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Abstract

Transgenerational effects of multiple stressorsnanine organisms are emerging
environmental themes. We thus experimentally tefstettansgenerational effects of
seawater acidification and hypoxia on the earlyetlgyment traits of the mussel
Mytilus edulis. Fertilization rate, embryo deformity rate, and/& shell length were
negatively impacted by acidification, while hypokiad little effect except for
increasing deformity rates under control pH cowdisi. Offspring from low pH/©
parents were less negatively affected by low pH/@nditions than offspring from
control parents; however, low pH/©@onditions still negatively affected
developmental traits in offspring from acclimateatgnts compared to control
seawater conditions. Our results demonstrate #tpgremental seawater acidification
and hypoxia can adversely affect early developméeratiss of M. edulis and that
parental exposure can only partially alleviate ¢hiespacts. If experimental
observations hold true in nature, it is unlikelgttparental exposure will confer larval

tolerance to ocean acidification fior. edulis.

Keywords. Carbon dioxide; Environmental stress; Hypoxia;lialochange biology;
Multiple stressors; Transgenerational plasticity

1. Introduction

Marine global change is anticipated to impact oddann the near-future. Two
co-occurring stressors that have received relgtiftle combinatory attention are

ocean acidification and deoxygenation (see Gobl&a&mann, 2016 for review).
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Generally speaking, ocean acidification describdsaease in oceanic pH, while
deoxygenation refers to a global decrease in ocemtyigen. In the open ocean,
acidification is predominantly driven by the uptakeexcess anthropogenic @om
the atmosphere (Hoegh-Guldberg et al., 2014), wialexygenation is primarily
driven by global warming (Breitburg et al., 201By. 2100, it is projected that
open-ocean pH will decrease by 0.3—-0.4 units (Feed)., 2004; Orr et al., 2005),
and oxygen will reduce 1-7% (Keeling et al., 20%06hmidtko & Visbeck, 2017).

In contrast to the open ocean, coastal acidificaten be affected by myriad
processes such as coastal upwelling, ecosystenbofista and watershed dynamics,
and freshwater runoff (Duarte et al., 2013). Simyjlacoastal deoxygenation is
primarily caused by increased nutrient and orgloads that increase oxygen
consumption through microbial decomposition (typlicdefined as dissolved O
below 2 mg QL™ Vaquer-Sunyer & Duarte, 2008; Breitburg et ad18).
Acidification and hypoxia are known to co-occurdarcent studies highlight tight
linkages between acidification and hypoxia in cabstosystems, with acidification
being more severe under hypoxic conditions (contprérormoxia; Feely et al.,
2010; Cai et al., 2011; Paulmier et al., 2011; Melzet al., 2013). Consequently,
coastal organisms can already experience low pHbapgen conditions that exceed
near-future open ocean projections (Wallace eR@ll4; Baumann et al., 2015;
Gobler & Baumann, 2016). Nonetheless, global clexchiange can exacerbate pH

and oxygen declines in coastal regions, and coaggahisms are not, by default,
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immune to such change (Waldbusser & Salisbury, 2Bieitburg et al. 2018). It is
thus necessary to understand the combined efféstwod-term acidification and
hypoxia on marine life.

Globally, marine bivalves are of ecological (Cogtaet al., 1997; Dame 2011)
and economic (Cooley & Doney, 2009; FAO, 2018) imgace. It is well
documented, however, that marine bivalves are se:sp multiple global change
stressors. With respect to ocean acidificationtaypbxia (see Gobler & Baumann,
2016 for review), a limited number of studies sigjdargely negative combined
effects (Gobler et al., 2014; Clark & Gobler, 2088¢vens & Gobler, 2018), but
positive and null effects have also been repodaiybowska & Normant, 2014;
Jansson et al., 2015). Given the contrasting effactoss relatively few studies, more
research testing the combined effects of acidificeand hypoxia on marine bivalves
is warranted.

The role of transgenerational effects (i.e., tHeatfcaused by the parental
environment on the offspring; Munday, 2014; Rosal¢t2016) in shaping offspring
responses to environmental stress has recentlyndsabstantial attention. These
transgenerational effects can be acclamatory (emetic; referred to as
transgenerational acclimation or transgeneratiplaaticity) or adaptive (genetic;
referred to as transgenerational adaptation), ancalow some organisms to adjust to
projected environmental change (Munday, 2014). Resteidies have indicated that

the potential for transgenerational acclimatiogltibal change stressors is not
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universal and varies across species (Munday, 2@udday et al., 2014; Sunday et al.,
2014; Ross et al., 2016). With respect to marinalises, a limited number of
transgenerational studies in the context of oceatfication exist and report variable
effects. For instance, larval clanRuitapes philippinarum) showed better growth
performance under low pH when parents experieniceitbs low pH conditions

(Zhao et al., 2018). Positive transgenerationaat$f under experimental ocean
acidification have also been reported for larvadteys Gaccostrea glomerata; Parker

et al., 2012) and juvenile musseld. edulis; Fitzer et al., 2014a). In contrast, Griffith
& Gobler (2017) reported negative transgeneratieffacts associated with
transgenerational exposure to ocean acidificatidarval scallopsArgopecten

irradians) and clamsNlercenaria mercenaria).

While transgenerational studies on ocean acidiboagxist for marine bivalves,
to our knowledge there have been no studies tekiirtgansgenerational acclimation
to combined acidification and hypoxia. Consequertklg predictions for how these
animals will respond to ocean and coastal acidiboeand hypoxia are, at present,
unattainable. To explore this knowledge gap, weetefor transgenerational effects
on early larval developmental traits of muss®&isddulis) exposed to experimental

acidification and hypoxia.

2. Materialsand Methods

2.1 Animal collection and husbandry
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Wild adult musselsM. edulis; 75 = 5 mm shell length) were collected from
Gouqi Island, East China Sea (30°484'N, 122°463.25'E) in October 2017.
Mussels were immediately transported to experiméatdities at Shanghai Ocean
University (Shanghai, China), gently scrubbed cleepibionts, and transferred to
30 L acclimation tanks (recirculating aquarium systwith filtered seawater; density
= 15 mussels tartk flow rate ~10 L mift). The mussels were acclimated to
laboratory conditions for two weeks at 13 * 0.5 8@ljnity 28 £ 0.5 psu, dissolved
oxygen (DO) concentration of 6.0 + 0.3 mgIO" and pH 8.1 + 0.1 (simulated natural
environment of mussels at collection site). Du@glimation, the mussels were fed
twice daily with 10 ml of the microalgdeochrysis galbana (25,000 cells mf).

Animal condition did not change during the acclimatphase and adult mortality was

minimal; only visually healthy mussels were selddta the experiment.

2.2 Seawater chemistry

Low pH was achieved by usingp€O,/pH system (DAQ-M) equipped with
WTW pH 3310m and SenTix 41 pH electrode (Loligot8gss Inc., Denmark). The
pH level was maintained by bubbling pure G&hich was real-time connected with
feedback STAT systems (DAQ-M). Dissolved oxygen wesipulated by bubbling a
mixture of N and air directly into the water via an @gulator (Loligo Systems Inc.,
Denmark). The gas flow was maintained by a solemalde controlled by a computer

connected to an Qegulator to achieve stable DO levels in each.tank
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Abiotic seawater parameters including temperafuire,DO and salinity were
monitored twice a day for each tank and total ahkigl (At) was measured every two
days. Temperature, salinity and DO were observed foylti-parameter water quality
instrument (5200A, YSI Inc., America). Total alkaty (Ar) was determined by
manual 2-point acid-base titration using a manuattbe and applicable reagents
(Phenolphthalein indicator, Methyl red indicatanda.025mol [* Hydrochloric Acid
Standard Solution). Additional carbonate systenampgters includingCoO,,
dissolved inorganic carbon (DIC), calcite satumrattate ;) and aragonite(ky,)
were estimated from temperature, salinkty, and pHss measurements in CO2SYS
(Pierrot et al., 2006) with dissociation constdnsn Mehrbach et al. (1973) refit by
Dickson & Millero (1987). Summaries of seawaterbcarate chemistry parameters
are listed in Table 1 and Table 2 for the two ekpents. Abiotic conditions were

generally stable and representative of the targeteditions.

