Accepted Manuscript

Transgenerational effects of short-term exposure to acidification and hypoxia on early developmental traits of the mussel *Mytilus edulis*

Hui Kong, Xiaoyu Jiang, Jeff C. Clements, Ting Wang, Xizhi Huang, Yueyong Shang, Jianfang Chen, Menghong Hu, Youji Wang

PII: S0141-1136(18)30719-0

DOI: https://doi.org/10.1016/j.marenvres.2019.02.011

Reference: MERE 4685

To appear in: Marine Environmental Research

Received Date: 11 October 2018

Revised Date: 17 February 2019

Accepted Date: 18 February 2019

Please cite this article as: Kong, H., Jiang, X., Clements, J.C., Wang, T., Huang, X., Shang, Y., Chen, J., Hu, M., Wang, Y., Transgenerational effects of short-term exposure to acidification and hypoxia on early developmental traits of the mussel *Mytilus edulis, Marine Environmental Research* (2019), doi: https://doi.org/10.1016/j.marenvres.2019.02.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Transgenerational effects of short-term exposure to acidification and

- 2 hypoxia on early developmental traits of the mussel *Mytilus edulis*
- 3
- 4 Hui Kong^{1,4}, Xiaoyu Jiang^{1,4}, Jeff C. Clements³, Ting Wang^{1,4}, Xizhi Huang^{1,4},
- 5 Yueyong Shang^{1,4}, Jianfang Chen², Menghong Hu^{1,4}, Youji Wang^{1,2,4,5,*}
- 6 ¹ Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources,
- 7 Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road,
- 8 Shanghai 201306, China
- 9 ² Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of
- 10 Oceanography, Ministry of Natural Resources, Hangzhou, China
- ³ Department of Biology, Norwegian University of Science and Technology,
- 12 Realfagbygget, Høgskoleringen 5, NO-7491 Trondheim, Norway
- ⁴ National Demonstration Center for Experimental Fisheries Science Education,
- 14 Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China State
- ⁵ International Research Center for Marine Biosciences at Shanghai Ocean University,
- 16 Ministry of Science and Technology, China
- 17 ***Corresponding author:** Youji Wang, Email: <u>youjiwang2@gmail.com</u>

18 Abstract

19	Transgenerational effects of multiple stressors on marine organisms are emerging
20	environmental themes. We thus experimentally tested for transgenerational effects of
21	seawater acidification and hypoxia on the early development traits of the mussel
22	Mytilus edulis. Fertilization rate, embryo deformity rate, and larval shell length were
23	negatively impacted by acidification, while hypoxia had little effect except for
24	increasing deformity rates under control pH conditions. Offspring from low pH/O_2
25	parents were less negatively affected by low pH/O2 conditions than offspring from
26	control parents; however, low pH/O ₂ conditions still negatively affected
27	developmental traits in offspring from acclimated parents compared to control
28	seawater conditions. Our results demonstrate that experimental seawater acidification
29	and hypoxia can adversely affect early developmental traits of <i>M. edulis</i> and that
30	parental exposure can only partially alleviate these impacts. If experimental
31	observations hold true in nature, it is unlikely that parental exposure will confer larval
32	tolerance to ocean acidification for <i>M. edulis</i> .
33 34	Keywords: Carbon dioxide; Environmental stress; Hypoxia; Global change biology; Multiple stressors; Transgenerational plasticity
35	1. Introduction
36	Marine global change is anticipated to impact ocean life in the near-future. Two
37	co-occurring stressors that have received relatively little combinatory attention are

38 ocean acidification and deoxygenation (see Gobler & Baumann, 2016 for review).

39	Generally speaking, ocean acidification describes a decrease in oceanic pH, while
40	deoxygenation refers to a global decrease in oceanic oxygen. In the open ocean,
41	acidification is predominantly driven by the uptake of excess anthropogenic CO ₂ from
42	the atmosphere (Hoegh-Guldberg et al., 2014), while deoxygenation is primarily
43	driven by global warming (Breitburg et al., 2018). By 2100, it is projected that
44	open-ocean pH will decrease by 0.3-0.4 units (Feely et al., 2004; Orr et al., 2005),
45	and oxygen will reduce 1–7% (Keeling et al., 2010; Schmidtko & Visbeck, 2017).
46	In contrast to the open ocean, coastal acidification can be affected by myriad
47	processes such as coastal upwelling, ecosystem metabolism and watershed dynamics,
48	and freshwater runoff (Duarte et al., 2013). Similarly, coastal deoxygenation is
49	primarily caused by increased nutrient and organic loads that increase oxygen
50	consumption through microbial decomposition (typically defined as dissolved O ₂
51	below 2 mg $O_2 L^{-1}$; Vaquer-Sunyer & Duarte, 2008; Breitburg et al., 2018).
52	Acidification and hypoxia are known to co-occur, and recent studies highlight tight
53	linkages between acidification and hypoxia in coastal ecosystems, with acidification
54	being more severe under hypoxic conditions (compared to normoxia; Feely et al.,
55	2010; Cai et al., 2011; Paulmier et al., 2011; Melzner et al., 2013). Consequently,
56	coastal organisms can already experience low pH and oxygen conditions that exceed
57	near-future open ocean projections (Wallace et al., 2014; Baumann et al., 2015;
58	Gobler & Baumann, 2016). Nonetheless, global climate change can exacerbate pH
59	and oxygen declines in coastal regions, and coastal organisms are not, by default,

60	immune to such change (Waldbusser & Salisbury, 2014; Breitburg et al. 2018). It is
61	thus necessary to understand the combined effects of short-term acidification and
62	hypoxia on marine life.
63	Globally, marine bivalves are of ecological (Costanza et al., 1997; Dame 2011)
64	and economic (Cooley & Doney, 2009; FAO, 2018) importance. It is well
65	documented, however, that marine bivalves are sensitive to multiple global change
66	stressors. With respect to ocean acidification and hypoxia (see Gobler & Baumann,
67	2016 for review), a limited number of studies suggest largely negative combined
68	effects (Gobler et al., 2014; Clark & Gobler, 2016; Stevens & Gobler, 2018), but
69	positive and null effects have also been reported (Jakubowska & Normant, 2014;
70	Jansson et al., 2015). Given the contrasting effects across relatively few studies, more
71	research testing the combined effects of acidification and hypoxia on marine bivalves
72	is warranted.
73	The role of transgenerational effects (i.e., the effect caused by the parental
74	environment on the offspring; Munday, 2014; Ross et al., 2016) in shaping offspring
75	responses to environmental stress has recently drawn substantial attention. These
76	transgenerational effects can be acclamatory (non-genetic; referred to as
77	transgenerational acclimation or transgenerational plasticity) or adaptive (genetic;
78	referred to as transgenerational adaptation), and can allow some organisms to adjust to
79	projected environmental change (Munday, 2014). Recent studies have indicated that
80	the potential for transgenerational acclimation to global change stressors is not

81	universal and varies across species (Munday, 2014; Munday et al., 2014; Sunday et al.,
82	2014; Ross et al., 2016). With respect to marine bivalves, a limited number of
83	transgenerational studies in the context of ocean acidification exist and report variable
84	effects. For instance, larval clams (Ruditapes philippinarum) showed better growth
85	performance under low pH when parents experienced similar low pH conditions
86	(Zhao et al., 2018). Positive transgenerational effects under experimental ocean
87	acidification have also been reported for larval oysters (Saccostrea glomerata; Parker
88	et al., 2012) and juvenile mussels (<i>M. edulis</i> ; Fitzer et al., 2014a). In contrast, Griffith
89	& Gobler (2017) reported negative transgenerational effects associated with
90	transgenerational exposure to ocean acidification in larval scallops (Argopecten
91	irradians) and clams (Mercenaria mercenaria).
92	While transgenerational studies on ocean acidification exist for marine bivalves,
93	to our knowledge there have been no studies testing for transgenerational acclimation
94	to combined acidification and hypoxia. Consequently, the predictions for how these
95	animals will respond to ocean and coastal acidification and hypoxia are, at present,
96	unattainable. To explore this knowledge gap, we tested for transgenerational effects
97	on early larval developmental traits of mussels (M. edulis) exposed to experimental
98	acidification and hypoxia.

99 **2. Materials and Methods**

100 2.1 Animal collection and husbandry

101	Wild adult mussels (<i>M. edulis</i> ; 75 ± 5 mm shell length) were collected from
102	Gouqi Island, East China Sea (30°43'1.64"N, 122°46'3.25"E) in October 2017.
103	Mussels were immediately transported to experimental facilities at Shanghai Ocean
104	University (Shanghai, China), gently scrubbed clean of epibionts, and transferred to
105	30 L acclimation tanks (recirculating aquarium system with filtered seawater; density
106	= 15 mussels tank ⁻¹ ; flow rate ~10 L min ⁻¹). The mussels were acclimated to
107	laboratory conditions for two weeks at 13 ± 0.5 °C, salinity 28 ± 0.5 psu, dissolved
108	oxygen (DO) concentration of 6.0 \pm 0.3 mg O ₂ L ⁻¹ and pH 8.1 \pm 0.1 (simulated natural
109	environment of mussels at collection site). During acclimation, the mussels were fed
110	twice daily with 10 ml of the microalgae <i>Isochrysis galbana</i> (25,000 cells ml ^{-1}).
111	Animal condition did not change during the acclimation phase and adult mortality was
112	minimal; only visually healthy mussels were selected for the experiment.
113	
114	2.2 Seawater chemistry

Low pH was achieved by using a pCO_2/pH system (DAQ-M) equipped with WTW pH 3310m and SenTix 41 pH electrode (Loligo Systems Inc., Denmark). The pH level was maintained by bubbling pure CO₂ which was real-time connected with feedback STAT systems (DAQ-M). Dissolved oxygen was manipulated by bubbling a mixture of N₂ and air directly into the water via an O₂ regulator (Loligo Systems Inc., Denmark). The gas flow was maintained by a solenoid valve controlled by a computer connected to an O₂ regulator to achieve stable DO levels in each tank.

122	Abiotic seawater parameters including temperature, pH, DO and salinity were
123	monitored twice a day for each tank and total alkalinity (A_T) was measured every two
124	days. Temperature, salinity and DO were observed by a multi-parameter water quality
125	instrument (5200A, YSI Inc., America). Total alkalinity (A_T) was determined by
126	manual 2-point acid-base titration using a manual burette and applicable reagents
127	(Phenolphthalein indicator, Methyl red indicator, and 0.025mol L ⁻¹ Hydrochloric Acid
128	Standard Solution). Additional carbonate system parameters including pCO_2 ,
129	dissolved inorganic carbon (DIC), calcite saturation state (Ω_{ca}) and aragonite (Ω_{ar})
130	were estimated from temperature, salinity, $A_{\rm T}$, and pH _{NBS} measurements in CO2SYS
131	(Pierrot et al., 2006) with dissociation constants from Mehrbach et al. (1973) refit by
132	Dickson & Millero (1987). Summaries of seawater carbonate chemistry parameters
133	are listed in Table 1 and Table 2 for the two experiments. Abiotic conditions were
134	generally stable and representative of the targeted conditions.
135	
136	2.3 Experimental design
137	Due to logistical constraints with experimental space, we conducted two separate
138	experiments (hereafter Experiment 1 and Experiment 2) to test for transgenerational
139	effects. In Experiment 1, parental mussels were acclimated in a fully-factorial manner
140	to three pH treatments (8.1 [control], 7.7, and 7.3) and two DO treatments (6 mg O_2
141	L^{-1} [control] and 2 mg O ₂ L^{-1} [hypoxia]) for four weeks and respective embryos (with
142	a density of approximately 25 embryos ml ⁻¹) from each parental treatment were reared

143	under the same conditions as their parents. The embryos were maintained in triplicates
144	in culture flasks (5L; $n = 3$ flasks) filled with filtered seawater under the same
145	conditions as the respective parental exposure (pH and O ₂ conditions maintained as
146	previously described) and reared through to the D-stage of larval development.
147	Seawater was half-renewed every two days in each tank. Larvae were fed daily with
148	10ml of the microalgae <i>I. galbana</i> (25,000 cells ml^{-1}) 48 h post-fertilization.
149	Fertilization rate was observed at 8 h and embryo deformity rates were observed at 2 h,
150	4 h, and 8 h after fertilization. The shell length of the D-shaped larvae was observed at
151	48h, 72h, 96h, and 120h after euthanizing the larvae with paraformaldehyde solution
152	(4% PFA).
153	In Experiment 2, all parental mussels were acclimated under control conditions
154	(pH 8.1, 6mg $O_2 L^{-1}$) and respective offspring were reared under all experimental
155	treatment combinations as above. As with Experiment 1, embryos were maintained in
156	triplicate flasks (5L) filled with filtered seawater under the six pH \times DO treatments as
157	Experiment 1. Subsequent experimental procedures were the same as Experiment 1.
158	For each treatment in each experiment, a total of 45 adult mussels were split
159	evenly among 3 tanks ($n = 15$ mussel per tank). The control pH level was chosen
160	based on ambient seawater pH at the collection site (pH 8.1; Li et al., 2014), while pH
161	7.7 mimicked the predicted average level by 2100 (Hoegh-Guldberg et al., 2014) as
162	well as the extreme of present natural variability at the sampling site (Li et al., 2014);
163	pH 7.3 represented the predicted extreme pH level relevant for hypoxic zones by 2100

