13.
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Now we want to show that

and similarly for (0,p) before we use the same argument as in the real case. This
is the same as showing

/ K (2, y)x(—muwqy)(y) dy = W(qeoswt, —qmuw sinwt) / K (2, y)(y) dy

(6.15)
which is the same as

2 .
—q“mw cos wt sin wt
/Kt(x, y)x(—mway)(y) dy = x(—mwqz cos wt)x (—mw 5 )

- / K (x — qmewsinwt, y)i(y) dy

which is true if

2,2 2 :
t t
Ki(z,y)x(—mwagy) = x(qz coswt)x (q me Cgsw e ) Ki(z — gmwsinwt, y).
(6.16)
Looking at the definition of K; we see that this is true if
Ty 22 + 92 ( ) ( ) ¢*m?w? cos wt sin wt
— —mwqy) = X(—mwgqz cosw
sinwt 2tanwt X 7 X 4 X 2
(r — gmwsinwt)y  (x — gmw sinwt)? + 32
% i _
sint 2 tan wt
true if
Ty 2% + 92 ¢>m>w? coswt sinwt
- — — mwqy = —mwqx cos wt + — qmwy + —
sinwt  2tanwt 2 sin wt
2 4+ 92 n y ¢*m?w? sin wt cos wt
— rqmw cos wt —
2 tan wt ¢ 2
which clearly holds.
Let us now show that

This is the same as showing

/Kt(sc,y)d}(y +p)dy = W((mw)_lpsinwt, —pcoswt)/Kt(a:,y)z/J(y) dy (6.18)
which follows if

Ky(z,y —p) = x(—mw(mw) ™ 'prsinwt)
< (mw) " psinwt - (pcoswt)
x| —mw

2 )Kt(‘r+pCOSWt7y)7
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true if

2 2 9 .
- - - t- t
(x(y p) z°+(y—p) ) X(pxsinwt)x( D smu; COS W >

sin wt 2tanwt
<(m +pcoswt)y  (x+ pcoswt)? +y2)
)

sint 2tan wt

true if (equation also multiplied with 2)

—2x 29
B A IP _ _oprsinwt — p?sinwt - cos wi+
sin wt tanwt

n 2py cos wt — 2xp cos? wt — p? cos® wt

sin wt ’

which is true (for all z and y) if and only if all

p? coswt p?cosPwt .
- = —— — p” coswtsinwt
sin wt sin wt
2p cos wt cos wt
; = 2P
sin wt sin wt
2p 2p cos? wt .
—— = - — 2psinwt
sin wt sinwt

are true (the first equation is for the constant, the second for y, the third for x).
Showing these equations is easy.
Now we can do exactly the same as we did in the proof of proposition 2.20 to
show that
W (Tiz) = UOW (g, p)U (). (6.19)

This concludes our proof. O

Theorem 6.2. Given W and T}, there is only one time evolution Uy up to scalar
functions c(t) : Q, — T.

Proof. Let U; and V; be two different time evolutions, i.e.
UW(2)U_y = W(Tyz)
ViW (2)V_y = W(T}z2),
so that
UW(z)U_y = ViW (2)V_y
W(z) = U_{ViW (2)V_Us
= (U V)W (2)(U-V3) .

Since W is irreducible by theorem 4.4, the only operators commuting with W are
the scalars, hence

(U—t‘/t) = C(t)[
‘/;5 = C(t)Ut,
where ¢(t) : Q, — T. O
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6.2 Ordering, p-adic time, and stroboscopic mea-
suring

Before and after are important concepts referring to time, so we would like there
to be an ordering on pZ,, the domain of p-adic sine and cosine. The only ordering
we have seen in the literature is the one we presented in section 3.3. This is
not preserved by time translation, as seen in proposition 3.19, and the following
comment. We do not know how to make sense of this, perhaps we need to consider
just pZ as the domain of sine (this is dense in pZ,).

Another problem we face is how to understand why we only have the domain
pZ,, for time (assuming w = 1), and not all of @,. In the article [4] by Freund and
Olson they write about stroboscopic measurements, with a finite possible precision.
This could lead to a physical understanding of our theory.