2.3 Experimental design

Due to logistical constraints with experimental@gave conducted two separate
experiments (hereafter Experiment 1 and ExperirBetud test for transgenerational
effects. In Experiment 1, parental mussels weréraated in a fully-factorial manner
to three pH treatments (8.1 [control], 7.7, and @& two DO treatments (6 mg O
L [control] and 2 mg ©L™ [hypoxia]) for four weeks and respective embrywih

a density of approximately 25 embryosnrom each parental treatment were reared



143 under the same conditions as their parents. Theyaslvere maintained in triplicates
144  in culture flasks (5Ln = 3 flasks) filled with filtered seawater under game

145 conditions as the respective parental exposureafEHQ conditions maintained as

146 previously described) and reared through to theédgesof larval development.

147 Seawater was half-renewed every two days in eadh tarvae were fed daily with
148  10ml of the microalgak galbana (25,000 cells mf") 48 h post-fertilization.

149 Fertilization rate was observed at 8 h and embgfordity rates were observed at 2 h,
150 4 h, and 8 h after fertilization. The shell lengfithe D-shaped larvae was observed at
151 48h, 72h, 96h, and 120h after euthanizing the &awigh paraformaldehyde solution
152 (4% PFA).

153 In Experiment 2, all parental mussels were acckahainder control conditions
154 (pH 8.1, 6mg @L™) and respective offspring were reared under aleeimental

155 treatment combinations as above. As with Experimieeinbryos were maintained in
156 triplicate flasks (5L) filled with filtered seawatander the six pH x DO treatments as
157 Experiment 1. Subsequent experimental procedures tive same as Experiment 1.
158 For each treatment in each experiment, a totabafdult mussels were split

159 evenly among 3 tanks € 15 mussel per tank). The control pH level wassem

160 based on ambient seawater pH at the collectior(#te8.1; Li et al., 2014), while pH
161 7.7 mimicked the predicted average level by 2108e(@h-Guldberg et al., 2014) as
162 well as the extreme of present natural variabdityhe sampling site (Li et al., 2014);

163 pH 7.3 represented the predicted extreme pH lelelant for hypoxic zones by 2100



164 (Cai et al., 2011). For DO levels, 6 mg D" was chosen based on normoxic

165 conditions at the collection site, and 2 mgld was chosen based on the typical
166 defined threshold for seawater hypoxia (Zhang.e28at10).

167 For artificial reproduction in each experiment,gsental mussels from each
168 treatment combination were induced to spawn inetspawning tanks using the

169 temperature shock method (Pronker et al., 200&)r Rr spawning, the mussels were
170 cleaned with filtered seawater and stimulated Watving filtered seawater for 10
171 min, then the mussels were transferred to a 60alwvemg tank. Massive spawning
172 was achieved by rapidly raising the seawater teatpex from 13 °C to 23 °C. Three
173 spawning tanks per treatment and 15 mussels pemgpgtank were used to

174 spawned. Freshly filtered seawater was replacey &eminutes after fertilization
175 (remove the upper sperm suspension and add theasament of seawater).

176

177 2.4 Developmental bioassays

178 For embryonic development, 5 ml seawater (withresdg of approximately 25
179  embryos mif) was randomly sampled from each flask at 2, 4,8&hdafter

180 fertilization. Fertilization rate and deformity eatvere subsequently examined under a
181 microscope. Fertilization was assessed by obsetlimgelease of polar bodies

182 (Ventura et al., 2016) and embryo deformity waesssd by the observation of

183 embryo morphology. For the latter, embryos wereally inspected and

184 characterized as slightly deformed, irregular, tiyd@oken and/or defective embryos
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(Fig. 2); embryos falling into any of these categemwere considered deformed. The
number of fertilized eggs and deformed embryo0@d randomly selected eggs from
each flask were counted and fertilization and defty rates were calculated as the
percentage of fertilized and deformed eggél(J0] x 100). For larval development,
seawater was randomly sampled as above at 4867)®120 h after fertilization. A
random sample of 50 D-shaped larvae were isolated €ach flask and the shell
length of the D-shaped larvae (anterior to postetimension of the shell parallel to

the hinge) was measured under a microscope fittkdam ocular micrometer.

2.5 Satistical analysis

Data analyses were performed using SPSS 24 sofamaréhe values of all
parameters were expressed as the means = S.Did analysis, data were tested for
normality using the Shapiro-Wilk's test and homaggnof variance using the
Levene's test. Percentage data were arcsin-scquatrgansformed prior to analyses.
The independent and interactive effects of threedfifactors (DO, pH, and parental
exposure) were analyzed by three-way analysis mdivee (ANOVA). If an
interaction existed, the significant effects wenalgzed by a one-way ANOVA at
each fixed DO value and parental exposure conditmiowed by a Tukey’'s HSD
test @ = 0.05). Significant effects of DO and parentgy@sure were analyzed at fixed

other two parameters respectively using Studertgstt(x = 0.05).

10
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3. Results
3.1 Fertilization and deformity rate

Fertilization rates ranged from 63% to 100%, aede significantly reduced by
low pH in a stepwise fashion; low DO had no eff@@ble 3). Significant interactions
occurred between pH and parental exposure on ttikztgion rates (Table 3; Fig. 3).
Parental exposure significantly affected the fiediion rates under low pH conditions
(7.7 and 7.3), with fertilization rates under lott ponditions being partially
enhanced when parents were reared under low pH3Figegardless of parental
exposure, low pH negatively affected fertilizatiates compared to control
conditions (Fig. 3).

Deformity rates at 2h, 4h, and 8h were signiftaaffected by low pH in a
stepwise fashion, with severe deformity rates a7@(Table 3, Fig. 4). Low DO
significantly increased deformity rates at 2h, dind 8h under control pH (pH 8.1) in
both Experiment 1 and Experiment 2. Significaneéiattions occurred between pH
and parental exposure, and pH and DO, at diffénergs (Table 3; Fig. 4). More
specifically, parental exposure significantly desed the embryo deformity rates
under pH 7.7 at DO 6mg Q. at all three time points, and under all pH le\&l®O
2mg G L™ for all three time points, with the exception &f B.1 x DO 2mg QL™ at

2h.

3.2 Shell length of D-shaped larvae

11



227 Shell length of D-shaped larvae ranged fronu@0to 125um during the

228 observation period. A significant decrease in |asvell growth occurred at 48 h

229 under pH 7.3 in Experiment 1. In Experiment 2, lok/ significantly decreased larval
230 shell growth in a stepwise fashion under 6 md.& at 2 mg @ L™ larvae reared

231 under pH 7.3 had a significantly smaller shell knpan control larvae (Table 3; Fig.
232 5). Larval shell growth at 48h were not signifidgratffected by low DO. Moreover,
233 parental exposure did not show a significant défifee in the D-shaped larval shell
234  growth except in the condition of pH 8.1 x DO 2mgld at 72h (Table 3; Fig.5). At
235 72,96 and 120 h, larval shell length was signiftgasmaller under low pH; low DO
236 larvae showed significantly smaller shell lengthsler control pH (pH 8.1).

237 Significant interactions did not occur on the Dysba@ larval shell length (Table 3).
238

239 4. Discussion

240 In this study, we tested for transgenerationalot$fef exposure to combined

241 ocean acidification and hypoxia on the early dewelent of musselsl. edulis. We

242 found that parental exposure to acidification appodxia could only partially alleviate
243 the negative effects of these stressors on emhryord larval developmental traits, as
244  negative effects on developmental traits were @ilerved when parents were reared
245 under low pH and low © As such, our results suggest that parental expasay not
246  confer offspring tolerance to short-term oceanification and hypoxia in musseld.

