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Abstract: Autonomous vehicles and collision avoidance (COLAV) systems are advancing
rapidly. However, the majority of the COLAV methods developed are not designed for vehicles
with second-order nonholonomic constraints, such as autonomous surface vehicles (ASVs). This
paper proposes the hybrid dynamic window (HDW) algorithm, which in addition to acting as
a reactive COLAV method, functions as a trajectory tracker in a hybrid COLAV architecture.
The algorithm serves as an interface to any deliberate COLAV method which generates time
parameterized trajectories, enabling vehicles to avoid local minima and track optimal trajectories
towards the goal. Furthermore, a new distance function is developed for the dynamic window
(DW) algorithm, improving the algorithm trajectory planning when operating close to obstacles.
A case study is done for an ASV model using the HDW algorithm and the rapidly-exploring
random tree (RRT) algorithm, which together form a hybrid COLAV system. The performance
is evaluated through simulations using a defined set of performance metrics.
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1. INTRODUCTION

To employ autonomous surface vehicles (ASVs) in envi-
ronments with obstacles and avoid collisions, the ASVs
need a reliable collision avoidance (COLAV) system. Fur-
thermore, in unknown dynamic environments the COLAV
system is required to be running in real-time (Brock and
Khatib, 1999). Reactive COLAV methods, also called lo-
cal or sense-act methods, base their actions on currently
available sensor data. These methods are memoryless, con-
sidering only the immediate environment, and have low
computational requirements. Deliberate COLAV methods,
also called global methods, find a route from a given start
to a given goal based on available environment data. By
planning ahead, a deliberate method with knowledge of
the environment will increase the chance of reaching the
goal without getting stuck in local minima. However, this
comes at the cost of increased computational requirements.
Hybrid algorithms combine the benefits of both reactive
and deliberate algorithms by combining them, using the
deliberate algorithm for long-term planning and the reac-
tive algorithm for real-time COLAV.

Many reactive COLAV methods including velocity obsta-
cles (Fiorini and Shiller, 1998) and the dynamic window
(DW) algorithm (Fox et al., 1997), and deliberate methods
including the probabilistic rapidly-exploring random trees
(RRT) algorithm (LaValle, 1998), have been developed
over the years. Most COLAV methods are designed for
vehicles with only holonomic or first-order nonholonomic
constraints, including the DW algorithm. However, few

results are presented for vehicles with second-order non-
holonomic constraints. A modification to the DW algo-
rithm is presented in (Eriksen et al., 2016) which takes
second-order nonholonomic constraints into account. The
algorithm is shown to perform well for ASV COLAV
(Serigstad, 2017), but introduces some weaknesses when
operating close to obstacles. A safety region region around
obstacles, which the vehicle is motivated to avoid is intro-
duced in the algorithm. If the vehicle is inside the safety
region, however, the algorithm will not be motivated to
leave the region and will lose the ability to evaluate the
vehicle distance towards obstacles. Furthermore, the re-
gion may cause problems when travelling through narrow
passages. This paper resolves the weaknesses introduced
with the safety region. An ASV used for full scale testing
of the DW algorithm in (Eriksen et al., 2018) is depicted
in Figure 1.

In this paper, we introduce the hybrid dynamic window
(HDW) algorithm, which in addition to functioning as
a reactive COLAV method, tracks a global trajectory
generated by a deliberate algorithm in a hybrid system.
Furthermore, a new distance function for the DW algo-
rithm is presented, which greatly reduces the weaknesses
of operating close to or inside the safety region. The hybrid
architecture is tested on an ASV through simulations,
and evaluated using performance metrics. Furthermore,
a branching of the DW trajectory predictions is applied,
enabling the algorithm to change desired velocity during
the trajectory prediction. This article is based on the
master thesis (Serigstad, 2017).
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Fig. 1. The Telemetron is a dual-use surface vessel capable
of operating as an ASV.

The rest of the paper is organized as follows: Section
2 presents the ASV model. A modified DW algorithm
introduced in (Eriksen et al., 2016) is reviewed in Section
3. The HDW algorithm and a new distance function are
introduced in Section 4. The HDW algorithm is evaluated
through simulations in Section 5, while Section 6 concludes
the paper.