164	(Cai et al., 2011). For DO levels, 6 mg $O_2 L^{-1}$ was chosen based on normoxic
165	conditions at the collection site, and 2 mg $O_2 L^{-1}$ was chosen based on the typical
166	defined threshold for seawater hypoxia (Zhang et al., 2010).
167	For artificial reproduction in each experiment, 45 parental mussels from each
168	treatment combination were induced to spawn in three spawning tanks using the
169	temperature shock method (Pronker et al., 2008). Prior to spawning, the mussels were
170	cleaned with filtered seawater and stimulated with flowing filtered seawater for 10
171	min, then the mussels were transferred to a 60 L spawning tank. Massive spawning
172	was achieved by rapidly raising the seawater temperature from 13 °C to 23 °C. Three
173	spawning tanks per treatment and 15 mussels per spawning tank were used to
174	spawned. Freshly filtered seawater was replaced every 30 minutes after fertilization
175	(remove the upper sperm suspension and add the same amount of seawater).
176	
177	2.4 Developmental bioassays
178	For embryonic development, 5 ml seawater (with a density of approximately 25
179	embryos ml ⁻¹) was randomly sampled from each flask at 2, 4, and 8 h after
180	fertilization. Fertilization rate and deformity rate were subsequently examined under a
181	microscope. Fertilization was assessed by observing the release of polar bodies
182	(Ventura et al., 2016) and embryo deformity was assessed by the observation of
183	embryo morphology. For the latter, embryos were visually inspected and
184	characterized as slightly deformed, irregular, lysed, broken and/or defective embryos

185	(Fig. 2); embryos falling into any of these categories were considered deformed. The
186	number of fertilized eggs and deformed embryos in 100 randomly selected eggs from
187	each flask were counted and fertilization and deformity rates were calculated as the
188	percentage of fertilized and deformed eggs ($[n/100] \times 100$). For larval development,
189	seawater was randomly sampled as above at 48, 72, 96 and 120 h after fertilization. A
190	random sample of 50 D-shaped larvae were isolated from each flask and the shell
191	length of the D-shaped larvae (anterior to posterior dimension of the shell parallel to
192	the hinge) was measured under a microscope fitted with an ocular micrometer.
193	
194	2.5 Statistical analysis
195	Data analyses were performed using SPSS 24 software and the values of all
196	parameters were expressed as the means \pm S.D. Prior to analysis, data were tested for
197	normality using the Shapiro-Wilk's test and homogeneity of variance using the
198	Levene's test. Percentage data were arcsin-square root transformed prior to analyses.
199	The independent and interactive effects of three fixed factors (DO, pH, and parental
200	exposure) were analyzed by three-way analysis of variance (ANOVA). If an
201	interaction existed, the significant effects were analyzed by a one-way ANOVA at
202	each fixed DO value and parental exposure condition, followed by a Tukey's HSD
203	test ($\alpha = 0.05$). Significant effects of DO and parental exposure were analyzed at fixed
204	other two parameters respectively using Student's t-test ($\alpha = 0.05$).
205	

3. Results

3.1 Fertilization and deformity rate

208	Fertilization rates ranged from 63% to 100%, and were significantly reduced by
209	low pH in a stepwise fashion; low DO had no effect (Table 3). Significant interactions
210	occurred between pH and parental exposure on the fertilization rates (Table 3; Fig. 3).
211	Parental exposure significantly affected the fertilization rates under low pH conditions
212	(7.7 and 7.3), with fertilization rates under low pH conditions being partially
213	enhanced when parents were reared under low pH (Fig. 3). Regardless of parental
214	exposure, low pH negatively affected fertilization rates compared to control
215	conditions (Fig. 3).
216	Deformity rates at 2h, 4h, and 8h were significantly affected by low pH in a
217	stepwise fashion, with severe deformity rates at pH 7.3 (Table 3, Fig. 4). Low DO
218	significantly increased deformity rates at 2h, 4h, and 8h under control pH (pH 8.1) in
219	both Experiment 1 and Experiment 2. Significant interactions occurred between pH
220	and parental exposure, and pH and DO, at different times (Table 3; Fig. 4). More
221	specifically, parental exposure significantly decreased the embryo deformity rates
222	under pH 7.7 at DO 6mg $O_2 L^{-1}$ at all three time points, and under all pH levels at DO
223	$2 \text{mg O}_2 \text{ L}^{-1}$ for all three time points, with the exception of pH 8.1 × DO $2 \text{mg O}_2 \text{ L}^{-1}$ at
224	2h.

226 3.2 Shell length of D-shaped larvae

227	Shell length of D-shaped larvae ranged from 60 μ m to 125 μ m during the
228	observation period. A significant decrease in larval shell growth occurred at 48 h
229	under pH 7.3 in Experiment 1. In Experiment 2, low pH significantly decreased larval
230	shell growth in a stepwise fashion under 6 mg $O_2 L^{-1}$; at 2 mg $O_2 L^{-1}$ larvae reared
231	under pH 7.3 had a significantly smaller shell length than control larvae (Table 3; Fig.
232	5). Larval shell growth at 48h were not significantly affected by low DO. Moreover,
233	parental exposure did not show a significant difference in the D-shaped larval shell
234	growth except in the condition of pH 8.1 × DO 2mg O ₂ L ⁻¹ at 72h (Table 3; Fig.5). At
235	72, 96 and 120 h, larval shell length was significantly smaller under low pH; low DO
236	larvae showed significantly smaller shell lengths under control pH (pH 8.1).
237	Significant interactions did not occur on the D-shaped larval shell length (Table 3).
238	
239	4. Discussion
240	In this study, we tested for transgenerational effects of exposure to combined
241	ocean acidification and hypoxia on the early development of mussels <i>M. edulis</i> . We
242	found that parental exposure to acidification and hypoxia could only partially alleviate
243	the negative effects of these stressors on embryonic and larval developmental traits, as
244	negative effects on developmental traits were still observed when parents were reared
245	under low pH and low O ₂ . As such, our results suggest that parental exposure may not

246 confer offspring tolerance to short-term ocean acidification and hypoxia in mussels *M*.

247 edulis.

210	
249	4.1 Effects of ocean acidification and hypoxia on larval development
250	Considering the increased occurrences of hypoxia (Vaquer-Sunyer & Duarte,
251	2008) and the continuous decrease of pH levels (Hoegh-Guldberg et al., 2014)
252	globally, it is critical to evaluate the combined impacts on marine species and
253	ecosystems. However, the combined effect of low pH and oxygen on marine species
254	has not been widely studied (Gobler & Baumann, 2016). Our results indicated that
255	low pH conditions had negative effects on fertilization rates, larval deformity rates,
256	and larval shell growth, Furthermore, while positive transgenerational effects were
257	observed, they only partially alleviated the effects of acidification on the
258	aforementioned early developmental traits.
259	While we did not measure survival, our results showed that short-term exposure
260	to experimental ocean acidification negatively affected fertilization rate, embryo
261	deformity rate, and larval shell growth, while hypoxia had relatively little effect and
262	did not influence the effect of acidification. The reduced fertilization rates under
263	acidification may be due to the negative effect of acidification on sperm fitness such
264	as the percentage of motile sperm and the sperm swimming speed (Vihtakari et al.,
265	2013) and/or the process of sperm-egg collisions and gamete fusion (Shi et al., 2017).
266	Negative effects on larval shell growth may be due to the decreasing calcification
267	(Berge et al., 2006) and shell dissolution (Ramesh et al., 2017), or perhaps increases
268	in larval deformities (Talmage & Gobler, 2009). Regardless of mechanism, such

269	effects in nature could potentially increase juvenile mortality, particularly when food
270	shortages occur during the accumulation of energy reserves (Phillips, 2002).
271	Our findings indicated relatively little effect of hypoxia on early development.
272	While some comparatively small effects of hypoxia were observed at control pH
273	conditions, DO did not affect fitness under any of the low pH conditions, suggesting
274	that pH has a stronger influence on early development in mussels M. edulis. Similar
275	results have been observed for <i>M. edulis</i> from other locations (e.g. Frieder et al., 2014)
276	as well as other mussel species such as Mytilus californianus (Frieder, 2013), even at
277	extremely low DO concentrations (0.5 mg $O_2 L^{-1}$; Eerkes-Medrano et al., 2013). With
278	respect to calcification, mineralogical plasticity (e.g. increased calcite to aragonite
279	ratio and magnesium to calcium ratio) is thought to be one way in which calcifying
280	marine organisms can withstand low DO effects on calcification (e.g. polychaete
281	Hydroides diramphus; Leung & Cheung, 2018). Metabolic alterations have also been
282	reported to support organismal tolerance to hypoxia. For example, Pörtner et al. (2005)
283	reported that marine animals switch to an anaerobic metabolism and undergo
284	metabolic depression which contributes to energy savings during low DO. The
285	utilization of metabolic pathways that are less energetically demanding may also
286	support calcification and survival under hypoxic conditions (Risgaard-Petersen et al.,
287	2006; Nardelli et al., 2014). While we did not test for physiological underpinnings of
288	observed responses in this study, such mechanisms may explain the lack of DO effect
289	on deformation rates and shell growth observed herein. Alterations in metabolic

activity that result in increased energy availability under hypoxia could have also been
responsible for the lack of low DO effect on fertilization rates as well. Collectively,
these findings suggest that low DO has relatively little effect on the early development
of mussels.

294

295 4.2 Transgenerational effects of combined ocean acidification and hypoxia

The role of parental exposure in shaping offspring responses to global change 296 297 stressors has been observed in numerous marine species including fishes, copepods, 298 and bivalves (Vehmaa et al., 2012; Parker et al., 2012; Munday, 2014). Despite numerous transgenerational studies for acidification and warming, this is, to our 299 300 knowledge, the first study to test for transgenerational acclimation in response to 301 combined acidification and hypoxia. While parental exposure to low pH and DO partially reduced negative effects on offspring compared to when parents were 302 303 exposed to control conditions, the positive parental effects were weak at best. Our 304 results thus suggest a limited capacity for parental exposure to alleviate the negative effects of low pH on early development in mussels. This is in contrast to studies 305 306 documenting largely positive effects of parental exposure on offspring responses, particularly to low pH conditions, in bivalves (Parker et al., 2012; Fitzer et al., 2014; 307 308 Zhao et al., 2016) and others reporting negative effects of parental exposure (Griffith 309 & Gobler, 2017). Thus, there remains a high degree of uncertainty regarding the

310	ability of parental exposure to alleviate the effects of marine global change stressors
311	on their offspring and more research is warranted.
312	While limited, the increased resistance to ocean acidification of <i>M. edulis</i> larvae
313	from parents exposed to low pH and DO conditions may be the result of a higher
314	concentration or activity of the enzyme carbonic anhydrase (CA) catalyzing the
315	reversible hydration of CO_2 and accelerating the formation of bicarbonate (HCO ₃ ⁻)
316	(Lionetto et al., 2012). Some studies have also found a correlation between CA
317	activity and shell formation (Fitzer et al., 2014b; Medaković & Lucu., 1994), and
318	enzyme activity increases linearly with shell formation (Medaković, 2000).
319	Nonetheless, the mechanisms at play only conferred a small benefit of parental
320	exposure. It is important to note here, however, that although our parental exposure
321	time (4 weeks) was similar to other transgenerational studies on bivalves (e.g. Griffith
322	& Gobler, 2017), a longer exposure may have yielded different results. For example,
323	our exposure time may not have been enough for parental mussels to produce
324	adequate proteins, hormones, or other somatic traits that would provide offspring with
325	the ability to strongly resist more acidified, hypoxic conditions (Munday, 2014). Thus,
326	while our results provide the first documentation of transgenerational effects to
327	combined acidification and hypoxia, future studies with longer parental exposure
328	times are warranted.
329	

5. Conclusions

331	This study represents the first of its kind to assess the potential for
332	transgenerational acclimation to combined acidification and hypoxia in marine
333	bivalves. Our results suggest that ocean acidification has a comparatively stronger
334	effect on the early development of mussels <i>M. edulis</i> . Although we did not directly
335	measure survival, the observed effects of acidification represent a strong decline in
336	function, as reduced fertilization rates, increased deformity rates, and decreased
337	growth all represent negative functional consequences for larval bivalves.
338	Furthermore, while transgenerational effects were positive, they were not sufficient to
339	completely alleviate the negative effects of ocean acidification. Thus, if our
340	experimental results hold true in nature, it appears the ocean acidification may have
341	negative effects on <i>M. edulis</i> populations since the success of the early developmental
342	stage of shellfish can affect population and community dynamics. Nonetheless, more
343	research on the combined effects on ocean acidification and hypoxia are required
344	before general conclusions can be drawn with respect to marine bivalves, and
345	longer-term parental exposures are required before predicting whether or not the
346	effects observed herein apply in nature.

347 Acknowledgements

This work was supported by a research grant from Natural Science Foundation of
China [project no. 31872587], a grant from Shanghai Municipal Natural Science
Foundation [project no. 17ZR1412900], the Shanghai Pujiang Program
[18PJ1404000], the National Science & Technology Pillar Program [2015BAD08B01]
and the China-APEC Cooperation Fund [2029901]. This work was also supported by
the Open Research Fund [LMEB201702] of the Key Laboratory of Marine Ecosystem
and Biogeochemistry, SOA, Second Institute of Oceanography, SOA, the Open Fund

- of Shandong Key Laboratory of Disease Control in Mariculture (KF201802) and the
- 356 open fund of Zhejiang provincial first-class discipline of biological engineering
- 357 [KF2018006].

