
Prediction of Lithology/Fluid Classes 
from Petrophysical and Elastic 
Observations

Elisabeth Straume

Master of Science in Physics and Mathematics

Supervisor: Jo Eidsvik, MATH

Department of Mathematical Sciences

Submission date: June 2012

Norwegian University of Science and Technology





Preface
This thesis is a result of the course TMA 4905 Master thesis in Statistics, at the
Norwegian University of Science and Technology(NTNU) in spring 2012. This is
the last and final subject at the study program Master of Science in Industrial
Mathematics.

This work is a combination of two disciplines, statistics and geophysics. This
task was first presented to me by my supervisor, Associated Professor Jo Eidsvik.
I have no earlier experience from geophysics, so writing this master’s thesis has
given me a lot of new insight to this field.

I would like to thank my supervisor Jo Eidsvik for his guidance and assistance
through this last semester. His ideas and opinions have been very helpful. I would
also like to thank my classmates for all good times during the last five years.

Trondheim, June 2012

Elisabeth Straume

i



ii



Abstract

The objective of this study is to classify lithology/fluid(LF) variables along
depth profiles. The classification is done by a Bayesian inversion method to obtain
the posterior probability density functions(PDFs) for the LF classes at every depth,
given data in form of petrophysical variables or elastic properties. In this way we
determine the most probable lithology/fluid profile. A stationary Markov chain
prior model will be used to model the continuity of the LF classes a priori. The
likelihood relates the LF classes to data. A statistical rock-physics forward model
is used to relate the petrophysical variables to elastic attributes.

This will be done for synthetic test data inspired by a North Sea sandstone
reservoir and for real test data in form of a well log from the North Sea. Data for
the synthetic case is either the petrophysical variables or the elastic properties. For
the real data is only the elastic properties considered.
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Samandrag

Formålet med denne oppgåva er å klassifisera litologi/fluid(LF)-variablar langs
profiler i djupna. Klassifiseringa er gjort ved bruk av ein bayesiansk inversjons-
metode for å oppnå posterior sannsynstettleiksfunksjonane(PDF) for LF-klassane
for kvart djup, gitt data i form av petrofysiske variabler eller elastiske eigenskapar.
På denne måten kan vi bestemma den mest sannsynlege LF-profilen. Ei stasjonær
markovkjede vil bli brukt som prior model til å modellera kontinuiteten av LF-
klassane a priori. Likelihooden relaterer LF-klassane til data. For å relatera dei
petrofysiske variablane til dei elastiske attributane vil vi bruka ein bergartsfysisk
framover modell.

Dette vil bli gjort for syntetiske test data inspirert av eit sandsteinreservoar
frå Nordsjøen og for reelt test data i form av ein brønnlogg frå Nordsjøen. Data
for det syntetiske tilfellet er enten dei petrofysiske variablane eller dei elastiske
eigenskapane. For det reelle tilfellet er kun dei elastiske eigenskapane betrakta.
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Notation

Table 1: Notation used in the thesis
Variable Description

xt Lithology/fluid(LF) class at depth t
t Depth index
x LF profile
m The petrophysical variables
mt The petrophysical variables at depth t
φ Porosity, a petrophysical variable
C Clay content, a petrophysical variable
y The elastic properties
yt The elastic properties at depth t
VP Pressure velocity, an elastic property
VS Shear velocity, an elastic property
ρ Density, an elastic property

KHM Bulk modulus based on Hertz-Mindlin grain contact theory
GHM Shear modulus based on Hertz-Mindlin grain contact theory
n Coordination number
φ0 Critical porosity
P Effective pressure
ν Grain Poisson’s ratio
g The gravity constant
Z A given depth
ρb Bulk density
ρfl Fluid density
Kmat Matrix elastic bulk modulus
Gmat Matrix elastic shear modulus
KC The bulk modulus of wet clay
GC The shear modulus of wet clay
Kq The bulk modulus of quartz
Gq The shear modulus of quartz
Kdry Dry bulk modulus
Gdry Dry shear modulus
Ksat Saturated rock bulk modulus
Gsat Saturated rock shear modulus
ρcl The density to the respectively LF class
ρc The density for wet clay
ρq The density for quartz
P Markov chain
d Generic notation for a data variable
N Number of observations

p( · ) Probability density function(pdf)
p( · | · ) Conditional pdf
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Chapter 1

Introduction

Predicting lithology/fluid(LF) characteristics is important both in the exploration
and the development of petroleum reservoirs. LF characteristics are predicted based
on general geological experience and seismic data. That a variety of LF charac-
teristics may result in identical seismic data makes this classification problem a
challenging task and actually an illposed inverse problem. This thesis infers LF
classes along a vertical earth profile. Vertical coupling of the LF classes along the
profile is modeled using a Markov chain prior model, which entails that the prob-
ability of a LF class at a certain depth, given all LF classes below it, is dependent
only on the LF class immediately below.