2. ASV MODEL
To model the ASV, we use the widely used 3 DOF model

(Fossen, 2011):
n= Ry (1)
Mv+Cwv)v+ Dy =r, (2)
where n = [z,y,%]" € R? x S is the ASV pose in
the North-East-Down (NED) reference frame, and v =
[u,v,7]T € R? is the ASV velocity in the body-fixed
reference frame. The matrix R(v) is a rotation matrix
defining the rotation between the body frame and the NED

frame:
cos(v) —sin(y) 0
R(y) = |sin(y) cos(y) 0] . (3)
0 0 1

The inertia matrix M is given as:

mi1 0 0
0 Mmoo Ma3 | , (4)
0 ma3 m33

M:

while the Coriolis and centripetal matrix C(v) is given as:

0 0 —Mao3”’ — M2V
C(y) = 0 0 mi1u . (5)
masT + MoV —M11U 0

The damping matrix is given as D(v) = Dy, + Dy (v),
where Dy, is a linear damping matrix and Dy (v) is a
non-linear damping matrix:

X, 0 0
D,=|0Y, Y|, (6)

0 N, N,
Dnr(v) = Isxs | Yoolv] + Youo® | . (7)

Mr\r‘ﬂ + Nyppr?

ASVs usually employ a propeller and rudder for control,
giving a control input 7 which may be modeled as:

T £ Bf, (8)

where f = [X N]T is a vector of the propeller force X
and rudder torque IV, and the matrix B is given as:

10
B=|0—-{/|, (9)
0 1

where [,. > 0 is the length from the rudder to the center
of origin. The yaw moment N is modelled as:

N = —Ks,u’l0y, (10)
where u is the surge speed, K5, > 0 is a rudder coefficient
and dy is the rudder angle based on the model used in

(Eriksen et al., 2016). The ASV rudder angle and angle
rate is constrained by:

‘&p ’ S (Smax

(11)

’(qu‘ S Smaxv (12)
where 0,4, > 0 is the maximum rudder angle, and Smaz >
0 is the maximum rudder angle rate. The propeller force
is defined as:

X e [Xminvxmax]a (13)
where Xin < 0 and X2 > 0 are the propeller satura-
tion.

3. THE MODIFIED DYNAMIC WINDOW
ALGORITHM

A modification to the DW algorithm (Fox et al., 1997) tak-
ing second-order nonholonomic constraints into account is
presented in (Eriksen et al., 2016), and is denoted the mod-
ified dynamic window (MDW) algorithm in this paper.
The algorithm searches for an optimal velocity within the
velocity space formed by the vehicle translational speed
and rotational rate. For an ASV, a point in the velocity
space consists of the surge speed u and the yaw rate r,
which form a velocity pair (u, 7). The optimal velocity pair
is used as a reference velocity for the vehicle controllers.
The algorithm generates a search space ensuring feasible
velocities, which is discretized into a finite set of velocity
pairs. For every discrete velocity pair within the search
space, a vehicle trajectory is predicted using a closed-
loop error model. Finally, an objective function defines the
optimal velocity pair.

To generate the search space in the DW algorithm, a
union of three sets are used. The dynamic window Vjy
contains velocities the vehicle can reach within a short
timeframe. The set of admissible velocities V, contains
velocities allowing the vehicle to stop before colliding with
the closest obstacle along the predicted trajectory. The
set of possible velocities V, contains feasible velocities
considering actuator saturation limits.

Allowing a time T, for changing the rudder setting, we
obtain a set of possible rudder angles:

dy € sat( {5:; — Tubmax by + Tasmax] ) 5max>a

where sat(-) is the saturation function, and dy, is the

current rudder angle, constrained by (11) and (12). The
possible vessel acceleration is defined as:

(14)

v =M (1, — C(v*)v* — D(v*)v*), (15)
where i € {min, max}, and
Timin = T(V*, max(d,), min(X)) (16)
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Tmax = T(V*, min(8, ), max(X)), (17)
where the actuation constraints are given by (13) and (14).
Note that a positive rudder moment causes a negative yaw
rate.

