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Abstract
The purpose of modeling a petroleum reservoir consists of finding the underlying
reservoir properties based on production data, seismic and other available data. In
recent years, progress in technology has made it possible to extract large amount of
data from the reservoir frequently. Hence, mathematical models that can rapidly
characterize the reservoir as new data become available gained much interest.

In this thesis we present a formulation of the first order Hidden Markov Model
(HMM) that fits into the description of a reservoir model under production. We
use a recursive technique that gives the theoretical solution to the reservoir char-
acterization problem. Further, we introduce the Kalman Filter which serves as
the exact solution when certain assumptions about the HMM are made. However,
these assumptions are not valid when describing the process of a reservoir under
production. Thus, we introduce the Ensemble Kalman Filter (EnKF) which has
been shown to give an approximate solution to the reservoir characterization prob-
lem. However, the EnKF is depending on multiple realizations from the reservoir
model which we obtain from the reservoir production simulator Eclipse. When the
number of realizations are kept small for computational purposes, the EnKF has
been shown to possibly give unreliable results. Hence, we apply a shrinkage regres-
sion technique (DR-EnKF) and a localization technique (Loc-EnKF) that are able
to correct the traditional EnKF. Both the traditional EnKF and these corrections
are tested on a synthetic reservoir case called the Brugge Field.

The results indicate that the traditional EnKF suffers from ensemble collapse
when the ensemble size is small. This results in small and unreliable prediction
uncertainty in the model variables. The DR-EnKF improves the EnKF in terms of
root mean squared error (RMSE) for a small ensemble size, while the Loc-EnKF
makes considerable improvements compared to the EnKF and produces model
variables that seems reasonable.
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Sammendrag
Modelleringen av et petroleumreservoar består av å estimere underliggende reser-
voarparametre basert på produksjonsdata, seismikk og andre typer data. I de
senere årene har utviklingen av teknologien gjort det mulig å utvinne store mengder
data fra reservoaret på kort tid. Derfor har matematiske modeller som raskt klarer å
karakterisere reserservoaret når nye data blir tilgjengelige fått stor oppmerksomhet.

I denne oppgaven presenteres en formulering av en første ordens skjult Markov
modell (HMM) som er godt tilpasset beskrivelsen av et reservoar under produk-
sjon. Her brukes det en rekursiv teknikk til å gi den teoretiske løsningen av reser-
voarkarakterisingsproblemet. Videre introduserer vi Kalman-filteret som gir ek-
sakt løsning under visse antakelser om Markov modellen. Disse antakelsene gjelder
likevel ikke i beskrivelsen av prosessen av et reservoar under produksjon. Derfor
innføres Ensemble Kalman Filter (EnKF) som har vist seg å være en tilnærmet
løsning av reservoarkarakteriseringsproblemet. Metoden EnKF er avhengig av at
mange realisasjoner genereres fra reservoarmodellen som fåes fra reservoar pro-
duksjonssimulatoren Eclipse. Når antallet realisasjoner er få på grunn av beregn-
ingsmessige årsaker gir EnKF upålitelige resultater. En mulig løsning på problemet
er å bruke en shrinkage regressjonsteknikk (DR-EnKF) eller en lokaliseringsme-
tode (Loc-EnKF) som gjør det mulig å korrigere den tradisjonelle EnKF. Både den
tradisjonelle EnKF og disse variantene av EnKF er testet på et syntetisk reservoar
case kalt Bruggefeltet.

Resultatene indikerer at den tradisjonelle EnKF lider av at ensemblet kollapser
når ensemble-størrelsen er liten. Dette resulterer i liten og urimelig usikkerhet i
modellvariablene. Sammenlignet med EnKF gir DR-EnKF metoden forbedringer
for en liten ensemble-størrelse under root mean squared error (RMSE)-kriteriet,
mens Loc-EnKF metoden gir tydelige forbedringer og produserer modellvariable
som synes å være rimelige.
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1 Introduction

In the petroleum industry, the construction of a reservoir production simulation
model is a highly necessary task when the purpose is to estimate the amount of
hydrocarbons present in the reservoir. This task involves the characterization of
model and state variables such as porosity, permeability, hydrocarbon saturation
and pressure. When new production data from wellbores are obtained, these model
and state variables must be tuned in order to fit the production data observed.
The process of tuning model and state variables is in the literature termed history
matching although the objective is not to match the observations exactly, but
rather assimilate the observations in order to make the best future predictions.

Mathematically, the determination of model and state variables is regarded as a
complex, ill-posed nonlinear inverse problem. Model variables are characterized as
being static during a reservoir production simulation run, and may include porosity,
permeability, and net-to-gross ratio. State variables are dynamic because they
change during a reservoir production simulation run and may include saturation
and pressure. Model and state variables define the state of the reservoir model.
Reservoir information obtained from the wellbores are referred to as production
data. Production data may include water production rate, oil production rate and
well bottom hole pressure.

The characterization of model and state variables being an ill-posed problem
means that there exist many reservoir models that are similarly consistent with
the observations. By this reason, there is a high risk in using only one reser-
voir production simulation model because different reservoir production simula-
tion models result in different forecasts. The complete solution should therefore
include all consistent reservoir models, which entails an uncertainty in the model
and state variables and hence uncertainty in the forecasts. The statistical approach
to the problem of determining the model and state variables is Baysian inversion.
In Baysian inversion, a priori knowledge about the model must be incorporated
through a probability distribution (prior model) before any observation is assimi-
lated. By determining a probabilistic term that connects the observations to the
model variables (likelihood model), it is possible to obtain a posteriori knowledge
about the model through a probability distribution (posterior model).

The process of continuously updating the reservoir model as new production
data occur has in recent years gained much interest. This can be attributed to
the improvement of computer power and development of mathematical models
that can incorporate many variables. Traditional methods that provide a single
reservoir production simulation model based on history production data has been
outperformed because they require much computational work. New methods that
are able to assimilate observations as soon as they become available has turned out
to be much more efficient.

The Kalman Filter (KF) (Kalman et al., 1960) is a sequential Bayesian updating
algorithm that handles models with many variables. It gives the analytical solution
to the predicted state, when the model is Gauss-linear. In a Gauss-linear model
the predicted state is linearly connected to the unpredicted state through a Gaus-
sian distribution, and the observation is linearly connected to the corresponding
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state through a Gaussian distribution. For petroleum reservoir modeling purposes
however, the Gauss-linear assumption does not hold. The Kalman Filter has been
modified to handle models that deviate from the Gauss-linear assumption. In the
Extended Kalman Filter, a linearisation is made around the mean of variables that
are nonlinear. Although it is useful in some applications, it produces unreliable
results in highly nonlinear models such as petroleum reservoir models.

The Ensemble Kalman Filter (EnKF), introduced by Evensen (1994) is a se-
quential Bayesian updating algorithm that approximates the solution to the in-
verse problem using Monte Carlo simulation. It was first used in applications
like oceanography and weather forecasting, and later in petroleum engineering
(Lorentzen et al., 2001) and has since been much used for solving inverse prob-
lems. When the Gauss-linear assumption does not hold, the solution to the inverse
problem is not analytically tractable. The EnKF is based on the idea of applying a
sample of realizations, called an ensemble, in order to capture the important char-
acteristics such as the mean and the covariance of the forecast distribution of the
state. When considering petroleum reservoirs, each ensemble member represent a
possible reservoir model state. The mean of the ensemble represents the forecast
of the state, and the spread in the ensemble represent uncertainty in the forecast.
For models that are Gauss-linear, the EnKF gives the solution to the forecast as
produced by the Kalman Filter when the ensemble size tends to infinity. Hence,
although an approximate sequential Monte Carlo algorithm the EnKF has a nice
asymptotic property.

In Section 2 we start with some of the notation used in this thesis, followed by
a formulation of a model that describes the dynamic process of a reservoir. This
section introduces a sequential algorithm that suits well to a model that needs to
be updated. Further, Section 3 introduces the traditional Kalman Filter algorithm
which gives the analytical solution to the inverse problem in cases when the model
is Gauss-linear. Section 4 describes the EnKF in the general case, and a special case
that is suited to reservoir modeling. In Section 5 we present the EnKF algorithm
in reservoir modeling in more detail. Here, we also discuss the solution in cases
when the ensemble size is small. In Section 6 we describe the equations that control
the process of a reservoir under production. This section is intended to give an
idea of what is being solved when running the reservoir production simulator. The
presented EnKF algorithm is tested on a synthetic well case, called the Brugge
field in Sections 7 and 8, using the reservoir ensemble tool (Ert). Finally, Section
9 gives a summary of what is achieved with this thesis and outline further work.

