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Abstract—We propose optimization strategies for cooperating
households with renewable energy generation and storage
facilities. We consider two configurations: 1) households with
shared access to an energy farm, and 2) households with
their own renewable energy generator and storage device. The
participants in the second configuration are allowed to exchange
energy through the grid. Assuming location and time dependent
electricity prices, and parametrized transfer fees, we formulate
two optimization problems to minimize the energy cost incurred
by the participating households in each configuration. We
determine the optimal energy management strategies by solving
the corresponding mathematical problems through relaxation
and discretization. The proposed energy management strategies
are genie-aided, and hence, they can be used to benchmark
and devise online algorithms based on forecasting techniques.
Finally, numerical results are provided to compare the two
configurations.

Index Terms—Renewable energy, optimization, cooperation.

I. INTRODUCTION

The production of solar energy has become cheaper in
recent years, and as a result, more users have installed
solar panels in their homes [1]. It is therefore interesting
to investigate how this locally-generated renewable energy
(RE) can be optimized to reduce energy costs, especially
when electricity prices are time-varying.

Households are subject to time-varying electricity prices
when they subscribe to demand response programs that
are meant to reduce peak energy consumption and make
distribution networks more efficient [2]. Designing RE man-
agement strategies is challenging because the RE generation
is characterized by intermittency and geographic variability.

A valid approach to enhance the utility of the RE is
to introduce energy storage devices (ESDs) to defer power
consumption to periods of low RE production [3]. A different
approach is to use cooperative schemes to exploit variations
in the RE production across locations [4].

In terms of the RE production and storage configuration,
there are two approaches to cooperative energy management:
1) users can share access to a central facility where RE is
generated and stored (often referred to as a farm), and 2)
users can deploy their own RE generators and share energy
through the grid, or dedicated powerlines (e.g., if they belong
to the same organization).

In these two scenarios we propose strategies to minimize
the energy cost incurred by the participating households
over a finite planning horizon. To ensure generality, we
assume variations of the electricity prices, loads and RE
generation profiles, both across location and time. Moreover,

we assume energy transfer fees which range from 0 to the
energy prices at the receiving user, thus accounting for all
practical scenarios, including connection through dedicated
power lines, which do not incur transfer fees.

The main contribution of this paper is a mathematical
framework that can be used to devise strategies to minimize
the energy cost incurred by a group of grid-tied households
with RE assets. The proposed framework accounts for lo-
cation and time dependent energy prices, and parametrized
transfer fees. Moreover, it allows us to compare two ap-
proaches to collective RE management, namely cooperation
with distributed RE generation (DREG), and cooperation
with centralized RE generation (CREG).

Existing works on building/house energy management
focus on scheduling deferrable appliances to achieve cost
minimization, e.g. [3], [5]–[7]. Some of these works account
for comfort constraints, e.g. [5] and [7], others consider
intermittent loads (electrical vehicles) [6], and only a few
take into account storage devices, such as [3].

Energy management strategies (EMSs) based on evolution-
ary algorithms have been proposed in [8] and [9]. However,
these strategies do not always achieve optimality. Solutions
based on game theory have been proposed in [10] and
[11], and RE trading systems have been studied in [12].
Cooperative EMS have been proposed in [4], [13]–[22].
However, this is the first time that a comparison between
cooperative schemes with CREG and DREG is investigated,
especially from the perspective of the users.

The contributions of this work are the following: First,
we propose an optimization framework to compare two
approaches to cooperative RE management, the first with
CREG, and the second with DREG. To do so we solve
challenging optimization problems through relaxation and
discretization. Second, the proposed strategies guarantee
any user comfort requirements throughout the optimization
horizon, as the households’ power consumption is assumed
to be non-deferrable. Third, through simulations this work
illustrates the conditions under which one configuration
outperforms the other, thus providing valuable insights for
energy planning.