247  edulis.

12
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4.1 Effects of ocean acidification and hypoxia on larval devel opment

Considering the increased occurrences of hypoxam(ér-Sunyer & Duarte,
2008) and the continuous decrease of pH levelsdhi@guldberg et al., 2014)
globally, it is critical to evaluate the combinedgacts on marine species and
ecosystems. However, the combined effect of lonapH oxygen on marine species
has not been widely studied (Gobler & Baumann, 20Q6r results indicated that
low pH conditions had negative effects on fertiiiaa rates, larval deformity rates,
and larval shell growth, Furthermore, while posttvansgenerational effects were
observed, they only partially alleviated the effeat acidification on the
aforementioned early developmental traits.

While we did not measure survival, our results skdwhat short-term exposure
to experimental ocean acidification negatively eiiée fertilization rate, embryo
deformity rate, and larval shell growth, while hymohad relatively little effect and
did not influence the effect of acidification. Trexluced fertilization rates under
acidification may be due to the negative effeca@tlification on sperm fitness such
as the percentage of motile sperm and the spermmaimg speed (Vihtakari et al.,
2013) and/or the process of sperm-egg collisionlsgamete fusion (Shi et al., 2017).
Negative effects on larval shell growth may be ttuthe decreasing calcification
(Berge et al., 2006) and shell dissolution (Ranedsdl., 2017), or perhaps increases

in larval deformities (Talmage & Gobler, 2009). Retjess of mechanism, such

13



269 effects in nature could potentially increase juleemortality, particularly when food
270 shortages occur during the accumulation of enezggrves (Phillips, 2002).

271 Our findings indicated relatively little effect biypoxia on early development.

272 While some comparatively small effects of hypoxere&observed at control pH

273 conditions, DO did not affect fithess under anyhaf low pH conditions, suggesting
274 that pH has a stronger influence on early develaoprimemusseld. edulis. Similar

275 results have been observed Kbéredulis from other locations (e.g. Frieder et al., 2014)
276 as well as other mussel species suckMggus californianus (Frieder, 2013), even at
277  extremely low DO concentrations (0.5 mg 0" Eerkes-Medrano et al., 2013). With
278 respect to calcification, mineralogical plastidieyg. increased calcite to aragonite
279 ratio and magnesium to calcium ratio) is thoughteémne way in which calcifying

280 marine organisms can withstand low DO effects daift@ation (e.g. polychaete

281 Hydroidesdiramphus; Leung & Cheung, 2018). Metabolic alterations hals® been
282 reported to support organismal tolerance to hypdxia example, Pdrtner et al. (2005)
283 reported that marine animals switch to an anaenmwigiabolism and undergo

284 metabolic depression which contributes to energinga during low DO. The

285 utilization of metabolic pathways that are lessrgatically demanding may also

286  support calcification and survival under hypoxiaditions (Risgaard-Petersen et al.,
287 2006; Nardelli et al., 2014). While we did not testphysiological underpinnings of
288 observed responses in this study, such mechanism&xplain the lack of DO effect

289 on deformation rates and shell growth observediimefdterations in metabolic

14
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activity that result in increased energy availapilinder hypoxia could have also been
responsible for the lack of low DO effect on feztition rates as well. Collectively,
these findings suggest that low DO has relativiétlie leffect on the early development

of mussels.

4.2 Transgenerational effects of combined ocean acidification and hypoxia

The role of parental exposure in shaping offspragponses to global change
stressors has been observed in numerous marinespeduding fishes, copepods,
and bivalves (Vehmaa et al., 2012; Parker et @L22Munday, 2014). Despite
numerous transgenerational studies for acidificaéiod warming, this is, to our
knowledge, the first study to test for transgenerat acclimation in response to
combined acidification and hypoxia. While paremgbosure to low pH and DO
partially reduced negative effects on offspring paned to when parents were
exposed to control conditions, the positive patesifacts were weak at best. Our
results thus suggest a limited capacity for patemtposure to alleviate the negative
effects of low pH on early development in musseélss is in contrast to studies
documenting largely positive effects of parentgd@sure on offspring responses,
particularly to low pH conditions, in bivalves (Rar et al., 2012; Fitzer et al., 2014;
Zhao et al., 2016) and others reporting negatifecesf of parental exposure (Griffith

& Gobler, 2017). Thus, there remains a high degfascertainty regarding the

15
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ability of parental exposure to alleviate the effeaf marine global change stressors
on their offspring and more research is warranted.

While limited, the increased resistance to oceadifasation of M. edulis larvae
from parents exposed to low pH and DO conditionyg beathe result of a higher
concentration or activity of the enzyme carbonibyaitase (CA) catalyzing the
reversible hydration of C£and accelerating the formation of bicarbonate (KO
(Lionetto et al., 2012). Some studies have alsodaacorrelation between CA
activity and shell formation (Fitzer et al., 2014bedakové & Lucu., 1994), and
enzyme activity increases linearly with shell fotiroa (Medakové, 2000).
Nonetheless, the mechanisms at play only conferisadall benefit of parental
exposure. It is important to note here, howevext #ithough our parental exposure
time (4 weeks) was similar to other transgeneratistudies on bivalves (e.g. Griffith
& Gobler, 2017), a longer exposure may have yieldifdrent results. For example,
our exposure time may not have been enough fontEmmussels to produce
adequate proteins, hormones, or other somatis titzat would provide offspring with
the ability to strongly resist more acidified, hypoconditions (Munday, 2014). Thus,
while our results provide the first documentatidriransgenerational effects to
combined acidification and hypoxia, future studigth longer parental exposure

times are warranted.

5. Conclusions

16
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This study represents the first of its kind to asgbe potential for
transgenerational acclimation to combined acidiftcaand hypoxia in marine
bivalves. Our results suggest that ocean acidifindtas a comparatively stronger
effect on the early development of musdélsdulis. Although we did not directly
measure survival, the observed effects of acidibcarepresent a strong decline in
function, as reduced fertilization rates, increagefbrmity rates, and decreased
growth all represent negative functional conseqasrfor larval bivalves.
Furthermore, while transgenerational effects wergtive, they were not sufficient to
completely alleviate the negative effects of ocaadification. Thus, if our
experimental results hold true in nature, it appéiae ocean acidification may have
negative effects oNl. edulis populations since the success of the early denetopal
stage of shellfish can affect population and comitgudynamics. Nonetheless, more
research on the combined effects on ocean acitidicand hypoxia are required
before general conclusions can be drawn with reégpenarine bivalves, and
longer-term parental exposures are required bgli@@icting whether or not the

effects observed herein apply in nature.
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Table 1 A summary of seawater carbonate chemistrgrpeters in experiment 1.
Seawater pH (pkks), temperature of embryo and larvae period@},,salinity
(psu), total alkalinity (A, pmol kg?), dissolved inorganic carbon (DIC), the
partial pressure of CApCO, patm) as well as aragonit@#r) and calcite(fca)
saturation states were listed.

Treatments salinity T phas At DIC pCO  Qca Qar
pH DO (pus) (©) (umol*kg™)  (umol*kg™)  (natm)
(mg
O,
LY
8.1 6.0+ 28.0% 16.1 8.11+x 2236+20 2027 + 13 348+ 431 2.63
0.2 0.3 +0.3 0.02 13 + +
0.12 0.11
7.7 6.1+ 281+ 16.2 7.70x 2189+29 2130 + 23 1118+ 2.03 1.31
0.1 0.2 +0.1 0.02 22 + +
0.09 0.05
7.3 6.0+ 279+ 16.0 731+ 2218%+12 2273+ 20 2328+ 0.81 0.59
0.2 0.2 +0.3 0.03 34 + +
0.07 0.03
8.1 21+ 281+ 159 8.10x 230121 2089 + 12 356+ 4.28 2.59
0.1 0.2 +0.2 0.03 12 + +
0.08 0.16
7.7 21+ 281+ 16.0 7.73x 2257 +27 2159+ 19 1089+ 1.96 1.29
0.1 0.2 +0.2 0.01 29 + +
0.18 0.05
7.3 20+ 28.0% 16.2 7.29x 2261+13 2318+ 11 2401+ 0.86 0.63
0.2 0.3 +0.3 0.03 31 + +
0.05 0.04

Table 2 A summary of seawater carbonate chemistrgrpeters in experimerg.
Seawater pH (pkks), temperature of embryo and larvae period@},,salinity
(psu), total alkalinity (A, umol kg?), dissolved inorganic carbon (DIC), the
partial pressure of CApCO, patm) as well as aragonit@#r) and calcite(fca)
saturation states were listed.

