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Abstract
Increasing demands for energy efficiency constrain emerg-
ing hardware. These new hardware trends challenge the
established assumptions in code generation and force us
to rethink existing software optimization techniques. We
propose a cross-layer redesign of the way compilers and
the underlying microarchitecture are built and interact, to
achieve both performance and high energy efficiency.
In this paper, we address one of the main performance

bottlenecks—last-level cache misses—through a software-
hardware co-design. Our approach is able to hide memory
latency and attain increased memory and instruction level
parallelism by orchestrating a non-speculative, execute-ahead
paradigm in software (SWOOP). While out-of-order (OoO)
architectures attempt to hide memory latency by dynami-
cally reordering instructions, they do so through expensive,
power-hungry, speculative mechanisms. We aim to shift this
complexity into software, and we build upon compilation
techniques inherited from VLIW, software pipelining, mod-
ulo scheduling, decoupled access-execution, and software
prefetching. In contrast to previous approaches we do not
rely on either software or hardware speculation that can
be detrimental to efficiency. Our SWOOP compiler is en-
hanced with lightweight architectural support, thus being
able to transform applications that include highly complex
control-flow and indirect memory accesses.
The effectiveness of our software-hardware co-design is

proven on the most limited but energy-efficient microar-
chitectures, non-speculative, in-order execution (InO) cores,
which rely entirely on compile-time instruction scheduling.
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We show that (1) our approach achieves its goal in hiding the
latency of the last-level cache misses and improves perfor-
mance by 34% and energy efficiency by 23% over the baseline
InO core, competitive with an oracle InO core with a per-
fect last-level cache; (2) can even exceed the performance
of the oracle core, by exposing a higher degree of memory
and instruction level parallelism. Moreover, we compare to
a modest speculative OoO core, which hides not only the la-
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SWOOP, it pays a steep price for this advantage by doubling
the energy consumption.
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1 Introduction
Conventional, high-performance demands have steered hard-
ware design towards complex and power-hungry solutions.
Yet, as energy becomes the main constraint and limiting
factor for performance, energy-efficient solutions are no
longer just an option, but a necessity, as shown by emerg-
ing heterogeneous platforms featuring simpler and more
energy-efficient (little) cores, rack scale computing centers,
etc. These platforms rely on targeted hardware and on com-
pilers to deliver customized software and to meet perfor-
mance expectations.
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One of the notorious performance bottlenecks is the per-
formance gap between memory and processor, i.e., the mem-
ory wall [78], and it has been addressed by many previous
proposals [15, 19, 49, 52, 57, 67, 68, 70]. As this gap becomes
wider, the time spent waiting for memory has started to dom-
inate the execution time for many relevant applications. One
way to tackle this problem is to overlap multiple memory
accesses (memory level parallelism) and to hide their latency
with useful computation by reordering instructions (instruc-
tion level parallelism). In-order (InO) cores rely on static
instruction schedulers [2, 43, 48] to hide long latencies by
interleaving independent instructions between a load and its
use. Nevertheless, such techniques cannot adapt to dynamic
factors, and therefore lack flexibility and in practice are very
limited. Out-of-order (OoO) cores reorder instructions dy-
namically with hardware support, thus, being able to hide
longer latencies, confined only by the limits of the hardware
structures (e.g., the reorder buffer), but are significantly more
power hungry.

Support for speculation contributes greatly to the energy-
inefficiency of OoO execution [23, 51]. In a seminal paper
Zuyban and Kogge showed that energy consumption is ex-
ponential to the speculation depth and therefore energy is
exponential to performance as we achieve it today [85]. The
overall effect has come to be known as Pollack’s rule that
states that “processor performance increase due to microar-
chitecture advances is roughly proportional to the square
root of the increase in complexity” [9]. Since the demise of
Dennard scaling (the end of energy-efficiency due to the
shrinking of process technology) [8], Pollack’s rule is the
critical determinant of processor efficiency.
We propose SWOOP (non-speculative Software Out-of-

Order Processing), a novel software/hardware co-design that
exposes last-level cache misses to software to perform bet-
ter scheduling decisions. SWOOP’s strategy for latency tol-
erance is to increase memory level parallelism, driven by
actual miss events, but without any speculation. Software
provides flexibility and low-overhead: the application is com-
piled such that it can adapt dynamically to hide memory la-
tency and to achieve improved memory and instruction level
parallelism. Hardware provides the runtime information to
achieve adaptability and lightweight support to overcome
static limitations, without resorting to speculation. While
regular, predictable programs can be offloaded to accelera-
tors and custom functional units [7], SWOOP attacks the
difficult problem of speeding up a single thread with en-
tangled memory and control dependencies, which are not
amenable to fine-grain parallelization or prefetching.
SWOOP relies on a compiler that builds upon classical

optimization techniques for limited hardware: global sched-
uling, modulo scheduling [2, 48], software pipelining [43, 58],
decoupled access-execute [33, 42, 69], etc., but uses clever
techniques to extend the applicability of these proposals
to general-purpose applications featuring complex control
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Figure 1. Conventional compilation stalls an in-order pro-
cessor when using the results of a long latency memory
access. DAE prefetches data to the cache to reduce core stall
time but the overhead introduced by instruction duplication
cannot be hidden by simple InO cores. Clairvoyance combines
reordering of memory accesses from nearby iterations with
data prefetching, but is limited by register pressure. SWOOP
reorders and clusters memory accesses across iterations us-
ing frugal hardware support to avoid register pressure. Thus,
SWOOP is able to access distant, critical instructions, hiding
stall latencies with useful work.

flow and chained indirect memory accesses. To this end,
SWOOP adds frugal hardware support to ensure runtime
adaptability without speculation. The SWOOP core is an in-
order based hardware-software co-designed processor that
benefits from software knowledge to enable the hardware
to execute non-speculatively past the conventional dynamic
instruction stream.
The SWOOP compiler generates Access-Execute phases,

akin to look-ahead compile-time instruction scheduling
(Clairvoyance) [69] and the software decoupled access-
execute (DAE) [33] model in which the target code region
is transformed into i) a heavily memory-bound phase (i.e.,
the Access-phase for data prefetch), followed by ii) a heavily
compute-bound phase (the Execute-phase that performs the
actual computation). Unlike DAE, SWOOP operates on a
much finer granularity and reorders instructions to load data
in Access, instead of duplicating instructions for prefetching.
Clairvoyance reduces overhead by reordering instructions
as long as there are available registers, and then prefetches
data to avoid register pressure. Unlike Clairvoyance, SWOOP
relies on lightweight hardware mechanisms (1) to reorder
instructions without spilling registers and (2) to select the
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Figure 2. The SWOOP software model.