Chapter 7

Further ideas

7.1 How many different quantum mechanics are
there?

Ordinary quantum mechanics is a triple (H, W,U), where H is a Hilbert space, W,
the Weyl system, and U; the time evolution. Assuming the Hilbert spaces to be
separable and complex, we have an isomorphism between any two Hilbert spaces.
This unitary isomorphism can carry the Weyl system and the time evolution with
them (Weyl system specifies the coordinates we choose, time evolution specifies the
physical system we consider). It would be interesting to study how many different
descriptions we can have of the same system, and to consider how we use the
underlying group structure when H = L?(G).

7.2 Finding good Hamiltonians in real time

Using the ideas of chapter 5 we can look for different Hamilonians, and different
physical systems to find applications. Here it would be natural to use the algorithms
we have developed.

7.3 Weyl systems with real time

If we are able to find a generator for time evolution in classical physics (over p-
adic numbers) parametrized by ¢ € R, the we could use U(t) also with real time,
satisfying

UW (U@ = W(Tz). (7.1)
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7.4 Integration over R instead of over Q,

We can find an isomorphism by from L?*(Q,) to L*(R) by using Ps from section
3.4. Define
b : L2(Q,) » LA(R) (7.2)
by
foo = 0s(fp)(2) = V/Pfp(Psz) (7.3)

Claim 1. ¢, is an isomorphism onto L?(R™).

We think this can be proved by using that Ps is injective almost everywhere,
and surjective on R, and proposition 3.25.



Appendix A

Notation

e H and H are operators, H is Hilbert space

f is the Fourier transform of the function f

e A= FAF~!is the Fourier transform of the operator A

Eigenstate, eigenfunction and eigenvector are all synonyms

Notation for some sets:
ea+B={a+b:be B}

e A+ B={a+b:ac Abe B}
e aB={ab:be B}

Z, =A{x € Qp:|z| <1} is the completion of Z in | — |,
By ={z € Q|| <p*}

e At={ze€A:2>0}

T={zeC:|z| =1}

(T, +) is the interval [0, 1] where 0 is identified with 1, under addition modulo
1.

Physicist’s notation:
e ) =|¢) is a vector, called a ket-vector, in a Hilbert space H
e (9] is a vector, called a bra-vector, in the dual of a Hilbert space

o ()| A|®) is the operator A applied to the vector |¢) and then the inner product
of [¢) with A(|¢))
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APPENDIX A. NOTATION

e The inner product (¥|¢) is conjugate linear in it’s first entry (in )
Some functions:

e |z]| for z € R is the floor function (greatest lower bound in Z)

[2] for z € R is the ceiling function (least upper bound in Z)

d(z) is the Dirac delta, 6(0) = 1 while all other values are 0.
e 0y(z) is the delta distribution with mass one at y

Xp(7) = e?mite}

P)/a(x) — eQﬂ'i{a;v}

a} ={z}, = Z;(i-) ;p’ (when z = Z(;((DVL) zip')

|z| = |z|, is the norm of x € Q,

° °
—~

|£|o is the normal absolute value for x € Q

v(z) is the valuation (v : Q, — Z) with value given by |z| = p~¥(®)

f(A)={f(a) e C:a€ A} for f: B — C being any function and A C B



Appendix B

Figures

Here are the visualization of the Schwinger approximation on L?(R). The MatLab
code generating these figures is in appendix C.
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APPENDIX B. FIGURES

Figure B.1: The first 8 eigenvectors for the harmonic oscillator over L?(R) using
Schwinger approximation with input n = 12. The line is the exact solution, while
the diamonds represent the approximate solution. There is a small error at the

endpoints.
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Figure B.2: The first 8 eigenvectors for the harmonic oscillator over L?(R) using
Schwinger approximation with input n = 81. The line is the exact solution, while
the diamonds represent the approximate solution. There is no discernible error.
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t

Matlab code for Schwinger
approxima

Note that you can copy-paste one block at a time from the MatLab-files attached

in this appendix into MatLab.
Figure C.1: The MatLab code for the real Schwinger approximation (see chapter

2.7).

Appendix C

This script calculates finite approximations using a Schwinger
where the derivative is the fourier transform of the
createHamiltonianHarmonicOscillator.m in the same folder.

