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Abstract

This thesis is dedicated to the study of Barkley’s equation, a stiff diffusion-reaction equa-
tion describing waves in excitable media. Several numerical solution methods will be de-
rived and studied, range from the simple explicit Euler method to more complex integrat-
ing factor schemes. A C++ application with guided user interface created for performing
several of the numerical experiments in this thesis will also be described.

Sammendrag

Denne oppgaven er dedikert til studiet av Barkleys ligning som er en stiv reaksjons-
diffusjonsligning som beskriver bølger i eksiterbar media. Oppgaven vil utlede og utforske
flere numeriske løsningsmetoder som kan anvendes på nevnte ligning, deriblant metoder
basert på eksponensialintegratorer såvel som enklere skjemaer. En applikasjon skrevet i
C++ som vil bli brukt under enkelte av de numeriske eksperimentene i oppgaven vil også
bli beskrevet.
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I
Introduction

This thesis is an introduction to waves in excitable media represented through Barkley’s
equation. Chapter II entitled ”Waves in Excitable Media” will discuss some of the concep-
tual theory behind this kind of waves, where in nature they will appear and motivate some
of the interest for studying them. We will also examine some of mathematical models and
see how Barkley’s equation can be derived from the famous Hodgkin-Huxley equation.
In this chapter we will also introduce Wavefront - a C++ application featuring real time
interaction and a guided user interface which will later be used as a practical tool for ex-
amining some of the properties of these waves. We will also discuss some properties of
the software.

The next two chapters will be dedicated to numerical aspects of the solution schemes
of varying complexity implemented in Wavefront. In chapter III we will take a closer look
at some already existing schemes including a semi-implicit approximation and a semi-
spectral method, and in chapter IV we will study an interesting class of schemes known as
exponential integrators.

This thesis will mainly be founded on work by mathematicians like Shardlow and
Barkley, which have published several papers on the subject of waves in excitable media.
However, their papers has been limited to the simple solution schemes described in chapter
III. The contribution to the field by this thesis will primarily be in chapter IV. Barkley’s
equation is a good example of what is known as a stiff reaction-diffusion equation, so
the work presented here can also be relevant for the solution of this class of problems in
general.

This thesis is also a natural continuation of earlier project work on this subject done by
the author, which was limited to some of the topics discussed in the introductory chapter
II and chapter III.
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II
Waves in ExcitableMedia

I. Introduction

Excitable media are spatially distributed system able to sustain waves. The system can
be characterized as a group of individual points communicating only with it’s intimate
neighbors, and that inherit a degree of excitableness. A point can be either at a state of
rest (in literature often denoted the quiescent state), in a state of excitement or somewhere
between these two extrema. Small perturbations will cause a point at rest to remain at
rest, while impulses over a certain threshold will cause an excitation and after a certain
time period the point will gradually return to rest, which is called the refractory phase. A
point will pass its excitation to neighbor points through diffusion. A state of recovery will
follow the refractory phase, and during this phase, the point will not be able to be excited.
A forest fire is an intuitive example; a fire will spread like a diffusion and trees on fire will
ignite neighbouring trees. After a tree has burned down, it will have to regrow until the
fire can pass this point anew.

There are several idiosyncrasies which separate this sort of waves from propagation of
waves in passive media, e.g. sound waves, heat waves etc. As mentioned, the excitable
media will have to go through a state of rest before it can carry new waves, and the waves
will be without gradual damping (e.g. from friction). Also, there can be no sort of interfer-
ence - two sound waves will pass each other more or less undisturbed, but two fire fronts
will simply extinguish each other.

As mentioned, impulses travel by diffusion and the propagation speed of the impulses
are determined both by the diffusion rate and the curvature of the wave. The speed is
approximately given by the relation (see [1])

c = c0 + Dρ,

where c is the wave propagation speed, ρ is the curvature of the wave defined to be the
negative reciprocal of the local radius of curvature, D is the diffusion coefficient and c0 is
the planar wave speed. The equation is valid for ρ close to zero, and for planar waves, the
speed is only determined by the state of the points in front of the wave and the diffusion
coefficient. This shows that the speed of the wave front is not uniform as it would be for
homogeneous inactive media.
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CHAPTER II. WAVES IN EXCITABLE MEDIA

Many fascinating phenomena can occur in such systems. The main motivation for
studying waves in excitable media has been their ability to form and sustain spiral waves
and at which conditions these waves are stable or unstable (see fig II.8 and II.15 for illus-
trations of broken wave patterns). Another topic of interest has been meandering of spiral
tips (see examples in [2]), and they are also able to generate labyrinthine patterns (see fig
II.14). Mathematicians have not studied such systems for their purely aesthetic qualities
only - many physical systems can be described as waves in excitable media, examples
include several chemical reactions that inherits these characterizations (most well-known
being the Belousov-Zhabotinsky reaction) and such reactions have, in fact, been invoked
in order to explain how different patterns on animal skin emerges [13]. Other examples in-
cludes auto-catalysis on metal surfaces and communication within and across nerve cells.

Figure II.1: Belousov-Zhabotinsky reaction is a well known example of a chemical non-equilibrium
reaction and a physical visualization of waves in an excitable medium. The patterns in the photo
above are made as Cerium(IV)(yellow) is reduced to Cerium(III)(colorless) by a propanedioic acid,
and then oxidized back again by bromate(V) ions [12]. Notice the resemblance to the pattern in fig
II.15. c© Arthur Winfree/Science Photo Library.

Another particularly interesting example is propagation of electric pulses causing con-
traction of cardiac muscles. The heart beat is coordinated by a set of cells acting as in-
dependent oscillators (called the sinoatrial node). The electrical current is distributed to
the ventricular tissue (the ventricles are the large chambers pushing the blood out of the
heart) through a system of specialized fibres called the His-Purkinje system. The electric
wave propagates from inside to outside, terminating at the Epicardium (the outer layer of
the heart). This process might spawn both one, two and three dimensional self sustaining
waves, depending on the local anatomy of the heart, and might in some cases cause poten-
tially fatal cardiac arrhythmias (abnormal heart rhythms). Two dimensional arrhythmias
are associated with self sustaining two dimensional waves in the atria (the upper chambers
of the heart). The atrial wall is quite thin, and therefore, waves in this part of the heart can
be considered two dimensional. Often, these waves have the form of spirals. The disor-
ganized electric cardiac activity might be of permanent nature - they are not immediately
life threatening, but while sustaining over a longer time span, they might lead to strokes.

12



CHAPTER II. WAVES IN EXCITABLE MEDIA

The standard clinical method to eliminate the arrhythmias is application of electric shock
through the heart, however, this is both painful for the patient and not always effective.
The study of self sustaining spirals in excitable media is therefore being applied in order
to find alternative ways to dissolve the atrial arrhythmias. [3]

II. MathematicalModels ofWaves in ExcitableMedia

One way to describe this sort of interaction is to use a system of partial differential equa-
tions, where each equation describes one individual cell. The DiFrancesco-Noble model
of Purkinje fibers is an example of this sort of models. Such systems might require an ex-
tensive amount of parameters and variables, and is therefore hard to simulate and analyse
[2]. Another way is to use cellular automata. This is intuitive and easy to implement, but
most models fail to model curvature effects [4]. On the other hand, there are systems of
differential equations of simpler nature which lacks the drawbacks of the cellular automata.

The equation we will study in this paper is Barkley’s simplification of the FritzHugh-
Nagumo model for transmembrane potentials. FritzHugh-Nagumo model is again a sim-
plification of the famous Hodgkin-Huxley model for whom Alan Lloyd Hodgkin (1914-
1998) and Andrew Huxley (1917-2012) won the 1963 Nobel Prize in Physiology or Medicine,
and which is considered one of the major results in biophysics of the 20th century. The
system of equations was a result of experiments conducted of the axons of a giant squid.
The axon of a giant squid, controlling the water jet propulsion system, is particularly large
(up to 1 mm in diameter) and exhibits excitable nature and is therefore well suited for
this sort of experiments. They knew initially that the cell membrane carries a potential
across the inner and outer surfaces, not unlike the basic principles of how a capacitor and
a resistance work in parallel, which can be described as

Cm
dV
dt

= −
V − Veq

R
+ Iappl.

Here, Cm is the membrane capacitance, R the resistance, V is the potential between the
inner and outer surface, Veq is the rest potential and Iappl is the applied current. Hodgkin
and Huxley assumed the potensial in the squid axon was determined by a flow of potassium
and sodium ions, and this assumption leads to a new version of the above equation,

Cm
dV
dt

= −gKn4(V − VK) −GNam3h(V − VNa) −GL(V − VL) + Iappl

where the subscripts K, Na and L corresponds to potassium, sodium and leakage chan-
nels. The terms gKn4, gNam3h and gL are the conductances. The variables n, m and h are
hypothesized variables controlling the flow of ions. These were governed by the following
relation,

ρw(V)
dw
dt

= w∞(V) − w, w = n, m, h.

Toghether, the two equations above constitutes the Hodgkin-Huxley model.[6]
The Hodgkin-Huxley model is a four dimensional system which Richard FitzHugh

(1922–2007) was able to reduce to a two dimensional system. He applied the observation
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CHAPTER II. WAVES IN EXCITABLE MEDIA

that the two gating variable n and h have slow kinetics compared to m, approximated n + h
by 0.8. The latter was justified by the parameters chosen by Hodgkin and Huxley. He
also noticed that the n-nullcline could be approximated by a straight line, and that the V-
nullcline had the shape of a cubic function. He was thus able to reduce the model to the
following two dimensional system,

dv
dt = v(v − α)(I − v) − w + I

dw
dt = ε(v − γw)

v represents the potential, w is the sodium gating variable, and α, γ and ε are parameters.
Later, Jin-ichi Nagumo was able to construct a circuit replicating the model, and therefore,
the system is now known as the FitzHugh-Nagumo model.

In this paper we will study a further simplification of the FitzHugh-Nagumo model that
was proposed by Dwight Barkley in [7], describing the interaction between an excitation
field u and an inhibitor field v. In its most general form, the Barkley equation is thus

du
dt = D∇2u + 1

ε
f (u, v)

dv
dt = Dv∇

2v + g(u, v)
(II.1)

D is the diffusion coefficient of the excitation field, Dv is likewise the diffusion coefficient
of the inhibitor field (usually set to Dv = 0) and ∇ is the gradient operator. The functions
f is always given by

f (u, v) = u(1 − u)(u − γ(v))

with
γ(v) =

v + b
a

.

the constants ε, a and b are parameters whose influence will be described later. We see that
f (u, v) consist of three terms u, 1 − u and u − γ(v), the first term u will cause the solution
to grow slowly near u = 0, the second term 1 − u will likewise cause the solution to grow
slowly and not pass u = 1 and the last term u − γ(v) will adjust the solution according
to the inhibitor field. The function g(u, v) controlling the growth of the inhibitor field is
found to vary in the literature, but the three most common versions are

g(u, v) = u − v (standard inhibitor kinetics)

g(u, v) = u3 − v (delayed inhibitor kinetics)

g(u, v) =


−v, u ≤ cth

1 − 6.75u(u − 1)2 − v, cth ≤ u ≤ 1
1 − v, u > 1

(M. Bär and M. Eiswirth kinetics)

All three have different abilities - spiral break ups and turbulence are particularly easy to
provoke for the delayed kinetics, and the last version was introduced by M. Bär and M.
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CHAPTER II. WAVES IN EXCITABLE MEDIA

Eiswirth (see [18]) in order to recreate chemical surface reactions such as the CO oxidation
of Pt(110), taking into consideration that the nature of this reaction will be altered as the
concentration of one of the terms exceeds a certain threshold cth.