code to execute next (Access or Execute) depending on the
observed cache misses (see Figure 1). Access-Execute phases
are orchestrated in software guided by runtime information
on cache access behavior and executed in a single superscalar
pipeline, within a single thread of control. This is in stark
contrast to previous hardware decoupled access-execute ap-
proaches [25, 65] that have separate pipelines and separate
threads of control for Access and Execute code, respectively.
The SWOOP compiler and code transformations are de-

scribed in Section 2, and the architectural enhancements in
Section 3. Section 4 evaluates SWOOP and shows that it suc-
cessfully hides memory latency and is on-par with an oracle
that assumes perfect L3-cache (i.e., all accesses hit in the L3
cache, no memory accesses are performed). Section 5 places
the work in context with respect to state-of-the-art tech-
niques. Section 6 emphasizes the key differences between
previous work and marks SWOOP’s contributions. Section 7
offers conclusions.

2 SWOOP Software Components
A key component in SWOOP is the compiler that generates
flexible code, prepared to dynamically adapt to the cache
access behavior, assisted by targeted enhancements to the
microarchitecture. SWOOP:
• Generates the Access and Execute code, decoupling the
loop body as shown to the left in Figure 2.

• Enables execution to dynamically adapt by jumping to
Access phases of future iterations, bypassing a stalling Ex-
ecute phase. The right side of Figure 2 shows an example
where three additional Access phases are executed (A1,
A2, and A3) before returning to run the Execute phase E0
(that corresponds to the first Access phase A0).

• Guarantees that Access phases can run out-of-order with
respect to Execute phases, safely and efficiently, without
speculation, checkpoints, or rollbacks.

2.1 Motivation and Background
State-of-the-art compilers[33, 69] have shown that it is possi-
ble to identify critical loads using static heuristics, to find suf-
ficient independent instructions to hide memory latency, to
break chains of dependent long-latency instructions that may
stall the processor, to reuse already computed values, and to
load data earlier in order to avoid branch re-execution and
recomputations (e.g., in complex versions of software pipelin-
ing). While these techniques build on standard compiler
methods like VLIW [22], PlayDoh, and Cydrom [59], they
provide support for applications previously not amenable
to global instruction scheduling and pipelining due to the
complex control-flow and entangled dependencies. Yet, these
techniques show their limits on very restricted hardware,
such as in-order cores, where no mistakes in scheduling
are forgiven, as the processor stalls immediately, and where
instruction duplication comes expensively.

Our experiments show that the benefits of a state-of-the-
art compiler for hiding memory latency, Clairvoyance [69],
are canceled by its overheads when executing on an in-order
core. More details in Section 4.
Our work leverages the compiler techniques from Clair-

voyance to generate software for restricted hardware, but
transcends prior work limitations when it comes to InO cores
by advocating a software-hardware co-design. Responsibil-
ity on orchestrating execution is shared between software
and hardware: the compiler prepares the code and offers
non-speculatively optimized versions adapted for the poten-
tial execution contexts, while hardware provides runtime
information on cache misses to decide upon the right ver-
sion to execute. Overhead is alleviated through simple hard-
ware extensions yielding an effective approach to exposing
memory-level and instruction-level parallelism to hide mem-
ory latency.

2.2 SWOOP Compiler
The SWOOP compiler decouples critical loops in Access and
Execute phases, following a technique that melds program
slicing [75], software decoupled access-execute [33] and look-
ahead compile-time scheduling [69]. Access phases are al-
lowed to execute out-of-program-order (eagerly, before their
designated time in the original program order), while Execute
phases are kept in program order, as illustrated in Figure 2.

Access is built by hoisting loads, address computation, and
the required control flow, following the use-def chain of
instructions [33, 75]. The delinquent loads and their require-
ments (i.e., instructions required to compute the addresses
and to maintain the control flow) are hoisted to an Access
phase. We would typically choose to hoist only delinquent
loads in an Access phase if such information is available, e.g.,
via profiling, compile-time analysis [55], or heuristics [69].

To this end, the compiler (1) creates a clone of the target
loop body, (2) selects delinquent loads and the instructions
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Figure 3. Illustration of compile-time code transformation
showing an Access phase with may-alias memory accesses.
All may-aliasing loads are transformed into safe prefetches.

required to compute their addresses (as long as they do not
modify variables that escape the scope of Access), (3) keeps
only the list of selected instructions and the control flow
instructions, removes all other computations and memory
accesses, and (4) simplifies the control flow to eliminate dead
code (e.g., empty basic blocks and unnecessary branches). In
the example in Figure 3, all loads are targeted for hoisting: the
load of a[i] and the pointer indirection (x → y[i]). The value
of x → y[i] can be loaded or prefetched by first loading the
base address r0 = &x → y, and then computing the actual
value’s address using the offset i , i.e. r0 + i .

For the Execute phase, the compiler (5) takes the original
target loop body, (6) removes instructions involved in com-
putations of memory addresses, load operations, and compu-
tations of conditions that are part of the Access version, (7)
replaces the use of all instructions that have counterparts in
the Access version to avoid the overhead of duplicating com-
putations, and (8) updates the phi nodes and the control flow
to enable the execution of the subsequent Access phase of the
next iteration. Access binds values to registers and Execute
consumes these data and performs all other computations
(see Figure 2 and Figure 3), without duplicating unnecessary
instructions (e.g., already computed values, target addresses,
and branch conditions).