2 Notation and Model Description

Throughout this thesis we will denote a ∈ Rna that a is a vertical vector of real
entries of size na. We will denote A ∈ Rm×n a matrix of real entries with m rows
and n columns. Both a and A can include random entries. This will be clear
from the context. We use the sign ′ to denote the transpose of a vector or matrix.
Thus, A′ is a matrix of dimension n×m. Further, we will denote a ∼ f(a) that a
follows a probability distribution f(·); and for the special case a ∼ Nna

(µ,Σ) that
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a is Gaussian distributed of dimension na, with mean na-vector µ and covariance
(na × na)-matrix Σ.

We consider an unknown time series [x0, . . . , xT , xT+1], where xt ∈ Rnx ; t =
0, . . . , T+1 are multidimensional random variables. The time series [x0, . . . , xT , xT+1]
defines a system that is evolving through time t ∈ {0, . . . , T + 1}. Thus, we call xt
the state of the system at time t. We assume that a related time series of obser-
vations [do1, . . . , d

o
T ] is available, with dot ∈ Rnd ; t = 1, . . . , T being generated from

the associated states. The current state of the system is xT and the objective is to
predict the next state xT+1 based on the given observations [do1, . . . , d

o
T ].

We model the time series of [x0, . . . , xT , xT+1], by defining a prior model that
is restricted by the Markov properties:

[x0, . . . , xT , xT+1] ∼ f(x0, . . . , xT , xT+1)

= f(x0)

T∏
t=0

f(xt+1|x0, . . . , xt)

= f(x0)

T∏
t=0

f(xt+1|xt). (1)

The second line follows from successive decomposition, while the last line follows
from the first order Markov property, which states that each state given the past is
only dependent on the previous state. Moreover, we assume the initial distribution
f(x0), and the transition functions f(xt+1|xt), t = 0, . . . , T to be known. Thus we
have a model for the prior distribution that has an underlying first order Markov
property.

Further, we model the connection between observations and states by a likeli-
hood model. The likelihood model defines a probabilistic term of [do1, . . . , d

o
T ] given

[x0, . . . , xT , xT+1]. We assume two properties on the likelihood model; conditional
independence and single state dependence:

[do1, . . . , d
o
T |x0, . . . , xT , xT+1] ∼ f(do1, . . . , d

o
T |x0, . . . , xT , xT+1)

=

T∏
t=1

f(dot |x0, . . . , xT , xT+1)

=

T∏
t=1

f(dot |xt), (2)

where f(dot |xt); t = 1, . . . , T are known likelihood functions. Hence, the likeli-
hood model assumes that observation at each time point is independent of other
observations once the associated state is known. Together, the prior model and
the likelihood model form a hidden Markov model that is displayed in Figure 1.
The arrows describes latent dependencies between the nodes, and the dependencies
are determined by likelihood functions and transition functions. Using Bayesian
inversion we get the posterior model:
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[x0, . . . , xT , xT+1|do1, . . . , doT ] ∼ f(x0, . . . , xT , xT+1|do1, . . . , doT )

= const× f(do1, . . . , d
o
T |x0, . . . , xT , xT+1)

×f(x0, . . . , xT , xT+1)

= const×
T∏

t=1

f(dot |xt)f(x0)

T∏
s=0

f(xs+1|xs)

= const× f(x0)

[ T∏
t=1

f(dot |xt)f(xt|xt−1)

]
×f(xT+1|xT ), (3)

where ‘const’ is a normalizing constant. This normalizing constant is usually hard
to assess when the state dimension is large. Thus, the posterior model is rarely
analytically obtainable. But remember that the objective is to forecast xT+1 based
on do1, . . . , doT . This is obtained by the forecast distribution:

f(xT+1|do1, . . . , doT ) =

∫
. . .

∫
f(x0, . . . , xT , xT+1|do1, . . . , doT )dx0 . . . dxT . (4)

Figure 1: A picture of the first order Markov model.

This forecast distribution can be assessed by a recursive algorithm. For conve-
nience, we introduce the notation

xa0 = x0,

xat = [xt|do1, . . . , dot ]; t = 1, . . . , T.

xf1 = x1,

xft+1 = [xt+1|do1, . . . , dot ]; t = 1, . . . , T. (5)

Here, a and f denotes the assimilated and forecast outcomes, respectively. Follow-
ing is a description of the recursive algorithm:
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Algorithm 1 Recursive forecasting

Initiate: x0 ∼ f(x0)
for t = 1, . . . , T do
Forecasting:
xft ∼ f(xt) =

∫
f(xt|xat−1)f(xat−1)dxat−1

Assimilate:
xat ∼ f(xat ) = const× f(dot |x

f
t )f(xft )

end for
Last forecast:
xfT+1 = [xT+1|do1, . . . , doT ] ∼ f(xfT+1) =

∫
f(xT+1|xaT )f(xaT )dxaT

The recursive algorithm in Algorithm 1, sequentially updates the state of the sys-
tem by following a forecast operation followed by an assimilation operation. This
sequential updating process makes it possible to compute the forecast distribution.
The recursive algorithm is depending on the prior model and the likelihood model.
We define the prior model:

x0 ∼ f(x0), (6)
[xt+1|xt] = ω(xt, ε

x
t ) ∼ f(xt+1|xt). (7)

Here εxt ∼ Nnx
(0, Inx

) is a stochastic term or factor that represents the model
error, when state xt is propagated to state xt+1. This term is often separated from
the transition function ω, with the additional assumption εxt ∼ Nnx(0,Σx

t ). In the
general case, ω : (Rnx×Rnx)→ Rnx is a known function. We defines the likelihood
model by means of functions ζ:

[dot |xt] = ζ(xt, ε
d
t ) ∼ f(dot |xt), (8)

where εdt ∼ Nnd
(0, Ind) is a stochastic term or factor that represents the observa-

tion error. Often, the likelihood function ζ is independent εdt , with the additional
assumption εdt ∼ Nnd

(0,Σd
t ). Generally, ζ : (Rnx × Rnd) → Rnd is a known func-

tion. The prior and likelihood model might be chosen arbitrarily, but a reference
model choice is a linear and Gaussian model, termed the Gauss-linear model. It is
defined as:

x0 ∼ f(x0) = Nnx
(µx

0 ,Σ
x
0),

[xt|xt−1] = Atxt−1 + εxt ∼ f(xt|xt−1) = Nnx
(Atxt−1,Σ

x
t ), (9)

[dot |xt] = Htxt + εdt ∼ f(dot |xt) = Nnd
(Htxt,Σ

d
t ).

Here, µx
0 and Σx

0 are assumed known. Also the matrices At, Σx
t , Ht, and Σd

t , are
known for all times and the model and observation error terms are independent
of the state. Under this Gauss-linear model assumption, the forecast distribution
is analytically tractable. This solution corresponds to the Kalman Filter, which is
discussed next.
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3 The Traditional Kalman Filter (KF)

The KF is a recursive algorithm for assessing the forecast distribution using the
recursive algorithm in Algorithm 1, and assuming a Gauss-linear model as given by
Eq. (9). The use of the recursive algorithm ensures that Gaussianity is preserved
from one time step to the next. This is due to the property of the Gaussian
distribution being closed under linear operations. Hence, the predictive distribution
becomes Gaussian as well. A description of the Kalman filter algorithm is given in
Algorithm 2.

Algorithm 2 The Kalman Filter algorithm

Initiate: xa0 ∼ f(xa0) = Nnx
(µa

0 ,Σ
a
0)

µa
0 = µx

0

Σa
0 = Σx

0

for t = 1, . . . , T do
Forecasting:
xft ∼ f(xft ) = Nnx

(µf
t ,Σ

f
t )

µf
t = Atµ

a
t−1

Σf
t = AtΣ

a
t−1A

′

t + Σx
t−1

Assimilating:
xat ∼ f(xat ) = Nnx(µa

t ,Σ
a
t )

µa
t = µf

t + Σf
tH

′

t [HtΣ
f
tH

′

t + Σd
t ]−1(dot −Htµ

f
t )

Σa
t = Σf

t − Σf
tH

′

t [HtΣ
f
tH

′

t + Σd
t ]−1HtΣ

f
t

end for
Last forecast:
xfT+1 = [xT+1|d1, . . . , dT ] ∼ f(xfT+1) = Nnx

(µf
T+1,Σ

f
T+1)

