
The Smart-Vercauteren Fully
Homomorphic Encryption Scheme

Vidar Klungre

Master of Science in Physics and Mathematics

Supervisor: Kristian Gjøsteen, MATH

Department of Mathematical Sciences

Submission date: June 2012

Norwegian University of Science and Technology

Abstract

We give a review of the Smart-Vercauteren fully homomorphic encryp-
tion scheme presented in 2010. The scheme follows Craig Gentry’s
blueprint of first defining a somewhat homomorphic encryption scheme,
and prove that it is bootstrappable. This is then used to create the fully
homomorphic scheme. Compared to the original paper by Smart and
Vercauteren, we give a more comprehensive background, and explains
the concepts of the scheme more in detail. This text is therefore well
suited for readers who find Smart and Vercauteren’s paper too brief.

Samandrag

Vi gir ein utvida presentasjon av Smart og Vercauteren sitt fullstendig
homomorfe kryptosystem som vart utgitt i 2010. Kryptosystemet brukar
samme mal som Craig Gentry brukte for sitt fullstendig homomorfe
kryptosystem, ved å først definere eit kryptosystem som er delvis ho-
momorft, for s̊a å konstruere eit som er fullstendig homomorft. Denne
rapporten vil vere meir omfattande enn den orginale artikkelen, derfor
vil den vere nyttig for lesarar som synest at Smart og Vercauteren sin
tekst er for lite detaljert.

1

2

Contents

1 Introduction 5
1.1 Fully Homomorphic Encryption . 5
1.2 Sections Overview . 7

2 Preliminaries 9
2.1 Public Key Encryption . 9
2.2 Gentry’s Construction . 10
2.3 Notation . 11

3 The Somewhat Homomorphic Scheme 15

4 Algebraic Number Theory Background 17
4.1 The AKLB-setup . 17
4.2 Ideals and Norms . 20
4.3 The Ideal p created in KeyGen . 23

5 Correctness of the Scheme 25
5.1 Definitions . 25
5.2 Encrypt . 26
5.3 Decrypt . 27
5.4 Mult and Add . 31
5.5 Choice of Parameters . 32

6 Security Analysis 35
6.1 Onewayness of Encryption . 35
6.2 Key Recovery . 36
6.3 Semantic Security . 37

7 Fully Homomorphic Encryption 39
7.1 Fully Homomorphic Key Generation 39
7.2 Security of the Fully Homomorphic Scheme 41
7.3 Precision and Rounding . 41

8 The Decryption Circuit 43

3

4 CONTENTS

9 The Recrypt Algorithm 51
9.1 Presenting the Recrypt Algorithm . 51
9.2 Error Analysis of Recrypt . 53

10 Conclusion 59
10.1 Theoretical Results . 59
10.2 Implementation Results . 63

Chapter 1

Introduction

To explain homomorphic encryption we consider unpadded RSA. Given the public
key (m, e) and the encryption algorithm

ci = Encrypt(Mi) = Me
i mod m,

then the following holds:

Encrypt(M1 ·M2) = Me
1 ·Me

2 mod m

= (M1 ·M2)e mod m

= Encrypt(M1) · Encrypt(M2).

So if one decrypts Encrypt(M1) · Encrypt(M2), one obtains M1 ·M2. This shows
that RSA is homomorphic with respect to multiplication.

In general, an encryption scheme is homomorphic with respect to the binary oper-
ator ∗ if there exists a corresponding binary operator ∗′ s.t.

Encrypt(M1 ∗M2) = Encrypt(M1) ∗′ Encrypt(M2)

holds for all messages M1,M2 in the plaintext space P of the scheme.

1.1 Fully Homomorphic Encryption

We will in this paper review an example of what we call a fully homomorphic
encryption scheme (FHE scheme). This is an encryption scheme where we can
do any operation homomorphically, not only one single multiplication, or another
binary operator. Indeed we can do as many such operations as we like to with a
fully homomorphic scheme

5

6 CHAPTER 1. INTRODUCTION

Assume we are working with bits, like we often do. Then addition and multipli-
cation modulo 2 is functionally complete. Recall that an AND gate is the same
operation as multiplication modulo 2, and an XOR gate equals addition modulo 2.
Hence if we can run any boolean circuit consisting of only AND gates and XOR
gates, then we have obtained fully homomorphic encryption. When we say any
circuit, we here mean circuits of arbitrary depth, not only circuits up to a given
depth. This is an important requirement, since practical circuits tend to be very
deep.

Fully homomorphic encryption has many useful applications, e.g in cloud com-
puting. Unfortunately there do not exist any practical implementation today.
However, researchers are making progress, and the last few years the number of
publications related to FHE has grown drastically.

Craig Gentry’s work

In 2009 Craig Gentry made a breakthrough when he presented the first fully homo-
morphic encryption scheme [4]. He started by creating what he called a somewhat
homomorphic scheme (SWHE scheme), which is a scheme that can evaluate boolean
circuits homomorphically, but only up to a given depth.

Such SWHE schemes are easier to find than fully homomorphic schemes directly,
and Gentry’s method for constructing a fully homomorphic encryption scheme from
a SWHE scheme is well described and easy to adapt to other SWHE schemes.

Gentry used a SWHE scheme based on ideal lattices, and he could therefore prove
security by using well-studied lattice problems. Although his work was a huge
theoretical discovery, it does not work well in practice when sufficient security is
required.

Smart and Vercauteren’s work

Gentry’s work inspired others to make schemes based on the same idea, like [6]
written by N. P. Smart and F. Vercauteren in 2010. They made a different fully
homomorphic encryption scheme based on a different SWHE scheme than the one
Gentry used.

The main purpose of this paper is to give an extended review of the Smart-
Vercauteren-scheme. The scheme is of course explained by the authors themselves
in [6], but the paper is short and some details are omitted. We will here give a full
review which explains the scheme in detail, in addition to the background needed
to understand it.

Like Gentry’s scheme, the Smart-Vercauteren-scheme works well in theory, but not
in practice. However, the theory is interesting, and the ideas are worth reviewing.
For actual performance results see Section 10.

1.2. SECTIONS OVERVIEW 7

This review is naturally highly influenced by [6], but we will often also refer to
Gentry’s work [4].

1.2 Sections Overview

The actual SWHE scheme is presented in Section 3, but before that we will give a
more complete summary of Gentry’s idea in Section 2. This section also contains
an overview of notation needed to understand the SWHE scheme.

In Section 4 we explain some of the algebraic number theory needed to understand
the SWHE scheme. We choose to present this after the actual scheme, because
then it is easier to relate the theory directly to the scheme we present. The actual
analysis of the SWHE scheme is given in Section 5, while the security aspects of
the SWHE scheme are discussed in Section 6.

In Section 7 we start the construction of the fully homomorphic scheme by redefin-
ing the key generation algorithm. Then we construct a circuit CD which performs
decryption in Section 8. In Section 9 this decryption circuit is used to create the
algorithm Recrypt needed in the fully homomorphic scheme. Finally in Section 10
we summarize and give the final conclusion.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

The goal of this section is to give the background needed before presenting the
actual SWHE scheme. First we will review the work done by Gentry, which is
needed to understand important concepts of SWHE schemes in general. Then
comes a short part with important definitions which should clarify the notation
we use when we present the SWHE scheme, but also in the remaining part of this
paper.

In order to achieve full understanding of the SWHE scheme we present, we need
a more complete review of the algebraic number theory used. This review is not
given here, but follows in Section 4 after we have presented the SWHE scheme.

2.1 Public Key Encryption

A conventional public key encryption scheme consists of the three standard algo-
rithms KeyGen, Encrypt and Decrypt. KeyGen is used to set the plaintext space P
and the ciphertext space C. It also generates and returns the public key PK, and
the secret key SK, which will be used for encryption and decryption. It is common
to define P = {0, 1}, and we will also do this for our scheme. In other words, we
are encrypting bits.

The algorithm Encrypt takes as input a plaintext message M ∈ P and the public
key PK. It returns a ciphertext c ∈ C, a valid encryption of M . Since PK is public,
anyone can encrypt messages.

Decrypt takes as input a ciphertext in C, in addition to the secret key SK, and
returns the plaintext message M corresponding to the ciphertext. This can only
be done by users that possess the secret key SK, which usually is the one which
runs KeyGen.

9

10 CHAPTER 2. PRELIMINARIES

Homomorphic Encryption

A homomorphic encryption scheme has, in addition to the three standard algo-
rithms, a fourth algorithm called Evaluate. This algorithm takes as input the public
key PK, a boolean t-input circuit Ct, and a vector containing t ciphertexts c1, . . . , ci

where ci
R←− Encrypt(Mi,PK). The Evaluate algorithm returns a ciphertext c such

that

Decrypt(c,SK) = Ct(M1, . . . ,Mt).

In other words, Evaluate evaluates circuits homomorphically. In the scheme we
present here, we have replaced the Evaluate by two algorithms Add and Mult.
They are used to perform respectively addition and multiplication homomorphi-
cally, which is sufficient since we are working with bits in F2. If we need to evaluate
larger circuits, we simply use Add and Mult multiple times.

2.2 Gentry’s Construction

Our goal is to create a scheme we can use to evaluate boolean circuits of arbitrary
length. It has appeared to be very hard to find such schemes directly. Gentry solved
this problem by first finding what he calls a somewhat homomorphic encryption
scheme (SWHE scheme). A SWHE scheme is much easier to find than a fully ho-
momorphic encryption scheme, and it does not differ too much. The SWHE scheme
is then used as basis when the fully homomorphic scheme is constructed.

Noise of Ciphertexts

In the SWHE schemes we work with, each ciphertext has a small error. This error
is often called noise, and is not critical if it is small. A ciphertext which is a direct
result of Encrypt, is what we call a clean ciphertext. Such ciphertexts have a very
low amount of noise, and decryption of it will always be correct.

Now consider a ciphertext c which is the result of Evaluate. This c typically has
a larger noise value than the input ciphertexts of Evaluate. In other words, homo-
morphic evaluation results in a ciphertext with larger error.

As indicated, the noise of a ciphertext is not a problem before it reaches a given
value. But if the error exceeds this value, Decrypt will fail to return the decryption
of the ciphertext.

Since the noise grows as we evaluate homomorphically, we get a problem if we try to
evaluate deep circuits. The result will have a too large noise value, and decryption
will fail. This is the difference between a SWHE scheme and a FHE scheme; we
can only evaluate circuits up to a limited depth.

2.3. NOTATION 11

In the Smart-Vercauteren-scheme, each ciphertext c has a corresponding polyno-
mial C(x) =

∑t−1
i=0 cix

i, and the noise equals the absolute value of the largest of
the coefficients in C(x). We often denote this value by ‖C(x)‖∞, i.e.

‖C(x)‖∞ = max
i=0,...,t

|ci|.

Decryption will fail if ‖C(x)‖∞ exceeds a limit, denoted by rDec. This can be
though of as the largest ”radius” C(x) can have. We will later calculate rDec for
our scheme.

Recrypt

Since the noise grows as we evaluate circuits homomorphically, it would be useful to
have an algorithm which reduces it. Gentry makes such an algorithm, and he calls
it Recrypt. The Recrypt algorithm takes as input a ciphertext c with a large amount
of noise, and the public key PK, and returns a clean ciphertext cnew. Notice that
Recrypt does not remove all the error, it just sets the error to a relatively low level.

With this Recrypt algorithm we can evaluate circuits of arbitrarily length by doing
one level at a time, and recrypt between each level to prevent the noise from growing
above rDec.

Gentry proved that if the SWHE scheme is able to evaluate its own decryption
algorithm homomorphically, then it is possible to obtain the Recrypt algorithm. He
calls such SWHE schemes bootstrappable. In Section 5 we show how we should set
our parameters to make our SWHE scheme bootstrappable. After than we will
construct the Recrypt algorithm which is needed in the FHE scheme.

2.3 Notation

We here give a few important definitions which will be useful later.

Norms and Balls

Definition 2.3.1. Given a polynomial g(x) =
∑t
i=0 gix

i ∈ Z[x] we define the
2-norm and the ∞-norm as

‖g(x)‖2 =

√√√√ t∑
i=0

g2
i and ‖g(x)‖∞ = max

i=0...t
|gi| .

Definition 2.3.2. For a positive value r, we define two corresponding types of
”ball” centered at the origin:

B2,N (r) =

{
N−1∑
i=0

aix
i :

N−1∑
i=0

a2
i ≤ r2

}

12 CHAPTER 2. PRELIMINARIES

and

B∞,N (r) =

{
N−1∑
i=0

aix
i : −r ≤ ai ≤ r

}
,

where all ai ∈ Z.

Resultant and Sylvester Matrix

Definition 2.3.3. Given two polynomials F (x) =
∑M
i=0 fix

i, G(x) =
∑N
i=0 gix

i ∈ Z[x],
we define the resultant of F (x) and G(x) as

resultant(F (x), G(x)) =
∏

F (r)=0

G(r)

We denote the Sylvester matrix of F (x) and G(x) by Syl(F,G) and it is the
(M + N) × (M + N) matrix, where all entries equal the coefficients in either
F (x) or G(x), or zero. The first row is (fM , fM−1, . . . , f0, 0, . . . , 0), and the next
(N − 1) rows are equal to the previous row, just shifted one column to the right.
The (N + 1)th row is (gN , gN−1, . . . , g0, 0, . . . , 0), and the next (M − 1) rows are
equal to the previous one, just shifted one column to the right. We then end up
with the matrix

Syl(F,G) =

fM fM−1 . . . f0

fM fM−1 . . . f0

. . .
. . .