The border betweenAccess and Execute is marked by a chk-
miss instruction, which indicates whether any of the loads
in Access incurred a miss in the last-level cache, potentially
yielding a stall in Execute. Chkmiss is the SWOOP hardware
support to guide the execution flow through a simple and ef-
ficient mechanism, which signals an early warning regarding
upcoming stalls in Execute. If any of the loads in Access are
not present in the cache hierarchy, the chkmiss instruction
triggers a transfer of control to prevent the corresponding
Execute phase from stalling on the use of a long latency load
(Section 3.2). Decoupling the loop into Access and Execute
phases provides a clear and natural point in the code to
introduce the checkmiss instruction.
Upon a miss, execution surrenders control flow to the

alternative execution path (AltPath in Figure 3).
The Access phase within the alternative path is run N − 1

times, as long as we do not exceed the total iteration count
(i < max). Note that one iteration of the Access phase has
already run before entering the alternative part. By incre-
menting the loop iterator prior to entering loop_A, we skip
the already executed iteration and proceed to the N − 1 itera-
tions that are left to process. N is an architecture-dependent
parameter whose value is determined with respect to the
number of physical registers provided by the architecture
and the number of registers required by an Access phase. At
the beginning of eachAccess phase, the current active context
is incremented (CTX++). The first context (CTX = 0) refers
to the values loaded by the Access phase before entering the
alternative path. After finishing in total N Access iterations
(i >= M) we continue to execute the corresponding N Exe-
cute phases. In order to reflect the correct context and loop
iteration, we reset both i andCTX , i.e. i = tmp andCTX = 0.
Each Execute phase therefore uses the registers set by the cor-
responding Access phase. In the end (when i >= M), only the
context is reset (CTX = 0) and we conclude the alternative
path by either jumping back to the regular loop execution
or exit the loop.

Figure 3 sketches an implementation where the execution
of Access and Execute is controlled by a loop. Alternatively,
the compiler may choose to perform unrolling, when the
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compiler deems it beneficial (e.g., static loop bounds, low
register pressure, etc).

Memory Dependency Handling A key contribution of
SWOOP is the handling of dependencies, statically, in a way
that results in non-speculative out-of-program-order execu-
tion. The compiler ensures that instructions hoisted to Access
do not violate memory and control dependencies. This is
achieved by:
Effective handling of known dependencies. Known read-

after-write (RAW) dependencies are limited to Execute
phases, thereby freeing Access phases to execute out-of-
program-order with respect to otherAccess or Execute phases.
In short, dependent load-store pairs are kept in their original
position in Execute.
Effective handling of unknown dependencies. Potential un-

known dependencies between Execute and Access phases are
transformed to safe prefetches in Access, without a register
binding, which takes place only in the in-order Execute phase.
Thus, loads that may alias stores in Execute (illustrated with
the pair (load:x → y[i],store:&b[i]) in Figure 3) are
prefetched in Access and safely loaded in Execute. Prefetch-
ing transforms long latencies into short latencies: if the load-
store pair did not alias, the correct data was prefetched in
L1; in the case of aliasing, the prefetch instruction fetched
stall data, but there is a high probability that the required
data still resides in L1 as it has been recently accessed by the
store.

Our SWOOP compilation strategy is the following: Access-
Execute communication takes place via registers loaded inAc-
cess and used in Execute, if the absence of memory-dependency
violations can be guaranteed. Execute uses registers without
the need to compute addresses, and stores registers directly
to the memory address space. For the loads that may have
dependencies we follow the approach of communicating via
the cache. Access simply prefetches into the L1 and Execute
loads the register from the L1.

Why Access - Execute phases? The SWOOPmethodology
centers around the idea of a change of the program execution
depending on the state of the cache hierarchy. An idealized,
unstructured approach would start with highly-optimized
code (e.g., –O3 compiled) that aims to minimize execution
time by reducing instruction count, register spilling and
other inefficiencies. We can then use the chkmiss instruc-
tion to temporarily break out of a loop iteration at any point
where a long-latency miss would block the rest of the instruc-
tions in the iteration, and proceed with some other profitable
work, e.g., the next iteration. Unfortunately, there are sev-
eral issues with this approach: (1) Memory-level-parallelism
(MLP) is reduced if more misses in the same iteration could
follow the break-out point. (2) Each possible exit point would
have to be managed by the compiler, potentially causing sig-
nificant control-flow management complexity. (3) The next
iteration needs to block, possibly before any useful work

could be performed, for instance if a known loop carried
dependency exists between the unfinished part of the first
iteration and the next. (4) Worse, unknown memory depen-
dencies between iterations would cause severe problems
unless dynamic hardware support (dependency tracking,
speculation, checkpointing, and restart) is provided. This, of
course, would incur considerable costs.
Clearly, an unstructured approach is burdened with con-

siderable complexity and could require extensive hardware
support to achieve modest performance gains. In contrast,
decoupling the loop iterations into Access and Execute elim-
inates these problems and collects the benefits of memory
level parallelism.

Leveraging the decoupled execution model, SWOOP does
not check for further misses once the Access phases start
their execution out-of-order (Alternative path). This is be-
cause any miss in an out-of-order Access phase is sufficiently
separated from its corresponding Execute phase so that it
requires no special attention. In fact, this is how SWOOP
achieves MLP. While an OoO core is constrained to the MLP
of the loop iterations that fit in its reorder buffer, SWOOP
executes multiple Access phases regardless of how far away
they are spaced in the dynamic instruction stream.

Transformation Scope and Limitations SWOOP pri-
marily targets inner loops, but can also handle long critical
code paths with pointer-chasing and with subroutines that
can be inlined or marked as pure (side-effect-free). SWOOP
can effectively target pointer-intensive applications by com-
bining prefetching with state-of-the-art pointer analysis.
Multi-threaded applications can be transformed within

synchronization boundaries. The compiler can freely reorder
instructions—with respect to other threads—both in data-
race-free (DRF) [1] applications and within synchronization-
free regions of code (e.g., data parallel OpenMP loops, the
code within a task, section, etc). We aim to expand the com-
piler analysis to model aliasing across non-synchronization-
free code regions in future work.
Limits are RAW loop-carried dependencies from Execute

to Access. Such loads cannot be hoisted to Access, but they
are not likely to incur a miss either, since the value has just
been written in Execute.

3 SWOOP Architectural Support
While SWOOP compilation orchestrates non-speculative out-
of-order execution of Access and Execute code, targeted en-
hancements of the microarchitecture are essential for effi-
ciency.