µf
T+1 = ATµ

a
T

Σf
T+1 = AT Σa

TA
T
T + Σx

T

The Kalman filter algorithm produces both forecast outcome xft unconditioned on
observation at the current time step, and assimilated outcome xat where the cur-
rent observation is taken into account. Moreover, the result is analytically tractable
and no approximations are made, assuming that the model is Gauss-linear only.
However, when the model deviates from being Gauss-linear, approximations can
be made. Extensions to the Kalman Filter has been proposed, such as the Ex-
tended Kalman Filter (Jazwinski, 1970) and the Unscented Kalman Filter (Julier
and Uhlmann, 1997) which work on nonlinear systems. In nonlinear systems, non-
linearity is attributed to the prior model, the likelihood model or both. However,
we will focus on a simulation based approach that also provides an approxima-
tion to the forecasting problem when considering nonlinear systems, namely the
ensemble Kalman filter.
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4 The Ensemble Kalman Filter (EnKF)

The ensemble Kalman filter is a sequential Monte Carlo algorithm that approxi-
mates the forecast distribution. The idea in EnKF is to generate a set of realizations
of size ne, called the ensemble that is propagated through the model equations. The
EnKF is an approximate solution both when the model is Gauss-linear, and when
deviation from these assumptions occur. When the model is Gauss-linear the EnKF
algorithm converges towards the exact KF solution when ne → ∞. In EnKF, the
ensemble is propagated by the forward model. Then ensemble members are ad-
justed as observations occur. At time T + 1, the ensemble is used to assess the
forecast distribution f(xT+1|do1, . . . , doT ). We define the time series of ensembles as

(x
f(i)
t , d

(i)
t ) = (xft , dt)

(i), i ∈ {1, . . . , ne} ; t = 0, . . . , T + 1, (10)

where ne is the ensemble size and t is the time step. Here, xf(i)t = [xt|do1, . . . , dot−1]

represents approximate realizations from f(xt|do1, . . . , dot−1) while d(i)t represents
realizations from the likelihood model. These realizations d(i)t are associated with
the observation dot . At each time step, we define a covariance matrix between the
current state xft and observation dot . With t omitted this covariance matrix is

Σxd =

[
Σx Γxd

Γdx Σd

]
∈ R(nx+nd)×(nx+nd), (11)

where nx and nd are the dimension of the state vector and observation vector,
respectively. Using the current ensemble in Eq. (10) we can estimate this covariance
matrix, by estimating the unknown parameters Σx, Γxd and Σd. If we define a
matrix X holding the centered state vectors and a matrix D holding the centered
prediction data as

X =
{
x
f(1)
t − µ̂x, · · · , xf(ne)

t − µ̂x

}
, (12)

D =
{
d
(1)
t − µ̂d, · · · , d(ne)

t − µ̂d

}
, (13)

µ̂x =
1

ne

ne∑
i=1

x
f(i)
t ,

µ̂d =
1

ne

ne∑
i=1

d
(i)
t ,

the unknown parameters in the covariance matrix can be easily estimated by these
estimators:
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Σ̂x =
1

ne − 1
XX ′,

Γ̂xd =
1

ne − 1
XD′, (14)

Σ̂d =
1

ne − 1
DD′,

which are consistent when ne → ∞. The EnKF algorithm is based on the same
procedure as the recursive algorithm. A description of the EnKF algorithm in its
general form is given in Algorithm 3.

Algorithm 3 The EnKF algortihm

Initialize the ensemble: xa(i)0 ∼ f(x0); i = 1, . . . , ne

for t = 1, ..., T do
Forecasting:
ε
x(i)
t−1 ∼ Nnx(0,Σx

t−1); i = 1, . . . , ne

x
f(i)
t = ω(x

a(i)
t−1, ε

x(i)
t−1); i = 1, . . . , ne

ε
d(i)
t ∼ Nnx(0,Σd

t ); i = 1, . . . , ne

d
(i)
t = ζ(x

f(i)
i , ε

d(i)
t ); i = 1, . . . , ne

et =
{

(xft , dt)
(i)
}

; i = 1, . . . , ne

Assimilating:
Estimate Σxd from the ensemble et → Σ̂xd, see Eq. (14)
x
a(i)
t = x

f(i)
t + Γ̂xdΣ̂−1d (dot − d

(i)
t ); i = 1, . . . , ne

end for
Last prediction:
ε
x(i)
T ∼ Nnx(0,Σx

T ); i = 1, . . . , ne

x
f(i)
T+1 = ω(x

a(i)
T , ε

x(i)
T ); i = 1, . . . , ne

x
f(i)
T+1 ∼ f(xT+1|do1, . . . , doT ); i = 1, . . . , ne

The last line of the EnKF algorithm in Algorithm 3 indicates that we can assess
the forecast distribution f(xT+1|d1, . . . , dT ) from the ensemble members xf(i)T+1; i =
1, . . . , ne. For instance, reasonable estimates of the forecast and the covariance of
the forecast are:

µ̂T+1 =
1

ne

ne∑
i=1

x
f(i)
T+1,

Σ̂T+1 =
1

ne − 1

ne∑
i=1

(x
f(i)
T+1 − µ̂T+1)(x

f(i)
T+1 − µ̂T+1)′. (15)

But also the full empirical forecast distribution can be evaluated using confidence
intervals when considering a skew forecast distribution. Essential to the EnKF
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algorithm is the forecasting step and the assimilation step. In the forecasting step
we apply the transition function ω on the ensemble members. In the assimilation
step we correct the ensemble members in a linear manner by weights estimated
from the ensemble. There are two basic assumptions made in the algorithm. First,
the initial ensemble is supposed to represent the initial distribution f(x0). In cases
where the dimension of x0 is large, this imply that a large ensemble is needed
to fairly represent the initial distribution. Second, the analyzing step is based
on the assumption that the joint distribution of the forecast state xf(i)t and the
realization d(i)t is Gaussian. When large deviations from Gaussian prior models and
or Gaussian likelihood models occur, we may obtain unreliable results. However, if
these two basic assumptions are reasonable to make, the EnKF algorithm provides a
reliable approximate solution to the forecast distribution. Moreover, under Gauss-
linear models the EnKF algorithm is consistent in the sense that the approximation
converges to the exact solution when the ensemble size ne →∞.

4.1 Special Case: EnKF With Gauss-linear Likelihood
We consider a hidden Markov model where the prior model is non-linear (i.e non-
Gauss-linear) with an additive model error, and a likelihood model that is Gauss-
linear. This is frequently used in applications. The assumptions made in this
special case are:

x0 ∼ f(x0)

[xt|xt−1] = ω(xt−1) + εxt ∼ f(xt|xt−1), (16)
[dot |xt] = Htxt + εdt ∼ f(dot |xt),

where εxt ∼ Nnx(0,Σx
t ) and εdt ∼ Nnd

(0,Σd
t ) are both known. The transition

function ω might be a differential equation, or has a complex functionality. Under
the special case, we define the time series of ensembles:

et =
{
x
f(i)
t ; i = 1, . . . , ne

}
; t = 1, . . . , T + 1. (17)

Here, we note that the ensemble is defined differently from Eq. (10) because the
cross covariance Γ̂xd = Σ̂xH

′ at every time step can be assessed from the covariance
matrix Σ̂x. The algorithm for this case appears as:
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Algorithm 4 The EnKF algortihm with Gauss-linear likelihood
Initialize:
for t = 1, ..., T do
Forecasting:
ε
x(i)
t−1 ∼ Nnx

(0,Σx
t−1); i = 1, . . . , ne

x
f(i)
t = ω(x

a(i)
t−1, ε

x(i)
t−1); i = 1, . . . , ne

et =
{
x
(i)
t

}
; i = 1, . . . , ne

Analyzing:
Estimate Σx from the ensemble et
ε
d(i)
t ∼ Nnd

(0,Σd
t )i = 1, . . . , ne

d
(i)
t = Htx

f(i)
t + ε

d(i)
t i = 1, . . . , ne

x
a(i)
t = x

f(i)
t + Σ̂xH

′

t [HtΣ̂xH
′

t + Σd
t ]−1(dot − d

(i)
t ); i = 1, . . . , ne

end for
Last forecast:
ε
x(i)
T ∼ Nnx

(0,Σx
T ); i = 1, . . . , ne

x
f(i)
T+1 = ω(x

a(i)
T , ε

x(i)
T ); i = 1, . . . , ne

x
f(i)
T+1 ∼ f(xT+1|do1, . . . , doT ); i = 1, . . . , ne

In Algorithm 4, the EnKF algorithm with Gauss-linear likelihood yields in the last
forecast, an approximate sample from the forecast distribution f(xT+1|d1, . . . , dT ).
In the case of reservoir modeling, the state vector of each ensemble member x(i)t

is often replaced by an augmented state vector y(i)t to account for the simulated
observations d(i)t . Thus, we have