Treatments salinity T plis Ag DIC pCG Qca Qar
pH DO (pus) (C) (umol*kg™)  (umol*kg™)  (uatm)
(mg
Oz
LY
8.1 6.1+ 281+ 158 8.09+ 222827 2021 £ 27 352+ 429 257
0.1 0.1 +0.3 0.02 11 + +
0.07 0.10
7.7 6.0+ 28.1=% 16.1 7.71+ 216917 2165+ 21 1107+ 2.09 1.29
0.1 0.3 +0.2 0.03 17 + +
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7.3

8.1

7.7

7.3

6.1+
0.2

2.1+
0.1

22+
0.1

20+
0.2

28.0+
0.3

279+
0.2

28.0+
0.2

28.1+
0.3

16.1
+0.2

15.9
+0.3

16.0
+0.3

16.0
+0.1

7.32+
0.03

8.10 +
0.03

7.70 £
0.01

7.32+
0.03

2231 +19

2311 +19

2217+ 13

2211+ 17

2284 + 13

2098 + 18

2248 + 15

2339+ 20

0.08 0.05
2427+ 0.85 0.62
23 + +
0.03 0.01
343+ 428 2.66
10 + +
0.05 0.13
1098 + 2.06 1.22
16 + +
0.18 0.07
2418+ 0.86 0.61
33 + +
0.03 0.04

Table 3 Summary of three-way ANOVA results on effeaf pH, DO and parental
exposure (PE) on the fertilization rate (FR), teéodmity rate at 2h (DR2), 4h
(DR4), 8h (DR8) and the shell length of D-shapedda at 48h (SL48), 72h
(SL72), 96h (SL96) 120h (SL120) in experiment #d arperiment #2.
Significantly different values are representedaidb

FR DR2 DR4
MS F P d MS F P d MS F P
f f

PE 406.69 34.53 <00 1 448.02 16.83 <00 1 529.00 31.27 <0.0
4 1 01 8 6 01 0 1 01

pH 1656.6 140.6 <00 2 11858. 4456 <0.0 2 13307. 786.6 <0.0
94 63 01 778 33 01 194 32 o1

DO 3025 2568 012 1 27225 1023 000 1 484.00 28.61 <0.0
2 0 1 4 0 1 01

PE*pH 61.361 ~ 591 001 2 11211 4.213 002 2 54250 3.207 0.05
3 1 7 8

PE*DO 1 351) 0116 073 1 0694 0.026 0871 4000 0.236 0.63
7 3 1

pH*DO dos 0531 059 2 206.33 7.754 000 2 99.750 5.897 0.00
5 3 3 8

P*Iz*gH 0.604 0.056 0-:4 2 0444 0.017 2.982 33.583 1.985 ;).15

DR8 SL48 SL72
MS F P d MS F P d MS F P
f f

PE 633.36 36.42 <00 1 352.66 9.197 000 1 273.37 8.480 0.00
1 3 01 7 3 5 5

pH 12572. 723.0 <00 2 1371.8 3577 <00 2 3146.2 97.59 <0.0
583 24 01 85 7 01 81 5 01
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DO 521.36 29.98 <00 1 165.37 4.313 004 1 864.00 26.80 <0.0
1 2 01 5 1 0 1 01
PE*pH 67.861 3.903 003 2 44.135 1.151 0.322 2.844 0.088 0.91
4 1 6
PE*DO 14.694 0.845 0361 .667 0.017 0.891 2042 0.063 0.80
7 5 2
pH*DO 89.194 5.129 001 2 49594 1.293 0.282 70.969 2201 0.11
4 0 7
PE*pH 17.361 0.998 0.382 3510 0.092 0912 24448 0.758 0.47
*DO 3 3 2
SL96 SL120
MS F P d MS F P
f
PE 137.76 2.893 0.09 1 433.50 12.11 0.00
0 3 0 3 1
pH 3806.5 79.95 <00 2 4585.0 128.1 <0.0
42 0 01 73 15 01
DO 1239.8 26.04 <00 1 1162.0 32.47 <0.0
44 1 01 42 0 01
PE*pH 19.542 0.410 0.662 13.031 0.364 0.69
5 6
PE*DO 1.760 0.037 0.841 16.667 0.466 0.49
8 7
pH*DO 76.625 1.609 0.202 103.32 2.887 0.06
6 3 1
PE*pH 47792 1.004 0.372 35323 0.987 0.37
*DO 1 7
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Figurelegends

Fig. 1 Embyros observed at 2 to 8h after fertilaain all treatments. A: pH*DO
condition of 8.1*6mg QL™ in experiment 1; B: 7.7*6mg " in experiment 1; C:
7.3*6mg Q L™ in experiment 1; D: 8.1*2mg£." in experiment 1; E: 7.7*2mg-0
Lt in experiment 1; F: 7.3*2mgQ." in experiment 1; a: 8.1*6mg, Q" in
experiment 2; b: 7.7*6mg " in experiment 2; c: 7.3*6mg Q. in experiment 2;
d: 8.1*2mg Q L™ in experiment 2; e: 7.7*2mg,Q." in experiment 2; f: 7.3*2mg O
Lt in experiment 2;

Fig. 2 The categorization of deformity of embryasInitial embryo deformity; B:
Irregular deformation of the embryo; C: Slightlyfalened of the embryo; D: Embryo
rupture; E: Embryo breakage and incomplete; F: iy during embryonic
division.

Fig. 3 The fertilization rate (FR) at 8h BF. edulis exposed to different combinations
of pH (8.1, 7.7 and 7.3) and DO (6mg 0" and 2mg @L™) (N=100). The means
denoted by different superscripts (A, B, C) at efaabd DO are significantly different
among three pH levels (P < 0.05). The means dermteedd superscripts (+, -) at
each fixed DO and pH are significantly affectedoayental exposure (P < 0.05).

Fig. 4 The embryos deformity rate (DR) at 2h, 4id 8h of theM. edulis exposed to
different combinations of pH (8.1, 7.7 and 7.3) & (6mg Q L™ and 2mg QL™)
(N=100). The means denoted by different supersc(ipi B, C) at each fixed DO are
significantly different among three pH levels (P.65). The means sharing the
different superscripts (a, b) between two DO leatlsach fixed pH are significantly
different (P < 0.05). The means denoted by astéf)skt each fixed DO and pH are
significantly affected by parental exposure (P G5).