. . .

fM fM−1 . . . f0

fM fM−1 . . . f0

gN gN−1 . . . g0

gN gN−1 . . . g0

. . .
. . .

. . .

gN gN−1 . . . g0

gN gN−1 . . . g0

where all empty cells are zero entries.

Syl(F,G) can be used to calculate useful properties of F (x) and G(x), like the
resultant. In general we have that det(Syl(F,G)) = resultant(F,G).

2.3. NOTATION 13

Miscellaneous

All reductions modulo an odd integer n is defined to result in a value in the range[
−n− 1

2
,
n− 1

2

]
unless otherwise stated.

For a real number a, we will use bae to denote the integer closest to a, and for
a polynomial p(x) = p0 + p1x + · · · + pkx

k ∈ R[x] we will let bp(x)e denote the
polynomial p̄(x) in Z[x] satisfying p̄(x) = bp0e + bp1ex + · · · + bpkexk. In other
words, bp(x)e rounds the coefficients of p(x).

14 CHAPTER 2. PRELIMINARIES

Chapter 3

The Somewhat
Homomorphic Scheme

We now present the Smart-Vercauteren scheme, and we denote it by Π, i.e.

Π = (KeyGen,Encrypt,Decrypt,Add,Mult).

Π is controlled by the triple of parameters (N ,η, µ). A typically set of parameters

would be (N, 2
√
N ,
√
N). Later we will see how these parameters should be chosen,

and how they affect the performance of the scheme.

KeyGen():
- P = {0, 1}.
- Pick a monic irreducible polynomial F (x) ∈ Z[x] of degree N .
- Do:

- S(x)
R←− B∞,N (η/2).

- G(x)← 1 + 2 · S(x).
- p← resultant(G(x), F (x)).

- Until p is prime.

- D(x)← gcd(G(x), F (x)) over Fp[x].
- Let α ∈ Fp be the unique root of D(x).

- Apply XGCD over Q[x] to obtain Z(x) =
∑N−1
i=0 zix

i s.t.

Z(x) ·G(x) = p mod F (x).

- B ← z0 mod 2p.
- Return PK = (p, α) and SK = (p,B).

15

16 CHAPTER 3. THE SOMEWHAT HOMOMORPHIC SCHEME

Encrypt(M,PK): Decrypt(c, SK):
- If M 6∈ {0, 1} then abort. - Return M ← (c− bc ·B/pe) mod 2.

- R(x)
R←− B∞,N (µ/2).

- C(x)←M + 2 ·R(x).
- c← C(α) mod p.
- Return c.

Add(c1, c2,PK): Mult(c1, c2,PK):
- Return (c1 + c2) mod p. - Return (c1 · c2) mod p.

In KeyGen, P is set to be {0, 1}. This means that we are encrypting bits only. After
that F (x) is defined, a monic polynomial irreducible over Z with degree N . F (x)
is not chosen randomly from the set of monic irreducible polynomials, so the one
who runs KeyGen can choose a suitable F (x). A typical choice for F (x) is xN + 1,
where N = 2n for some n.

Next we pick S(x)
R←− B∞,N (η/2) and set G(x)← 1 + 2 ·S(x) and repeat this until

resultant(G(x), F (x)) is a prime number. At this point we have defined F (x), G(x)
and a prime p = resultant(G(x), F (x)). p will define the size of the ciphertext space
C, as we will see.

Further we set D(x) ← gcd(G(x), F (x)) over Fp[x]. D(x) will have exactly one
root in Fp, and we denote this by α. This α will be used in the public key PK.

Now we find Z(x) =
∑N−1
i=0 zix

i s.t. Z(x) · G(x) = p mod F (x). From this we
define B ← z0 mod 2p. Finally the KeyGen algorithm returns PK = (p, α) and
SK = (p,B).

The Encrypt algorithm only accepts plaintext messages M ∈ {0, 1}. To encrypt
the plaintext message we first add the message to two times a random polynomial
R(x) ∈ Z[x] to obtain the polynomial C(x). Then we evaluate C(x) in α and
reduce modulo p. This results in a ciphertext c ∈ Fp.

The Decrypt algorithm is used to decrypt a ciphertext message c ∈ Fp. We first
multiply it by B/p, and then round the result to the nearest integer. Then the
result is subtracted from c, before we reduce it modulo 2. This results in a message
M ∈ {0, 1}.

Add and Mult are the algorithms used to respectively add and multiply ciphertext

messages homomorphically. They both take two ciphertexts c1
R←− Encrypt(M1,PK)

and c2
R←− Encrypt(M2,PK) as input, together with the public key PK. They output

encryptions of M1 +M2 mod 2 and M1 ·M2 mod 2 respectively.

Chapter 4

Algebraic Number Theory
Background

Before we start analysing the somewhat homomorphic encryption scheme Π, we
need some algebraic number theory background. We will focus on theory which is
needed to do the analysis in later sections, however more distant subjects will also
be reviewed for completeness or to achieve a better understanding.

Most of the theory stated here can be found in either [1], [2] or [5]. If statements
are given here without proofs, these sources should give them.

4.1 The AKLB-setup

We start by defining the so-called AKLB-setup, named after the four rings it con-
sists of; A, K, L and B (K and L are actually fields.). More precisely, we will
discuss the special case where A = Z, K = Q, and L is the number field Q(θ)
where θ is a root in F (x). The AKLB-setup is a common structure in the field of
algebraic number theory, and described in e.g [1]. We will adapt this setup to make
it suitable for our purposes, i.e. we will relate it directly to our SWHE scheme Π.

Consider Z, the ring of integers, which is also an integral domain. This is the
first of the four rings in the AKLB-setup. The second ring we consider is the
field of fractions of Z, which is Q, the rational numbers. Both Z and Q should be
well-known rings for to reader.

A polynomial p(x) ∈ Z is called primitive if the greatest common divisor of its
coefficients is 1. Since F (x) from Π is monic, it must also be primitive. A primitive
polynomial is reducible over Q if and only if it is reducible over Z. Since F (x) is
irreducible over Z, this implies that F (x) is irreducible over Q as well.

Now let θ be a root of F (x). It is irrelevant which root of F (x) we choose, since
the arguments we present later will work for all of them. However, this θ must be

17

18 CHAPTER 4. ALGEBRAIC NUMBER THEORY BACKGROUND

fixed, since the structures we soon will present is based on θ. Notice that θ is not
used in any of the algorithms in Π, so it is actually a hidden parameter for the
users of Π. We will use θ to create a field extension of Q, which will be the third
of the rings in our AKLB-setup.

The Field Extension Q(θ)

Since Q is a subfield of C, there exists a smallest intermediate field extension of
Q which contains θ. We call this field L = Q(θ), and it is the field generated
by Q and θ. This is a simple field extension, since it is generated by the adjunction
of only one element; θ.

According to [2] we have that Q(θ) = Q[θ], where Q[θ] is the ring of all polynomials
in θ with rational coefficients, i.e.

Q(θ) = Q[θ] = {q0 + q1θ + · · ·+ qmθ
m | q0 + q1x+ · · ·+ qmx

m ∈ Q[x]}.

The set {1, θ, . . . , θN−1} forms a basis of Q(θ) over Q. This means that each
element τ ∈ Q(θ) can be written uniquely as

τ = q0 + q1θ + · · ·+ qN−1θ
N−1,

where qi ∈ Q. Q(θ) can therefore be considered a Q-vector space of degree N . The
dimension of this vector space is the degree of the field extension Q(θ)/Q. This
equals N , and since N is finite, Q(θ)/Q is a finite (algebraic) extension of Q.

In the setup we have made so far, we know that Q(θ) ∼= Q[x]/(F (x)). This is a
true statement also for all other roots of F (x), θi for i = 1, . . . , N −1. This implies
that

Q(θ) ∼= Q(θ1) ∼= Q(θ2) ∼= . . . ∼= Q(θN−1).

Since all of these field extensions are isomorphic, it may seem to be irrelevant which
root we choose. That is true, but it is important to use the same root through the
whole setup, since Q(θi) 6= Q(θ) for i = 1, . . . , N − 1.

We have now introduced three of the four rings in our AKLB-setup; A = Z,
K = Q and L = Q(θ) = Q[θ], for the chosen root θ of F (x). This information is
summarized in Figure 4.1.

The Ring of Integers OL

Since L = Q(θ) is an algebraic extension of Q, we know that each element τ ∈ L
satisfies the equation

a0 + a1τ + · · ·+ amτ
m = 0

for some coefficients a0, a1, . . . , am ∈ Q and some m. If τ satisfies the same equation
with coefficients in Z, for some m, we call τ an algebraic integer. The collection of

4.1. THE AKLB-SETUP 19

Q Z

K = = Q(θ)Q[θ]

Figure 4.1: Diagram showing three of the four rings in the AKLB-setup Π is based
on.

all algebraic integers contained in L form a ring and we denote it by OL. We say
that OL is the integral closure of Z in L, and we will call OL the ring of integers.
Since L is algebraic over Q we also know that L is the field of fractions of OL.

Dedekind Domains

We will now show some additional properties of the ring OL, in particular, we will
show that it is what we call a Dedekind domain.

Definition 4.1.1. A Dedekind domain is an integral domain A satisfying the fol-
lowing three conditions:

1. A is a Noetherian ring.

2. A is integrally closed.

3. Every nonzero prime ideal of A is maximal.

Z is a Dedekind domain, because it is a principal ideal domain. This implies that
OL also has to be a Dedekind domain according to [1]. The fact that OL is a
Dedekind domain will be useful later.

Now consider Z[θ], the ring of all polynomials in θ with coefficients in Z. Since
F (θ) = 0, we can replace all terms of degree higher than N − 1 with lower degree
terms, defined by the equation F (θ) = 0. Therefore the following set will define
Z[θ] completely:

Z[θ] = {z0 + z1θ + · · ·+ zN−1θ
N−1|zi ∈ Z}.

Take an element τ = z0 + z1θ + · · · + zN−1θ
N−1 ∈ Z[θ]. Here zi is a root in the

polynomial x−zi ∈ Z[x] and θ is a root in F (x) ∈ Z[x], hence zi ∈ OL and θ ∈ OL.
We earlier established that OL is a ring, hence it must also include all sums of
products of these elements, including τ . This proves that

Z[θ] ⊆ OL.

For the parameter choices we typically use, we often have the case where Z[θ] = OL.
The rules set in KeyGen does not ensure this, so it is not true in general. However

20 CHAPTER 4. ALGEBRAIC NUMBER THEORY BACKGROUND

our scheme works with ideals in Z[θ] that are assumed coprime with the index
[OL : Z[θ]], so we may as well assume that Z[θ] = OL. From this point we will
denote this ring by Z[θ], and just remind the reader occasionally that Z[θ] = OL.

We have now set up the complete AKLB-setup of four rings A = Z, K = Q,
L = Q(θ) = Q[θ] and B = Z[θ] = OL. Z and Z[θ] are Dedekind domains, while Q
and Q(θ) are fields. The rings satisfy

Z ⊆ Q ⊆ Q(θ) and Z ⊆ OL ⊆ Q(θ).

In addition we know that Q and Q(θ) are the fields of fractions of Z and Z[θ]
respectively.

We can now add OL to the diagram in Figure 4.1, and we end up with the diagram
in Figure 4.2 which summarizes the AKLB-setup.

Q Z

K = Q[θ] = Q(θ) OL = Z[θ]

Figure 4.2: Diagram showing the complete AKLB-setup.

We will continue to work with the AKLB-setup, mostly with the Dedekind do-
mains Z and OL, and eventually we will see how all this can be related to our
SWHE scheme Π.

4.2 Ideals and Norms

Consider ideals in the Dedekind domain Z[θ] = OL. These ideals have the property
that they can be factorized uniquely as a product of prime ideals. Given an ideal
I ⊆ Z[θ], we can express it as

I = pm1
1 · pm1

2 · · · · · pm1
m ,

where the pi are prime ideals and mi ∈ Z+. We will take a closer look at the ideals
in Z[θ], and especially the principal ideal generated by γ = G(θ), where θ is the
root of F (x) we chose earlier, and G(x) is the polynomial defined in KeyGen. This
ideal will be important later when we show correctness of Π. But before that we
need to define the norm of elements in Q(θ) and Z[θ].

4.2. IDEALS AND NORMS 21

Norm of Elements in Fields and Rings

For any pair of rings (or fields) A ⊂ B, such that B is a free A-rank module of
rank n, we have that β ∈ B defines an A-linear transformation given by

x 7→ βx : B → B.

We define the determinant of this linear transformation to be the norm of the
element β in the extension B/A. Thus if {e1, e2, . . . , en} is a basis for B over A,
and β · ei =

∑
aijej , then

NB/A(β) = det(aij).

If it is obvious which extension we are working with, we may write N instead of
NB/A.

Since all aij ∈ A, we know that N (β) = det(aij) ∈ A, because the determinant is
calculated by only summing products of elements of A.

It can be proven that the norm map preserves multiplication, that is:

N (a) · N (b) = N (a · b),

for all elements a, b ∈ B.

