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Problem description

The Hunter-Saxton equation, (ut+uux)x = 1
2u

2
x, has been widely studied since it

was introduced by Hunter and Saxton as a model of a liquid crystals [10]. Later,
a generalization known as the Hunter-Saxton system, or the two-component
Hunter-Saxton, has been studied in a periodic setting [15]. The problem is
to prove global existence of conservative and dissipative weak solutions of the
Hunter-Saxton system on R× [0,∞).
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Abstract

The Cauchy problem for a two-component Hunter-Saxton equation,

(ut + uux)x =
1

2
u2x +

1

2
ρ2,

ρt + (uρ)x) = 0,

on R × [0,∞) is studied. Conservative and dissipative weak solutions are de-
fined and shown to exist globally. This is done by explicitly solving systems
of ordinary differential equation in the Lagrangian coordinates, and using these
solutions to construct semigroups of conservative and dissipative solutions.
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Sammendrag

Cauchyproblemet for en tokomponents Hunter-Saxton-likning

(ut + uux)x =
1

2
u2x +

1

2
ρ2,

ρt + (uρ)x) = 0,

p̊a R× [0,∞) ble studert. Konservative og dissipative svake løsninger ble defin-
ert, og global eksistens av slike løsninger bevist. Dette ble gjort ved å eksplisitt
løse systemer av ordinære differensiallikninger i Lagrangekoordinater, og disse
løsningene ble brukt til å konstruere semigrupper av konservative og dissipative
løsninger
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Chapter 1

Introduction

The Hunter-Saxton equation

(
ut(x, t) + u(x, t)ux(x, t)

)
x

=
1

2
ux(x, t)2, (1.1)

where subscript means differentiation with respect to the subscripted variable,
was introduced by Hunter and Saxton [10] as a model of the dynamics of a
nematic liquid crystal. Liquid crystals consist of long molecules in fluid phase,
and each molecule has an orientation. The orientation is described by a unit
vector n. For a nematic liquid crystal it does not matter whether one use n
or −n. If we assume that the liquid crystal is one dimensional and that the
only freedom molecules have is orientation in the plane. Then the orientation
is given by n(x, t) =

(
cosu(x, t), sinu(x, t)

)
, where x is a space variable moving

with some predetermined velocity, t is a slow time, and u is determined by the
Hunter-Saxton equation [10]. The initial value problem

(ut + uux)x =
1

2
u2x,

u|t=0 = u0, (1.2)

has been widely studied after its introduction by Hunter and Saxton. Equation
(1.2) exhibits interesting properties such as wave breaking in finite time [10], it
is completely integrable, bi-variational, and it has a bi-Hamiltonian structure
[11]. The solution can be extended past wave breaking to a weak solution in
several ways [10]. One possibility is to conserve the energy,

∫
u2x dx, which gives

1
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conservative solutions, another is to lose all energy at wave breaking, henceforth
known as blow-up, and get dissipative solutions. A special class of solutions
are multipeakons related to the multipeakon solutions of the Camassa-Holm
equation [4]. For each t these solutions are continuous piecewise linear functions,
and they can be computed exactly [12, 13]. Existence of general dissipative
and conservative solutions was shown by approximation by multipeakons and
passing to the limit using the theory of Young measures and Friedrich’s mollifiers
[17, 18].

The Hunter-Saxton equation was generalized to a two-component equation
and studied by Wunsch [15] in a periodic setting. The two-component equation
in a periodic setting has received some attention lately [15, 16, 19]. In this work
we study the initial value problem

(ut + uux)x =
1

2
u2x +

1

2
ρ2,

ρt + (uρ)x = 0, (1.3)

u|t=0 = u0,

ρ|t=0 = ρ0.

The system (1.3) arises in the study of the dynamics of non-dissipative dark
matter [14].

We are going to define conservative and dissipative weak solutions of (1.3)
and show global existence of such solutions in R × [0,∞). This is achieved by
transforming the problem from a system of partial differential equations to a sys-
tem of ordinary differential equations in t. The ordinary differential equations
can be solved explicitly and the solution operators, St and Sdt in the conservative
and dissipative case, respectively, constitutes semigroups. Much of the work is
devoted to be able to return to the original setting in such a way that the op-
erators advancing the solutions, Tt and T dt , of the partial differential equations
in t, constitute semigroups. To do so we find that there is some redundancy
in the space of solutions of the ordinary differential equations in the sense that
several solutions is transformed to one solution of the partial differential equa-
tions. Then redundant solutions are identified. In the conservative case the
semigroup turn out to be continuous with respect to the natural metrics in the
transformed setting. We treat multipeakon solutions as examples to get some
intuition

More specifically, Chapter 2 deals with the conservative solutions. First
some properties of smooth solutions are investigated, and these leads to charac-
teristic equations. The characteristic equations are then solved, and it is shown
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that one can return to the original variables in a nice way, and that one get a
weak solution. The chapter ends with treating multipeakons as an example and
discussing the limit as ρ0 → 0.

Chapter 3 starts with an other type of multipeakons. They are weak solu-
tions, but lose energy and are thus named dissipative multipeakons. Dissipative
multipeakons satisfy a set of characteristic equations of some sort, and these
equations can be solved. It is then shown, as in Chapter 2, that one can go
from the original setting to characteristic equations, solve the characteristic
equations, and then return to the original setting with a weak solution.

The reader is assumed to be familiar with characteristic equations for partial
differential equations, Lebesgue spaces, weak derivatives, distributions, Sobolev
spaces and Radon measures. The reader is directed to Evans [5] for an intro-
duction to these concepts. There are several ways to integrate (1.3), but here
we will use the skew-symmetric

D−1 =
1

2

 x∫
−∞

−
∞∫
x

 . (1.4)

To reduce the length of equations and formulas we will omit one or several of
the variables as often as possible when writing functions. We use 1E to denote
the characteristic function on the set E.
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Chapter 2

Global conservative
solutions

2.1 Characteristic equations

To construct global solutions we derive characteristic equations from (1.3). First
we note that any smooth solution (u, ρ) must satisfy a transport equation.

Proposition 2.1. Let (u, ρ) be a smooth solution of (1.3). Then

(u2x + ρ2)t + (uu2x + uρ2)x = 0. (2.1)

Proof. Let (u, ρ) be classical smooth solutions of (1.3). Evaluating the deriva-
tives involved yield

(u2x + ρ2)t + (uu2x + uρ2)x = 2(uxuxt + ρρt) + u3x + 2uuxuxx + uxρ
2 + 2uρρx

= 2ux
(
(ut + uux)x −

1

2
(u2x + ρ2)

)
+ 2ρ(ρt + (uρ)x)

= 0,

where (1.3) is used in order to get the last equality.

Formally the system (1.3) can be written in complex variables as

ζt + uζx =
i

2
ζ2, (2.2)

5
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ζ = ρ+ iux,

ζ|t=0 = ρ0 + iu0x,

u|t=0 = u0,

and this will be used when we solve the characteristic equations. To derive
characteristic equations we define the Lagrangian coordinates.

Definition 2.2. Let (u, ρ) be a solution of (1.3), for each ξ ∈ R define the
functions q, z, v,H, η by

d

dt
q(ξ, t) = u(q(ξ, t), t),

z(ξ, t) = u(q(ξ, t), t),

v(ξ, t) = ux(q(ξ, t), t),

H(ξ, t) =

q(ξ,t)∫
−∞

(
ux(y, t)2 + ρ(y, t)2

)
dy,

η(ξ, t) = ρ(q(ξ, t), t).

We call it Lagrangian coordinates because we look at the solutions as they
are seen by a particle traveling the curve q.

Proposition 2.3. Assume that (u, ρ) is a smooth solution of (1.3) such that
u and ρ are compactly supported. Then the quantities defined in Definition 2.2
are determined by a system of ordinary differential equations

q̇ = z, (2.3a)

ż =
1

2
H − 1

4
Htot, (2.3b)

Ḣ = 0, (2.3c)

η̇ = −vη, (2.3d)

v̇ =
1

2
(η2 − v2), (2.3e)

where Htot =
∞∫
−∞

(
ux(y, t)2 + ρ(y, t)2

)
dy.

Proof. Use (1.3), ut(−∞) = −ut(∞), and (1.4).
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Remark 2.4. One could use some other condition on the growth at plus and
minus infinity. For example (1 − α)ut(−∞) = −αut(∞) leads to ż = 1

2 (H −
αHtot) for 0 ≤ α ≤ 1. Several choices of α are used in the litterature, in [12, 18]
the choice α = 0 was used and in [2, 3, 13] there was α = 1

2 . The selection of
α corresponds to selection of antiderivative of u2x + ρ2 when integrating (1.3)

D−1f(x) =
1

2

(1− α)

x∫
−∞

f(y) dy − α
∞∫
x

f(y) dy

 .

We consider α = 1
2 only.

The system in Proposition 2.3 can be solved explicitly.

Proposition 2.5. The solution of the system of differential equations (2.3) is

q(ξ, t) =
1

4

(
H(ξ, 0)− 1

2
Htot

)
t2 + z0(ξ)t+ q0(ξ), (2.4a)

z(ξ, t) =
1

2

(
H0(ξ)− 1

2
Htot

)
t+ z0(ξ), (2.4b)

H(ξ, t) =

ξ∫
−∞

(z0ξ(y)2

q0ξ(y)
+ η0(y)2q0ξ(y)

)
dy, (2.4c)

η(ξ, t) =
η0(ξ)(

1 + 1
2v0(ξ)t

)2
+
(
1
2η0(ξ)t

)2 , (2.4d)

v(ξ, t) =
v0(ξ) + 1

2

(
η0(ξ)2 + v0(ξ)2

)
t(

1 + 1
2v0(ξ)t

)2
+
(
1
2η0(ξ)t

)2 . (2.4e)

Proof. The three first quantities H, z and q follow directly by integrating the
equations. To derive the expressions for η and v let ζ = η+ iv ∈ C and observe
that the characteristic equations for η and v reduces to ζ̇ = i

2ζ
2, which is sepa-

rable. The transformation to complex numbers is similar to the transformation
of (1.3) to (2.2).

2.2 Continuous semigroup

We will now construct a continuous semigroup of solutions. First we note that
there is some redundancy in the characteristic equations, i.e. the chain rule
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implies that the solution must satisfy vqξ = zξ. As a consequence we will
henceforth say that (q, z,H, η) is a solution of the characteristic equations if
(q, z,H, η,

zξ
qξ

) is. We have found the quantity r = ηqξ more useful than η,

mainly because of the property
ṙ = 0, (2.5)

which follows directly from the explicit solutions in Proposition 2.5. We will
define the correct space for the solution in Lagrangian coordinates. To do so we
will need the Banach spaces in the next definition.

Definition 2.6. Let E1, E2 be the Banach spaces defined by

E1 = {f ∈ L∞(R) | f ′ ∈ L2(R) such that lim
x→−∞

f(x) = 0},

E2 = {f ∈ L∞(R) | f ′ ∈ L2(R)}

equipped with the norm ‖f‖ = ‖f‖L∞(R) + ‖f ′‖L2(R). Define B = E2 × E2 ×
E1 × L2(R). The notation Lp(R) where 1 ≤ p ≤ ∞ is used for the Lebesgue
spaces on R.

The Banach space B is far too big. We need to restrict it so that it contains
the solutions, but not more.

Definition 2.7. Let F consist of the elements (ζ, z,H, r) ∈ B such that

(i) ζ, z,H ∈W 1,∞(R), ζ + id = q,

(ii) qξ ≥ 0, Hξ ≥ 0, qξ +Hξ ≥ c > 0 almost everywhere (a.e.),

(iii) qξHξ = z2ξ + r2 a.e.

We will frequently write (q, z,H, r) ∈ F for (ζ, z,H, r) ∈ F . Let

F0 = {(q, z,H, r) ∈ F | q +H = id}.