III. System Dynamics of Barkley’s Equation

In the case of standard inhibitor kinetics

In order to properly being able to implement a stable numerical solution of Barkley’s
equation, we need to have knowledge about some aspects of its behaviour. Let us first
assume we are only studying the case of standard inhibitor kinetics, dv

dt = g(u, v) = u − v,
although most properties of the system is regardless of what inhibitor kinetics we choose,
especially those associated with the excitation term f (u, v).

The relation between the excitation variable u and the inhibitor variable v for a single
point is illustrated in fig II.4. The dynamics of the system du

dt = f (u, v) and dv
dt = g(u, v)

is shown in fig II.2. The system has two unstable equilibrium points (u, v) = (0, 0) and
(u, v) = (1, 1). It is also worth noticing that solutions will not be excited for values above
the diagonal blue line denoting the nullcline (i.e. the lines such that du

dt = dv
dt = 0), u = v+b

a .
The different states and their respective domain in the phase plane is illustrated in fig II.3.

Notice from figure II.2 that a deterministic solution starting within the marked quadrant
0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 will never leave the region, but for u > 1 solutions will diverge
toward infinity. This is very important to notice since models with additive noise will
easily be pushed into this region. The same is the case for the region u < 0, although here
the solution will diverge to minus infinity. A numerical solution needs to take this into
consideration, or else the solution will not be stable.

The parameters a and b are determining how susceptible solutions are to excitation,
and keep in mind that they might as well be negative (although only b can be zero). As
we see from the second term in the expression for f (u, v) (II.II), for solution trajectories
undisturbed by diffusion, if u − v+b

u < 0 then, given that u ≤ 1 which it usually is, then du
dt

will be declining. We can from this observation rationalize that for values of u and v such
that u < v+b

a , then u will enter the refractory phase. Any perturbations of u will have to
push u above this line in order to cause excitations. This is verified by fig II.2, where we
can observe a shift in the orientation of the arrows representing the vector field above the
blue diagonal line representing u = v+b

a . It is then obvious that by increasing b (this will in
context of fig II.2 shift the blue line downwards) the ability of the medium to get excited
will decrease and vice versa. By increasing a, the medium’s susceptibility for excitations
by rotating the blue line of II.2 counter-clockwise.

From these observations, we can predict, that for values for b such that the line u =
v+b

a passes above origo in fig II.2 (i.e. b/a > 0), the system will oscillate. Oscillating
waves is common in e.g. the Belousov-Zhabotinsky reaction. It would likewise be trivial
to find combinations of a and b that would render the system inexcitable, or only allow
low excitations.

The parameter ε controls the separation between the excitation and inhibitor time
scales, as it will control the magnitude of f (u, v). High values of ε will cause du

dt to grow
slowly, thus increase the length of an excitation, and likewise small values will cause the
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CHAPTER II. WAVES IN EXCITABLE MEDIA

time span of the excitations to shorten. Keep in mind that ε in itself does not alter the
ability to get excited. However, ε does actually control the time before the system can be
excited anew (this time period was in the introduction mentioned as the rest state). ε is
thus crucial for determining the periodicity of wave trains and spiral waves.

By closely observing the phase plane in fig II.2 we can see that solutions will diverge
for initial positions in the region u > 1 for any v and the region v < 0 for any u. Initially,
deterministic solution trajectories will never enter this area but in the presence of stochastic
noise and probably also in the case of improper solution schemes, this is a possibility that
cannot be neglected. We could solve this issue by implementing our solution scheme with
a simple threshold technique, denying solutions access to the divergent domain, but in
order to obtain a faster and more analyzable implementation, I will rather use the same
solution as Shardlow in [4]. Let f and g in II.1 be given by

f̃ (u, v) =

 f (u, v), if u ≤ 1
−| f (u, v)|, if u ≥ 1

and

g̃(u, v) =

g(u, v) if v ≥ 1
|g(u, v)| if v < 0

This nonlinear modification will ensure the solution to be bounded for all initial data,
and will be used in the numerical experiments of this paper (if not otherwise noted). An
illustration of the dynamics of the modified systems substituting f̃ (u, v) and g̃(u, v) for
f (u, v) and g(u, v) is given in fig II.5. When modifying the reaction terms we run the
risk of slowing down the simulations, however, simple tests (in MATLAB) show that the
implementation of the modified test terms are 1.23 ( f̃ (u, v)) and 10.38 (g̃(u, v), this is high,
but this functions is also very little time consuming) times slower.
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CHAPTER II. WAVES IN EXCITABLE MEDIA

Figure II.2: Illustration of the dynamics for du
dt = f (u, v) and dv

dt = g(u, v), using the standard
parameter values a = 0.75, b = 0.01, ε = 0.03 and D = 1. The blue lines are nullclines for du

dt and
the green line is the nullcline for dv

dt . The area in the middle marked by striped borders is the stable
area for 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. The arrows marks the vector fields.

Figure II.3: The illustration shows a cut of the quadratic center region of fig II.2. The coloured
path show a solution with initial conditions (u, v) = (0.1, 0). Starting at the given initial position, the
point is first excited (red), then at the refractory state (blue) and at last at the rest state (marked as
yellow, at which it cannot be excited) before it returns to the equilibrium solution (u, v) = (0, 0).

Figure II.4: One dimensional deterministic wave propagation. The image illustrates the relation
between the excitation variable u (continuous line) and the inhibitor variable v (striped line) for a
single point passed by three planar waves. The image was generated using the standard parameter
values a = 0.75, b = 0.01, ε = 0.03 and D = 1, for a time span t0 = 0 to tend = 24.44. ∆t = 0.04.
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Figure II.5: System dynamics for modified phase plot. Compare with fig II.2.

Dynamics in the case of other forms of inhibitor kinetics

The prime difference observed between the standard inhibitor kinetics and the delayed
inhibitor kinetics is the heavy susceptibility of the latter to cause spiral breakups. This
version is, of course, also able to sustain spiral waves, but seemingly within a much lower
regime of parameters.

Figure II.6 shows the phase plot of the system with delayed inhibitor kinetics including
nullclines and a sample solution. Notice that in this case we have a new point where the
nullclines coincide, and as observed from the figure, solutions close to this point will
circulate with a growing radius and thus spend more time within this region until returning
to the refractory phase. When ε grows, the orbiting time will increase, and this effect might
disrupt stable spiral patterns.
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Figure II.6: Phase plot for system dynamics with delayed inhibitor kinetics, using ε = 0.05,
a = 0.75 and b = 0.01. The green and the blue striped lines shows the nullclines for dv

dt and du
dt

respectively. Notice that in this case we have a second point where the two nullclines coincide; the
black curve is a solution with initial conditions in this point.

IV. TheWavefront Application

The primary workload of this thesis was the interactive excitable wave simulation and
mathematical dalliantical software named Wavefront. The program is written in C++ with
openMP paralellization, it contains about 1500+ lines of code and has a user interface
made with the cross-platform application framework Qt. The program features simulation
with real time change of parameters, solution schemes, reaction kinetics and a certain
range of other forms of interactivity.

The program solves Barkley’s equation on a mesh of size 512 × 512 with adjustable
real length L. Both additive noise (as described in chapter III.1) and randomly distributed
inexcitable obstacles (as shown in fig II.10) are also supported. It also has a set up for
simple change of reaction terms so that it is not only limited to the Barkley’s equation, but
can be used on several reaction diffusion equation.
Current solution schemes supported are

1. Explicit and semi-implicit Euler method.

2. Solution with diffusion added in Fourier space and reaction terms updated with
the semi-implicit Euler approximation (later in this paper denoted as the Shardlow
method).

3. Lawson-Euler.

4. Fourth order integrating factor method (IFRK4).

We will have a closer look at these schemes in chapter III and IV.

Overview of functionality

An illustration of the interface as well as some of the functionality is given in fig II.7. The
main interface consist of three screens giving information about the state of u and v. The
solution un (in blue) is displayed at the main screen (F), but you can switch to view vn

(in green) by hitting a button (undermost button at (C)). It has also a possibility to view a
combination of both the two variables. The latter option will result in the display showing
green somewhere, blue other places, and at the points where both the u and v values are
high we will get different shades of the combination of blue and green known as cyan.
The display (G) shows (un)i j plotted against (vn)i j for a selected point (i, j) at (A). The
default position of (i, j) is in the center. The graph (H) shows the same information plotted
separately. The point of focus (i, j) can be changed by clicking anywhere on (F). You can
also set the value of (un)i j and (vn)i j directly by clicking inside (G).

Panel (D) in fig II.7 allows adjustment on the inhibitor kinetics (standard, delayed and
M. Bär and M. Eiswirth kinetics are supported). Here we can also change solution scheme.
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Figure II.7: The interface of the Wavefront application. A: Parameters. B: Overview of average
number of iterations per millisecond, elapsed real time and elapsed virtual time. C: Buttons for
pause on/off, change of initial conditions, and button for switching between visible variables (cur-
rently it displays a combination of u and v). D: Change solution scheme and inhibitor kinetics. E:
Adjustment of noise intensity, time stepping and M. F: Main display, shows either u, v or a combi-
nation. G and H: Plots of the relation between u and v for a selected position in the main display.
The displays F, G and H can be turned off to save computational time.

Some information like virtual and real time elapsed since last restart is given in panel (B).
Panel (E) let you adjust variables associated with noise like M and σ (here denoted sg),
add randomly distributed inexcitable points in (F) by hitting the button ”add static noise”,
and change temporal step length ∆t. To remove the inexcitable points, hit the same button
again. The variable ∆t is here denoted ”dt”, and the numerical indicator on the right side
of the bar is to be divided by 100 to give the correct step length. Notice that not all of
the functionality associated with the noise nor diffusion in the v-term is available for all
solution schemes.

You can also capture a screen shot of the (F) field by hitting the button ”s” on the
keyboard. The following table gives a quick overview of the supported abilities of the
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different implemented methods;

Diffusion in v term Static noise g̃, f̃ adjustable g(u, v)

Explicit Euler yes yes yes yes

Implicit Euler yes yes yes yes

Implicit Shardlow no no yes yes

Lawson-Euler no no no yes

IFRK4 yes no yes no

The row g̃, f̃ tells whether or not the modified reaction terms works for the given
method, which is necessary to know if we are to use additive noise. Static noise is not
implemented for the methods using spectral diffusion, simply because this is a rather non-
trivial task.

Some notes on implementation

The implementations of the numerical methods will utilize openMP paralellization wher-
ever possible and thus have an advantage over the most implementations written in MAT-
LAB. On the other hand, Wavefront will perform matrix and vector operations by means
of for-loops, which will not be as efficient as the corresponding operations in MATLAB.
Some tests shows that Wavefront typically will perform better in terms of iterations per
second when it comes to the simpler methods like the Euler method and Lawson-Euler,
but for more complex schemes like IFRK4, MATLAB is the fastest. The latter should be
explainable by the heavy use of matrix operations this method requires. Comparison of
some methods implemehted on both platforms is given in fig III.5.

The Fourier transformation is also quite important for the speed we are able to obtain.
There is a plethora of available implementations of the Fourier transform for C++ and the
one that was chosen for Wavefront is the third party subroutine library FFTW3.0, which
is a highly optimized library featuring a well of sophisticated abilities such as detailed
hardware adaptations, automatic parallelization and subroutines in Fortran (and even MPI
support, but this will not be relevant for us).