The definition above is valid for the field extension Q(θ)/Q, so the norm of an
element τ ∈ Q(θ) is a rational number. Since Z[θ] ⊆ Q(θ), we can use the same
definition also for elements in Z[θ], just restricted to Z[θ]. Since Z[θ] = OL is the
ring of all integral elements of Q(θ), we know that each element φ ∈ Z[θ], can be
written as

φ = z0 + z1θ
1 + · · ·+ zN−1θ

N−1,

with zi ∈ Z. To find the norm of φ, we must first write φ ·θi as a linear combination
of the basis {1, θ, . . . , θN−1}. When multiplying φ with θi, we get some terms of
the form zk · θk where zk ∈ Z and k ≥ N . We can easily reduce these terms by
using the equation F (θ) = 0 (F (x) is monic.), and what remains is just terms of
the form zi · θi for i < N . We have now written φ · θi as a linear combination of
the basis, with coefficients in Z. The norm of φ is based only on these coefficients,
hence N (φ) ∈ Z.

Since Q has characteristic 0, the field extension Q(θ)/Q is a separable extension.
From this fact and [1] we get a new simplified definition of the norm of an element
in Q(θ).

22 CHAPTER 4. ALGEBRAIC NUMBER THEORY BACKGROUND

Q Z

Q(θ) Z[θ]

∈ ∈

∈ ∈φ

N (φ)

φ

N (φ)

Figure 4.3: Diagram explaining the norm map in the field extension Q(θ)/Q to the
left and the ring extension Z[θ]/Z to the right.

Definition 4.2.1. (Norm of field elements) In the field extension Q(θ)/Q we
define the norm N of an element τ ∈ Q(θ) to be:

N (τ) =
∏

σ∈Gal

σ(τ)

where Gal is the Galois group of Q(θ) over Q, consisting of all automorphisms of
Q(θ) which fix the base field Q.

Again, this definition may be restricted to elements in Z[θ].

Norm of Ideals

So far the norm map is defined only for elements, but we want to extend the norm
map to ideals. In particular, we will define the norm of ideals in Z[θ].

Definition 4.2.2. In the ring Z[θ] we define the norm N of an non-zero ideal
I ⊆ Z[θ] to be

N (I) = |Z[θ]/I|.

For principal ideals we get a more specific formula given by the following theorem.

Theorem 4.2.1. For a principal ideal I = aZ[θ] ⊆ Z[θ], the norm is given by

N (I) = |N (a)|

Proof. Proof is given in Chapter 4.2 in [1].

The norm map for ideals follows many of the same properties as the norm of
elements. The following properties hold for ideals a, b ⊆ Z[θ]:

N (a · b) = N (a) · N (b)

N (a) = 1⇔ a = Z[θ].

Now that we have the AKLB-setup, and a good definition of the norm map, we
are ready to look at some of the ideals that are created in KeyGen.

4.3. THE IDEAL P CREATED IN KEYGEN 23

4.3 The Ideal p created in KeyGen

Consider the ideal p generated by γ = G(θ), i.e. p = γZ[θ]. We will calculate the
norm of p, and show that it is prime. After that we will show that p equals the
ideal pZ[θ] + (θ − α)Z[θ].

Theorem 4.3.1. Given F (x), G(x) and p described in KeyGen, θ a root of F (x)
and γ = G(θ), then N (γZ[θ]) = p, and γZ[θ] is a prime ideal.

Proof. By Definition 4.2.1, the norm of the principal ideal γZ[θ] ∈ Z[θ] is equal to
the absolute value of the norm of γ, hence we must first calculate the norm of the
element γ:

N (γ) =
∏

σ∈Gal

σ(γ) =
∏

σ∈Gal

σ(G(θ))

=
∏

σ∈Gal

σ(g0 + g1θ + · · ·+ gN−1θ
N−1)

=
∏

σ∈Gal

σ(g0) + σ(g1)σ(θ) + · · ·+ σ(gN−1)σ(θN−1)

=
∏

σ∈Gal

g0 + g1σ(θ) + · · ·+ gN−1σ(θ)N−1

=
∏

σ∈Gal

G(σ(θ)) =
∏

F (θ̂)=0

G(θ̂)

= resultant(G(x), F (x)) = p.

And by the definition we have of the norm of principal ideals we get:

N (γZ[θ]) = |N (γ)| = p.

This is valid because of the fact that the automorphisms in Gal fix all elements
in the base field, while the roots of F (x) are permuted, and because F (x) has no
multiple roots.

To show that p = γZ[θ] is a prime ideal, suppose p is a product of two ideals i1
and i2, i.e. p = i1 · i2. Since the norm map is multiplicative, this implies that
p = N (p) = N (i1) · N (i2) ⇒ N (i1) = 1 or N (i2) = 1. But this means that
i1 = Z[θ] or i2 = Z[θ]. Therefore, the prime factorization of p is p itself, in other
words, p is prime.

So we have now established that p = γZ[θ] is a prime ideal of norm p. We continue
to prove that this ideal also equals pZ[θ] + (θ − α)Z[θ].

24 CHAPTER 4. ALGEBRAIC NUMBER THEORY BACKGROUND

Theorem 4.3.2. If F (x), G(x), α and p are defined like described in KeyGen, θ is
a root of F (x) and γ = G(θ), then p = γZ[θ] = pZ[θ] + (θ − α)Z[θ].

Proof. Since D(x)|G(x) mod p, we also know that D(θ)|γ mod p. This means
that there exist f1(θ) ∈ Z[θ] s.t. γ = D(θ) · f1(θ) mod p. This again im-
plies that there exist an f2(θ) ∈ Z[θ] s.t. γ − D(θ) · f1(θ) = p · f2(θ). Hence
γ = p·f2(θ)+D(θ)·f1(θ) ∈ pZ[θ]+(θ−α)Z[θ]. Therefore γZ[θ] ⊆ pZ[θ]+(θ−α)Z[θ].

By Theorem 4.3.1 we know that γZ[θ] is a prime ideal. Since Z[θ] = OL is a
Dedekind domain, we know that all nonzero prime ideals in Z[θ] are maximal.
Hence γZ[θ] has to be maximal. Now since γZ[θ] ⊆ pZ[θ] + (θ − α)Z[θ], and
pZ[θ] + (θ − α)Z[θ] 6= Z[θ], we know that pZ[θ] + (θ − α)Z[θ] = γZ[θ].

The form p = pZ[θ] + (θ − α)Z[θ] is called the two element representation of the
ideal p. This is because p is represented by two elements, namely p and (θ− α). p
is indeed generated by p and (θ − α) in the ring Z[θ] = OL.

In general each ideal in Z[θ] can be represented in two different ways. The first
way to represent an ideal is as a two element Z[θ]-basis like the one above, where
we are given two elements δ1, δ2 ∈ Z[θ], and the ideal equals

δ1 · Z[θ] + δ2 · Z[θ].

So p is an ideal with δ1 = p and δ2 = (θ − α).

The other way of representing an ideal in Z[θ] is as a N dimensional Z-basis. Then
we give N elements γ1, . . . , γN ∈ Z[θ], and every element of the ideal is represented
by the Z-module generated by γ1, . . . , γN , i.e. each element τ can be written in the
form

z1 · γ1 + · · ·+ zN · γN
where zi ∈ Z. It is common practice to represent this basis as an N × N -matrix
(γi,j) where we write γi in canonical form γi =

∑N
j=1 γi,j · θj−1. The rows of (γi,j)

therefore represents the N elements in the basis.

If we now take the Hermite Normal Form (HNF), an analogue of reduced echelon
form for matrices over the integers Z, of (γi,j), we get a lower triangular matrix
H. Given the ideal p, the corresponding HNF representation H is very simple to
construct, and closely related to the two elements p and (θ − α):

H =

p . . . 0
−α 1

−α2 1
...

...
. . .

−αN−1 0 . . . 1

 .

We will use this matrix later in the security section.

Chapter 5

Correctness of the Scheme

In this section we will analyse the algorithms used in the somewhat homomorphic
encryption scheme Π. We have already seen what is going on in the background
when KeyGen is applied, so in this section we will focus more on Encrypt and
Decrypt. At the end we will also review the algorithms Add and Mult.

In particular we will find out how the parameters N , η and µ affect the behavior
of the algorithms, and when they are correct or not. This will give us estimates of
rDec and d, the depth of the circuits we are able to evaluate homomorphically with
Π.

5.1 Definitions

Given an encryption scheme, we call it correct if the Decrypt algorithm can be used
to decrypt ciphertexts, that is for each message M ∈ P we need the following to
be true.

Decrypt(Encrypt(M,PK),SK) = M

This is the most important property, because it ensures correct decryption of clean
ciphertexts.

The second correctness property is related to homomorphic encryption. We must
check that Decrypt correctly decrypts the ciphertexts we get after evaluating a
circuit homomorphically. Given a plaintext message vector ~M = (M1,M2, . . . ,Mt)

with ci
R←− Encrypt(PK,Mi), ~c = (c1, c2, . . . , ct) and a t-input boolean circuit Ct we

must prove that

Decrypt(Evaluate(Ct,~c)) = Ct(~M). (5.1.1)

25

26 CHAPTER 5. CORRECTNESS OF THE SCHEME

holds for circuits of depth lower than a boundary d. The requirement that the cir-
cuit must have depth at most d is only needed for SWHE schemes. For FHE schemes,
Equation 5.1.1 should hold for circuits of any depth.

In Π, Evaluate is replaced with the two algorithms Add and Mult. So all we need
to check is that these two algorithms satisfy the homomorphism property, i.e. for

M1,M2 ∈ P and ci
R←− Encrypt(Mi,PK), we need to show that

Decrypt(Add(c1, c2,PK)) = M1 +M2

and

Decrypt(Mult(c1, c2,PK)) = M1 ·M2.

5.2 Encrypt

We will now see what is going on when Encrypt(M,PK) is applied. First the
polynomial C(x) = M + 2 · R(x) is created. This polynomial is then evaluated in
α and reduced modulo 2 to obtain c, which is returned. Notice how the ciphertext
c is closely related to the polynomial C(x). We will later call this the ciphertext
polynomial corresponding to c. Now we will show an important property of clean
ciphertexts.

Theorem 5.2.1. Given F (x), p and α as described in KeyGen, θ a root in F (x),
p = pZ[θ] + (θ − α)Z[θ] and C(x), c as described in Encrypt, then

c = C(α) mod p = C(θ) mod p

Proof. Since θ − α ∈ p, we get that α = θ mod p, which again implies that

C(θ) mod p = C(α) mod p.

Both C(α) mod p and C(α) mod p returns a number in Fp, and since p is included
in p, it is clear that C(α) mod p = C(α) mod p.

An interesting consequence of Theorem 5.2.1 is that C(θ)− c ∈ p. It appears to be
the case that this holds also for all other ciphertexts.

Consider two ciphertexts c1 and c2 such that ci = Ci(α) mod p, and Ci(θ)− ci ∈ p.
Now we define c = Add(c1, c2,PK) = c1 + c2 mod p = C1(α) +C2(α) mod p, which
means that the polynomial corresponding to c is C(x) = C1(x) + C2(x). Now it
follows directly that C(θ)− c = C1(θ) + C2(θ)− c1 − c2 ∈ p since both C1(θ)− c1
and C2(θ)− c2 are elements of p.

A similar argument can be done for multiplication, where C(x) = C1(x) · C2(x).
Since all ciphertexts we are working with are either clean ciphertexts, or a result
of Add or Mult, we know that

5.3. DECRYPT 27

C(θ)− c ∈ p

holds for all ciphertexts c = C(α) mod p.

5.3 Decrypt

Now consider Decrypt, the decryption algorithm. Ideally this algorithm takes any
ciphertext and returns the decryption of it. However it will not be that easy
because of the noise attached to the ciphertext. We will here calculate a bound
rDec, such that we can ensure that Decrypt(c,SK) returns the correct decryption if
‖C(x)‖∞ < rDec, where C(x) is the polynomial corresponding to c.

Earlier we established that

C(θ)− c ∈ p = γZ[θ] (5.3.1)

holds for all ciphertexts c. In other words, we know there exist a q(θ) ∈ Z[θ] such
that

C(θ)− c = q(θ) · γ. (5.3.2)

If we can obtain the element C(θ), we can easily retrieve M , because
M = C(θ) mod 2. To find this C(θ) we need to use the polynomial Z(x) from
KeyGen satisfying

G(x) · Z(x) = p mod F (x). (5.3.3)

We evaluate (5.3.3) in θ to get γ−1 = Z(θ)/p. We multiply this with (5.3.2), and
get

−c · Z(θ)

p
= q(θ)− C(θ) · Z(θ)

p
. (5.3.4)

We will now round both sides of (5.3.4). For polynomials in Q[θ] rounding is done
by rounding each coefficient of the polynomial to its nearest integer. Notice that
q(θ) ∈ Z[θ], so rounding this polynomial has no effect. The other term on the right
hand side is (C(θ) ·Z(θ))/p ∈ Q[θ], and rounding of this polynomial will change it.

Now assume that ∥∥∥∥C(θ) · Z(θ))

p

∥∥∥∥
∞
<

1

2
(5.3.5)

holds. Then, rounding of (C(θ) ·Z(θ))/p will result in the zero polynomial, and we
simply get:

⌊
−c · Z(θ)

p

⌉
=

⌊
q(θ)− C(θ) · Z(θ)

p

⌉
= q(θ)−

⌊
C(θ) · Z(θ))

p

⌉
= q(θ). (5.3.6)

28 CHAPTER 5. CORRECTNESS OF THE SCHEME

We insert this result into (5.3.2) and get:

C(θ) = c+ q(θ) · γ = c−
⌊
c · Z(θ)

p

⌉
· γ.