The inversion is based on a Bayesian framework, where prior knowledge about
the LF characteristics is combined with information contained in the observed
data. The Bayesian framework is commonly used to invert LF characteristics from
seismic data. Larsen et al. (2006) propose an integrated LF inversion method based
on a Markov chain model to infer LF classes from seismic prestack data. The
objective of Bayesian inversion is to assess the posterior model. The prediction
of LF characteristics is done along 1D profiles. Rimstad et al. (2010) predict LF
characteristics in a spatial setting with a Markov random field prior model in 2D
and rock physics depth trends.

Grana and Della Rossa (2010) apply a sampling algorithm to produce a priori
joint PDFs of the petrophysical variables, and pressure- and shear-wave velocities
using petrophysical forward relations and a priori information about LF classes.
The use of statistics in rock-physics has lately become a more frequent area. In
Avseth et al. (2005) deterministic models are used in combination with statistical
models to build relations between elastic properties and reservoir attributes and to
quantify uncertainty.

The objective of this study is on predictions of LF variables based on data by
including prior information. We demonstrate this approach based on two different
synthetic test datasets and a real dataset in form of a well log from the North Sea.
The synthetic test data is either the petrophysical variables, which in this thesis are
considered to be clay content C and porosity φ, or the elastic properties, which are
considered to be Pressure(P)- and Shear(S) velocity, VP and VS , and density ρ. An
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isotropic, elastic medium is completely described by these three elastic parameters.
We will usem to indicate the petrophysical variables, and y to indicate the elastic
properties for all depth t=1, . . . , N . The LF characteristics are discretized into a
LF class xt at each t, that corresponds to the seismic sampling. The complete LF
profile x is represented by a vector of discrete LF classes. To link the LF classes of
interest and the available set of data, the elastic properties are defined for each t
along the profile. We will usemt and yt to indicate respectively the petrophysical
variables and elastic properties at depth t.

The posterior model cannot be computed analytical, but it can be assessed by
an algorithm extracting probabilities for states in a hidden Markov model(HMM)
given a dataset d. A HMM is a Markov model where the system is being modeled
to be a Markov process with hidden states and the data are indirect observations
of these hidden variables. This algorithm is called the forward-backward algorithm
and the performance of this algorithm will be studied with use of different scoring
rules. When we consider the elastic properties yt we use a statistical rock-physics
forward model, which relates the petrophysical variables to the elastic attributes
and link the LF classes to the elastic attributes.

This thesis is organized as follows. In Chapter 2 we present the statistical
rock-physics model linking LF classes to petrophysical variables, and petrophysical
variables to elastic attributes. In Chapter 3 we start by describing a hidden Markov
model, before we present the forward-backward algorithm and an example of this
algorithm. In Chapter 4 is the forward-backward algorithm used on synthetic test
data and in Chapter 5 is this algorithm used on a well log to predict the posterior
PDFs of the LF classes for every depth and determine the most probable LF profile.
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Chapter 2

Statistical rock-physics model

In this chapter we will first discuss the statistical model in Chapter 2.1. The
petrophysical forward model linking rock class to the response variables is explained
in Chapter 2.2.

2.1 Stochastic model
The main objective of this study is to classify a lithology/fluid profile for each set
of data. The lithologies consist of mixtures of clay and quartz which are classified
as sand or shale, the fluids are gas, oil, and brine. The LF profile x and data d are
connected by use of Bayesian inversion.

In a Bayesian inversion setting is the complete setting represented by the poste-
rior probability density function(PDF) p(x|d). The posterior model can according
to Bayes’s theorem be expressed as

p(x|d) = const · p(d|x)p(x), (2.1)

where 8const′ is a normalizing constant which usually is very difficult to compute,
p(d|x) is the likelihood function and p(x) is the prior PDF. All PDFs are multi-
variate since they are defined on vectors of random variables. The probability of
any LF combination along the profile, given a dataset d, can be determined from
the posterior in equation 2.1.