358 **References**

Baumann, H., Wallace, R. B., Tagliaferri, T., & Gobler, C. J. (2015). Large natural 359 360 pH, CO₂ and O₂ fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuaries and Coasts, 38, 220-231. 361 362 Berge, J. A., Bjerkeng, B., Pettersen, O., Schaanning, M. T., & Oxnevad, S. (2006). 363 Effects of increased sea water concentrations of CO₂ on growth of the bivalve 364 Mytilus edulis L. Chemosphere, 62, 681-687. 365 Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., et al. (2018). 366 Declining oxygen in the global ocean and coastal waters. Science, 359, 367 eaam7240. Cai, W. J., Hu, X. P., Huang, W. J., Murrell, M. C., Lehrter, J. C., et al. (2011). 368 369 Acidification of subsurface coastal waters enhanced by eutrophication. Nature 370 Geoscience, 4, 766-770. Clark, H. R., & Gobler, C. J. (2016). Diurnal fluctuations in CO₂ and dissolved 371 372 oxygen concentrations do not provide a refuge from hypoxia and acidification for 373 early-life-stage bivalves. Marine Ecology Progress Series, 558, 1-14. 374 Cooley, S. R., & Doney, S. C. (2009). Anticipating ocean acidification's economic 375 consequences for commercial fisheries. Environmental Research Letters, 4, 376 024007. Costanza, R., D'Arge, R., Groot, R. D., Farber, S., Grasso, et al. (1997). The value of 377 378 the world's ecosystem services and natural capital. Nature, 387, 253-260. 379 Dame, R. F. (2011). Ecology of marine bivalves: an ecosystem approach, second 380 edition. CRC Press, Boca Raton. 381 Dickson, A. G., & Millero, F. J. (1987). A comparison of equilibrium constants for 382 the dissociation of carbonic acid in seawater media. Deep-Sea Research. 34. 383 1733-1743. 384 Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., et al. (2013) 385 Is ocean acidification an open-ocean syndrome? Understanding anthropogenic 386 impacts on seawater pH. Estuaries and Coasts, 36, 221-236 387 Eerkes-Medrano, D., Menge, B., Sislak, C., & Langdon, C. (2013). Contrasting 388 effects of hypoxic conditions on survivorship of planktonic larvae of rocky 389 intertidal invertebrates. Marine Ecology Progress Series, 478, 139-151. 390 FAO (2018). The State of the World Fisheries and Aquaculture: Contributing to Food 391 Security and Nutrition for All. Rome: Food and Agriculture Organization of the United Nations. 392 393 Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., Krembs, 394 C., Maloy, C. (2010). The combined effects of ocean acidification, mixing, and

395	respiration on pH and carbonate saturation in an urbanized estuary. Estuarine
396	Coastal & Shelf Science, 88, 442-449.
397	Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., & Millero,
398	F. J. (2004). Impact of anthropogenic CO_2 on the CaCO ₃ system in the oceans.
399	Science, 305, 362-366.
400	Fitzer, S. C., Cusack, M., Phoenix, V. R., & Kamenos, N. A. (2014a). Ocean
401	acidification reduces the crystallographic control in juvenile mussel shells.
402	Journal of Structural Biology, 188, 39 -45.
403	Fitzer, S. C., Phoenix, V. R., Cusack, M., & Kamenos, N. A. (2014b). Ocean
404	acidification impacts mussel control on biomineralisation. Scientific reports, 4,
405	6218.
406	Frieder, C. A. (2013). Evaluating low oxygen and pH variation and its effects on
407	invertebrate early life stages on upwelling margins. PhD Dissertation, University
408	of California, San Diego.
409	Frieder, C. A., Gonzalez, J. P., Bockmon, E. E., Navarro, M. O., & Levin, L. A.
410	(2014). Can variable pH and low oxygen moderate ocean acidification outcomes
411	for mussel larvae? Global Change Biology, 20, 754-764.
412	Gobler, C. J., & Baumann, H. (2016) Hypoxia and acidification in ocean ecosystems:
413	coupled dynamics and effects on marine life. Biology Letters, 12, 20150976.
414	Gobler, C. J., DePasquale, E. L., Griffith, A. W., & Baumann, H. (2014). Hypoxia and
415	acidification have additive and synergistic negative effects on the growth,
416	survival, and metamorphosis of early life stage bivalves. PLoS One, 9, e83648.
417	Griffith, A. W., & Gobler, C. J. (2017). Transgenerational exposure of North Atlantic
418	bivalves to ocean acidification renders offspring more vulnerable to low pH and
419	additional stressors. Scientific Reports, 7, 11394.
420	Hoegh-Guldberg, O., Cai, R., Poloczanska, E. S., Brewer, P. G., Sundby, S., Hilmi, K.,
421	Fabry, V. J., & Jung, S. (2014) The Ocean. In Barros, V. R., Field, C. B., Dokken,
422	D. J., et al. (Eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability.
423	Part B: Regional Aspects. Contribution of Working Group II to the Fifth
424	Assessment Report of the Intergovernmental Panel on Climate Change.
425	Cambridge University Press, Cambridge, UK, p.p. 1655-1731.
426	Jakubowska, M. & Normant, M. (2014). Metabolic rate and activity of blue mussel
427	Mytilus edulis trossulus under short-term exposure to carbon dioxide-induced
428	water acidification and oxygen deficiency. Marine and Freshwater Behaviour
429	and Physiology, 48, 25-39.
430	Jansson, A., Norkko, J., Dupont, S., & Norkko, A. (2015). Growth and survival in a
431	changing environment: Combined effects of moderate hypoxia and low pH on
432	juvenile bivalve Macoma balthica. Journal of Sea Research, 102, 41-47.
433	Keeling, R. F., Kortzinger, A., & Gruber, N. (2010). Ocean deoxygenation in a
434	warming world. Annual Review of Marine Science, 2, 199-229.

435	Leung, J., & Cheung, N. K. (2018). Effects of hypoxia and non-lethal shell damage on
436	shell mechanical and geochemical properties of a calcifying
437	polychaete. Biogeosciences, 15(10), 3267-3276.
438	Li, H. M., X. Y. Shi, P. Chen &C. S. Zhang. (2014). Effects of pH and DO on the
439	migration and transformation of phosphate in the process of mixing in the
440	Changjiang Estuary. Marine Environmental Science, 33, 497–502.
441	Lionetto, M., Caricato, R., Giordano, M., Erroi, E., & Schettino, T. (2012). Carbonic
442	anhydrase as pollution biomarker: an ancient enzyme with a new
443	use. International journal of environmental research and public health, 9(11),
444	3965-3977.
445	Medaković, D. (2000). Carbonic anhydrase activity and biomineralization process in
446	embryos, larvae and adult blue mussels Mytilus edulis L. Helgoland Marine
447	<i>Research</i> , 54(1), 1-6.
448	Medaković, D., & Lucu, Č. (1994). Distribution of carbonic anhydrase in larval and
449	adult mussels Mytilus edulis Linnaeus. Periodicum Biologorum, 96(4), 452-454.
450	Mehrbach, C., Culberson, J. E., Hawley, J. E., & Pytkowicz, R. M. (1973).
451	Measurements of apparent dissociation constants of carbonic acid in seawater at
452	atmospheric pressure. Limnology and Oceanography, 18, 897-907.
453	Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A., Bange, H. W.,
454	Hansen, H. P., Körtzinger, A. (2013). Future ocean acidification will be amplified
455	by hypoxia in coastal habitats. Marine Biology, 160, 1875-1888.
456	Munday, P. L. (2014). Transgenerational acclimation of fishes to climate change and
457	ocean acidification. F1000prime Reports, 6(6), 99.
458	Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M., & Marshall, D. J. (2014).
459	Predicting evolutionary responses to climate change in the sea. Ecology Letters,
460	<i>16</i> , 1488-1500.
461	Nardelli, M. P., Barras, C., Metzger, E., Mouret, A., Filipsson, H. L., Jorissen, F., &
462	Geslin, E. (2014). Experimental evidence for foraminiferal calcification under
463	anoxia. <i>Biogeosciences</i> , 11(14), 4029-4038.
464	Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., et al. (2005).
465	Anthropogenic ocean acidification over the twenty-first century and its impact on
466	calcifying organisms. <i>Nature, 437,</i> 681-686.
467	Parker, L. M., Ross, P. M., O'Connor, W. A., Borysko, L., Raftos, D. A., & Portner, H.
468	O. (2012). Adult exposure influences offspring response to ocean acidification in
469	oysters. Global Change Biology, 18, 82-92.
470	Paulmier, A., Ruizpino, D., & On, V. G. (2011). CO ₂ maximum in the oxygen
471	minimum zone (OMZ). Biogeosciences, 8, 239-252.
472	Phillips, N. E. (2002). Effects of nutrition-mediated larval condition on juvenile
473	performance in a marine mussel. <i>Ecology</i> , 83, 2562-2574.
474	Pierrot, D., Lewis, E., & Wallace, D. W. R. (2006). MS Excel program developed for
475	CO2 system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information

476	Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak
477	Ridge, Tennessee.
478	Pörtner, H. O., Langenbuch, M., & Michaelidis, B. (2005). Synergistic effects of
479	temperature extremes, hypoxia, and increases in CO ₂ on marine animals: From
480	Earth history to global change. Journal of Geophysical Research: Oceans, 110,
481	C09S10.
482	Pronker, A. E., Nevejan, N. M., Peene, F., Geijsen, P., & Sorgeloos, P. (2008).
483	Hatchery broodstock conditioning of the blue mussel Mytilus edulis (Linnaeus
484	1758). Part I. Impact of different micro-algae mixtures on broodstock
485	performance. Aquaculture International, 16, 297-307.
486	Ramesh, K., Hu, M. Y., Thomsen, J., Bleich, M., & Melzner, F. (2017). Mussel larvae
487	modify calcifying fluid carbonate chemistry to promote calcification. Nature
488	Communications, 8, 1709.
489	Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C., Jetten, M. S.,
490	Op den Camp, H. J., Derksen, J. W., PiñaOchoa, E., Eriksson, S. P., Nielsen, L.
491	P., Revsbech, N. P., Cedhagen, T., and van der Zwaan, G. J. (2006). Evidence for
492	complete denitrification in a benthic foraminifer, Nature, 443, 93–96.
493	Ross, P. M., Parker, L., & Byrne, M. (2016). Transgenerational responses of molluscs
494	and echinoderms to changing ocean conditions. ICES Journal of Marine Science,
495	73, 537-549.
496	Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen
497	content during the past five decades. Nature, 542, 335.
498	Shi, W., Han, Y., Guo, C., Zhao, X., Liu, S., et al. (2017). Ocean acidification
499	hampers sperm-egg collisions, gamete fusion, and generation of Ca ²⁺ oscillations
500	of a broadcast spawning bivalve, Tegillarca granosa. Marine Environmental
501	Research, 130, 106-112.
502	Stevens, A. M., & Gobler, C. J. (2018). Interactive effects of acidification, hypoxia,
503	and thermal stress on growth, respiration, and survival of four North Atlantic
504	bivalves. Marine Ecology Progress Series, 604, 143-161.
505	Sunday, J. M., Calosi, P., Dupont, S., Munday, P. L., Stillman, J. H., & Reusch, T. B.
506	(2014). Evolution in an acidifying ocean. Trends in Ecology & Evolution, 29,
507	117-125,
508	Talmage, S. C., & Gobler, C. J. (2009). The effects of elevated carbon dioxide
509	concentrations on the metamorphosis, size, and survival of larval hard clams
510	(Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern
511	oysters (Crassostrea virginica). Limnology & Oceanography, 54, 2072-2080.
512	Vaquer-Sunyer, R., & Duarte, C. M. (2008). Thresholds of Hypoxia for Marine
513	Biodiversity. Proceedings of the National Academy of Science of the United
514	States of America, 105, 15452-15457.
515	Vehmaa, A., Brutemark, A., & Engström-Öst, J. (2012). Maternal effects may act as
516	an adaptation mechanism for copepods facing pH and temperature
517	changes. PLoS One, 7, e48538.

518	Ventura, A., Schulz, S., & Dupont, S. (2016). Maintained larval growth in mussel
519	larvae exposed to acidified under-saturated seawater. Scientific Reports, 6,
520	23728.
521	Vihtakari, M., Hendriks, I., Holding, J., Renaud, P., Duarte, C., & Havenhand, J.
522	(2013). Effects of ocean acidification and warming on sperm activity and early
523	life stages of the mediterranean mussel (Mytilus galloprovincialis). Water, 5,
524	1890-1915.
525	Waldbusser, G. G., & Salisbury, J. E. (2014). Ocean acidification in the coastal zone
526	from an organism's perspective: multiple system parameters, frequency domains,
527	and habitats. Annual Reviews in Marine Science, 6, 221-247.
528	Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., & Gobler, C. J. (2014).
529	Coastal ocean acidification: the other eutrophication problem. Estuarine, Coastal
530	and Shelf Science, 148, 1-13.
531	Zhang, J., Gilbert, D., Gooday, A., Levin, L., Naqvi, S. W. A., et al. (2010). Natural
532	and human-induced hypoxia and consequences for coastal areas: synthesis and
533	future development. Biogeosciences, 7, 1443-1467.
534	Zhao, L., Schöne, B. R., Mertz-Kraus, R., & Yang, F. (2016). Sodium provides
535	unique insights into transgenerational effects of ocean acidification on bivalve
536	shell formation. Science of the Total Environment, 577, 360-366.
537	Zhao, L., Yang, F., Milano, S., Han, T., Walliser, E. O., & Schöne, B. R. (2018).
538	Transgenerational acclimation to seawater acidification in the manila clam
539	Ruditapes philippinarum: preferential uptake of metabolic carbon. Science of the
540	Total Environment, 627, 95-103.
541	

tapes _P... I Environment, 02...