Allowing a time Ts > T, for accelerating the vessel, the
dynamic window is defined as

Va={(u,7r) eRxR

| u € [u* + Umin * T, U™ + Umax - Ts) - (18)
AT € [r* + Fmin - To, ™ + Tmax - Ts) }
The set of possible velocities V; is found from:
VSZ{(U,T)GRXR|Q(U,T)ZO}, (19)

where g(u,r) is positive for feasible steady-state velocities
and negative otherwise. The function g(u,r) is computed
by finding the boundaries of the steady state solution
of the vehicle dynamics, given the actuator magnitude
constraints (11) and (13).

To penalize velocity pairs leading towards obstacles, two
regions are defined as the safety region

Qé{peé‘Hp—pforbHZSm} (20)
and the collision region
T {PGE)HP—pforb’|2S7“T}7 (21)

where pforp € R? is the position of obstacles, p = [z,y] "
is the configuration in the configuration space C, r+ > 0
defines the size of T, and rq > ry is a scalar defining
the size of the safety region 2. The ASV configuration
space C € R? is defined by reducing C € R? x SO(2) by
approximating the vehicle footprint as a circle. The size
of the collision region 77 is then selected to be equal or
larger than the vehicle radius. The regions are named the
avoidance and antitarget region in (Eriksen et al., 2016;
Serigstad, 2017), but are renamed in this paper to more
intuitive terms. A set of admissible velocities is defined as:

v, - {(m € R x Rlu < /27, i

(22)
\//7_
/\|T| < 2P (uvr)|7jmax|, r<0 ’
2p/(u’ T)|Tmin|, r> 0
where
Pl(u, T) = maX(p(% fr‘) — As; O)7 (23)

is the distance to the collision region at next algorithm
iteration, A, is the distance travelled until the next
iteration, and p(u,r) is the distance to the safety region.

Lastly, the search space V. is defined by the union of the
three sets

V., =V,nV,NVy. (24)
To take second-order nonholonomic constraints into ac-
count, a trajectory prediction using a closed-loop error
model is defined in (Eriksen et al., 2016). By solving (2)
for U, the system can be described as:

Uv=M"'Bf —n(), (25)
where
n(v) = M (C(v)v + D(v)v). (26)
It can be shown that by using the control law
f=@M 'B) ' (Tin) +a1,), (27)

where a;, is the desired acceleration, the closed-loop vessel
velocity is given as:

o(t) = ep(0) — AN — e (Bry, + G). (28)
The terms of (28) are defined as:
A=—(T{K,T,+T,T;N)
B=-T,TyNT] (29)
G = T Tyb(v+),
where
rlé[(l)g(l)], r, 2010, (30)

and K, = diag(k,,,kp.) > 0, where k,, and k,. are
parameters for a proportional controller. The Jacobian
matrix N is defined as:

N — on(v)
ov v=r*
Using (28) as input, the modified Euler method is used for
predicting the vessel trajectory:
N(tni1) = n(tn) + hk;
ki = R(n(tn))v(tn)
h

ko = ROn(t) + 5 Ra)w(ta + 5).

(31)

(32)

where h is the time step of the integration.

The optimal velocity is defined by the optimization prob-
lem:
1(rna})< G(u,r) =a - yawrate(r,rly) + B - dist(u,r)
+ v - velocity(u, uy) (33)
s.t. (u,r) €V, .

where the functions are weighted by the variables «, 8,y >
0, and the terms are given as:

/ J—
yawrate(r,r})) =1 — M €[0,1], (34)
max(|r} — r|)
reVy,
1l
velocity(u,uly) =1 — ———F——— € [0,1], (35)
max(|uj — ul)
ueV,
dist(u,r) = plu.T) €0,1]. (36

foT Ix(u, 7, 1), dt
The yawrate and velocity terms favor a velocity pair
close to an input (ul,r}), which is used to guide the
DW algorithm. The distance function dist(u,r) is the
approximated time until a collision occurs along the given
trajectory, where p(u, r) is the distance to Q, and x(u,r,t)
is the predicted vehicle surge and sway speed along the
predicted trajectory given the velocity pair (u,r). A line
of sight (LOS) tracking method (Fossen, 2011) is used to
find a desired vehicle heading 4. Using this, we define the
desired yaw rate using the yaw control law:

rg = —ky (1 —a) + Ya, (37)
where ky > 0 is a constant gain. The desired surge speed
u/; is set to a constant value. The introduction of 7/, and v/,
enables external guidance of the desired surge speed and
yaw rate. The MDW algorithm takes the desired velocity
pair (1), u};) as input.
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Fig. 2. HDW algorithm architecture.