The likelihood function p(d|x) ties the LF profile x to the dataset d. It contains
forward models that represents the physical relation between x and d. Details
about the likelihood function p(d|x) are provided in Chapter 4. In the case where
the elastic properties are used as the dataset d we use rock-physics relations in the
likelihood function, this relations will be explained in the next subchapter. The
prior p(x) represents knowledge about the LF profile x. The prior model in this
thesis is represented by a stationary Markov chain prior model for the LF profile
x, details are provided in Chapter 3. This choice of prior model makes it possible
to define an efficient algorithm to approximate the posterior PDF, details about
this algorithm are provided in Chapter 3.

5



We need a link between the LF profile x and the data d, which is either the
elastic properties or the petrophysical variables, to compute the likelihood function
p(d|x). This link is given in Figure 2.1. The arrows represent dependence. The
LF profile x is dependent of the elastic properties yt either direct or indirect over
the petrophysical variables mt, where t=1,. . .,N is a depth index.

xt

mt

yt

Figure 2.1: The link between the elastic properties yt, the petrophysical variables
mt and the LF class xt at depth t.

2.2 Petrophysical model

In this subchapter is important rock-physics formulas mention for completeness,
but main focus is on establishing a forward model to use in the likelihood p(d|x).

The rock-physics model is a set of equations that transforms petrophysical vari-
ables in elastic attributes. This rock-physics model is the stiff-sand model based on
Hertz-Mindlin grain-contact theory. The stiff-sand model was selected because it is
appropriate to describe a well-consolidated sand, as is typical in the North Sea. In
shale, the effective porosity is near zero, so the rock-physics model reduces to the
computation of velocities and density of a matrix made of wet clay, by means of a
Voigt-Reuss Hill average, and we obtain a good approximation of the velocities in
shale (Grana and Della Rossa, 2010).

The bulk modulus KHM and shear modulus GHM of a dry rock, when we
assume that the sand frame is a dense random pack of identical spherical grains,
are defined as

KHM =

[
n2(1− φ0)2G2

matP

18π2(1− ν)2
]1/3

and

GHM =
5− ν

10− 5ν

[
3n2(1− φ0)2G2

matP

2π2(1− ν)2
]1/3

,
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where Gmat is the grain shear modulus. These modulus are subject to an effective
pressure P with a critical porosity φ0, and a coordination number n, an average
number of contacts per grain, and the grain Poisson‘s ratio ν. Each of the involved
variables are explained next.

The critical porosity is the point where a porous material, such as a sandstone,
changes from being the load-bearing phase to becoming suspended in a fluid(Mavko
et al., 2003). The critical porosity φ0 used is 0.4.

The average number of contacts per grain depends on the porosity. This rela-
tionship between coordination number and porosity has been approximated by the
following empirical equation (Avseth et al., 2005)

n = 20− 34φ+ 14φ2.

From this formula we see that the coordination number n decrease with increasing
porosity φ. The Poisson’s ratio can be expressed in terms of the grain bulk modulus,
Kmat, and the grain shear modulus, Gmat

ν =
3Kmat − 2Gmat
6Kmat + 2Gmat

.

Effective pressure P versus depth is obtained with the following formula

P = g

∫ Z

0

(ρb − ρfl)dz,

where g is the gravity constant, and ρb and ρfl are the bulk density, and the fluid
density, respectively at a given depth, Z. For the bulk density we use the quartz
density ρq and for the fluid density we use the brine density ρbrine. These values
are given in Table 2.1. From this formula we naturally see that the pressure P will
increase with the depth Z. In a small depth section this is not very prominent, and
we will consider Z as a constant. We have set Z equal to 2200m.

Matrix elastic moduli are obtained by Voigt-Reuss-Hill averages for a matrix
made of two component, wet clay and quartz (Mavko et al., 2003) given as

Kmat =
1

2

(
CKc + (1− C)Kq

1− φ +
1− φ

C
Kc

+ 1−C
Kq

)
and

Gmat =
1

2

(
CGc + (1− C)Gq

1− φ +
1− φ

C
Gc

+ 1−C
Gq

)
,

where C is the clay content, φ is the effective porosity, and Kc, Gc, Kq and Gq are
the bulk and shear moduli of wet clay and quartz, given in Table 2.1. For effective
porosity values between zero and the critical porosity, φ0, this model connect the
solid-phase elastic moduli KHM and GHM of the dry rock at porosity φ0, by
interpolating these two end members at the intermediate effective-porosity values
by means of the modified Hashin-Shtrikman upper bound (Hossain et al., 2011):

Kdry =

[
φ/φ0

KHM + 4
3Gmat

+
1− φ/φ0

Kmat +
4
3Gmat

]−1
− 4

3
Gmat,
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Gdry =

[
φ/φ0

GHM + 1
6ξGmat

+
1− φ/φ0

Gmat +
1
6ξGmat

]−1
− 1

6
ξGmat, ξ =

9Kmat + 8Gmat

Kmat + 2Gmat
.