Table 1 A summary of seawater carbonate chemistry parameters in experiment 1. Seawater pH (pH_{NBS}), temperature of embryo and larvae period (T, $^{\circ}$ C), salinity (psu), total alkalinity (A_T, µmol kg⁻¹), dissolved inorganic carbon (DIC), the partial pressure of CO₂ (pCO₂, µatm) as well as aragonite (Ωar) and calcite (Ωca) saturation states were listed.

Trea	tments	salinity	Т	pH _{NBS}	A _T	DIC	pCO ₂	Ωca	Ωar
pН	DO	(pus)	(°C)		(µmol*kg ⁻¹)	(µmol*kg ⁻¹)	(µatm)		
	(mg								
	O_2								
	L ⁻¹)								
8.1	$6.0 \pm$	$28.0~\pm$	16.1	$8.11 \pm$	2236 ± 20	2027 ± 13	348 ±	4.31	2.63
	0.2	0.3	± 0.3	0.02			13	±	±
								0.12	0.11
7.7	$6.1 \pm$	$28.1 \pm$	16.2	$7.70 \pm$	2189 ± 29	2130 ± 23	$1118 \pm$	2.03	1.31
	0.1	0.2	± 0.1	0.02			22	±	±
)	0.09	0.05
7.3	$6.0 \pm$	$27.9 \pm$	16.0	7.31 ±	2218 ± 12	2273 ± 20	2328 ±	0.81	0.59
	0.2	0.2	± 0.3	0.03			34	±	±
								0.07	0.03
8.1	$2.1 \pm$	$28.1 \pm$	15.9	$8.10 \pm$	2301 ± 21	2089 ± 12	$356 \pm$	4.28	2.59
	0.1	0.2	± 0.2	0.03			12	±	±
								0.08	0.16
7.7	$2.1 \pm$	$28.1 \pm$	16.0	$7.73 \pm$	2257 ± 27	2159 ± 19	$1089 \pm$	1.96	1.29
	0.1	0.2	± 0.2	0.01			29	±	±
								0.18	0.05
7.3	$2.0 \pm$	$28.0~\pm$	16.2	7.29 ±	2261 ± 13	2318 ± 11	$2401 \pm$	0.86	0.63
	0.2	0.3	± 0.3	0.03			31	±	±
								0.05	0.04

Table 2 A summary of seawater carbonate chemistry parameters in experiment 2. Seawater pH (pH_{NBS}), temperature of embryo and larvae period (T, $^{\circ}$ C), salinity (psu), total alkalinity (A_T, µmol kg⁻¹), dissolved inorganic carbon (DIC), the partial pressure of CO₂ (pCO₂, µatm) as well as aragonite (Ω ar) and calcite (Ω ca) saturation states were listed.

Treatments		salinity	Т	$\mathrm{pH}_{\mathrm{NBS}}$	A_{T}	DIC	pCO ₂	Ωca	Ωar
pН	DO	(pus)	(°C)		(µmol*kg ⁻¹)	(μmol^*kg^{-1})	(µatm)		
	(mg								
	O_2								
	L^{-1})								
8.1	6.1 ±	$28.1 \pm$	15.8	$8.09~\pm$	2228 ± 27	2021 ± 27	$352 \pm$	4.29	2.57
	0.1	0.1	± 0.3	0.02			11	±	±
								0.07	0.10
7.7	$6.0 \pm$	$28.1 \pm$	16.1	$7.71 \pm$	2169 ± 17	2165 ± 21	$1107 \pm$	2.09	1.29
	0.1	0.3	± 0.2	0.03			17	±	±

								0.08	0.05
7.3	$6.1 \pm$	$28.0 \pm$	16.1	$7.32 \pm$	2231 ± 19	2284 ± 13	$2427 ~\pm$	0.85	0.62
	0.2	0.3	± 0.2	0.03			23	±	±
								0.03	0.01
8.1	$2.1 \pm$	$27.9 \pm$	15.9	$8.10 \pm$	2311 ± 19	2098 ± 18	$343 \pm$	4.28	2.66
	0.1	0.2	± 0.3	0.03			10	±	±
								0.05	0.13
7.7	$2.2 \pm$	$28.0 \pm$	16.0	$7.70 \pm$	2217 ± 13	2248 ± 15	$1098 \pm$	2.06	1.22
	0.1	0.2	± 0.3	0.01			16	±	±
								0.18	0.07
7.3	$2.0 \pm$	$28.1 \pm$	16.0	$7.32 \pm$	2211 ± 17	2339 ± 20	2418 ±	0.86	0.61
	0.2	0.3	± 0.1	0.03			33	±	±
								0.03	0.04

Table 3 Summary of three-way ANOVA results on effects of pH, DO and parental exposure (PE) on the fertilization rate (FR), the deformity rate at 2h (DR2), 4h (DR4), 8h (DR8) and the shell length of D-shaped larvae at 48h (SL48), 72h (SL72), 96h (SL96) 120h (SL120) in experiment #1 and experiment #2. Significantly different values are represented in bold.

	FR					I		DR4				
	d	MS	F	Р	d	MS	F	Р	d	MS	F	Р
	f				f				f			
PE	1	406.69	34.53	<0.0	1	448.02	16.83	<0.0	1	529.00	31.27	<0.0
	1	4	1	01		8	6	01		0	1	01
pН	2	1656.6	140.6	<0.0	2	11858.	445.6	<0.0	2	13307.	786.6	<0.0
	2	94	63	01		778	33	01		194	32	01
DO	1	30.25	2 568	0.12	1	272.25	10.23	0.00	1	484.00	28.61	<0.0
	1	30.23	2.508	2		0	1	4		0	1	01
PE*pH	2	61 361	5.21	0.01	2	112.11	4.213	0.02	2	54.250	3.207	0.05
	2	01.501	5.21	3		1		7				8
PE*DO	1	1 361) 116	0.73	1	0.694	0.026	0.87	1	4.000	0.236	0.63
		1.501	0.110	7				3				1
pH*DO	2	6.25	0 531	0.59	2	206.33	7.754	0.00	2	99.750	5.897	0.00
	4	0.25	0.551	5		3		3				8
PE*pH	2	0.694	0.050	0.94	2	0.444	0.017	0.98	2	33.583	1.985	0.15
*DO		0.094	0.039	3				3				9
		E	DR8			S	L48			S	L72	
	d	MS	F	Р	d	MS	F	Р	d	MS	F	Р
	f				f				f			
PE	1	633.36	36.42	<0.0	1	352.66	9.197	0.00	1	273.37	8.480	0.00
		1	3	01		7		3		5		5
pН	2	12572.	723.0	<0.0	2	1371.8	35.77	<0.0	2	3146.2	97.59	<0.0
		583	24	01		85	7	01		81	5	01

DO	1	521.36	29.98	<0.0	1	165.37	4.313	0.04	1	864.00	26.80	<0.0
		1	2	01		5		1		0	1	01
PE*pH	2	67.861	3.903	0.03	2	44.135	1.151	0.32	2	2.844	0.088	0.91
				4				1				6
PE*DO	1	14.694	0.845	0.36	1	.667	0.017	0.89	1	2.042	0.063	0.80
				7				5				2
pH*DO	2	89.194	5.129	0.01	2	49.594	1.293	0.28	2	70.969	2.201	0.11
				4				0				7
PE*pH	2	17.361	0.998	0.38	2	3.510	0.092	0.91	2	24.448	0.758	0.47
*DO				3				3				2

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d MS F P d MS F f	P 0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	f f PE 1 137.76 2.893 0.09 1 433.50 12.11 0.0 pH 2 3806.5 79.95 <0.0 2 4585.0 128.1 <0 DO 1 1239.8 26.04 <0.0 1 1162.0 32.47 <0 DO 1 1239.8 26.04 <0.0 1 1162.0 32.47 <0 E*pH 2 19.542 0.410 0.66 2 13.031 0.364 0.0 E*pH 2 19.542 0.410 0.66 2 13.031 0.364 0.0 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.1 E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3	f f PE 1 137.76 2.893 0.09 1 433.50 12.11 0 3 0 3 PH 2 2806.5 70.05 40.0 2 4585.0 128.1	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PE 1 137.76 2.893 0.09 1 433.50 12.11 0 3 0 3 PH 2 2806.5 70.05 10.0 2 4585.0 128.1	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 3 0 3 pH 2 28065 70.05 40.0 2 4585.0 128.1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pH 2 3806.5 79.95 <0.0 2 4585.0 128.1 <0. 42 0 01 73 15 01 DO 1 1239.8 26.04 <0.0 1 1162.0 32.47 <0. 44 1 01 42 0 01 PE*pH 2 19.542 0.410 0.66 2 13.031 0.364 0.6 5 6 E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 8 7 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	pH 2 3806.5 79.95 <0.0 2 4585.0 128.1 <0 42 0 01 73 15 0 DO 1 1239.8 26.04 <0.0 1 1162.0 32.47 <0 44 1 01 42 0 0 E*pH 2 19.542 0.410 0.66 2 13.031 0.364 0.4 5	nH 2 2006 5 70.05 (0.0. 2 4595.0. 129.1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P ¹¹ 2 3800.3 79.93 <0.0 2 4383.0 128.1	<0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DO 1 1239.8 26.04 <0.0 1 1162.0 32.47 <0. 44 1 01 42 0 01 PE*pH 2 19.542 0.410 0.66 2 13.031 0.364 0.6 5 6 E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 8 7 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	DO 1 1239.8 26.04 <0.0 1 1162.0 32.47 <0 44 1 01 42 0 0 E*pH 2 19.542 0.410 0.66 2 13.031 0.364 0.4 5 6 5 6 E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 8 7 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.4 6 3 1 E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.4 *DO 1 7	42 0 01 73 15	01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44101 42 001 $PE*pH$ 219.5420.4100.66213.0310.3640.6 5 6 $E*DO$ 11.7600.0370.84116.6670.4660.4 $R*DO$ 276.6251.6090.202103.322.8870.0 6 3111000000000000000000000000000000000000	44 1 01 42 0 0 E*pH 2 19.542 0.410 0.66 2 13.031 0.364 0.0 5 5 5 6 5 6 6 0 0 E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 6 3 1 1 1 1 1 1 1 1 1 E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 1 1 1 1 1 1 1	DO 1 1239.8 26.04 < 0.0 1 1162.0 32.47	<0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PE*pH 2 19.542 0.410 0.66 2 13.031 0.364 0.6 5 6 E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 8 7 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	E*pH 2 19.542 0.410 0.66 2 13.031 0.364 0.4 5 6 7 E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 8 7 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.4 6 3 1 E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.4 *DO 1 7 *DO 1 7	44 1 01 42 0	01
5 5 6 PE*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.49 8 7 7 7 7 7 7 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.06 6 3 1 <t< td=""><td>5 5 6 E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7</td><td>5 E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 8 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.4 6 3 1 E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.4 *DO 1 7</td><td>PE*pH 2 19.542 0.410 0.66 2 13.031 0.364</td><td>0.69</td></t<>	5 5 6 E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	5 E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 8 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.4 6 3 1 E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.4 *DO 1 7	PE*pH 2 19.542 0.410 0.66 2 13.031 0.364	0.69
PE*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.49 8 7 PH*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.06 6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.37 *DO 1 7	E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 8 7 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	E*DO 1 1.760 0.037 0.84 1 16.667 0.466 0.4 8 7 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.4 6 3 1 E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	5	6
8 7 0H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.06 6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.37 *DO 1 7	8 7 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	8 H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 6 3 1 E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	PE*DO 1 1.760 0.037 0.84 1 16.667 0.466	0.49
H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.06 6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.37 *DO 1 7	H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	H*DO 2 76.625 1.609 0.20 2 103.32 2.887 0.0 6 3 1 E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	8	7
6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.37 *DO 1 7	6 3 1 PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	6 3 1 E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	bH*DO 2 76.625 1.609 0.20 2 103.32 2.887	0.06
PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.37 *DO 1 7	PE*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	E*pH 2 47.792 1.004 0.37 2 35.323 0.987 0.3 *DO 1 7	6 3	1
*DO 1 7	*DO 1 7	*DO 1 7	PE*pH 2 47.792 1.004 0.37 2 35.323 0.987	0.37
			*DO 1	7

Figure legends

Fig. 1 Embyros observed at 2 to 8h after fertilization in all treatments. A: pH*DO condition of 8.1*6mg $O_2 L^{-1}$ in experiment 1; B: 7.7*6mg $O_2 L^{-1}$ in experiment 1; C: 7.3*6mg $O_2 L^{-1}$ in experiment 1; D: 8.1*2mg $O_2 L^{-1}$ in experiment 1; E: 7.7*2mg $O_2 L^{-1}$ in experiment 1; F: 7.3*2mg $O_2 L^{-1}$ in experiment 1; a: 8.1*6mg $O_2 L^{-1}$ in experiment 2; b: 7.7*6mg $O_2 L^{-1}$ in experiment 2; c: 7.3*6mg $O_2 L^{-1}$ in experiment 2; d: 8.1*2mg $O_2 L^{-1}$ in experiment 2; e: 7.7*2mg $O_2 L^{-1}$ in experiment 2; f: 7.3*2mg $O_2 L^{-1}$ i

Fig. 2 The categorization of deformity of embryos. A: Initial embryo deformity; B: Irregular deformation of the embryo; C: Slightly deformed of the embryo; D: Embryo rupture; E: Embryo breakage and incomplete; F: Deformity during embryonic division.

