
Parameter estimation in a Markov mesh
model by reversible jump MCMC
simulation

Johanne Norstein

Master of Science in Physics and Mathematics

Supervisor: Håkon Tjelmeland, MATH

Department of Mathematical Sciences

Submission date: June 2012

Norwegian University of Science and Technology

Preface

This Master’s thesis, with course code TMA4905 Statistics, is the final part
of my Master’s degree in Physics and Mathematics at NTNU. The report is
written between February 6th and June 29th.

In order to finish this thesis, I have gotten valuable help. First, I would like
to thank my supervisor, H̊akon Tjelmeland, for help and support. I would also
like to thank Vidar Klungre for proof-reading this document.

Johanne Norstein June 28th 2012

i

Abstract

We have a model for simulating facies values in a rock. We can use the
model to find facies structures in a 2-dimensional area, which we can use
to find properties of a rock in a petroleum reservoir. The model is a
Markov mesh model, with a conditional probability distribution for the
facies values, with a set of parameters. By using a training image with
known facies values, we can simulate the parameters in the model, and
then simulate facies values for a new area.

In this text, we simulate the parameters by using a Reversible jump
Markov chain Monte Carlo algorithm. This lets us simulate not only
the values of the parameters, but also which parameters that should be
present in the model. We use the Metropolis-Hastings algorithm in the
simulations.

We use the model with the simulated parameters to make new images
with the Markov mesh model. The images should have similar visual
appearance as the training image. We are able to make images with some
similar qualities as the training image, even though we are not convinced
that the parameter values converge.

Samandrag

Vi har ein modell for å finne fasisverdier i ein stein. Vi kan nytte modellen
til å finne fasismønstre i eit todimesjonalt omr̊ade, og vi kan til dømes
bruke han til å finne eigenskaper til ein stein i eit petroleumreservoar.
Modellen v̊ar er ein Markovnettmodell, med ei vilk̊arsbunden sannsyns-
fordeling for fasisverdiene. Vi har parametrar for sannsynsfordelinga som
vi kan simulere ved å nytte eit treningsbilete med kjende fasisverdier.

Vi nyttar ei Markovkjedesimulering med reversible hopp for å simulere
parametrane. Dette gjer at vi kan simulere b̊ade verdiene til parametrane
v̊are, og kva for parametrar som skal vere ein del av modellen. I simu-
leringa nyttar vi Metropolis-Hasings-algoritmen.

Ved hjelp av dei simulerte parametrane nyttar vi Markovnettmodellen
til å simulere nye bilete. Dei nye bileta vi f̊ar bør ha liknande utsj̊anad
som treningsbiletet. Vi klarer å f̊a bilete med liknande struktur som tren-
ingsbileta, sjølv om vi ikkje er overbevist om at parameterverdiene kon-
vergerer.

iii

Contents

Preface i

Abstract iii

Symbols vii

1 Introduction 1

2 Bayesian Modeling 1
2.1 The likelihood . 2
2.2 Prior distribution . 2
2.3 Posterior distribution . 3

2.3.1 Conjugate distributions 3
2.4 Discussion . 4

3 Markov mesh models 4

4 Markov chain Monte Carlo 5
4.1 The Markov chain Monte Carlo algorithm 6
4.2 Metropolis-Hastings algorithm 7

5 Reversible jump MCMC 8
5.1 Model proposal . 9
5.2 Parameter proposal . 9
5.3 State Selection . 9

6 Our implementation of the reversible jump MCMC algorithm 10
6.1 Specification of the model . 10

6.1.1 Combination of the nearest neighbors 11
6.1.2 The values in the few nearest nodes 12
6.1.3 Equal values in straight lines in different directions 13

6.2 The reversible jump MCMC algorithm 14
6.3 The probabilities for proposing a move from θ to θ̃ 15
6.4 The probabilities for proposing the reverse move, a move from θ̃

to θ . 16
6.5 Our prior distribution . 18

v

7 Results from the simulations 19
7.1 The Sisim training image . 22
7.2 The Channel training image . 22
7.3 The Ellipsoid training image . 24
7.4 The active θ parameters and convergence 24

8 Closing remarks 27

vi

Symbols

x Vector with the facies values in our grid
xi The facies value of the ith element/node in x
x(<i) The facies values of the elements preceding element i
θ Vector with parameters
θi The ith element in the θ vector
π(x | θ) The conditional probability distribution for the vector x

given the parameters θ
π(xi | θ, x(<i)) The probability distribution for the value in element i given

the parameters θ and the values in the preceding elements
of i

Gi The sequential neighborhood of the ith element in our grid
xGi The facies values of the elements in the sequential neighbor-

hood of element i
π(xi | θ, xGi) The probability for the value xi in the grid given the pa-

rameters θ and the sequential neighborhood of xi
γi The area used to estimate the function values for the func-

tion f described in Section 6.1.1
z A vector with values generated from the functions f , g and

h described in Sections 6.1.1, 6.1.2 and 6.1.3 respectively.

α(θ | θ̃) The acceptance probability in the Metropolis-Hastings al-
gorithm

θ̃ The proposed new vector to replace θ

θ̃i A new value for θi, the ith element of the vector θ

q(θ̃ | θ) The probability of proposing a change from θ to θ̃

q(θ | θ̃) The probability of proposing the reverse move, a change
from θ̃ to θ

vii

1 Introduction

In this text, we create a model for simulating facies values in a rock. In geology,
the facies value of a rock can give information about different qualities of the
rock, for instance the temperature and pressure in which the rock was created.
The goal of the text is to be able to simulate facies values for a rock in the
underground. Applications of the results is to find structures in rocks in places
that are hard to collect samples from, for example in a petroleum reservoir.