II. SYSTEM MODEL

A. Planning Horizon, Objective, and Decision Variables

We consider M grid-connected households, and propose
EMSs to minimize their collective energy cost over the
planning horizon [0, T ], where T > 0. Each household is
subject to different energy consumption patterns. The power
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Fig. 1. CREG (left) and DREG (right). REMU stands for renewable energy
management unit.

consumed by the ith household is denoted by Li(t) ≥
0, ∀ t ∈ [0, T ], and is assumed to be non-deferrable.1 The
decision variables are the charging and discharging schedules
of the ESDs.

B. Renewable Energy Production and Storage Configura-
tions

We consider two system configurations, namely a system
with CREG, and a system with DREG. These two configu-
rations are illustrated in Fig. 1.

1) CREG: In this configuration, households share access
to a farm, where RE is generated and stored. The power
drawn from the farm by the ith household is denoted by
Di(t). Hence, the power drawn from the grid by the ith
household is Li(t)−Di(t), where Di(t) satisfies:

Di(t) ≤ Li(t), ∀ t. (1)

2) DREG: In this configuration, each household has its
own RE generator and ESD. Hence, to cooperate, households
share their RE through the grid, which may incur transfer
fees. The power transferred from household i to household
j is denoted by Πi,j(t). Similarly, the total power received
by household i from others is Γi(t), while the total power
transferred from the same household to others is Θi(t), i.e.,

Γi(t) =

M∑
j 6=i

Πj,i(t), Θi(t) =

M∑
j 6=i

Πi,j(t), ∀ t. (2)

C. Energy Storage Devices (ESDs)

The ESDs in both configurations are characterized by:

• Charging/discharging losses. The charging/discharging
efficiency rates of the ESD at the energy farm are
respectively denoted by α and β, and satisfy 0 < α ≤ 1
and 0 < β ≤ 1. The charging/discharging efficiency
rates of the ESD at the ith household are respectively αi

and βi, and also satisfy 0 < αi ≤ 1 and 0 < βi ≤ 1. A
lossless charging (discharging) operation happens when
the charging/discharging efficiency rate is 1.

• Bounded storage capacity. The sizes of the ESDs are
assumed finite in both configurations.

• Bounded charging/discharging rates. The amount of
power that can be charged to or discharged from the
ESDs is upper limited in both configurations.

1The load is assumed inflexible to ensure that comfort requirements are
satisfied over the entire planning horizon.

D. Pricing Scheme

To maintain generality, we consider location and time
dependent electricity prices. The cost of the energy
consumed by the ith household in [0, T ] is ξi =∫ T

0
Pi(t) [Li(t)−Di(t)] dt, where Pi(t) is the pricing func-

tion, and Di(t) satisfies (1). The cost of the energy consumed
by the entire group of households is thus χ =

∑M
i=1 ξi. This

model generalizes pricing schemes in the discrete domain.
Throughout this paper, the functions Pi(t)’s are assumed
known to the consumers in advance.2

III. CENTRALIZED RENEWABLE ENERGY GENERATION

A. Constraints

Let J(t) denote the energy available in the ESD over time,
i.e.,

J(t) = J(0) +

∫ t

0

[
αC(x)− 1

β

M∑
i=1

Di(x)

]
dx, (3)

where C(t) is the power charged into the ESD. Given the
limited storage capacity, and the causality constraint, C(t)
and the Di(t)’s must be such that

0 ≤ J(t) ≤ Ψ,∀ t ∈ [0, T ], (4)

where Ψ is the capacity of the ESD at the energy farm. The
bound imposed on the charging and discharging rates results
in the following constraints:

C(t) ≤ min{qC , R(t)},
M∑
i=1

Di(t) ≤ qD, ∀ t ∈ [0, T ],

(5)
where R(t) is the RE generated over time, and qC and qD
are respectively the maximum charging and discharging rates
of the ESD at the farm.

B. Problem Formulation

With CREG, the decision variables are the Di(t)’s and
the C(t). Therefore, the following optimization problem
can be formulated to determine the optimal EMS in this
configuration:

P0: min
C(t),D1(t),...,DM (t)

χ

s.t. (1), (4), (5).