4. HYBRID COLAV SYSTEM

The MDW algorithm returns promising results as a re-
active COLAV method for ASVs (Serigstad, 2017). The
algorithm is, however, reactive and there is a significant
risk that the ASV can get stuck in a local minima. To
reduce this risk, a hybrid architecture allowing the use of
deliberate algorithms is introduced.

4.1 Interface between reactive and deliberate COLAV

A hybrid COLAV system for ASVs using the DW algo-
rithm which takes global paths as input is proposed in
(Loe, 2008). However, not taking trajectories as input
excludes the use of deliberate methods that takes moving
obstacles into account. To combine a deliberate and a reac-
tive COLAV method, an interface between the methods is
required. One alternative is to generate a desired surge
speed and yaw rate (u),r);) using a trajectory tracker,
based on a trajectory from the deliberate algorithm. In the
MDW algorithm, the desired velocity (u},r!) are already
chosen based on an external guidance system. Hence, any
trajectory tracker returning a desired velocity pair are
suitable as the interface between the MDW algorithm and
a deliberate method.

Alternatively, we can include the global trajectory directly
into the DW algorithm and chose velocity pairs by how
well the corresponding predicted trajectory aligns with the
global trajectory. This will remove the need of an external
guidance system and make the DW algorithm suitable
with any global method returning a time parametrized
trajectory with the ASV position

pgt(t) = [xgt(t)vygt(t)]Ta (38)

at any time ¢ > 0 along the trajectory. The DW algorithm
will proactively favor velocities which are predicted to
lead the vessel along the global trajectory ahead in time.
To make the DW algorithm suitable for hybrid architec-
tures, we introduce the hybrid dynamic window (HDW)
algorithm which takes the global trajectory as input as
illustrated in Figure 2. In this paper, the RRT algorithm
is used as a deliberate method when simulating the hybrid
COLAYV system using the HDW algorithm.

4.2 Hybrid Dynamic Window (HDW) algorithm

The HDW algorithm is intended to select velocity pairs
that follow the global trajectory. However, a single velocity
pair may not yield a suitable trajectory since the desired
yaw rate may change along the global trajectory. To
improve on this, we allow for branches by changing the

velocity pair during the trajectory. The trajectories are
generated by first making predictions based on a single
velocity pair within the search space as defined in (24).
By using the end state of every predicted trajectory from
(24) as current state, a new search space is generated
in the same manner. For each new search space, new
trajectory predictions are generated based on the velocity
pairs within it, as shown in Figure 3, where two velocity
pairs are used to define a trajectory. A similar modification
is presented in (Ogren and Leonard, 2005). Note that
by using multiple velocity pairs to define trajectories,
the computation load increases exponentially with the
numbers of branches.

We hence define a trajectory as a sequence of M velocity
pairs:
((ula rl)ﬂ (u23 7’2), Ex3) (UM7 TM))

ERXR) X (RxR) x..x (RxR),
where (u1, 1) is the first velocity pair, (ug,r2) the second
and so on. To simplify the notation, we define a sequence of
VGIOCity pairs as (’LL, T.) = ((ula 711)7 (u27 T2)7 ey (uMa rM))a
where u = [ug, ug, ..., up] and r = [r1,r9,...,7pr] " . Using
this notation, we write (39) to:

('LL, r) 6 ‘77'7

where V, = (R x R) x (R x R) x ... x (R x R).

(39)

(40)

The predicted trajectory of a set of velocity pairs yields a
complete vessel state prediction p,(t) at time ¢ along the
trajectory defined as:

ppe(t) = [xpt(t)vypt(t)]—r~ (41)
The predicted trajectories are discretized into N points
between the current time ¢ and t 4+ t,;, where t,, is the
time frame of the predicted trajectory. Using the predicted
trajectories, we define the a measurement of alignment
between a predicted trajectory and the global trajectory:

N
. k
align(Ppr Pgt) = 37 D _|[pe(ti). Por )]l (42)
i=1
where t; is expressed as:
it
=1+ Tpt (43)

and k, = 1[1/m] makes the function unitless.