The model we make uses a reversible jump Markov chain Monte Carlo (RJM-
CMC) algorithm. We want to find parameter values for a generalized linear
model that gives the probability for a facies value in a specific position in a 2-
dimensional grid. The expression for the generalized linear model we use is from
Stien and Kolbjørnsen (2011), and we use the same rules for the formulation of
the model. We use only two possible facies values in our model.

We start out with a training image, which has values for the facies in a 2-
dimensional area. The training image can be collected from a rock on land with
similar qualities as the one we are trying to simulate in the underground. By
calculating the likelihood of the training image with the parameters we have,
and adjusting the parameters by RJMCMC, we end up with suitable parameters
for our model. We can then use this to simulate facies values in a new area.

In this report, we first give a general introduction to Bayesian statistics,
Markov mesh models and Markov chain Monte Carlo methods. After this, we
give a more detailed description of the model we have used in the simulation,
and last we show results from the implementation.

2 Bayesian Modeling

In the last 20 or so years, Bayesian statistics has become a more used and
understood field in statistics. We distinguish between Bayesian statistics and
frequentistic statistics. The frequentist approach is the first statistical approach
that is usually taught at universities and high schools world wide. The differ-
ence between the two approaches, lies in the understanding of prior information
on a system, and also on how the concept of probability is understood. In the
frequentist approach, one uses data or measurements to describe a statistical
process. One assumes that the data comes from some probability distribu-
tion, and considers the parameters in the distribution constant, but unknown.
Examples of frequentist approaches include linear models and regression, and
maximum likelihood estimations. With the Bayesian approach, one does not

1

consider the parameters in the distribution as constant, but rather as stochastic
variables. The frequentists are not interested in the probability of achieving
other parameter values from observations, because only the values actually ob-
served are interesting. In Bayesian statistics, the probability distribution is
calculated from what we call a prior distribution, and then adjusted by the
data that we observe.

In the next sections, we describe each element in the Bayesian statistics
more thoroughly. The book Gamerman and Lopes (2006) has been used as a
reference. We look at the theory behind Bayesian statistics, and how we use it
in practice. The expressions of a prior distribution, a likelihood and a posterior
distribution and the connection between them are explained thoroughly.

2.1 The likelihood

The likelihood in the Bayesian approach is the same as the likelihood in a
frequentist approach. The expression for the likelihood is the same as the ex-
pression for the probability, but now we look at the probability as a function of
the parameters rather than as a function of the observed values,

l(θ) = π(x | θ). (1)

Instead of looking at the probability of a value x as the right hand side of
the expression indicates, we look at the likelihood of obtaining the x-values we
observe when we have the parameters θ. This is the reason why likelihoods
are often written as l(θ), to show that we see the likelihood as a function of
the parameter vector θ. In a frequentist approach, we are often interested in
the parameter values that result in the maximal value for the likelihood, and
maximum likelihood estimation is a central part of the analysis. The maximum
likelihood estimation is not as central in Bayesian theory, since we are simulating
the parameter values for the probability distribution instead.

2.2 Prior distribution

The prior distribution in a Bayesian model, is a mathematical formulation of
some prior knowledge we have of the parameters we want to simulate. The prior
distribution is a probability distribution on the parameter values. That is, a
distribution that describes the probability for each parameter collection. We use
the term parameter collection because we might have more than one parameter
to estimate. An important question related to Bayesian inference, is where to

2

get the prior distribution from. Without looking at the observed values, we
make a guess on how the different parameter values are distributed. It might be
difficult to formulate the knowledge we have as a probability distribution, and
in some cases we need to use a ”trivial” probability distribution as the prior. In
this case, we try to make a non-informative distribution for θ.

For example, if you have a flipping coin, and you want to determine if the
coin is a fair coin or not, prior information on this could come from examining
the coin, weighing the coin or measuring the coin. But even if we do notice that
the coin has one edge that is i bit thicker, or that the edge is more rounded
on one side, how do we formulate this as a distribution? There is no right or
wrong answer to this, so the appropriate way to formulate this as a distribution
is to make a guess on how this would impact the coin, and apply this to make
a change to the trivial, or non-informative, distribution. An example of a prior
distribution for the result of the coin flipping, could be

π(θ) = Be(θ; α, β), (2)

where Be(θ; α, β) represents the beta distribution, with parameters α and β.
Even though there is a fair amount of guessing involved, Bayesians consider

this prior information important, and include it in the analysis of a process.

2.3 Posterior distribution

In this section, we describe how the posterior distribution is calculated from
Bayes theorem. We use Bayes theorem to combine the information we have
prior to an experiment, and the data we get from the experiment. Together this
gives the posterior distribution, and we get a probability distribution for the
parameter θ.

We have Bayes theorem given by,

π(θ | x) =
π(x | θ)π(θ)

π(x)
∝ π(x | θ)π(θ), (3)

where π(θ | x) is the posterior distribution. The posterior distribution described
by Bayes theorem, takes into account both the prior distribution and the like-
lihood.

2.3.1 Conjugate distributions

In Bayesian statistics, a conjugate family of distributions refers to the case where
the prior and the posterior distributions are from the same distribution family.

3

If the posterior distribution comes from the same family of distributions as the
prior distribution, they are conjugate distributions. Using the example from the
previous section, we can assume a coin having the beta distribution as a prior
distribution, and calculate its posterior distribution. The probability density
function for the beta distribution is given by

f(θ; α, β) =
θα−1(1− θ)β−1

B(α, β)
, (4)

where B(α, β) is a normalization constant.
The posterior distribution becomes,

π(θ | x) ∝ π(x | θ)× Be(θ; α, β) = Be(θ; α2, β2), (5)

where α2 and β2 are two different parameters in the beta distribution. From
Equation (5) we see that the posterior distribution is also a beta distribution,
and thus this is a conjugate distribution.