Here id is the identity function and the Sobolev space

W 1,∞(R) = {f ∈ L∞(R) | f ′ ∈ L∞(R)} ,

with the norm ‖f‖W 1,∞(R) = ‖f‖L∞(R) + ‖f ′‖L∞(R).

Note that condition (iii) and (i) implies that we have r ∈ L∞(R) for free.
The space F is a metric space with the metric inherited from B. The next
theorem is the foundation for the rest of the thesis. It is remarkable that a
seemingly difficult system of partial differential equations as (1.3) can be reduced
to a relatively simple system of ordinary differential equations (2.3).
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Theorem 2.8. The solution of the system (2.3) in Proposition 2.3 constitutes
a semigroup St in F which is countinuous with respect to the B-norm. Thus
X(t) =

(
q(t), z(t), H(t), r(t)

)
= St(X0) denotes the solution at time t with initial

data X0.

Proof. First we see that we do not need to require ṙ = 0 in addition to (i)−(iii)
in Definition 2.7, it follows from differentiating (iii) with respect to t. This
implies that r(ξ, t) = r(ξ, 0) ∈ L2(R). Furthermore the explicit solutions in
Proposition 2.5 are in B for each t. We need to check the semigroup property
StSs = St+s and that the map St : F → F is continuous with respect to the
B-norm. First the semigroup property

StSs(r0) =r0 = St+s(r0), (2.6)

StSs(H0) =H0 = St+s(H0), (2.7)

StSs(z0) =
1

2
(H0 −

1

2
Htot)t+ z(s)

=
1

2
(H0 −

1

2
Htot)t+

1

2
(H0 −

1

2
Htot)s+ z0

=St+s(z0), (2.8)

StSs(q0) =
1

4
(H0 −

1

2
Htot)t

2 + z(s)t+ q(s)

=
1

4
(H0 −

1

2
Htot)t

2 +
1

2
(H0 −

1

2
Htot)st+ z0t

+
1

4
(H0 −

1

2
Htot)s

2 + z0 + q0

=St+s(q0). (2.9)

Next fix t ∈ [0,∞). Then

‖r(t)‖L2(R) = ‖r(0)‖L2(R),

‖H(t)‖L∞(R) = ‖H(0)‖L∞(R),

‖Hξ(t)‖L2(R) = ‖Hξ(0)‖L2(R),

‖z(t)‖L∞(R) ≤
1

4
t‖H(0)‖L∞(R) + ‖z(0)‖L∞(R),

‖zξ(t)‖L2(R) ≤
1

2
t‖Hξ(0)‖L2(R) + ‖zξ(0)‖L2(R),

‖q(t)− id‖L∞(R) ≤
1

8
t2‖H(0)‖L∞(R) + t‖z(0)‖L∞(R),
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‖qξ(t)− 1‖L2(R) ≤
1

4
t2‖Hξ(0)‖L2(R) + t‖zξ(0)‖L2(R).

Summing we get that ‖St(X)‖B ≤ (t2+t+1)‖X‖B . A similar calculation yields
that ‖St(X)−St(Y )‖B ≤ ( 1

2 t
2+t+1)‖X−Y ‖B and we have Lipschitz stability.

Furthermore, St(X) is in the space
(
W 1,∞(R)

)3×L∞(R) as q(t), z(t), H(t), r(t)
are linear combinations of q, z,H, r for each t. By differentiating (2.3) with
respect to ξ we have

d

dt
(qξHξ − z2ξ − r2) = 0. (2.10)

Hence the relation qξHξ = z2ξ + r2 holds. We need to show that qξ + Hξ ≥
c(t) > 0. This is proved in the same way as in [3, Theorem 2.3]. The initial
data (q, z,H, r)|t=0 ∈ F implies that (qξ +Hξ)|t=0 ≥ c. Continuity in t implies
that it holds, perhaps with another c > 0, in a vicinity of t = 0. Let [0, T ) be the
largest interval for which it holds. Then for t ∈ [0, T ) we have qξ ≥ 0, Hξ ≥ 0
and

|zξ| ≤
1

2
(qξ +Hξ). (2.11)

Taking the t-derivative of 1
qξ+Hξ

gives

d

dt

( 1

qξ +Hξ

)
= − zξ

(qξ +Hξ)2
≤ 1

2(qξ +Hξ)
.

The Gronwall lemma gives that

1

qξ +Hξ
(ξ, t) ≤ 1

qξ +Hξ
(ξ, 0)e

t
2 ,

and qξ +Hξ ≥ c(t) > 0 for t ∈ [0,∞) and (q, z,H, r) ∈ F for all t.

Having solved the problem in Lagrangian coordinates, we want to return to
the original variables. This requires q to be invertible.

Theorem 2.9. Let X0 ∈ F and
(
q(t), z(t), H(t), r(t)

)
= St(X0). Then the

function q is invertible for almost every t and satisfies qξ(ξ, t) > 0 for almost
every ξ ∈ R.

Proof. The proof is from [9, Lemma 2.7]. Define the set

N = {(ξ, t) ∈ R× [0, T ]|qξ(ξ, t) = 0}. (2.12)
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Fubini’s theorem gives

m(N ) =

∫
R

m(N[ξ]) dξ =

∫
[0,T ]

m(N [t]) dt, (2.13)

where N[ξ] and N [t] are the ξ-section and t-section respectively and m the
Lebesgue measure. For each n ∈ N let

Nn
[ξ] = {t ∈ [0, T ]|qξ(ξ, t) = 0 and qξ(ξ, τ) > 0 for all τ ∈ [t− 1

n
, t+

1

n
]− {t}}.

For t ∈ N[ξ] we have that qξ(ξ, t) = 0, qξt = zξ = 0 by the identity qξHξ = z2ξ+r2

and qξtt = zξt = 1
2Hξ > 0 by the definition of F , namely qξ + Hξ > 0. This

implies that, for a small neighborhood of t with t removed, qξ is strictly positive.

Hence t ∈ Nn
[ξ] for some n andN[ξ] =

∞⋃
n=1
Nn

[ξ]. The setsNn
[ξ] consist by definition

of countable isolated points as the distance between two points is at least 1
n .

Then m(N[ξ]) ≤
∞∑
n=1

m(Nn
[ξ]) = 0. From (2.13) it follows that m(N [t]) = 0 for

almost every t ∈ [0, T ]. Which again implies that q is strictly increasing and
invertible for almost every t > 0.

We want to study solutions that conserve ”energy”, that is,
∫

(u2x + ρ2) dx
should be constant in t. We need to include a measure µ where information on
energy density is stored across blow-up. This motivates the following definition.

Definition 2.10. Let D be the set of triples (u, ρ, µ) such that

(i) u ∈ E2, ρ ∈ L2(R), µ is a positive finite Radon measure,

(ii) the function µ(−∞, x) ∈ E1,

(iii) µac = (u2x + ρ2)dx, where µac is the absolutely continuous part of µ.

We want to be able to construct a solution of the characteristic equations
from initial values in D. First some concepts we will need in order to define
maps between F and D. To construct a Radon measure from the Lagrangian
coordinates we need to define the push-forward of measures by measurable func-
tions.

Definition 2.11. A continuous function f is said to be proper if f−1(K) is
compact whenever K is compact. Let g be a measurable function and ν a mea-
sure. Then we define the push-forward of ν by g by, g#(ν)(A) = ν

(
g−1(A)

)
.



12 CHAPTER 2. GLOBAL CONSERVATIVE SOLUTIONS

Remark 2.12. If f is continuous and proper and µ is a Radon measure, then
f#(µ) is a Radon measure. See [1, Remark 1.71].

First we define a function mapping the initial values to Lagrangian coordi-
nates.

Definition 2.13. For any (u, ρ, µ) ∈ D let

q(ξ) = sup{x|µ((−∞, x)) + x < ξ}, (2.14a)

H(ξ) = ξ − q(ξ), (2.14b)

z(ξ) = u ◦ q(ξ), (2.14c)

r(ξ) = (ρ ◦ q(ξ))qξ(ξ). (2.14d)

Then X = (q, z,H, r) ∈ F0 and we denote L : D → F the mapping defined
above.

The defintion gives a solution of the system in Proposition 2.3 for each
L(u0, ρ0, µ0) ∈ F . We need a way to go back to the original variables from a
solution of the characteristic equations.

Definition 2.14. We define a mapping M : F → D as follows. Given X =
(q, z,H, r) ∈ F let M(X) = (u, ρ, µ) where

u(x) = z(ξ), (2.15a)

ρ(x) =

{
1

qξ(ξ)
r(ξ), qξ(ξ) 6= 0

0, qξ(ξ) = 0,
(2.15b)

µ = q#(Hξdξ), (2.15c)

where x = q(ξ).

It is not at all clear that the two foregoing definitions are consistent.

Proposition 2.15. The mappings L and M are well defined.

Proof. The proof is presented in [9, Theorem 3.8 and 3.11]. The parts on ρ
and r is similar to the proof of a similar proposition in [8, Theorem 4.9 and
4.10]. The proof differs from the proofs in the references where we prove that
qξHξ = z2ξ + r2 holds.
Step 1, M : Let X = (q, z,H, r) ∈ F and (u, ρ, µ) = M(X). We need to
show that (u, ρ, µ) is well defined and in D. From q − id ∈ W 1,∞(R) and
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qξ ≥ 0 we have that q is surjective and increasing. Thus for any x there exists
ξ such that x = q(ξ). As q is increasing we have that, if there are ξ1, ξ2 such
that x = q(ξ1) = q(ξ2), then qξ(ξ) = 0 for all ξ ∈ [ξ1, ξ2]. This gives that
zξ = 0 in the same interval and u is well defined. To show that u ∈ E2

note that z ∈ E2 and that q − id ∈ W 1,∞(R), c ≥ qξ ≥ 0 for some c. Then
‖u‖L∞(R) = ‖z‖L∞(R) and ‖ux‖2L2(R) =

∫
{ξ∈R|qξ(ξ)>0}

z2ξq
2
ξ dξ ≤ c2‖z‖E2

. For r

we have that qξ(ξ) = 0 implies that r(ξ) = 0. The definition of F states that

qξHξ ≥ r2, hence ρ(x) = r
qξ
≤
√

Hξ
qξ

. We then have that∫
R

ρ(x)2 dx =

∫
{ξ∈R|qξ(ξ)>0}

ρ(q(ξ))2qξ(ξ) dξ ≤
∫
R

Hξ dξ <∞,

and ρ ∈ L2(R). As Hξ dξ is a Radon measure and q is continuous and proper µ
is a Radon measure, and µ(R) =

∫
q−1(R)

Hξ(ξ) dξ = H(∞) <∞.

Step 2, L: To prove well definedness of L, let (u, ρ, µ) ∈ D and define X =
(q, z,H, r) = L(u, ρ, µ). First we note that q is increasing as the supremum is
taken over larger and larger sets. Furthermore lim

ξ→±∞
q(ξ) = ±∞ and for any

z > q(ξ) we have ξ ≤ z + µ(−∞, z). The measure is finite, µac = (u2x + ρ2) dx
and ux, ρ ∈ L2 and ξ − z ≤ µ(R). We choose z close to q(ξ) and get that

ξ − q(ξ) ≤ µ(R). (2.16)

From the fact that µ(−∞, y) ≥ 0 we deduce that ξ ≥ q(ξ). Thus id − q ∈
L∞(R). A function f is Lipschitz continuous if sup

y 6=x

|f(x)−f(y)|
|x−y| = C < ∞, the

value C is called the Lipschitz constant of f . We prove that q is Lipschitz
continuous with Lipschitz constant less than or equal to one. Let ξ < ξ′, x′i
be an increasing sequence converging to q(ξ′) and xi a decreasing sequence
converging to q(ξ). Then µ

(
(−∞, xi)

)
+ xi ≥ ξ and µ

(
(−∞, x′i)

)
+ x′i < ξ′.