An optimization problem for the HDW algorithm is de-
fined as:

M
max G(u,r) =a »_ dist(u;,r;)
(wr) i=1 (44)

— (1 = a)align(ppt, Pgt)
sit. (u,r) €V,
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Fig. 3. Trajectory branching, where each trajectory is defined by two velocity pairs.

where the tuning parameter & € [0,1] sets the weighting
between the obstacle distance and the trajectory align-
ment in the cost function. Specifically, & sets how risk
averse the ASV is when tracking the trajectory. By increas-
ing @ towards 1, the HDW algorithm will favor avoiding
the safety region over following the global trajectory. On
the other hand, if @ = 0, the algorithm will only care about
following the global trajectory, but will still only consider
admissible velocity pairs. Note that the distance function
uses the set of multiple velocity pairs (u, ) defined in (39).

Now, the cost function favors velocity pairs that will lead
the ASV along the global trajectory in the near future, and
takes upcoming turns into account. The HDW algorithm
functions both as a reactive method and a trajectory
tracker in a hybrid architecture which can apply any
deliberate method that generates a trajectory. Notice that
the HDW algorithm only has one tuning parameter, while
the DW algorithm has three.

To make the algorithm able to converge to the global
trajectory, we use a trajectory tracker adding velocity pair
suggestions to the search space. A method for tracking
paths is described in (Breivik and Fossen, 2004). The
method returns a desired surge speed ug and heading 14,
which is used in a controller to find the desired yaw rate
rl, for the DW algorithm using (37) as control law. The
desired speed can be defined as:

Ugt—ns
uly = { Poslx)”

umam )

?f X—xt#0 (45)
if X~ Xt = Oa

where Uy is the surge speed of the globally planned
trajectory. If the velocity pair (u};, 7/;) is within the range of
the search space, (ul,r;)Vi € {1,...,N,} and (u;,7))Vj €
{1,...,N,} are added to the search space, where N,, and
N, are the amounts of surge speeds and yaw rates in the
search space, respectively. Note that the HDW algorithm

can receive suggestions from an external trajectory tracker,
but is not dependent on it.

4.8 A new distance function

When a vehicle using the MDW algorithm resides inside
the safety region, the distance function yields zero for all
velocity pairs and loses the ability to favor trajectories
keeping a safe distance from obstacles (Serigstad, 2017).
By using the predicted trajectory, we define a measure of
the portion of a trajectory residing inside the safety region:

ZNfl /\(?Pn)
plu,r) = —x—7— €[0,1], (46)
Zn:l ﬁ
where A(u,r,n) = 0 if part n of the trajectory resides

inside 2, and A(u,r,n) = 1 otherwise.

To prevent the ASV from choosing trajectories cutting
through the safety region unnecessarily, we define a new
distance function:

p(u,r)
Jo I, )|, dt

dist(u,7) = & (1= R)pu,r) € 0,1]

(47)
where p is defined in (23), and x € [0,1] is a tuning pa-
rameter deciding the weight between subfunctions p(u,r)
and p(u,r). Finally, the new distance function is used in
the optimization function (44).

Compared to the MDW distance function, the new dis-
tance function enables the algorithm to consider what lies
beyond the entrance of the safety region and whether a
trajectory leads out of the region. Consequently, the algo-
rithm is less hesitant to enter the safety region when the
predicted trajectory leads through the region, compared
to the MDW algorithm (Serigstad, 2017). Notice that this
distance function adds an extra tuning parameter s, re-
sulting in two tuning parameters for the HDW algorithm.
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Fig. 4. Simulation of HDW A and HDW B at Bleikja.

Table 1. Tuning parameters used in the simu-
lations for the hybrid COLAV architecture

Constant  Value Description
rT 5m Collision region size
rQ 10 m Safety region size
Ts 1s Dynamic window sample time
Ta 0.8 s Time limit for changing rudder angle
tpt 12 s Time frame of the DW trajectories
a 0.98 HDW weighting parameter
K 0.5 Tuning parameter for distance function
M 2 Number of velocity pairs per trajectory
N 40 Parts in the discretized trajectories

5. SIMULATION RESULTS

This section contains simulations of the hybrid COLAV
architecture using the distance function from the MDW
algorithm (36), denoted HDW A, and the modified dis-
tance function (47), denoted HDW B. The ASV model
parameters used for simulation are described in detail in
(Loe, 2008).