Now we can retrieve M by reducing C(θ) modulo 2. This gives us the following
equation:

M = C(θ) mod 2 = c−
⌊
c · Z(θ)

p

⌉
· γ mod 2. (5.3.7)

Since γ = G(θ) = 1 + 2 · S(θ), we know that γ ≡ 1 mod 2. Hence we can remove γ
from (5.3.7).

M = c−
⌊
c · Z(θ)

p

⌉
mod 2. (5.3.8)

The right hand side of (5.3.8) is a polynomial in θ, because Z(θ) is a polynomial
in θ. All the other parts of the right hand side are independent of θ. But the left
hand side is a binary number, since it is a plaintext. Hence we know that all terms
of Z(θ) will disappear after rounding, and we can therefore ignore all these terms.
We are then left with only the constant term of Z(θ), which is B. By replacing
Z(θ) with B, we finally get the procedure we have in Decrypt:

M = c−
⌊
c ·B
p

⌉
mod 2 (5.3.9)

Notice that we do not claim that Z(θ) = B, which this is not true in general. The
only thing we can say for sure is that bc ·B/pe ≡ bc · Z(θ)/pe mod 2.

In the argument above we used B = z0, and not B = z0 mod 2p as it is defined
in KeyGen. But this is indeed the same, since for any k ∈ Z we know that the
following holds,

c−
⌊
c · (B + 2pk)

p

⌉
≡ c−

⌊
c ·B
p

+ c · 2k
⌉
≡ c−

⌊
c ·B
p

⌉
+2kc ≡ c−

⌊
c ·B
p

⌉
mod 2.

In KeyGen, B is reduced modulo 2p since this gives a smaller integer to work with.

The correctness of the decryption algorithm relies on Equation 5.3.5. Since Z(θ)
and p are fixed after KeyGen is applied, the only factor which can vary is C(θ),
which is related to the encryption.

As indicated earlier the error of a ciphertext is related to the largest coefficient
of C(x). Now we see that this also agrees with what is needed for decryption.
Decryption will only work if ‖C(x)‖∞ is less than a given bound, rDec. We will
continue to find this bound given what we have in Section 5.3.5. For this we need
the following theorem.

5.3. DECRYPT 29

Theorem 5.3.1. Let F (x), G(x) ∈ Z[x] with F (x) monic, deg(F) = N and
deg(G) = M < N and resultant(F,G) = p, then there exist a polynomial Z(x) ∈
Z[x] with Z(x) ·G(x) = p mod F (x) and

‖Z(x)‖∞ ≤ ‖G(x)‖N−1
2 · ‖F (x)‖M2

Proof. Since resultant(F,G) = p, we know that gcd(F,G) = 1, which means that

there exist Z(x) =
∑N−1
i=0 zix

i ∈ Q[θ] and R(x) =
∑M−1
i=0 rix

i ∈ Q[θ] s.t.

Z(x) ·G(x) +R(x) · F (x) = 1.

The zi and ri are then given by the following matrix equation:

Syl(F,G)T ·

rM−1

...
r0

zN−1

...
z0

=

0
...

...
0
1

.

By Cramer’s rule we find and explicit expression for the coefficients zi, given by

zi =
det(Si)

det(Syl(F,G))
=

det(Si)

p
,

where Si is the matrix we get by replacing the (M+N−i)th column by (0, . . . , 0, 1)T .
So Si will contain exactly M columns with coefficients from F (x), N − 1 columns
with coefficients from G(x), and one column equal to (0, . . . , 0, 1)T , when i < N .
Now we use Hadamard’s inequality to give a bound on zi:

|zi| =
∣∣∣∣det(Si)

p

∣∣∣∣ ≤ ‖G(x)‖N−1
2 · ‖F (x)‖M2

Since this holds for all zi, we finally get

‖Z(x)‖∞ ≤ ‖G(x)‖N−1
2 · ‖F (x)‖M2

The leading coefficient in G(x) is chosen randomly, so it is very unlikely that it
equals zero. We will therefore use M = N − 1, and we get

‖Z(x)‖∞ ≤ ‖G(x)‖N−1
2 · ‖F (x)‖N−1

2 .

This relation will be used to find an expression for rDec given Equation 5.3.5, but
first we need another theorem.

30 CHAPTER 5. CORRECTNESS OF THE SCHEME

Theorem 5.3.2. Given F (x), the polynomial from KeyGen and δ∞ defined as

δ∞ = sup

{
‖g(x) · h(x) mod F (x)‖∞
‖g(x)‖∞ · ‖h(x)‖∞

| deg(g), deg(h) < N

}
,

then we have that

‖g(θ) · h(θ)‖∞ ≤ δ∞ · ‖g(x)‖∞ · ‖g(x)‖∞
for all polynomials h(x) and g(x) where deg(g), deg(h) < N .

Proof. Since δ∞ is the greatest possible value of
‖g(x)·h(x) mod F (x)‖∞
‖g(x)‖∞·‖h(x)‖∞

, we get that

‖g(x) · h(x) mod F (x)‖∞ ≤ δ∞ · ‖g(x)‖∞ · ‖h(x)‖∞ .

But ‖g(x) · h(x) mod F (x)‖∞ = ‖g(θ) · h(θ)‖∞, since reduction modulo F (x) is the
same as evaluating in θ where all polynomials is reduced by the equation F (θ) = 0.
The result follows directly:

‖g(θ) · h(θ)‖∞ = ‖g(x) · h(x) mod F (x)‖∞ ≤ δ∞ · ‖g(x)‖∞ · ‖h(x)‖∞ .

With help of Theorem 5.3.1 and Theorem 5.3.2 we can now modify ‖C(θ) · Z(θ)/p‖∞
and find a bound on C(x),

∥∥∥∥C(θ) · Z(θ)

p

∥∥∥∥
∞

=
‖C(θ) · Z(θ)‖∞

p

<
δ∞ · ‖C(x)‖∞ · ‖Z(x)‖∞

p

=
δ∞ · ‖C(x)‖∞ · ‖G(x)‖N−1

2 · ‖F (x)‖N−1
2

p
.

So decryption will work as long as this is less than 1/2, i.e. when

‖C(x)‖∞ <
p

2 · δ∞ · ‖G(x)‖N−1
2 · ‖F (x)‖N−1

2

:= rDec.

This definition of rDec is pretty complicated, so we do a simplification to make it
more usable, in particular we will use the fact that p ' ‖G(x)‖N2 · ‖F (x)‖N−1

2 . We
then get

rDec '
‖G(x)‖2
2 · δ∞

'
√
N · η

2 · δ∞
,

where ‖G(x)‖2 are estimated to be equal to
√
N · η, because each coefficient of

G(x) has size approximately η.

5.4. MULT AND ADD 31

5.4 Mult and Add

To evaluate larger boolean circuits than one simple addition or multiplication mod-
ulo 2, we will apply a large sequence of Add’s and Mult’s. As indicated earlier, this
affects the error of the ciphertexts we are working with, and eventually it becomes
so large that decryption fails. We will here do an analysis of this error propagation.

Consider two ciphertexts c1 = C1(α) mod p = M1 + N1(α) mod p and
c2 = C2(α) mod p = M2 + N2(α) mod p, where Ni(x) = 2 · Ri(x) is the er-
ror term. Notice that the messages Mi is indeed the right encryption of ci, so
all the error related to the ciphertext polynomial Ci(x) comes from Ni(x). Ni
is therefore called the error term, or noise term. We will further assume that
Ni(x) ∈ B∞,N (ri − 1)⇒ Ci(x) ∈ B∞,N (ri).

We first analyse addition of ciphertexts. We let

C3(x) = C1(x) + C2(x) mod p

= (M1 +M2) mod 2 + 2 ·M1 ·M2 +N1(x) +N2(x) mod p

= M3 +N3(x) mod p,

where M3 = M1 + M2 mod 2 is the desired message corresponding to C3(x), and
N3(x) = 2 ·M1 ·M2 +N1(x) +N2(x) is the noise corresponding to C3(x). Ignoring
all negligible terms, then

C3(x) ∈ B∞,N (r1 + r2).

In other words, if we add two ciphertexts homomorphically, the noise of the new
ciphertext equals the sum of the noise of the two original ciphertexts.

Now we do the same for multiplication of ciphertexts. We get

C4(x) = C1(x) · C2(x) mod p

= (M1 +N1(x))(M2 +N2(x)) mod p

= M1M2 +M1N2(x) +M2N1(x) +N1(x)N2(x) mod p

= M4 +N4(x) mod p.

which shows that

C4(x) ∈ B∞,N (δ∞ · r1 · r2 + r1 + r2).

As expected, Mult generates much more noise than Add. We will now give an
estimate of the depth d a circuit can have before decryption fails, i.e. before the
noise becomes larger than rDec.

32 CHAPTER 5. CORRECTNESS OF THE SCHEME

Assume we initially start with clean ciphertexts C(x) lying in B∞,N (µ+ 1). After
executing a circuit with multiplicative depth d, we expect the resulting ciphertext
c to have a polynomial C(x) lying in a ball B∞,N (r) with radius

r ≈ (δ∞ · µ)2d .

Decryption will only work when r ≤ rDec, i.e. when

d · log 2 ≤ log log rDec − log(δ∞ · µ) ≈ log log

(√
N · η

2 · δ∞

)
− log log(δ∞ · µ). (5.4.1)

Notice that when rDec is large, then d is large as well. This is naturally since a
large rDec should result in deeper circuits.

5.5 Choice of Parameters

The estimates for rDec and d are of course not very accurate. However, the re-
sults should be reasonable, and overall they give us an idea of how the different
parameters influence the performance of the SWHE scheme Π.

First, we see that our main parameter N appears in the numerator of rDec, which
means that for large choices of N , Π perform better, i.e. both d and rDec increase.
But N also affects the parameter δ∞, which appears in the denominator. Typically
δ∞ is proportional to N , which reduce rDec for large N . The last parameter η is
often expressed as a function of N , and typically η is growing exponentially as a
function of N , which means that a large N makes rDec larger.

To give an idea of how the δ∞ behaves we compute it for different choices of F (x).

Theorem 5.5.1. Let F1(x) = xN − a and F2(x) = xN − axN−1 then

δ∞(F1(x)) ≤ |a|N and δ∞(F2(x)) ≤ |a|N−1N..

Proof. Let g =
∑N−1
i=0 gix

i and h =
∑N−1
i=0 hix

i, then

g · h mod F1(x) =

N−1∑
i=1

 ∑
0≤k≤k

gihk−i + a
∑

k<i<N

gihN+k−i

xk,

Where the first sum inside the parenthesis is the original product of terms of low
degree, and the second sum is of additional terms of high degree that are reduced
modulo F1(x).

Let g̃ and h̃ be the greatest coefficients of g(x) and h(x) respectively. Then ‖g(x)‖∞·
‖h(x)‖∞ = g̃ · h̃. To make the δ∞(F1(x)) as large as possible, we choose gi = g̃ and

hi = h̃. Then the kth coefficient of g ·h mod F1(x) equals (k+1)g̃h̃+a(N−k−1)g̃h̃.
This is largest when k is small, and by setting k = 0 we get

5.5. CHOICE OF PARAMETERS 33

δ∞ =
g̃ · h̃(1 + (N − 1) |a|)

g̃ · h̃
≤ N |a| .

For F2(x) we write g · h =
∑2N−2
k=0 ckx

k, where each ck ≤ N · ‖g‖∞ · ‖h‖∞. Then

g · h mod F2(x) =
∑N−1
k=0 dkx

k with dk = ck for k = 0, . . . , N − 2, and

dN−1 =

N−1∑
i=0

ai · cN−1+i

dN−1 is the largest of the coefficients, so

δ∞ =

∣∣∣∑N−1
i=0 ai · cN−1+i

∣∣∣
‖g‖∞ · ‖h‖∞

≤ N

∣∣∣∣∣
N−1∑
i=0

ai

∣∣∣∣∣ ≤ ∣∣aN−1
∣∣ ·N.

As Theorem 5.5.1 shows, δ∞ takes different values for different F (x). The intension
of choosing F2(x) = xN −axN−1 was to show a polynomial which results in a fairly
large δ∞, while we choose F1(x) = xN − a to show a polynomial with a low δ∞.

To obtain large rDec and a large multiplicative depth of the circuits we can eval-
uate with Π, we should choose F (x) such that δ∞ becomes as small as possible.
F (x) = xN − 1 is therefore a good choice. To make F (x) irreducible, we choose
N = 2n. F (x) = x2n − 1 will therefore be a good choice, and this will be our
canonical example in the remainder of the text.

Let us see how µ affects rDec. We see that a large µ gives a larger rDec. However
it reduces the security, since µ is the parameter which bounds C(x). With a small
µ the possible choices of C(x) corresponding to a ciphertext c is reduced, which
then reduce the security. The lowest µ we can choose is µ = 2, because Encrypt set
R(x) ∈ B∞,N (µ/2), which results in R(x) being the zero polynomial each time if
µ < 2.

We see that a large η increase rDec and enables us to evaluate deeper circuits
homomorphically with Π, so a large η is desired. However if it becomes too large,
we get problems with the security as we will see in Section 6.