Fig. 5 A, B, C, D respectively means the D-shajpeddl shell length of thil. edulis

at 48h, 72h, 96h, and 120h exposed to differentomoations of pH (8.1, 7.7 and 7.3)
and DO (6mg @L™ and 2mg @L™) (N=50). The means denoted by different
superscripts (A, B, C) at each fixed DO are sigaiffitly different among three pH
levels (P < 0.05). The means sharing the diffeseperscripts (a, b) between two DO
levels at each fixed pH are significantly differéRt< 0.05). The means denoted by
red superscripts (+, -) at each fixed DO and pHsageificantly affected by parental
exposure (P < 0.05).
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Abstract

Transgenerational effects of multiple stressorsnanine organisms are emerging
environmental themes. We thus experimentally tefstettansgenerational effects of
seawater acidification and hypoxia on the earlyetlgyment traits of the mussel
Mytilus edulis. Fertilization rate, embryo deformity rate, and/& shell length were
negatively impacted by acidification, while hypokiad little effect except for
increasing deformity rates under control pH cowdisi. Offspring from low pH/©
parents were less negatively affected by low pH/@nditions than offspring from
control parents; however, low pH/©@onditions still negatively affected
developmental traits in offspring from acclimateatgnts compared to control
seawater conditions. Our results demonstrate #tpgremental seawater acidification
and hypoxia can adversely affect early developméeratiss of M. edulis and that
parental exposure can only partially alleviate ¢hiespacts. If experimental
observations hold true in nature, it is unlikelgttparental exposure will confer larval

tolerance to ocean acidification fior. edulis.

Keywords. Carbon dioxide; Environmental stress; Hypoxia;lialochange biology;
Multiple stressors; Transgenerational plasticity

1. Introduction

Marine global change is anticipated to impact oddann the near-future. Two
co-occurring stressors that have received relgtifttle combinatory attention are

ocean acidification and deoxygenation (see Gobl&a&mann, 2016 for review).
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Generally speaking, ocean acidification describdsaease in oceanic pH, while
deoxygenation refers to a global decrease in ocemtyigen. In the open ocean,
acidification is predominantly driven by the uptakeexcess anthropogenic @om
the atmosphere (Hoegh-Guldberg et al., 2014), wialexygenation is primarily
driven by global warming (Breitburg et al., 201By. 2100, it is projected that
open-ocean pH will decrease by 0.3—-0.4 units (Feed)., 2004; Orr et al., 2005),
and oxygen will reduce 1-7% (Keeling et al., 20%06hmidtko & Visbeck, 2017).

In contrast to the open ocean, coastal acidificaten be affected by myriad
processes such as coastal upwelling, ecosystenbofista and watershed dynamics,
and freshwater runoff (Duarte et al., 2013). Simyjlacoastal deoxygenation is
primarily caused by increased nutrient and orgloads that increase oxygen
consumption through microbial decomposition (typlicdefined as dissolved O
below 2 mg QL™ Vaquer-Sunyer & Duarte, 2008; Breitburg et ad18).
Acidification and hypoxia are known to co-occurdarcent studies highlight tight
linkages between acidification and hypoxia in cabstosystems, with acidification
being more severe under hypoxic conditions (contprénormoxia; Feely et al.,
2010; Cai et al., 2011; Paulmier et al., 2011; Melzet al., 2013). Consequently,
coastal organisms can already experience low pHbapgen conditions that exceed
near-future open ocean projections (Wallace eR@ll4; Baumann et al., 2015;
Gobler & Baumann, 2016). Nonetheless, global clexchiange can exacerbate pH

and oxygen declines in coastal regions, and coaggahisms are not, by default,
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immune to such change (Waldbusser & Salisbury, 2Bieitburg et al. 2018). It is
thus necessary to understand the combined efféstwod-term acidification and
hypoxia on marine life.

Globally, marine bivalves are of ecological (Cogtaet al., 1997; Dame 2011)
and economic (Cooley & Doney, 2009; FAO, 2018) imgace. It is well
documented, however, that marine bivalves are sezsp multiple global change
stressors. With respect to ocean acidificationtaypbxia (see Gobler & Baumann,
2016 for review), a limited number of studies sigjdargely negative combined
effects (Gobler et al., 2014; Clark & Gobler, 2088e¢vens & Gobler, 2018), but
positive and null effects have also been repodaiybowska & Normant, 2014;
Jansson et al., 2015). Given the contrasting effactoss relatively few studies, more
research testing the combined effects of acidificeand hypoxia on marine bivalves
is warranted.

The role of transgenerational effects (i.e., tHeatfcaused by the parental
environment on the offspring; Munday, 2014; Rosal ¢t2016) in shaping offspring
responses to environmental stress has recentlyndsatstantial attention. These
transgenerational effects can be acclamatory (emetic; referred to as
transgenerational acclimation or transgeneratiplaaticity) or adaptive (genetic;
referred to as transgenerational adaptation), ancalow some organisms to adjust to
projected environmental change (Munday, 2014). Resteidies have indicated that

the potential for transgenerational acclimatiogltibal change stressors is not
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universal and varies across species (Munday, 2@uaday et al., 2014; Sunday et al.,
2014; Ross et al., 2016). With respect to marinalises, a limited number of
transgenerational studies in the context of oceatfication exist and report variable
effects. For instance, larval clanRuitapes philippinarum) showed better growth
performance under low pH when parents experieniceitbs low pH conditions

(Zhao et al., 2018). Positive transgenerationaat$f under experimental ocean
acidification have also been reported for larvadteys Gaccostrea glomerata; Parker

et al., 2012) and juvenile musseld. edulis; Fitzer et al., 2014a). In contrast, Griffith
& Gobler (2017) reported negative transgeneratieffacts associated with
transgenerational exposure to ocean acidificatidarval scallopsArgopecten

irradians) and clamsNlercenaria mercenaria).

While transgenerational studies on ocean acidiboagxist for marine bivalves,
to our knowledge there have been no studies tekiirtgansgenerational acclimation
to combined acidification and hypoxia. Consequertklig predictions for how these
animals will respond to ocean and coastal acidiboeand hypoxia are, at present,
unattainable. To explore this knowledge gap, weetefor transgenerational effects
on early larval developmental traits of muss®&isddulis) exposed to experimental

acidification and hypoxia.

2. Materialsand Methods

2.1 Animal collection and husbandry
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Wild adult musselsM. edulis; 75 = 5 mm shell length) were collected from
Gouqi Island, East China Sea (30°484'N, 122°463.25'E) in October 2017.
Mussels were immediately transported to experiméatdities at Shanghai Ocean
University (Shanghai, China), gently scrubbed cleepibionts, and transferred to
30 L acclimation tanks (recirculating aquarium systwith filtered seawater; density
= 15 mussels tartk flow rate ~10 L mift). The mussels were acclimated to
laboratory conditions for two weeks at 13 * 0.5 8@ljnity 28 £ 0.5 psu, dissolved
oxygen (DO) concentration of 6.0 + 0.3 mgIO" and pH 8.1 + 0.1 (simulated natural
environment of mussels at collection site). Du@glimation, the mussels were fed
twice daily with 10 ml of the microalgdeochrysis galbana (25,000 cells mf).

Animal condition did not change during the acclimatphase and adult mortality was

minimal; only visually healthy mussels were selddta the experiment.

2.2 Seawater chemistry

Low pH was achieved by usingp€O,/pH system (DAQ-M) equipped with
WTW pH 3310m and SenTix 41 pH electrode (Loligot8gss Inc., Denmark). The
pH level was maintained by bubbling pure G&hich was real-time connected with
feedback STAT systems (DAQ-M). Dissolved oxygen wesipulated by bubbling a
mixture of N and air directly into the water via an @gulator (Loligo Systems Inc.,
Denmark). The gas flow was maintained by a solemalde controlled by a computer

connected to an Qegulator to achieve stable DO levels in each.tank
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Abiotic seawater parameters including temperafuire,DO and salinity were
monitored twice a day for each tank and total ahkigl (At) was measured every two
days. Temperature, salinity and DO were observed foylti-parameter water quality
instrument (5200A, YSI Inc., America). Total alkaty (Ar) was determined by
manual 2-point acid-base titration using a manuattbe and applicable reagents
(Phenolphthalein indicator, Methyl red indicatanda.025mol [* Hydrochloric Acid
Standard Solution). Additional carbonate systenampgters includingCoO,,
dissolved inorganic carbon (DIC), calcite satumrattate ;) and aragonite(ky,)
were estimated from temperature, salinkty, and pHss measurements in CO2SYS
(Pierrot et al., 2006) with dissociation constdnsn Mehrbach et al. (1973) refit by
Dickson & Millero (1987). Summaries of seawaterbcarate chemistry parameters
are listed in Table 1 and Table 2 for the two ekpents. Abiotic conditions were

generally stable and representative of the targeteditions.