5.1 Performance metrics

To evaluate the algorithm performance, we introduce per-
formance metrics measuring change of control input, dis-
tance from obstacles, and the algorithms ability to track
the global trajectory.

To combine surge and yaw actuation in one metric, we
need to introduce weighting since the units are different.
We compute a normalized control input:

7(t) = \/ X ()2 + N(t)2, (48)

where X(t) € [0,1] and N(t) € [-1,1] for the expected
operating region of the ASV (Eriksen and Breivik, 2017)
defined by the rudder angle constraints and propeller sat-
uration from (11) and (13), respectively. Given this signal,

the integral of absolute differentiated control (IADC) is
defined as:

IADC(t) = /O |7(c)| do, (49)

which is a measure of the actuator wear and tear, where
7(o) is numerically derived.

The integral of the distance inside the safety region (IDI)
is expressed as:

t
IDI(t) = / A(o)do, (50)
0
where \(o) is defined as:
_ _ Dr(®) : _
) = 1 P 1fD7-§1"Q rT (51)
0, otherwise,

which gives the distance inside the safety region € if
Dy < rq — ry is satisfied, where D (¢) is the distance
from the ASV to the closest point in the collision region 7.
The metric penalizes staying inside the safety region over
time and also considers how far inside the safety region
the ASV is.

Considering that the hybrid architecture consists of a
deliberate method generating a global trajectory and a
reactive method guided by it, an error between the desired
and actual ASV trajectory is computed as:

e(t) =[|za(t) — (1),

where x(t) = [2(t),y(t)] " denotes the position of the ASV,
and x4(t) denotes the desired position of the ASV at time
t. The integral of the absolute error is expressed as:

(52)

TAE(¥) :/0 le(o)| do. (53)
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Fig. 5. Performance metrics from simulations in Figure 4.

5.2 Results

The simulation scenario contains both static and dynamic
obstacles and is inspired by a narrow ferry passage around
the island Bleikja in Hardangerfjorden, Norway. The HDW
algorithm tracks a global trajectory generated by the
RRT algorithm. The results in figures 4 and 5 illustrate
how the HDW algorithm enables the ASV to follow the
global trajectory and to catch up with it if falling behind.
Furthermore, the results show how HDW A leaves the
global trajectory to avoid entering the safety region. HDW
B, however, tracks the global trajectory successfully at
the cost of barely cutting through the safety region, as
illustrated by the JAE and IDI metric in Figure 5. The
TADC metric shows how following the global trajectory
without rerouting yields a lower actuator wear and tear.
HDW B outperforms HDW A in all metrics except 1DI,
due to touching the safety region, and is concluded to have
the best performance. The goal has a 15 meter acceptance
radius, which is the reason why HDW A appears to have
a significantly high e value when reaching goal.

For more simulation results including narrow paths, local
minima, and other environments with moving obstacles,
the interested reader is referred to (Serigstad, 2017).

6. CONCLUSION

We have modified the dynamic window (DW) algorithm
to be suitable in a hybrid collision avoidance (COLAV)
architecture. The hybrid dynamic window (HDW) algo-
rithm is able to successfully track the global trajectory
and catch up with it if falling behind, independent of the
distance function. This allows the HDW algorithm to per-
form real-time COLAV without loosing track of the global
trajectory. The HDW algorithm is compatible with any
deliberate algorithm generating a trajectory. A branching
of the DW trajectory predictions is applied, enabling the
algorithm to change desired velocity during the trajectory
prediction. The trajectory prediction branching generates
trajectories that are more likely to align with the global
trajectory, at the cost of moderately increased algorithm
computational cost.

Applying a new distance function enables the HDW al-
gorithm to track the global trajectory close to obstacles
if necessary. However, it will only guide the autonomous
surface vehicle (ASV) close to obstacles if the predicted
vehicle trajectory passes the obstacle and stays clear of it.
Based on simulation results and performance metrics, the
distance function is believed to improve trajectory tracking
and reduce actuator wear and tear, when operating close
to obstacles.

For further development of the HDW algorithm, it should
be thoroughly tested in full-scale ASV experiments.
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