In P0, J(t) and the Di(t)’s are connected through (3). P0
is not a convex optimization problem because its objective
is a sum of functionals (not functions), its decision variables
are trajectories (not scalars or vectors), and it has an infinite
number of constraints, as stated in (4) and (5). Therefore,
we need to introduce some relaxations in order to find an
approximate solution. A numerical solution can be obtained
by introducing discretization in time. The problem resulting
from the discretization can be cast as a linear program, and
solved by using existing algorithms. Linear programming
problems are solved by using iterative algorithms, and they
do not have solutions in closed form. In fact, the dual

2The utility designs the functions Pi(t)’s to influence the users’ grid
energy consumption.



of a linear program is another linear program, and the
Karush–Kuhn–Tucker conditions are meaningless in linear
programming.

IV. DISTRIBUTED RENEWABLE ENERGY GENERATION

We formulate a mathematical problem to determine the
optimal EMS in the configuration with CREG.

A. Considerations

1) Power Transfer Matrix: To simplify notation, we define
the power transfer matrix Π(t) as Π(t) , [Πi,j(t)], where
Πi,j(t) ≥ 0, ∀ i, j, t. Since the power exchange cannot
happen simultaneously, the elements of Π(t) must satisfy:

Πi,j(t)Πj,i(t) = 0, ∀ t, ∀ i 6= j. (6)

The diagonal elements of Π(t) can be thought of as the
renewable power that the ith household draws from its own
ESD. Hence, we can let Πi,i(t) = Di(t) ∀ i, ∀ t.

2) Transfer Charges: To maintain generality, we assume
that the transfer fees are proportional to the energy rates of-
fered at the receiving household. Therefore, the cost incurred
by the set of households in moving

∑M
i=1 Θi(t) across the

network is:

ε =

M∑
i=1

ρ

∫ T

0

Pi(t)Θi(t)dt, (7)

where 0 ≤ ρ ≤ 1 is a parameter introduced to ensure
generality.

B. Constraints

The energy available in the ESD at the ith household is
Ji(t), and satisfies

Ji(t) = Ji(0) +

∫ t

0

[
αiCi(x)− 1

βi
[Di(x) + Θi(x)]

]
dx,

(8)
where Ci(t) and Di(t) are, respectively, the power charged
to the ith ESD, and the power used up by the ith household.
Given the limited storage capacity of the ESD, and the
causality constraint, the Ci(t)’s and the Di(t)’s must be such
that

0 ≤ Ji(t) ≤ Ψi,∀ t ∈ [0, T ], (9)

where Ψi is the storage capacity of the ESD at the ith house.
Following the energy conservation principle, total received
and transferred power among users must satisfy:

M∑
i=1

Γi(t) =

M∑
i=1

Θi(t), ∀ t. (10)

Let Ri(t) be the RE generated at the ith facility. Then, given
the limited charging and discharging rates, the following
constraints must be imposed on Ci(t) and Di(t):

Ci(t) ≤ min{qC,i, Ri(t) + Γi(t)}, ∀ t,∀ i, (11)

and
Di(t) + Θi(t) ≤ qD,i, ∀ i, ∀ t ∈ [0, T ], (12)

where qC,i and qD,i are respectively the maximum charging
and discharging rates of the ESD at the ith house.

C. Problem Formulation

With the considerations explained in Secs. IV-A1 and
IV-A2, the optimization problem can be cast in terms of the
decision variables Π(t) and the Ci(t)’s as follows:

P1A: min
C1(t),...,CM (t),Π(t)

χ+ ε

s.t. (1), (6), (9)− (12).

In P1A, the Ji(t)’s and Π(t) are connected through (8).
The quantities Γi(t) and Θi(t) were defined in terms of
Π(t) in (2). P1A is not a convex optimization problem
because its objective is a functional (not a function), its
decision variables are trajectories (not vectors or scalars),
and it involves an infinite number of constraints, stated in
(9)–(12).