The implementation of the Lawson-Euler method can be found in appendix E. Some
notes on how the source files are structured is given in appendix G, and a quick guide
on how to install the application is described in appendix F. Notice that some third party
software is necessary to run the program, this includes FFTW3.0 for Fourier transforms,
the numerical library GSL (GNU Scientific Library) for generation of random numbers
and Qt for guided user interface.

The way the inexcitable obstacle functionality is implemented is simply by ignoring
any reaction and diffusion in this single point - when the algorithms reaches one of these
points it will simply skip it. However, this is not an entirely mathematical correct approach.
The correct way would be to modify the central difference scheme used to approximate
the Laplacian, but taking the nature of the excitable medium in account, the error caused
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by this would probably be small.

*

We will in the next sections see some illustrations of the functionality the application
provides.

V. Spiral waves

Spiral waves are an often occurring pattern in excitable media (in three dimensions, these
will take the form of scroll waves [17]), among other because they are easily obtainable
both in nature and artificially - as mentioned, cardiac arrhythmias can have the form of
spiral waves and they are easily observable on fig II.1. In simulations, we can construct a
spiral wave by initiating a planar wave and then breaking the wave in the middle, returning
certain parts of u and v back to the unstable equilibrium point (0,0), and thus the waves
will coil around the broken sector, causing a spiral wave.

Much work is done on analyzing the spirals, and in [17] (see also [14]), it is shown
that the period of a (rigidly) rotating spiral is predicted by the following proposition,

Proposition 1.1. The period ω of a (rigidly) rotating spiral is approximated by

ω =
0692µ

ε
1
3

−
0.926

a

for

µ ≈ 2.70
vs(1 − vs)

a

2
3

vs =
a
2
− b

A spiral can either be rotating rigidly with its core at a certain point at all time, or
it might be drifting, probably leaving the domain or moving in a circle or a complex
meander-like pattern (examples of patterns are given in [2]). In his selected YouTube
Videos [15], Barkley illustrates that the spiral core can even behave like a particle. The
most interesting aspect of spiral waves are probably their breakups. Barkley show exam-
ples, both of collapse in spiral pattern close to its center (near field breakup) and in its
periphery (far field breakup) at his home page [16], induced by a sudden shift in the pa-
rameter ε.

We will use the Wavefront application to see what we can do with spiral waves. Core
breakups are easily generated by with delayed or M. Bär and M. Eiswirth kinetics as the
spiral tips of these systems can collide and collapse into themselves without much outside
stimuli. This is illustrated in fig II.8, where we have started a simulation using delayed
inhibitor kinetics and let it evolve for a while.

Sometimes we can make spiral arms outside the core collide into themselves and cause
turbulence, and now we will see how we can use Wavefront to investigate this. Fig II.9
shows a recreation of this phenomena using M. Bär and M. Eiswirth kinetics and some
shifting of parameters. This was done by first using the parameters N = 60, b = 0.045,
a = 0.84, D = 1 and ε = 0.04. We then let the spiral pattern evolve for a while, and
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at T = 70 we changes b to -0.045 and let the system stabilize for a while until T = 200
where we changes ε to 0.059. This causes modulation in the spiral arms that develops and
at T = 238 we observe that the arm is totally broken and two new spiral cores emerges. At
T = 280 we see that the turbulence is propagating outwards. If we continued observing the
system we would see that the chaos slowly would move out of the domain. The interesting
lesson to learn from this case was that the modulation causing the turbulence in the first
case only was motivated by the change of ε early on; this will not happen again. The
reason we had b negative to begin with was to keep the system from oscillating before the
spiral was formed.

t=12 t=24

t=48 t=72

Figure II.8: Spiral core breakup with delayed inhibitor kinetics reproduced with Wavefront. The
simulations are done using a set of parameters which is not able to sustain stable spiral waves.
Notice how the spiral tip is not clearly defined at t = 12, and as time goes the core will collide with
itself and cause turbulence. Parameters used are ε = 0.06, a = 0.75, b = 0.001, D/(∆x2) = 1,
Lx = Ly = 200 and ∆t = 0.08.
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t=82 t=206

t=223 t=232

t=238 t=280

Figure II.9: Far-field break up.

VI. Introducing randomness

In this chapter we will describe what previously has been done do introduce stochasticity
in models of waves in excitable media in general, and then move on to do some exper-
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iments. The first attempt was probably to distribute random recovery rates in cellular
automata. Another technique was applied by K. H. W. J. Ten Tusscher et al in [8], where
non-excitable obstacles was randomly distributed on (sub-) domains in order to study its
effect on spiral wave dynamics. This is illustrated in fig II.10. The distribution of inex-
citable obstacles was inspired by the fact that cardiac arrhythmias is strongly correlated
by the presence of inexcitable fibrotic tissue. Their conclusion was that in the influence of
inactive obstacles, the spirals actually increased the stability of the spirals - in cases where
spirals otherwise would break up, they were preserved in the presence of obstacles. Their
explanation was that the obstacles reduced the spiral propagation period, which rendered
the spiral more stable.

In [4], Shardlow mentions several stochastic extensions to Barkley’s equation. The
simplest is

du =
[
D∇2u + 1

ε
f (u, v)

]
dt + σdW(t, x)

dv = g(u, v)dt
(II.2)

which only involves additive noise (here on, this model will be referred to as the additive
noise model). Here, σ is a scalar controlling the noise intensity and W(t, x) is a Wiener
process of any spatio-temporal structure seen fit for the specific context (although white
noise is usually chosen due to its simplicity). Spontaneous excitation has been observed
in this system. Another two stochastic extensions are

du =
[
D∇2u + 1

ε
f (u, v)

]
dt

dv = g(u, v)dt + σdW(t, x)
(II.3)

and

du =
[
D∇2u + 1

ε
f (u, v)

]
dt + h(u)dW(t, x)

dv = g(u, v)dt
(II.4)

for a function h(u). The first proposed by Busch et.al in [9], the second considered by
Alonso et al. in [10]. Here, h(u) is chosen such that the random fluctuations only will
affect the b, the variable which they assume controls the excitability of the system. This
approach was inspired by how the photosensitive Belousov-Zhabotinsky reaction would
be influenced by changing light conditions.

The last variation mentioned, is studied by Garcia-Ojalvo et al. in [11] is

du =
[
D∇2u + 1

ε
f (u, v)

]
dt

dv = g(u, v)dt + uσdW(t, x)
(II.5)

This version will exhibit variation in the inhibitor field, sometimes causing breakup of
spirals due to backfiring events for parameters that would sustain stable spirals for deter-
ministic models (see fig II.13). After the stable pattern had broken up, the chaotic pattern
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(Garcia-Ojalvo et al. names this complex spiral dynamics) will remain for a certain time
period until the meandering cause the spiral cores to move away from the observed do-
main. In the rest of the paper, this model will be referred to as the fluctiating inhibitor field
model.

First thing we will do with Wavefront is to check the influence of inexcitable obstacles
on point waves. The result for delayed inhibitor kinetics is presented in fig II.10, and as
we can see, the point wave is able to spawn secondary waves when passing dense clusters
of inexcitable grid points. This is interesting because it might show how electrical pulses
in cardiac tissue can form self sustaining waves turning into arrhythmia. The same effect
could be reproduced with Bär and M. Eiswirth kinetics, but not standard inhibitor kinetics.

The next thing we can take a closer look at is formation of labyrinthine patterns in
presence of additive noise. These patterns form for most reaction-diffusion equations and
are one of their most interesting characteristics. In fig II.11 we see two patterns developing
from the same parameters and initial conditions, except the images to the right is formed
with noise. As we see, the left labyrinth develops symmetrically, while the right labyrinth
fast loses it’s ordered structure and turns into chaos.

Another thing that would be interesting to know is what discrepancy the noise causes
depending on when the noise is introduced. The result of this experiment is displayed in fig
II.12, where we have started the deterministic simulation with the same parameters as in
fig II.11, but paused the simulation and introduced noise (corresponding to II.11 again) at
time T = 10, T = 20 and T = 40. The result shows that adding noise after T = 40 hardly
has any influence on the final pattern at time T = 112. There are differences between
deterministic T = 112 in fig II.11 and the corresponding pattern for noise introduced
T = 40 in fig II.12, but they are difficult to see.
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Figure II.10: Comparison between deterministic wave propagation in medium with homogeneous
excitement potential (left), and wave propagation in waves with randomly distributed inexcitable
obstacles (right). The images shows that in the presence of obstacles the wave will propagate slower
and spawn new waves. The phenomena that simple waves can spawn self sustaining new waves
illustrates how cardiac arrhythmia can appear in sick or aged cardiac tissue.
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Figure II.11: The figure shows the development of two labyrinthine patterns initiating from the
same set of parameters and initial condition, except the right is formed under influence of noise.
The parameters are L = 60, D = 0.3 and Dv = 5. For the left plot we have M = 512 = N and
σ = 90. None spontaneous excitation were appearing during the simulation. The images are made
at T = 29, T = 72 and T = 112.
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Figure II.12: Same as fig II.11, except that the noise has been introduced at different points. The
figure on top shows the system at time T = 112 with noise introduced at T = 10, second with noise
introduced at T = 20 and the last figure at the bottom T = 40. Compare with the lower left image of
II.11.
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Figure II.13: Spiral break up due to backfiring may appear in the fluctuating inhibitor field model
II.5. This illustration is made with the parameters σ = 250, ξ = 2, ∆t = 0.05 and L = 80 on a grid
with resolution 2562.
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Figure II.14: Development of a labyrinthine pattern in Wavefront. This sort of patterns will form
for certain values of Dv, and every set of parameters is associated with a unique solution. The initial
condition was in this case a point stimuli in the center. D = 0.1, Dv = 3 and L = 16π.
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Figure II.15: Broken spiral waves.
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III
NumericalMethods

Introduction

This chapter will be dedicated to the discussion of several solution schemes of varying
complexity that will be used to solve Barkley’s equation numerically. We will discuss
implementation and subsequently rate them according to their stability, speed and other
relevant aspects.

Relevant questions to arise prior to a simulation is how the diffusion should be imple-
mented, how structured noise should be constructed and subsequently added, and whether
an implicit or explicit scheme is the most efficient. The first solution scheme to be dis-
cussed is a simple explicit Euler method, which due to the stiffness of the 1

ε
f (u, v) term as

well as the diffusion operator, is inefficient and slow and therefore not generally applica-
ble to this form of equations, but will be used to in order to be compared with the more
complex schemes. We will later move on to study semi-implicit schemes utilizing Fourier
transforms for dealing with diffusion, and in the next chapter we will take a closer look at
schemes based on exponential integrators.

Neither the explicit Euler method with spectral or difference approximation to the
Laplacian is original to this paper (see [4]), nor is the semi implicit scheme which was
invented by Barkley in ([7]), but this paper will make an attempt of obtaining a more rig-
orous analysis of their performance. On the other hand, to the author’s knowledge none
earlier attempts of using exponential integrators to this specific problem has been reported,
and their applicability and efficiency might held relevance to diffusion-reaction problems
in general.

In this chapter we will assume that we are studying the system II.1 with standard in-
hibitor kinetics, unless otherwise noted. However, the numerical properties of the different
inhibitor kinetics is hardly different and thus not a major source of concern compared to
the f (u, v) term as well as the diffusion. We will also assume uniform grid size ∆x = L

N
and constant temporal step size ∆t, and all computations will be done on a square grid of
2562 nodes on the domain [0, L]2 where L = N if not otherwise is noted. We will also be
using a set of standard parameter values, which is ∆x = L/256, a = 0.75, b = 0.001 and
ε = 0.03. T will denote a given approximation to the Laplacian.