y
f(i)
t =

[
x
f(i)
t

d
(i)
t

]
, (18)

where d(i)t is generated from a non-linear function with observation error included.
The relation that connects the state to the observations for this augmented case is
a linear function, namely the likelihood

d
(i)
t = Id · yf(i)t (19)

where Id is a matrix of size nd× (nx +nd) consisting of zero entries and an identity
matrix of size nd on the right. Hence Id has the property of extracting the simulated
observations from the augmented state matrix. The matrices Γ̂yd and Σ̂d are easy
to compute because of the linear relationship. Thus, the corresponding assimilation
step for the augmented state, is

y
a(i)
t = y

f(i)
t + Σ̂yf

t
I

′

d

(
IdΣ̂yf

t
I

′

d

)−1
(dot − d

(i)
t ) (20)

where Σ̂yf is the covariance matrix of the augmented state matrix of size nx + nd.
In fact, it is equal to Σ̂xd in Eq. (14). Noting that the original state vector is
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xa(i) = Ixy
a(i), with Ix a nx × ny matrix with an identity matrix of size nx on the

left and zero elsewhere, we multiply both sides of Eq. (20) by Ix. The matrix Ix
extracts the original state vector from the augmented state vector. Thus, we get

x
a(i)
t = x

f(i)
t + IxΣ̂yf I

′

d

(
IdΣ̂yf I

′

d

)−1
(dot − d

(i)
t ). (21)

Further we note that IxΣ̂yf I
′

d = Γ̂xd, IdΣ̂yf I
′

d = Σ̂d and Idyf(i) = d
(i)
t . Hence, we

are back to the original assimilation scheme

x
a(i)
t = x

f(i)
t + Γ̂xdΣ̂−1d (dot − d

(i)
t ), (22)

given in Algorithm 3, where the likelihood is nonlinear. The two schemes are
therefore identical.

4.2 Limitations

The EnKF relies on the assumption that the forecast state and the associated ob-
servation is jointly Gaussian. Hence, a large deviation from this assumption does
not produce a good estimate for the forecast distribution. Alternative filter meth-
ods have been proposed that provides better estimates in non-Gaussian cases. The
particle filter (Doucet et al., 2001) is known to give a better approximation to the
forecast distribution in small scale problems. Moreover, it gives the asymptotically
correct solution for all HMM models when ne → ∞. The randomized likelihood
filter (Oliver, 1996) has been shown to give better approximations when the fore-
cast distribution is multimodal, and it has the same asymptotic property as the
EnKF. However, when considering reservoir evaluation problems, the EnKF has
been proven to be a useful method.

The robustness of the EnKF method relies on its ability to capture the im-
portant properties of the forecast distribution that lies in the initial distribution
f(x0). If the initial ensemble is able to represent f(x0) appropriately, the EnKF
will be able to approximate the forecast distribution. However, when the ensem-
ble size is small, it will not represent f(x0) sufficiently. This may lead to a poor
estimate of the Kalman gain matrix Γ̂xdΣ̂−1d , which is seen long range correlations
between observation and model and state variables that are not real. The result
is incorrect updates for model and state variables. In this thesis, we will improve
the estimate of the Kalman gain matrix, using two well-known techniques. First,
we use dimension reduction as explained in Sætrom and Omre (2011). Secondly,
we apply localization (Anderson, 2006) that restricts the model update to occur
locally to the observation only.

5 Reservoir Production Simulation

Before describing the reservoir modeling in the EnKF setting in more detail, we
need to introduce the reservoir production simulator. In a reservoir production sim-
ulator, numerical methods are used to solve the partial differential equations that
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describes the fluid flow (oil, water, gas) in a porous medium such as a petroleum
reservoir. A reservoir production simulator is used in oil and gas companies in or-
der to build a reservoir model that can assist in the development of new oil or gas
fields. For instance, a reservoir model can help deciding the number of producer
and injector wells that are needed and their locations in the reservoir. For existing
fields a reservoir model can assist in predicting future reservoir performances. We
will in this section give a brief derivation to the fluid flow equations.

Generally, flow in a porous medium is determined by mass conservation, mo-
mentum and energy conservation equations, and assisting equations for the fluids
and the porous medium. If we assume that the temperature in the reservoir remains
constant, we do not need to involve momentum and energy conservation. For a
slab with constant cross section area, as shown in Figure 2, the mass conservation
equations of a multiphase fluid flow appear as

∇ · (ρlul)− q′l =
∂(φρlsl)

∂t
, l = {oil, water, gas} . (23)

Here, φ denotes the porosity and ρl the density of the fluid. The saturation of
the fluid is denoted by sl, the fluid velocity vector is represented by ul, and
q′l is a source/sink term representing the mass flow rate per unit volume (injec-
tor/producer). If we make the assumptions that the fluid flows with low velocity
and that the medium is isotropic, Darcy’s law gives the relationship between the
velocity field and the pressure, namely

ul =
κaκrl
µl
∇pl, l = {oil, water, gas} , (24)

where κa is the absolute permeability, κrl is the relative permeability, µl is the
viscosity, and pl is the pressure. Inserting Darcy’s equation (24) into the mass
conservation equation (23) yields

∇ · (ρl
κaκrl
µl
∇pl)− q′l =

∂(φρlsl)

∂t
, l = {oil, water, gas} . (25)

These three equations have six unknowns, namely the pressure and saturation in
each phase. The other three equations consist of capillary pressure curves that are
measured by experiments in the laboratory, and noting that the saturations sum
up to one, i.e

pcow = pw − po (26)
pcog = po − pg∑
l

sl = 1

Both capillary pressure and relative permeability are functions of saturation, while
porosity, density and viscosity are functions of pressure. When considering Newto-
nian fluids, the viscosity is constant, while the relationship of density to pressure
and porosity to pressure must be determined from assisting equations for fluids and
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the porous medium, respectively. The equations given in Eq. (25) and Eq. (26)
form the fluid flow equations in the reservoir.

Because of the complexity in the fluid flows equations, it must be solved nu-
merically. Classical reservoir production simulation models are based on the finite
difference method which serves as a numerical solution to the fluid flow equations.
The finite difference method is based on the idea of discretizing the reservoir do-
main into gridblocks, where the flow equations are solved in each gridblock. These
gridblocks can be regular as displayed in Figure 2, or they can be complex in order
to suit the geometry of the reservoir. Moreover, gridblocks near wells can be refined
so that near-wellbore effects in multiphase flow can be modeled accurately. The so-
lution to the partial differential equations consist of saturation and pressure of each
phase (oil, water, gas) in each gridblock. The determination of these state variables
that varies during the production period of the reservoir is important because they
determine the volumetric estimates of hydrocarbons that can be extracted from
the reservoir.

The solution given by the finite difference method is represented by the unknown
and potentially complex function ω : Rnx → Rnx . As described in Algorithm 4, the
function ω works as a reservoir simulator. For a given state at a time t, denoted xt
the reservoir production simulator brings the state forward in time to a new state
xt+1, i.e

xt+1 = ω(xt, εt) = ω(xt) + εxt (27)

where the model error term εxt represents numerical- and model simplification er-
rors.

Figure 2: A grid modeling the synthetic reservoir.

5.1 Ensemble Based Reservoir Tool (Ert)
The commercial reservoir production simulator Eclipse 100 was used to run the
simulations. Eclipse 100 solves the equations governing the fluid flow in a reservoir
using an implicit finite difference method. In order to handle the reservoir pro-
duction simulations in an EnKF setting, we use a software developed by Statoil
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and NR called Ert. Ert works with Eclipse in the sense that reservoir models in
Eclipse are conditioned on observed production data when we are using the EnKF
algorithm. When applying Ert to history matching and uncertainty analysis, we
need to do some preparatory work:

1) Ert relies on the restart capability of the Eclipse reservoir model. Thus, the
Eclipse data file must be prepared to be ready for use with Ert.

2) Creating an observation file for use with Ert.

3) Ert takes as input a configuration file which serves many purposes. It

- defines the Eclipse reservoir model to use (Eclipse gives the
data file, grid file, schedule file)

- defines the observation to use (from an observation file)

- defines how to run simulations

- defines how to store results

- creates a parametrization (model variables) of the Eclipse
reservoir model.

A detailed description for setting up the program and an introductory tutorial can
be found on the website www.ert.nr.no.

6 The EnKF in History Matching
In this section we present the state of a reservoir model, followed by an EnKF
algorithm used for characterizing a reservoir. Then we discuss some corrections of
the Kalman gain matrix in cases when the ensemble size is small.