2.4 Discussion

A prior and a posterior distribution is always relative. After calculating a pos-
terior distribution by Bayesian statistics, we can use this as a prior distribution
to calculate a new posterior distribution. In this case, we would need to collect
new data in order to have a legal prior distribution. The prior distribution
should be possible to obtain without knowing any data, and thus we cannot use
the same data as we used to produce this prior distribution.

3 Markov mesh models

Using a Markov mesh model is a simple way to obtain a Markov model in a
2-dimensional mesh. We consider a mesh, or grid, with width m and height n.
We can give the elements an ordering by traversing the grid in a lexicographical
order, from left to right and from the top to the bottom. For this project, we
have an integer value for each element. The symbol xi refers to the value in the
ith element. We have that i ∈ {1, . . . ,m · n}.

The idea of a Markov mesh model, is to define a Markov chain on the grid,
where the value in each element is only dependent on the value in a subset of
the foregoing elements. A sequential neighborhood for an element in the grid,
is the area that the value in the current element depends on. We say that the

4

element i has the sequential neighborhood Gi. The values in this sequential
neighborhood is a vector which we write as xGi . The sequential neighborhood
can be defined in any way we want, as long as the elements in it are preceding
element i in the traversal order. That is,

j ∈ Gi ⇒ j < i,

but not necessarily that

j < i⇒ j ∈ Gi.
In Figure 1 we show an example of a sequential neighborhood.

The Markov mesh has a valid Markov property, as explained in Abend
et al. (1965). We have a probability of the value in an element i, given as
π(xi | θ, x(<i)), where x(<i) is the vector of values of elements that are earlier
in the traversal order of the vector x, {x1, x2, . . . , xi−1}, than element i. In our
model, this is a conditional probability. We write the Markov property for the
values in our mesh as

π(xi | θ, x1, . . . xi−1) = π(xi | θ, xGi). (6)

We see that we have created a higher order Markov chain for the 2-dimensional
grid, and we call this a Markov mesh. This is a simple way to use Markov chains
for simulating the values in the elements in the grid, since we can calculate the
values for the whole grid by traversing it once.

4 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) is an algorithm that can be used to simu-
late the posterior distribution in a Bayesian model. We define a Markov chain
and use Monte Carlo to simulate moves in this Markov chain. A thorough intro-
duction to Markov chains can be found in Ross (2006), and we will not discuss
properties of Markov chains in detail in this text.

In a Markov chain model, we have a system with a variable that can be in
different states. We can move between these states according to rules defining
the Markov chain. We call such a move a step in the Markov chain. In the
following sections, our system is a Bayesian model, and we will define a state
as a set of parameters in our model. This means that one specific collection of
parameter values represents one state.

5

i

Ll

Lr

Lu

1

Figure 1: The sequential neighborhood of an element is determined by which
elements we want an element to be dependent on. The value in element i is only
dependent on the elements in its sequential neighborhood. In this example, the
number of elements to the left, Ll, to the right, Lr and above Lu element i we
consider, can be chosen independently.

We calculate a posterior distribution from the results we get from the sim-
ulation, by starting with a prior distribution that we can obtain by a (qualified
or unqualified) guess. The Markov chain part of MCMC is that a step in the
process is only dependent on the previous step in the process. The Monte Carlo
part is that we choose random numbers from a probability distribution to decide
which moves to make in the Markov chain.

4.1 The Markov chain Monte Carlo algorithm

There are various ways to perform an MCMC simulation, and in Section 4.2,
we describe one of these, which is called the Metropolis-Hastings algorithm. In
this section we will give a more general outline of the algorithm, without many
details.

We have a collection of parameters, θ, which has a posterior probability
distribution π(θ | x). We look at θ as a vector with the parameter values
(θ1, . . . , θM), where we have that

P (θn+1 | θn, θn−1, . . . , θ0) = P (θn+1 | θn), (7)

where θn+1 is the collection of parameters after n+ 1 steps in the process. This

6

is a Markov property, because every iteration in the process is only dependent
on the current state of the Metropolis-Hastings algorithm.

4.2 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is an algorithm used in the MCMC simu-
lation. We assume that we have a probability distribution, π(θ | x) which is
hard to sample from. We want to use MCMC, and in particular Metropolis-
Hastings to simulate samples from this distribution. Our goal is to simulate the
parameters θ, when we know the values for x. Using the problem outline from
Section 4.1, we propose a change to the parameter θi, for some i ∈ {1,M}, in
θ, and then we check if we want to accept this change. Let θ̃ denote the vector
of parameters with element θi changed to θ̃i. The moves between parameter
collections define a Markov chain, with limiting probability equal to the distri-
bution of the θs. This way, we simulate a draw from the distribution for θ, and
end up with a useful value for the parameters.

We create a Markov chain in the way that we start with some values for the
θ parameters, and then we can move one step to a new set of θ parameters.
We choose this step to be making a change to one of the parameter values.
Assuming we have the θ parameters, we can suggest to instead use a different
set of parameters, which we call θ̃. The proposal distributions, q(θ̃ | θ) and the
reverse q(θ | θ̃), define the probabilities of proposing a move from the state θ to
θ̃ and opposite, respectively. Multiplying by the probabilities of being in each
of these states, we get the importance ratios for the states in the Markov chain,

π(θ | x)

q(θ | θ̃)
(8)

and

π(θ̃ | x)

q(θ̃ | θ)
. (9)

We want to find a way to figure out which of the two states we want to
continue with, and the Metropolis-Hastings algorithm gives us rules for deter-
mining this. The suggestion of moving to the new state θ̃ is accepted with a
probability α, which is given by

7

α(θ̃ | θ) = min

(
1,
π(θ̃ | x)/q(θ̃ | θ)
π(θ | x)/q(θ | θ̃)

)
= min

(
1,
π(θ̃ | x)q(θ | θ̃)
π(θ | x)q(θ̃ | θ)

)
. (10)

In Equation (10), we have that the probability of accepting the change is one
if the new state has a higher importance ratio. If not, we get a probability of
moving to the new state which is between 0 and 1. In order to decide whether
to make the change or not in this case, we draw a number u ∼ Unif[0, 1]. The
parameter θ is

θn+1 =

{
θ̃ if u < α(θ̃ | θ)
θ otherwise

after iteration n+ 1.