For simplicity, when we examine methods including Fourier transforms we will be
assuming periodic boundary conditions, in case of differential methods, we will use ho-
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mogeneous Neumann conditions.

Constructing Noise

We will in this paper use the same sort of structured noise as Shardlow in [4], which is not
a purely white noise but has a certain structure both in space and time. The derivation of
this kind of noise is rather complex and beyond the scope of this paper (it is given in [4]),
but we will state it’s basic properties and show some examples on what it looks like and
how it can be implemented.

Let our Gaussian variable W(t, x) be defined by

W(t, x) =
∑
i, j≥0

αi jei j(x)βi j(t) (III.1)

where βi j is an independent standard Brownian variable with mean 0 and variance σ2

L2 ∆t.
The vectors ei j(x) = ei(x)e j(y) if x = (x, y), are the orthonormal eigenvalues of the Lapla-
cian on [0, L], given by

e0(x) =
√

1/L, e j(x) =
√

2/L cos(π jx/L), j = 1, 2, 3, ...

The coefficient αi j are to be derived such that the following condition concerning the
spatial correlation of W(t, x) is satisfied,

EW(t1, x1)W(t2, x2) ≈ C(x1 − x2) min{t1, t2}, C(x) =
1

4ξ2 exp
(
−
π

4
||x||2

ξ2

)
Here, ξ is the spatial correlation length, ‖ · ‖ is the standard Euclidean norm and C(x)
describes the spatial correlation. We see that if the distance ‖x1 − x2‖ grows larger than ξ,
then the correlation between the two points x1 and x2 vanishes. If ξ → 0, the noise W(t, x)
approaches a standard space-time white noise process without any correlation. Notice that
while the correlation decays exponentially in space, due to the min{t1, t2} term it will grow
in time.

It can then be shown, assuming ξ � L, that the αi j satisfying these conditions will
have the form

α2
kl = exp

(
−λklξ

2

π

)
where

λkl = (π/L)2
(
k2 + l2

)
(III.2)

are the eigenvalues of the Laplacian applied to ekl, i.e. ∇2ekl = λklekl. The noise W(t, x)
defined in III.1 will now satisfy

EW(t1, x1)W(t2, x2) ≈ C(x1 − x2) min{t1, t2} + corrections on the boundary
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Now that W(t, x) is correctly defined we can move on to describe how it might be
simulated. We will also here omit some of the necessary calculations, but they can still be
found in [4].

In order to calculate the noise term Wi j as efficiently as possible, we will use the rapid
decay of the Fourier coefficients in the expansion in III.1, and use the following lemma
which describes the decay in expected difference between two points at a given time,

Lemma 1.2. For an integer M > 0, consider the solutions u(t) and uM(t)

du(t) = ∇2u(t)dt + dW(t, x), u(0) = 0

duM(t) = ∇2uM(t)dt + dW M(t, x), uM(0) = 0

subject to homogeneous Neumann boundary conditions on [0, L]2 where W M(t, x) is the
Wiener process

W M(t, x) =

M−1∑
i j=0

αi jei j(x)βi j(t) (III.3)

Then,

E‖u(t) − uM(t)‖2L2([0,L]2) ≤
1

8λM0

L2

ξ2 exp
(
−π(M − 1)2 ξ

2

L2

)
(III.4)

which in [4] is listed as Lemma 1, where also the proof is to be found. Basically, it
states that the difference between applying a truncated Wiener process (as in III.3) and a
complete Wiener process (as in III.1) is limited, so in effect we can use the lemma to reduce
the calculations of the noise. In order to decide the lowest useful M, we can compare the
error produced by III.4 by the error we expect to achieve from our numerical scheme. In
the case of a standard deterministic heat equation, using a five point approximation to the
Laplacian, the expected error in the L2 norm would be O(∆x2 + ∆t). Again, according to
Shardlow, when we use our specific type of noise this error would typically obtain a form
of O(∆x2 +∆t1/2), and by keeping the ratio ∆t/∆x fixed our error estimate would be O(∆x),
and by using the lemma this says that the right hand side error of lemma 1.2, thus gives us
the following bounds for M,

1
8λM0

L2

ξ2 exp
(
−π(M − 1)2 ξ

2

L2

)
≤ ∆x2 (III.5)

This can be achieved for many reasonable values of M, e.g. if N = L = 512, M = N/2 =

256, ε = 5, then the LHS of III.5 would yield 1.84e-6, while RHS would yield 1. Further
decreasing L to L = N/2 (and then ∆x = 0.5) would decrease LHS to 4.76e-33, which
would allow a further decrease in M. Also, in its applications we would multiply W with
the intensity constant σ, which will also affect the highest reasonable value of M.

The noise can be added to the Fourier transform û of a given spatial distributed system
u by the following update procedure,

ûn
(i, j) =

ûn
(i, j) + σwn

i j, i, j ≤ M
ûn

(i, j) otherwise
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An simple implementation illustrating how this form of noise can be constructed is given
in appendix B. Several examples of what this kind of noise will look like is given in fig
III.1.

ξ = 0.01 ξ = 1

ξ = 50 ξ = 100

Figure III.1: Examples of generated noise under different spatial correlation length. All
images are generated in MATLAB using the code given in III.1, with parameters M =

N/32 = 16 and σ = 1. Yellow indicates average values, blue indicates high values and
red indicates low values. No diffusion (or reaction) has been present. All images are
gathered from random time instances.

Explicit Euler method

The explicit Euler method is probably the simplest and most intuitive solution scheme
applicable to our problem and should not need any further introduction. In this section we
will study its performance using an five-point approximation to the Laplacian.

The standard Euler scheme for Barkley’s equation is given by
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un+1
i j = un

i j + DTun
i j∆t + ∆t

ε
f
(
un

i j, v
n
i j

)
vn+1

i j = vn
i j + ∆tg

(
un

i j, v
n
i j

) (III.6)

Due to the slow nature of the reaction term g(u, v), we will only have to consider the first
equation in order to establish the stability criteria of the scheme.

Proposition 1.3. Given a differential equation d f
dt = Tu, for a differential operator T , the

stability of the Euler scheme for this equation will be given by

|1 + λ∆t| < 1

where λ ∈ C is the biggest eigenvalue of T .

The proof of 1.3 is considered common knowledge and is therefore omitted. It is theo-
retically easy to establish a stability criteria since we have the analytical expression for λ,
which there is in the one dimensional case where it is simply given by λmax ≈ −D 4

(∆x)2 ,
and in two dimensions it is approximately λmax ≈ −D 8

(∆x)2 ([23]), which will lead us to the
following stability criteria,

Proposition 1.4. Given a differential equation d f
dt = Tu, for a two dimensional differential

operator T , the time steps of corresponding Euler scheme for this problem will be limited
by the relation

∆t <
(∆x)2

4D

so if we set (∆x)2

D = 1 will force the time steps to be less than 0.25, and a further increase
in the diffusion coefficient D will decrease the possible length of the time steps. This has
been verified empirically.

Now we can move on to analyze the stiff reaction term 1
ε

f (u, v), where the obvious
problem is it’s non-linearity. We know that u will vary between 0 and 1, and therefore we
can linearize the problem into du

dt = f ′(0)(u) and du
dt = f ′(1)(u−1)− f (1), and examine their

respective eigenvalues instead. If we do this we will in the first case obtain the following
linear equation

du
dt

= −
v + b

a
u = λu

which using III.6 translates into the following criteria for stability near u = 0,

∆t < 2
aε

1 + b

Using that, which in the introduction to this chapter is considered standard parameter
values, this gives a maximum step size near u = 0 approximately 0.045.

Following the same procedure, near u = 1, we will in the case v close to 0 get the
criteria

∆t < 2
1

aε
1+b−1
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and close to v = 1 we will get

1 +

(
1 + b

aε
− 1

)
< 1

We see that both of these criteria is extremely hard to achieve, and thus unconditionally
stable solutions is probably not worth pursuing for this scheme.

However, simple testing shows that for the set of standard parameter values, there is
very few or none symptoms of instability to observe as long as ∆t ≤ 0.035. The reason for
this is probably that the system has some sort of self correcting behavior. As observed in
fig III.2, the solution will for certain step lengths move in and out of the convergent area,
but for other values diverge. Thus, the numerical instabilities can be visible to a heavy
extent without causing the system to diverge, in addition, instabilities are, for reasons not
yet understood, more prone to appear at certain parts of a wave than other places. E.g.
if we use homogeneous boundary condition u, v = 0 along the edge, we will often see
instabilities where the waves breaks off at the boundaries.

Taking the situation in account, no extensive or complete analysis of the performance
under the explicit Euler method will be worth a large investment of time. Anyway, a few
run times for reasonable regimes of parameters, i.e. parameters almost without visible
instabilities, is given in table III.1.

explicit implicit

standard parameter exceptions ∆t time to reach t = 100 ∆t

none 0.075 34.30s 24.63s 0.100

D/(∆x)2 = 2 0.060 45.37s 44.90s 0.055

ε = 0.04 0.105 26.58s 24.54s 0.110

ε = 0.04, D = 2 0.070 41.20s 47.80s 0.055

D/(∆x)2 = 0.5 0.080 35.82s 12.56s 0.220

D/(∆x)2 = 0.1 0.080 36.27s 41.95s 0.650

Table III.1: Some examples demonstrating the performance of the explicit and implicit Euler
method. The table shows elapsed real time to reach virtual time 100. Tests were done without any
form of noise.

Semi-Implicit EulerMethod

We will now turn our attention to a semi-explicit Euler method, which is a simple semi-
implicit modification to the explicit version and holds the advantages of being easy to
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Figure III.2: Different solution trajectories by the explicit Euler method, in the above case with-
out influence of diffusion and using unmodified reaction terms. Instabilities caused by suboptimal
parameter choice (compare with theoretical trajectory in fig II.3). The red trajectory (a = 0.75,
b = 0.001 and ε = 0.013) shows signs of unstable behavior but does not diverge. The blue trajectory
(same parameters but ε = 0.01224) breaks out of the stable domain and diverges. Compare with fig
III.4.
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implement and feature good numerical stability. The scheme was invented by Barkley, see
e.g. [7].

Let us momentarily ignore the diffusion and consider one time step of the explicit
reaction kinetics,

un+1 = un + ∆t
ε

(un)(1 − un)(un − φ)

vn+1 = vn + ∆t(un − vn)
(III.7)

Where φ = (vn + b)/a. The simplest semi-implicit approximation we can use to improve
III.7 is the following,

un+1 =

un + ∆t
ε

un+1(1 − un)(un − φ), un ≤ φ

un + ∆t
ε

un(1 − un+1)(un − φ), un > φ

which by simple algebra can be translated into

un+1 = F(un, vn) =

un/
(
1 − ∆t

ε
(1 − un)(u − φ)

)
, un ≤ φ(

un + ∆t
ε

un(un − φ)/(1 + ∆t
ε

un(un − φ)
)
, un > φ

and then we revive the initial scheme by adding diffusion in the following manner,

un+1
i j = DTun∆t + F(un, vn)

vn+1
i j = vn

i j + ∆tg(un
i j, v

n
i j)

(III.8)

We could easily rewrite the update rule for vn to be implicit, but experience tells us it would
be little to gain from it.

There is a simple logic behind the construction of the semi-implicit approximation,
which can be explained from figure III.3. The main idea is that we want the scheme
to reflect which term of f (u, v) that has the larges relative change at a given point in
space. At the dark (negative) upper half of the contour plot in fig III.3, the term un,
will have the biggest relative change, and therefore we switch it with the correspond-
ing future time step un+1. The principle is the same for the part below the nullcline.