2.3 Experimental design

Due to logistical constraints with experimental@ave conducted two separate
experiments (hereafter Experiment 1 and ExperirBetud test for transgenerational
effects. In Experiment 1, parental mussels weréraated in a fully-factorial manner
to three pH treatments (8.1 [control], 7.7, and @&l two DO treatments (6 mg O
L [control] and 2 mg ©L™ [hypoxia]) for four weeks and respective embrywih

a density of approximately 25 embryosnrom each parental treatment were reared
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143 under the same conditions as their parents. Theyaslvere maintained in triplicates
144  in culture flasks (5Ln = 3 flasks) filled with filtered seawater under game

145 conditions as the respective parental exposureafEHQ conditions maintained as

146 previously described) and reared through to theédgesof larval development.

147 Seawater was half-renewed every two days in eadh tarvae were fed daily with
148  10ml of the microalgak galbana (25,000 cells mf") 48 h post-fertilization.

149 Fertilization rate was observed at 8 h and embgfordity rates were observed at 2 h,
150 4 h, and 8 h after fertilization. The shell lengfithe D-shaped larvae was observed at
151 48h, 72h, 96h, and 120h after euthanizing the &awigh paraformaldehyde solution
152 (4% PFA).

153 In Experiment 2, all parental mussels were acckahainder control conditions
154 (pH 8.1, 6mg @L™) and respective offspring were reared under aleeimental

155 treatment combinations as above. As with Experimieeinbryos were maintained in
156 triplicate flasks (5L) filled with filtered seawatander the six pH x DO treatments as
157 Experiment 1. Subsequent experimental procedures tive same as Experiment 1.
158 For each treatment in each experiment, a totabafdult mussels were split

159 evenly among 3 tanks € 15 mussel per tank). The control pH level wassem

160 based on ambient seawater pH at the collectior(#te8.1; Li et al., 2014), while pH
161 7.7 mimicked the predicted average level by 2108e(@h-Guldberg et al., 2014) as
162 well as the extreme of present natural variabdityhe sampling site (Li et al., 2014);

163 pH 7.3 represented the predicted extreme pH lelelant for hypoxic zones by 2100
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164 (Cai et al., 2011). For DO levels, 6 mg D" was chosen based on normoxic

165 conditions at the collection site, and 2 mgld was chosen based on the typical
166 defined threshold for seawater hypoxia (Zhang.e28at10).

167 For artificial reproduction in each experiment,gsental mussels from each
168 treatment combination were induced to spawn inetspawning tanks using the

169 temperature shock method (Pronker et al., 200&)r Rr spawning, the mussels were
170 cleaned with filtered seawater and stimulated Watving filtered seawater for 10
171 min, then the mussels were transferred to a 60alwvemg tank. Massive spawning
172 was achieved by rapidly raising the seawater teatpex from 13 °C to 23 °C. Three
173 spawning tanks per treatment and 15 mussels pemgpgtank were used to

174 spawned. Freshly filtered seawater was replacey &eminutes after fertilization
175 (remove the upper sperm suspension and add theasament of seawater).

176

177 2.4 Developmental bioassays

178 For embryonic development, 5 ml seawater (withresdg of approximately 25
179  embryos mif) was randomly sampled from each flask at 2, 4,8&hdafter

180 fertilization. Fertilization rate and deformity eatvere subsequently examined under a
181 microscope. Fertilization was assessed by obsetlimgelease of polar bodies

182 (Ventura et al., 2016) and embryo deformity waesssd by the observation of

183 embryo morphology. For the latter, embryos wereally inspected and

184 characterized as slightly deformed, irregular, tiyd@oken and/or defective embryos
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(Fig. 2); embryos falling into any of these categemwere considered deformed. The
number of fertilized eggs and deformed embryo0@d randomly selected eggs from
each flask were counted and fertilization and defty rates were calculated as the
percentage of fertilized and deformed eggél(J0] x 100). For larval development,
seawater was randomly sampled as above at 4867)®120 h after fertilization. A
random sample of 50 D-shaped larvae were isolated €ach flask and the shell
length of the D-shaped larvae (anterior to postetimension of the shell parallel to

the hinge) was measured under a microscope fittkdam ocular micrometer.

2.5 Satistical analysis

Data analyses were performed using SPSS 24 sofamaréhe values of all
parameters were expressed as the means = S.Did analysis, data were tested for
normality using the Shapiro-Wilk's test and homaggnof variance using the
Levene's test. Percentage data were arcsin-scquatrgansformed prior to analyses.
The independent and interactive effects of threedfifactors (DO, pH, and parental
exposure) were analyzed by three-way analysis mdivee (ANOVA). If an
interaction existed, the significant effects wenalgzed by a one-way ANOVA at
each fixed DO value and parental exposure conditmiowed by a Tukey’'s HSD
test @ = 0.05). Significant effects of DO and parentgy@sure were analyzed at fixed

other two parameters respectively using Studertgstt(x = 0.05).
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3. Results
3.1 Fertilization and deformity rate

Fertilization rates ranged from 63% to 100%, aede significantly reduced by
low pH in a stepwise fashion; low DO had no eff@@ble 3). Significant interactions
occurred between pH and parental exposure on ttikztgion rates (Table 3; Fig. 3).
Parental exposure significantly affected the fiediion rates under low pH conditions
(7.7 and 7.3), with fertilization rates under lott ponditions being partially
enhanced when parents were reared under low pH3Figegardless of parental
exposure, low pH negatively affected fertilizatiates compared to control
conditions (Fig. 3).

Deformity rates at 2h, 4h, and 8h were signiftaaffected by low pH in a
stepwise fashion, with severe deformity rates a7@(Table 3, Fig. 4). Low DO
significantly increased deformity rates at 2h, dind 8h under control pH (pH 8.1) in
both Experiment 1 and Experiment 2. Significaneiattions occurred between pH
and parental exposure, and pH and DO, at diffénergs (Table 3; Fig. 4). More
specifically, parental exposure significantly desed the embryo deformity rates
under pH 7.7 at DO 6mg Q. at all three time points, and under all pH le\&l®O
2mg G L™ for all three time points, with the exception &f B.1 x DO 2mg QL™ at

2h.

3.2 Shell length of D-shaped larvae
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227 Shell length of D-shaped larvae ranged fronu@0to 125um during the

228 observation period. A significant decrease in |asvell growth occurred at 48 h

229 under pH 7.3 in Experiment 1. In Experiment 2, lok significantly decreased larval
230 shell growth in a stepwise fashion under 6 md.& at 2 mg @ L™ larvae reared

231 under pH 7.3 had a significantly smaller shell knpan control larvae (Table 3; Fig.
232 5). Larval shell growth at 48h were not signifidgratffected by low DO. Moreover,
233 parental exposure did not show a significant défifee in the D-shaped larval shell
234  growth except in the condition of pH 8.1 x DO 2mgld at 72h (Table 3; Fig.5). At
235 72,96 and 120 h, larval shell length was signiftgasmaller under low pH; low DO
236 larvae showed significantly smaller shell lengthsler control pH (pH 8.1).

237 Significant interactions did not occur on the Dysba@ larval shell length (Table 3).
238

239 4. Discussion

240 In this study, we tested for transgenerationalot$fef exposure to combined

241 ocean acidification and hypoxia on the early dewelent of musselsl. edulis. We

242 found that parental exposure to acidification appodxia could only partially alleviate
243 the negative effects of these stressors on emhryord larval developmental traits, as
244  negative effects on developmental traits were @ilerved when parents were reared
245 under low pH and low © As such, our results suggest that parental expasay not
246  confer offspring tolerance to short-term oceanification and hypoxia in musseld.