5 Reversible jump MCMC

Reversible jump MCMC (RJMCMC) is an MCMC variant that does not have
a fixed number of parameters. That is, one of the things we need to simulate
is the number of parameters in the system. A common way to denote the
different steps in a RJMCMC algorithm, is to say that different models are
distinguished by having different parameters in them. That is, in RJMCMC,
there is a maximum number of parameters that can be a part of a model. We get
one model for each possible selection of these parameters to use in the model.
This gives us a very large number of models even if there are only a few possible
parameters.

The RJMCMC algorithm determines which parameters we want to use, and
also gives these parameters a value. Each step in a RJMCMC algorithm contains
a proposal part and a selection part. Together, these two result in proposing
a new state for the Markov chain we simulate. We then use the Matropolis-
Hasings algorithm to decide if we should move to the new state or stay in the
state the Markov chain is currently in. Section 5.1 describes how the model
proposal is done in RJMCMC, Section 5.2 describes the parameter proposal
and in Section 5.3, we put the two together, and discuss how we need to modify
the Metropolis-Hastings algorithm for the reversible jump algorithm.

8

5.1 Model proposal

At the current state in RJMCMC, we have a model. We wish to compare
this model with a proposed new model, and in order to do this, we propose
to add parameters to or remove parameters from our model. This step in the
RJMCMC algorithm can be done in multiple ways. If we for instance have M
possible parameters to choose from in a full model (where full model describes a
model where all the parameters available are used), we can choose one of these
parameters randomly. Now we can check if this parameter is a part of the model
in our current state. The proposal model will include the parameter if it is not
in the current model. If the parameter is already in the current model, the
proposal model can either exclude the parameter, or change its value. This can
for instance be done by choosing randomly with a given probability of choosing
to remove or change. Notice that the models will have different dimensions if
we propose to add or remove parameters.

5.2 Parameter proposal

When we have a proposal model, we can specify the values of the parameters
that are in this specific model. If we have just added a parameter, we need
to give this parameter a value, and if our proposal model contains the same
parameters as the current model, we need to change the parameter that we
did not remove. The proposal of the new value can be for instance to draw a
normally distributed variable. When we have new values for the parameters, we
say that we have a proposed state for the Markov chain.

The proposal probabilities can be calculated easily when we do the pro-
posal in this way, since we assume that choosing the amount of parameters and
choosing the value for the parameters are independent.

5.3 State Selection

We decide to accept the proposed state or not by using the Metropolis-Hastings
algorithm described in Section 4.2. In some of the cases in RJMCMC, the
Metropolis-Hastings algorithm does not only consider different parameters, but
also different models. The models are different because of the number of pa-
rameters they have, and thus the proposal probabilities q(θ | θ̃) and q(θ̃ | θ) will
have different dimensions.

The acceptance probability in Equation (10) contains a ratio of proposal
probabilities, and probabilities for a given state. We see that the numerator and

9

the denominator in the main fraction are both dimensionless, since the small
fractions have equal dimensions in its numerator and denominator. This means
that we can use the Metropolis-Hastings algorithm between different models as
well.

6 Our implementation of the reversible jump
MCMC algorithm

The implementation of the reversible jump MCMC is an implementation that
is based on the article Stien and Kolbjørnsen (2011), but with a reversible
jump MCMC implementation. The formula for the probability distribution
for the generalized linear model in the article, is also used for the probability
distribution, except that we do not consider the parameters in the distribution to
be fixed values, but stochastic variables. We simulate the parameter values using
RJMCMC rather than estimating them with maximum likelihood estimation.

6.1 Specification of the model

Our model for facies modeling consists of a probability distribution for the facies
values in a grid. In this probability distribution, we use values that we get from
three functions. Our probability distribution has a collection of parameters, θ,
that we want to simulate, and this is done by RJMCMC. The model is a Markov
mesh model, like the one explained in Section 3. The value xi is the facies value
in node i, and we have that for all i, xi ∈ {0, 1, . . . ,K − 1}. We define a value
xki which is given by

xki =

{
1 if xi = k,
0 otherwise,

(11)

for the xi-s in a training image. We have a training image, with a grid with
facies values represented as zeroes and ones. This means that we only have two
facies values, so K = 2. The training image is used to estimate parameters
in a generalized linear model for our probability distribution. We define some
functions that use the values in the sequential neighborhood of a node in the
training image to give us a probability for the facies value in a specific element.
The θ vector is a vector with M elements as well, but in our model, we do not
include all of them. The elements not included in the model, are set as inactive

10

parameters, and do not contribute to the probability value. The functions we
will describe later relate to the elements in the vector z in the following way:

zpi = fpxγi
(xi), for p = {0, 1, . . . , Pf − 1}, (12)

zpi = gpxΓi
(xi), for p = {Pf , . . . , Pf + Pg − 1}, (13)

zpi = hp(xi), for p = {Pf + Pg, . . . , Pf + Pg + Ph − 1}, (14)

where Pf , Pg and Ph represents the number of function values produced by the
functions f , g and h, respectively. The total number of values in the vector z
is Pf + Pg + Ph values. The functions f , g and h are defined in Sections 6.1.1,
6.1.2 and 6.1.3, respectively.