The fundamental roadblock for a concept such as SWOOP
is a lack of registers. Given enough registers one can compile
for an unconstrained separation between an Access phase
and its corresponding Execute, knowing that their commu-
nication will be captured in the register file (at least for the
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accesses that are free of memory dependencies). Architec-
tural registers are a scarce resource and instead, we opt for
transparent register remapping in hardware: providing a
larger set of physical registers and dynamically mapping the
architectural registers on them. The limitation now becomes
one of area and energy consumption: large physical register
files are one of the most expensive structures (in both area
and energy) in a microarchitecture.

Thus, the challenge of SWOOP is to provide enough sepa-
ration between Access and Execute so that the technique is
useful in hiding large memory latencies, but do so with the
least number of registers. We choose to address this chal-
lenge by dynamically reacting to miss events and only then
providing the necessary registers to enable a separation of
Access and Execute. Periods of execution that are free of miss
events on the baseline InO core cannot make use of a large
physical register file, which becomes an energy burden and
reduces overall efficiency.
Towards this end, we add two hardware features to the

conventional stall-on-use InO processor:
• Context Remapping: A novel lightweight form of reg-
ister renaming that: i) enables dynamic separation of
an Access and its corresponding Execute, with a num-
ber of intervening Access phases from future iterations;
ii) ensures that only the registers that are written in
each Access phase will be remapped and encapsulated
in a unit denoted as a Context; and iii) manages depen-
dencies between Contexts (Section 3.1). We provide a
small number of additional physical registers to dynam-
ically populate register contexts. Our strategy reduces
the architectural state compared to processors that ex-
pose register windows [63] or register rotation to the
ISA [14, 37], require additional scratch register files and
register file checkpointing [28], or need to store data in
slice buffers, creating a secondary temporary register
file [29].

• Chkmiss instruction: A simple and efficient mecha-
nism to react to upcoming stalls, similar to informing
memory operations [30]. A chkmiss (check miss) instruc-
tion determines the status of a set of previously executed
load instructions. If any of the loads in Access are not
present in the cache hierarchy, the chkmiss instruction
triggers a transfer of control to prevent the correspond-
ing Execute phase from stalling on the use of a long
latency load (Section 3.2). It is at this point when Context
Remapping is activated to enable the separation of Access
and Execute.
The two architectural enhancements in SWOOP consti-

tute an example of providing as few resources as possible
to enable SWOOP compilation to deliver on the desired per-
formance and energy goals. Section 4 demonstrates how
well we succeed in this. However, we do not preclude other
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Figure 4. SWOOP Context register remapping.

possible implementations that can support the compilation
framework in working equally well.

3.1 Context Register Remapping
SWOOP only relies on software prefetching when the com-
piler is unable to guarantee that no dependencies exist, in
which case Access and Execute communicate via the L1 cache.
For the remaining accesses, register-file Access-Execute com-
munication is necessary to maintain much of the perfor-
mance of the original optimized code. The main problem
that we need to solve when using register-file communica-
tion is that it creates more live registers. When executing in
program order the allocated registers in the Access phase are
immediately consumed by the Execute phase. However, when
executing out of program order, by injecting Accessi phases,
the allocated registers of each Access phase now have to be
maintained until they get consumed by their corresponding
Executei phase.
We propose a novel register remapping technique, based

on execution contexts, that alleviates the burden for addi-
tional register allocation and exposes additional physical
registers to the software. The key observation for an effi-
cient remapping scheme is that we only need to handle the
case when we intermix Access and Execute phases belonging
to different SWOOP contexts. A SWOOP context comprises
anAccess and its corresponding Execute, which share a single
program-order view of the architectural register state.
SWOOP remaps only in the alternative execution path

(not on normal execution). Each architectural register is
remapped only once when it is first written in an Access
phase, while no additional remapping is done in Execute.
The new name is used throughout the remaining Access and
all of its corresponding Execute phase, regardless of further
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assignments to the architectural register. No additional reg-
ister remapping is needed within an Access or an Execute
or between an Access and Execute belonging to the same
SWOOP context. This results in a significantly lower rate of
remapping than what is found in OoO cores.
We give full flexibility to the software via two (new) in-

structions that directly set the current active context (CTX):
CTX=0 and CTX++. The program-order (non-SWOOP execu-
tion) context is CTX 0. No remapping takes place during
non-SWOOP-related execution. During SWOOP execution
architectural registers are managed in a FIFO-like fashion.
Each Access phase in the alternative execution path incre-
ments the context by CTX++, see Figure 3. Returning to a
previous context, i.e., after the last Access or Execute phase,
is done by a CTX=0. After exiting the alternative execution
path from the last Execute phase, the current active context
is set to 0.
Figure 4 shows an example of context register renaming.

In step 1 we are in normal execution (CTX0), access phase
A0 is running, and we have not entered SWOOP execution
yet. Assume that in the normal-execution context the archi-
tectural register r0 happens to be mapped onto the physical
register p0. A0 suffers a miss and because E0 will stall, we
enter SWOOP execution by executing a CTX++ and proceed-
ing to A1. We are now in CTX1. If the same architectural
register is written in this context (i.e., in A1) we rename it to
a new physical register, e.g., p4 in step 2 . We only rename
registers that are written in a context and we only do it once
per context.
Helper structures such as the bitmap vector per register

shown in Figure 4 help us remember in which context was
an architectural register renamed. In addition, the mappings
of each architectural register (r0 in our example) are kept in
a FIFO list.

Register r0 is not written in A2 but is written again in A3
(step 3 ) and gets a new mapping to p5. Once we finish the
execution of access phases, because we have exhausted either
the physical registers or the contexts we must return to the
execution of E0. For this, in step 4 , we change the context
to CTX0 (by a CTX=0) and start using the first mapping in
the register’s FIFO list; that would be (the original) p0 for
r0. Proceeding to the next Execute phase EX1 in step 5 , we
check if we had renamed r0 in this context (CTX1) and, if
so, we pop its FIFO list to get to the next mapping (p4), and
so forth. In CTX2 we have done no renaming for r0, hence
there is no reason to pop its FIFO, but in CTX3 we have,
so we pop once more to get p5 (step 7 ). Finally, when we
return to normal execution (step 8 ) we keep the mappings
of the last context as the mappings of the normal-execution
context (i.e., p5 for r0).

Each SWOOP core implementation provides two software
readable registers that specify the available number of physi-
cal registers and contexts. Before entering a SWOOP targeted

loop these registers are read and the software adapts the exe-
cution to the available resources. The software is responsible
for not allocating more physical registers (registers written
per Access times N ) or using more contexts than available.