40



CHAPTER III. NUMERICAL METHODS

Figure III.3: The figure to the left is the contour plot of f (u, v) = u(1 − u)(u − (v + 0.01)/0.75) and
the figure to the right is the corresponding plot. In the contourplot, the nullcline u = (v + 0.01)/0.75
can clearly be seen as the diagonal line in the middle. Notice which part of the domain where the
absolute value of f (u, v) is at largest; this is where du

dt will change the most, and the idea behind the
semi-implicit approximation III.IV is to substitute the term of f (u, v) that at this point has the largest
relative change with its corresponding future time step.

We will not conduct a similar stability analysis as in the precedent section, simply
due to experimental data indicating that the scheme is unconditionally stable (that is, the
stability is only bounded by the stability of the approximation to the Laplacian operator)
as long as the step size does not exceed the physical domain. However, fig III.4 gives
a hint about the lack of exactness that will appear as ∆t grows too large. We see that
the trajectories will shrink and at a certain time weaken the ability to get excited, so as a
heuristically founded rule, we should probably keep ∆t less that 0.1.

Table III.1 shows examples of run times for both the explicit and implicit version. For
the standard parameters the implicit scheme performs far better, for D/(∆x)2 > 1 it is
hardly any improvement indicating that above this point the diffusion will limit the step
size, but for D/(∆x)2 < 1 we observe that the implicit scheme far outperforms the explicit.

Figure III.4: Sample trajectories with the semi-implicit Euler scheme described in III.8(standard
parameter values except ε = 0.01 and initial condition u, v = 0.1, 0). While ∆t increases, the solution
will become less accurate but not diverge. Compare with fig III.2. We also see that the oscilations
disappear when using the semi-implicit approximation.

41



CHAPTER III. NUMERICAL METHODS

Semi-SpectralMethods

The numerical experiments in the last two sections where done without any form of noise,
and if we were to include the noise it would greatly delay the computational cost of the
implementation almost independently of M, because we have to perform at least one ad-
ditional Fourier transforms per iteration. It would probably be of great advantage if we
could combine either the diffusion and/or the addition of the reaction terms within Fourier
space not only in order to save time but also to obtain a more exactly solution compared to
the semi-implicit scheme. It turns out there are several ways of solving Barkley’s equation
with spectral methods, and in this section we will describe one of the methods Shardlow
described in [4].

In [4], Shardlow suggest the following solution method for Barkley’s equation with
additive noise, which is a combination of spectral differentiation for the the diffusion term
and the explicit Euler update rule for the reaction terms. This method will be denoted as
Shardlows method.

1. Compute the coefficients ûn
i j of un

i j by the FFT. Update

ûn+1/2
i j =

exp(−Dλi j∆t)(ûn
i j + αi jwn

i j), i, j < M,
exp(−Dλi j∆t)ûi j

Calculate un+1/2 as the inverse transform of ûn+1/2.

2. Apply reaction terms

un+1
i j = un+1/2

i j + (∆t/ε) f (un+1/2
i j , vn

i j)

vn+1
i j = vn

i j + ∆tg(un+1/2
i j , vn

i j)
(III.9)

Part 1 can be recognized from sample code III.1 given earlier in the appendix, where also
αi j and wi j are specified. Why we can multiply with exp(−Dλi j∆t) for adding diffusion
in Fourier space might not be immediately intuitive, but it will become clearer in the next
chapter when we are examining Integrating Factor methods. And of course, we could also
use the semi-implicit approximation in step two. Shardlow also discusses related schemes
solving Barkley’s equation for the fluctuating inhibitor field model (the scheme above is
easily adapted to other kinds of noise, so we will not describe how in details), and it is also
found for which value of M which of the semi-spectral method or the pure explicit Euler
method is the most effective.

*

Obviously, this solution paradigm involves an extensive amount of Fourier transforms, so
one of the prime characteristics of how useful the methods originating from this sort of
thinking are, is how effective the particular implementation of Fourier transform we chose
to use. For the MATLAB implementations we will use the in-build functions fft2() and
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ifft2() which are effective and easy to use. For the C++ implementations we will use the
slightly more complicated third party sub routine library FFTW3.0.

A few things which is of interest is to which degree Shardlows method outperforms
the simpler Euler schemes depending on M and ∆t. At M = 0 each iterations with the
Euler schemes would probably be faster due to the lack of Fourier transforms, but as M
increases the difference would probably shrink.

Fig III.5 shows the performance of some of the solution schemes discussed so far as a
function of M and ∆t implemented both in C++ and MATLAB. The first thing to notice is
how the implementation in C++ outperforms MATLAB in all cases except for the explicit
Euler scheme with M = 0, but it is important to keep in mind that the simulations done
in MATLAB does not utilize parallelization as the first implementation does. We also see
that the step from no Fourier transforms to one Fourier transform causes a lot of extra work
for the Explicit Euler method.
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Wavefront

MATLAB

Figure III.5: Run times as a function of M for the C++ wavefront application (without visualiza-
tion) and MATLAB. The plots measures the number of seconds to reach virtual time equal 100, that
is, the time it takes to reach i∆t = 100. Here, ∆t = 0.06 unless otherwise noted.
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Figure III.6: Calculation time and relative error of the explicit and implicit Euler method with
five-point approximation to the Laplacian. The error is measured relative to the solution obtained
with the ETDRK4B method with ∆t = 0.0001 at T = 8.
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IV
Exponential IntegratorMethods

In this chapter we will study the application of exponential integrator methods on Barkley’s
equation. Anyone trying to get a hold on exponential integrators will soon realize that the
topic is a bit perplexing; the methods has usually been invented and reinvented several
times causing the same method to be known under several different names. This chap-
ter will therefore start with a short introduction to the main subclass of methods, and then
move on to examine how the schemes can be applied to Barkley’s equation. For a through-
out and easy accessible introduction to the topic, A review of exponential integrators for
first order semi-linear problems by B. V. Minchev and W. M. Wright ([25]) can be recom-
mended.

A Short Introduction to Exponential IntegratorMethods

Exponential Integrator Methods are a set of methods developed to obtain a numerical
solution of differential equations on the form

ut = f (u, t) = Lu + N(u, t) (IV.1)

if L is a linear operator (e.g. a diffusion operator) and N(u, t) is a nonlinear function of u
and t. That is, Exponential Integrator methods are methods developed for problems that
can be splitted into a linear and nonlinear part. The aim of the method is to solve the linear
part exactly and then iterate to find a approximation to the nonlinear part.

There exists different classes of Exponential Integrator methods with widely differ-
ent properties and we will later examine some of then applied to a general context, but
according to [24] they all have two main features in common:

1. If L ≡ 0 then the scheme will reduce itself to a standard general linear scheme, in
literature denoted as the “underlying standard general linear scheme”.

2. If N(u, t) ≡ 0 then then the scheme will reproduce the exact solution of ut = Lu.

These features can alone be understood as a bit diffuse, but the exact meaning will later be
made clear. We can also define the Exponential Integrator methods in the same manner.
Following [25],

47



CHAPTER IV. EXPONENTIAL INTEGRATOR METHODS

Definition 1.1. An exponential integrator is a numerical method which involves an expo-
nential function (or a related function) of the Jacobian or an approximation to it.

Exponential Time Differenecing methods

The philosophy behind the exponential integrators can be illuminated by studying modifi-
cations of the Euler method. As the reader should know and which is also stated earlier in
this paper, Euler’s explicit method for ordinary differential equations on the form IV.1 is
given by

un+1 = un + ∆t f (un, tn)

The above equation can be linearized to obtain

u′ = f (un) + f ′(un)(u − un−1)

The linearized version has the analytical solution

un+1 = un + ∆tφ1(h f ′(un, tn)) f (un, tn), φ1(z) =
ez − 1

z
What we have just derived is an example of a simple Exponential Integrator method called
the Exponential Euler Method. For general problems on the form IV.1 this scheme will
have accuracy of order two. This method has been further generalized in the direction
of generalized Runge-Kutta methods and linear multi-step methods. Notice that solution
schemes based on this thinking will usually use an approximation to the Jacobian (in two
or more dimensions) and not the Jacobian itself. e.g we a natural approximation to the
Jacobian would be L itself, yielding the following method

un+1 = un + ∆tφ(∆tL)(Lun + N(un, tn))

⇒ un+1 = e∆tLun + ∆tφ1(∆tL)N(un)
(IV.2)

This method is now know as the ETD-Euler or the ETD-Nørsett method, where ETD is an
acronym for Exponential Time Differenecing.

There is an alternative way of obtaining the ETD-Euler method. If we multiplied IV.1
with e(tn−t)L we could use the chain rule to change the initial differential equation into the
following:

e(tn−t)Lu′(t) = e(tn−t)LLu(t) + e(tn−t)LN(u(t))

⇒
(
e(tn−t)Lu(t)

)′
= e(tn−t)LN(u(t))

(IV.3)

If we integrate IV.3 we would obtain the following representation of un+1:

un+1 = e∆tLu(tn) + e(tn+∆t)L
∫ tn+∆t

tn
e−τLN(u(τ))dτ

and now if we substitute τ = tn + θ∆t we will have

un+1 = e∆tLu(tn) + ∆t
∫ 1

0
e(1−θ)∆tLN(u(tn + θ∆t), tn + θ∆t)dθ
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The subclass of Exponential Integrators know as ETD-methods, including the ETD-
Euler method, will arise from approximating N(u(τ), τ) by appropriate polynomials p(θ)
and then integrate exactly.

Integrating factor methods

From IV.3 we can also derive another class of Exponential Integrators. Let us apply the
exponential Euler method on it and then transform back we would get

un+1 = e∆tLun + e∆tL∆tN(un) (IV.4)

which is known as the Lawson-Euler, and the class of explicit integrators based on this
philosophy is known as Lawson methods or Integrating Factor (IF) methods. The trans-
formation we used, v(t) = e(tn−t)Lu(t) is known as the Lawson transformation. Of course,
the solution schemes applicable on IV.3 is not limited to the explicit Euler rule, and we
could instead use e.g an M stage Runge-Kutta scheme (often denoted Lawson-Runge-
Kutta schemes) and the methods would then take the form

Yi =
∑i−1

j=1 ai je(ci−c j)∆tL∆tN(Y j) + eci∆tLun, i = 1, 2, ...,M,

un+1 =
∑M

j=1 bie(ci−c j)∆tL∆tN(Y j) + e∆tLun

(IV.5)

and we will later see how this works out in practice.
Some of the drawbacks of the Integrating factor methods necessary to be aware of

are that their stiff order is limited to one, which is due to the fact that they only use the
exponential function.

*

The Lawson methods and the ETD-methods are just two classes of methods of the
many constituting the currently developed Exponential Integrator methods. Among meth-
ods not mentioned here is the Lie Group methods which solves the differential equation
by transforming it to an equation evolving on a Lie group, and the Generalized Lawson
schemes. All Exponential Integrator methods can be generalized by the following frame-
work, known as the Exponential General Linear methods, defined by the following internal
stages and the given output approximation,

Yi =

M∑
j=1

ai j(∆tL)∆tN(Y j, tn + c j∆t) +

r∑
j=1

yi j(∆tL)u[n−1]
j

u[n]
i =

M∑
j=1

bi j(∆tL)∆tN(Y j, tn + c j∆t) +

r∑
j=1

vi j(∆tL)u[n−1]
j

(IV.6)

The r quantities u[n−1]
1 , u[n−1]

2 ...u[n−1]
r are known. The coeffcient functions a, b, c,y and v are
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to be represented in tableau form,

c1 a11(z) . . . a1M(z) y11(z) . . . y1M(z)
...