6.1 Defining the Reservoir Model State
The EnKF method is suited to the history matching problem and can be easily
combined with any reservoir production simulator. The EnKF differs from tradi-
tional history matching in the sequential updating, and that it produces multiple
simultaneous history matched models. Both the model variables (porosity and
permeability) and the state variables (pressure and saturation) in addition to pro-
duction data are updated in the EnKF, and they are combined in an augmented
state vector. Consider a discretisation of the reservoir domain D ∈ R3 into a lattice
LD = Lz ×Lxy consisting of n gridblocks as displayed in Figure 2. Here, Lz repre-
sents the nz gridblocks in the vertical direction, while Lxy is the nx×ny gridblocks
in the horizontal direction. Thus the total number of gridblocks is n = nx×ny×nz.
Each gridblock has different properties such as porosity φ, log permeability κ, sat-
uration s ∈ [0, 1] and pressure p. We let the model variables of the reservoir for
each time step t ∈ {0, . . . , T + 1} be given by the vectors mt and rt,

mt =
{
φ′,κ′

}′ ∈ Rnm , (28)
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rt = {s′,p′}′ ∈ Rnr , (29)

where nm and nr are the number of gridblocks times the number of reservoir proper-
ties considered, respectively. These two vectors define the state of the reservoir. As
the reservoir state is propagating in time by the reservoir production simulator ω,
we obtain a new set of state variables and with that a new set of reservoir production
data from the wells with observation error included. These reservoir production
data (with observation error included) are described by the vector dt ∈ Rnd where
nd is the number of wells times the number of production properties considered,
while the real observation is described by dot ∈ Rnd . Hence, the vectors mt, rt and
dot are combined into an augmented state vector yt representing the augmented
state of the reservoir model.

yt =

mt

rt
dot

 ∈ Rny , (30)

where ny = nm + nr + nd is the dimension of the state variable. Note that this is
consistent with Eq. (18) since Eq. (18) is a single realization.

6.2 The EnKF Algorithm in Reservoir Modeling
In the context of reservoir modeling, it is sufficient to use the special case of the
EnKF algorithm if we use the augmented form of the state vector yt. Hence, we
can write:

mt+1 = mt, (31)
rt+1 = ω(mt, rt) + εxt , (32)[

dot+1|mt+1, rt+1

]
= ζ(mt+1, rt+1, ε

d
t ) = ζ0(mt+1, rt+1) + εdt , (33)

where εxt ∼ Nnx
(0,Σd

t ) and εdt ∼ Nnd
(0,Σd

t ) are known. Here, the function ω
plus model error returns the state variables, while ζ0 plus observation error yields
the production data obtained from the model, such as water production rate, oil
production rate and bottom hole pressure.

The EnKF algorithm consist of a forecast step and an assimilation step. In
the forecast step all the reservoir models are run forward in time with a reser-
voir production simulator. It is only necessary to run the simulator between two
consecutive time steps where observations are taken. Model variables remain the
same from one time step to the next, while state variables and production data are
changed by the functions ω and ζ. Then the entire state vector is updated in the
assimilation step. We define the ensemble of time series as in Eq. (17), but now
for the augmented system:

et =
{
y
f(i)
t ; i = 1, . . . , ne

}
; t = 1, . . . , T + 1. (34)

The EnKF algorithm for this reservoir modeling case is given in Algorithm 5.

19



Algorithm 5 The EnKF algorithm used to match history observations, and to
obtain the forecast distribution.
Initialize:
m

a(i)
0 ∼ f(m0) i = 1, . . . , ne

r
a(i)
0 ∼ f(r0|ma(i)

0 ) i = 1, . . . , ne

for t = 1, 2, . . . , T do
Forecasting:
ε
x(i)
t−1 ∼ Nnx

(0,Σx
t−1); i = 1, . . . , ne

ε
d(i)
t ∼ Nnd

(0,Σd
t ); i = 1, . . . , ne

y
f(i)
t =

 m
f(i)
t

r
f(i)
t

d
(i)
t

 =

 m
a(i)
t−1

ω(m
a(j)
t−1 , r

a(i)
t−1) + ε

x(i)
t−1

ζ0(m
a(i)
t−1, r

f(i)
t ) + ε

d(i)
t

 ; i = 1, . . . , ne (35)

et =
{
y
(i)
t , i = 1, . . . , ne

}
Analyzing:
Estimate Σy from the ensemble et → Σ̂y

y
a(i)
t = y

f(i)
t + Σ̂yI

′

d[IdΣ̂yI
′

d]−1(dot − d
(i)
t ); i = 1, . . . , ne

end for
Last forecast:
ε
x(i)
T ∼ Nnx(0,Σx

T ); i = 1, . . . , ne

ε
d(i)
T+1 ∼ Nnd

(0,Σd
T+1); i = 1, . . . , ne

y
f(i)
T+1 =

 m
f(i)
T+1

r
f(i)
T+1

d
(i)
T+1

 =

 m
a(i)
T

ω(m
a(j)
T , r

a(i)
T ) + ε

x(i)
T

ζ0(m
a(i)
T , r

f(i)
T+1) + ε

d(i)
T+1

 ; i = 1, . . . , ne (36)

End:
y
f(i)
T+1 ∼ f(yT+1|d1, . . . , dT ); i = 1, . . . , ne

We note from Algorithm 5 that the initialization does not include production
observation. This may seem strange at first sight, but the reason is that the first
ensemble only need the model and state variables in order to proceed to the next
time step. Also, we note that the initial state variables are generated from the
initial model variables in addition to specifications made in the Eclipse data file.
In other words, the initial state variables are automatically generated in Eclipse.
As mentioned before, we remark that the model variables are left unchanged be-
tween reservoir production simulation runs. Beyond that, the algorithm is basically
the same as Algorithm 4. The algorithm starts with ne reservoir models, where
the characterization of each reservoir model is given by the model variables. At
each reservoir production simulation run, every reservoir model generates the state
variables. These model and state variables produce production data as given by
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the reservoir model. As real observation from well logs is collected, this is used
to correct the augmented state of each reservoir model. This include a correction
of the model variables as well. At time T + 1, the ensemble of reservoir models
can be used to assess the forecast of future reservoir behaviour. For example, an
estimate of future reservoir behaviour with uncertainty may be described by Eq.
(15). A schematic description of the EnKF workflow to history matching is shown
in Figure 3.

Figure 3: Workflow of the EnKF algorithm. The circles represents distributions.

6.3 Computational Considerations

Essential in Algorithm 5 is the assimilation step. Here, we need to compute the
matrix Σ̂yI

′

d[IdΣ̂yI
′

d]−1. As shown earlier, the problem can be reformulated into the
non-augmented state system where we compute the matrix Γ̂xdΣ̂−1d instead. This
matrix is known as the estimated Kalman gain matrix K̂ in the EnKF literature.
If we use the estimators given in Eq. (14) the Kalman gain estimator is

K̂ = XD′(DD′)−1. (37)

As shown in Mardia et al. (1979), this is the least squares estimate of the regression
coefficients in the linear regression problem

K̂ = argminKtr {(X −KD)(X −KD)′} , (38)
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where tr {·} is the trace operator. From linear regression theory we know that
inversion of the matrix DD′ in Eq. (37) may be poorly conditioned when the data
are collinear. This may lead to a poor approximation of the inverse provided by
the computer. Also, in Evensen (2007), it is noted that the computational time for
every single state vector xa(i) is of order O(n2d max {ne, nd}) +O(max {nx, nd}n2e).
Hence, when the dimension of the data space is large (nd � ne), the computational
time is dominated by the data space dimension nd. Due to these facts, a natural
choice is therefore to reduce the data space dimension. This involves a rank reduc-
tion of the centered data matrix D. A reduction of the data space will reduce the
collinearity of the data, and at the same time be more computationally efficient.