If the software misbehaves, deadlock is prevented by mon-
itoring requests that use too many physical registers or con-
texts and then raising an exception. Exceptions cause the
context state of the user thread to return to CTX=0.

The SWOOP hardware facilities were developed for user-
space code execution. On an operating system context switch,
the hardware physical register context mapping (CTX) will
remain the same. On return to the same user-space pro-
gram, it is the operating system’s responsibility to restore
the architectural state of the user-space thread. Support for
context switching to new user-space programs can either be
implemented by having the hardware wait for the SWOOP
execution to end, or to expose access to the context mapping
state to the operating system.

3.2 Chkmiss
Chkmiss is an informing memory operation [30] which pro-
vides early warning on upcoming stalling code, essential for
a timely control flow change to the alternative execution
path. Lightweight techniques to predict misses in the cache
hierarchy have been proposed [77, 80] and refined to detect
a last-level cache (LLC) miss in one cycle [62]. We encode
the presence of an LLC cache line in the TLB entries, using
a simple bitmap (e.g., 64 bits for 64-byte cache lines in a
4kB page). This bit map is updated (out of the critical path)
upon eviction from the LLC, rendering the TLB an accurate
predictor for LLC misses.
Chkmiss monitors the set of loads hoisted to Access and

reports if any of the loads missed. Thus, the chkmiss becomes
a branch (predicated on the occurrence of misses) and takes
the form: chkmiss TarдetPC where TarдetPC points to the
alternative execution path, see AltPath in Figure 3.

We make use of breakpoints to offer a lightweight imple-
mentation of chkmiss. A prologue preceding a SWOOP loop
sets chkmiss breakpoints at desired locations (e.g., at the end
of Access phases) and specifies their TarдetPC .

Since only a few chkmiss breakpoints are supported (e.g.,
four), they are encoded in a small table attached to the Fetch
pipeline stage. The monitoring cost is, thus, kept low. Al-
though in practice four breakpoints suffice to capture most
interesting cases, if more chkmiss are required, a chkmiss
instruction can be used (at the cost of an instruction issue
slot).
Debugging based on dynamic events should not be an

issue if a feature like Intel’s Last Branch Record Facility [32]
is used to record branch history information.

3.3 SWOOP Memory Model
SWOOP safely reorders instructions—with respect to other
threads—within data-race-free (DRF) [1] regions of code and
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Table 1. Simulated Microarchitecture Details. (*) The OoO
is 3-way superscalar at 2.66 GHz, with: (**) 3 int/br., 1 mul, 2
fp, and 2 ld/st units.

In-Order OoO
Core InO SWOOP

u-Arch 2.66 GHz, 2-way superscalar *
ROB - - 32
RS - - [16/32]
Phys. Reg 32x32 96x64 64/64
Br. Pred. Pentium M (Dothan) [72]
Br. Penalty 7 8 15
Exec. Units 2 int/br., 1 mul, 1 fp, 1 ld/st **

L1-I 32 KB, 8-way LRU
L1-D 32 KB, 8-way LRU, 4 cycle, 8 MSHRs
L2 cache 256 KB, 8-way LRU, 8 cycle
L3 cache 4 MB, 16-way LRU, 30 cycle
DRAM 7.6 GB/s, 45 ns access latency
Prefetcher stride-based, L2, 16 streams
Technology 28 nm

as long as the region of interest does not cross synchro-
nization points. Thus, SWOOP can handle, e.g., data parallel
OpenMP applications and programs adhering to SC-for-DRF
semantics as defined in contemporary language standards
(C++11, C++17, Java, Scala, etc.), irrespective of the underly-
ing consistency model provided by hardware.
Looking forward and beyond DRF restrictions, a recent

breakthrough enables non-speculative load-load reordering
in TSO (Total Store Order) [60]. This means that SWOOP
can support TSO, insofar as compiler-reorder loads are con-
cerned.

4 Evaluation
Simulation Environment.We use the Sniper Multi-Core
Simulator [11] to evaluate this work. We modify the cycle-
level core model [12] to support the SWOOP processor.
Power and energy estimates are calculated with McPAT [45]
version 1.3 in 28 nm. For our baselines, we chose two effi-
cient processor implementations. On the low-energy side
we model the ARM Cortex-A7 [6], which is an extremely
energy-efficient design with support for dual-issue super-
scalar in-order processing, while the high-performing core
is modeled with characteristics similar to a generic ARM
Cortex-A15 [5]; that is, a 3-wide out-of-order core. All simula-
tions are performed with a hardware stride-based prefetcher
capable of handling 16 independent streams, leaving only
hard to prefetch DRAM accesses. The processor parameters
are shown in Table 1.

Benchmarks. SWOOP is targeted towards demanding
workloads with frequent misses, i.e., high MPKI (misses-per-
kilo-instructions) workloads evenwhen employing hardware

prefetcher, that can be difficult even for OoO cores, yielding
low performance. We select a number of benchmarks, from
SPEC2006CPU [27], CIGAR [46] and NAS [50] benchmark
suites, shown in Table 2. Although our primary selection
criterion is MPKI, we make an effort to diversify the bench-
marks to: i) evaluate both short (e.g., cg, libquantum) and
large (e.g., lbm) loops, ii) give the compiler a choice of hoist-
ing several delinquent loads in Access (e.g., cg, sphinx3), and
iii) unknown dependencies that are handled with prefetch-
ing (e.g., soplex). For each benchmark, Table 2 provides: its
MPKI, the additional dynamic instruction overhead due to
decoupling, the number of loads hoisted in Access (for the
evaluation runs), the corresponding general-purpose and SSE
registers written in Access that determine the remapping re-
quirements per context, the number of contexts used in the
evaluation runs (N-best) and finally, the chkmiss firing rate,
i.e., the rate at which chkmiss initiated SWOOP execution.

SWOOP Evaluation against Different Software and
Hardware Solutions. To evaluate SWOOP we compare its
performance and energy efficiency against different soft-
ware approaches and hardware architectures. A comparison
against software pipelining was excluded, as off-the-shelf
software pipelining tools are not ready to cope with com-
plex control flow [34], or are only available for other targets
(LLVM’s software pipeliner). We evaluate:

InO is similar to a Cortex-A7 in-order, stall-on-use core.
Clairvoyance is a state-of-the-art software-only solu-

tion to hide memory latency, by combining instruction
reordering with software prefetching.