The probability for the facies value in the element xi in our model is given
by,

π(xi | zi, θ1, . . . , θK) =

∏K
k=1 exp(zTi θ

kxki)∑K
k=1 exp(zTi θ

k)
, (15)

where xki and zi are as defined above. Here, θk describes the values in θ that
are associated with the value k. In our case, we have that K = 2, and we can
write the probability distribution as

π(xi | zi, θ1, θ2) =
exp((zTi θ

1x1i) + (zTi θ
2x2i))

exp(zTi θ
1) + exp(zTi θ

2)
. (16)

The joint probability for the facies values x is

π(x | z, θ1, . . . , θK) =

m·n∏
i=1

∏K
k=1 exp(zTi θ

kxki)∑K
k=1 exp(zTi θ

k)
, (17)

where m is the height and n is the width of our grid with facies values.

6.1.1 Combination of the nearest neighbors

The first function we describe considers the values in the four nearest neighbors
of the node we are calculating the probability of a value for. In Figure 2, we see
the nodes we are interested in. We denote this area γi.

11

i

1

Figure 2: The four nearest elements of the ith element in the mesh. We denote
the area γi.

We consider all possible combinations of facies values in the four nearest
neighbors. Since we know all the foregoing facies values, we know which com-
bination of values is actually present in our grid. All the function values from
this function will be zero, except for the value where the combination of nearest
neighbors matches the one that is present in the estimated grid. We have the
expression for the function,

fx′
γi

(xi) =

{
1 if x′γi = xγi
0 otherwise

, (18)

where the x′γis represent different combinations for the values of the elements
in the four nearest nodes, γi. This function gives us

Pf = K4

values in the zi-vector.

6.1.2 The values in the few nearest nodes

In this function, we consider not only the nearest nodes, but also an area around
the nodes that can be larger. The area we consider is shown in Figure 1, and
we call his area Γi. We can specify values Ll, Lr and Lu, which describe how
many nodes to the left of, right of and above our node we want to consider. In
this function, we do not consider the combination of the nodes, but we consider
each of the nodes by itself. We get one value for each possible facies value for
each node in the area Γi, and register which value they all have. The function
gives a value of 1 if the node we are looking at has the same value as the k value

12

i1

2

3

4

8

7

5 6

n

1

Figure 3: The directions we search in to find succeeding elements of the same
value.

in gkxj (xi). We write the function as

gkxj (xi) =

{
1, if xj = k,
0, otherwise,

(19)

where xj ∈ Γi and k ∈ {0, 1, . . . ,K − 1}. We get

Pg = K · (LlLu + LrLu + Ll + Lu)

values from this function.

6.1.3 Equal values in straight lines in different directions

Here we try to catch the connection between many equal values in each of the
directions in Figure 3. We look at interactions in different levels, that is, we
consider values that are 2, 3 and up to a maximal depth d places away from the
current node. We get one value for each direction in each ”depth” of interaction.

We have that

hkj,l(xi) =

{
1 if all the l values in direction j are equal and equal to k,
0 otherwise,

(20)

13

Table 1: Table illustrating the Reversible jump algorithm. The steps here illus-
trate the cases described in Section 6.3

Choose one of the parameter values in θ, call it θc
The chosen θc value is in-
active.

The chosen θc value is active

Case 1 Case 2.1 Case 2.2
Propose to make θc active Propose to make θc inac-

tive and with value 0
Propose to keep θc active
and change the value

Use Metropolis-Hastings to determine which of the parameters to keep

for all values j in Figure 3 and all interactions l larger than or equal to 2 and
up to d. This function gives us

Ph = 8K(n− 1)

values in the zi-vector.

6.2 The reversible jump MCMC algorithm

We refer to Equation (10) for the expression for the acceptance probability in
our MCMC model. In this section, we define the proposal probabilities, q(θ̃ | θ)
that apply to our RJMCMC algorithm.

We have two possible situations for each of the parameters θi in the θ-vector.
We can say that the parameter is either active or inactive. If the value is active,
it has a value, which we can simulate by the MCMC algorithm. If it is inactive,
we describe the model as if the parameter is not a part of the model. This means
that we switch between two different models by changing a θ parameter from
being active to being inactive or opposite. This is the main difference between
MCMC and reversible jump MCMC. We have two parts of the reversible jump
MCMC algorithm, the step where we try to find the best model, and the step
where we calculate the parameters for the model we have chosen. The latter step
uses Metropolis-Hastings as described in Section 4. Table 1 shows the different
cases we can have in our model.

We consider three different cases for proposing a change from one vector θ
to a different one. In our case, this means changing one of the values θi in the
vector, or adding or removing one such value. The value of the expression for
the proposal q(θ̃ | θ) varies in the different cases. In our algorithm, we draw a

14

random number c, which is an integer between 0 and M , the maximum number
of parameters in θ. We choose the θ value that is in position c in the parameter
vector, and we call this θc. We determine which case we have by checking if θc
is active or not. If the value is inactive, we only have one option to propose,
and that is to make the parameter active and give it a value. If we choose a θ
parameter that is already active, we need to decide whether we want to make it
inactive, or keep it active and make a change to the value of the parameter. We
have equal probabilities of proposing to make the value inactive and keeping it
active.

6.3 The probabilities for proposing a move from θ to θ̃

In the following sections, we present the proposal probability q(θ̃ | θ) for different
cases. We assume that we have already chosen a θc value to consider. We see
which of the cases we need to use from this chosen parameter.

Case 1: The θ value we chose is inactive.