]

v
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m
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(0]

(physicists version)

ones (length(x),1),

0.01;
2*xX%,

Lxx."2-2,

close all;

CONSTANTS

@ (x)
@ (x)
@ (x)

clear;

{

41;
Stepsize when plotting the analytic solution

#Points in the approximation

Clean workspace
Hermite polynomials

SECTION:
SECTION:

clc;
plotStepsize
ph =

12
13
14
16
17
18
19
20
22
23
24
25
26
27
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28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75

APPENDIX C. MATLAB CODE FOR SCHWINGER APPROXIMATIONS

@(x) 8xx."3—12xx,

@ (x) 16%x.74—48%x.7"2+12,

Q(x) 32xx.75—160%x."3+120%*x,

@(x) 64%x.76—480xx.%4 + 720*x.”2 — 120,

@(x) (128xx.7"7 — 1344xx."5 +3360xx."3 — 1680xx) };
©090020000000900000000000000000000000000000000000090000000000000000090000
5555555555555 5555555555555 555555555%555555%55%5%%%
% SECTION: COMPUTATIONS $%%%%%%%%%%5%%%55%%5%%5%5%%5%5%%5%5%%%5%5%%%5%%%5%5%%5%5%%%%%
% Create the hamiltonian matrix H
[ xValues, H ] = createHamiltonianHarmonicOscillator( n, 1 );

% Removing errors resulting in imaginary numbers
H=real (H) ;

o

% Solving the problem
[eigVectors,temp] = eig(H);
eigValues = diag(temp);

% Sorting the eigenvalues (increasing) and eigenvectors (dependent)
[eigValuesSorted,orginalPositions] = sort (eigValues);
eigVectorsSorted = eigVectors(:,orginalPositions);

9999900000000 0000000000000000000000000000000

% SECTION: PLOT APPROXIMATION TOGETHER WITH ANALYTHIC SOLUTION %%%%%%
% X—coordinates for analythic solution
gridXvValues = (xValues(l):plotStepsize:—xValues(1l))"';

o

% A constant used in every for—loop
constant = pi”(—1/4) * exp(—gridXValues.”"2/2);
figure
for 1 = 0:7
subplot (4,2,1i+1)
% Analythic solution y—values
y = (271 % factorial(i))”(—.5)*constant.*ph{i+1l} (gridXValues) ;
% Plot analythic solution (blue line)
plot (gridXvalues, y, 'color', 'blue')
hold on
% Eigenvector for the eigenvalue number i (0—indexed)
approxY = eigVectorsSorted(:, i+1l);
% Normalization (Imbedding into hilbert space is isometric)
tempMax = max (abs (approxY¥));
templ = find(abs (approxY)==tempMax,1l);
temp2 = find(gridXValues > xValues (templ), 1);
tempSign = sign (approxY (templ)) xsign (y(temp2));
approxY¥ = approx¥Yx(n/2/pi)”(1/4)*tempSign;
% Plotting finite approximation as green diamonds
plot (xValues', approxY¥, 'color', 'g',
'LineStyle', 'none', 'Marker', 'd', 'MarkerSize', 7,
'MarkerFaceColor', 'g'")
title(sprintf ('Eigenfunction %d', i+1)
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Figure C.2: The MatLab code for creating the Hamiltonian for the harmonic os-
cillator used in the algorithm in figure C.1.

© W N e U A W N =

AW oW oW W oW W W W W W NNNNNNNNNNRS R e e e R e e e
© © ® N O s W RN R OO N0 aE®NR OO X N TR ®N RO

function [ xValues, H ] = createHamiltonianHarmonicOscillator( n, k )
9909000000000 00000000000000000000000000000000000000000000000000000000
5555555555555 555%555%555%55%5%55555%555%555%55555555555%555%5555555%555%55%5%%%

createHamiltonianHarmonicOscillator.m
Author: Haakon C. Bakka
Date 24 Apr 2012

This function constructs the Hamiltonian of the harmonic oscillator
for the finite—dimensional approximation. It has not been optimized
for speed (it is more than fast enough for our purposes).