InO-Perfect-L3 is a fictitious in-order, stall-on-use core
with a perfect L3 cache, i.e., L3 accesses always hit
and prefetchers are disabled. This acts as an oracle for
SWOOP.

OoO-r32 is similar to a Cortex-A15 out-of-order core,
which hides DRAM accesses by dynamic out-of-order
execution of instructions.

SWOOP with hardware support as described in Sec-
tion 3. SWOOP has one additional pipeline stage over
the in-order core to support context register remap-
ping during SWOOP execution (see Section 3.1). This
is reflected by the one cycle longer branch penalty
shown in Table 1.

4.1 Performance
Figure 5 shows speedups normalized to the in-order, stall-
on-use core (InO). SWOOP achieves significant performance
improvements (34% on average) compared to InO and out-
paces even the OoOwhen running cigar (12% faster). SWOOP
targets long latency loads, i.e., main memory accesses, and
avoids stalls by increasing the memory-level parallelism and
executing useful instructions to hide the latency. Ideally,
SWOOP could eliminate all latency caused by main memory
accesses. SWOOP is competitive with the oracle InO core
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Table 2. Benchmark characteristics.

SWOOP Unrolled

Benchmark MPKI Instruction Hoisted Access
N -Best Chkmiss MPKI Instruction

N -BestOverhead Loads GPR SSE Firing Overhead

cg 30 26% 3 5 2 4 65% 37 -0.3% 2
cigar 120 -13% 1 5 1 8 62% 123 -10.0% 4
lbm 41 1% 5 5 5 4 100% 39 3.5% 8
libquantum 32 5% 1 4 0 4 41% 37 -9.5% 16
mcf 68 3% 3 7 0 8 79% 70 0.8% 4
soplex 60 1% 3 7 7 4 18% 62 -1.6% 2
sphinx3 17 -8% 2 4 2 8 43% 18 -8.4% 4
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Figure 5. Speedup comparison across software and microarchitecture configurations.
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Figure 6. Energy efficiency comparison across software and microarchitecture configurations.

with a perfect L3 (InO-Perf-L3), which has no main memory
latency, being on average only 7% slower. In some situations,
SWOOP even outperforms the InO-Perf-L3 for cg (by 26%)
and libquantum (82%). When SWOOP executes along the
alternative path (Figure 3), data are not only fetched from
main memory but also from the L1 and L2 caches and stored
in registers for quick access in the Execute phases. While
Clairvoyance brings modest improvements on average (15%),
SWOOP outperforms Clairvoyance by 19%, resulting in more
than doubling the performance improvement over the InO
core (average improvement of 34%). SWOOP boosts perfor-
mance significantly for two of the benchmarks (cg—120%

and libquantum—74%) over the improvement seen by Clair-
voyance.

For two of the benchmarks, lbm and sphinx3, SWOOP
achieves speedup over the InO, but not nearly the speedup of
the OoO. The lbm benchmark contains many entangled loads
and stores, making it difficult to effectively split and group
loads due to may-alias dependencies. For sphinx3, the issue
is that while there is a large number of delinquent loads in
the application, each load contributes to a very small fraction
of the total application delay, limiting total improvement.
Hoisting all loads with small contributions may be expensive,
as additonal registers and instructions (e.g., for control-flow)
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are required, which may cancel the benefits of hoisting such
loads.

For libquantum SWOOP achieves significantly better per-
formance than InO and reaches half the speedup of the OoO
core. Libquantum contains a very tight loop, hence loads
and their uses are very close to each other, and therefore
prolong the duration of stalls. With SWOOP, we manage to
successfully separate loads from their uses, and to overlap
outstanding latencies, which is reflected in the performance
improvement. The OoO core on the other hand hides not
only long latencies of loads, but also latencies of other not-
ready-to execute instructions, thus hiding more stalls.
Finally, for soplex, SWOOP fails to achieve any speedup

over the InO but does not significantly hurt performance
(0.6% slower). Soplex suffers from the same problem as
sphinx3: a single delinquent load in the Access phase (re-
sponsible for only 7% of the memory slack), exacerbated by
a low chkmiss firing rate of 18% Table 2.

4.2 Energy
Figure 6 shows the energy usage normalized to the InO
core. SWOOP reduces the energy usage by 23% on average
and shows significant improvements compared to a low-
power InO core, approaching the InO core with a perfect L3,
which can only be simulated—not implementable in practice.
Clairvoyance and SWOOP are mostly on-par. The energy
savings stemming from better performance in SWOOP (cg,
lbm, libquantum) are balanced by the energy expenditure due
to additional hardware (mcf, soplex). The OoO core, which
has the best average speedup, increases the energy usage
by 57%. The results clearly show the exorbitant cost for the
dynamic out-of-order execution that causes an OoO core to
have about 3-5x higher power consumption than an in-order
core [31, 79]. For the presented results McPAT estimated on
average that the power consumption was 3x higher for the
OoO compared to the InO.

4.3 SWOOP, Unrolling, and SW Prefetching
We compare SWOOP to two software-only techniques,
forced unrolling and software prefetching.

InO-Unroll is a software-only solution based on stan-
dard compile-time transformations in which the orig-
inal loop-bodies identified by SWOOP have instead
been (forcedly) unrolled and executed on the InO, with-
out any SWOOP code generation or hardware support.
This version shows the limits/potential of the compiler
to make use of the available architectural registers.

InO-SW-Prefetch is a software prefetch solution taken
from thework of Khan et al. [38, 40]1. InO-SW-prefetch
uses profiling to identify delinquent loads to prefetch

1We contacted the authors who provided the updated applications used in
their work. We evaluate the benchmarks common in their work and ours.

and manually inserts prefetch instructions at the ap-
propriate distance. We port the applications to our
infrastructure and use prefetch to the L3 instructions.
We use InO-SW-prefetch to substitute optimal com-
piler prefetching.

Figure 7 displays the execution on an InO with the hard-
ware prefetching enabled (left) and disabled (right) for each
application, all normalized to the original execution with
hardware prefetching.
The results clearly show that forcing the loops to be un-

rolled is not beneficial and instead hurts performance (3%
slower on average) due to register spilling, motivating the
necessity for SWOOP code versions.