Fig. 3 The fertilization rate (FR) at 8h of *M. edulis* exposed to different combinations of pH (8.1, 7.7 and 7.3) and DO (6mg $O_2 L^{-1}$ and 2mg $O_2 L^{-1}$) (N=100). The means denoted by different superscripts (A, B, C) at each fixed DO are significantly different among three pH levels (P < 0.05). The means denoted by red superscripts (+, -) at each fixed DO and pH are significantly affected by parental exposure (P < 0.05).

Fig. 4 The embryos deformity rate (DR) at 2h, 4h, and 8h of the *M. edulis* exposed to different combinations of pH (8.1, 7.7 and 7.3) and DO (6mg O₂ L⁻¹ and 2mg O₂ L⁻¹) (N=100). The means denoted by different superscripts (A, B, C) at each fixed DO are significantly different among three pH levels (P < 0.05). The means sharing the different superscripts (a, b) between two DO levels at each fixed pH are significantly different (P < 0.05). The means denoted by asterisk (*) at each fixed DO and pH are significantly affected by parental exposure (P < 0.05).

Fig. 5 A, B, C, D respectively means the D-shaped larval shell length of the *M. edulis* at 48h, 72h, 96h, and 120h exposed to different combinations of pH (8.1, 7.7 and 7.3) and DO (6mg $O_2 L^{-1}$ and 2mg $O_2 L^{-1}$) (N=50). The means denoted by different superscripts (A, B, C) at each fixed DO are significantly different among three pH levels (P < 0.05). The means sharing the different superscripts (a, b) between two DO levels at each fixed pH are significantly different (P < 0.05). The means denoted by red superscripts (+, -) at each fixed DO and pH are significantly affected by parental exposure (P < 0.05).

Fig. 1

Fig. 2

Fig. 3

Fig. 4

1 Transgenerational effects of short-term exposure to acidification and

- 2 hypoxia on early developmental traits of the mussel *Mytilus edulis*
- 3
- 4 Hui Kong^{1,4}, Xiaoyu Jiang^{1,4}, Jeff C. Clements³, Ting Wang^{1,4}, Xizhi Huang^{1,4},
- 5 Yueyong Shang^{1,4}, Jianfang Chen², Menghong Hu^{1,4}, Youji Wang^{1,2,4,5,*}
- 6 ¹ Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources,
- 7 Ministry of Education, Shanghai Ocean University, 999 Huchenghuan Road,
- 8 Shanghai 201306, China
- 9 ² Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of
- 10 Oceanography, Ministry of Natural Resources, Hangzhou, China
- ³ Department of Biology, Norwegian University of Science and Technology,
- 12 Realfagbygget, Høgskoleringen 5, NO-7491 Trondheim, Norway
- ⁴ National Demonstration Center for Experimental Fisheries Science Education,
- 14 Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China State
- ⁵ International Research Center for Marine Biosciences at Shanghai Ocean University,
- 16 Ministry of Science and Technology, China
- 17 ***Corresponding author:** Youji Wang, Email: <u>youjiwang2@gmail.com</u>

18 Abstract

19	Transgenerational effects of multiple stressors on marine organisms are emerging
20	environmental themes. We thus experimentally tested for transgenerational effects of
21	seawater acidification and hypoxia on the early development traits of the mussel
22	Mytilus edulis. Fertilization rate, embryo deformity rate, and larval shell length were
23	negatively impacted by acidification, while hypoxia had little effect except for
24	increasing deformity rates under control pH conditions. Offspring from low pH/O_2
25	parents were less negatively affected by low pH/O ₂ conditions than offspring from
26	control parents; however, low pH/O ₂ conditions still negatively affected
27	developmental traits in offspring from acclimated parents compared to control
28	seawater conditions. Our results demonstrate that experimental seawater acidification
29	and hypoxia can adversely affect early developmental traits of <i>M. edulis</i> and that
30	parental exposure can only partially alleviate these impacts. If experimental
31	observations hold true in nature, it is unlikely that parental exposure will confer larval
32	tolerance to ocean acidification for <i>M. edulis</i> .
33 34	Keywords: Carbon dioxide; Environmental stress; Hypoxia; Global change biology; Multiple stressors; Transgenerational plasticity
35	1. Introduction
36	Marine global change is anticipated to impact ocean life in the near-future. Two
37	co-occurring stressors that have received relatively little combinatory attention are

38 ocean acidification and deoxygenation (see Gobler & Baumann, 2016 for review).

39	Generally speaking, ocean acidification describes a decrease in oceanic pH, while
40	deoxygenation refers to a global decrease in oceanic oxygen. In the open ocean,
41	acidification is predominantly driven by the uptake of excess anthropogenic CO ₂ from
42	the atmosphere (Hoegh-Guldberg et al., 2014), while deoxygenation is primarily
43	driven by global warming (Breitburg et al., 2018). By 2100, it is projected that
44	open-ocean pH will decrease by 0.3-0.4 units (Feely et al., 2004; Orr et al., 2005),
45	and oxygen will reduce 1–7% (Keeling et al., 2010; Schmidtko & Visbeck, 2017).
46	In contrast to the open ocean, coastal acidification can be affected by myriad
47	processes such as coastal upwelling, ecosystem metabolism and watershed dynamics,
48	and freshwater runoff (Duarte et al., 2013). Similarly, coastal deoxygenation is
49	primarily caused by increased nutrient and organic loads that increase oxygen
50	consumption through microbial decomposition (typically defined as dissolved O ₂
51	below 2 mg $O_2 L^{-1}$; Vaquer-Sunyer & Duarte, 2008; Breitburg et al., 2018).
52	Acidification and hypoxia are known to co-occur, and recent studies highlight tight
53	linkages between acidification and hypoxia in coastal ecosystems, with acidification
54	being more severe under hypoxic conditions (compared to normoxia; Feely et al.,
55	2010; Cai et al., 2011; Paulmier et al., 2011; Melzner et al., 2013). Consequently,
56	coastal organisms can already experience low pH and oxygen conditions that exceed
57	near-future open ocean projections (Wallace et al., 2014; Baumann et al., 2015;
58	Gobler & Baumann, 2016). Nonetheless, global climate change can exacerbate pH
59	and oxygen declines in coastal regions, and coastal organisms are not, by default,

60	immune to such change (Waldbusser & Salisbury, 2014; Breitburg et al. 2018). It is
61	thus necessary to understand the combined effects of short-term acidification and
62	hypoxia on marine life.
63	Globally, marine bivalves are of ecological (Costanza et al., 1997; Dame 2011)
64	and economic (Cooley & Doney, 2009; FAO, 2018) importance. It is well
65	documented, however, that marine bivalves are sensitive to multiple global change
66	stressors. With respect to ocean acidification and hypoxia (see Gobler & Baumann,
67	2016 for review), a limited number of studies suggest largely negative combined
68	effects (Gobler et al., 2014; Clark & Gobler, 2016; Stevens & Gobler, 2018), but
69	positive and null effects have also been reported (Jakubowska & Normant, 2014;
70	Jansson et al., 2015). Given the contrasting effects across relatively few studies, more
71	research testing the combined effects of acidification and hypoxia on marine bivalves
72	is warranted.
73	The role of transgenerational effects (i.e., the effect caused by the parental
74	environment on the offspring; Munday, 2014; Ross et al., 2016) in shaping offspring
75	responses to environmental stress has recently drawn substantial attention. These
76	transgenerational effects can be acclamatory (non-genetic; referred to as
77	transgenerational acclimation or transgenerational plasticity) or adaptive (genetic;
78	referred to as transgenerational adaptation), and can allow some organisms to adjust to
79	projected environmental change (Munday, 2014). Recent studies have indicated that
80	the potential for transgenerational acclimation to global change stressors is not

81	universal and varies across species (Munday, 2014; Munday et al., 2014; Sunday et al.,
82	2014; Ross et al., 2016). With respect to marine bivalves, a limited number of
83	transgenerational studies in the context of ocean acidification exist and report variable
84	effects. For instance, larval clams (Ruditapes philippinarum) showed better growth
85	performance under low pH when parents experienced similar low pH conditions
86	(Zhao et al., 2018). Positive transgenerational effects under experimental ocean
87	acidification have also been reported for larval oysters (Saccostrea glomerata; Parker
88	et al., 2012) and juvenile mussels (<i>M. edulis</i> ; Fitzer et al., 2014a). In contrast, Griffith
89	& Gobler (2017) reported negative transgenerational effects associated with
90	transgenerational exposure to ocean acidification in larval scallops (Argopecten
91	irradians) and clams (Mercenaria mercenaria).
92	While transgenerational studies on ocean acidification exist for marine bivalves,
93	to our knowledge there have been no studies testing for transgenerational acclimation
94	to combined acidification and hypoxia. Consequently, the predictions for how these
95	animals will respond to ocean and coastal acidification and hypoxia are, at present,
96	unattainable. To explore this knowledge gap, we tested for transgenerational effects
97	on early larval developmental traits of mussels (M. edulis) exposed to experimental
98	acidification and hypoxia.

99 **2. Materials and Methods**

100 2.1 Animal collection and husbandry

101	Wild adult mussels (<i>M. edulis</i> ; 75 ± 5 mm shell length) were collected from
102	Gouqi Island, East China Sea (30°43'1.64"N, 122°46'3.25"E) in October 2017.
103	Mussels were immediately transported to experimental facilities at Shanghai Ocean
104	University (Shanghai, China), gently scrubbed clean of epibionts, and transferred to
105	30 L acclimation tanks (recirculating aquarium system with filtered seawater; density
106	= 15 mussels tank ⁻¹ ; flow rate ~10 L min ⁻¹). The mussels were acclimated to
107	laboratory conditions for two weeks at 13 ± 0.5 °C, salinity 28 ± 0.5 psu, dissolved
108	oxygen (DO) concentration of 6.0 ± 0.3 mg O_2 L ⁻¹ and pH 8.1 ± 0.1 (simulated natural
109	environment of mussels at collection site). During acclimation, the mussels were fed
110	twice daily with 10 ml of the microalgae <i>Isochrysis galbana</i> (25,000 cells ml^{-1}).
111	Animal condition did not change during the acclimation phase and adult mortality was
112	minimal; only visually healthy mussels were selected for the experiment.
113	
114	2.2 Seawater chemistry

Low pH was achieved by using a pCO_2/pH system (DAQ-M) equipped with WTW pH 3310m and SenTix 41 pH electrode (Loligo Systems Inc., Denmark). The pH level was maintained by bubbling pure CO₂ which was real-time connected with feedback STAT systems (DAQ-M). Dissolved oxygen was manipulated by bubbling a mixture of N₂ and air directly into the water via an O₂ regulator (Loligo Systems Inc., Denmark). The gas flow was maintained by a solenoid valve controlled by a computer connected to an O₂ regulator to achieve stable DO levels in each tank.