An alternative formulation can be obtained by casting the
problem directly in terms of the Ci(t)’s, the Di(t)’s, the
Θi(t)’s, and the Γi(t)’s. Consequently, we can find the power
transfer matrix by solving the system of linear equations
defined by (2) and (6). Thus, the optimization problem can be
formulated in terms of the Ci(t)’s, the Di(t)’s, the Θi(t)’s,
and the Γi(t)’s as follows:

P1B: min
Ci(t),Di(t),Θi(t),Γi(t), i ∈ {1,...,M}

χ+ ε

s.t. (1), (9)− (12).

In P1B, the Ji(t)’s, the Di(t)’s, and the Θi(t)’s are connected
through (8). Again, P1B is a non-convex optimization prob-
lem, which we relax to find an approximate solution through
discretization and linear programming.

V. NUMERICAL RESULTS

We provide simulation results to compare the EMSs pro-
posed in the paper. The proposed strategies can be compared
in terms of the achievable cost savings and the RE unused
due to ESD overflow. Let D∗1(t), . . . , D∗M (t) denote the
optimal discharging profiles obtained by solving P0 and P1B
respectively. Then, the RE unused in the centralized scheme
is:

REUC =

∫ T

0

[
R(t)−

M∑
i=1

D∗i (t)

]
dt. (13)

Similarly, the RE unused in the distributed scheme is:

REUD =

M∑
i=1

∫ T

0

[Ri(t)−D∗i (t)] dt. (14)

Unless otherwise stated, throughout this section we
consider the simulation parameters shown in Table I, where
minPrice, maxPrice, minLoad, maxLoad, minGen, maxGen
are all real numbers chosen arbitrarily so as to consider
various simulation scenarios. Throughout this section storage
capacities are stated in generic energy units [EU], and the
energy cost is stated in monetary units [MU]. The results
presented in this section are obtained by averaging over
ten thousand realizations of the random quantities involved
in the problem (RE generation and power consumption).
Random pricing trajectories are considered to ensure the
generality of the results. The uniform distribution is chosen



for the prices, the RE generation, and the load, because it
reflects total uncertainty about a random quantity given that
we know its lower and upper limit.3

TABLE I
SIMULATION SCENARIOS

Parameter Value
{T, ∆t, M, J(0), ρ} {23, 1, 2, 0, 0}
Pi(t) ∼ U(minPrice,maxPrice), i ∈

{1, . . . ,M}
Li(t) ∼ U(minLoad,maxLoad), i ∈

{1, . . . ,M}
Ri(t) ∼ U(minGen,maxGen), i ∈ {1, . . . ,M}
R(t)

∑M
i=1Ri(t)

qC max
{

Ψ
∆t
,MmaxGen

}
qD max

{
Ψ
∆t
,MmaxLoad

}
qC,i max

{
M Ψi

∆t
,MmaxGen

}
qD,i max

{
M Ψi

∆t
,MmaxLoad

}
Ψi Ψ1, ∀ i
{α, β, Ψ} {1, 1, MΨi}

We consider the simulation scenario shown in Table I,
except for R(t), which we choose uniformly distributed
between minGen, and MmaxGen. Other parameters are set
as follows minLoad = 1, maxLoad = 1, minGen = 0,
maxGen = {1, 2}, minPrice = 0, maxPrice = 1. Then,
we plot the average energy cost incurred in [0, T ], and the
average amount of RE unused, both against the storage size
Ψi, which ranges from 1 to 10 [EU], in Fig. 2. As observed,
in this scenario the configuration with DREG outperforms
the configuration with energy farm. This follows because the
variability in the RE generation is different in each configu-
ration. In the configuration with DREG, the independence of
the random variables R1(t) and R2(t) models geographical
diversity. Although the average RE generation is the same in
both configurations, the variance of R(t) is larger than the
variance of R1(t)+R2(t). The performance gap between the
two configurations is not significantly affected by the change
in the RE generation capacity. It is observed, however, that
the gap between the two configurations decreases as the
storage capacity increases, as there is less RE unused when
the storage capacity is large.