...
...

...
...

cM aM1(z) . . . aMM(z) yM1(z) . . . yMM(z)

b11(z) . . . b1M(z) v11(z) . . . v1M(z)
...

...
...

...

br1(z) . . . brM(z) vr1(z) . . . vrM(z)

(IV.7)

The two simplest schemes would be first the Lawson-Euler scheme,

0 0 1

ez ez

which give rise to IV.4, and the ETD-Euler tableau

0 0 1

φ1(z) ez
(IV.8)

which gives IV.2

Solving Barkley’s equation with Integrating Factor methods

As an example, it will be shown how to create an explicit Runge Kutta method without
stiffness by first transforming the equation. A further discussion of such methods can be
found in [20] and [21]. A particularly accessible introduction to some of the concepts
used can be found in [19]. If we apply the well know Fourier transformation to Barkley’s
equation we would obtain

Ut(k, l) = −D(π/L)2(k2 + l2)U(k, l) + 1
ε
F [ f (u, v)]

Vt(k, l) = −Dv(π/L)2(k2 + l2)V(k, l) + F [g(u, v)]

where U and V are the Fourier transforms of u and v, i.e.

F [u(x, y)] = U(k, l) =

∫ ∞

−∞

∫ ∞

−∞

u(x, y)e−2πi(kx+ly)dxdy

and k and l are the wave modes corresponding to each spatial dimension. We will now
discretize the domain into a unit square with homogeneous mesh, and use the substitution
λi j = (π/L)2(i2 + j2) so that i and j corresponds to given wave modes. If we set
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Ui j = e−Dλi jtŨi j, Vi j = e−Dvλi jtṼi j

and use the chain rule and remove the linear term of the initial transformed problem,
leaving us with

(Ũt)i j = eDλi jtF [ f (ui j, vi j)], (Ṽt)i j = eDvλi jtF [g(ui j, vi j)] (IV.9)

Needless to say, the above equation is far more appealing than our starting point; the stiff
diffusion term is now gone. What is left is to find a suitable solution scheme. In [20] it is
shown what the solution would look like if a general M-stage Runge Kutta scheme were
to be used, and in order to give a more complete intuition for what those possible solution
schemes would look like, we will continue and examine this method.

Solving IV.9 with the classical explicit 4-stage Runge-Kutta method (IFRK4)

An overview of Runge Kutta methods can be found e.g. in [22] section 8.3. As in [20],
denote µi and ν j denote the k’s corresponding with the different variables. In general, an
explicit M-stage Runge Kutta method is given by

Un+1 = e−Dλ∆t

Un +

M∑
i=1

biµ̃i

 , Vn+1 = e−Dvλ∆t

Vn +

M∑
i=1

biµ̃i

 ,
where the coefficient functions are given by

µ̃i = eDλai∆t∆tF { 1
ε

f [F −1(U(n+ci)),F
−1(V(n+ci))]},

ν̃i = eDvλci∆t∆tF {g[F −1(U(n+ai)),F
−1(V(n+ci))]},

(IV.10)

and

Un+ci = e−Dλ∆t

Un +

i−1∑
j=1

ai jµ̃ j

 , Vn+ci = e−Dvλ∆t

Vn +

i−1∑
j=1

ai jν̃ j

 (IV.11)

Notice that we have used the following substitution

µ̃i = µie−Dλtn , ν̃i = νie−Dvλtn .

The coefficients ai, bi j and ci comes from a Butcher tableau. In this example we will show
how the solution turns out with the classical 4-stage Runge-Kutta method, defined by the
tableau IV.1. We will denote this scheme as IFRK4. Combining the information in the
aforementioned tableau with the the above computations, we will arrive an update rule
with the following stages
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0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

(IV.13)

Table IV.1: The classical 4-stage Runge-Kutta scheme.

Un = F (u), Vn = F (v)

U1 = Un, V1 = Vn

F1 = ∆tF [ 1
ε

f (un, vn)] Fv1 = ∆tF [g(un, vn)]

U2 = e−D/2λi j∆t(U1 + 0.5F1) V2 = e−Dv/2λi j∆t(V1 + 0.5Fv1)

F2 = ∆teD/2λi j∆tF
[

1
ε

f (F −1(U2),F −1(V2))
]

Fv2 = ∆teDv/2λi j∆tF
[

1
ε

f (F −1(U2),F −1(V2))
]

U3 = e−D/2λi j∆t(U1 + 0.5F2) V3 = e−Dv/2λi j∆t(V1 + 0.5F2)

F3 = ∆teD/2λi j∆tF
[

1
ε

f (F −1(U3),F −1(V3))
]

Fv3 = ∆teDv/2λi j∆tF
[

1
ε

f (F −1(U3),F −1(V3))
]

U4 = e−Dλi j∆t(U1 + F3) V4 = e−Dvλi j∆t(V1 + Fv3)

F4 = ∆teDλi j∆tF
[

1
ε

f (F −1(U3),F −1(V3))
]

Fv4 = ∆teDvλi j∆tF
[

1
ε

f (F −1(U3),F −1(V3))
]

Un+1 = e−Dλi j∆t(Un + 1
6 (F1 + F2 + F3 + F4)) Vn+1 = e−Dvλi j∆t(Un + 1

6 (Fv1 + Fv2 + Fv3 + Fv4))

un+1 = F −1(Un+1) vn+1 = F −1(Vn+1)
(IV.12)

for updating un. An interesting question is whether we should use the given update scheme
for vn also, or simply use the explicit Euler scheme. The last option could seem feasible
due to the slow nature of the g(u, v) term and that it’s time consumption is very low, and we
can test the different options in practice to see what errors they give. This is illustrated in
fig IV.1, where we can see that for large ∆t, the error is rather large but when ∆t decreases
the difference will diminish. This is good, because using IFRK4 for both u and v will
double the time consumption compared to IFRK4 only for u and explicit Euler for v, but
keep in mind that the plot would probably look very different if we included diffusion in
the v term.

We will study the performance of this method compared to other methods later in this
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Figure IV.1: The plot shows the relative error of the IFRK4 method with different update rules for
vn. The error is measured against the solution of the ETDRK4B method with ∆t = 1e-5. The error
has been measured on a grid with N = 256.

chapter. A sample implementation is given in fig A.1 in the appendix.

Solving Barkley’s equation with Exponential Time
Differencing methods

For our purpose we will use the following scheme invented by S. Krogstad in [26] ap-
plied to the Fourier transformed verson of Barkley’s equation IV.9. It is given the name
ETDRK4-B as it is an improvement of the standard fourth order ETD Runge-Kutta scheme
ETDRK4.

Un+1 = φ0(L∆t)Un + ∆t[4φ3(L∆t) − 3φ2(L∆t) + φ1(L∆t)]N(Un,Vn)+

2∆t[φ2(L∆t) − 2φ3(L∆t)]N(µ2, ν2)+

2∆t[φ2(L∆t) − 2φ3(L∆t)]N(µ3, ν3)+

∆t[4φ3(L∆t) − φ2(L∆t)]N(µ4, ν4)

(IV.14)

where (in the case of Barkley’s equation) N(U, v) = 1
ε
F [ f (F −1(U),F −1(V))], and with
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the following intermediate stages

µ2 = φ0(L∆t/2)Un + (∆t/2)φ1(L∆t/2)N(Un,Vn)

µ3 = φ0(L∆t/2)Un + (∆t/2)[φ1(L∆t/2) − 2φ2(L∆t/2)]N(Un, vn)+

∆tφ2(L∆t/2)N(µ2, ν2)

µ4 = φ0(L∆t)Un + (∆t)[φ1(L∆t) − 2φ2(L∆t)]N(Un,Vn)+

2∆tφ2(L∆t)N(µ3, ν3)

(IV.15)

where the exponential functions φi(z) are given by

φ0(z) = ez, φ1(z) =
ez − 1

z
, φ2(z) =

ez − 1 − z
z2 , φ3(z) =

ez − 1 − z − z2/2
z3 .

The update rule for Vn and the intermediates steps ν2, ν3 and ν4 are equivalent.
However, implementing this is not as straight forward task as it might seems because

the exponential functions φi(z) inherits serious numerical instabilities. The simplest illus-
tration of this will be to examine φ1(z) for z→ 0; L’Hopital’s rule tells us that the limiting
value in this case will approach 1, but for any digital implementation this will lead to can-
cellation errors. The problem is further discussed by Kassam and Trefethen in [27], where
the problem is described to be related to the L matrix, which for Barkley’s equation and
other reaction-diffusion equations is close to singular.

Kassam and Trefethen also discuss some solutions to the problem. The simplest con-
sist of using the Taylor expansion of the exponential function in the domain where the
cancellation errors grows too prominent. However, a more interesting approach they also
discuss is to use results from complex analysis. Their suggestion is to integrate the follow-
ing integral around a contour Γ containing the point z = 0,

f (z) =
1

2πi

∫
Γ

f (t)
t − z

dt (IV.16)

where the function f (t) is the exponential function φi(z) we want to evaluate. Kassam and
Trefethen suggest we approximate the integral by means of the trapezoidal rule, and how
this can be done is shown in the appendix section A.4.

Results and summary of observations

We will now test the performance of some of the methods discussed so far. We will
measure the error at time T = 8 relative to the corresponding solution of the ETDRK4B
scheme solved with ∆t = 1e−5 on a grid with N = 256. The resulting plot showing relative
error is given in fig IV.2. The required calculation time for different step sizes is given in
fig IV.3, and the required calculation time corresponding to different relative errors are
given in fig IV.4. All implementations are done in MATLAB. The initial condition has
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been a spiral wave, and T = 8 for a spiral with the given parameters gives us about one
rotation.

Fig IV.2 is supplemented with a reference slope illustrating 1/∆t, proving that the other
methods has a convergence on the form C(∆t)−1 for a constant C. The plot showing the
error of the ETDRK4B method appears to have some anomalies who’s origin must be
the fact that we are comparing it with the relative error of it self, but can we see some
indications that it also fit this characteristic.

By comparing fig IV.2 and fig IV.3 we observe that ETD-Euler is the fastest but also
most inaccurate scheme. If we ignore ETDRK4B, we can use fig IV.4 to see that it is
actually IFRK2 that gives the best accuracy fastest.

We see from fig III.6 and fig IV.2 that although the Euler schemes are simple and
easy to implement, exponential integrator methods of equal simplicity e.g. the ETD-Euler
method performs much better and has by far stronger stability. Also, even though the
semi-implicit Euler scheme works well for some temporal step sizes, the error it produces
will grow to large and cause of solution to become erroneous. The implicit Shardlow
method works quite well, but cannot compete with the higher order schemes like IFRK4
and ETDRK4B. We can also clearly see that IFRK4 converges quite quickly, this behavior
is expected for exponential integrator methods of higher order.
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Figure IV.2: Relative error.
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Figure IV.3: Required calculation time.
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Figure IV.4: Required calculation time plotted against relative error.
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V
Concluding Remarks

Some of the features that were planned for the Wavefront application was first of all sup-
port for the ETD methods and use of existing scientific libraries (e.g. BLAS) for matrix and
vector operations. However, due to lack of time these features where abandoned, mainly
because of the unexpected problem with numerical instabilities of the φ(z) functions asso-
ciated with the ETD methods. Other features that could be implemented as a continuation
of the work could be spiral tip tracers in order to draw meander patterns and cluster de-
tections algorithms to collect data of formation of stable spirals in chaotic patterns. But of
course, there will never be any practical endings for the multitude of functionality that can
be added to such applications.