When running libquantum, SWOOP outperforms software
prefetching on both architectures, having the advantage of
acting only upon a miss, i.e., 41% firing rate of chkmiss,
whereas software prefetching is unnecessarily always active.

SWOOP is on par with the software techniques when run-
ning soplex. As mentioned earlier, soplex has only one delin-
quent load with a low impact on the accumulated memory
latency; therefore, both software prefetching and SWOOP
are unable to improve its performance.
For mcf SWOOP is the clear winner compared to both

software techniques, and different hardware configurations.
This is because, mcf is amenable to software techniques for
hiding memory latency thanks to its irregular behavior, and
is hardly predictable by hardware prefetchers. Moreover, mcf
contains few loads responsible for most of the L3 misses, a
good target for prefetching. Yet, although software prefetch-
ing shows good results, SWOOP achieves significantly better
performance, thanks to reducing the number of redundant
instructions and having precision (chkmiss firing rate of 79%).
These techniques enable SWOOP to fully and efficiently uti-
lize the existing hardware resources.

Being a compute-bound application, lbm exhibits a slight
improvement, both with software prefetching and with
SWOOP. However, SWOOP, being concise, is competitive
and reuses many of the instructions required for computing
the addresses for early loading and prefetching, while soft-
ware prefetching duplicates such computations in different
iterations.

5 Related Work
Numerous proposals attempted hiding memory latency ei-
ther in software, by employing purely hardware techniques,
or a combination of both.

Software only techniques vary from inspector-executor
and prefetching to global scheduling and software pipelining.
Inspector-executor methods derived from automatic par-

allelization [4, 83] include a compiler that generates pre-
computational slices grouping memory accesses [33, 42, 56,
82] and initiates runahead execution, in some cases using
a prefetching helper thread [16, 35, 47, 82, 84]. Inspectors
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Figure 7. Comparison of unrolling and software prefetching with SWOOP, with and without hardware prefetching enabled.
We evaluate the benchmarks common in the work proposing a modern software prefetcher [38, 40] and SWOOP.

replicate address computation occupying core resources dur-
ing critical inner loops. Address computation can be pro-
hibitively costly for complex, nested data structures with a
high number of indirections, which are the prime target for
software prefetching and can be found in abundance in se-
quential general-purpose applications (e.g., SPEC CPU 2006).
Hence, inspector-executor methods always consume extra
instruction bandwidth, regardless of the benefit. In contrast,
SWOOP reuses previously computed values and loaded data
to reduce overhead and its execution is triggered and hid-
den by hardware stalls that would be pure performance loss
otherwise.
Software prefetching [3, 21, 39, 73] lacks precision. Code

containing complex control flow cannot rely on software-
prefetch instructions inserted a few iterations ahead. The
current condition guarding the delinquent loadmight not cor-
respond to the condition several iterations ahead. Hence, the
prefetch may not execute or always execute (if put outside
the conditional) incurring increased instruction overhead
and pollution of the cache. SWOOP Access-phases execute
precisely those instructions that are required to reach the
delinquent loads in each iteration.
Static instruction schedulers [2, 43, 48] attempt to hide

memory latency, however scheduling is confined by regis-
ter pressure and basic block boundaries. While predicated
execution provides support for global scheduling (across
branches), this technique introduces hardware complexity
and is sensitive to the compiler’s ability to statically predict
the hot path. (Software-hardware techniques are covered
in the following subsection.) Software pipelining, regarded
as an advanced form of instruction scheduling, is restricted
by dependencies between instructions and register pressure.
Solutions based on software-pipelining provide techniques
to handle loop-carried dependencies customized for their
goal, e.g. thread-level parallelism DSWP+ [53, 58]. DSWP
decouples single-threaded code into a critical path slice and
an execution slice, which run separately on distinct threads.

While DSWP overlaps stalls with computation on a sepa-
rate thread, SWOOP dynamically reorders execution and
aims at entirely avoiding stalls, thus saving energy by reduc-
ing the processor’s idle time. In SWOOP dependencies are
handled non-speculatively, combining prefetch instructions
with reuses of already computed values in Execute. This
combination, in addition, reduces register pressure.
Software pipelining was used to address scheduling for

long-latency loads [76], but the paper does not clarify
whether critical loads nested in complex control flow can be
targeted and is further constrained by the limited number
of registers. Clairvoyance [69] includes compiler support to
cluster deeply nested critical loads and combines loads and
prefetch instructions to avoid register pressure. While tech-
niques to handle unknown dependencies, branch merging,
etc., build on Clairvoyance, SWOOP addresses limits that
make previous transformations non-applicable on energy-
efficient platforms. The software-hardware co-design han-
dles register pressure and reduces instruction count overhead
(through context remapping) and ensures dynamic adapta-
tion (checkmiss). SWOOP thus achieves performance im-
provements that Clairvoyance is not capable of on the tar-
geted platforms.
Overall, static approaches lack flexibility and adaptabil-

ity to dynamic events and are severely restricted by register
pressure. SWOOP tackles this problem by retrieving dynamic
information and avoiding register spilling with frugal hard-
ware support.

Hardware techniques aim either to avoid latency by
fetching data early or to hide latency by identifying and
performing other useful operations.
Several proposals aimed at avoiding latency use dynam-

ically generated threads/slices that execute ahead in an at-
tempt to fetch necessary data [10, 15, 68]. Others create a
checkpoint on a miss and continue executing in an attempt
to prefetch future data [19, 20, 70]. SWOOP takes a different
approach and executes ahead, skipping code that is likely to
stall for MLP-dense code. In this respect, SWOOP shares the
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execution model of the UltraSparc Rock, an execute-ahead,
checkpoint-based processor [14]. However, while Rock relies
heavily on speculation-and-rollback for correctness and may
re-execute if necessary, SWOOP eliminates both costly in-
struction re-execution and the need to maintain speculative
state, because the compiler guarantees the correctness of its
non-speculative execution.

The indirect memory predictor [81] is an inherently specu-
lative prefetching technique, potentially sacrificing efficiency.
In addition, it requires fixed offsets to be described ahead of
time in hardware, reducing its flexibility and control that is
available in SWOOP.
Hardware-only proposals are general and adaptive, but

incur large energy costs for rediscovering information that
is statically available. This insight was the driving force
for abundant research work combining compiler-hardware
techniques.