6.4 EnKF in Reduced Data Space

We now present an assimilation scheme where the data space dimension is reduced.
We reduce the data space dimension by performing a singular value decomposition
(SVD) of the centered data space matrix D

D = USV ′, (39)

where U ∈ Rnd×nd is an orthogonal matrix containing the left singular vectors of
D, S ∈ Rnd×ne is a matrix holding the r = rank(D) non-zero singular value of D,
and V ∈ Rne×ne is an orthogonal matrix containing the right eigenvectors of D.
Hence, the estimated Kalman gain matrix in Eq. (37) becomes

K̂ = XV S′U ′(USS′U ′)−1

= XV S′U ′U(SS′)−1U ′

= XV S′(SS′)−1U ′

= XU ′D(SV ′V S′)−1U ′

= XU ′D(U ′D(U ′D)′)−1U ′, (40)

where we have used Eq. (39) to get the relation D′U = V S′. Then we define the
rotated data space:

Z = U ′D. (41)

Inserting this into Eq. (40) we get a modified Kalman gain matrix which is useful
when using a low rank representation of the data space D

K̂ = XZ(ZZ ′)−1U ′. (42)

This form resembles the original form that we started with, Eq. (37). The changes
made is that D is replaced by the rotated data space Z and we have in addition a
rotation operator that would be applied to the vector (dot−d

(i)
t ) if we had considered

the entire assimilation scheme. We denote Up ∈ Rnd×p, Sp ∈ Rp×p, and Vp ∈ Rne×p
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with p ≤ r the dominant singular vectors and values of S. Then we define the
projected data space

Zp = U ′pD. (43)

The Kalman gain matrix in a reduced data space is now

K̂p = XU ′pD(U ′pD(U ′pD)′)−1U ′p

= XZp(ZpZ
′
p)−1U ′p, (44)

where K̂p ∈ Rnx×nd . If we consider the non-augmented assimilation scheme we get

x
a(i)
t = x

f(i)
t + K̂p(dot − d

(i)
t ). (45)

Here, we have introduced the approximated Kalman gain matrix K̂p representing a
weighting of the vector (dot − d

(i)
t ). We can interpret the reduced data space EnKF

scheme as a projection of observation onto the space spanned by the p dominant
singular vectors ofD before they are assimilated. This allows high-dimensional data
to be assimilated at a low cost. The selection of the number of dominant singular
vectors p, called the principal components in Principal Component Analysis (PCA)
is often based on the explained variance criterion:

Expl.Var(p) =

∑p
i=1 s

2
i∑r

i=1 s
2
i

, (46)

where si is the i’th singular value of S. A common choice of p is to require the p
principal components to account for 99% of the explained variance. That means
that the reduced data space spanned by the p principal components explains 99%
of the total variability of the data ensemble. However, choosing p this way does
not take into account the predictive capabilities of the model. As explained in
Sætrom et al. (2010), the traditional EnKF updating scheme is suffering from un-
derestimation of prediction uncertainty. In this paper, an EnKF updating scheme
is introduced where the subspace dimension p is chosen based on the predictive
capabilities of the model. The idea is to split the ensemble into two sets; one
larger set that is used for modeling and a smaller set that is used for evaluating the
prediction error. We denote the k folds of indices I1, I2, . . . , Ik where each fold is
equal in size, and contains randomly drawn numbers from {1, 2, . . . , ne} without re-
placement. Let K̂(i)

p be the approximated Kalman gain matrix where the ensemble
members in Ii are excluded. Further, we denote x̂(j)p = K̂

(i)
p d(j) the state vector

based on predicted data and xf(j) the forecast , for j ∈ Ii. Hence, the optimal
subspace dimension p is found by minimizing the Predictive Error Sum of Squares
(PRESS) statistic with respect to p:

p̂ = argminp {PRESS(p)} = argminp
k∑

i=1

∑
j∈Ii

‖xf(j) − x̂(j)p ‖22, (47)

23



which is the total prediction error when all ensemble members have been used for
testing. The effect of using a CV scheme increases the predictive capabilities of the
traditional EnKF scheme. Although the number of folds, k only need to be less
than ne, Hastie (2009) recommend k = 5 or 10 as the most robust.

6.5 EnKF With Localization

In the traditional EnKF, we use a finite ensemble to estimate the Kalman gain
matrix K which represents the impact the observations have on the state and
model variables. This will introduce estimation errors in K̂, which can be seen
as correlations between the observations in dot and model and state variables in
xft that are not real. These unreal correlations are often referred to as spurious
correlations in the EnKF literature. The consequence is that the traditional EnKF
produces incorrect updates in xat based on observations in dot that are known to be
uncorrelated.

Because of the presence of estimation errors in the Kalman gain matrix when us-
ing a finite ensemble size, many updating schemes are based on the idea of updating
only those model and state variables that are directly dependent on observations
in dot . This imply that only model and states variables close to an observation are
allowed to be updated using that observation. Particularly when we have likeli-
hood models that have local support, an observation obtained at a point should
only affect model and state variables locally. Hence, the updating procedure in the
EnKF should be restricted to regions for which the observations have an influence.

There exist many forms of localization techniques. In covariance localization
(Sætrom and Omre, 2012), the Kalman gain matrix in the updating scheme is pre-
multiplied by a deterministic matrix ρ, defined from a correlation function with a
given correlation length, using the Schur-product ◦ :

x
a(i)
t = x

f(i)
t + ρ ◦ K̂(dot − d

(i)
t ), (48)

where ◦ involves entry-wise multiplication of matrices. The correlation matrix ρ
effectively reduces the long-range correlations introduced by a finite ensemble, and
thus improving the estimate of the Kalman gain matrix. This method has a wide
range of applications in Numerical Weather Forecasting. In reservoir modeling we
use a simpler version of the matrix ρ. Here, we define the matrix ρ based on the
splitting of different reservoir regions and wells into boxes. We illustrate the idea
by a simple example. Consider a two dimensional reservoir domain, discretized into
25 grid cells as displayed in Figure 4. The domain is divided into two larger boxes
separating two different reservoir regions, and the wells are inclosed by smaller
boxes.

For simplicity, assume that there is only one unknown and one type of produc-
tion data in each grid cell in Figure 4. Thus, the state vector xft has dimension
25 and the observation vector dot has dimension 2. This imply that the estimated
Kalman gain is a (n25 × n2) - dimensional matrix:

K̂ = [kij ] , (49)
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Figure 4: A reservoir example. The red line separates two reservoir regions. The
blue boxes enclosing the wells represent local regions.

where the indexes i and j represent cell i and observation j. The matrix ρ has the
same dimension as K̂, consisting of zeros and ones:

ρ = [ρij ] , (50)

where the indexes i and j represent cell i and observation j. Hence, ρij is 1 if cell i is
connected to observation j and zero otherwise. We define a cell and an observation
to be connected only if the observation is inside a box and within the reservoir
region in which the well is located. For this example we get ones for the entries
ρ1,1, ρ2,1, ρ6,1, ρ7,1, ρ11,1, ρ12,1, ρ8,2, ρ9,2, ρ10,2, ρ13,2, ρ14,2, ρ15,2, ρ18,2, ρ20,2, ρ20,2 and
zero otherwise. The matrix ρ operates on the estimated Kalman gain matrix by
cutting off correlations outside a box, while keeping the same correlations inside a
box as before.

7 The Brugge Field Case

The Brugge field is a synthetic reservoir model build by the Dutch Organisation
for Applied Research (TNO), for a SPE Applied Technology Workshop organized
in Brugge, Belgium in 2008 (Peters et al., 2010). The objective was to test data
assimilation and production optimization methods in a closed-loop workflow. A
data set was distributed to the participants, with the purpose that data assimilation
and production optimization could be compared on a common basis. The fact that
a synthetic field was used made it possible to evaluate the methods against the
truth. In the first phase, the participants of the workshop were asked to assimilate
production observation for 10 years, and to create a production strategy to optimize
the net present value (NPV) for the next 20 years. The optimized production
strategy was submitted to TNO, and then applied on the true model to produce
a new set of production observation from year 10 to 20. In the second phase, the
participants were given these additional 10 years of production observation, and
they were asked to repeat the exercise. This involved updating their reservoir model
and establish a new production strategy from year 20 to 30. Since the purpose in
this thesis is to test data assimilation methods we have chosen to only study the first

25



phase of the this case study. Moreover, we will only focus on the data assimilation
part and not taken the production optimization strategy into consideration.

7.1 Reservoir and Production Description

The Brugge field is a synthetic oil field. It consists of an east-west elongated half
dome with a boundary fault in the northern edge and an internal fault, as shown
in Figure 5. The domain is approximately (10000× 1000× 60)m3. It is discretized
into 139×48×9 gridblocks (see Figure 2), which entail 60048 gridblocks. From top
to bottom, the reservoir consists of four geological layers, namely Schelde (layer 1
and 2), Maas (layers 3 to 5), Waal (layers 6 to 8) and Schie (layer 9). The reservoir
contains 30 vertical wells: 20 producers located at the crest, and 10 injection wells
near the flanks of the reservoir. The injectors perforate all the nine layers, while
the producers perforate the upper eight layers, except for producers P5, P10, P14
and P15 which only perforate the upper five layers and P9 which perforates the
upper two layers. It is assumed that water and oil are the only phases present in
the reservoir. Water is injected into the reservoir and the fluids are recovered by
the producers. The injectors are restricted to a water rate of 4000 STB/day and
constrained by a maximum bottom hole pressure of 2611 psi. The producers are
restricted to a production rate of 2000 STB/day constrained by a minimum bottom
hole pressure of 725 psi. During the first 10 years, data from bottom hole pressure
and water and oil rate from the 30 wells are provided monthly. The production
period of the reservoir is 30 years.