Gassman’s equation are used for calculating the effect of fluid on velocities using
matrix and fluid properties:

Ksat = Kdry +

(
1− Kdry

Kmat

)2
φ
Kfl

+ 1−φ
Kmat

− Kdry
K2

mat

,

Gsat = Gdry,

where Kfl is the fluid bulk modulus, which is either the bulk modulus of gas, oil
or brine depending of the LF class. For the LF class shale we are using the bulk
modulus of brine. The bulk moduli parameters are given in Table 2.1.

From the saturated-rock elastic moduli, we obtain the Pressure-wave and Shear-
wave velocities using the following equations:

VP =

√
Ksat +

4
3Gsat

ρ
(2.2)

and

VS =

√
Gsat

ρ
. (2.3)

The density ρ is estimated as a weighted linear average:

ρ = φρcl + (1− φ)Cρc + (1− φ)(1− C)ρq,

where ρcl is either ρgas, ρoil or ρbrine depending on the LF class. We are using the
ρbrine for both the LF classes shale and brine, and ρc and ρq is respectively the
density for wet clay and quartz, all given in Table 2.1. The rock-physics parameters
given in Table 2.1 are used in this chapter and in Chapter 4. The rock-physics model
is denoted as fRPM (C, φ, xt) for depth t.

Table 2.1: Rock-physics model parameters
Matrix components

Kc = 20 GPa Gc= 8 GPa ρc = 2.5g/cm3

Kq= 33 GPa Gq= 36 GPa ρq = 2.6g/cm3

Fluid bulk modulus for different LF classes
Kgas = 0.0001 GPa Koil= 1.0 GPa Kbrine= 2.8 GPa

Density for different LF classes
ρgas = 0.26 · 10−3g/cm3 ρoil = 0.8g/cm3 ρbrine = 1.1g/cm3

In Figure 2.2-2.5 the rock-physics model are shown as different cross-plots. Since
shale and brine are separate only through different a priori models for the petro-
physical variables, they are indistinguishable in the cross-plots. For this reason we
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have 3 plots. In Figure 2.2 the P-velocity is shown as a function of porosity for
all LF classes, gas is given in Figure 2.2(a), oil in Figure 2.2(b), brine and shale in
Figure 2.2(c), for different values of the clay content C. We can observe that the
P-velocity decrease in both the case when the porosity φ increase and in the case
when the clay content C increase as a function of porosity φ. The three figures
seems quite similar, but we can observe that the range between the smallest and
largest clay content C is smallest for the two LF classes shale and brine.
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Figure 2.2: P-velocity as a function of the porosity for the LF classes (a) gas, (b)
oil and (c) shale and brine for different values of the clay content.

In Figure 2.3 the S-velocity is shown as a function of P-velocity for all LF classes
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for different values of the clay content C. This is done for value of porosity between
zero and the critical porosity equal to 0.4 in the rock-physics model. We can
observe that the S-velocity increase with the P-velocity for all LF classes, and that
it increase fastest for gas and slowest for shale and brine. We can also observe that
the S-velocity decrease as a function of P-velocity when the clay content increase.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1
.5

2
.0

2
.5

3
.0

Gas

Vp(km/s)

V
s
(k

m
/s

)

C = 0.1

C = 0.3

C = 0.5

C = 0.7

C = 0.9

(a)

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1
.5

2
.0

2
.5

3
.0

Oil

Vp(km/s)

V
s
(k

m
/s

)

C = 0.1

C = 0.3

C = 0.5

C = 0.7

C = 0.9

(b)

2.5 3.0 3.5 4.0 4.5 5.0

1
.5

2
.0

2
.5

3
.0

Shale and brine

Vp(km/s)

V
s
(k

m
/s

)

C = 0.1

C = 0.3

C = 0.5

C = 0.7

C = 0.9

(c)

Figure 2.3: S-velocity as a function of P-velocity for the LF classes (a) gas, (b) oil
and (c) shale and brine for different values of the clay content and porosity between
zero and the critical porosity.