To do a practical example we calculate d when F (x) = xN − 1, µ = 2, η = 2N

with N = 2n. We have chosen both F (x) and µ to make d as large as possible.
The results are not exactly promising; to get a positive value of d we must choose
n > 7, and to get d > 5 we need to choose n = 19⇒ N = 524288. This results in
log2 p = 379625062. A ciphertext is about the size of p, so each encrypted bit will
need about 46MB of memory, which is very impractical.

34 CHAPTER 5. CORRECTNESS OF THE SCHEME

Chapter 6

Security Analysis

We will now prove security of the SWHE scheme. In particular we will look at three
security goals; onewayness, key recovery and semantic security. Semantic security
alone is sufficient, but the other two are included as well.

Notice that we here only prove security for the SWHE scheme, and that we consider
security of the FHE scheme later.

This section will be relatively brief, so for additional information about the security
of our scheme we refer to the original work done by Smart and Vercauteren [6],
and by Gu Chunsheng’s cryptanalysis of our scheme [3].

6.1 Onewayness of Encryption

We now consider the problem of recovering a message M , given its ciphertext

c
R←− Encrypt(M,PK) and the public key PK = (p, α). We know that c is the result

of C(α) mod p for some C(x) = M + 2 ·R(x) ∈ Z[x], and if we can find this C(x),
we can retrieve the message M as

M = C(x) mod 2.

Hence an adversary wins if he can find the integer coefficients of C(x), i.e. if he
can find xi ∈ Z for i = 0, . . . , N − 1, such that

C(α) mod p = c⇒
N−1∑
i=0

xi · αi = c− k · p

where |xi| ≤ µ := rEnc, for some integer value of k.

Now consider the lattice generated by the columns in the matrix H presented in
Section 4, that is all vectors in RN of the form

∑N
i=1 ai ·ci where ci are the columns

in H. Let us now take a look at the lattice vector

35

36 CHAPTER 6. SECURITY ANALYSIS

~v = (k,−x1, . . . ,−xn) ·H = (c− x0,−x1, . . . ,−xn).

This is a lattice vector which is close in distance to the non-lattice vector
~c = (c, 0, . . . , 0). By close we mean that the distance between the two vectors
is less than rEnc if we are using the ∞-norm or

√
N · rEnc if the 2-norm is used.

Now since c is public, we can find the vector ~c, and search for lattice vectors near
it to find ~v. Hence determining the underlying plaintext given its encryption is an
instance of the closest vector problem.

Definition 6.1.1. (The closest vector problem (CVP)) Given a lattice L ⊆
Rn, a norm N , and a vector ~v ∈ Rn, find the vector in L closest to ~v using the
norm N .

Notice that we do not reduce CVP to the problem of finding M , therefore we have
not exactly proven that retrieving the message is at least as hard as solving CVP.
However, if we can solve CVP, then can also find M given c and PK. The two
problems are therefore similar, which indicates that finding M is likely to be as
hard as CVP.

Gentry has also done analysis for this problem in [4]. Although one should bear in
mind that Gentry’s analysis is for a general lattice, and not for the specific one in
our case. The best known attack on Gentry’s scheme is one of lattice reduction,
related to the bounded distance decoding problem (BDDP). In particular it is
related to finding short/closest vectors within a multiplicative factor of rDec/rEnc in
a lattice of dimension N . If we set

2ε =
rDec

rEnc
=

√
N · η

2 · δ∞ · µ

then it is believed that solving BDDP has difficulty 2N/ε. We shall refer to the
value 2N/ε as the security level of our SHWE-scheme Π.

6.2 Key Recovery

Here we will see what an adversary must do to recover the secret key. Recall that
we have PK = (p, α) and SK = (p,B), hence, since p is public, the adversary wins if
he can obtain B. This B can also be found if we have Z(x), since B = Z(0) mod 2p.

This Z(x) is the inverse of G(x) mod F (x). Smart and Vercauteren [6] therefore
claim that we can recover the key if we can find γ = G(θ). γ is what we call a
small generator, since it is small compared to p, hence finding the secret key is an
instance of the Small Principal Ideal Problem (SPIP).

Definition 6.2.1. (Small Principal Ideal Problem) Given a principal ideal
π in either two element or HNF representation, compute a small generator of the
ideal.

6.3. SEMANTIC SECURITY 37

This problem is well-studied and considered hard. Smart and Vercauteren gives
two approaches to solve this problem in [6].

6.3 Semantic Security

We will now prove that our SWHE scheme Π is semantically secure (SS). This can
be done by showing that a hard problem can be reduced to the problem of breaking
semantic security. In particular we will use the problem called the Polynomial
Coset Problem (PCP). This problem will be presented after we have explained the
standard game we use for proving SS.

Definition 6.3.1. An encryption scheme is semantically secure if each adversary
A only has negligible advantage against a challenger C in the following game.

1. C runs PK,SK
R←− KeyGen().

2. C sends PK to A.
3. A choose two distinct messages M0 and M1 from P.
4. A sends M0 and M1 to C.

5. C pick β
R←− {0, 1}.

6. C calculates c
R←− Encrypt(Mβ ,PK).

7. C sends c to A.
8. A makes a guess β′, and sends it back to C.

A wins the game if β = β′.

For our scheme where P = {0, 1}, A will always pick 0 and 1 as M0 and M2 in step
3. The problem for A in step 8 is therefore to find out if c is an encryption of 0 or
1.

Now we define the Polynomial Coset Problem.

Definition 6.3.2. An adversary A solves the Polynomial Coset Problem if he has
non-negligible advantage against a challenger C in the following game.

1. C runs PK,SK
R←− KeyGen().

2. C selects b
R←− {0, 1}.

3. If b = 0, then C performs:

- R(x)
R←− B∞,N (rEnc/2).

- r ← R(α) mod p.

Whilst if b = 1, then C performs:

- r
R←− Fp.

4. C sends (r,PK) to A.
5. A makes a guess b′, and sends it back to C.

38 CHAPTER 6. SECURITY ANALYSIS

A wins the game if b = b′.

We call this the Polynomial Coset Problem because of its similarities with Gentry’s
Ideal Coset Problem [4]. The problem is basically to determine if r is the evaluation
of a small polynomial in α or a random positive integer less than p.

We will now prove that PCP can be reduced to SS. Hence breaking semantic
security for Π is at least as hard as solving PCP.

Theorem 6.3.1. Suppose there is an algorithm A which breaks semantic security
of Π, with advantage ε. Then there is an algorithm B, running in about the same
time as A, which solves the PCP with advantage ε/2.

Proof. The algorithm B receives the pair (r,PK) from the challenger C, and sends
PK directly to A. A then returns M0 and M1. Now B picks a random bit

β
R←− {0, 1}, and creates a challenge ciphertext for algorithm A from its own chal-

lenge (r,PK) by setting

c← (Mβ + 2 · r) mod p,

A sends back a guess β′ for β and B sends b′ = β ⊕ β′ to C.

When b = 0 in the PCP, then c becomes a valid encryption of β, which means
that A returns β′ = β with advantage ε. Now since β′ = β, B will return the right
answer, b′ = β′ ⊕ β = 0 with advantage ε.

When b = 1, r is uniformly random modulo p and since p is odd, 2r is uniformly
random modulo p and therefore so is c. Hence, the advantage of A is 0, which
implies that B’s overall advantage is ε/2.

Since PCP is a reduction of SS, we now know that breaking semantic security for
our scheme is at least as hard as solving PCP. PCP is considered to be hard, though
it is not the most studied problem in cryptography.

Chapter 7

Fully Homomorphic
Encryption

We have now proved that Π is a SWHE scheme; it consists of all the algorithms
needed, and we have calculated rDec, the greatest possible radius of ciphertexts we
can decrypt. This rDec defines a set CΠ, all boolean circuits we are able to evaluate
homomorphically with Π. This set is of course defined by our choice of parameters.

The next step to a fully homomorphic scheme is to show that our SWHE scheme
Π is bootstrappable, i.e. show that Π can evaluate its own decryption algorithm
homomorphically. Gentry proved that if a SWHE scheme is bootstrappable, then
it can be extended to a fully homomorphic scheme. Since Decrypt is not a boolean
circuit, we must create CD, a boolean circuit of finite depth which calculates

c−
⌊
c ·B
p

⌉
mod 2

given c and SK. This CD should be as shallow as possible, or at least shallow
enough. By that we mean that CD ∈ CΠ. Eventually this CD can be used to
create the Recrypt algorithm needed in the FHE scheme.

7.1 Fully Homomorphic Key Generation

The decryption procedure

M = c− bc ·B/pe

consists of a subtraction, a rounding, a multiplication and a division. While sub-
traction and rounding are relatively easy operations, multiplication and division
are operations which require larger circuits. Therefore we want to avoid them in
CD. The idea is to add a vector of integers to PK, and let the secret integer B
equal the sum of a subset of these values.

39

40 CHAPTER 7. FULLY HOMOMORPHIC ENCRYPTION

To add more information to PK, we extend the KeyGen algorithm, parameterized
by two integers s1 and s2 ≤ s1. This results in a new key generation algorithm
called KeyGenFHE. As the name indicates, this will also be the key generation
algorithm for our fully homomorphic scheme.

KeyGenFHE():
- Run KeyGen to obtain p and α.
- Generate s1 random integers Bi ∈ [−p, p] such that there exists a subset
S of s2 elements satisfying∑

j∈S Bj = B.

- Define ski = 1 if i ∈ S and 0 otherwise.

- Encrypt the bits ski under Π to obtain ci
R←− Encrypt(ski,PK).

- Finally return SK = (p,B) from KeyGen and:

PK = (p, α, s1, s2, {ci, Bi}s1i=1).

The integers s1 and s2 should be chosen such that that s1 ≥ s2, and such that
(
s1
s2

)
is large enough. Typically s1 ≈ log p and s2 � s1. In Section 7.2 we look at the
security of the FHE scheme, and there we will discuss the choice of s1 and s2 in
detail.

The integers Bi are chosen randomly from the interval [−p, p], with only one re-
quirement, namely that there exists a subset containing s2 of the Bi, which sum up
to B. The indices of these Bi are the elements of S, we therefore get B =

∑
j∈S Bj .

For each i = 1, . . . , s1 we set ski = 1 if i ∈ S, and ski = 0 if i 6∈ S. The vector
(ski) will therefore contain information about which of the Bi we need to sum up
to obtain B. In other words we know that

s1∑
i=1

ski ·Bi = B.

Notice that exactly s2 of the elements in this vector equals 1, while the (s1 − s2)
other elements equal 0. s2 is small compared to s1, so typically most of the entries
in (ski) equals 0. In KeyGenFHE, (ski) is encrypted under Π and we get the vector
ci.

In the last step we extend PK by adding s1, s2, and the list of pairs {ci, Bi} for
i = 1, . . . s1. All the Bi are public, in addition to all the ci. SK is also returned,
but this is unchanged compared to the SK we had for Π.

Notice that the secret vector (ski) is not given anywhere, not even in the secret key.
In CD which we soon will present, the vector (ski) is required, which means that
no one can use CD directly to decrypt ciphertexts. However, since the encryption
of (ski) is given as (ci) in PK, we are still able to evaluate CD homomorphically,
which leads us to the Recrypt algorithm.

7.2. SECURITY OF THE FULLY HOMOMORPHIC SCHEME 41

7.2 Security of the Fully Homomorphic Scheme

In the extended key generation algorithm KeyGenFHE, we add some extra relevant
information to the public key, which may make the scheme vulnerable. The two
parameters s1 and s2 should therefore be chosen such that the secret integer B is
hard to obtain. If s1 is small, one could easily check all possible combinations of
summing elements in (Bi), therefore s1 must be large. We assume that we are not

in a low density sum, i.e. s1 > log p. In this case solving SSSP takes at least
√(

s1
s2

)
steps to solve. If we choose s1 to be slightly greater than log p, we need to select
s2 s.t. √(

s1

s2

)
> 2N/ε,

where 2N/ε is the security we have for BDDP. We have to make sure that SSSP is
at least as hard as BDDP.

7.3 Precision and Rounding

Assume we somehow got access to (ski). Then with the PK from KeyGenFHE we
can obtain the decryption of a ciphertext c by first calculating

B =

s1∑
i=1

ski ·Bi,

and then use B to calculate M = c−bc ·B/pe mod 2. We combine these two steps
and get

M = c−

⌊
s1∑
i=1

ski ·
c ·Bi
p

⌉
mod 2 = c−

⌊
s1∑
i=1

ski ·
(c ·Bi mod 2p)

p

⌉
mod 2

Notice that each of the elements in the sum are floating point numbers in the
interval [0, 2), which means that we can represent each (c ·Bi mod 2p)/p uniquely
as

e0 · 20 + e1 · 2−1 + · · ·+ et−1 · 2−(t−1),

where the ei are bits and t is the chosen precision. This t should be as low as possi-
ble, but still large enough for the addition to give a reasonable answer without too
much error. With t bits of precision, the maximal error of each term is 2−(t−1), and
because only s2 of the s1 terms are non-zero, the total error is at most s2 · 2−(t−1).
Decryption will only work if this total error is less than 1/2, which gives

s2 · 2−(t−1) ≤ 1/2⇒ t ≥ blog2 s2c+ 2

42 CHAPTER 7. FULLY HOMOMORPHIC ENCRYPTION

Let s denote the number of bits needed to represent all integers up to s2, i.e.
s = blog2 s2c+ 1. Both t and s will be used when we construct CD.