The probability of choosing this specific θc value is simply one out of the pos-
sible number of parameter values and facies values. For this case, we will have
M possible parameter values alltogether, since we have M different possible
parameter values in θ. Since we also give θc a new value (change it), we need
to include the probability of choosing this exact value. We denote the proposed
changed value as θ̃. That is, we have that θ̃ is a new value for θc, which we
got from choosing a number from a normal distribution with mean zero and
variance σ2. This means that the potential new value for θc will be

θ̃c ∼ N(0, σ2). (21)

Alltogether, we get the probability for proposing a move from an inactive value
to an active value with value θ̃c,

q(θ̃ | θ) =
1

M
· 1

σ
√

2π
exp

(
−(θ̃c)

2

2σ2

)
. (22)

15

Case 2.1: The θ value we chose is active, and we propose to make it
inactive.

If the θ value we choose is active, we can either propose to make it inactive,
or propose to change it. In our algorithm, we simply choose between these
two by drawing with equal probabilities for both outcomes. Specifically, we
draw a uniformly distributed random number, where a value below 0.5 results
in proposing to make the parameter value inactive, and a number above 0.5
results in proposing to keep the parameter value active, and give it a new value.

We have the following probability of proposing to make a value inactive,

q(θ̃ | θ) =
1

2M
. (23)

Case 2.2: The θ value we chose is active, and we propose to keep the
value active, and make a change to the value.

If we choose an active value, and propose to keep it active, we need to make a
change to the value. We propose to make a change to the θc value, by drawing
a value from the normal distribution with mean θc and variance σ2,

θ̃c ∼ N(θc, σ
2). (24)

We thereby get the proposal probability

q(θ̃ | θ) =
1

2M
· 1

σ
√

2π
exp

(
−(θc − θ̃c)2

2σ2

)
. (25)

6.4 The probabilities for proposing the reverse move, a
move from θ̃ to θ

In the Metropolis-Hastings algorithm we compare the current parameter value
with the proposed new value. We use the probability of proposing the changes
between the parameter values to compare the values, and therefore we need to
consider the probability of making the move from θ̃ to θ as well.

16

Case 1: The θ value is inactive, and θ̃ is active.

We want to look at the probability of choosing a specific θ value. To consider
the probability of proposing the opposite move of θ to θ̃, we assume that we are
in θ̃, and find the probability of proposing to go back to θ. That is one out of
the number of possible θ values, or the number of possible parameters we have
(M). Since we have a probability of 0.5 for keeping the parameter value active
instead of making it inactive, we need to account for this in the expression. The
probability of proposing this θc and make it inactive is,

q(θ | θ̃) =
1

2M
. (26)

Case 2.1: The θ value is active, and θ̃ is inactive.

If our proposed move is to make the θc value we choose inactive, we need to look
at the probability of proposing the reverse move. We assume that we have the
inactive parameter θ̃c, and want to find the probability of proposing to make
this parameter active value with value equal to the value of θc. The probability
of proposing this exact value for this exact parameter, is given as,

q(θ | θ̃) =
1

2M
· 1

σ
√

2π
exp

(−θ2c
2σ2

)
. (27)

Case 2.2: The θ value we chose is active, and θ̃ is active, but different.

For the case where we have proposed to keep the parameter value active and
give it a new value, we need to look at the probability of proposing to go back
to the value we had originally. We assume that we have the value for θ̃c and
propose to move to θc. The probability of doing this is,

q(θ | θ̃) =
1

2M
· 1

σ
√

2π
exp

(
−(θ̃c − θc)2

2σ2

)
. (28)

We see that this expression will get the same value as the expression for
q(θ̃ | θ) for this case. This means that in the expression for α, these values will
cancel.

17

6.5 Our prior distribution

The posterior distribution in Equation (17), is composed by the probability we
have for π(x | θ) and our prior distribution π(θ) in the following way,

π(θ | z, x) ∝ π(θ)π(x | z, θ), (29)

where we will define π(θ) later in this section.
The prior distribution we have chosen in our model, divides the θ values into

groups, depending on which of the functions f , g and h it corresponds to. In
Equation (17) we see that the θ vector is multiplied by the z vector, and each
of the elements here correspond to one of the functions. Since our model is
based on that the value in a node is dependent on the nearest nodes, we want
to give the θ parameters corresponding to function f a higher probability of
being active. We say that these parameters are in group 1. The θ parameters
corresponding to functions g and h are in group 2. The prior probabilities of
the different groups are,

Pi(θi is active) =

{
0.9 if θi is in group 1,
0.5 if θi is in group 1,

(30)

where we have chosen to give the parameters in group 2 a probability of being
active of 0.5 because this indicates that we do not know very well if they should
be in the model or not.

When we have an active value, we a priori assign this parameter a value that
is normally distributed with mean zero, and a variance σ2

0 . We write this as

θ | (θ is active) ∼ N(0, σ2
0), (31)

where we have that σ2
0 is a rather large variance.

Equations (30) and (31) give us the following prior probability for a θ value,

π(θi) =

{
Pi · 1√

2π
1
σ0

exp
(
− θ2

i

2σ2
0

)
if θi is active,

1− Pi if θi is inactive.
(32)

The θ values are considered independent, and thus we get the prior distri-
bution,

π(θ) = π(θ1)π(θ2) · · ·π(θM), (33)

with the probabilities for each θi given in Equation (32).

18

20 40 60 80 100 120

20

40

60

80

100

120

(a)

20 40 60 80 100 120

20

40

60

80

100

120

(b)

Figure 4: The Sisim training image (a) and the resulting image from the simu-
lation of parameters based on the Sisim image (b).