Subtracting the inequalities gives

µ
(
(−∞, x′i)

)
+ x′i − µ

(
(−∞, xi)

)
− xi < ξ′ − ξ. (2.17)

For i large enough x′i > xi and q(ξ′) − q(ξ) < ξ′ − ξ follows by letting i go to
infinity. By Rademacher’s theorem, see for example [5], q is differentiable al-
most everywhere. We decompose µ into its absolutely continuous part, singular
continuous part and singular part denoted µac, µsc and µs, respectively, see for
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example [6]. Since (u, ρ, µ) ∈ D we have µac = (u2x + ρ2) dx. The support of µs
is countable and F (x) = µ

(
(−∞, x)

)
is lower semi-continuous with its points of

discontinuity being the support of µs, see [6]. Let A =
(
q−1(supp(µs)

)c
, i.e. A

consists of the points where F ◦ q is continuous, then

µ
(
(−∞, q(ξ))

)
+ q(ξ) = ξ. (2.18)

Indeed from the definition of q(ξ) there exists an increasing sequence xi which
converges to q(ξ) such that F (xi)+xi < ξ. Since F is lower semi-continuous we
can put the limit inside lim

i→∞
F (xi) = F

(
q(ξ)

)
and thus F (q(ξ)) + q(ξ) ≤ ξ. We

assume that there is a ξ such that F (q(ξ))+q(ξ) < ξ and aim for a contradiction.
From the definition of A we get that q(ξ) is a point of continuity for F , thus
there exists x > q(ξ) such that F (x) + x < ξ, but this is a contradiction to the
definition of q in Definition 2.13 and proves (2.18). We want to show that the
equation qξHξ = z2ξ +r2 holds almost everywhere. First we note that A is of full

measure. And for ξ in A equation (2.18) holds and H(ξ) = ξ−
(
ξ−F ◦ q(ξ)

)
=

F ◦q(ξ). We then decompose µ = µac+ν where ν is singular with respect to the
Lebesgue measure. Then the derivative of F exists and d

dxF (x) = u2x(x)+ρ2(x)
almost everywhere [6, Theorem 3.22]. As q is differentiable almost everywhere
we have by (2.18),

d

dξ
(F ◦ q(ξ) + q(ξ)) = qξ(ξ)

(
u2x ◦ q(ξ) + ρ2 ◦ q(ξ)

)
+ qξ(ξ) = 1. (2.19)

Using (2.19) and the definition of H = id− q, z and r we get that

qξHξ =
1

u2x ◦ q + ρ2 ◦ q + 1

u2x ◦ q + ρ2 ◦ q
u2x ◦ q + ρ2 ◦ q + 1

= (u2x ◦ q + ρ2 ◦ q)q2ξ = z2ξ + r2,

holds almost everywhere. We have to prove that X ∈ B and lim
ξ→−∞

H(ξ) = 0.

We have already shown that H(ξ) = F (q(ξ)) almost everywhere. That H ∈
W 1,∞(R) follows from ‖Hξ‖L∞(R) = ‖1 − qξ‖L∞(R) ≤ 1 + ‖qξ‖L∞(R). We can
find a sequence ξi ∈ A such that lim

i→∞
ξi = −∞, and we have that lim

i→∞
H(ξi) = 0.

Since H is monotone this implies that lim
ξ→−∞

H(ξ) = 0. From (2.16) we conclude

that ‖H‖L∞(R) ≤ µ(R) and as Hξ ≥ 0,

‖Hξ‖2L2(R) ≤ ‖Hξ‖L∞(R)‖Hξ‖L1(R) ≤ ‖H‖2L∞(R) ≤ µ(R)2,

and H ∈ E1. We have ζ = q − id = −H ∈ E2. From Definition 2.7, (iii), we
have

‖zξ‖2L2(R) ≤ ‖qξHξ‖L1(R) ≤ ‖H‖L∞(R),
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‖r‖2L2(R) ≤ ‖qξHξ‖L1(R) ≤ ‖H‖L∞(R),

and we are done.

We have now transformed the problem, solved it and transformed back. This
is best illustrated with an example.

Example 2.16. Let u0 = 0, ρ0 = 1(−1,1), and µ0 = ρ20 dx + δ0, and let
(q0, z0, H0, r0) = M(u0, ρ0, µ0) and (q, z,H, r) = St(q0, z0, H0, r0). Then

r(ξ, t) =



0, ξ < −1,
1
2 , −1 < ξ < 1,

0, 1 < ξ < 2,
1
2 , 2 < ξ < 4,

0, 4 < ξ,

H(ξ, t) =



0, ξ < −1,
ξ+1
2 , −1 < ξ < 1,

ξ, 1 < ξ < 2,
ξ
2 + 1, 2 < ξ < 4,

3, 4 < ξ,

z(ξ, t) =



− 3
4 t, ξ < −1,

ξ−2
4 t, −1 < ξ < 1,

1
2

(
ξ − 3

2

)
t, 1 < ξ < 2,

ξ−1
4 t, 2 < ξ < 4,

3
4 t, 4 < ξ,

q(ξ, t) =



− 3
8 t

2 + ξ, ξ < −1,
ξ−2
8 t2 + ξ−1

2 , −1 < ξ < 1,
1
4

(
ξ − 3

2

)
t2, 1 < ξ < 2,

ξ−1
8 t2 + ξ

2 − 1, 2 < ξ < 4,
3
8 t

2 + ξ − 3, 4 < ξ.

First we remark that q is invertible for all t > 0. We apply L to (q, z,H, r)
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when t > 0 and obtain

u(x, t) =



− 3
4 t, x < − 3

8 t
2 − 1,

2x−1
t2+4 t, − 3

8 t
2 − 1 < x < − 1

8 t
2,

2x
t , − 1

8 t
2 < x < 1

8 t
2,

2x+1
t2+4 t,

1
8 t

2 < x < 3
8 t

2 + 1,
3
4 t,

3
8 t

2 + 1 < x,

ρ(x, t) =



0, x < − 3
8 t

2 − 1,
1

1
4 t

2+1
, − 3

8 t
2 − 1 < x < − 1

8 t
2,

0, − 1
8 t

2 < x < 1
8 t

2,
1

1
4 t

2+1
, 1

8 t
2 < x < 3

8 t
2 + 1,

0, 3
8 t

2 + 1 < x,

µ = (ρ2 + u2x) dx.

But we want more. We want to the solution operator to be a semigroup,
and we would prefer it to be a continuous map for each t. We note that the
mapping M is invariant under a certain group action on F .

Definition 2.17. Let G be the group of homeomorphisms f : R→ R such that
both f−id ∈W 1,∞(R), f−1−id ∈W 1,∞(R), and fξ−1 ∈ L2(R). Define a group
action A : F ×G→ F by (X, f) 7→ (q ◦ f, z ◦ f,H ◦ f, (r ◦ f) · f ′). We will also
need the closed subsets Gα = {f ∈ G|‖f− id‖W 1,∞(R) +‖f−1− id‖W 1,∞(R) ≤ α}.

We prove that the group action is well defined.

Proposition 2.18. The group action A : F × G → F , defined in Definition
2.17, is well defined.

Proof. Let f ∈ G and X ∈ F . We show that A(X, f) = (q̄, z̄, H̄, r̄) ∈ F . First
A(X, f) ∈ B. Then

q̄− id| = |q ◦ f − q+ q− id| ≤ ‖qξ‖L∞(R)‖f − id‖L∞(R) + ‖q− id‖L∞(R), (2.20)

and z and H satisfies |z̄| ≤ ‖z‖L∞(R), and |H̄| ≤ ‖H‖L∞(R). Furthermore, by
substitution, ∫

R

|r̄|2 dξ ≤ ‖fξ‖L∞(R)‖r‖2L2(R), (2.21)
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and by the same argument (H̄)ξ and (z̄)ξ is square integrable. The square
integrability of (q̄)ξ − 1 is proved by∫

R

|(q̄)ξ − 1|2 dξ

 1
2

≤ ‖fξ‖
1
2

L∞(R)‖qξ − 1‖L2(R) + ‖fξ − 1‖L2(R). (2.22)

As fξ is bounded we get that (H̄)ξ and (z̄)ξ is bounded. Boundedness of q̄ξ
follows from

|q̄ξ| = |(q ◦ f − f − id)ξ| ≤ ‖qξ‖L∞(R)‖fξ‖L∞(R) + ‖fξ − 1‖L∞(R). (2.23)

The condition f−1− id ∈W 1,∞(R) ensures that 0 < m ≤ fξ ≤M <∞ for some
m and M . Thus (q̄)ξ and (H̄)ξ are non-negative and (q̄)ξ + (H̄)ξ ≥ cm > 0
where c is from condition (ii) in Definition 2.7. Condition (iii) in Definition 2.7
holds by the chain rule.

The group action induces an equivalence relation on F , defined by X ∼ Y
if there exists f ∈ G such that A(X, f) = Y . We use this equivalence relation
to define the quotient F/G.

Proposition 2.19. If X ∼ Y , then M(X) = M(Y ).

Proof. Let X ∼ Y , A(X, f) = Y and M(X) = (u, ρ, µ). Then M(Y ) = (ũ, ρ̃, µ̃)
will be given by

ũ = z ◦ f ◦ f−1 ◦ q−1 = u,

ρ̃ =
( 1

(qξ ◦ f)f ′
(r ◦ f)f ′

)
◦ f−1 ◦ q−1 = ρ,

µ̃(A) = (q ◦ f)#
(
(H ◦ f)ξ dξ

)
(A) =

∫
f−1◦q−1(A)

(Hξ ◦ f)(ξ)f ′(ξ) dξ

=

∫
q−1(A)

Hξ dξ = µ(A),

for each measurable A ⊆ R.

Note that q + H ∈ G as C > (q + H)ξ ≥ c > 0, so we could try to
calculate Y = A(X, (q + H)−1) for X ∈ F . We have that Y ∈ F , furthermore
qY +HY = q ◦ (q+H)−1 +H ◦ (q+H)−1 = id. Thus Y ∈ F0 and we make the
following definition.
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Definition 2.20. Let Π : F → F0 be given by Π(X) = A(X, (q +H)−1).

From the above we can conclude that for each X ∈ F there exists Y ∈ F0

such that X ∼ Y . The Y is in fact unique.

Proposition 2.21. The function X0 7→ [X0] ∈ F/G is a bijection from F0 to
F/G. Furthermore for X,Y ∈ F we have that X ∼ Y if and only if Π(X) =
Π(Y ).

Proof. We have already shown that the function X0 7→ [X0] ∈ F/G is onto.
Let X,Y ∈ F0 be equivalent. Then qY = qX ◦ f and HY = HX ◦ f and thus
id = qY +HY = (qX +HX) ◦ f = id ◦ f = f and X = Y . Thus the function is
a bijection. Let X,Y ∈ F such that X ∼ Y . Then Y = A(X, f) and Π(Y ) =
A(A(X, f), f−1 ◦ (q +H)−1) = A(X, (q +H)−1) = Π(X) as (f−1)′ = 1

f ′ .

The functions M and L are bijections and inverses of each other, thus D and
F0 are in bijection. The idea is to try to project the solution down to F0 after
St has been used, and use M and L to get a semigroup in D.