To make the rounding in the decryption procedure easier, we can choose to divide
rDec by a factor of 2. This ensures that c ·B/p is within the 1/4 of an integer, i.e.

c ·B/p ∈ (x− 1/4, x+ 1/4)

for some integer x. Then there are only 4 different valid possibilities of e0, e1 and
e2, and all of them are shown in Table 7.1.

Now we can easily calculate the rounding of c ·B/p = e0 + e1 · 2−1 + e2 · 2−2 + . . .
as e0 + e1 · e2, which leads to

bc ·B/pe mod 2 = e0 + e1 · e2 mod 2.

e0 e1 e2 c ·B/p bc ·B/pe mod 2
0 0 0 [0, 0.25) 0
0 1 1 [0.75, 1) 1
1 0 0 [1, 1.25) 1
1 1 1 [1.75, 2) 0

Table 7.1: Possible values of c ·B/p = e0 + e1 ·2−1 + e2 ·2−2 + . . . , when we require
that it should be within 1/4 of an integer.

Chapter 8

The Decryption Circuit

We now create CD, the circuit representing Decrypt. To be more precise, we cre-
ate an algorithm that only uses bits and the two boolean gates XOR and AND
to decrypt a ciphertext c. If CD is shallow enough, then it can be evaluated ho-
momorphically, which results in the Recrypt algorithm which we will show later.

CD takes as input a ciphertext c and the vector (ski). It returns the decryption of
c.

CD(c, (ski)):

1. Write down the first t bits of the s1 floating point numbers
(c ·Bi mod 2p)/p as an s1 × t matrix T1.

2. Multiply the ith row of T1 by ski to obtain the s1 × t matrix T2, where
(T2)i,j = (T1)i,j · ski

3. Compute the hamming weight (number of non-zero entries) of each col-
umn in T2, and create the matrix T3, where (T3)i,j is the jth bit of the
hamming weight of the ith column of T2. The bits of T3 can be found
directly from T2 by using symmetric polynomials.

4. Form the t × t matrix T4 with (T4)i,j = (T3)i,j−i+s whenever the right
hand side is defined and zero otherwise.

5. Merge the rows of the matrix T4, to obtain an s× t matrix T5 such that
the sum of the rows of T5 equals the sum of the rows of T4.

6. Apply carry-save-adders to reduce the 3 first rows to 2 rows. Repeat
this procedure until we have a 2× t matrix T6.

7. Perform the final addition of the two rows in T6 to obtain the matrix
T7. Then compute the bit we get by rounding this result and reducing
modulo 2. Finally subtract the result to c mod 2and output the resulting
bit.

43

44 CHAPTER 8. THE DECRYPTION CIRCUIT

A toy example is shown in Figure 8.1 where p = 17, B = 15, s1 = 8, s2 = 5 and
c = 3. In addition we have set

(Bi) = (−9, 13, 5, 10, 11, 3, 7,−6)

(ski) = (1, 1, 0, 1, 0, 0, 1, 1).

This example is created to show how the decryption circuit works, not to give a
practical scheme. Most of the parameters are too small to ensure sufficient security,
but with e.g s1 > 8 it would be hard to display the matrices in one page.
We will now go through each step of CD carefully.

Step 1

In the first step we create the matrix T1 where the i’th row is the bit representation
of (c · Bi mod 2p)/p. There are s1 of the Bi in total, which each gives origin to a
floating point number c ·Bi mod 2p/p ∈ [0, 2). If these floating points are expressed

with t bits of precision, i.e. each of them can be written on the form
∑t−1
i=0 ei · 2−i,

then T1 will become a s1 × t matrix containing bits which satisfies

⌊
c ·Bi mod 2p

p

⌉
=

 t∑
j=1

(T1)i,j · 2−(j−1) mod 2

 .
The leftmost bit is the bit corresponding to the binary weight 20 = 1, and as we go
to the right in the matrix the corresponding binary weight is reduced by a factor
of 2.

Notice that we can not write

c ·Bi mod 2p

p
=

t∑
j=1

(T1)i,j · 2−(j−1),

because of the error we get by only using t bits of precision. Also observe that
given a floating point number f , it is irrelevant which order we do rounding and
reduction modulo 2, i.e.

bfe mod 2 = bf mod 2e .

Both variants will be used in the remainder of the text.

Step 2

In step 2 we multiply the ith row with ski to obtain the matrix (T2)i,j = ((T1)i,j ·ski).
Now the ith row contains the bit representation of ski ·(c ·Bi mod 2p)/p (given with
t bit precision), hence if we sum the rows of T2, we obtain the bit representation

45

T1 =

0 0 1 1 0
0 0 1 0 0
0 1 1 1 0
1 1 1 0 0
1 1 1 1 1
0 1 0 0 0
1 0 0 1 1
0 1 1 1 1

s1

t

(ski) =

1
1
0
1
0
0
1
1

s1

T2 =

0 0 1 1 0
0 0 1 0 0
0 0 0 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 1
0 1 1 1 1

s1

t

Step 3

T3 =

0 1 0
0 1 0
1 0 0
0 1 1
0 1 0

 t

s

T4 =

0
1 0
1 0 0

0 1 1
0 1 0

t

t

T5 =

 0 0 0
1 0 1 1
1 0 0 1 0

t

s

T6 =

(
0 0 1 0 0
0 0 1 0

)t

2

T7 =
(

0 1 0 0 0
)t

Step 1

Step 2

Step 4

Step 5

Step 6

Step 7

Figure 8.1: A toy example showing how the decryption circuit works. Cells without
any number in them are zero entries.

46 CHAPTER 8. THE DECRYPTION CIRCUIT

of c ·B/p mod 2 for the given precision. Hence if we round the sum, we obtain the
same number as we would get by rounding c ·B/p mod 2, i.e.

⌊
c ·B
p

mod 2

⌉
=

 t∑
j=1

2−(j−1)
s1∑
i=1

(T2)i,j

 mod 2. (8.0.1)

But
∑s1
i=1(T2)i,j is simply the hamming weight of row i, which we will use further

in the next step.

Step 3

In step 3 we compute the hamming weight

s1∑
i=1

(T2)i,j

of each column of T2, and represent the result with the matrix T3. We are using
bits, so T3 is a t × s matrix where (T3)i,j denotes the jth bit of the hamming
weight of the ith column of T2. The entries of T3 can be calculated directly from
the entries of T2 by using symmetric polynomials, without calculating the actual
hamming weight as an integer.

We use the term SymPoli(b1, b2, . . . , bm) to denote the ith symmetric polynomial
in the variables b1, b2, . . . , bm. This is the symmetric polynomial, consisting of

(
m
i

)
terms, where all the terms are unique. Each of them is the product of i different
bits, where each of these bits are chosen from the bk, and none of them are equal.
A few examples are shown below to make things more clear.

SymPol1(b1, b2, . . . , bm) = b1 + b2 + · · ·+ bm

SymPol2(b1, b2, . . . , bm) = b1b2 + b1b3 + · · ·+ bibj + · · ·+ bm−1bm

SymPolm(b1, b2, . . . , bm) = b1b2 · · · bm.

Now we can calculate the entries of T3 as

(T3)i,j = SymPol2s−j (b1, b2, . . . , bs1) mod 2,

for i = 1, . . . , t and j = 1, . . . , s, where b1, b2, . . . , bs1 are the bits of column i in T2,
i.e. bk = (T2)k,i.

Notice that since only s2 of the rows in T2 are non-zero, we can represent the
hamming weight of each column in T2 as a row in T3 of length s.

47

T3 =

0 1 0
0 1 0
1 0 0
0 1 1
0 1 0

22 21 20

20

2−1

2−2

2−3

2−4

0 1 0

0 1 0
1 0 0

0 1 1
0 1 0

Step 4

Shift

Resize

22 21 20 2−1 2−2 2−3 2−4

0
1 0
1 0 0

0 1 1
0 1 0

T4 =

20 2−1 2−2 2−3 2−4

Figure 8.2: Diagram explaining step 4 in the decryption procedure. Relevant binary
weights are shown for each row and column in T3. The second matrix is a shifting
of each row of T3, and the separation line shows which elements is removed due to
overflow in T4. All empty cells are zero-entries.

Now since the rows of T3 is the bit representation of the hamming weight, we have
that

∑s1
i=1(T2)i,j =

∑s
k=1(T3)j,k2s−k. Inserted into Equation 8.0.1, this gives the

following equation:

⌊
c ·B
p

⌉
mod 2 =

⌊
c ·B
p

mod 2

⌉
=

⌊
t∑
i=1

2−(i−1)
s∑

k=1

(T3)i,k · 2s−k
⌉

mod 2 (8.0.2)

=

⌊
t∑
i=1

s∑
k=1

(T3)i,k · 2s−k−i+1

⌉
mod 2.

We can then view T3 as a matrix where each bit in row i corresponds to the binary
weight 2−(i−1), and column each bit in column k corresponds to the binary weight
2s−k. The matrix T3 is shown in Figure 8.2.

Step 4

To obtain bc ·B/pe mod 2 from T3 we had to sum over the entries. Each entry in
row i had to be multiplied by 2−(i−1), and similarly each entry in column k had to
be multiplied by 2s−k.

48 CHAPTER 8. THE DECRYPTION CIRCUIT

We want to collect these bits in a matrix T4 such that we simply can sum over the
rows, without the need of multiplying each row by a power of two. Notice that if
we shift the entries of a row in T3 one step to the right, it will have the same effect
as multiplying by 2−1. Hence we can shift the entries of row i in T3 by i− 1 steps,
increase the width and insert 0s in all empty cells, and we get the desired matrix
T4.

Now ignore all columns which correspond to a binary weight greater or equal to 2,
since we are interested in bc ·B/pe mod 2 and not just bc ·B/pe. We are then left
with the t× t matrix T4 given by (T4)i,j = (T3)i,j−i+s when the right hand side is
defined, and zero otherwise.

If we sum the entries of T4 and multiply by the binary weight corresponding to
each column we get:

t∑
j=1

2−(j−1)
t∑
i=1

(T4)i,j =

t∑
i=1

t∑
j=1

(T3)i,j−i+s · 2−(j−1) (8.0.3)

=

t∑
i=1

s+t−i∑
k=s+1−i

(T3)i,k · 2s−k−i+1. (8.0.4)

But (T3)i,k is only defined if k ≤ s, and since s+ t− i is always greater than s, we
can reduce the upper limit of the second sum to s. Then we get

t∑
i=1

s∑
k=s−i+1

(T3)i,k · 2s−k−i+1. (8.0.5)

This is exactly the same as Equation 8.0.2 without all terms where
k < 1 − i + s ⇒ 0 < s − k − i + 1, that is all terms where 2s−k−i+1 ≥ 2, which is
also the terms that are congruent to 0 modulo 2. Hence we get t∑

j=1

2−(j−1)
t∑
i=1

(T4)i,j

 mod 2 =

⌊
c ·B
p

⌉
mod 2.

In the following steps the goal is to sum the rows of the matrix T4, and it will be
done in a way such that CD becomes as shallow as possible.

Notice that the goal of this matrix T4 is to sum the rows. This is exactly the same
as for the matrix T2 we created in step 2. The difference is that T2 has s1 rows,
while T4 has only t, so the number of rows has been reduced drastically. This
method is used to reduce the complexity of the procedure, which we will see later
when we do the detailed analysis.

49

Step 5

In step 4 we created the t × t matrix T4 where each column contains at most s
nonzero bits. Since we are only interested in the sum of the rows in T4, we can
permute the entries in each column without affecting this sum. We will therefore
do a permutation of the entries in each column, such that the all the zeroes come
in the first rows. After doing this, we remove all zero rows, and what remains
is the s × t matrix T5. The permutation of the other elements in each column is
irrelevant for this decryption procedure, but it will be important when we work
with the Recrypt algorithm later.

Now we have reduced the number of rows to a minimum, and we will start doing
the actual addition of the rows.

Step 6

In step 6 we start doing the actual summing. We apply a sequence of carry-save-
adders to do this. A carry-save-adder takes three rows containing bits, and replaces
them by two other rows with the same sum as the three original rows. Since we start
out with an s× t matrix, and we reduce the number of rows by one for each time
we apply a carry-save-adder, we have to apply a sequence of s−2 carry-save-adders
to end up with a 2× t matrix.

Let v1, v2 and v3 be the three first rows of T5, and let w1 and w2 be the two rows
we will replace them with. Then the entries in w1 are calculated in the following
way:

w1,i = v1,i + v2,i + v3,i mod 2 for i = 1, . . . , t

w2,t = 0

w2,i = v1,i+1v2,i+1 + v1,i+1v3,i+1 + v2,i+1v3,i+1 mod 2 for i = (t− 1), . . . , 1

As before, if we get something larger than 2 it is automatically reduced modulo
2, since each row only can store numbers in [0, 2). This is acceptable since we are
only interested in the result modulo 2.

The reason for using a carry-save-adder instead of a normal adder which adds two
rows of bits, is that the carry-save-adder reduce the total depth.

Step 7

In step 7 we calculate the sum of the two rows in T6. This can not be done by
a carry-save-adder, but we will use a normal adder where we start from the back
and keep a carry. Let v1 and v2 be the two rows of T6, and let w be the row vector
storing the bits of v1 + v2. We will let ci be the carry obtained after summing v1,i

and v2,i. We then use the following procedure to calculate ci and wi.

50 CHAPTER 8. THE DECRYPTION CIRCUIT

AddRows(v1, v2):
- Set ct+1 = 0.
- For i = t, . . . , 1:

- wi = v1,i + v2,i + ci+1 mod 2.
- ci = v1,ici+1 + v2,ici+1 + v1,iv2,i mod 2.