7 Results from the simulations

In this section, we present the results we get from the Reversible jump MCMC
simulations and the evaluation of the model with simulated parameters. We
simulate parameters for three different training images. The first one, which we
from now on call the Sisim training image, has facies values that are concentrated
in certain areas. We see this training image in Figure 4 (a). The second training
image has a channel like structure, and is shown in Figure 5 (a). We call this
the Channel training image. The third one, has an ellipsoid like structure, and
we call it the Ellipsoid training image. Figure 6 (a) shows this training image.

The goal of simulating the θ vector is to get parameter values for the Markov
mesh model with probability distribution given in Equation (15). We simulate
a realization of the probability distribution π(x | θ) with our parameter vector,
which results in a simulated image. This resulting image is expected to have a
similar visual appearance as the training image used to simulate the parameter
for this θ vector.

In order to avoid boundary effects, we use a large grid in the simulation of
the facies values. It is hard to determine exactly how large this grid needs to

19

20 40 60 80 100 120

20

40

60

80

100

120

(a)

20 40 60 80 100 120

20

40

60

80

100

120

(b)

Figure 5: The Channel training image (a) and the Channel resulting image (b).

20 40 60 80 100 120

20

40

60

80

100

120

(a)

20 40 60 80 100 120

20

40

60

80

100

120

(b)

Figure 6: The Ellipsoid training image (a) and the Ellipsoid resulting image (b).

20

Table 2: Table showing some of the values of the different input parameters for
the algorithm that were tested before the simulations. The variance, σ2, is set
to 1 on all the runs, since we already found this value to be reasonable from
previous runs which are not included in the report.

σ Ll Lr Lu d Grid size
Run 11 1 2 2 2 3 2
Run 12 1 3 3 3 3 2
Run 13 1 3 3 2 4 2
Run 14 1 2 2 2 4 2
Run 15 1 4 4 4 4 2

be, but we know that we at least need the size of the sequential neighborhood in
order to get good values for the z values in our probability distribution. In this
project, we use a grid that is twice as large as the training image. We look at the
bottom middle area of this grid, and use the structure here to compare with the
training image. In a real world problem, we would want to use a grid that covers
the area that we want to simulate facies values for, and then expand it with an
area significantly larger than the sequential neighborhood in each direction. In
the next section, we will show the results from the parameter simulations and
the images we evaluate from these.

Before we perform the simulations, we do trial simulations with fewer itera-
tions in order to optimize some of the input parameters for the algorithm. We
have some inputs that affect the simulations, for instance the variance, σ2, in
the normal distribution we draw from when we propose a change to one of the
parameters in the model. Other inputs that can vary, are the areas that we use
the functions g and h on, and the size of the grid that we evaluate after the
parameters are simulated. These simulations are all performed with the Sisim
image as training image. We use the inputs from the test simulation that gives
the best result on all the final simulations. This means that we do not optimize
the inputs for each of the training images individually, but use the ones we get
from the Sisim training image. One reason for this is to test if the model needs
a lot of adjustment for different training images. Some of the input parameters
that were tested are shown in Table 2.

The resulting images from the runs with the input parameters given in Table
2 are shown in Figure 7. The runs were performed with 100 000 iterations, which
should be enough to give reasonable results. We will consider convergence issues

21

Table 3: The real runs, with the parameters used. All runs have been done with
500 000 iterations.

Training image σ Ll Lr Lu d Grid size
Sisim image 1 3 3 3 3 2
Channel image 1 3 3 3 3 2
Ellipse image 1 3 3 3 3 2

when we do the final simulations. We have also included the training image in
the figure.

The images do not have a very clear candidate for which of them that cap-
tures the structure the best. We choose to continue with the image that has a
medium number of possible parameters, which allows us to have a reasonable
running time, but still many choices of parameters. The middle left image cap-
tures the structure reasonably well, and we choose to use the inputs from this
run, that is Run 12 in Table 2, for the remaining runs.

The final simulations are performed with the parameters that are given in
Table 3. We present the results for the different training images in the next
section. All of the runs are performed with 500 000 iterations.

7.1 The Sisim training image

The Sisim training image has been discussed briefly in the previous section. The
result for this training image is shown in Figure 4 (b). For the final run, we see
that a fair amount of the structure has been captured. This is also expected,
since this is the image we have optimized the input parameters for. One issue
that is not captured by the results is that there should not be any single points
in the image. We assume that there are some dependencies our model is not
able to detect that is the reason for these inaccuracies.

7.2 The Channel training image

In this training image, we want to capture the structure which is horizontally
continuous, and is connected. We see in Figure 5 (a) that the structure is mainly
connected in the resulting image, which means that some of the structure is cap-
tured. The connected channels in the resulting image in Figure 5 (b) are quite
thick compared with the training image, and this can indicate that the param-

22

50 100 150 200 250

50

100

150

200

250

300

350

Figure 7: The resulting images for the runs with parameters given in Table 2.
The images are placed such that the top left image is the training image, and
the top right image is the image with parameters from Run 11 in the table. We
want to use the parameters from the resulting image that has the most similar
structure as the training image.

23

eters from function h, which consider if we have the same facies values in one
specific direction, may have been too heavily weighted. Compared to the results
in Stien and Kolbjørnsen (2011), the results are quite good. This is a good sign,
since we used the model from there, and thus some of the imperfections may be
caused by the model, and not necessarily the parameter simulation.

7.3 The Ellipsoid training image

For this training image, we want to capture ellipsoid shaped structures. The
results here are not very good, as we can see in Figure 6 (b). The structures
captured are connected in many areas where there should have been some space
between the ellipsoid shapes. Some round structures are captured, which shows
that the algorithm has been able to detect some of the properties. In the next
section we discuss which of the parameter values that are active, and in Figure
9 we can see that the Ellipsoid training image is distinguished from the other
training images in that fewer of the parameters connected with the h function
are active.