Figure 5: A grid plot of the Brugge field.
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7.2 Initialization of Ensemble
In order to start the EnKF algorithm, an initial ensemble needs to be established.
The model variables considered in the Brugge field are net-to-gross ratio (NTG),
horizontal permeability (PERMX), vertical permeability (PERMZ), and poros-
ity (PORO). These are generated from prior distributions that were unknown to
the participants. A total of 104 realizations from each reservoir property (NTG,
PERMX, PERMZ, PORO) were simply given to them. The state variables consist
of oil- and water saturation and pressure. These are generated from the initial
model variables and some specifications made in the Eclipse reservoir production
simulator. Together, the model and state variables form the initial ensemble of
state vectors.

7.3 Exploration Run
Before evaluating the EnKF model, we need to run an ensemble experiment. An
ensemble experiment is an easy way of running through the simulations without
updating the initial model variables. The purpose of performing an ensemble ex-
periment is to see whether the chosen parametrization of model variables make
sense. Although this is not history matching, it is a highly necessary task. For
all history matching problems the most important and difficult task is to choose a
parametrization of the model variables. If the chosen model variables do not have
any effect on the reservoir behaviour, we will not be able to make any improvements
with the EnKF updates. Hence, in order to get a good indication that the initial
model variables make sense, the initial realizations should show a good spread
around the observations. In Figures 6 we have plotted the ensemble consisting of
ne = 100 members of bottom hole pressure of producer P13 (BHPP13), oil rate of
producer P1 (WOPRP1), water rate of injector I11 (WWPRI11) and bottom hole
pressure of injector I1 (BHPI1). For some producers, like BHPP13 it is seen that
some realizations do not reach the pressure target because of the constrained min-
imum bottom hole pressure of 750 psi. For the injectors, like BHPI1 it is observed
that the ensemble is separated into two groups. This can also be partially seen
in some producers like BHPP13 which indicates that many different prior distribu-
tions was used to generate the ensemble. It appears that the predictions of bottom
hole pressure for the producers and the oil pressure rate are generally lower than
the observations, while the water pressure rate and bottom hole pressure for the
injectors are higher than the observations. However, the plots seem to indicate
that the chosen parametrization of the reservoir model is reasonable because the
initial realizations are not too far from the observations. The model seems to stand
a good chance in getting satisfactory results.

8 Evaluation of EnKF
The objective in this study is to apply the traditional EnKF and two other variants
of the EnKF to assimilate production data. The first variant is based on dimension
reduction of the data space using cross validation as discussed in Section 6.4. The
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Figure 6: An ensemble experiment. The green cross specifies which time the
model variables are from.

second variant is based on local updating of model variables as explained in Section
6.5. For convenience, we denote the methods EnKF, DR-EnKF and Loc-EnKF
respectively. We test these methods on two ensemble sizes, a smaller one consisting
of ne = 20 members and a larger one consisting of ne = 100 members. Both
ensemble sizes are subsets of the original ensemble consisting of ne = 104 members.
The production data used for assimilation include oil and water production rates
and bottom hole pressure which are measured every month during the first ten
years, i.e. T = 120 observations are made.

This section is divided into three parts. In Section 8.1 we explore the EnKF, DR-
EnKF and Loc-EnKF methods by performing data assimilation on the first part of
the Brugge case study. The methods are evaluated individually based on different
ensemble sizes, and they are compared with each other based on common ensemble
sizes. In Section 8.2 we evaluate the estimation of model variables obtained by these
methods. In particular, we discuss the estimated mean and standard deviation of
the porosity field. Finally, Section 8.3 compares the methods quantitatively based
on the root mean squared criterion (RMSE).
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8.1 Data Assimilation

In order to evaluate whether a good history match has been achieved we proceed
as follows. We start by initiating an ensemble that is propagated forward in time
without being conditioned on production data. This provides the basis for eval-
uation of the prior model variables. Then we initiate a second ensemble that is
integrated forward in time using either the traditional EnKF or other variants of
the EnKF. The updated ensemble in the final time step of the EnKF is used to
rerun the ensemble from time zero, without being conditioned to production data.
This provides the basis for evaluation of the posterior model variables.

We present some of the results in Figure 8 to Figure 10. Here, the two ensem-
ble sizes are placed in each column, whereas the methods are placed from top to
bottom. The number of folds used in the cross validation scheme in DR-EnKF
is 5. The reservoir region in Loc-EnKF is divided into boxes according to Figure
7. For simplicity, only local boxes around the wells are accounted for. Regional
boxes have not been taken into consideration. The coordinates of the local boxes
are given in Table 1.

Figure 7: Partition of the reservoir region into local boxes around the wells.

Considering each of the ensemble sizes separately, starting with ensemble size 20
we observe that the ensemble shows a good spread around the observations in all
figures. This indicates that a reasonable parametrization of the model variables
is obtained. After assimilation, the traditional EnKF apparently shows that the
ensemble is much more concentrated around the observations. This is best seen in
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Table 1: Setup of the local boxes around the wells.

Coordinates

Well x1 x2 y1 y2 z1 z2

P01 70 94 31 48 1 8

P02 91 109 25 48 1 8

P03 55 79 36 48 1 8

P04 64 85 36 48 1 8

P05 31 55 33 48 1 5

P06 41 65 34 48 1 8

P07 50 74 34 48 1 8

P08 58 82 33 48 1 8

P09 95 108 32 48 1 2

P10 95 113 32 48 1 5

P11 92 116 27 48 1 8

P12 87 111 22 48 1 8

P13 87 103 20 38 1 8

P14 73 93 25 45 1 5

P15 63 87 21 45 1 5

P16 60 84 36 48 1 8

P17 53 77 36 48 1 8

P18 44 68 25 48 1 8

P20 40 64 30 48 1 8

P20 33 57 29 48 1 8

Coordinates

Well x1 x2 y1 y2 z1 z2

I01 20 44 31 48 1 9

I02 26 50 26 48 1 9

I03 35 59 22 48 1 9

I04 43 67 15 41 1 9

I05 51 75 14 40 1 9

I06 60 84 16 35 1 9

I07 70 94 15 35 1 9

I08 80 104 14 40 1 9

I09 93 117 20 45 1 9

I10 100 124 29 48 1 9
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Figure 8: Left column: ensemble size 20. Right column: ensemble size 100.

Figure 9 and Figure 10. Without further notice, the EnKF seems to give a fairly
good fit to the observations. Moreover, it appears in all figures that the uncer-
tainty in the fit represented by the ensemble spread has decreased considerably
compared to the Prior. To us however, this looks more like a model overfitting,
which is a result of estimation errors when using a finite ensemble. The tremen-
dously small variation in the ensemble spread is a sign of ensemble collapse, which
may lead to underestimation of the predicted uncertainty in the model variables.
The DR-EnKF seems to perform well in the data assimilation, honouring the ob-
servations for much of the history period, and at the same time preserving some of
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Figure 9: Left column: ensemble size 20. Right column: ensemble size 100.

the variability in the Prior. The Loc-EnKF gives even better results.

In the case of ensemble size 100 in Figures 8 to 10, we remark the same tenden-
cies as in the case of ensemble size 20. The traditional EnKF gives a fairly good
match of the observations, except for Figure 8, whereas the DR-EnKF and the
Loc-EnKF seems to successfully assimilate the observations while keeping some of
the variation in the Prior. Also, we observe that Loc-EnKF does not make any
considerable improvements for ensemble size 100. The ensemble spread is naturally
higher here because of the ensemble size.
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Figure 10: Left column: ensemble size 20. Right column: ensemble size 100.

8.2 Model Variables

In the estimation of model variables, we choose to consider the porosity field in
particular. The estimation of the permeability field which is possibly regarded as
a more difficult problem has been studied extensively in Chen and Oliver (2010)
and Valles and Naevdal (2009), so it is not reproduced here. First, we evaluate
the development of the porosity field produced by each ensemble member. Then a
more thorough study of the mean porosity field is carried out, including uncertainty
estimates of the porosity field. The focus is on the comparison of EnKF to DR-
EnKF and Loc-EnKF.
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When evaluating the development of the estimated porosity field we consider
the case with 20 ensemble members. In particular, we have chosen to compare
the traditional EnKF to the Loc-EnKF since the Loc-EnKF seems to be the most
promising method based on the data assimilation. Even with 20 ensemble members
it is difficult to analyze all the 20 porosity fields at the same time, each having 9
layers. In order to have an opinion on the influence that each ensemble member has
on the final updated porosity field, we consider the porosity in layer 4. Figure 11
illustrates the results obtained from ensemble members 5, 15 and 20 for the EnKF
and the Loc-EnKF.