The P-velocity and S-velocity as functions of the density are respectively shown
in Figure 2.4 and 2.5, for all LF classes with value of porosity between 0 and the
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critical porosity, this is shown for different values of the clay content C. We can
from Figure 2.4 observe that the S-velocity increase with the density ρ, and that
it decrease as a function of density when the clay content increase for all the LF
classes. We can also observe that the curve shape seems to be quite similar, but
the values of density ρ varies with the LF classes. From Figure 2.5 we can observe
that the P-velocity increase with the density ρ, and that it decrease as a function
of density when the clay content increase for all the LF classes. We can in the
same way as in Figure 2.4 observe that the curve shape seems to be quite similar,
but that the values of density ρ varies with the LF classes. The density values are
highest for the LF classes shale and brine, which seems correct from Table 2.1. We
can observe that the P-velocity, VP , is higher than the S-velocity, VS , as a function
of the density ρ for all LF classes. A reason for this can be that VS only depends
of Gsat, while VP depends of Ksat in addition, see equation 2.2 and 2.3.

In Chapter 4 we will consider two different synthetic set of data

• dt =mt =

(
C
φ

)
t

• dt = yt =

VPVS
ρ


t

for every depth t=1, . . . , N . The likelihood dt|xt for the second set of data is
Gaussian distributed with expected value from the rock-physics forward model.

In this chapter the rock-physics model has been used for constant values of the
petrophysical variables porosity and clay content, but in Chapter 4 we will consider
a distribution for the petrophysical variables. In that way we can separate shale
and brine. Both the petrophysical variables m and the elastic properties y will
be conditional on a LF reference profile x which will be simulated from a Markov
chain prior model.
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Figure 2.4: S-velocity as a function of the density ρ for the LF classes (a) gas,
(b) oil and (c) shale and brine for different values of the clay content and porosity
between zero and the critical porosity.
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Figure 2.5: P-velocity as a function of the density ρ for the LF classes (a) gas,
(b) oil and (c) shale and brine for different values of the clay content and porosity
between zero and the critical porosity.
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Chapter 3

Hidden Markov models

The posterior model is not analytically tractable, but it can be assessed by an
algorithm computing the posterior probabilities for all hidden states variables, given
a sequence of observation. This algorithm is called the forward-backward algorithm.
This chapter will be started by introducing a Markov chain, before we introduce a
hidden Markov model(HMM), which are needed to assess the posterior model. The
forward-backward algorithm will be introduced in Chapter 3.1 and an example of
this algorithm will be given in Chapter 3.2.

We consider a stochastic process {xt, t = 1, . . . , N} that takes on a finite number
of possible values, xt ∈ {1, . . . , s}, where s is the number of states. If xt = i, then
the process is said to be in state i at depth t. We suppose that whenever the
process is in state i, there is a fixed probability pij that it will next be in state j.
We suppose that

p(xt+1 = j|xt = i, xt−1 = it−1, . . . , x1 = i1) = pij , pij > 0,
∑
j

pij = 1 ∀i

for all states i1, . . . , it−1, i, j and for all t ≥ 1. Such a stochastic process is known as
a Markov chain (Ross, 2007). For a Markov chain, the conditional distribution of
any future state xt+1 given the past states x1, . . . , xt−1 and the present state xt is
independent of the past states and depends only on the present state. The element
of x = (x1, . . . , xN ) follow a Markov chain with stationary transition matrix P and
initial distribution π0, which is often taken to be the stationary distribution of P
(Scott, 2002).

For instance, in a petrophysical application there could be four classes. Then
xt ∈ {1, 2, 3, 4}, where xt=1 means that the LF class is equal to gas, xt=2 means
equal to oil, xt=3 means equal to brine and xt=4 means equal to shale.

A Markov model in which the system being modeled to be a Markov process is
unobserved (hidden). Hidden Markov models assume that the distribution of an
observed data point dt, t = 1, . . . , N , depends on an unobserved(hidden) state xt.
In this thesis the data dt is continuous. It can consist of the elastic parameters,
dt = yt, or it can consist of the petrophysical variables, dt =mt, as introduced at
the end of Chapter 2.2.
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The stochastic process xt is conditionally independent of all other variables
than the previous one and all other observed data except the datapoint at depth t

p(xt|xt−11 , dt1) = p(xt|xt−1, dt),

where xt−11 = (x1, x2, . . . , xt−1) and dt1 = (d1, . . . , dt). This is illustrated in Figure
3.1. The full conditional distribution of dt is

p(dt|d−t,x, P ) = p(dt|xt),

where d−t = {dt′ : t′ 6= t}. This means that dt is conditionally independent of all
other missing and observed data given xt, as illustrated in Figure 3.1. In Figure
3.1 the hidden Markov model is x shown at the bottom with observed data points
d. The arrows indicate dependence, dt depends on xt, and xt+1 depends on xt.

b b bx1 x2 xN

d1 d2 dN

Figure 3.1: Hidden Markov model with unobserved states {x1, . . . , xN} and ob-
served data points {d1, . . . , dN}. The conditional distribution of the value at any
node, given values at all others nodes, depends only on nodes which it is connected
by an arrow.