7.4 The active θ parameters and convergence

It is interesting to look at which of the parameters that were chosen to be active
in the simulations. One of the goals of using the Reversible jump algorithm, is
to let the algorithm choose which of the parameters to use, rather than changing
the program for each training image prior to the simulation. After a number of
iterations in our RJMCMC algorithm, we stop the iterations and evaluate the
model with the parameters that are active at that point.

In Figures 8 and 9, we see which of the nodes in the Markov mesh that
correspond to the parameters that are active after a run of our algorithm. Figure
8 illustrates which of the nodes for the function g described in Section 6.1.2 that
are active. We do not see an obvious pattern for the parameters that are active,
but we do notice that there are active parameters even in the boundaries of the
area we have used, which means that we would have gotten a different set of
parameters by using a smaller area for the area Γi.

The parameters that were active for the function h described in Section
6.1.3, are shown in Figure 9. Recall that the function h tells us if the nodes in a
specific direction have equal values or not. For our runs, we have used a depth
of 3, which means that we get values for the 2- and 3-node interactions in each
direction. The values in nodes numbered 9-16 in Figure 9 represent that it is
significant if all the values in this direction up to the node have the same value

24

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 i

1

(a)

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 i

1

(b)

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 i

1

(c)

Figure 8: The nodes corresponding with the active θ values for the nodes con-
sidered in function g. For the Sisim (a), Channel (b) and the Ellipse (c) training
image. The green nodes are active for the k = 0 facies value, the blue for the
k = 1 facies value, and the red nodes are active for both facies values.

25

9 1 · i

10 2 · · · 8 16

11 4
3 · 5 · 6

7 15

12 13 14

1

(a)

9 1 · i

10 2 · · · 8 16

11 4
3 · 5 · 6

7 15

12 13 14

1

(b)

9 1 · i

10 2 · · · 8 16

11 4
3 · 5 · 6

7 15

12 13 14

1

(c)

Figure 9: The nodes corresponding with the active θ values for the nodes con-
sidered in function h. For the Sisim (a), Channel (b) and the Ellipse (c) training
image. The green nodes are active for the k = 0 facies value, the blue for the
k = 1 facies value, and the red nodes are active for both facies values. The
colored nodes mean that the parameter that corresponds to whether the values
up to this node (with the directions shown in Figure 3) have the same facies
value. Here, direction 3 corresponds to the numbers 3 and 11, and direction 4
corresponds to the numbers 4 and 12. Similarly with the numbers 6 and 7.

26

or not. Most of the active parameters consider 3-node interactions. This is not
very surprising, as we would think that it is more important to know if three
nodes have the same values than if only two nodes have the same value.

We look at the parameters that are active for more than 70 percent of the
time, after what we call burn-in time. The burn-in time is the time it takes for
most of the values to stabilize, or at least have been through some propose and
accept/reject steps. The values that are active when we stop the iterations are
exactly the same as these values. All of the parameters that are active when we
stop the iterations are in fact active for more than 90 percent of the time. Many
of the parameters have never been inactive, which might be a concern, because
in a Reversible jump algorithm, we do want there to be small probability that a
value is made inactive even if the value it has is very probable. If this had been
the case with only one parameter, we would not be concerned, but it is unlikely
that this should happen with many of the parameters.

We do not only need the active parameters to converge, but also the values
of these parameters. A plot of the parameter values that are active after the
simulations for the Sisim training image are given in Figure 10. The plots for the
other runs are very similar. Many of the parameter values, especially in Figures
10 (b) and 10 (c) seem to never change. This illustrates the concerns mentioned
in the previous paragraph, the algorithm seems to have been stuck in these
values. The plots indicate that the parameter values might not have converged,
which might explain some of the imperfections of the resulting images.

8 Closing remarks

The implementation of the Reversible jump Markov chain Monte Carlo algo-
rithm is able to capture some of the structure from the training images. The
Reversible jump algorithm is able to choose only a few of the parameters to be
active. This results in a model with fewer parameters, which is good from a
statistical point of view. Even though we cannot be sure the parameter values
have converged, the results are satisfying to some degree. Compared with the
maximum likelihood model in Stien and Kolbjørnsen (2011), the results are ap-
proximately equally good, based on the structure that is captured on resulting
images.

An advantage of the Reversible jump MCMC algorithm is that we do not
need to do human work in order to use it on different training images, and
that we end up with a smaller number of parameters. The computation time of
the RJMCMC algorithm is rather large, and we need more computation time

27

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c)

Figure 10: The values of the active theta parameters divided into the values
connected with function f (a), function g (b) and function h (c) for clarity.

28

in order to simulate the parameters. The program that was created for this
project could be optimized, and thus reduce the computation time. However,
the computation time will always be larger than for a maximum likelihood
estimation.

An idea to future work on this subject is to optimize the code to run faster.
We could also have extended the model to 3 dimensions or increased the number
of facies values we want to consider, and thus get a more complicated model.
This would of course require new training images. We could also have tried to
find an algorithm with better convergence properties.

29

References

Abend, K., Harley, T. and Kanal, L. (1965). Classification of binary random
patterns, IEEE Transactions on Information Theory 11(4): 538–544.

Gamerman, D. and Lopes, H. (2006). Markov chain Monte Carlo: stochas-
tic simulation for Bayesian inference, Texts in statistical science, Taylor &
Francis.

Ross, S. M. (2006). Introduction to probability models, Ninth Edition, Academic
Press, Inc., Orlando, FL, USA.

Stien, M. and Kolbjørnsen, O. (2011). Facies modeling using a Markov mesh
model specification, Mathematical Geosciences 43(6): 611–624.

30

	Title Page
	masteroppgave.pdf