Software-hardware co-designs aim to reduce hardware
complexity by using software to achieve high performance
with lower overhead, e.g., very long instruction word (VLIW)
architectures [22]. Unlike compiler techniques for VLIW,
HPL PlayDoh and EPIC [26, 36, 37, 41], SWOOP compiler
does not require hardware support for predicated execu-
tion, speculative loads, verification of speculation, delayed
exception handling, memory disambiguation, no separate
thread [54] and is also not restricted by instruction bun-
dles. Compared to VLIW and its successors, it requires mini-
mal modifications to the target ISA, uses contemporary IO
pipelines and front-end and minimizes speculation to enable
higher energy efficiency.
Generally, compiler assisted techniques with hardware

support rely on statically generated entities that execute effi-
ciently on customized architectures: Braid [71] runs dataflow
subgraphs on lower complexity architectures to save en-
ergy, while Outrider [17] supports highly efficient simulta-
neous multithreading. Speculative multithreading executes
pre-computation slices [56] with architectural support to
validate speculations, relies on ultra-light-weight threads
to perform prefetching [13, 18, 61] or requires hardware
communication channels between the prefetching and the
main thread [49, 53, 58]. CFD [64] requires an architectural
queue to efficiently communicate branch predicates that are
loaded early in advance. Other proposals, most notablyMulti-
scalar [24, 66, 74], combine software and hardware to enable
instruction level parallelism using compiler-generated code
structures, i.e., tasks, which can be executed simultaneously
on multiple processing units.
SWOOP, in contrast, does not require additional threads

and is not speculative. Since SWOOP targets all delinquent
loads, it is also readily applicable for hoisting branch predi-
cates.

6 Summary of Contributions
Given the extraordinary research efforts over the past sev-
eral decades to hide memory latency and the plethora of
proposals, we review SWOOP’s main advancements over the
state-of-the-art and how it differs from previous research.
I). Unlike hardware decoupled access-execute tech-

niques [25, 65], SWOOP interleaves Access and Execute
codewithin a single thread, changing this interleaving
dynamically. Thus, SWOOP abstracts the execution order
from the underlying architecture and can run Access and Ex-
ecute code either in-program-order or out-of-program-order.

II). SWOOP has access to a larger portion of the dynamic
instruction stream by (1) jumping over Execute code that
would stall; (2) continuing with independent future Ac-
cess code, thus exposing more memory-level parallelism
(MLP); and (3) eventually resuming the Execute code that
was skipped and is now ready for execution, increasing in-
struction level parallelism (ILP). Thus, SWOOP does not
run-ahead: It jumps ahead compared to the conventional
dynamic instruction stream, skipping over code that is likely
to stall and jumping to code that is likely to produce MLP.
III). SWOOP goes beyond software and hardware tech-

niques designed to hide memory latency [4, 15, 16, 21, 33, 35,
39, 47, 56, 68, 73, 82–84] in the following ways:

SWOOP is non-speculative: SWOOP employs advanced
compilation techniques to shift hardware complexity in soft-
ware without the need of speculation, checkpoints and roll-
backs. Instruction reordering is performed statically to ac-
count for known and unknown dependencies and control-
flow is partly duplicated in Access to avoid the need for pred-
ication or expensive hardware mechanisms, which limited
previous proposals. Thus, SWOOP bypassesmajor challenges
that yielded previous work impractical, such as control flow
processing (predication) and handling of speculative loads.

SWOOP is frugal: SWOOP hides its execution behind
hardware stalls. All additional instructions that are executed
exploit hardware stalls that would otherwise be pure perfor-
mance loss. SWOOP exploits these occurring stall periods to
jump ahead, instead of fetching data unconditionally in an
attempt to prevent future stalls. SW-prefetching, in contrast,
consumes extra instruction bandwidth, which is critical for
efficient in-order processors.

SWOOP is precise: Access phases contain the necessary
code (however complex, including control flow) executed
ahead of time to reach delinquent loads and hide their latency.
Access includes precisely those instructions that are required
for each iteration to reach the target loads.

SWOOP is concise (non-superfluous): SWOOP reuses
conditionals, addresses and loads, and anything that has al-
ready been computed in the Access phase, and thus avoids
replicating instructions. Hence, SWOOP aims to minimize
instruction re-execution by consuming in Execute data pro-
duced in Access.
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SWOOP is general: SWOOP handles complex loops
which cannot be targeted by standard techniques for instruc-
tion reordering (e.g. software pipelining).SWOOP includes
support for non-linear indirect memory accesses, control-
and memory dependencies, while, do-while, go-to loops,
complex control-flow etc, and uses effective compiler tech-
niques to achieve this without speculation.

SWOOP is adaptable: SWOOP adds the chkmiss instruc-
tion, which triggers the execution of Access phases, out-of-
program-order, only when a long-latency miss occurs.

SWOOP provides benefits above HW-prefetching:
SWOOP shows considerable benefits on top of HW-
prefetching, while SW-prefetching is largely subsumed by
HW-prefetches; SW-prefetch combined with HW-prefetch
can be detrimental [44].

7 Conclusions
We propose SWOOP, a new, non-speculative, software-
hardware co-design to achieve out-of-program-order execu-
tion and to reach high degrees of memory and instruction
level parallelism. SWOOP relies on compiler support for
offering independent instructions to be executed ahead-of-
time, on-demand, driven by cache miss events, and with
low-overhead hardware extensions to the typical in-order ar-
chitecture consisting of: miss events communicated through
a control-flow instruction and a novel, context register remap-
ping technique to ease register pressure. As a compilation
strategy, we introduce a software decoupled access-execute
model that creates Access phases that can execute out-of-
program-order with respect to Execute phases, without any
need for speculation. A SWOOP core jumps ahead to indepen-
dent regions of code to hide hardware stalls and resumes exe-
cution of bypassed instructions once they are ready. Through
a combination of software knowledge through recompilation
together with efficient hardware additions, the SWOOP core
shows an average performance improvement of 34% while
reducing energy consumption by 23% with respect to the
baseline in-order core, competitive with an oracle in-order
core with perfect last level cache.
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