247  edulis.
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4.1 Effects of ocean acidification and hypoxia on larval devel opment

Considering the increased occurrences of hypoxam(ér-Sunyer & Duarte,
2008) and the continuous decrease of pH levelsdhi@guldberg et al., 2014)
globally, it is critical to evaluate the combinedgacts on marine species and
ecosystems. However, the combined effect of lonapH oxygen on marine species
has not been widely studied (Gobler & Baumann, 20Q6r results indicated that
low pH conditions had negative effects on fertiiiaa rates, larval deformity rates,
and larval shell growth, Furthermore, while posttvansgenerational effects were
observed, they only partially alleviated the effeat acidification on the
aforementioned early developmental traits.

While we did not measure survival, our results skdwhat short-term exposure
to experimental ocean acidification negatively eiiée fertilization rate, embryo
deformity rate, and larval shell growth, while hymohad relatively little effect and
did not influence the effect of acidification. Trexluced fertilization rates under
acidification may be due to the negative effeca@tlification on sperm fitness such
as the percentage of motile sperm and the spermmaimg speed (Vihtakari et al.,
2013) and/or the process of sperm-egg collisionlsgamete fusion (Shi et al., 2017).
Negative effects on larval shell growth may be ttuthe decreasing calcification
(Berge et al., 2006) and shell dissolution (Ranedsdl., 2017), or perhaps increases

in larval deformities (Talmage & Gobler, 2009). Retjess of mechanism, such
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269 effects in nature could potentially increase juleemortality, particularly when food
270 shortages occur during the accumulation of enezggrves (Phillips, 2002).

271 Our findings indicated relatively little effect biypoxia on early development.

272 While some comparatively small effects of hypoxere&observed at control pH

273 conditions, DO did not affect fithess under anyhaf low pH conditions, suggesting
274 that pH has a stronger influence on early develaoprimemusseld. edulis. Similar

275 results have been observed Kbéredulis from other locations (e.g. Frieder et al., 2014)
276 as well as other mussel species suckMggus californianus (Frieder, 2013), even at
277  extremely low DO concentrations (0.5 mg 0" Eerkes-Medrano et al., 2013). With
278 respect to calcification, mineralogical plastidieyg. increased calcite to aragonite
279 ratio and magnesium to calcium ratio) is thoughteémne way in which calcifying

280 marine organisms can withstand low DO effects daift@ation (e.g. polychaete

281 Hydroidesdiramphus; Leung & Cheung, 2018). Metabolic alterations hals® been
282 reported to support organismal tolerance to hypdxia example, Pdrtner et al. (2005)
283 reported that marine animals switch to an anaenmwigiabolism and undergo

284 metabolic depression which contributes to energinga during low DO. The

285 utilization of metabolic pathways that are lessrgatically demanding may also

286  support calcification and survival under hypoxiaditions (Risgaard-Petersen et al.,
287 2006; Nardelli et al., 2014). While we did not testphysiological underpinnings of
288 observed responses in this study, such mechanism&xplain the lack of DO effect

289 on deformation rates and shell growth observediimefdterations in metabolic
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activity that result in increased energy availapilinder hypoxia could have also been
responsible for the lack of low DO effect on feztition rates as well. Collectively,
these findings suggest that low DO has relativiétlie leffect on the early development

of mussels.

4.2 Transgenerational effects of combined ocean acidification and hypoxia

The role of parental exposure in shaping offspragponses to global change
stressors has been observed in numerous marinespeduding fishes, copepods,
and bivalves (Vehmaa et al., 2012; Parker et @L22Munday, 2014). Despite
numerous transgenerational studies for acidificaéiod warming, this is, to our
knowledge, the first study to test for transgenerat acclimation in response to
combined acidification and hypoxia. While paremgbosure to low pH and DO
partially reduced negative effects on offspring paned to when parents were
exposed to control conditions, the positive patesitacts were weak at best. Our
results thus suggest a limited capacity for patemtposure to alleviate the negative
effects of low pH on early development in musseélss is in contrast to studies
documenting largely positive effects of parentgd@sure on offspring responses,
particularly to low pH conditions, in bivalves (Rar et al., 2012; Fitzer et al., 2014;
Zhao et al., 2016) and others reporting negatifecesf of parental exposure (Griffith

& Gobler, 2017). Thus, there remains a high degfascertainty regarding the
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ability of parental exposure to alleviate the effeaf marine global change stressors
on their offspring and more research is warranted.

While limited, the increased resistance to oceadifasation of M. edulis larvae
from parents exposed to low pH and DO conditionyg beathe result of a higher
concentration or activity of the enzyme carbonibyaitase (CA) catalyzing the
reversible hydration of C£and accelerating the formation of bicarbonate (KO
(Lionetto et al., 2012). Some studies have alsodaacorrelation between CA
activity and shell formation (Fitzer et al., 2014bedakové & Lucu., 1994), and
enzyme activity increases linearly with shell fotiroa (Medakové, 2000).
Nonetheless, the mechanisms at play only conferisadall benefit of parental
exposure. It is important to note here, howevext #ithough our parental exposure
time (4 weeks) was similar to other transgeneratistudies on bivalves (e.g. Griffith
& Gobler, 2017), a longer exposure may have yieldifdrent results. For example,
our exposure time may not have been enough fontEmmussels to produce
adequate proteins, hormones, or other somatis titzat would provide offspring with
the ability to strongly resist more acidified, hypoconditions (Munday, 2014). Thus,
while our results provide the first documentatidriransgenerational effects to
combined acidification and hypoxia, future studigth longer parental exposure

times are warranted.

5. Conclusions
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This study represents the first of its kind to asgbe potential for
transgenerational acclimation to combined acidiftcaand hypoxia in marine
bivalves. Our results suggest that ocean acidifindtas a comparatively stronger
effect on the early development of musdélsdulis. Although we did not directly
measure survival, the observed effects of acidibcarepresent a strong decline in
function, as reduced fertilization rates, increagefbrmity rates, and decreased
growth all represent negative functional conseqasrfor larval bivalves.
Furthermore, while transgenerational effects wergtjve, they were not sufficient to
completely alleviate the negative effects of ocaadification. Thus, if our
experimental results hold true in nature, it appéiae ocean acidification may have
negative effects oNl. edulis populations since the success of the early denetopal
stage of shellfish can affect population and comitgudynamics. Nonetheless, more
research on the combined effects on ocean acitidicand hypoxia are required
before general conclusions can be drawn with reégpenarine bivalves, and
longer-term parental exposures are required bgli@@icting whether or not the

effects observed herein apply in nature.
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Table 1 A summary of seawater carbonate chemistrgrpeters in experiment 1.
Seawater pH (pkks), temperature of embryo and larvae period@},,salinity
(psu), total alkalinity (A, pmol kg?), dissolved inorganic carbon (DIC), the
partial pressure of CApCO, patm) as well as aragonit@#r) and calcite(fca)
saturation states were listed.

Treatments salinity T phas At DIC pCO  Qca Qar
pH DO (pus) (©) (umol*kg™)  (umol*kg™)  (natm)
(mg
O,
LY
8.1 6.0+ 28.0% 16.1 8.11+x 2236+20 2027 + 13 348+ 431 2.63
0.2 0.3 +0.3 0.02 13 + +
0.12 0.11
7.7 6.1+ 281+ 16.2 7.70x 2189+29 2130 + 23 1118+ 2.03 1.31
0.1 0.2 +0.1 0.02 22 + +
0.09 0.05
7.3 6.0+ 279+ 16.0 731+ 2218%+12 2273+ 20 2328+ 0.81 0.59
0.2 0.2 +0.3 0.03 34 + +
0.07 0.03
8.1 21+ 281+ 159 8.10x 230121 2089 + 12 356+ 4.28 2.59
0.1 0.2 +0.2 0.03 12 + +
0.08 0.16
7.7 21+ 281+ 16.0 7.73x 2257 +27 2159+ 19 1089+ 1.96 1.29
0.1 0.2 +0.2 0.01 29 + +
0.18 0.05
7.3 20+ 28.0% 16.2 7.29x 2261+13 2318+ 11 2401+ 0.86 0.63
0.2 0.3 +0.3 0.03 31 + +
0.05 0.04

Table 2 A summary of seawater carbonate chemistrgrpeters in experimerg.
Seawater pH (pkks), temperature of embryo and larvae period@},,salinity
(psu), total alkalinity (A, pmol kg?), dissolved inorganic carbon (DIC), the
partial pressure of CApCO, patm) as well as aragonit@#r) and calcite(fca)
saturation states were listed.