Proposition 2.22. The functions L and M defined in Definition 2.13 and 2.14
respectivly, satisfy

M ◦ L = idD,

L ◦M = idF0
. (2.24)

Proof. Let v = (u, ρ, µ) ∈ D, then L(v) is given by

q(ξ) = sup{x|µ
(
(−∞, x)

)
+ x < ξ},

z(ξ) = u ◦ q(ξ),
H(ξ) = ξ − q(ξ),
r(ξ) =

(
ρ ◦ q(ξ)

)
qξ(ξ)

Well definedness of L gives that qξHξ = z2ξ + r2 almost everywhere, hence r = 0

when qξ = 0. As q is increasing we can abuse notation and write q−1 when we
apply M to L(v). Then M(L(v)) is

ũ = u ◦ q ◦ q−1 = u,

ρ̃ =
1

qξ
qξ(ρ ◦ q ◦ q−1) = ρ,
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µ̃(A) = q#(Hξ dξ)(A) =

∫
q−1(A)

Hξ(ξ) dξ =

∫
q−1(A)

(
ξ − q(ξ)

)
ξ

dξ

= µ(A)

for each measurable A ⊆ R. Thus the first equality is proved. To prove the
other let X = (q, z,H, r) ∈ F0. Note that for X ∈ F0 qξ = 0 implies that both
zξ and r equals 0. Thus, we can still abuse notation as before and M(X) is
given by

u = z ◦ q−1,

ρ =
1

qξ
r ◦ q−1,

µ = q#(Hξ dξ),

and L(M(X)) = (q̃, z̃, H̃, r̃) by

q̃(ξ) = sup{x|q#(Hξ dξ)
(
(−∞, x)

)
+ x < ξ}

= sup{x|
q−1(x)∫
−∞

Hξ(ξ) dξ + x < ξ}

= sup{x|
q−1(x)∫
−∞

(
ξ − q(ξ)

)
ξ

dξ + x < ξ}

= q(ξ),

z̃ = u ◦ q = z ◦ q ◦ q̃−1 = z ◦ q ◦ q−1 = z,

H̃ = id− q̃ = id− q = H,

r̃ =
(
(

1

qξ
r ◦ q−1) ◦ q̃

)
q̃ξ = r.

And the result is proved.

We then arrive at the following propositions which states that we can define
a semigroup of solutions on F/G, and that this semigroup has a nice represen-
tation in F0.

Proposition 2.23. For any X ∈ F and f ∈ G the mapping St satisfies

St(A(X, f)) = A(St(X), f). (2.25)
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This implies that
Π ◦ St ◦Π = Π ◦ St. (2.26)

Hence we can define a semigroup of solutions on F/G. It corresponds to the
mapping S̃t from F0 to F0 given by

S̃t = Π ◦ St, (2.27)

which defines a semigroup on F0.

Proof. Let X0 = (q0, z0, H0, r0) ∈ F and f ∈ G, then A(X, f) =
(
q0 ◦ f, z0 ◦

f,H0 ◦ f, (r0 ◦ f)f ′
)
. By Proposition 2.5 we have

St
(
A(X0, f

)
) =St

(
q0 ◦ f, z0 ◦ f,H0 ◦ f, (r0 ◦ f)f ′

)
=
(1

4
(H0 ◦ f −

1

2
Htot)t

2 + tz0 ◦ f + q0 ◦ f,

1

2
(H0 ◦ f −

1

2
Htott+ z0 ◦ f,H0 ◦ f, (r0 ◦ f)f ′

)
=A(St(X0), f).

The only part missing from our plan is the continuity. The problem is that
Π is not continuous. This is handled by showing that if the initial data is in F0,
then the solution at each t is not arbitrary in F . We are then able to shrink the
domain of Π somewhat, and this makes Π continuous.

Definition 2.24. Given α ≥ 0 let Fα be the sets

Fα = {X ∈ F | q +H ∈ Gα}, (2.28)

where Gα is defined as in Definition 2.17.

The idea of the previous definition is that we can write F as a union of sets
that are easier to control.

Proposition 2.25. The equality

F =
⋃
α≥0

Fα (2.29)

holds.
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Proof. As qξ+Hξ > 0, Hξ ∈ L∞(R) and qξ−1 ∈ L∞(R) we have that q+H ∈ G.
And every g ∈ G is in Gα for some α ≥ 0 by the definition of G.

We will need three lemmas whose proofs are taken from [9, Lemma 3.2, 3.3,
3.5].

Lemma 2.26. Let α ≥ 0. If f ∈ Gα, then 1
1+α ≤ fξ ≤ 1+α almost everywhere.

Conversely, if f is absolutely continuous, f − id ∈ L∞(R) and there exists c > 1
such that 1

c ≤ fξ ≤ c almost everywhere, then f ∈ Gα for some α depending
only on c and ‖f − id‖L∞(R).

Proof. The proof is taken from [9, Lemma 3.2]. Given f ∈ Gα we have that f is
Lipschitz continuous and hence differentiable almost everywhere, and we have
the basic formula f−1ξ

(
f(ξ)

)
= 1

fξ(ξ)
. This implies that fξ(ξ) ≥ 1

‖(f−1)ξ‖L∞(R)
≥

1
1+α where the last inequality follows from the triangle inequality and definition
of Gα. Note that fξ ≥ 0 as it is a homeomorphism and close to the identity map.
This holds almost everywhere as f−1 is one-to-one and Lipschitz continuous.
The other inequality, fξ ≤ 1 + ‖fξ − 1‖L∞(R) ≤ 1 + α, is proved by the triangle
inequality and the definition of Gα. Assume now that f is absolutely continuous,
f − id ∈ L∞(R) and 1

c ≤ fξ ≤ c almost everywhere for some c ≥ 1. Since fξ
is bounded, f and f − id are Lipschitz and f − id ∈ W 1,∞(R). Moreover
fξ ≥ 1

c > 0, so f is strictly increasing and continuous ad thus invertible and we
have

f−1(ξ2)− f−1(ξ1) =

ξ2∫
ξ1

(f−1)ξ(ξ) dξ

=

f−1(ξ2)∫
f−1(ξ1)

(f−1)x(f(x)) df(x)

=

f−1(ξ2)∫
f−1(ξ1)

fx(x)

fx(x)
dx

≤
f−1(ξ2)∫
f−1(ξ1)

cfx(x) dx

= c(ξ2 − ξ1). (2.30)
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Hence f−1 is Lipschitz and (f−1)ξ ≤ c. We have f−1(ξ′) − ξ′ = ξ − f(ξ) for
ξ′ = f(ξ) and ‖f − id‖L∞(R) = ‖f−1 − id‖L∞(R) which implies that f ∈ Gα for
some α ≥ 0.

The next lemma shows that St plays nicely with q + H, that is, the norms
‖q +H − id‖L∞(R) and ‖(q +H)−1 − id‖L∞(R), do not grow uncontrollably as t
progresses.

Lemma 2.27. Given α, T ≥ 0 and X ∈ Fα we have St(X) ∈ Fβ for all
t ∈ [0, T ] where β depends on T, α and ‖X‖B.

Proof. The proof is taken from [9, Lemma 3.3]. Let X = (q, z,H, r) ∈ Fα and
X(t) =

(
q(t), z(t), H(t), r(t)

)
= St(X). By definition we have that q(ξ, 0) +

H(ξ, 0) ∈ Gα and thus by Lemma 2.26, 1
c ≤ qξ(ξ, 0) + Hξ(ξ, 0) ≤ c almost

everywhere for some c which depends on α only. Consider a fixed ξ and ap-
ply the Gronwall lemma backward in time to the three first equations of (2.3)
differentiated with respect to ξ to obtain

|qξ(0)|+ |zξ(0)|+ |Hξ(0)| ≤ eCT
(
|qξ(t)|+ |zξ(t)|+ |Hξ(t)|

)
, (2.31)

for some constant C which depends on ‖X(t)‖C([0,T ],B), which in turn depends
on ‖X‖B and T only. From Definition 2.7 qξ(t), Hξ(t) ≥ 0. We use (2.11) to
reduce (2.31) to

1

c
≤ qξ(0) +Hξ(0) ≤ 3

2
eCT

(
qξ(t) +Hξ(t)

)
,

and qξ(t)+Hξ(t) ≥ 2
3ce
−CT . By applying Gronwall’s lemma forward in time we

obtain qξ(t) +Hξ(t) ≤ 3c
2 e

CT . Hence by Lemma 2.26 we have that q +H ∈ Gβ
where β only depends on T, α and ‖X‖B and thus St(X) ∈ Fβ .

We arrive at the lemma on continuity of Π.

Lemma 2.28. The restriction of Π to Fα is continuous.

Proof. The proof without the r part is taken from [9, Lemma 3.5]. We have
made a slight change as zn, z ∈ H1(R) in [9], while here z, zn ∈ E2. Let Xn =
(qn, zn, Hn, rn) ∈ Fα converge to X = (q, z,H, r) ∈ Fα in the topology induced
by ‖−‖B . We denote X̄ = (q̄, z̄, H̄, r̄) = Π(X) and similarly X̄n = Π(Xn). First
we prove that H̄n tends to H̄ in L∞(R). Let fn = qn+Hn, f = q+H and we have
by construction f, fn ∈ Gα. Thus H̄n−H̄ = (Hn−H)◦f−1n +H ◦f−1n −H ◦f−1
and we have

‖H̄n − H̄‖L∞(R) ≤ ‖H −Hn‖L∞(R) + ‖H̄ ◦ f − H̄ ◦ fn‖L∞(R). (2.32)
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From the definition of F0 we have that H̄ is Lipschitz with Lipschitz constant
less than or equal to one. The definition of the B-norm gives that fn and Hn

converges to f and H respectively in L∞(R). By (2.32) we get that H̄n → H̄
in L∞(R). Let us now prove that (H̄n)ξ converges to (H̄)ξ in L2(R). We have

by the chain rule (H̄n)ξ − H̄ξ =
(Hn)ξ
(fn)ξ

◦ f−1n −
Hξ
fξ
◦ f−1 which can be written as

(H̄n)ξ − H̄ξ =
(Hn)ξ −Hξ

(fn)ξ
◦ f−1n +

Hξ

(fn)ξ
◦ f−1n − Hξ

fξ
◦ f−1. (2.33)

Since fn ∈ Gα, there exists by Lemma 2.26 a constant c > 1 such that 1
c ≤

(fn)ξ ≤ c almost everywhere for all n. We have∥∥∥∥ (Hn)ξ −Hξ

(fn)ξ
◦ f−1n

∥∥∥∥2
L2(R)

=

∫
R

(
(Hn)ξ −Hξ

)2 1

(fn)ξ
dξ ≤ c‖(Hn)ξ −Hξ‖2L2(R),

(2.34)
where we made the change of variables ξ′ = f−1n (ξ). We proceed to the next
term in (2.33),

Hξ

(fn)ξ
◦ f−1n = (H̄ξ ◦ gn) · (gn)ξ,

where gn = f ◦f−1n . We will prove that lim
n→∞

‖(gn)ξ−1‖L2(R) = 0. After change

of variables we get

‖(gn)ξ − 1‖2L2(R) =

∫
R

(
fξ

(fn)ξ
◦ f−1n − 1

)2

dξ ≤ c‖fξ − (fn)ξ‖2L2(R),

which proves that the limit as n→∞ is zero. We have

‖(H̄ξ ◦ gn)(gn)ξ − H̄ξ‖L2(R) ≤ ‖H̄ξ ◦ gn‖L∞(R)‖(gn)ξ − 1‖L2(R)

+ ‖H̄ξ ◦ gn − H̄ξ‖L2(R), (2.35)

where ‖H̄ξ◦gn‖L∞(R) < 1 from the Lipschitz property of H̄. If we can control the
second term we have shown that (H̄n)ξ converges to H̄ξ. Let h ∈ C∞0 (R) such
that ‖h − H̄ξ‖L2(R) <

ε
3 and observe that 1

c ≤ (gn)ξ ≤ c almost everywhere.
Then one can prove that ‖H̄ξ ◦ gn − h ◦ gn‖L2(R) ≤ c‖H̄ξ − h‖L2(R). Thus
fn → f in L∞(R) implies that gn → id in L∞(R) and there exists a compact K
independent of n such that supp(h◦gn) ⊆ K. Then by the Lebesgue dominated
convergence theorem we obtain h◦gn → h in L2(R). Summarizing, this together
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with (2.33), (2.34) and (2.35), gives that (H̄n)ξ → H̄ξ in L2(R). It follows that
q̄nξ − 1→ q̄ξ − 1 in L2(R) and, similarly, one proves that lim

n→∞
‖(z̄n)ξ − z̄ξ‖L2(R)

and lim
n→∞

‖(r̄n)− r̄‖L2(R). It remains to prove that z̄n → z̄ in L∞(R). We write

z̄n − z̄ = (zn − z) ◦ f−1n + z ◦ f−1n − z ◦ f−1, (2.36)

and need to prove that ‖z ◦ f−1n − z ◦ f−1‖L∞(R) → 0. But as z by construction
lies in W 1,∞(R) and fn → f in L∞(R) we have that |z ◦ f−1n − z ◦ f−1| ≤
‖zξ‖L∞(R)‖f−1n − f−1‖L∞(R). We use the invertibility and Lipschitz property of
f−1, f−1n as stated in equation (2.30) to get

|f−1n (ξ)− f−1(ξ)| = |x− f−1
(
fn(x)

)
|

= |f−1
(
f(x)

)
− f−1

(
fn(x)

)
|

≤ C‖f − fn‖L∞(R).