3.1 The forward-backward algorithm
The forward-backward algorithm is a method to do inference for a HMM. It com-
putes the posterior PDFs of all hidden states variables given a sequence of observa-
tions d1, . . . , dN . For all hidden state variables xt, t = 1, . . . , N , the algorithm com-
putes the posterior marginal distribution p(xt|dN1 ), where dN1 = d1, . . . , dN . The
algorithm computes the values that are required to obtain the posterior marginal
distribution in two passes. The first pass goes forward in time, while the second
goes backward in time.

In the forward step, the algorithm computes a set of forward probabilities which
for all t = 1, . . . , N provide the probability of ending up in any particular state
given the first t observations, i.e. p(xt|dt1). This is done by recursively predict-
ing p(xt+1|dt1) and the conditional observations p(dt+1|dt1), and updating to get
p(xt|dt1). In the last step in the forward step we get p(xN |dN1 ).

In the backward step, the algorithm computes a set of backward probabili-
ties p(xt−1, xt|dN1 ), by starting with the last one p(xN−1, xN |dN1 ) and end with
p(x1, x2|dN1 ).
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From this backward step we can sum out one variable to get the posterior
marginal distribution p(xt|dN1 ):

p(xt = k|dN1 ) =

s∑
xt+1=1

p(xt = k, xt+1|dN1 ). (3.1)

For each step in the backward algorithm we need to calculate the posterior marginal
distribution before we can calculate the next step. The forward-backward algorithm
will be shown through an illustrative example in Chapter 3.2.

A HMM classifier or a estimated class at depth t can be computed by

x̂t = argmaxkp(xt = k|d). (3.2)

Another application of the forward-backward algorithm is to maximize the
marginal likelihood (MacDonald and Zucchini, 1997). The marginal likelihood
can be evaluated by using the forward step:

p(d1, ..., dN ) = p(dN |dN−1, .., d1) · · · p(d2|d1)p(d1),

The forward-backward algorithm can be translated into upward/downward re-
cursion when applied to a seismic profile through a target zone. This is useful since
the Markov transitions naturally mimic the geological deposition over time, and
the petrophysical properties of the subsurface. For instance, a gas-zone is termi-
nated by an upper shale cap-rock, while oil being lighter than brine is never below
a brine-filled sandstone.

To check the reliability to the forward-backward algorithm we can calculate the
value of different scoring rules (Gneiting and Raftery, 2007). The scoring rules
gives us a measure of the probability to match the reference profile, which is used
as the truth. In this thesis we will consider score and logscore, where logscore of a
HMM classifier or a estimated profile is defined as

logscore =
∑
t

log p(xt = xprofile,t|d) (3.3)

and score of a HMM classifier or a estimated profile is defined as

score =
1

N

∑
t

I(xprofile,t = x̂t), (3.4)

where I(·) is a indicator function defined as

I(·) =
{
1, xprofile,i = x̂t

0, else
. (3.5)

In words logscore is the sum of the logarithm to the posterior marginal distri-
bution of the actual profile and score is a classification rule, which tells us if the
estimated profile is equal to the actual profile. The higher score, the better is the
classification. A score value equal to 1 means perfect classification. Logscore is
always non-positive, a value equal to zero means perfect classification.
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3.2 Illustrative example of the forward-backward al-
gorithm
We will show the forward-backward algorithm through a simple example, which is
not related to LF prediction. We consider a situation with a latent(hidden) Markov
chain, only indirectly observed. Data dt are modeled by

dt = xt + εt, εt ∼ N(0, 1), t = 1, . . . , N, (3.6)

where xt is the hidden variable assumed to have two possible states, xt ∈ {1, 3}
and N is length of the dataset which is 100.

We use a Markov chain as the prior model, given as

P =

(
0.9 0.1
0.1 0.9

)
.

We simulate a reference profile x from the prior model P. By use of the reference
profile x and equation 3.6 a set of data d is simulated. This dataset d is shown in
Figure 3.2.

From the data d we can find the naive profile in this example defined as

x̂naivet =

{
1, if dt < 2

3, if dt > 2
,

where dt is one element of the dataset d and t = 1, . . . , N . The meaning of the
naive profile is illustrated in Figure 3.2, where a line separate x̂naivet = 1 from
x̂naivet = 3.