122	Abiotic seawater parameters including temperature, pH, DO and salinity were
123	monitored twice a day for each tank and total alkalinity (A_T) was measured every two
124	days. Temperature, salinity and DO were observed by a multi-parameter water quality
125	instrument (5200A, YSI Inc., America). Total alkalinity (A_T) was determined by
126	manual 2-point acid-base titration using a manual burette and applicable reagents
127	(Phenolphthalein indicator, Methyl red indicator, and 0.025mol L ⁻¹ Hydrochloric Acid
128	Standard Solution). Additional carbonate system parameters including pCO_2 ,
129	dissolved inorganic carbon (DIC), calcite saturation state (Ω_{ca}) and aragonite (Ω_{ar})
130	were estimated from temperature, salinity, $A_{\rm T}$, and pH _{NBS} measurements in CO2SYS
131	(Pierrot et al., 2006) with dissociation constants from Mehrbach et al. (1973) refit by
132	Dickson & Millero (1987). Summaries of seawater carbonate chemistry parameters
133	are listed in Table 1 and Table 2 for the two experiments. Abiotic conditions were
134	generally stable and representative of the targeted conditions.
135	
136	2.3 Experimental design
137	Due to logistical constraints with experimental space, we conducted two separate
138	experiments (hereafter Experiment 1 and Experiment 2) to test for transgenerational
139	effects. In Experiment 1, parental mussels were acclimated in a fully-factorial manner
140	to three pH treatments (8.1 [control], 7.7, and 7.3) and two DO treatments (6 mg O_2
141	L^{-1} [control] and 2 mg O ₂ L^{-1} [hypoxia]) for four weeks and respective embryos (with

142 a density of approximately 25 embryos ml⁻¹) from each parental treatment were reared

143	under the same conditions as their parents. The embryos were maintained in triplicates
144	in culture flasks (5L; $n = 3$ flasks) filled with filtered seawater under the same
145	conditions as the respective parental exposure (pH and O ₂ conditions maintained as
146	previously described) and reared through to the D-stage of larval development.
147	Seawater was half-renewed every two days in each tank. Larvae were fed daily with
148	10ml of the microalgae <i>I. galbana</i> (25,000 cells ml^{-1}) 48 h post-fertilization.
149	Fertilization rate was observed at 8 h and embryo deformity rates were observed at 2 h,
150	4 h, and 8 h after fertilization. The shell length of the D-shaped larvae was observed at
151	48h, 72h, 96h, and 120h after euthanizing the larvae with paraformaldehyde solution
152	(4% PFA).
153	In Experiment 2, all parental mussels were acclimated under control conditions
154	(pH 8.1, 6mg $O_2 L^{-1}$) and respective offspring were reared under all experimental
155	treatment combinations as above. As with Experiment 1, embryos were maintained in
156	triplicate flasks (5L) filled with filtered seawater under the six $pH \times DO$ treatments as
157	Experiment 1. Subsequent experimental procedures were the same as Experiment 1.
158	For each treatment in each experiment, a total of 45 adult mussels were split
159	evenly among 3 tanks ($n = 15$ mussel per tank). The control pH level was chosen
160	based on ambient seawater pH at the collection site (pH 8.1; Li et al., 2014), while pH
161	7.7 mimicked the predicted average level by 2100 (Hoegh-Guldberg et al., 2014) as
162	well as the extreme of present natural variability at the sampling site (Li et al., 2014);
163	pH 7.3 represented the predicted extreme pH level relevant for hypoxic zones by 2100

164	(Cai et al., 2011). For DO levels, 6 mg $O_2 L^{-1}$ was chosen based on normoxic
165	conditions at the collection site, and 2 mg $O_2 L^{-1}$ was chosen based on the typical
166	defined threshold for seawater hypoxia (Zhang et al., 2010).
167	For artificial reproduction in each experiment, 45 parental mussels from each
168	treatment combination were induced to spawn in three spawning tanks using the
169	temperature shock method (Pronker et al., 2008). Prior to spawning, the mussels were
170	cleaned with filtered seawater and stimulated with flowing filtered seawater for 10
171	min, then the mussels were transferred to a 60 L spawning tank. Massive spawning
172	was achieved by rapidly raising the seawater temperature from 13 °C to 23 °C. Three
173	spawning tanks per treatment and 15 mussels per spawning tank were used to
174	spawned. Freshly filtered seawater was replaced every 30 minutes after fertilization
175	(remove the upper sperm suspension and add the same amount of seawater).
176	
177	2.4 Developmental bioassays
178	For embryonic development, 5 ml seawater (with a density of approximately 25
179	embryos ml ⁻¹) was randomly sampled from each flask at 2, 4, and 8 h after
180	fertilization. Fertilization rate and deformity rate were subsequently examined under a
181	microscope. Fertilization was assessed by observing the release of polar bodies
182	(Ventura et al., 2016) and embryo deformity was assessed by the observation of
183	embryo morphology. For the latter, embryos were visually inspected and
184	characterized as slightly deformed, irregular, lysed, broken and/or defective embryos

185	(Fig. 2); embryos falling into any of these categories were considered deformed. The
186	number of fertilized eggs and deformed embryos in 100 randomly selected eggs from
187	each flask were counted and fertilization and deformity rates were calculated as the
188	percentage of fertilized and deformed eggs ($[n/100] \times 100$). For larval development,
189	seawater was randomly sampled as above at 48, 72, 96 and 120 h after fertilization. A
190	random sample of 50 D-shaped larvae were isolated from each flask and the shell
191	length of the D-shaped larvae (anterior to posterior dimension of the shell parallel to
192	the hinge) was measured under a microscope fitted with an ocular micrometer.
193	
194	2.5 Statistical analysis
195	Data analyses were performed using SPSS 24 software and the values of all
196	parameters were expressed as the means \pm S.D. Prior to analysis, data were tested for
197	normality using the Shapiro-Wilk's test and homogeneity of variance using the
198	Levene's test. Percentage data were arcsin-square root transformed prior to analyses.
199	The independent and interactive effects of three fixed factors (DO, pH, and parental
200	exposure) were analyzed by three-way analysis of variance (ANOVA). If an
201	interaction existed, the significant effects were analyzed by a one-way ANOVA at
202	each fixed DO value and parental exposure condition, followed by a Tukey's HSD
203	test ($\alpha = 0.05$). Significant effects of DO and parental exposure were analyzed at fixed
204	other two parameters respectively using Student's t-test ($\alpha = 0.05$).
205	

3. Results

3.1 Fertilization and deformity rate

208	Fertilization rates ranged from 63% to 100%, and were significantly reduced by
209	low pH in a stepwise fashion; low DO had no effect (Table 3). Significant interactions
210	occurred between pH and parental exposure on the fertilization rates (Table 3; Fig. 3).
211	Parental exposure significantly affected the fertilization rates under low pH conditions
212	(7.7 and 7.3), with fertilization rates under low pH conditions being partially
213	enhanced when parents were reared under low pH (Fig. 3). Regardless of parental
214	exposure, low pH negatively affected fertilization rates compared to control
215	conditions (Fig. 3).
216	Deformity rates at 2h, 4h, and 8h were significantly affected by low pH in a
217	stepwise fashion, with severe deformity rates at pH 7.3 (Table 3, Fig. 4). Low DO
218	significantly increased deformity rates at 2h, 4h, and 8h under control pH (pH 8.1) in
219	both Experiment 1 and Experiment 2. Significant interactions occurred between pH
220	and parental exposure, and pH and DO, at different times (Table 3; Fig. 4). More
221	specifically, parental exposure significantly decreased the embryo deformity rates
222	under pH 7.7 at DO 6mg $O_2 L^{-1}$ at all three time points, and under all pH levels at DO
223	$2 \text{mg O}_2 \text{ L}^{-1}$ for all three time points, with the exception of pH $8.1 \times \text{DO} 2 \text{mg O}_2 \text{ L}^{-1}$ at
224	2h.

226 3.2 Shell length of D-shaped larvae

227	Shell length of D-shaped larvae ranged from 60 μ m to 125 μ m during the
228	observation period. A significant decrease in larval shell growth occurred at 48 h
229	under pH 7.3 in Experiment 1. In Experiment 2, low pH significantly decreased larval
230	shell growth in a stepwise fashion under 6 mg $O_2 L^{-1}$; at 2 mg $O_2 L^{-1}$ larvae reared
231	under pH 7.3 had a significantly smaller shell length than control larvae (Table 3; Fig.
232	5). Larval shell growth at 48h were not significantly affected by low DO. Moreover,
233	parental exposure did not show a significant difference in the D-shaped larval shell
234	growth except in the condition of pH 8.1 × DO 2mg $O_2 L^{-1}$ at 72h (Table 3; Fig.5). At
235	72, 96 and 120 h, larval shell length was significantly smaller under low pH; low DO
236	larvae showed significantly smaller shell lengths under control pH (pH 8.1).
237	Significant interactions did not occur on the D-shaped larval shell length (Table 3).
238	

239 **4. Discussion**

240 In this study, we tested for transgenerational effects of exposure to combined ocean acidification and hypoxia on the early development of mussels M. edulis. We 241 found that parental exposure to acidification and hypoxia could only partially alleviate 242 243 the negative effects of these stressors on embryonic and larval developmental traits, as negative effects on developmental traits were still observed when parents were reared 244 under low pH and low O₂. As such, our results suggest that parental exposure may not 245 246 confer offspring tolerance to short-term ocean acidification and hypoxia in mussels M. 247 edulis.

210	
249	4.1 Effects of ocean acidification and hypoxia on larval development
250	Considering the increased occurrences of hypoxia (Vaquer-Sunyer & Duarte,
251	2008) and the continuous decrease of pH levels (Hoegh-Guldberg et al., 2014)
252	globally, it is critical to evaluate the combined impacts on marine species and
253	ecosystems. However, the combined effect of low pH and oxygen on marine species
254	has not been widely studied (Gobler & Baumann, 2016). Our results indicated that
255	low pH conditions had negative effects on fertilization rates, larval deformity rates,
256	and larval shell growth, Furthermore, while positive transgenerational effects were
257	observed, they only partially alleviated the effects of acidification on the
258	aforementioned early developmental traits.
259	While we did not measure survival, our results showed that short-term exposure
260	to experimental ocean acidification negatively affected fertilization rate, embryo
261	deformity rate, and larval shell growth, while hypoxia had relatively little effect and
262	did not influence the effect of acidification. The reduced fertilization rates under
263	acidification may be due to the negative effect of acidification on sperm fitness such
264	as the percentage of motile sperm and the sperm swimming speed (Vihtakari et al.,
265	2013) and/or the process of sperm-egg collisions and gamete fusion (Shi et al., 2017).
266	Negative effects on larval shell growth may be due to the decreasing calcification
267	(Berge et al., 2006) and shell dissolution (Ramesh et al., 2017), or perhaps increases
268	in larval deformities (Talmage & Gobler, 2009). Regardless of mechanism, such

269	effects in nature could potentially increase juvenile mortality, particularly when food
270	shortages occur during the accumulation of energy reserves (Phillips, 2002).
271	Our findings indicated relatively little effect of hypoxia on early development.
272	While some comparatively small effects of hypoxia were observed at control pH
273	conditions, DO did not affect fitness under any of the low pH conditions, suggesting
274	that pH has a stronger influence on early development in mussels <i>M. edulis</i> . Similar
275	results have been observed for <i>M. edulis</i> from other locations (e.g. Frieder et al., 2014)
276	as well as other mussel species such as Mytilus californianus (Frieder, 2013), even at
277	extremely low DO concentrations (0.5 mg $O_2 L^{-1}$; Eerkes-Medrano et al., 2013). With
278	respect to calcification, mineralogical plasticity (e.g. increased calcite to aragonite
279	ratio and magnesium to calcium ratio) is thought to be one way in which calcifying
280	marine organisms can withstand low DO effects on calcification (e.g. polychaete
281	Hydroides diramphus; Leung & Cheung, 2018). Metabolic alterations have also been
282	reported to support organismal tolerance to hypoxia. For example, Pörtner et al. (2005)
283	reported that marine animals switch to an anaerobic metabolism and undergo
284	metabolic depression which contributes to energy savings during low DO. The
285	utilization of metabolic pathways that are less energetically demanding may also
286	support calcification and survival under hypoxic conditions (Risgaard-Petersen et al.,
287	2006; Nardelli et al., 2014). While we did not test for physiological underpinnings of
288	observed responses in this study, such mechanisms may explain the lack of DO effect
289	on deformation rates and shell growth observed herein. Alterations in metabolic

activity that result in increased energy availability under hypoxia could have also been
responsible for the lack of low DO effect on fertilization rates as well. Collectively,
these findings suggest that low DO has relatively little effect on the early development
of mussels.

294

295 4.2 Transgenerational effects of combined ocean acidification and hypoxia

The role of parental exposure in shaping offspring responses to global change 296 297 stressors has been observed in numerous marine species including fishes, copepods, 298 and bivalves (Vehmaa et al., 2012; Parker et al., 2012; Munday, 2014). Despite numerous transgenerational studies for acidification and warming, this is, to our 299 300 knowledge, the first study to test for transgenerational acclimation in response to 301 combined acidification and hypoxia. While parental exposure to low pH and DO partially reduced negative effects on offspring compared to when parents were 302 303 exposed to control conditions, the positive parental effects were weak at best. Our 304 results thus suggest a limited capacity for parental exposure to alleviate the negative effects of low pH on early development in mussels. This is in contrast to studies 305 306 documenting largely positive effects of parental exposure on offspring responses, particularly to low pH conditions, in bivalves (Parker et al., 2012; Fitzer et al., 2014; 307 308 Zhao et al., 2016) and others reporting negative effects of parental exposure (Griffith 309 & Gobler, 2017). Thus, there remains a high degree of uncertainty regarding the

310	ability of parental exposure to alleviate the effects of marine global change stressors
311	on their offspring and more research is warranted.
312	While limited, the increased resistance to ocean acidification of <i>M. edulis</i> larvae
313	from parents exposed to low pH and DO conditions may be the result of a higher
314	concentration or activity of the enzyme carbonic anhydrase (CA) catalyzing the
315	reversible hydration of CO_2 and accelerating the formation of bicarbonate (HCO ₃ ⁻)
316	(Lionetto et al., 2012). Some studies have also found a correlation between CA
317	activity and shell formation (Fitzer et al., 2014b; Medaković & Lucu., 1994), and
318	enzyme activity increases linearly with shell formation (Medaković, 2000).
319	Nonetheless, the mechanisms at play only conferred a small benefit of parental
320	exposure. It is important to note here, however, that although our parental exposure
321	time (4 weeks) was similar to other transgenerational studies on bivalves (e.g. Griffith
322	& Gobler, 2017), a longer exposure may have yielded different results. For example,
323	our exposure time may not have been enough for parental mussels to produce
324	adequate proteins, hormones, or other somatic traits that would provide offspring with
325	the ability to strongly resist more acidified, hypoxic conditions (Munday, 2014). Thus,
326	while our results provide the first documentation of transgenerational effects to
327	combined acidification and hypoxia, future studies with longer parental exposure
328	times are warranted.
329	

5. Conclusions

331	This study represents the first of its kind to assess the potential for
332	transgenerational acclimation to combined acidification and hypoxia in marine
333	bivalves. Our results suggest that ocean acidification has a comparatively stronger
334	effect on the early development of mussels <i>M. edulis</i> . Although we did not directly
335	measure survival, the observed effects of acidification represent a strong decline in
336	function, as reduced fertilization rates, increased deformity rates, and decreased
337	growth all represent negative functional consequences for larval bivalves.
338	Furthermore, while transgenerational effects were positive, they were not sufficient to
339	completely alleviate the negative effects of ocean acidification. Thus, if our
340	experimental results hold true in nature, it appears the ocean acidification may have
341	negative effects on <i>M. edulis</i> populations since the success of the early developmental
342	stage of shellfish can affect population and community dynamics. Nonetheless, more
343	research on the combined effects on ocean acidification and hypoxia are required
344	before general conclusions can be drawn with respect to marine bivalves, and
345	longer-term parental exposures are required before predicting whether or not the
346	effects observed herein apply in nature.