Using C++ as a practical tool for scientific purposes has positive and negative aspects.
As we have seen, all implementations made in C++ are quite faster than the implemen-
tations made in MATLAB due to the fact that it utilizes paralellization and of course the
hardware adaptable implementation of the Fourier transform that were used. If we had
implemented a scientific numerical libraries like BLAS instead of for-loops for matrix op-
erations, we would probably have seen an additional significant speedup. The negative
aspects include difficulties in implementation; several hours was necessary to learn and
understand the FFTW3.0 software for Fourier transforms, and in C++, the code for the
IFRK4 method fills pages (compare with A.1) and required almost a day of work to func-
tion properly, while a fully functional implementation in MATLAB is done in half an hour.
The last drawback of using C++ is difficulties in gathering of data; e.g. all the statistics
about the error of the different methods represented in IV had to be done in MATLAB
simply because it was the most practical.
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APPENDIX A. APPENDIX

A. 2D IFRK4 implemented inMATLAB

1 %% SOLVING BARKLEY ’ S EQUATION WITH AN INTEGRATING FACTOR METHOD
2 % u t = D ( u x x +u y y ) +1 / eps u∗(1−u ) ∗ ( u−( v+b ) / a ) )
3 % v t = Dv ( v x x +v y y ) + ( u−v )
4 % T h i s code s o l v e s t h e problem i n two d imens ions , w i t h a s p i r a l as t h e
5 % i n i t i a l c o n d i t i o n
6 %% ========= GENERIC SET UP AND INITIAL CONDITIONS ===============

7 N =512; Lt=pi ∗N / 3 2 ; d t = 0 . 0 1 ;
8 a = 0 . 7 5 ; b =0 . 0 0 1 ; eps = 1 / 0 . 0 3 ; D= 0 . 2 ; Dv=3;
9 u = z e r o s (N) ; v=z e r o s (N) ;

10 u (N / 2 : N , : ) = 0 . 9 ; v ( : , N / 2 : N) = 0 . 9 ; nmax =10000;
11 L= e i g e n v a l u e s (N, Lt ) ; U= f f t 2 ( u ) ; V= f f t 2 ( v ) ;
12
13 EuM5 = exp (−D∗ e i g ∗ . 5∗ d t ) ; Eu5 = exp (D∗ e i g ∗ . 5∗ d t ) ;
14 EuM1 = exp (−D∗ e i g ∗1 . 0∗ d t ) ; Eu1 = exp (D∗ e i g ∗1 . 0∗ d t ) ;
15 EvM5 = exp (−Dv∗ e i g ∗ . 5∗ d t ) ; Ev5 = exp ( Dv∗ e i g ∗ . 5∗ d t ) ;
16 EvM1 = exp (−Dv∗ e i g ∗1 . 0∗ d t ) ; Ev1 = exp ( Dv∗ e i g ∗1 . 0∗ d t ) ;
17 %% ======================= TIME STEPPING LOOP =====================

18 f o r i =1: nmax
19 F1=d t ∗ f f t 2 ( eps ∗ t i l d e f ( u , v , a , b , I ) ) ;
20 F1v=d t ∗ f f t 2 ( t i l d e g ( u , v , I ) ) ;
21 U2 = EuM5 . ∗ (U+0.5∗F1 ) ; V2 = EvM5 . ∗ (V+0.5∗ F1v ) ;
22 F2=d t ∗Eu5 . ∗ f f t 2 ( eps ∗ t i l d e f ( i f f t 2 ( U2 ) , i f f t 2 ( V2 ) , a , b , I ) ) ;
23 F2v=d t ∗Ev5 . ∗ f f t 2 ( t i l d e g ( i f f t 2 ( U2 ) , i f f t 2 ( V2 ) , I ) ) ;
24 U3 = EuM5 . ∗ (U+0.5∗F2 ) ; V3 = EvM5 . ∗ (V+0.5∗ F2v ) ;
25 F3=d t ∗Eu5 . ∗ f f t 2 ( eps ∗ t i l d e f ( i f f t 2 ( U3 ) , i f f t 2 ( V3 ) , a , b , I ) ) ;
26 F3v=d t ∗Ev5 . ∗ f f t 2 ( t i l d e g ( i f f t 2 ( U3 ) , i f f t 2 ( V3 ) , I ) ) ;
27 U4 = EuM1 . ∗ (U+F3 ) ; V4 = EvM1 . ∗ ( V+F3v ) ;
28 F4=d t ∗Eu1 . ∗ f f t 2 ( eps ∗ t i l d e f ( i f f t 2 ( U4 ) , i f f t 2 ( V4 ) , a , b , I ) ) ;
29 F4v=d t ∗Ev1 . ∗ f f t 2 ( t i l d e g ( i f f t 2 ( U4 ) , i f f t 2 ( V4 ) , I ) ) ;
30 U=EuM1 . ∗ ( U+1 /6∗ ( F1+2∗F2+2∗F3+F4 ) ) ;
31 V=EvM1 . ∗ ( V+1 /6∗ ( F1v+2∗F2v+2∗F3v+F4v ) ) ;
32
33 v= i f f t 2 (V) ; u= i f f t 2 (U) ;
34 end
35 imagesc ( u ) ;

Figure A.1: IFRK4 implemented in MATLAB. This particular setup will give rise to a stagnating
labyrinthine pattern.
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B. Constructing noise inMATLAB

1
2 i n i t i a t e q u a d r a t i c m a t r i x u .
3 i n i t i a t e m a t r i x e i g v o f e i g e n v a l u e s a c c o r d i n g t o III.2
4
5 whi le ( t r u e )
6 u h a t= f f t 2 ( u ) ;
7 uo ld=u ;
8 u h a t= f f t s h i f t ( u h a t ) ;
9

10 f o r xx =1:N
11 f o r yy =1:N
12 %by uncommenting t h e f o l l o w i n g l i n e we w i l l add d i f f u s i o n .
13 %uha t ( xx , yy ) = exp (−D∗ e i g v ( yy , xx ) ∗ d t ) ∗ uha t ( xx , yy ) ;
14
15 % add n o i s e t o f r e q u e n c i e s l e s s than M
16 i f ( xx<M && yy<M)
17 a l p h a= s q r t ( exp (− e i g v ( xx , yy ) ∗ s p a t l ˆ 2 / pi ) ) ;
18 u h a t ( xx , yy )=u h a t ( xx , yy )+s igma ∗ ( s igma ˆ2∗ d t / ( L ˆ 2 ) ) ∗randn ( ) ∗

a l p h a ;
19 end
20 end
21 end
22
23 u h a t= i f f t s h i f t ( u h a t ) ;
24 u=r e a l ( i f f t 2 ( u h a t ) ) ;
25
26 pause ( 0 . 0 1 )
27 imagesc ( r e a l ( u ) )
28 end

Figure A.2: uhat is the Fourier transform of u, eigval(xx, yy) is a function returning the correspond-
ing eigenvalue of the coordinate (xx, yy) and sigma is a constant regulating the noise intensity (the
same σ used e.g. in II.2). The function randn() returns a number drawn from the standard normal
distribution. The rest should be self-explanatory. Notice that whether or not use of the function fft-
shift(), which is an in-build function that ”shift zero-frequency component to center of spectrum”, is
necessary or not is depending on how the eigenvalues is formatted. If we are to use the simple form
given in III.2, the result will not be correct unless fftshift() is used.

C. 2D ETDRK4-B implemented inMATLAB

1 %% ========= GENERIC SET UP AND INITIAL CONDITIONS ===============

2 N =512; L=pi ∗N / 3 2 ; d t = 0 . 0 1 ;
3 a = 0 . 7 5 ; b =0 . 0 0 1 ; eps = 1 / 0 . 0 3 ; D= 0 . 2 ; Dv=3;
4 u = z e r o s (N) ; v=z e r o s (N) ;
5 u (N / 2 : N , : ) = 0 . 9 ; v ( : , N / 2 : N) = 0 . 9 ; nmax =10000;
6 L= e i g e n v a l u e s (N, L ) ; U= f f t 2 ( u ) ; V= f f t 2 ( v ) ;
7
8 ph i0 = exp (−D∗L∗ d t ) ; ph i0v = exp (−Dv∗L∗ d t ) ;
9 ph i02=expfunc ( 0 , 1 ,N,−D∗L , d t ) ; ph i02v=expfunc ( 0 , 1 ,N,−Dv∗L , d t ) ;

10 ph i1=expfunc ( 1 , 0 ,N,−D∗L , d t ) ; ph i1v=expfunc ( 1 , 0 ,N,−Dv∗L , d t ) ;
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11 ph i12=expfunc ( 1 , 1 ,N,−D∗L , d t ) ; ph i12v=expfunc ( 1 , 1 ,N,−Dv∗L , d t ) ;
12 ph i2=expfunc ( 2 , 0 ,N,−D∗L , d t ) ; ph i2v=expfunc ( 2 , 0 ,N,−Dv∗L , d t ) ;
13 ph i22=expfunc ( 1 , 1 ,N,−D∗L , d t ) ; ph i22v=expfunc ( 1 , 1 ,N,−Dv∗L , d t ) ;
14 ph i3=expfunc ( 3 , 0 ,N,−D∗L , d t ) ; ph i3v=expfunc ( 3 , 0 ,N,−D∗L , d t ) ;
15
16 U= f f t 2 ( u ) ; V= f f t 2 ( v ) ;
17 %% ======================= TIME STEPPING LOOP =====================