Treatments salinity T plis Ag DIC pCG Qca Qar
pH DO (pus) (C) (umol*kg™)  (umol*kg™)  (uatm)
(mg
Oz
LY
8.1 6.1+ 281+ 158 8.09+ 222827 2021 £ 27 352+ 429 257
0.1 0.1 +0.3 0.02 11 + +
0.07 0.10
7.7 6.0+ 28.1=% 16.1 7.71+ 216917 2165+ 21 1107+ 2.09 1.29
0.1 0.3 +0.2 0.03 17 + +
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7.3

8.1

7.7

7.3

6.1+
0.2

2.1+
0.1

22+
0.1

20+
0.2

28.0+
0.3

279+
0.2

28.0+
0.2

28.1+
0.3

16.1
+0.2

15.9
+0.3

16.0
+0.3

16.0
+0.1

7.32+
0.03

8.10 +
0.03

7.70 £
0.01

7.32+
0.03

2231 +19

2311 +19

2217+ 13

2211+ 17

2284 + 13

2098 + 18

2248 + 15

2339+ 20

0.08 0.05
2427+ 0.85 0.62
23 + +
0.03 0.01
343+ 428 2.66
10 + +
0.05 0.13
1098 + 2.06 1.22
16 + +
0.18 0.07
2418+ 0.86 0.61
33 + +
0.03 0.04

Table 3 Summary of three-way ANOVA results on effeaf pH, DO and parental
exposure (PE) on the fertilization rate (FR), teéodmity rate at 2h (DR2), 4h
(DR4), 8h (DR8) and the shell length of D-shapedda at 48h (SL48), 72h
(SL72), 96h (SL96) 120h (SL120) in experiment #d arperiment #2.
Significantly different values are representedaidb

FR DR2 DR4
MS F P d MS F P d MS F P
f f

PE 406.69 34.53 <00 1 448.02 16.83 <00 1 529.00 31.27 <0.0
4 1 01 8 6 01 0 1 01

pH 1656.6 140.6 <00 2 11858. 4456 <0.0 2 13307. 786.6 <0.0
94 63 01 778 33 01 194 32 o1

DO 3025 2568 012 1 27225 1023 000 1 484.00 28.61 <0.0
2 0 1 4 0 1 01

PE*pH 61.361 ~ 591 001 2 11211 4.213 002 2 54250 3.207 0.05
3 1 7 8

PE*DO 1 351) 0116 073 1 0694 0.026 0871 4000 0.236 0.63
7 3 1

pH*DO dos 0531 059 2 206.33 7.754 000 2 99.750 5.897 0.00
5 3 3 8

P*Iz*gH 0.604 0.056 0-:4 2 0444 0.017 2.982 33.583 1.985 ;).15

DR8 SL48 SL72
MS F P d MS F P d MS F P
f f

PE 633.36 36.42 <00 1 352.66 9.197 000 1 273.37 8.480 0.00
1 3 01 7 3 5 5

pH 12572. 723.0 <00 2 1371.8 3577 <00 2 3146.2 97.59 <0.0
583 24 01 85 7 01 81 5 01
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DO 521.36 29.98 <00 1 165.37 4.313 004 1 864.00 26.80 <0.0
1 2 01 5 1 0 1 01
PE*pH 67.861 3.903 003 2 44.135 1.151 0.322 2.844 0.088 0.91
4 1 6
PE*DO 14.694 0.845 0361 .667 0.017 0.891 2042 0.063 0.80
7 5 2
pH*DO 89.194 5.129 001 2 49594 1.293 0.282 70.969 2201 0.11
4 0 7
PE*pH 17.361 0.998 0.382 3510 0.092 0912 24448 0.758 0.47
*DO 3 3 2
SL96 SL120
MS F P d MS F P
f
PE 137.76 2.893 0.09 1 433.50 12.11 0.00
0 3 0 3 1
pH 3806.5 79.95 <00 2 4585.0 128.1 <0.0
42 0 01 73 15 01
DO 1239.8 26.04 <00 1 1162.0 32.47 <0.0
44 1 01 42 0 01
PE*pH 19.542 0.410 0.662 13.031 0.364 0.69
5 6
PE*DO 1.760 0.037 0.841 16.667 0.466 0.49
8 7
pH*DO 76.625 1.609 0.202 103.32 2.887 0.06
6 3 1
PE*pH 47792 1.004 0.372 35323 0.987 0.37
*DO 1 7
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Figurelegends

Fig. 1 Embyros observed at 2 to 8h after fertil@ain all treatments. A: pH*DO
condition of 8.1*6mg @L™ in experiment 1; B: 7.7*6mg /" in experiment 1; C:
7.3*6mg Q L™ in experiment 1; D: 8.1*2mg£." in experiment 1; E: 7.7*2mg-0
Lt in experiment 1; F: 7.3*2mgQ." in experiment 1; a: 8.1*6mg Q" in
experiment 2; b: 7.7*6mg " in experiment 2; c: 7.3*6mg Q. in experiment 2;
d: 8.1*2mg Q L™ in experiment 2; e: 7.7*2mg,Q." in experiment 2; f: 7.3*2mg O
Lt in experiment 2;

Fig. 2 The categorization of deformity of embryAsInitial embryo deformity; B:
Irregular deformation of the embryo; C: Slightlyfaened of the embryo; D: Embryo
rupture; E: Embryo breakage and incomplete; F: Deity during embryonic
division.

Fig. 3 The fertilization rate (FR) at 8h BF. edulis exposed to different combinations
of pH (8.1, 7.7 and 7.3) and DO (6mg 0" and 2mg @L™) (N=100). The means
denoted by different superscripts (A, B, C) at efaabd DO are significantly different
among three pH levels (P < 0.05). The means denmteedd superscripts (+, -) at
each fixed DO and pH are significantly affectedoayental exposure (P < 0.05).

Fig. 4 The embryos deformity rate (DR) at 2h, 4id 8h of theM. edulis exposed to
different combinations of pH (8.1, 7.7 and 7.3) & (6mg Q L™ and 2mg QL™
(N=100). The means denoted by different supersc(ivt B, C) at each fixed DO are
significantly different among three pH levels (P.85). The means sharing the
different superscripts (a, b) between two DO lewtlsach fixed pH are significantly
different (P < 0.05). The means denoted by astétjskt each fixed DO and pH are
significantly affected by parental exposure (P G5).

Fig. 5 A, B, C, D respectively means the D-shajpeddl shell length of thil. edulis

at 48h, 72h, 96h, and 120h exposed to differentotoations of pH (8.1, 7.7 and 7.3)
and DO (6mg @L™ and 2mg @L™) (N=50). The means denoted by different
superscripts (A, B, C) at each fixed DO are sigatffitly different among three pH
levels (P < 0.05). The means sharing the diffeseperscripts (a, b) between two DO
levels at each fixed pH are significantly differéRt< 0.05). The means denoted by
red superscripts (+, -) at each fixed DO and pHsageificantly affected by parental
exposure (P < 0.05).
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Highlights

® [Effects of ocean acidification and hypoxia on the early development of the
mussel M. edulis were investigated.

® Positive carry-over effects of adult mussels exposed to low pH and hypoxia were
observed on larvae performance.

® | ow pH showed key negative effects on the early development of the mussel M.
edulis.