The above lemmas imply continuity of S̃t. The next theorem is the last
result in the section on the solution in Lagrangian coordinates.

Theorem 2.29. The mapping S̃t is continuous.

Proof. The semigroup S̃t = Π ◦ St, where St is continuous. By Lemma 2.27 we
have that for X ∈ F0 St(X) ∈ Fα, and by Lemma 2.28 the map Π : Fα → F0

is continuous and hence the composition is continuous.

2.3 Global existence of conservative solutions

We begin by defining conservative weak solutions.

Definition 2.30. Assume that u : R × [0,∞) → R, ρ : R × [0,∞) → R and
µ : [0,∞)→M+(R) satisfy
(i) u ∈ C

(
[0,∞), E2

)
, ρ ∈ C

(
[0,∞), L2(R)

)
, µ(t) finite,

(ii) the equations∫∫
R×[0,∞)

(
uφtx +

1

2
u2φxx −

1

2
u2xφ−

1

2
ρ2φ
)

dxdt = −
∫
R

(uφx)|t=0 dx, (2.37)
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and ∫∫
R×[0,∞)

(
ρφt + (uρ)φx

)
dxdt = −

∫
R

(ρφ)|t=0 dx, (2.38)

for all φ ∈ C∞0
(
R×[0,∞)

)
. Then (u, ρ) is a weak solution of the two-component

Hunter-Saxton equation (1.3). If (u, ρ, µ) in addition satisfies∫∫
R×[0,∞)

(
(u2x + ρ2)φt + (uu2x + uρ2)φx

)
dxdt =

∫
R

φ|t=0 dµ(0), (2.39)

we say that (u, ρ, µ) is a conservative weak solution.

Define Tt as
Tt = M ◦ S̃t ◦ L,

and the metric dD as

dD
(
(u1, ρ1, µ1), (u2, ρ2, µ2)

)
= dF0

(
L(u1, ρ1, µ1), L(u2, ρ2, µ2)

)
.

The following existence theorem is the main result in this section.

Theorem 2.31. The mapping Tt is a continuous semigroup of solutions with
respect to the metric dD. For any initial data (u0, ρ0, µ0) ∈ D let the solution
be denoted

(
u(t), ρ(t), µ(t)

)
= Tt(u0, ρ0, µ0). Then (u, ρ, µ) is a conservative

weak solution of (1.3) in the sense of Definition 2.30. For almost all t, µ =
(u2x + ρ2) dx.

Proof. The proof is similar to the proof of Theorem 5.2 in [7]. We prove that
Tt is a semigroup,

TtTs = MS̃tLMS̃sL = MS̃tS̃sL = Tt+s,

where it is used that S̃t is a semigroup in F0. That Tt is continuous with
respect to the dD metric is a direct result of the facts that S̃t is continuous
with respect to the dF0 metric and that L ◦ M = id. Let (u0, ρ0, µ0) ∈ D,
(u(t), ρ(t), µ(t)) = Tt(u0, ρ,µ0), and φ ∈ C∞0

(
R× [0,∞)

)
. To be able to evaluate

the integrals in Definition 2.30 we do the change of variables x = q(ξ) where q
is determined by the mapping L defined in Definition 2.13. Then we get∫∫

R×[0,∞)

(
uφtx +

1

2
u2φxx −

1

2
u2xφ−

1

2
ρ2φ
)

dxdt
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=

∫∫
R×[0,∞)

(
z(φtx ◦ q) +

1

2
z2(φxx ◦ q)−

1

2

z2ξ + r2

q2ξ
(φ ◦ q)

)
qξ dξdt

=

∫∫
R×[0,∞)

z
d

dt
(φx ◦ q)qξ dξdt− 1

2

∫∫
R×[0,∞)

zqt(φxx ◦ q)qξ dξdt

− 1

2

∫∫
R×[0,∞)

Hξ(φ ◦ q) dξdt

=−
∫
R

(
zqξ(φx ◦ q)|t=0

)
dξ −

∫∫
R×[0,∞)

d

dt
(zqξ)(φx ◦ q) dξdt

− 1

2

∫∫
R×[0,∞)

zqt(φxx ◦ q)qξ dξdt− 1

2

∫∫
R×[0,∞)

Hξ(φ ◦ q) dξdt

=−
∫
R

(
uφx|t=0

)
dx−

∫∫
R×[0,∞)

ztqξ(φx ◦ q) dξdt− 1

2

∫∫
R×[0,∞)

(z2)ξ(φx ◦ q) dξdt

− 1

2

∫∫
R×[0,∞)

z2(φxx ◦ q)qξ dξdt− 1

2

∫∫
R×[0,∞)

Hξ(φ ◦ q) dξdt

=−
∫
R

(
uφx|t=0

)
dx+

∫∫
R×[0,∞)

ztξ(φ ◦ q) dξdt− 1

2

∫∫
R×[0,∞)

(z2)ξ(φx ◦ q) dξdt

+
1

2

∫∫
R×[0,∞)

(z2)ξ(φx ◦ q) dξdt− 1

2

∫∫
R×[0,∞)

Hξ(φ ◦ q) dξdt

=−
∫
R

(
uφx|t=0

)
dx, (2.40)

where we have used the characteristic equations (2.3) extensively. The calcula-
tion for ρ is quite similar∫∫

R×[0,∞)

(
ρφt + ρuφx

)
dxdt

=

∫∫
R×[0,∞)

( r
qξ

(φt ◦ q) +
r

qξ
z(φx ◦ q)

)
qξ dξdt
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=

∫∫
R×[0,∞)

r
d

dt
(φ ◦ q) dξdt

=

∫∫
R×[0,∞)

d

dt

(
r(φ ◦ q)

)
dξdt

=−
∫
R

r(φ ◦ q)|t=0 dξ

=−
∫
R

(ρφ)|t=0 dx. (2.41)

Where we have used that ṙ = 0. We prove that the weak solution we have
constructed is conservative. The calculation is essentially the same as the two
calculations above. The details are∫∫

R×[0,∞)

(
(u2x + ρ2)φt + u(u2x + ρ2)φx

)
dxdt

=

∫∫
R×[0,∞)

(
Hξ(φt ◦ q) + zHξ(φx ◦ q)

)
dξdt

=

∫∫
R×[0,∞)

Hξ
d

dt
(φ ◦ q) dξdt

=

∫∫
R×[0,∞)

d

dt

(
Hξ(φ ◦ q)

)
dξdt

=

∫
R

φ|t=0 dµ(0). (2.42)

We have from L and M that µ = (u2x + ρ2) dx whenever q is invertible. By
Theorem 2.9, q is invertible for almost every t.

We end this section with some examples. First general multipeakons, then
a couple of concrete examples of multipeakons.

Example 2.32. Let {xi}ni=1 be a strictly increasing sequence in R and the initial
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data be given by

u0(x) =


c0, x < x1,

pi(x− xi) + ci, xi ≤ x < xi+1,

cn, xn < x,

ρ0(x) =


0, x < x1,

ρi, xi ≤ x < xi+1,

0, xn < x,

µ0 = (u20x + ρ20) dx,

where the pi’s and xi’s are arbitrary and the ci’s are chosen such that u0 is
continuous. Then Tt(u0, ρ0, µ0) is given by the formulas

u(x, t) =


− 1

4µ0(R)t+ c0, x < x1(t),
pi+

1
2 (p

2
i+ρ

2
i )t

(1+ 1
2pit)

2+( 1
2ρit)

2

(
x− xi(t)

)
+ 1

2

(
µ0

(
(−∞, xi]

)
− 1

2µ0(R)
)
t+ ci xi(t) ≤ x < xi+1(t),

1
4µ0(R)t+ cn, xn(t) < x,

ρ(x, t) =


0, x < x1(t),

ρi
(1+ 1

2pit)
2+( 1

2ρit)
2 , xi(t) ≤ x < xi+1(t),

0, xn(t) < x,

µ(t) = (u2x + ρ2) dx,

where

xi(t) =
1

4

(
µ0

(
(−∞, xi]

)
− 1

2
µ0(R)

)
t2 + cit+ xi,

or equivalently,

x1(t) = −1

8
µ0(R)t2 + c0t+ x1,

xi+1(t) = xi(t) + (xi+1 − xi)
(
(1 +

1

2
pit)

2 + (
1

2
ρit)

2
)
.

A solution of this form is called a conservative multipeakon solution of (1.3).

First an example where ρ0 differs from zero when u0 does.
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Example 2.33. If we let

u0(x) =


0, x ≤ −1,

x+ 1, −1 < x < 0,

1− x, 0 < x < 1,

0, 1 ≤ x,

ρ0(x) =


0, x ≤ −1,

1, −1 < x < 1,

0, 1 ≤ x,

then the conservative multipeakon solution is given by

u(x, t) =


−t, x < x1(t),

1+t
(1+ 1

2 t)
2+( 1

2 t)
2

(
x− x1(t)

)
− t, x1(t) ≤ x < x2(t),

−1+t
(1− 1

2 t)
2+( 1

2 t)
2

(
x− x2(t)

)
+ 1, x2(t) ≤ x < x3(t),

t, x3(t) ≤ x,

ρ(x, t) =


0, x < x1(t),

1
(1+ 1

2 t)
2+( 1

2 t)
2 , x1(t) < x < x2(t),

1
(1− 1

2 t)
2+( 1

2 t)
2 , x2(t) < x < x3(t),

0, x3(t) < x,

where

x1(t) = −1

2
t2 − 1,

x2(t) = t,

x3(t) =
1

2
t2 + 1,

as shown in Figure 2.1.

We compute an example when ρ0 = 0. This to highlight the differences
between conservative and dissipative solutions.
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Figure 2.1: Plot of xi, i = 1, 2, 3 in Example 2.33
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Example 2.34. If we let

u0(x) =


0, x ≤ −1,

x+ 1, −1 < x < 0,

1− x, 0 < x < 1,

0, 1 ≤ x,
ρ0(x) = 0

then the conservative multipeakon solution is given by

u(x, t) =


−t, x < x1(t),

1
1+ 1

2 t

(
x− x1(t)

)
− t, x1(t) ≤ x < x2(t),

1
1− 1

2 t

(
x− x2(t)

)
+ 1, x2(t) ≤ x < x3(t),

t, x3(t) ≤ x,
ρ(x, t) = 0

where

x1(t) = −1

4
t2 − 1,

x2(t) = t,

x3(t) =
1

4
t2 + 1,

as shown in Figure 2.2.