Figure 11: Time development of layer 4 of the porosity field using the EnKF
(left) and the Loc-EnKF (right).

Here, we observe that there are some variation in the initial ensemble. However,
as observations are assimilated at time 20 using the EnKF the ensemble members
look more alike. After time 50 and onwards, it is hard to distinguish the ensemble
members from each other. Obviously, this is an indication of small uncertainty in
the predicted porosity field. But as discussed earlier, we know that the EnKF is
suffering from ensemble collapse where the effective number of ensemble members
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is decreased tremendously. This lead to an underestimation of the prediction un-
certainty of the porosity field. When it comes to the Loc-EnKF, we observe that
some of the boxes come into view at time 20 because only some wells have been
set to operation. As more information from other wells are obtained from time
50 and onwards, the boxes become less visible possibly because there exist strong
correlation between the wells. For both methods, it is seen that some trends in
the porosity field produced by a specific ensemble member come into view after
t = 50. However, the trends between ensemble members for the EnKF are almost
identical, while for the Loc-EnKF the trends between ensemble members are still
different after time 50.

A reasonable way to illustrate the predicted porosity field after data assimilation
is to consider the mean field constituted from the 20 ensembles, and its standard
deviation. Figure 12, on the left hand side displays the mean porosity field in layer
4 for the initial state and the updated state of the reservoir after time 120, while
the right hand side shows the corresponding standard deviation. Figure 13 displays
the absolute change between the initial state and the updated state of the mean
porosity field of the reservoir, also in layer 4. First, we observe in Figure 12 that all
ensemble methods predict porosity fields with a range close to the initial porosity
field. Hence, all methods preserve the prior geological information and thereby are
possible porosity fields. However, it is seen in Figure 13 that both the EnKF and
the DR-EnKF produces updates in the porosity field far from the wells. This might
be an indication of incorrect updates. The Loc-EnKF on the other hand produces
updates only near the wells and almost no updates far from the wells which seems
more reliable. Of course, this is the effect of the chosen localization technique
which is highly simplified. For the general case, localization is a difficult problem
because there might exist unknown information distant from the wells that is not
taken into account. Thus, probably more complex localization regions need to be
considered in order to obtain optimal results.

Further, we observe in Figure 12 on the right hand side that the standard
deviation for ensemble size 100 is small close to the wells for all methods. The
standard deviation for both the EnKF and the DR-EnKF for ensemble size 20 is
unreasonably small everywhere, while the Loc-EnKF for ensemble size 20 produces
lower standard deviation near the wells. Moreover, we note that for the latter case
the variability in the Prior is maintained, only decreasing at the crest where there is
an abundance of wells and higher at the flanks where there are no wells. The EnKF
with ensemble size 100 does not maintain the variability in the Prior although the
standard deviation is reduced near the wells.

8.3 Evaluation of the History Match

In order to evaluate the quality of the history match for different ensemble methods
we use the root mean squared error (RMSE) criterion. We consider the instances
oil productions rates, water production rates and bottom hole pressure rates for all
wells separately. The RMSE value for a specific production data type for a single
well (for example bottom hole pressure for producer well 1) is given by
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Figure 12: Mean porosity field (left) and standard deviation (right) of the porosity
field of layer 4 before and after data assimilation. In each case the ensemble size
ne = 20 is placed on the left hand side and the ensemble size ne = 100 is placed
on the right hand side.

RMSEd =
1

ne

ne∑
i=1

(
1

T

T∑
t=1

(d
(i)
t − dot )2

)1/2

, (51)

where d(i)t is the ensemble production data and dot is the observed data from a
specific well. Production data type d can either be oil productions rates, water
production rates or bottom hole pressure rates. Here, T = 120 is the total number
of time steps corresponding to the number of observations, and ne is the total
number of ensemble members.

The total mean RMSE for a production data type such as bottom hole pressure,
oil production rate or water production rate is given by:

RMSEtot =
1

nw

nw∑
i=1

RMSEd,i. (52)

If production data type d is water rate or oil rate, nw is the number of producer
wells, while for bottom hole pressure nw is the total number of producer and injector
wells. In Table 2 we have computed the RMSE values for this case study.

It is observed in Table 2 that all ensemble methods provides better fit in terms
of RMSE. This is seen for both ensemble sizes. It is however surprising that the
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Figure 13: The absolute change in the mean porosity field. The ensemble sizes
ne = 20 and ne = 100 are placed in each column.

DR-EnKF did not make any improvements in RMSEoil and RMSEoil for ensemble
size 100. When studying the line plots we experienced that the match provided by
EnKF for ensemble size 100 was very good, whereas the DR-EnKF for ensemble size
100 sometimes produced ensemble members that were far from the observations,
as can be seen in Figure 9. This is believed to be the reason for the high RMSE
values. Comparing the Loc-EnKF to the EnKF for both ensemble sizes, we remark
the clear reduction in RMSE. The Loc-EnKF for ensemble size 20 gives generally
lower RMSE values than for ensemble size 100. This may be due to some extent
of overfitting when using a small ensemble size.

8.4 Discussion

The loss of variability in the EnKF is due to the use of a common Kalman ma-
trix estimate for all ensemble members, which seemed more outstanding when the
ensemble size is small. This unreasonable small variability in the ensemble means
that too much confidence is given to the prior model estimates, which entail a small
weight in the Kalman matrix. When the weight is small, the observations are not
taken into consideration. The result is seen as updates in model variables far be-
yond the wells and small variability of the estimated model variables everywhere.
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Table 2: Root mean squared error estimates of BHP, oil production rate and
water production rate.

Method RMSEBHP RMSEoil RMSEwater

ne = 20

Prior 212.7 156.0 124.9

EnKF 162.7 109.2 106.8

DR-EnKF 62.0 95.8 94.3

Loc-EnKF 43.4 89.2 86.6

ne = 100

Prior 168.3 154.7 131.3

EnKF 90.8 102.0 101.7

DR-EnKF 59.6 107.4 105.5

Loc-EnKF 56.4 98.2 94.6

A common solution to this problem is to use localization techniques, which
restrict the area of influence of the observations. Here, we chose a distant-based
localization method in order to improve the match obtained from the traditional
EnKF. For the general case, the localization region should depend on fluid flow in
the reservoir and the production type that is assimilated (Watanabe and Datta-
Gupta, 2011). However, for this specific case distant based covariance localization
seemed to be effective. It reduces the RMSE considerably and produces porosity
fields with reasonable uncertainty estimates.

By the end of this thesis, we are still surprised by the fact that the DR-EnKF
with ensemble size 100 did not make improvements overall. However, the main
purpose of the DR-EnKF is to give reasonable results for small ensemble sizes, as
it is shown by the results.

9 Closing Remarks

In this thesis we explored the use of DR-EnKF and Loc-EnKF to improve the match
of observed production data. These methods was tested on the Brugge field which
is a synthetic reservoir built to test data assimilation. Common to both methods
is a modification in the estimation of the Kalman matrix. However, the correction
of the traditional EnKF is based on different ideas. In DR-EnKF observations are
projected onto the data space spanned by the p dominant eigenvectors of the data
space matrix before assimilation, where the dimension p is determined so as to
optimize the prediction capability of the model. In Loc-EnKF the Kalman matrix
is pre-multiplied by a matrix that effectively reduces the cross-correlation between
observation and model variables that are distant.

The DR-EnKF and Loc-EnKF are compared with the traditional EnKF using
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two different ensembles, a smaller one consisting of 20 ensemble members and a
larger one consisting of 100 ensemble members. The results show that the first 10
years of data was relatively easy to match, probably because the dimension of the
data is effectively small in the first period of the case study. The traditional EnKF
works well in the data assimilation when the ensemble is sufficiently large but suffers
from ensemble collapse when the ensemble is small. This lead to unreasonably
small variability in the model variables. The DR-EnKF manage to make some
improvements in the assimilation of bottom hole pressure, but fails to assimilate
the oil and water production rate for ensemble size 100, in terms of RMSE. The
best result was obtained by Loc-EnKF which improved the match of all production
data and gave satisfactory results of the model variables. It was observed that Loc-
EnKF obtained fairly good model updates even for a small ensemble size.

The challenging task in the Loc-EnKF is the determination of the size of the
local boxes around the wells. In this thesis we have not found a clever way of
choosing the box sizes. Hence, it was chosen based on experience. It is believed
that the match to the observed data can be improved further with an optimal
choice of box sizes.
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