- Return w = (wi).

Notice that as in step 6, we ignore all overflow into the bit position corresponding
to the binary weight 21 and above, hence we are left with a value in the range [0, 2)
after adding.

To do the last rounding and reduction modulo 2, we only need look at the first 3
bits in w. All other bits of w corresponds to a binary weight of 2−3 or less, so they
will not have any effect on the rounding. We get

bc ·B/pe mod 2 = w1 + w2w3 mod 2.

Finally we subtract this result from c mod 2 to obtain the message M .

The algorithm CD presented and explained here calculates exactly the same result
as Decrypt, while only using bits and simple binary operations like multiplication
and addition modulo 2. In other words, we can express CD as a boolean circuit,
which also means that we can evaluate it homomorphically with our SWHE scheme
Π (if it is shallow enough).

Chapter 9

The Recrypt Algorithm

Since CD can be represented as a circuit, we can evaluate it homomorphically.
This means that each bit is replaced with a ciphertext that encrypts it, while
multiplication and addition modulo 2 are replaced with Add and Mult respectively.

9.1 Presenting the Recrypt Algorithm

We will now present the Recrypt algorithm, which is almost identical to CD if one
disregards that Recrypt works with numbers modulo in Fp while CD works with
bits in F2.

Recrypt takes as input a ciphertext c and PK = (p, α, s1, s2, {ci, Bi}s1i=1), and returns
a ciphertext cnew with less error than the input c.

51

52 CHAPTER 9. THE RECRYPT ALGORITHM

Recrypt(c,PK):
1. Write down the first t bits of the s1 floating point numbers

(c ·Bi mod 2p)/p as an s1×t matrix T1. Then encrypt each of the bits in

T1 under PK to obtain the matrix U1, e.i (U1)i,j
R←− Encrypt((T1)i,j ,PK).

2. Multiply the i-th row of U1 by ci to obtain the s1 × t matrix U2 where
(U2)i,j = (U1)i,j · ci.

3. Create the matrix U3, where (U3)i,j = SymPol2s−j (c1, c2, . . . , cs1) mod
p, where c1, c2, . . . , cs1 are the ciphertexts of column i in U2, i.e.
ck = (U2)k,i.

4. Form the t× t matrix U4 with (U4)i,j = (U3)i,j−i+s whenever the right
hand side is defined and zero otherwise.

5. Merge the rows of the matrix U4, so as to obtain an s× t matrix U5 such
that the sum of the rows of U5 equals the sum of the rows of U4.

6. Apply carry-save-adders to reduce the 3 first rows to 2 rows. Repeat
this procedure until we have a 2× t matrix U6.

7. Perform the final addition of the two rows in U6 to obtain the vector U7.
Then compute (U7)1 + (U7)1 · (U7)2 mod p. Finally subtract the result
to c mod p and output the result as cnew.

As we can see, this is exactly the same algorithm as CD, except for that we are
working with encryptions of the bits instead of the bits themselves.

Step 1

In step 1 we create the matrix T1 as we did in CD. After this we encrypt each
of the entries under Π to obtain the matrix U1. This matrix U1 is the matrix
corresponding to T1 from CD.

Step 2

The vector (ci) is the encryption of the vector ski. In CD we multiplied the entries
of row i in the matrix T1 with the ski modulo 2 to obtain T2. Similarly we multiply
each element of row i in U1 by ci modulo p to obtain the matrix U2. The multi-
plication in step 2 is the first homomorphic operation we do in Recrypt, and the
result U2 will then be the encryption of the matrix T2 in CD. Now we clearly see
a relation between CD and Recrypt, namely that the encryption of Ti in CD equals
Ui in Recrypt. This will be true for all i = 1, . . . , 7.

Step 3

To construct the matrix U3, we use the symmetric polynomials we used in CD.
These symmetric polynomials are also defined for inputs in Fp, so we get

(U3)i,j = SymPol2s−j (c1, c2, . . . , cs1) mod p,

9.2. ERROR ANALYSIS OF RECRYPT 53

where c1, c2, . . . , cs1 are the ciphertexts of column i in U2, i.e. ck = (U2)k,i. By
correctness of homomorphic encryption we have that U3 is an encryption of T3.

Step 4

In step 4 we just move the elements of U3 to the matrix U4 like we did in when we
constructed CD.

Step 5

In step 5 we permute the column entries of the matrix U4. Like in the matrix T4,
at least s−t of the entries in each column in U4 equals zero. We put those elements
in the first rows. It appears to be optimal to place the remaining ciphertexts such
that the amount of noise increases as we descend the matrix. In the analysis we do
later, we will see why this is optimal. The first t− s rows will always be zero-rows,
and we remove them to obtain the s× t matrix U5.

Step 6

In step 6 we apply carry-save-adders to obtain the 2 × t matrix U6. This follows
the same rules as for bits.

Step 7

In step 7 we add the last two rows of U6 to obtain the vector U7. U7 is then an
encryption of T7. To obtain an encryption of bc ·B/pe we calculate

(U7)1 + (U7)1 · (U7)2 mod p.

Finally we subtract this result from Encrypt(c,PK) to obtain cnew an encryption
of c − bc ·B/pe = M . This shows that the Recrypt algorithm does exactly what
we want it to do, it takes as input a ciphertext c with high noise value (a dirty
ciphertext) and returns a clean ciphertext cnew s.t.

Decrypt(cnew,SK) = Decrypt(c,SK).

9.2 Error Analysis of Recrypt

To find out how large our parameters should be to allow fully homomorphic en-
cryption, we need to do a more detailed analysis of Recrypt. In particular we will
see how much the error terms grow in each of the steps of Recrypt. To make things
simple we will express all other relevant parameters as functions of N . Hence at the
end we will find the required size of N needed to do fully homomorphic encryption.

54 CHAPTER 9. THE RECRYPT ALGORITHM

In the calculations we will use µ =
√
N , δ∞ = N and s1 = N ·

√
N . It will therefore

be useful to define the growth parameter ρ =
√
N .

Assume we have two ciphertexts c1 and c2 corresponding to two randomizations
C1(x) = M1 + N1(x) and C2(x) = M2 + N2(x); where Mi ∈ {0, 1} are the mes-
sages and Ni(x) ∈ B∞,N (ri − 1) are the randomnesses, i.e. C1(x) ∈ B∞,N (r1)
and C2(x) ∈ B∞,N (r2). Let rad(c) denote the radius of the ball containing the
corresponding polynomial C(x), i.e. we have C(x) ∈ B∞,N (rad(c)). We recall from
Section 5 that

rad(c1 · c2) = δ∞ · rad(c1) · rad(c2)

and

rad(c1 + c2) = rad(c1) + rad(c2).

If A is a matrix of ciphertexts, we let rad(A) denote the matrix obtained by applying
rad to each entry in A. We will also use the notation g ∼ f , which means that
limρ→∞ f/g = 1.

Originally we start out with clean ciphertexts of radius µ + 1, and as we add and
multiply ciphertexts this radius increases.

Step 1

The result after step 1 is that we obtain an s1 × t matrix U1 containing clean
ciphertexts with rad(U1) = µ+ 1 ∼ ρ.

Step 2

In step 2 we multiply each entry of U1 by another clean ciphertext from the matrix
(ci). This results in the matrix U2 with (rad(U2))i,j = δ∞ · r2

2 ∼ ρ4 for all i, j.

Step 3

In U2 each of the entries have the same noise value, but after step 3, we ob-
tain U3, a matrix where the noise value is different for each column. Recall that
(U3)i,j = SymPol2s−j (c1, c2, . . . , cs1), where c1, c2, . . . , cs1 are the ciphertexts of col-
umn i in U2, i.e. ck = (U2)k,i. So we obtain a ciphertext in column j, by summing(
s1

2s−j

)
terms, where each term is the product of 2s−j ciphertexts from U2. So each

term is of order
(ρ4)2s−j · δ2s−j−1

∞ = ρ6·2s−j−2.

There are in total
(
s1

2s−j

)
terms, where(

s1

2s−j

)
∼ s2s−j

1

2s−j !
∼ ρ3·2s−j

2s−j !
.

9.2. ERROR ANALYSIS OF RECRYPT 55

We then get

rad((U3)i,j) ∼
(
s1

2j−1

)
ρ6·2s−j−2 ∼ ρ3·2s−j−2

2j−1!
.

This value only depends on j, the column number, and not i.

Step 4

In step 4 we do no multiplication nor addition to the existing ciphertexts. The only
thing we do is to move some of the entries from U3 over to U4. From this point
the result depends on the choice of s and t, we will therefore just show rad(U4) for
common choices of (s, t).

Case (s, t) = (3, 5):

rad(U4) ∼

ρ7 0 0 0 0

ρ16/2 ρ7 0 0 0
ρ34/4! ρ16/2 ρ7 0 0

0 ρ34/4! ρ16/2 ρ7 0
0 0 ρ34/4! ρ16/2 ρ7

Case (s, t) = (4, 5):

rad(U4) ∼

ρ7 0 0 0 0

ρ16/2 ρ7 0 0 0
ρ34/4! ρ16/2 ρ7 0 0
ρ70/8! ρ34/4! ρ16/2 ρ7 0

0 ρ70/8! ρ34/4! ρ16/2 ρ7

Case (s, t) = (4, 6):

rad(U4) ∼

ρ7 0 0 0 0 0

ρ16/2 ρ7 0 0 0 0
ρ34/4! ρ16/2 ρ7 0 0 0
ρ70/8! ρ34/4! ρ16/2 ρ7 0 0

0 ρ70/8! ρ34/4! ρ16/2 ρ7 0
0 0 ρ70/8! ρ34/4! ρ16/2 ρ7

As we can see get the same triangular-like pattern which we got in CD. Notice that
the noise value is smallest on the diagonal, and that it increases as we go further
away from the diagonal line. Also notice how none of the columns have more than
s non-zero entries.

56 CHAPTER 9. THE RECRYPT ALGORITHM

Step 5

Now we will permute the entries in each column, and after that we will resize U4

to end up with the s× t matrix U5. It turns out that the best way of doing this is
to order the column entries such that the noise increases as you descend a column.
This will also put all the zeroes at the top, and we can easily delete these rows.
There will be at least t− s zero rows after permuting, and by removing these rows
we end up with the s × t matrix U5. For our three different cases we get the
following matrices.

Case (s, t) = (3, 5):

rad(U5) =

 ρ7 ρ7 ρ7 0 0
ρ16/2 ρ16/2 ρ16/2 ρ7 0
ρ34/4! ρ34/4! ρ34/4! ρ16/2 ρ7

Case (s, t) = (4, 5):

rad(U5) =

ρ7 ρ7 0 0 0

ρ16/2 ρ16/2 ρ7 0 0
ρ34/4! ρ34/4! ρ16/2 ρ7 0
ρ70/8! ρ70/8! ρ34/4! ρ16/2 ρ7

Case (s, t) = (4, 6):

rad(U5) =

ρ7 ρ7 ρ7 0 0 0

ρ16/2 ρ16/2 ρ16/2 ρ7 0 0
ρ34/4! ρ34/4! ρ34/4! ρ16/2 ρ7 0
ρ70/8! ρ70/8! ρ70/8! ρ34/4! ρ16/2 ρ7

Step 6

In step 6 we perform a sequence of carry-save-adders to reduce the number of rows
to 2. Our carry-save-adders replace the three first rows with two new rows, and
repeat this until only 2 rows remain. We will in the calculations get sums of more
than one term, and we ignore lower degree terms to keep the results simple.

Case (s, t) = (3, 5):

rad(U6) =

(
ρ34/4! ρ34/4! ρ34/4! ρ16/2 ρ7

ρ52/48 ρ52/48 ρ25/2 0 0

)
Case (s, t) = (3, 5):

rad(U6) =

(
ρ70/8! ρ70/8! ρ34/4! ρ16/2 ρ7

ρ106/4! · 8! ρ52/48 ρ25/2 0 0

)
Case (s, t) = (3, 5):

rad(U6) =

(
ρ70/8! ρ70/8! ρ70/8! ρ34/4! ρ16/2 ρ7

ρ124/2 · 4! · 8! ρ106/2 · 4! ρ52/48 ρ25/2 0 0

)

9.2. ERROR ANALYSIS OF RECRYPT 57

Step 7

We now add the two last rows using a normal adder to obtain the matrix U7, and
we get the following results.

Case (s, t) = (3, 5):

rad(U7) =
(
ρ115/(2 · 4!) ρ61/(2 · 4!) ρ34/4! ρ16/2 ρ7

)
Case (s, t) = (4, 5):

rad(U7) =
(
ρ133/(2 · 4! · 8!) ρ70/8! ρ34/4! ρ16/2 ρ7

)
Case (s, t) = (4, 6):

rad(U7) =
(
ρ241/2(4! · 8!)2 ρ133/(2 · 4! · 8!) ρ70/(8!) ρ34/4! ρ16/2 ρ7

)
(s, t) rad(cnew)

(3, 5) ρ115

(2·4!)2

(4, 5) ρ133

2·4!·8!

(4, 6) ρ241

2(4!·8!)2

Table 9.1: Table showing the resulting noise of the ciphertext returned from Recrypt
for given parameters s and t.