347 Acknowledgements

This work was supported by a research grant from Natural Science Foundation of
China [project no. 31872587], a grant from Shanghai Municipal Natural Science
Foundation [project no. 17ZR1412900], the Shanghai Pujiang Program
[18PJ1404000], the National Science & Technology Pillar Program [2015BAD08B01]
and the China-APEC Cooperation Fund [2029901]. This work was also supported by
the Open Research Fund [LMEB201702] of the Key Laboratory of Marine Ecosystem
and Biogeochemistry, SOA, Second Institute of Oceanography, SOA, the Open Fund

- 355 of Shandong Key Laboratory of Disease Control in Mariculture (KF201802) and the
- 356 open fund of Zhejiang provincial first-class discipline of biological engineering
- 357 [KF2018006].

358 **References**

359	Baumann, H., Wallace, R. B., Tagliaferri, T., & Gobler, C. J. (2015). Large natural
360	pH, CO ₂ and O ₂ fluctuations in a temperate tidal salt marsh on diel, seasonal, and
361	interannual time scales. Estuaries and Coasts, 38, 220-231.
362	Berge, J. A., Bjerkeng, B., Pettersen, O., Schaanning, M. T., & Oxnevad, S. (2006).
363	Effects of increased sea water concentrations of CO ₂ on growth of the bivalve
364	Mytilus edulis L. Chemosphere, 62, 681-687.
365	Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., et al. (2018).
366	Declining oxygen in the global ocean and coastal waters. Science, 359,
367	eaam7240.
368	Cai, W. J., Hu, X. P., Huang, W. J., Murrell, M. C., Lehrter, J. C., et al. (2011).
369	Acidification of subsurface coastal waters enhanced by eutrophication. Nature
370	Geoscience, 4, 766-770.
371	Clark, H. R., & Gobler, C. J. (2016). Diurnal fluctuations in CO ₂ and dissolved
372	oxygen concentrations do not provide a refuge from hypoxia and acidification for
373	early-life-stage bivalves. Marine Ecology Progress Series, 558, 1-14.
374	Cooley, S. R., & Doney, S. C. (2009). Anticipating ocean acidification's economic
375	consequences for commercial fisheries. Environmental Research Letters, 4,
376	024007.
377	Costanza, R., D'Arge, R., Groot, R. D., Farber, S., Grasso, et al. (1997). The value of
378	the world's ecosystem services and natural capital. Nature, 387, 253-260.
379	Dame, R. F. (2011). Ecology of marine bivalves: an ecosystem approach, second
380	edition. CRC Press, Boca Raton.
381	Dickson, A. G., & Millero, F. J. (1987). A comparison of equilibrium constants for
382	the dissociation of carbonic acid in seawater media. Deep-Sea Research, 34,
383	1733-1743.
384	Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., et al. (2013)
385	Is ocean acidification an open-ocean syndrome? Understanding anthropogenic
386	impacts on seawater pH. Estuaries and Coasts, 36, 221-236
387	Eerkes-Medrano, D., Menge, B., Sislak, C., & Langdon, C. (2013). Contrasting
388	effects of hypoxic conditions on survivorship of planktonic larvae of rocky
389	intertidal invertebrates. Marine Ecology Progress Series, 478, 139-151.
390	FAO (2018). The State of the World Fisheries and Aquaculture: Contributing to Food
391	Security and Nutrition for All. Rome: Food and Agriculture Organization of the
392	United Nations.
393	Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., Krembs,
394	C., Maloy, C. (2010). The combined effects of ocean acidification, mixing, and

395	respiration on pH and carbonate saturation in an urbanized estuary. Estuarine
396	Coastal & Shelf Science, 88, 442-449.
397	Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., & Millero,
398	F. J. (2004). Impact of anthropogenic CO_2 on the CaCO ₃ system in the oceans.
399	Science, 305, 362-366.
400	Fitzer, S. C., Cusack, M., Phoenix, V. R., & Kamenos, N. A. (2014a). Ocean
401	acidification reduces the crystallographic control in juvenile mussel shells.
402	Journal of Structural Biology, 188, 39 -45.
403	Fitzer, S. C., Phoenix, V. R., Cusack, M., & Kamenos, N. A. (2014b). Ocean
404	acidification impacts mussel control on biomineralisation. Scientific reports, 4,
405	6218.
406	Frieder, C. A. (2013). Evaluating low oxygen and pH variation and its effects on
407	invertebrate early life stages on upwelling margins. PhD Dissertation, University
408	of California, San Diego.
409	Frieder, C. A., Gonzalez, J. P., Bockmon, E. E., Navarro, M. O., & Levin, L. A.
410	(2014). Can variable pH and low oxygen moderate ocean acidification outcomes
411	for mussel larvae? Global Change Biology, 20, 754-764.
412	Gobler, C. J., & Baumann, H. (2016) Hypoxia and acidification in ocean ecosystems:
413	coupled dynamics and effects on marine life. Biology Letters, 12, 20150976.
414	Gobler, C. J., DePasquale, E. L., Griffith, A. W., & Baumann, H. (2014). Hypoxia and
415	acidification have additive and synergistic negative effects on the growth,
416	survival, and metamorphosis of early life stage bivalves. PLoS One, 9, e83648.
417	Griffith, A. W., & Gobler, C. J. (2017). Transgenerational exposure of North Atlantic
418	bivalves to ocean acidification renders offspring more vulnerable to low pH and
419	additional stressors. Scientific Reports, 7, 11394.
420	Hoegh-Guldberg, O., Cai, R., Poloczanska, E. S., Brewer, P. G., Sundby, S., Hilmi, K.,
421	Fabry, V. J., & Jung, S. (2014) The Ocean. In Barros, V. R., Field, C. B., Dokken,
422	D. J., et al. (Eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability.
423	Part B: Regional Aspects. Contribution of Working Group II to the Fifth
424	Assessment Report of the Intergovernmental Panel on Climate Change.
425	Cambridge University Press, Cambridge, UK, p.p. 1655-1731.
426	Jakubowska, M. & Normant, M. (2014). Metabolic rate and activity of blue mussel
427	Mytilus edulis trossulus under short-term exposure to carbon dioxide-induced
428	water acidification and oxygen deficiency. Marine and Freshwater Behaviour
429	and Physiology, 48, 25-39.
430	Jansson, A., Norkko, J., Dupont, S., & Norkko, A. (2015). Growth and survival in a
431	changing environment: Combined effects of moderate hypoxia and low pH on
432	juvenile bivalve Macoma balthica. Journal of Sea Research, 102, 41-47.
433	Keeling, R. F., Kortzinger, A., & Gruber, N. (2010). Ocean deoxygenation in a
434	warming world. Annual Review of Marine Science, 2, 199-229.

435	Leung, J., & Cheung, N. K. (2018). Effects of hypoxia and non-lethal shell damage on
436	shell mechanical and geochemical properties of a calcifying
437	polychaete. Biogeosciences, 15(10), 3267-3276.
438	Li, H. M., X. Y. Shi, P. Chen &C. S. Zhang. (2014). Effects of pH and DO on the
439	migration and transformation of phosphate in the process of mixing in the
440	Changjiang Estuary. Marine Environmental Science, 33, 497–502.
441	Lionetto, M., Caricato, R., Giordano, M., Erroi, E., & Schettino, T. (2012). Carbonic
442	anhydrase as pollution biomarker: an ancient enzyme with a new
443	use. International journal of environmental research and public health, 9(11),
444	3965-3977.
445	Medaković, D. (2000). Carbonic anhydrase activity and biomineralization process in
446	embryos, larvae and adult blue mussels Mytilus edulis L. Helgoland Marine
447	<i>Research</i> , 54(1), 1-6.
448	Medaković, D., & Lucu, Č. (1994). Distribution of carbonic anhydrase in larval and
449	adult mussels Mytilus edulis Linnaeus. Periodicum Biologorum, 96(4), 452-454.
450	Mehrbach, C., Culberson, J. E., Hawley, J. E., & Pytkowicz, R. M. (1973).
451	Measurements of apparent dissociation constants of carbonic acid in seawater at
452	atmospheric pressure. Limnology and Oceanography, 18, 897-907.
453	Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A., Bange, H. W.,
454	Hansen, H. P., Körtzinger, A. (2013). Future ocean acidification will be amplified
455	by hypoxia in coastal habitats. Marine Biology, 160, 1875-1888.
456	Munday, P. L. (2014). Transgenerational acclimation of fishes to climate change and
457	ocean acidification. F1000prime Reports, 6(6), 99.
458	Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M., & Marshall, D. J. (2014).
459	Predicting evolutionary responses to climate change in the sea. Ecology Letters,
460	<i>16</i> , 1488-1500.
461	Nardelli, M. P., Barras, C., Metzger, E., Mouret, A., Filipsson, H. L., Jorissen, F., &
462	Geslin, E. (2014). Experimental evidence for foraminiferal calcification under
463	anoxia. <i>Biogeosciences</i> , 11(14), 4029-4038.
464	Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., et al. (2005).
465	Anthropogenic ocean acidification over the twenty-first century and its impact on
466	calcifying organisms. <i>Nature, 437,</i> 681-686.
467	Parker, L. M., Ross, P. M., O'Connor, W. A., Borysko, L., Raftos, D. A., & Portner, H.
468	O. (2012). Adult exposure influences offspring response to ocean acidification in
469	oysters. Global Change Biology, 18, 82-92.
470	Paulmier, A., Ruizpino, D., & On, V. G. (2011). CO ₂ maximum in the oxygen
471	minimum zone (OMZ). Biogeosciences, 8, 239-252.
472	Phillips, N. E. (2002). Effects of nutrition-mediated larval condition on juvenile
473	performance in a marine mussel. <i>Ecology</i> , 83, 2562-2574.
474	Pierrot, D., Lewis, E., & Wallace, D. W. R. (2006). MS Excel program developed for
475	CO2 system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information

476	Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak
477	Ridge, Tennessee.
478	Pörtner, H. O., Langenbuch, M., & Michaelidis, B. (2005). Synergistic effects of
479	temperature extremes, hypoxia, and increases in CO_2 on marine animals: From
480	Earth history to global change. Journal of Geophysical Research: Oceans, 110,
481	C09S10.
482	Pronker, A. E., Nevejan, N. M., Peene, F., Geijsen, P., & Sorgeloos, P. (2008).
483	Hatchery broodstock conditioning of the blue mussel Mytilus edulis (Linnaeus
484	1758). Part I. Impact of different micro-algae mixtures on broodstock
485	performance. Aquaculture International, 16, 297-307.
486	Ramesh, K., Hu, M. Y., Thomsen, J., Bleich, M., & Melzner, F. (2017). Mussel larvae
487	modify calcifying fluid carbonate chemistry to promote calcification. Nature
488	Communications, 8, 1709.
489	Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C., Jetten, M. S.,
490	Op den Camp, H. J., Derksen, J. W., PiñaOchoa, E., Eriksson, S. P., Nielsen, L.
491	P., Revsbech, N. P., Cedhagen, T., and van der Zwaan, G. J. (2006). Evidence for
492	complete denitrification in a benthic foraminifer, Nature, 443, 93–96.
493	Ross, P. M., Parker, L., & Byrne, M. (2016). Transgenerational responses of molluscs
494	and echinoderms to changing ocean conditions. ICES Journal of Marine Science,
495	73, 537-549.
496	Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen
497	content during the past five decades. Nature, 542, 335.
498	Shi, W., Han, Y., Guo, C., Zhao, X., Liu, S., et al. (2017). Ocean acidification
499	hampers sperm-egg collisions, gamete fusion, and generation of Ca^{2+} oscillations
500	of a broadcast spawning bivalve, Tegillarca granosa. Marine Environmental
501	Research, 130, 106-112.
502	Stevens, A. M., & Gobler, C. J. (2018). Interactive effects of acidification, hypoxia,
503	and thermal stress on growth, respiration, and survival of four North Atlantic
504	bivalves. Marine Ecology Progress Series, 604, 143-161.
505	Sunday, J. M., Calosi, P., Dupont, S., Munday, P. L., Stillman, J. H., & Reusch, T. B.
506	(2014). Evolution in an acidifying ocean. Trends in Ecology & Evolution, 29,
507	117-125.
508	Talmage, S. C., & Gobler, C. J. (2009). The effects of elevated carbon dioxide
509	concentrations on the metamorphosis, size, and survival of larval hard clams
510	(Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern
511	oysters (Crassostrea virginica). Limnology & Oceanography, 54, 2072-2080.
512	Vaquer-Sunyer, R., & Duarte, C. M. (2008). Thresholds of Hypoxia for Marine
513	Biodiversity. Proceedings of the National Academy of Science of the United
514	States of America, 105, 15452-15457.
515	Vehmaa, A., Brutemark, A., & Engström-Öst, J. (2012). Maternal effects may act as
516	an adaptation mechanism for copepods facing pH and temperature changes. PLoS
517	One, 7, e48538.