2.4 The solution when ρ0 vanishes

If we let ρ = 0 in (1.3) we are left with the standard Hunter-Saxton equation.
It is interesting to see what happens when we let ρ0 → 0 in some sense. One
would expect that one recovers the conservative solutions of the Hunter-Saxton
equation and thus has another way to define these solutions. This would create
a nice symmetry between conservative and dissipative solutions as the latter
can be viewed as vanishing viscosity solutions [13]. First we prove that ρ0 = 0
implies ρ = 0, and that the two-component equation is a generalization of the
Hunter-Saxton equation (1.2).
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Figure 2.2: Plot of xi, i = 1, 2, 3 in Example 2.34
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Lemma 2.35. If ρ0 = 0 then (u, ρ, µ) = Tt(u0, ρ0, µ0) satisfies ρ = 0 for all t.

Proof. If ρ0 = 0 then r(0) = (ρ0 ◦ q(0))qξ(0) = 0 and as rt = 0 we have that
r(t) = 0 for all t. This implies, by transforming back, that ρ = 0 for almost
every t.

The next proposition states that the Hunter-Saxton system (1.3) indeed is
a generalization of the Hunter-Saxton equation (1.2).

Proposition 2.36. The solution generated by Tt and the initial data (u0, 0, µ0)
is a conservative solution of the Hunter-Saxton equation (1.2).

Proof. This follows from the proof of Theorem 2.31 and the previous lemma.
Insert ρ = 0 everywhere and the definition of conservative weak solutions of
the Hunter-Saxton equation is satisfied. Note that the definition of conservative
weak solutions of the Hunter-Saxton equation is the same as Definition 2.30
with ρ = 0. This coincides with the definition of conservative weak solution of
the Hunter-Saxton equation in [3].

We have that ρ does not explode on us. That is, if ρ0 → 0, then ρ → 0 for
each t as the next lemma states.

Lemma 2.37. Let (u0, 0, µ0) ∈ D and ρn0 → 0 in L2(R). Then
(
u0, ρ

n
0 , µ0 +

(ρn0 )2 dx
)
→ (u0, 0, µ0) in D with respect to the dD metric.

Proof. We have to calculate ‖L(u0, 0, µ0) − L(u0, ρ
n
0 , µ0 + (ρn0 )2 dx)‖B . Let

(q, z,H, 0) = L(u0, 0, µ0) ∈ F0 and (qn, zn, Hn, rn) = L(u0, ρ
n
0 , µ0 + (ρn0 )2 dx) ∈

F0. Note that µ ((−∞, x)) ≤ µ ((−∞, x))+
x∫
−∞

(ρn0 )2dy. By taking the difference

we obtain

0 ≤ q(ξ)− qn(ξ) = sup{x|µ0

(
(−∞, x)

)
+ x < ξ}

− sup{x|µ0

(
(−∞, x)

)
+

x∫
−∞

(ρn0 )2(y) dy + x < ξ}

≤ sup{x|µ0

(
(−∞, x)

)
+ x < ξ}

− sup{x|µ0

(
(−∞, x)

)
+

∞∫
−∞

(ρn0 )2(y) dy + x < ξ}

= q(ξ)− q(ξ − ‖ρn0‖22), (2.43)



34 CHAPTER 2. GLOBAL CONSERVATIVE SOLUTIONS

and hence qn− id→ q− id in E2 as the asymptotics are converging and transla-
tion is continuous in H1(R). Moreover the Lipschitz property of q, (2.17), gives
that ‖q − qn‖∞ ≤ ‖ρn0‖22. For zn, Hn and rn the following calculation shows

z(ξ)− zn(ξ) = u0 ◦ q(ξ)− u0 ◦ qn(ξ),

H(ξ)−Hn(ξ) =
(
ξ − q(ξ)

)
−
(
ξ − qn(ξ)

)
= qn(ξ)− q(ξ),

rn(ξ) = ρn0 ◦ qn(ξ) · (qn)ξ(ξ). (2.44)

That translation by fn(ξ) ∈ L∞(R), fn → 0 is continuous in L2(R) has the
same proof as when fn is constant (by considering g in C∞0 together with a
density argument). That rn → 0 follows from (qn)ξ ≤ 1 which is a result of
(qn)ξ + (Hn)ξ = 1.

Finally, we have the theorem on convergence as ρ0 → 0.

Theorem 2.38. Let u0 ∈ E2 and (ρn)0 ∈ L2(R) such that (ρn)0 → 0 in L2(R).
Denote by (un, ρn, µn) the conservative weak solution of (1.3) with initial data(
u0, (ρn)0, (µn)0

)
, where (µn)0 = µ0 +(ρn)20 dx. Then un → u for some u in E2

and µn → µ for some µ ∈ M+(R) for each t and (u, µ) is a conservative weak
solution of (1.2) with initial data (u0, µ0). The convergence is in the metric dD.

Proof. The result follows from Lemma 2.37 and the continuous semigroup prop-
erty in Theorem 2.31.



Chapter 3

Global dissipative solutions

Motivated by the existence of conservative and dissipative weak solutions of
(1.2) [12], we try to find similar solutions of the system (1.3).

3.1 Dissipative multipeakons

We will first define a class of weak solutions, dissipative multipeakon solutions,
and use these as motivating examples and illustrations. Conservative multi-
peakons are defined in Example 2.32. Note that there will be blow up if and
only if ρi = 0, pi < 0, so we would expect that if this condition is not met
dissipative and conservative solutions will coincide. We try to define dissipative
solutions by removing the part that blew up.

Definition 3.1. Let {xi}ni=1 be a strictly increasing sequence in R and the initial
data be given by

u0(x) =


c0, x < x1,

pi(x− xi) + ci, xi ≤ x < xi+1,

cn, xn < x,

ρ0(x) =


0, x < x1,

ρi, xi ≤ x < xi+1,

0, xn < x,

35
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where the pi’s and xi’s can be chosen freely and ci’s are chosen such that u0 is
continuous. Then the dissipative multipeakon solution is defined by the formulas

u(x, t) =



− 1
4H(t)t+ 1

2

n∑
i=1

pi(xi+1 − xi)1Bi (t) + c0, x ≤ x1(t),

pi+
1
2 (p

2
i+ρ

2
i )t

(1+ 1
2pit)

2+( 1
2ρit)

2

(
x− xi(t)

)
1Ai (t)

+u
(
xi(t), t

)
, xi(t) ≤ x ≤ xi+1(t),

1
4H(t)t+ 1

2

n∑
i=1

pi(xi+1 − xi)1Bi + cn, xn(t) ≤ x,

ρ(x, t) =


0, x < x1(t),

ρi
(1+ 1

2pit)
2+( 1

2ρit)
2 , xi(t) ≤ x < xi+1(t),

0, xn(t) < x,

H(t) =

n−1∑
i=1

(
p2i + ρ2i

) (
xi+1 − xi

)
1Ai (t)),

where

x1(t) =x1 +
1

2

n∑
i=1

(xi+1 − xi)1Bi (t) + c0t+
1

2

n∑
i=1

pi(xi+1 − xi)1Bi (t)t

− 1

8

n∑
i=1

(
p2i + ρ2i

)
(xi+1 − xi)1Ai (t),

xi+1(t) =xi(t) + (xi+1 − xi)
(
(1 +

1

2
pit)

2 + (
1

2
ρit)

2
)
1Ai (t),

1Ai (t) =1{1+ 1
2pit≥0}∪{ρi 6=0}(t),

1Bi (t) =1− 1Ai (t).

Where 1E denotes the characteristic function on the set E.

We do two examples of dissipative multipeakons. The initial data is the
same as in Example 2.33 and Example 2.34, respectively.

Example 3.2. If we let

u0(x) =


0, x ≤ −1,

x+ 1, −1 < x < 0,

1− x, 0 < x < 1,

0, 1 ≤ x,
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ρ0(x) =


0, x ≤ −1,

1, −1 < x < 1,

0, 1 ≤ x,

then the dissipative multipeakon solution is identical to the conservative multi-
peakon solution with the same initial data in Example 2.33.

The next example is more interesting.

Example 3.3. The initial data

u0(x) =


0, x ≤ −1,

x+ 1, −1 < x < 0,

1− x, 0 < x < 1,

0, 1 ≤ x,
ρ0(x) = 0,

gives the dissipative multipeakon solution

u(x, t) =


− 1

2 t1{t≤2} −
(
1
4 t+ 1

2

)
1{t>2}, x ≤ x1(t)

1
1+ 1

2 t

(
x− x1(t)

)
− 1

2 t1{t≤2} −
(
1
4 t+ 1

2

)
1{t>2}, x1(t) ≤ x ≤ x2(t),

1
1− 1

2 t

(
x− x2(t)

)
1{t≤2} + u(x2(t), t), x2(t) ≤ x ≤ x3(t),

1
2 t1{t≤2} +

(
1
4 t+ 1

2

)
1{t>2}, x3(t) ≤ x.

ρ(x, t) =0,

H(t) =

{
2, t ≤ 2,

1, t > 2,

x1(t) = x1 +
1

2
1{t>2} + c0t−

1

2
1{t>2} −

1

8
H(t)t2,

x2(t) = x1(t) +

(
1 +

1

2
t

)2

,

x3(t) = x2(t) +

(
1− 1

2
t

)2

1{t≤2}.

It is different from the conservative multipeakon with the same initial data in
Example 2.34. The plot of xi’s in Figure 3.1 illustrate this fact.
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Figure 3.1: Plot of xi, i = 1, 2, 3 in Example 3.3
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The definition of dissipative multipeakon solutions is not very useful unless
such solutions are weak solutions of (1.3) in the sense of Defintion 2.30. But
this is indeed the case, as shown in the next lemma.

Lemma 3.4. The dissipative multipeakon solutions defined in Definition 3.1
are weak solutions of (1.3) in the sense of Definition 2.30.

Proof. We calculate the required integrals.∫∫
R×[0,∞)

(
uφtx +

1

2
u2φxx −

1

2
u2xφ−

1

2
ρ2φ
)

dxdt

=

∞∫
0

(∫ x1

−∞

(
u(x1)φxt +

1

2
u(x1)2φxx

)
dx

+

∫ ∞
xn

(
u(xn)φxt +

1

2
u(xn)2φxx

)
dx

+

n−1∑
i=1

xi+1∫
xi

(
u(x)φxt +

1

2
u(x)2φxx −

1

2
(u2x + ρ2)φ

)
dx

)
dt

=

∞∫
0

[ n−1∑
i=1

xi+1∫
xi

(
−

pi + 1
2 (p2i + ρ2i )t

(1 + 1
2pit)

2 + ( 1
2ρit)

2
φt +

(
pi + 1

2 (p2i + ρ2i )t

(1 + 1
2pit)

2 + ( 1
2ρit)

2

)2

φ

− 1

2

(
ρ2i + p2i

(1 + 1
2pit)

2 + ( 1
2ρit)

2

)
φ

)
dx

−
pi + 1

2 (p2i + ρ2i )t

(1 + 1
2pit)

2 + ( 1
2ρit)

2

(
ẋi+1φ(xi+1)− ẋiφ(xi)

)]
dt

=

∞∫
0

∂

∂t

∞∫
−∞

uφx dxdt = −
∞∫
−∞

(uφx)|t=0 dx. (3.1)

The identity u(xi) = ẋi, which can be proved by induction on i, has been used.
The second integral reads∫∫

R×[0,∞)

(
ρφt + (uρ)φx

)
dxdt
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=

∞∫
0

n−1∑
i=1

xi+1∫
xi

( ρi

(1 + 1
2pit)

2 + ( 1
2ρit)

2
φt +

ρi

(1 + 1
2pit)

2 + ( 1
2ρit)

2
u(x)φx

)
dxdt

=

∞∫
0

n−1∑
i=1

ρi

(1 + 1
2pit)

2 + ( 1
2ρit)

2

(∫ xi+1

xi

(φt −
pi + 1

2 (p2i + ρ2i )t

(1 + 1
2pit)

2 + ( 1
2ρit)

2
φ) dx

+ u(xi+1)φ(xi+1)− u(xi)φ(xi)

)
dt

=

∞∫
0

∂

∂t

∞∫
−∞

ρφ dxdt = −
∞∫
−∞

(ρφ)|t=0 dx. (3.2)

A number of interesting properties of the dissipative multipeakon solutions
are collected in the following proposition.