To do the rounding we calculate (U7)0 +(U7)1 ·(U7)2 and we ignore all terms except
for the one with highest degree. The last step is to subtract this from c, but since
c ∼ ρ, we can ignore this last step because the error of c is much smaller than
the error of bc ·B/pe. We obtain the new ciphertext cnew with rad(cnew) given in
Table 9.1.

So by using Recrypt we can now recrypt a ciphertext to obtain a new ciphertext
cnew with error bounded by rad(cnew). We will use Recrypt to reduce the error of
ciphertexts during evaluation of large circuits. More precisely we will apply Recrypt
on each ciphertext before we use it as input for either Add or Mult.

A typical case is the one where we have just recrypted two ciphertexts to ob-
tain two relatively clean ciphertexts c1 and c2, and we want to multiply the re-
sults. Since rad(c1) = rad(c1) = rad(cnew), this gives us a new ciphertext c with
rad(c) = δ∞ · rad(cnew)2. It must be possible to decrypt c, so we need to choose
ρ =
√
N s.t.

rad(c) = δ∞ · rad(cnew)2 ≤ rDec/2,

where the extra factor of 2 comes from the fact that we reduced rDec by a factor of
2. Table 9.2 gives the results for s2 between 5 and 14.

58 CHAPTER 9. THE RECRYPT ALGORITHM

s2 (s, t) rad(c) d

5,6,7 (3,5) ρ232

(2·4!)4 7

8 (4,5) ρ268

(2·4!·8!)2 7

9,10,11,12,13,14 (4,6) ρ484

22(4!·8!)4 8

Table 9.2: Table showing the radius of the ciphertext c, and the corresponding
depth.

A similar analysis for (s, t) = (5, 7), which corresponds to s2 between 17 and 31,
gives a radius rad(c) of

rad(c) =
ρ880

(8!)2 · (4! · 16!)4
.

For F (x) = x2n + 1, µ =
√
N and η = 2

√
N we get rDec = 2

√
N/(2 ·

√
N) = 2ρ/4ρ,

which shows that for ρ ≥ 11680 it is possible to obtain a fully homomorphic en-
cryption scheme. This corresponds to N ≥ 136422400 and n ≈ 27.

This shows that a fully homomorphic scheme is possible, but very impractical.
With n = 27, we get log2p ≈ 1554950000000 which corresponds to about 200GB.
A ciphertext can be as large as p, which means that each encryption of a bit may
take 200GB of memory, so the results are not very promising.

Now we have explained the Recrypt algorithm, and we will use it to recrypt cipher-
texts before they are used as inputs for Add and Mult. We then get AddFHE and
MultFHE, algorithms which take as input two ciphertexts c1 and c2, and recrypts
them before applying Add and Mult respectively.

Our final fully homomorphic encryption scheme then consists of the following five
algorithms:

(KeyGenFHE,Encrypt,Decrypt,AddFHE,MultFHE).

Chapter 10

Conclusion

In this last section we will try to summarize what we have discovered about our
scheme. We will in particular see how the different parameters affect the result,
and how they should be set to obtain bootstrappability and sufficient security.

10.1 Theoretical Results

As we saw in Section 5, F (x) = xN + 1, where N = 2n, is a good choice for our
irreducible polynomial in KeyGen. For a given N this polynomial is the one which
makes rDec as large as possible. For this F (x) we get δ∞ = N . We used this
polynomial when we analysed Recrypt earlier, and we will use it also in this final
discussion.

We calculated rDec, the greatest radius a ciphertext can have before it becomes
impossible to decrypt:

rDec =

√
N · η

2 · δ∞
,

which equals
η

2 ·
√
N

for our choice of F (x).

We see that this value depends on N and η. But typically η is a function of N , so
for growing N , rDec becomes greater if η grows faster than

√
N . We want rDec to

be as large as possible, so here we prefer an η which grows fast.

In the security section we set the security to be 2N/ε, where

2ε =
rDec

rEnc
=

√
N · η

2 · δ∞ · µ
.

59

60 CHAPTER 10. CONCLUSION

With δ∞ = N , we then get

2ε =
η

2 ·
√
N · µ

⇒ ε = log2

(
η

2 ·
√
N · µ

)
.

This gives

2N/ε = 2

N

log2

(
η

2·
√
N·µ

)
.

This shows that a large N and µ typically increase the security, while a large η
makes our scheme more vulnerable. More precisely, if η is of order 2N , it will be
the dominant factor in the logarithm, hence

2N/ε ≈ 2
N
N = 2,

which is not secure at all. Hence we should choose an η which grows slower than

2N . We therefore see that η = 2
√
N is a good choice. This also grows faster than

N , so we get a fairly large rDec as well. We will use η = 2
√
N in the remainder of

this section.

When we did the error analysis of the Recrypt algorithm we used µ =
√
N ∼ ρ. The

choice of µ is important, since it affects the result of this analysis directly. A large
choice of µ will therefore result in a much larger error of the ciphertext cnew we get
after recrypting. This indicates that µ should be as small as possible. But a small
µ reduces the security, so we can not set µ to be too small. We earlier established
that µ = 2 is the lowest choice of µ we can make. Smart and Vercauteren gives
two different choices of µ, namely µ = 2 and µ =

√
N . We will use both as well.

When we calculated rDec earlier we used the fact that

p ' ‖G(x)‖N2 · ‖F (x)‖N−1
2 .

And since ‖G(x)‖∞ ' η, we get ‖G(x)‖2 ' η ·
√
N , which leads to

p '
√
N
N
· ηN · ‖F (x)‖N−1

2 .

Now since F (x) = x2n + 1 = xN + 1 we get ‖F (x)‖2 =
√

2. Together with our

choice of η = 2
√
N , this gives us p expressed only by N :

p '
√
N
N
· 2
√
N ·N ·

√
2
N−1

.

Now we substitute N = 2n and take the binary logarithm on both sides and end
up with

log2 p ' log2(
√

2n
2n

· 2
√

2n·2n ·
√

2
2n−1

)

= log2 2n·2
n−1

+ log2 223n/2

+ log2 2(2n−1)/2

= (n · 2n−1) + 23n/2 + (2n − 1)/2

10.1. THEORETICAL RESULTS 61

Since the second term is the dominant, we only need to consider that term. We
then get

log2 p ' 23n/2.

Recall that we want to avoid a low density for the SSSP. Hence we set s1 = log p.
Now we select s2 such that √(

s1

s2

)
> 2N/ε,

which ensures that the difficulty of SSSP is at least as hard as BDDP.

We present two tables with theoretical results. The first one, Table 10.1 shows the
results for µ =

√
N . This table is very comprehensive. The second one, Table 10.2,

uses µ = 2, and is less complete.

n log2 p 2N/ε s1 ∼ log p s2 (s, t) rDec

2 rad(c) d d̂

8 4096 236 2839 8 (4,5) 1024 ≈ 10310 0.0 6.4

9 11585 240 8030 8 (4,5) 71587 ≈ 10350 0.3 6.4

10 32768 248 22713 8 (4,5) 3.3 · 107 ≈ 10391 0.7 6.4

11 92681 261 64242 9 (4,6) 2.3 · 1011 ≈ 10777 1.2 7.3

12 262144 280 181704 11 (4,6) 7.2 · 1016 ≈ 10850 1.6 7.3

13 741455 2107 513938 13 (4,6) 4.8 · 1024 ≈ 10922 2.1 7.3

14 2.1 · 106 2144 1.4 · 106 17 (5,7) 6.6 · 1035 ≈ 101786 2.5 8.1

15 5.9 · 106 2298 4.1 · 106 22 (5,7) 4.3 · 1051 ≈ 101919 2.9 8.1

16 1.7 · 107 2274 1.1 · 107 28 (5,7) ≈ 1074 ≈ 102051 3.4 8.1

17 4.7 · 107 2380 3.2 · 107 30 (5,7) ≈ 10105 ≈ 102184 3.8 8.2

26 5.5 · 1011 28219 3.8 · 1011 30 (5,7) ≈ 102461 ≈ 103376 7.7 8.2

27 1.6 · 1012 211613 1.1 · 1012 30 (5,7) ≈ 103482 ≈ 103508 8.2 8.2

Table 10.1: Table showing how the parameters change as n increase. We have used

F (x) = x2n + 1, η = 2
√
N and µ =

√
N .

Let us first consider the values in Table 10.1. The first thing to notice is that log2 p
is very large. Ciphertexts of our scheme may be as large as p, and for n = 27 we
get ciphertexts which may take as much as 1.6 · 1012 bits ≈ 200GB. This is a large
amount of memory spent on the encryption of one single bit!

Usually one require a security level of 280 or more. This means that for n < 13
our scheme is not sufficiently secure. However, the security level grows fast as we
increase n, and for n = 27, the hardness of BDDP is about 211613, which is more

62 CHAPTER 10. CONCLUSION

than we ever need. Earlier we decided that s2 should be chosen such that SSSP
becomes as hard as BDDP, but we can for n = 27 use a smaller s2, since the security
does not seem to be a problem. In the analysis of recrypt we chose (s, t) = (5, 7),
which corresponds to 17 ≤ s2 ≤ 31. With n = 27 we get s1 ∼ 1.1 · 1012, so even if
s2 = 30, we still get a hardness of SSSP of about 2546, which is sufficient. Actually
if n > 16 it is sufficient with s2 = 30.

Table 10.1 also includes the theoretical values of rDec/2 and rad(c). We know that
bootstrappability is possible if rad(c) < rDec/2, which is true when n = 27. We also
calculated this when we did the error analysis of Recrypt, with the same conclusion.

We have also included the calculated values of d and d̂. The value d is the depth
related to the value rDec/2, i.e. it is the maximum multiplicative depth of circuits

we can decrypt correctly. Similarly, d̂ is the depth related to rad(c), i.e. the
multiplicative depth we need to manage to obtain bootstrappability. In other
words, to get our fully homomorphic scheme, we require that d > d̂. This happens
when n = 27, as we have already seen. d and d̂ are calculated by the following two
formulas:

d log 2 = log log
(rDec

2

)
− log log(N ·

√
N)

d̂ log 2 = log log (rad(c)))− log log(N ·
√
N).

As we discussed earlier, the values of d and d̂ are not very accurate, and they
assume that we are working with perfectly balanced circuits. However, they give a
better intuition than the values rDec/2 and rad(c).

n log2 p 2N/ε s1 ∼ log p s2 (s, t) rDec

2 rad(c) d d̂

8 4096 226 2839 6 (3,5) 1024 ≈ 10272 0.2 6.7

9 11585 232 8030 6 (3,5) 71587 ≈ 10307 0.7 6.7

10 32768 241 22713 7 (3,5) 3.3 · 107 ≈ 10342 1.2 6.7

11 92681 254 64242 8 (4,5) 2.3 · 1011 ≈ 10431 1.7 6.9

12 262144 273 181704 10 (4,6) 7.2 · 1016 ≈ 10849 2.1 7.8

13 741455 2100 513938 12 (4,6) 4.8 · 1024 ≈ 10922 2.6 7.8

Table 10.2: Table showing how the parameters change as n increase. We have used

F (x) = x2n + 1, η = 2
√
N and µ = 2.

In Table 10.2 we use µ = 2. The motivation for this was to increase d as much
as possible. As we can see, d is greater with µ = 2 than with µ =

√
N , as we

expected. However, the value of d̂ has also increased compared to µ =
√
N , so the

advantage is not crucial. Also notice that our scheme is weaker if µ = 2.

10.2. IMPLEMENTATION RESULTS 63

10.2 Implementation Results

In the end we present some of the results of Smart and Vercauteren’s actual im-
plementations. This will show how much time the scheme takes to run, which is at
least as important as the memory usage. Table 10.3 shows the running time of the
algorithms Encrypt, Decrypt, Add and Mult on a desk-top machine. The results are
copied directly from [6].

d

n Encrypt Decrypt Mult µ = 2 µ =
√
N

8 4.2 0.2 0.2 1.0 0.0

9 38.8 0.3 0.2 1.5 1.0

10 386.4 0.6 0.4 2.0 1.0

11 3717.2 3.0 1.6 2.5 1.5

Table 10.3: Running times for the different algorithms.

We do not present results for KeyGen because of its long running time. For n = 12,
Smart and Vercauteren were unable to generate keys because it took so much time,
so it seems impossible to generate keys for n = 27. The running time of the Encrypt
algorithm seems to multiply by a factor of about 10 for each time we increase n.
If this trend continue one encryption may take about a billion years for n = 27, in
other words, to obtain a fully homomorphic scheme, we need much more computer
power than what we have today.

If we look at the depth we are actually able to handle, we see that in practice
the scheme performs better than what we expected. This is reasonable since we
calculated d for the worst case scenario earlier.

64 CHAPTER 10. CONCLUSION

Bibliography

[1] Robert B. Ash. A course in algebraic number theory, 2003.
http://www.math.uiuc.edu/ r-ash/ANT.html.

[2] P.B. Bhattacharya, S.K. Jain, and S.R. Nagpaul. Basic Abstract Algebra. Cam-
bridge University Press, 1994.

[3] Gu Chunsheng. Cryptanalysis of the smart-vercauteren and gentry-halevis fully
homomorphic encryption. Cryptology ePrint Archive, Report 2011/328, 2011.
http://eprint.iacr.org/.

[4] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

[5] J. S. Milne. Algebraic number theory, 2011. http://www.jmilne.org/math/.

[6] N.P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. Cryptology ePrint Archive, Report 2009/571,
2009. http://eprint.iacr.org/.

65

	Title Page
	masteroppgave.pdf