18 f o r i =1: nmax
19 NUV= f f t 2 ( eps ∗ t i l d e f ( u , v , a , b , I ) ) ; NUVv= f f t 2 ( t i l d e g ( u , v , I ) ) ;
20
21 nu2 = ph i02v . ∗V+( d t / 2 ) ∗ ph i12v . ∗NUVv;
22 mu2 = ph i02 . ∗U+( d t / 2 ) ∗ ph i12 . ∗NUV;
23 i f f t 2 m u 2= i f f t 2 ( mu2 ) ; i f f t 2 n u 2 = i f f t 2 ( nu2 ) ;
24 f f t f m u 2 n u 2 = f f t 2 ( eps ∗ t i l d e f ( i f f t 2 m u 2 , i f f t 2 n u 2 , a , b , I ) ) ;
25 f f t f m u 2 n u 2 v = f f t 2 ( t i l d e g ( i f f t 2 m u 2 , i f f t 2 n u 2 , I ) ) ;
26
27 nu3 = ph i02v . ∗V+( d t / 2 ) ∗ ( phi12v −2∗ ph i22v ) . ∗NUVv + . . .
28 d t ∗ ph i22v . ∗ f f t f m u 2 n u 2 v ;
29 mu3 = ph i02 . ∗U+( d t / 2 ) ∗ ( phi12 −2∗ ph i22 ) . ∗NUV+ . . .
30 d t ∗ ph i22 . ∗ f f t f m u 2 n u 2 ;
31 i f f t 2 m u 3= i f f t 2 ( mu3 ) ; i f f t 2 n u 3 = i f f t 2 ( nu3 ) ;
32 f f t f m u 3 n u 3 v = f f t 2 ( t i l d e g ( i f f t 2 m u 3 , i f f t 2 n u 3 , I ) ) ;
33 f f t f m u 3 n u 3 = f f t 2 ( eps ∗ t i l d e f ( i f f t 2 m u 3 , i f f t 2 n u 3 , a , b , I ) ) ;
34
35 nu4= ph i0v . ∗V+d t ∗ ( phi1v −2∗ ph i2v ) . ∗NUVv + . . .
36 2∗ d t ∗ ph i2v . ∗ f f t f m u 3 n u 3 v ;
37 mu4 = ph i0 . ∗U+d t ∗ ( phi1 −2∗ ph i2 ) . ∗NUV + . . .
38 2∗ d t ∗ ph i2 . ∗ f f t f m u 3 n u 3 ;
39 i f f t 2 m u 4= i f f t 2 ( mu4 ) ; i f f t 2 n u 4 = i f f t 2 ( nu4 ) ;
40
41 U = ph i0 . ∗U + . . .
42 d t ∗ ( 4∗ phi3 −3∗ ph i2+ph i1 ) . ∗NUV+ . . .
43 2∗ d t ∗ ( phi2 −2∗ ph i3 ) . ∗ f f t f m u 2 n u 2 + . . .
44 2∗ d t ∗ ( phi2 −2∗ ph i3 ) . ∗ f f t f m u 3 n u 3 + . . .
45 d t . ∗ ( 4 ∗ phi3−ph i2 ) . ∗ f f t 2 ( eps ∗ t i l d e f ( i f f t 2 m u 4 , i f f t 2 n u 4 , a , b , I ) ) ;
46
47 V = ph i0v . ∗V + . . .
48 d t ∗ ( 4∗ phi3v −3∗ ph i2v+ph i1v ) . ∗NUVv + . . .
49 2∗ d t ∗ ( phi2v −2∗ ph i3v ) . ∗ f f t f m u 2 n u 2 v + . . .
50 2∗ d t ∗ ( phi2v −2∗ ph i3v ) . ∗ f f t f m u 3 n u 3 v + . . .
51 d t . ∗ ( 4 ∗ phi3v−ph i2v ) . ∗ f f t 2 ( t i l d e g ( i f f t 2 m u 4 , i f f t 2 n u 4 , I ) ) ;
52
53 v = i f f t 2 (V) ; u = i f f t 2 (U) ;
54 end
55 imagesc ( u ) ;

Figure A.3: ETDRK4-B implemented in MATLAB. This particular set up will give rise to a stable
spiral pattern.

D. Calculation of the exponential functions φi(z) by means
of approximating complex integrals inMATLAB

1 f u n c t i o n p h i=expfunc ( i , s econda ry , N, L , d t )
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2 M=64; %number o f p o i n t s i n t h e complex h a l f p l a n e
3 r = exp (1 i ∗ pi ∗ ( ( 1 :M) −0.5) /M) ;
4 L = L ( : ) ; z = d t ∗L ( : , ones (M, 1 ) )+ r ( ones (Nˆ 2 , 1 ) , : ) / 2 ˆ s e c o n d a r y ;
5
6 i f ( p r i m a r y ==0)
7 p h i = exp ( d t ∗L / 2 ˆ s e c o n d a r y ) ;
8 e l s e i f ( i ==1)
9 p h i = r e a l ( mean ( ( exp ( z ) −1) . / ( z ) , 2 ) ) ;

10 e l s e i f ( i ==2)
11 p h i = r e a l ( mean ( ( exp ( z )−1−z ) . / ( z . ∗ z ) , 2 ) ) ;
12 e l s e i f ( i ==3)
13 p h i = r e a l ( mean ( ( exp ( z )−1−z−z . ∗ z / 2 ) . / ( z . ∗ z . ∗ z ) , 2 ) ) ;
14 end
15
16 p h i=reshape ( phi , N,N) ;
17 re turn

Figure A.4: This is an example showing how the exponential functions φi for i = 0, 1, 2, 3 can
be approximated using MATLAB. The function utilizes the complex integral method invented by
Kassam et.al in [27].

E. Implementation of Euler-Lawson in C++

1 vo id wavespace : : e u l e r l a w s o n u p d a t e s p a c e ( do ub l e i n t e n c i t y , i n t seed ,
Q S t r i n g r e a c t i o n k i n e t i c s )

2 {
3 / ∗ −−−−−−−− v a r i a b l e s f o r ad d i ng n o i s e −−−−−−−−∗/
4 g s l r n g ∗ r = g s l r n g a l l o c ( g s l r n g m t 1 9 9 3 7 ) ;
5 g s l r n g s e t ( r , t ime ( 0 ) ∗ s eed ) ;
6 d ou b l e r1 ;
7
8 i n t k =0;
9

10 / ∗ P o p u l a t e t h e input d a t a i n row−major o r d e r ∗ /

11 f o r ( i n t i = 0 ; i < N; i ++)
12 {

13 f o r ( i n t j = 0 ; j < N; j ++ , k++)
14 {

15 f o u r i e r s p a c e [ k ] [ 0 ] = u s p a c e [ i ] [ j ] ;
16 f o u r i e r s p a c e [ k ] [ 1 ] = 0 ;
17 }

18 }

19
20 / ∗ Trans fo rm u s p a c e f o u r i e r s p a c e = f f t ( u s p a c e ) ∗ /

21 f f t w e x e c u t e ( t r a n s f o r m ) ;
22
23 / ∗ Dete rmine t h e p r o d u c t u . ∗ ( I−u ) . ∗ ( u−gamma ) ∗ /

24 k =0;
25 f o r ( i n t i = 0 ; i < N; i ++)
26 {

27 f o r ( i n t j = 0 ; j < N; j ++ , k++)
28 {

29 f o u r i e r s p a c e f r e c [ k ] [ 0 ] = u s p a c e [ i ] [ j ]∗ (1 − u s p a c e [ i ] [ j ] ) ∗ (
u s p a c e [ i ] [ j ] −( v s p a c e [ i ] [ j ]+b ) / a ) ;
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30 f o u r i e r s p a c e f r e c [ k ] [ 1 ] = 0 ;
31 }

32 }

33
34 / ∗ Trans fo rm t h e f r e c p r o d u c t t o f o u r i e r space , ∗ /

35 f f t w e x e c u t e ( f r e c p l a n ) ;
36
37 / ∗ o p p d a t e r e u l e r l a w s o n s t e p ∗ /

38 # pragma omp p a r a l l e l f o r s c h e d u l e ( s t a t i c )
39 f o r ( i n t ww=0; ww<(N∗N) ; ww++)
40 {

41 d ou b l e exphL=exp (−D∗ e i g [ww]∗ d t ) ;
42 d ou b l e p h i = ( ( exphL ) −1) / exphL ;
43 p h i = exphL ;
44 f o u r i e r s p a c e [ww] [ 0 ] = p h i ∗ f o u r i e r s p a c e [ww] [ 0 ] + d t / eps ∗ p h i ∗

f o u r i e r s p a c e f r e c [ww] [ 0 ] ;
45 f o u r i e r s p a c e [ww] [ 1 ] = p h i ∗ f o u r i e r s p a c e [ww] [ 1 ] + d t / eps ∗ p h i ∗

f o u r i e r s p a c e f r e c [ww] [ 1 ] ;
46
47 / ∗ a p p l y i n g n o i s e
48 d ou b l e i n t e n c i t y 3 = i n t e n c i t y ∗ i n t e n c i t y ∗ i n t e n c i t y
49 x = ww%s p a t d i s t , y = f l o o r ( i / s p a t d i s t ) ∗ /

50 i f ( (ww%s p a t d i s t )<M && ( i n t ) ( f l o o r (ww / s p a t d i s t ) )<M)
51 {

52 r1 = g s l r a n g a u s s i a n ( r , 1 . 0 ) ;
53 d ou b l e a l p h a= s q r t ( exp (− e i g [ww] ) ∗ s p a t i a l C o r r / pi ) ;
54 f o u r i e r s p a c e [ww][0 ]+= i n t e n c i t y 3 ∗ ( d t / ( L∗L ) ) ∗ r1 ∗ a l p h a ;
55 f o u r i e r s p a c e [ww][1 ]+= i n t e n c i t y 3 ∗ ( d t / ( L∗L ) ) ∗ r1 ∗ a l p h a ;
56 }

57 }

58
59 / ∗ t r a n s f o r m back t o s p a t i a l s p a c e ∗ /

60 f f t w e x e c u t e ( t r a n s f o r m i n v e r s e ) ;
61
62 / ∗ Re−p o p u l a t e t h e u space −m a t r i x and s c a l e i t ∗ /

63 k =0;
64
65 f o r ( i n t i = 0 ; i < N; i ++)
66 {

67 f o r ( i n t j = 0 ; j < N; j ++ ,k++)
68 {

69 u s p a c e [ i ] [ j ] = f o u r i e r s p a c e [ k ] [ 0 ] / ( s p a t d i s t ∗ s p a t d i s t ) ;
70 v s p a c e [ i ] [ j ] = v s p a c e [ i ] [ j ]+ d t ∗ g r e a c t i o n ( u s p a c e [ i ] [ j ] , v s p a c e [ i

] [ j ] , r e a c t i o n k i n e t i c s ) ;
71 / / v s p a c e [ i ] [ j ] =v s p a c e [ i ] [ j ]+ d t ∗ ( u s p a c e [ i ] [ j ]− v s p a c e [ i ] [ j ] ) ;
72 }

73 }

74
75 d e l e t e r ;
76 }

Figure A.5: The code illustrates how the Euler-Lawson method is implemented in the C++ Wave-
front application. The function has three input variables; intencity which controls the intensity of the
noise, seed which seeds the random number generator and reaction kinetics which decides which
inhibitor kinetic to use when updating v. fftw execute() is an FFTW function that executes a Fourier
transform and the #pragma command tells the compilator to paralellize the following for-loop.
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F. Wavefront: Instructions for Installation

The Wavefront application is utilizing some third party software like FFTW3 for Fourier
transforms, the numerical library GSL (GNU Scientific Library) for generation of random
numbers and Qt for guided user interface. All these three libraries are free and cross
platform, but unless the user already have them installed, they will have to be downloaded
and installed before starting Wavefront. The application is developed for Ubuntu, but has
also been run successfully on OS X, and although it has not been tested, it should in theory
work well on Windows.

- Qt can be found at http://qt.nokia.com/products/

- GSL (GNU Scientific Library) can be downloaded from
http://www.gnu.org/software/gsl/

- The Fourier transform software FFTW3 can be obtained from
http://www.fftw.org/download.html

Once all the dependencies are dealt with, the application can be compiled the following
way,

1. Download and unzip all necessary files.

2. Open ”wavefront.pro” in Qt.

3. An import wizard will appear, hit ”done”.

4. Compile the program by hitting the ”run” button in the Qt Creator application.

Any questions or inquiries can be directed to bjorn.theisen@gmail.com.

G. Wavefront: Some notes on editing

The Wavefront source code primarily consist of three .cpp files including their respective
header files. These three files are wavefront.cpp, wavespace.cpp and phasedisp.cpp. In
wavefront.cpp you will find the main components determining the guided user interface
of the application, and you will need to understand Qt in order to edit it. wavespace.cpp
contains most of the numerical calculations and you will find implementations of all the
methods here. This file mostly contains plain C++ and could be easily edited by people
knowing the language, although somewhere it is necessary to know how to use FFTW3.0
which is not trivial but tutorials and documentation can be found on the software’s home
page. The variables you will need knowledge about is u space and v space which are two
dimensional floating point arrays denoting the discretization of the u and v variables. All
methods implemented in wavespace.cpp modifies these variables directly. The last file
phasedisp.cpp contains everything related to the phase plots ((G) and (H) in fig II.7).
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http://qt.nokia.com/products/
http://www.gnu.org/software/gsl/
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