Proposition 3.5. The quantities

q(ξ, t) = xi(t) + (ξ − xi)
(
(1 +

1

2
u0x(ξ)t)2 + (

1

2
ρ0(ξ)t)2

)
1{1+ 1

2u0xt≥0}∪{ρ0 6=0},

z(ξ, t) = u
(
q(ξ, t), t

)
,

H(ξ, t) =

q(ξ,t)∫
−∞

(
ux(x, t)2 + ρ(x, t)2

)
dx,

r(ξ, t) = ρ
(
q(ξ, t), t

)
qξ(ξ, t),

satisfies

q̇ = z, (3.3a)

Ḣξ = −Hξ(ξ, 0)δ{1+ 1
2u0x(ξ)t=0,ρ0(ξ)=0}(t), (3.3b)

ż =
1

2
H − 1

4
Htot, (3.3c)

ṙ = 0. (3.3d)

We will now generalize the concept of dissipative solutions by letting (3.3)
generate the flow in a space Fd similar to F defined in Definition 2.7. Our aim
is to construct a semigroup of dissipative solutions similar to what we did for
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conservative solutions. This semigroup will unfortunately not be continuous in
the dD-metric. We shall see that this is related to the fact that if ρ0 6= 0, µ0 =
(u2x + ρ2) dx then the conservative and dissipative solutions are identical.

3.2 Characteristic system in the dissipative case

First we define a ”characteristic system” which will generate the flow in Fd.
Let

q̇ = z, (3.4a)

ż =
1

2
H − 1

4
Htot, (3.4b)

Ḣξ = −H0ξδ{1+ 1
2

z0ξ
q0ξ

t=0,r0=0}(t), (3.4c)

ṙ = 0, (3.4d)

where δa is the Dirac measure, δa(A) = 1 if a ∈ A, δa(A) = 0 otherwise. The
system (3.4) can be solved explicitly. We will be interested in the initial value

problem H0(ξ) =
ξ∫
−∞

z0ξ(y)
2+r0(y)

2

q0ξ(y)
dy, q0 +H0 = id.

Proposition 3.6. The solution of the system (3.4) with initial data

q|t=0 = q0, (3.5a)

z|t=0 = z0, (3.5b)

r|t=0 = r0, (3.5c)

H|t=0 =

id∫
−∞

z0ξ(ξ)
2 + r0(ξ)2

q0ξ(ξ)
dξ, (3.5d)

is given by

q(ξ, t) =
1

4

( ξ∫
−∞

z0ξ(y)2 + r0(y)2

q0ξ(y)
1A(y, t) dy

− 1

2

∞∫
−∞

z0ξ(y)2 + r0(y)2

q0ξ(y)
1A(y, t) dy

)
t2



42 CHAPTER 3. GLOBAL DISSIPATIVE SOLUTIONS

−
( ξ∫
−∞

z0ξ(y)1B(y, t) dy − 1

2

∞∫
−∞

z0ξ(y)1B(y, t) dy

)
t+ z0(ξ)t

−
( ξ∫
−∞

q0ξ1
B(t) dy − 1

2

∞∫
−∞

q0ξ1
B(t) dy

)
+ q0(ξ), (3.6)

z(ξ, t) =
1

2

( ξ∫
−∞

z0ξ(y)2 + r0(y)2

q0ξ(y)
1A(y, t) dy

− 1

2

∞∫
−∞

z0ξ(y)2 + r0(y)2

q0ξ(y)
1A(y, t) dy

)
t

−
( ξ∫
−∞

z0ξ(y)1B(y, t) dy − 1

2

∞∫
−∞

z0ξ(y)1B(y, t) dy

)
+ z0(ξ), (3.7)

H(ξ, t) =

ξ∫
−∞

z0ξ(y)2 + r0(y)2

q0ξ(y)
1A(y, t) dy, (3.8)

r(ξ, t) =r0(ξ). (3.9)

The characteristic functions 1A and 1B are given by

1A(ξ, t) =

{
0 if r0(ξ) = 0, z0ξ(ξ) < 0, t > − 2q0ξ(ξ)

z0ξ(ξ)
,

1 else,

1B(ξ, t) =

{
1 if r0(ξ) = 0, z0ξ(ξ) < 0, t > − 2q0ξ(ξ)

z0ξ(ξ)
,

0 else.

Note that 1A + 1B = 1.

Proof. The formula for r and H is obtained by integrating. To get the formula
for z we integrate again and change the order of integration by the Tonelli’s
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theorem as the integrand in H is non-negative. The formula is reached by

t∫
0

1A(s) ds = t1A(t)− 2q0ξ
z0ξ

1B(t). (3.10)

To go from z to q we integrate one more time. The integral
∫
z0ξ1

B dξ is finite.
As z0 ∈ W 1,∞(R) it suffices to show that the Lebesgue measure of supp 1B(t)
is finite for each t. The definition of 1B(t) gives

m
(
supp 1B(t)

)
= m

({
ξ | t > −2q0ξ

z0ξ
, z0ξ < 0, r0 = 0

})
≤ m

({
ξ | |z0ξ|2 >

4c2

t2
})

<∞, (3.11)

as z0ξ ∈ L2(R) and 0 ≤ q0ξ < c for some c > 0.

From the proposition above we have that once qξ becomes zero it remains
zero for all times, and Hξ = 0 whenever qξ = 0. Thus we can not use the space
F for dissipative solutions.

Definition 3.7. The set Fd consists of X = (q, z,H, r) ∈ B such that

(i) ζ, z,H ∈W 1,∞(R), ζ + id = q,

(ii) qξ ≥ 0, Hξ ≥ 0, (q +H)ξ ≥ c > 0 or (q +H)ξ = 0 a.e.

(iii) qξHξ = z2ξ + r2 a.e.

Note that F ⊆ Fd. The next lemma shows that Fd is the correct space to
look for solutions.

Lemma 3.8. If X0 = (q0, z0, H0, r0) ∈ Fd then the solution Xt of (3.4) at t
with initial data X0 is in B.

Proof. We compute using the explicit solutions in Proposition 3.6. For each t
we have that H is bounded by H0, z by 1

4Ht + 2z0 and q by 1
8Ht

2 + zt + 2q0.
The derivatives and r are bounded by

r(t) = r0,

0 ≤ Hξ(t) ≤ H0ξ,

|zξ| ≤
1

2
H0ξt+ |z0ξ|,
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|qξ| ≤
1

4
H0ξt

2 + |z0ξ|t+ q0ξ, (3.12)

which are square integrable.

3.3 Global existence of dissipative solutions

The strategy is similar to the one in the conservative case. The main difference
being that here we do not attempt to establish continuity. There are other
differences of a more ”tactical” nature, for example a different approach to the
projection to F0 and more difficult calculations in the Lagrangian coordinates.

Theorem 3.9. The solution operators Sdt : Fd → Fd constitutes a semigroup.
The operator Sdt is not continuous with respect to the B-norm.

Proof. Let X0 = (q0, H0, z0, r0) denote the initial data and Sdt (X0) = X(t) =(
q(t), H(t), z(t), r(t)

)
the solution at t. We need to show that the solution is in

Fd and that it is unique. To that end, consider

z2ξ =
1

4
(
z20ξ + r20
q0ξ

)21At2 + z0ξ(
z20ξ + r20
q0ξ

)1At+ z20ξ1
A,

r2 =r20 = r201
A,

qξHξ =
1

4
(
z20ξ + r20
q0ξ

)21At2 + z0ξ(
z20ξ + r20
q0ξ

)1At+ z20ξ1
A + r201

A, (3.13)

which proves that (iii) in Definition 2.7 holds. Furthermore, q − id, z,H ∈
W 1,∞(R) as this holds for the initial data, and for each t the solutions are
linear combinations of the initial data. Non-negativity of Hξ follows from q0ξ
being non-negative, and thus qξ has to be non-negative due to (iii). That
(q + H)ξ ≥ c > 0 or (q + H)ξ = 0 almost everywhere holds is proven in much
the same way as in the conservative case in the proof of Theorem 2.8. The only
difference is that we do not have continuity in t across the blow-up time. We
show the semigroup proporty Sdt ◦ Sds = Sdt+s next. The notation Sdt (f0) = f(t)
for f = q, z,H, r,1A with f0 = q0, z0, H0, r0,1

A(0), respectively, is used. The
key identity is

1 +
1

2

zξ(y, s)

qξ(y, s)
t = 1 +

1

2

z0ξ(y)

q0ξ(y)
(t+ s), (3.14)

whenever 1A(y, s) = 1. This implies that Sdt ◦ Sds (1A) = Sdt+s(1
A), and thus

Sdt S
d
s (r0) =r0 = Sdt+s(r0), (3.15)
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Sdt S
d
s (H0) =

ξ∫
−∞

zξ(y, s)
2 + r(y, s)2

qξ(y, s)
1As (y, t) dy

=

ξ∫
−∞

1
4 (
z20ξ+r

2
0

q0ξ
)2s2 + z0ξ

z20ξ+r
2
0

q0ξ
s+ z20ξ + r0(y)2

1
4 (
z20ξ+r

2
0

q0ξ
)1As2 + z0ξ1As+ q0ξ

1A(y, s)1As (y, t) dy

=

ξ∫
−∞

z20ξ + r20
q0ξ

1A(y, t+ s) dy = Sdt+s(H0), (3.16)

Sdt S
d
s (z0) =

1

2

( ξ∫
−∞

zξ(s)
2 + r(s)2

qξ(s)
1As (t) dy − 1

2

∞∫
−∞

zξ(s)
2 + r(s)2

qξ(s)
1As (t) dy

)
t

−
( ξ∫
−∞

zξ(s)1
B
s (t) dy − 1

2

∞∫
−∞

zξ(s)1
B
s (t) dy

)

+
1

2

( ξ∫
−∞

z20ξ + r20
q0ξ

1A(s) dy − 1

2

∞∫
−∞

z20ξ + r20
q0ξ

1A(s) dy

)
s

−
( ξ∫
−∞

z0ξ1
B(s) dy − 1

2

∞∫
−∞

z0ξ1
B(s) dy

)
+ z0(ξ)

=
1

2

( ξ∫
−∞

z20ξ + r20
q0ξ

1A(t+ s) dy − 1

2

∞∫
−∞

z20ξ + r20
q0ξ

1A(t+ s) dy

)
t

−
( ξ∫
−∞

z0ξ1
A(s)1B(t+ s) dy − 1

2

∞∫
−∞

z0ξ1
A(s)1B(t+ s) dy

)

− 1

2

( ξ∫
−∞

z20ξ + r20
q0ξ

1A(s)1B(t+ s) dy
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− 1

2

∞∫
−∞

z20ξ + r20
q0ξ

1A(s)1B(t+ s) dy

)
s

+
1

2

( ξ∫
−∞

z20ξ + r20
q0ξ

1A(s) dy − 1

2

∞∫
−∞

z20ξ + r20
q0ξ

1A(s) dy

)
s

−
( ξ∫
−∞

z0ξ1
B(s) dy − 1

2

∞∫
−∞

z0ξ1
B(s) dy

)
+ z0(ξ)