Ventura, A., Schulz, S., & Dupont, S. (2016). Maintained larval growth in mussel
larvae exposed to acidified under-saturated seawater. Scientific Reports, 6, 23728.
Vihtakari, M., Hendriks, I., Holding, J., Renaud, P., Duarte, C., & Havenhand, J.
(2013). Effects of ocean acidification and warming on sperm activity and early
life stages of the mediterranean mussel (Mytilus galloprovincialis). Water, 5,
1890-1915.
Waldbusser, G. G., & Salisbury, J. E. (2014). Ocean acidification in the coastal zone
from an organism's perspective: multiple system parameters, frequency domains,
and habitats. Annual Reviews in Marine Science, 6, 221-247.
Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., & Gobler, C. J. (2014).
Coastal ocean acidification: the other eutrophication problem. Estuarine, Coastal
and Shelf Science, 148, 1-13.
Zhang, J., Gilbert, D., Gooday, A., Levin, L., Naqvi, S. W. A., et al. (2010). Natural
and human-induced hypoxia and consequences for coastal areas: synthesis and
future development. <i>Biogeosciences</i> , 7, 1443-1467.
Zhao, L., Schöne, B. R., Mertz-Kraus, R., & Yang, F. (2016). Sodium provides
unique insights into transgenerational effects of ocean acidification on bivalve
shell formation. Science of the Total Environment, 577, 360-366.
Zhao, L., Yang, F., Milano, S., Han, T., Walliser, E. O., & Schöne, B. R. (2018).
Transgenerational acclimation to seawater acidification in the manila clam
Ruditapes philippinarum: preferential uptake of metabolic carbon. Science of the
Total Environment, 627, 95-103.
CERTIN

Table 1 A summary of seawater carbonate chemistry parameters in experiment 1. Seawater pH (pH_{NBS}), temperature of embryo and larvae period (T, $^{\circ}$ C), salinity (psu), total alkalinity (A_T, µmol kg⁻¹), dissolved inorganic carbon (DIC), the partial pressure of CO₂ (pCO₂, µatm) as well as aragonite (Ωar) and calcite (Ωca) saturation states were listed.

Trea	tments	salinity	Т	pH _{NBS}	A _T	DIC	pCO ₂	Ωca	Ωar
pН	DO	(pus)	(°C)		(µmol*kg ⁻¹)	(µmol*kg ⁻¹)	(µatm)		
	(mg								
	O_2								
	L ⁻¹)								
8.1	$6.0 \pm$	$28.0~\pm$	16.1	$8.11 \pm$	2236 ± 20	2027 ± 13	348 ±	4.31	2.63
	0.2	0.3	± 0.3	0.02			13	±	±
								0.12	0.11
7.7	$6.1 \pm$	$28.1 \pm$	16.2	$7.70 \pm$	2189 ± 29	2130 ± 23	$1118 \pm$	2.03	1.31
	0.1	0.2	± 0.1	0.02			22	±	±
)	0.09	0.05
7.3	$6.0 \pm$	$27.9 \pm$	16.0	7.31 ±	2218 ± 12	2273 ± 20	2328 ±	0.81	0.59
	0.2	0.2	± 0.3	0.03			34	±	±
								0.07	0.03
8.1	$2.1 \pm$	$28.1 \pm$	15.9	$8.10 \pm$	2301 ± 21	2089 ± 12	$356 \pm$	4.28	2.59
	0.1	0.2	± 0.2	0.03			12	±	±
								0.08	0.16
7.7	$2.1 \pm$	$28.1 \pm$	16.0	$7.73 \pm$	2257 ± 27	2159 ± 19	$1089 \pm$	1.96	1.29
	0.1	0.2	± 0.2	0.01			29	±	±
								0.18	0.05
7.3	$2.0 \pm$	$28.0~\pm$	16.2	7.29 ±	2261 ± 13	2318 ± 11	$2401 \pm$	0.86	0.63
	0.2	0.3	± 0.3	0.03			31	±	±
								0.05	0.04

Table 2 A summary of seawater carbonate chemistry parameters in experiment 2. Seawater pH (pH_{NBS}), temperature of embryo and larvae period (T, $^{\circ}$ C), salinity (psu), total alkalinity (A_T, µmol kg⁻¹), dissolved inorganic carbon (DIC), the partial pressure of CO₂ (pCO₂, µatm) as well as aragonite (Ω ar) and calcite (Ω ca) saturation states were listed.

Treatments		salinity	Т	$\mathrm{pH}_{\mathrm{NBS}}$	A_{T}	DIC	pCO ₂	Ωca	Ωar
pН	DO	(pus)	(°C)		(µmol*kg ⁻¹)	(µmol*kg ⁻¹)	(µatm)		
	(mg								
	O_2								
	L^{-1})								
8.1	6.1 ±	$28.1 \pm$	15.8	$8.09 \pm$	2228 ± 27	2021 ± 27	$352 \pm$	4.29	2.57
	0.1	0.1	± 0.3	0.02			11	±	±
								0.07	0.10
7.7	$6.0 \pm$	$28.1 \pm$	16.1	$7.71 \pm$	2169 ± 17	2165 ± 21	$1107 \pm$	2.09	1.29
	0.1	0.3	± 0.2	0.03			17	±	±

								0.08	0.05
7.3	$6.1 \pm$	$28.0 \pm$	16.1	$7.32 \pm$	2231 ± 19	2284 ± 13	$2427 ~\pm$	0.85	0.62
	0.2	0.3	± 0.2	0.03			23	±	±
								0.03	0.01
8.1	$2.1 \pm$	$27.9 \pm$	15.9	$8.10 \pm$	2311 ± 19	2098 ± 18	$343 \pm$	4.28	2.66
	0.1	0.2	± 0.3	0.03			10	±	±
								0.05	0.13
7.7	$2.2 \pm$	$28.0 \pm$	16.0	$7.70 \pm$	2217 ± 13	2248 ± 15	$1098 \pm$	2.06	1.22
	0.1	0.2	± 0.3	0.01			16	±	±
								0.18	0.07
7.3	$2.0 \pm$	$28.1 \pm$	16.0	$7.32 \pm$	2211 ± 17	2339 ± 20	2418 ±	0.86	0.61
	0.2	0.3	± 0.1	0.03			33	±	±
								0.03	0.04

Table 3 Summary of three-way ANOVA results on effects of pH, DO and parental exposure (PE) on the fertilization rate (FR), the deformity rate at 2h (DR2), 4h (DR4), 8h (DR8) and the shell length of D-shaped larvae at 48h (SL48), 72h (SL72), 96h (SL96) 120h (SL120) in experiment #1 and experiment #2. Significantly different values are represented in bold.

	FR				DR2					DR4			
	d	MS	F	Р	d	MS	F	Р	d	MS	F	Р	
	f				f				f				
PE	1	406.69	34.53	<0.0	1	448.02	16.83	<0.0	1	529.00	31.27	<0.0	
		4	1	01		8	6	01		0	1	01	
pН	2	1656.6	140.6	<0.0	2	11858.	445.6	<0.0	2	13307.	786.6	<0.0	
		94	63	01		778	33	01		194	32	01	
DO	1	30.25	2.568	0.12	1	272.25	10.23	0.00	1	484.00	28.61	<0.0	
				2		0	1	4		0	1	01	
PE*pH	2	61.361	5.21	0.01	2	112.11	4.213	0.02	2	54.250	3.207	0.05	
				3		1		7				8	
PE*DO	1	1 361)	0.73	1	0.694	0.026	0.87	1	4.000	0.236	0.63	
	1	1.301	0.110	7				3				1	
pH*DO	2	6.25	0 531	0.59	2	206.33	7.754	0.00	2	99.750	5.897	0.00	
	4	0.25	0.551	5		3		3				8	
PE*pH	\sim	0.694	0.050	0.94	2	0.444	0.017	0.98	2	33.583	1.985	0.15	
*DO	72		0.039	3				3				9	
		DR8				S	L48		SL72				
	d	MS	F	Р	d	MS	F	Р	d	MS	F	Р	
	f				f				f				
PE	1	633.36	36.42	<0.0	1	352.66	9.197	0.00	1	273.37	8.480	0.00	
		1	3	01		7		3		5		5	
pH	2	12572.	723.0	<0.0	2	1371.8	35.77	<0.0	2	3146.2	97.59	<0.0	
		583	24	01		85	7	01		81	5	01	

DO	1	521.36	29.98	<0.0	1	165.37	4.313	0.04	1	864.00	26.80	<0.0
		1	2	01		5		1		0	1	01
PE*pH	2	67.861	3.903	0.03	2	44.135	1.151	0.32	2	2.844	0.088	0.91
				4				1				6
PE*DO	1	14.694	0.845	0.36	1	.667	0.017	0.89	1	2.042	0.063	0.80
				7				5				2
pH*DO	2	89.194	5.129	0.01	2	49.594	1.293	0.28	2	70.969	2.201	0.11
				4				0				7
PE*pH	2	17.361	0.998	0.38	2	3.510	0.092	0.91	2	24.448	0.758	0.47
*DO				3				3				2

Figure legends

Fig. 1 Embyros observed at 2 to 8h after fertilization in all treatments. A: pH*DO condition of 8.1*6mg $O_2 L^{-1}$ in experiment 1; B: 7.7*6mg $O_2 L^{-1}$ in experiment 1; C: 7.3*6mg $O_2 L^{-1}$ in experiment 1; D: 8.1*2mg $O_2 L^{-1}$ in experiment 1; E: 7.7*2mg $O_2 L^{-1}$ in experiment 1; F: 7.3*2mg $O_2 L^{-1}$ in experiment 1; a: 8.1*6mg $O_2 L^{-1}$ in experiment 2; b: 7.7*6mg $O_2 L^{-1}$ in experiment 2; c: 7.3*6mg $O_2 L^{-1}$ in experiment 2; d: 8.1*2mg $O_2 L^{-1}$ in experiment 2; e: 7.7*2mg $O_2 L^{-1}$ in experiment 2; f: 7.3*2mg $O_2 L^{-1}$ i

Fig. 2 The categorization of deformity of embryos. A: Initial embryo deformity; B: Irregular deformation of the embryo; C: Slightly deformed of the embryo; D: Embryo rupture; E: Embryo breakage and incomplete; F: Deformity during embryonic division.

Fig. 3 The fertilization rate (FR) at 8h of *M. edulis* exposed to different combinations of pH (8.1, 7.7 and 7.3) and DO (6mg $O_2 L^{-1}$ and 2mg $O_2 L^{-1}$) (N=100). The means denoted by different superscripts (A, B, C) at each fixed DO are significantly different among three pH levels (P < 0.05). The means denoted by red superscripts (+, -) at each fixed DO and pH are significantly affected by parental exposure (P < 0.05).

Fig. 4 The embryos deformity rate (DR) at 2h, 4h, and 8h of the *M. edulis* exposed to different combinations of pH (8.1, 7.7 and 7.3) and DO (6mg O₂ L⁻¹ and 2mg O₂ L⁻¹) (N=100). The means denoted by different superscripts (A, B, C) at each fixed DO are significantly different among three pH levels (P < 0.05). The means sharing the different superscripts (a, b) between two DO levels at each fixed pH are significantly different (P < 0.05). The means denoted by asterisk (*) at each fixed DO and pH are significantly affected by parental exposure (P < 0.05).

Fig. 5 A, B, C, D respectively means the D-shaped larval shell length of the *M. edulis* at 48h, 72h, 96h, and 120h exposed to different combinations of pH (8.1, 7.7 and 7.3) and DO (6mg $O_2 L^{-1}$ and 2mg $O_2 L^{-1}$) (N=50). The means denoted by different superscripts (A, B, C) at each fixed DO are significantly different among three pH levels (P < 0.05). The means sharing the different superscripts (a, b) between two DO levels at each fixed pH are significantly different (P < 0.05). The means denoted by red superscripts (+, -) at each fixed DO and pH are significantly affected by parental exposure (P < 0.05).

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Highlights

- Effects of ocean acidification and hypoxia on the early development of the mussel *M. edulis* were investigated.
- Positive carry-over effects of adult mussels exposed to low pH and hypoxia were observed on larvae performance.
- Low pH showed key negative effects on the early development of the mussel *M*. *edulis*.