We know from the hidden Markov model that the datapoint dt at depth t is only
dependent of the hidden variable xt and that xt is only dependent of the previous
hidden variable xt−1 and the datapoint dt. The likelihood p(dt|xt) is known from
equation 3.6 and from the Markov chain P we know p(xt|xt−1). In the forward
step we start by computing the conditional distribution

p(x1|d1) =
p(x1)p(d1|x1)

p(d1)
=

p(x1)p(d1|x1)∑
x1∈{−1,1} p(x1)p(d1|x1)

and end by computing

p(xN |dN1 ) =
p(xN |dN−11 )p(dN |xN )

p(dN |dN−11 )
=

∑
xN−1∈{−1,1} p(xN |xN−1)p(xN−1|d

N−1
1 )p(dN |xN )∑

xN∈{−1,1} p(xN |d
N−1
1 )p(dN |xN )

In the backward step we start by computing

p(xN−1, xN |dN1 ) = p(xN |dN1 )p(xN−1|xN , dN1 ) = p(xN |dN1 )
p(xN |xN−1)p(xN−1|dN−11 )

p(xN |dN−11 )

and end by computing

p(x1, x2|dN1 ) = p(x2|dN1 )p(x1|x2, dN1 ) = p(x2|dN1 )
p(x2|x1)p(x1|d1)

p(x2|d1)
,
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Figure 3.2: Data d used in this example, where the line separate x̂naivet = 1 from
x̂naivet = 3.

where p(x2|dN1 ) is the posterior marginal distribution

p(x2|dN1 ) =
∑
x3

p(x2, x3|dN1 ),

where we sum out x3 by summing over the two classes in this example.
From the posterior marginal distribution we can calculate the estimated profile

x̂ by using equation 3.2, where x̂t is the most likely class at t, given all data.
The estimated profile is a HMM classifier. Figure 3.3 shows the reference profile
x, the naive profile x̂naive, the estimated profile x̂, and the posterior marginal
distributions p(xt = k|d) for k = {1, 3} given.

We observe that the estimated profile has the same trend as the reference profile,
but is not similar for all t = 1, . . . , N , where N=100. The naive profile is similar
to the reference profile for some t, but the naive profile jumps more. The naive
profile jumps 35 times, the reference profile jumps 11 times and the estimated
profile only jumps 9 times. We can also observe that for p(xt = k|d) for k = {1, 3}
is the prediction nearly perfect when the reference profile and the estimated profile
is similar. Perfect prediction means that the posterior marginal PDFs would be
binary zero-one functions, with the value of one in the actual reference class. The
posterior marginal PDFs appear smoothed across the borders where the estimated
profile vary from the naive profile. Score and logscore in this example are given
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Figure 3.3: The reference profile x, the naive profile x̂naive, the estimated profile
x̂, and the posterior marginal distributions p(xt = k|d) for k = {1, 3}

in Table 3.1 for the naive profile and the HMM classifier. Logscore for the HMM
classifer is defined as in equation 3.3, and logscore for the naive profile is defined
as

logscorenaive =
∑
t

log p(xt = xprofile,t|dt),

and consider only data from depth t. Score is defined for the HMM classifer as in
equation 3.4, and for the naive profile is x̂t exchanged with x̂naivet .

The values for the HMM classifier, x̂, is higher than for naive for both score
and logscore. This is naturally since the HMM classifier is a better classification
method than the naive classifier. The score value for the HMM classifier means
that 95 % of the estimated profile is equal to the reference profile and indicate that
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the prediction is good. Logscore equal to -12.13 means that the prediction is pretty
good.

Table 3.1: Score and logscore for the naive and HMM classifier
Naive HMM classifier

Score 0.83 0.95
Logscore -216.18 -12.13
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Chapter 4

Synthetic test data

We will now study the performance of the forward-backward algorithm for classify-
ing LF classes, given various data. Two test studies are defined that use synthetic
test data, inspired by a North Sea sandstone petroleum reservoir. The first one
consists of the two petrophysical variables, clay content C and porosity φ, and
the second one consists of the three elastic properties P-velocity VP , S-velocity VS
and density ρ. The reference reservoir contains four LF classes: gas-, oil-, and
brine-saturated sandstone and shale.