We consider the simulation scenario shown in Table I,
except for qC,i, qD,i, qC and qD, which we set as follows:
qC,i = 0.2 Ψi

∆t , qD,i = 0.2 Ψi

∆t , qC = 0.2 Ψi

∆t and qD = 0.2 Ψi

∆t .
Moreover, we let minLoad = 1, maxLoad = 1, minGen = 0,
maxGen = {1, 2}, minPrice = 0, and maxPrice = 1. Then,
we plot the average energy cost incurred in [0, T ], and the
average amount of RE unused, both against the storage size
Ψi, which ranges from 1 to 10 [EU], in Fig. 3. As observed,
in this scenario the configuration with DREG outperforms
the configuration with energy farm. This follows because
the maximum charging and discharging rates are higher
in the configuration with DREG, i.e. qC,1 + qC,2 > qC
and qD,1 + qD,2 > qD. As seen in Fig. 3, lower charg-
ing/discharging rates lead to larger RE unused, and lower

3We assume that prices, loads and RE generation are all upper bounded,
and their natural lower bound is 0.
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Fig. 2. DREG outperforms CREG due to statisitcal diversity. Parameters:
maxGen = 1 (top) and maxGen = 2 (bottom).

cost savings. However, the gap between the two strategies
reduces as the storage capacity increases. If the generation
capacity increases, then a larger ESD is required to achieve
similar performance in both configurations. As expected,
the amount of RE unused in [0, T ] increases with the RE
generation capacity.
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Fig. 3. DREG outperforms CREG due to larger discharging rates. Param-
eters: maxGen = 1 (top) and maxGen = 2 (bottom).

We consider the simulation scenario shown in Table I,
except for qC,i, qD,i, qC and qD, which we set as follows:
qC,i = 0.2 Ψi

∆t , qD,i = 0.2 Ψi

∆t , qC = 0.2M Ψi

∆t and qD =
0.2M Ψi

∆t . Other parameters are set as follows: minLoad = 1,
maxLoad = 1, minGen = 0, maxGen = {1, 2}, minPrice =
0, and maxPrice = 1. Then, we plot the average energy cost
incurred in [0, T ], and the average amount of RE unused,



both against the storage size Ψi, which ranges from 1
to 10 [EU], in Fig. 4. As observed, in this scenario the
configuration with energy farm outperforms the configuration
with DREG. This follows because the maximum charging
and discharging rates are the same in both configurations,
i.e. qC,1 + qC,2 = qC and qD,1 + qD,2 = qD, and the config-
uration with energy farm has a higher level of flexibility to
move RE to the location with the highest prices, while the
configuration with DREG is constrained by the limit in the
charging/discharging rates (qC,i = 0.2 Ψi

∆t , qD,i = 0.2 Ψi

∆t ).
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Fig. 4. CREG outperforms DREG due to larger discharging rates. Param-
eters: maxGen = 1 (top) and maxGen = 2 (bottom).

VI. CONCLUSIONS

We have proposed cooperation schemes with different
energy production and storage configurations. In the first
configuration we have considered a set of households with
shared access to a farm, where renewable energy is generated
and stored. In the second configuration we have assumed
households with their own renewable energy generator and
storage device. We have then proposed strategies to minimize
the energy cost incurred by the participating households
in each configuration. To devise our strategies, we have
solved constrained optimization problems through relaxation
and discretization. Simulation results have shown that the
proposed strategies can lead to significant cost savings in
both schemes. We have also illustrated the conditions under
which one configuration outperforms the other. All else
unchanged, the configuration with distributed generation was
able to outperform the configuration with energy farm due
to statistical differentiation across generators. In general,
the configuration with higher energy management flexibility
(in terms of charging/discharging rates) was shown to have
the greatest savings potential. The strategies proposed can
be used to devise online energy management algorithms
by incorporating forecasting techniques to estimate future
energy production and power consumption.
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