=
1

2

( ξ∫
−∞

z20ξ + r20
q0ξ

1A(t+ s) dy − 1

2

∞∫
−∞

z20ξ + r20
q0ξ

1A(t+ s) dy

)
(t+ s)

−
( ξ∫
−∞

z0ξ1
B(t+ s) dy − 1

2

∞∫
−∞

z0ξ1
B(t+ s) dy

)
+ z0(ξ)

=Sdt+s(z0) (3.17)

Sdt S
d
s (q0) =

1

4

(
H(ξ, t+ s)− 1

2
Htot(t+ s)

)
t2

−
( ξ∫
−∞

(
1

2

z20ξ + r20
q0ξ

s+ z0ξ

)
1A(s)1B(t+ s) dy

− 1

2

∞∫
−∞

(
1

2

z20ξ + r20
q0ξ

s+ z0ξ

)
1A(s)1B(t+ s) dy

)
t

+
1

2

(
H(ξ, s)− 1

2
Htot(s)

)
t

−
( ξ∫
−∞

z0ξ1
B(s) dy − 1

2

∞∫
−∞

z0ξ1
B(s) dy

)
t+ z0(ξ)t

−
( ξ∫
−∞

[(
1 +

1

2

z0ξ
q0ξ

s
)2

+
(1

2

r0
q0ξ

s
)2]

q0ξ1
A(s)1B(t+ s) dy
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− 1

2

∞∫
−∞

[(
1 +

1

2

z0ξ
q0ξ

s
)2

+
(1

2

r0
q0ξ

s
)2]

q0ξ1
A(s)1B(t+ s) dy

)

+
1

4

(
H(ξ, s)− 1

2
Htot(s)

)
s2

−
( ξ∫
−∞

z0ξ1
B(s) dy − 1

2

ξ∫
−∞

z0ξ1
B(s) dy

)
s+ z0(ξ)s

−
( ξ∫
−∞

q0ξ1
B(s) dy − 1

2

ξ∫
−∞

q0ξ1
B(s) dy

)
+ q0(ξ)

=
1

4

(
H(ξ, t+ s)− 1

2
Htot(t+ s)

)
(t2 + 2ts+ s2)

−
( ξ∫
−∞

z0ξ1
B(t+ s) dy − 1

2

∞∫
−∞

z0ξ1
B(t+ s) dy

)
(t+ s)

−
( ξ∫
−∞

q0ξ1
B(t+ s) dy − 1

2

∞∫
−∞

q0ξ1
B(t+ s) dy

)
+ z0(ξ)(t+ s) + q0(ξ)

=Sdt+s(q0). (3.18)

That Sdt is not continuous follows from the explicit solutions in Proposition 3.6,
where one can observe that H does not depend continuously on the B-norm of
r. Uniqueness follows by uniqueness, up to a constant, of the antiderivative in
the space of distributions.

Define the function Λ : D → D by

Λ(u, ρ, µ) =
(
u, ρ, (u2x + ρ2) dx

)
, (3.19)

and the map Ld : D → Fd by

Ld = L ◦ Λ. (3.20)

Since both L and Λ are well defined, Ld is well defined as well. To go back to
the original variables we extend M to a map Md in the natural way, i.e. the
domain is extended from F to Fd and the formulas remain the same. As in the
conservative case there is some redundancy corresponding to relabeling.
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Definition 3.10. Let φ be such that (q+H) ◦ φ = id. Define Πd : Fd → F0 by

Πd
(
q, z,H, r) = (q ◦ φ, z ◦ φ,H ◦ φ, (r ◦ φ)φξ) . (3.21)

In order for Πd to be well defined we need that it is independent on the
choice of φ and that the range is F0.

Proposition 3.11. The function Πd defined in Definition 3.10 is well defined.

Proof. We will show that Πd is a function, that the range is F0 and that it is
independent of the choice of right inverse. First note that φ is strictly increasing
since φ is one-to-one and increasing. This implies the existence of φξ almost
everywhere [6, Theorem 3.23]. We will show that φξ − 1 ∈ L2(R). Let A = {ξ |
φξ exists}. Then∫
A

|φξ−1|2dξ =

∫
A

|1−(qξ+Hξ)◦φ|2φ2ξdξ ≤ ‖φξ‖L∞(R)

∫
R

|qξ+Hxi−1|2dξ <∞.

Condition (ii) in the definition of Fd, Definition 3.7, implies that

1

‖qξ +Hξ‖L∞(R)
≤ φξ ≤

1

c
almost everywhere, (3.22)

for some c > 0. The points of discontinuity is precisely the points where (q +
H)ξ = 0. This implies that the range of Πd is B and W 1,∞(R)3 × L∞(R), for
details see the proof of Proposition 2.18. Let X = (q, z,H, r) ∈ Fd and Πd(X) =
(q̄, z̄, H̄, r̄). We have by (iii) in Definition 3.7 that qξ > 0 whenever r 6= 0, thus
φξ exists whenever r 6= 0 and Πd is well defined if we define (r ◦ φ)φξ = 0 when
r ◦ φ = 0. Let ψ be another right inverse of (q + H). Then ψ = φ whenever
(q + H)ξ 6= 0, and when (q + H)ξ = 0 we have qξ = zξ = r = Hξ = 0 and
thus Πd is independent of choice of right inverse. To see that the range is F0

we observe that q̄+ h̄ = (q+H) ◦ φ = id, and as q, h are increasing so are q̄, H̄.
Furthermore,

q̄ξH̄ξ = qξHξφ
2
ξ = (z2ξ + r2)φ2ξ = z̄2ξ + r̄2. (3.23)

The boundedness of z̄, H̄ and id − q̄ follows directly from the boundedness of
z, H and q − id. The same argument holds for the boundedness of q̄ξ, z̄ξ and
H̄ξ. The square integrability follows.

That φ is one-to-one and thus invertible on all ”interesting” sets, that is all
sets where qξ 6= 0, yields the next proposition.



3.3. GLOBAL EXISTENCE OF DISSIPATIVE SOLUTIONS 49

Proposition 3.12. If X ∈ Fd, then

Md(X) = M ◦Πd(X). (3.24)

Proof. Define (u, ρ, µ) = M◦Πd(X) and (ū, ρ̄, µ̄). Let ξ be given and x = q◦φ(ξ).
The one-to-one property of φ and that q ◦ φ is onto guarantees the existence of
a function f such that (q ◦ φ) ◦ (φ−1 ◦ f) = id. Thus

z ◦ φ(φ−1 ◦ f) = z ◦ f (3.25)

and u(x) = ū(x). Likewise

φξ(r ◦ φ)

φξ(qξ ◦ φ)
(φ−1 ◦ f) =

r

qξ
◦ f (3.26)

and ρ(x) = ρ̄(x). It remains to show that µ = µ̄, but this follows from∫
(q◦φ)−1(A)

Hξ ◦ φφξ dξ =

∫
q−1(A)

Hξ dξ. (3.27)

We can then define the mapping S̃dt : F0 → F0 by S̃dt = Πd ◦ Sdt .

Proposition 3.13. The mappings Πd and Sdt satisfies

Πd ◦ Sdt ◦Πd = Πd ◦ Sdt . (3.28)

In other words, S̃dt is a semigroup in F0.

Proof. Let X = (q, z,H, r) ∈ Fd and X(t) =
(
q(t), z(t), H(t), r(t)

)
= Sdt (X).

Then Sdt ◦Πd(X) =
(
q̄(t), z̄(t), H̄(t), r̄(t)

)
is given by

r̄(t) =r̄(0) = r ◦ φ0 = r(t) ◦ φ0,

H̄(t) =

ξ∫
−∞

H̄ξ(0)1A(t) dξ

=

ξ∫
−∞

Hξ ◦ φ0(ξ)φ0ξ(ξ) dξ
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=H(t) ◦ φ0,

which implies that

z̄(t) =z(t) ◦ φ0
q̄(t) =q(t) ◦ φ0.

We apply Πd to Sdt ◦Πd(X), realize that φt = φ−10 ◦φ where φ is a right inverse
of q(t) +H(t) and get

r̄(t) ◦ φt = r ◦ φ,
H̄(t) ◦ φt = H ◦ φ,
z̄(t) ◦ φt = z ◦ φ,
q̄(t) ◦ φt = q ◦ φ,

which equals Π ◦ Sdt (X).

We define the map T dt : D → D by

T dt = Md ◦ S̃dt ◦ Ld. (3.29)

Definition 3.14. A weak solution (u, ρ, µ) of (1.3) in the sense of Definition
2.30 is said to be a dissipative weak solution if it satisfies the entropy criterion

ρ(x, t) = 0 ⇒ ux(x, t) ≤ 1

t
almost everywhere, (3.30)

in addition to∫ (
ux(x, t)2 + ρ(x, t)2

)
dx ≤

∫ (
u0x(x)2 + ρ0(x)2

)
dx. (3.31)

And the final theorem that concludes the chapter on dissipative solutions.

Theorem 3.15. The map T dt constitutes a semigroup in D of dissipative weak
solutions of (1.3) in the sense of Definition 3.14. The operator T dt is not con-
tinuous with respect to the metric dD.

Proof. The proof that it is a weak solution is the same as in the conservative
case, the point being that q̇ = z and ż = 1

2H −
1
4Htot still holds. To see

that the solution is dissipative note that ρ(x, t) = 0 implies that r(ξ, s) = 0
for all s and q(ξ) = x. Then by solving the characteristic equations (3.4) one
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finds that ux ≤ 1
t . To prove the semigroup property it suffices to show that

µ(t) = (u2x+ρ2)dx. That it holds for t = 0 follows directly from Proposition 2.22
and the definition of Λ. For t > 0 note that qξ(ξ) = 0 implies that Hξ(ξ) = 0.
This implies that

µ(t)
(
A) =

∫
q−1(A)

Hξ dξ =

∫
q−1(A∩{qξ>0})

Hξ dξ, (3.32)

and for every right inverse f of q we have

µ(t)
(
(−∞, x]) =

f(x)∫
−∞

Hξ dξ. (3.33)

As Hξ is a measurable function, µ(t) is absolutely continuous with respect to
the Lebesgue measure on R. The formula µ(t) = (u2x + ρ2) dx is proved by
substitution in the above integral.

Remark 3.16. The singular part of µ0 is simply ignored, so in the dissipative
case we can restrict our attention to Dd = E2 × L2(R) without any loss of
generality.

Remark 3.17. If D is restricted to ρ = 0 the dissipative semigroup is continu-
ous with respect to some other metric [2]. The difficulty in extending the metric
lies in the fact that if ρ0 6= 0 and µ0 = (u20x + ρ20) dx, then the dissipative and
conservative solutions are identical. Thus if the initial data converges, then the
solutions converges to the conservative solution in dD.
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Chapter 4

Conclusions and future
studies

4.1 Future studies

One would want to try to establish the results for the two-component Camassa-
Holm equation and the standard Hunter-Saxton in our setting. The first ques-
tions that come to mind are:

• Can one construct a metric on D such that the semigroup of dissipative
solutions is continuous? If so, can it be made Lipschitz continuous? This
is done for the Hunter-Saxton equation in [2].

• Is the semigroup of conservative solutions Lipschitz continuous, as in the
Hunter-Saxton case [3]?

4.2 Conclusions

A global continuous semigroup of conservative solutions of the Hunter-Saxton
system (1.3), defined in Definition 2.30, was shown to exists in Theorem 2.31.
Furthermore, if ρ→ 0 ∈ L2(R), then the solution constructed by the semigroup
approaches the conservative solution of the Hunter-Saxton equation (1.2). Con-
servative multipeakons were demonstrated to exist in Example 2.32.

Similarly, a global semigroup of dissipative solutions of the Hunter-Saxton
system (1.3), defined in Definition 3.14, was shown to exists in Theorem 3.15.
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Dissipative multipeakons exist as demonstrated in Definition 3.1 and Lemma
3.4.
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