Input:
n — the number of dimensions (or #points)
k — a scaling constant for the potential, typically 1 or O,
where 1 gives the harmonic oscillator and 0 a free particle

A0 A A0 A0 AP o0 O o0 o o O d° A° A° o o

Output:
xValues — the x—coord. at which we approximate the wave—functions
H — the Hamiltonian (nxn matrix)
000 00000000000000000009000000800000000009000900000000090090000000000090009000

o\
o
o\
o\
o\
o\
o\
o\
o\¢
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
E
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
E
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\
o\

o

Grid x and scaling constant \epsilon_N
x = (=1/2)*(n—1):(1/2) * (n—1);
epsn = sqgrt (2+pi/n);

% Potential V
V = diag(x."2*xepsn”2);

% Discrete fourier transform matrix (unitary)
Fourier = exp (—1i*(x'xx)xepsn”2) / sqrt(n);

o

Derivative —(d"2/dx"2)
= Fourier' %= V % Fourier;

o

o

Hamiltonian
= D/2 + kxV/2;

jas)

o

X—coordinates (used mainly for plotting the results)
xValues = x*epsn;

end
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(see chapter 3.6).
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t

11ma

The MatLab code for the p-adic approxi

Figure C.3
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11

Clean workspace

clc

>3
S

12

close all

clear;

’

13

INPUT

>3
S

14

17

State problem

xValues,

o
S

18
19
20

'norm') ;

’

createPadicHamiltonianHarmOsc (p, n

]

H

[

Solve problem

SECTION:
Remove imaginary errors in H

>3
S

21

H

>3
g

22
23

real (H);
Find eigenvalues

(this is by far the most time consuming operation)

24
25
26

’

= real (eig(H))
Sort eigenvalues from lowest to highest

ev

o
g

ev = sort (ev);

27

29
30
31

Display results %
Display the 20 first eigenvalues

if length(ev)>15

SECTION:

3
S

3
g

32
33
34
35
36

('The first 15 eigenvalues are')

(ev (1

disp
disp

15))

else

('The first eigenvalues are')

(ev)

disp
disp

37
38
39
40
41

end

(needed for counting)

Round off errors

decimals

o
S

4;

round (ev+x10~decimals) 10" (—decimals) ;
Counting them using histogram function on a sorted vector

[numberOfDistinct, listOfDistinct]

ev =

hist (ev,unique (ev));

43

1listOfDistinct;

2, 1) =

display (

44

’

numpberOfDistinct

disp ('The eigenvalues,

disp(display)

1,2) =

display (

45
46

and the number of occurences of each are')

47
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Figure C.4: The MatLab code for creating the Hamiltonian for the harmonic os-
cillator used in the algorithm in figure C.3.
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Author: Haakon C. Bakka
Date 24 Apr 2012

This function constructs the Hamiltonian of the harmonic oscillator
for the finite—dimensional p—adic approximation. It has been
optimized for speed.

Input:
P — prime
n — the level of precision (p”{2n}) points)
k — a scaling constant for the potential, typically 1 or O,
where 1 gives the harmonic oscillator and 0 a free particle

A0 A AP A0 AP o0 o0 O O o A Ad° A° A° o° o o

Output:
xValues — the x—coord. at which we approximate the wave—functions
H — the Hamiltonian (nxn matrix)

000 0000000000000000000000800000000900000000000000900900008000000090090000

o
o

o

% Length (# points) len, grid x and scale \epsilon_N
len = p”(2xn);

x = (0:1len—1)";

epsn = p”(—n);

% Potential V
if strcmp (type, 'norm'")
% p—adic norm of x
xnorm = ones (p” (2*n),1);
for k = 1:(2%n)
xnorm (find (mod (x, p~k)==0))= p*(—k);
end
xXepsnnorm = xnorm * p°n;
V = spdiags (xepsnnorm.”2, 0, len,len);

elseif strcmp (type, 'rationalPart')
% Rational part \Leftrightarrow (mod 1)
rationalPart = mod(x*epsn, 1);

V = spdiags(rationalPart.”2, 0, len,len);

elseif strcmp (type, 'justMultiply')
V = spdiags(x.”"2xepsn*2, 0 , len, len);

else
disp('error, method not recognized')
V = zeros(len);

end

% Derivative —(d"2/dx"2)
= 1ifft (Vxfft (eye(len)));

]

o

Hamiltonian
=D/2 + V/2;

jasj

o

xValues (for plotting)
xValues = x+*epsn;

end
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