The prior model for the LF classes is defined as a stationary Markov chain
through the reference reservoir, with transition matrix (Larsen et al., 2006)

P =


0.980 0 0 0.020
0.015 0.970 0 0.015
0.002 0.008 0.980 0.010
0.007 0.007 0.036 0.950

 ,

with rows and columns that corresponds to gas-, oil-, and brine-saturated sandstone
and to shale. The stationary prior PDF π0(x) which represents the proportions
of LF classes, can be computed from P, π0(x)=(0.233,0.156,0.393,0.218). The
transition matrix contains several zero elements that represents impossible upward
transitions, brine can never be directly above gas or oil, and only shale can be
directly above gas. In Figure 4.2 and 4.5, the leftmost display presents one re-
alization of a LF sequence that was generated from P. This sequence is used as
the LF reference profile. The proportions of LF classes in the reference profile are
(0.236,0.195,0.355,0.214).
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4.1 Petrophysical variables
We consider a Gaussian distribution for the petrophysical variablesm = (m1, . . . ,mN )
with mt = (C, φ)Tt for t = 1, . . . , N and where the superscript T means transpose.
The distribution is given as mt = N(mt;µ(xt),Σ) for all t where the expectation
depends of the LF class xt. We have used the expectation

µ(xt) =



[
0.3

0.35

]
, xt = 1, 2, 3

[
0.7

0.3

]
, xt = 4

(4.1)

and the covariance matrix
Σ =

[
0.12 0
0 0.052

]
. (4.2)

For comparing results, we let the expectation µ(xt) tomt for xt=1,2,3 and xt=4
go against each other, and define α to be the interval between the two expectations,
as illustrated in Figure 4.1. The expectation µ(xt) as a function of α at depth t is
defined as

µ(xt, α) =

{
α · µorig123 (xt) + (1− α) · µorig4 (xt), xt = 1, 2, 3

α · µorig4 (xt) + (1− α) · µorig123 (xt), xt = 4
, (4.3)

where µorig123 (xt) and µorig4 (xt) are the original expectations for respectively xt =
1, 2, 3 and xt = 4. For example if α = 1/2 then the two expectations are similar, and
if α = 1 then the two new expectations are the same as the original expectations,
and for α > 1 will the distance between the two expectations become bigger.

We want to find the posterior marginal distribution p(xt = k|d) for all states
k=1,2,3,4 and for all t = 1, . . . , N , when data d is the petrophysical variablesm. To
do this, we first simulate the LF reference profile x from P, and simulate the data
dt = mt from the petrophysical distribution to mt for all depth t. The forward-
backward algorithm runs the LF prediction for this data. The entire procedure is
replicated B=50 times for every α value of the expectations in equation 4.3. The
code for simulation of data and for the forward-backward algorithm are written
in R (R Development Core Team, 2011). We compute the mean value of the
B posterior marginal distributions and use this to compute a HMM classifier, a
estimated profile x̂, as in equation 3.2. Figure 4.2 shows the LF reference profile
x, the estimated LF profile x̂ and the posterior marginal distribution p(xt = k|d)
for all states k.

We can observe that the estimated profile has the same trend as the reference
profile x, but this x̂ is not similar to the reference profile x for all t=1, . . . , N ,
where N=1000. We can see that p(xt = k|d) for k=4, the LF class shale, is a
nearly perfect prediction. Perfect prediction means that the posterior marginal
PDFs would be binary zero-one functions, with the value of one in the actual LF
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Figure 4.1: The expectation to mt, where the meaning of α is given. For α=1/2
the two expectations are similar and we are in center, α=1 represents the original
expectations and for α > 1 is the distance between the two expectations bigger.

reference class. For k=1,2,3 we can see that the posterior marginal PDFs appear
smoothed across the borders where the LF reference profile is not equal to 4, which
tell us that gas-, oil- and brine-saturated sandstone are more difficult to predict
than shale. This is reasonable from the expectation to mt in equation 4.1, where
we cannot separate gas-, oil- and brine-saturated sandstone.

At depth t=-200 m are both the reference class xt and the estimated class x̂t
equal to 4, the LF class shale. At this depth we can say for sure that the rock class
is shale and the posterior marginal distribution for shale is equal to 1 and all the
others posterior marginal distribution are equal to zero. This is naturally since it is
easy to separate shale from sandstone from the petrophysical distribution. At depth
t=-600 m is the reference class xt equal to 2, the LF class oil, and the estimated
class x̂t is equal to 3, the LF class brine. The posterior marginal distribution for
shale is zero, which is natural since xt is different from 4 and it is easy to separate
shale and sandstone. The highest posterior marginal distribution is the one for
brine which is why x̂t = 3, but the posterior marginal distribution for gas and oil
are also different to zero. This is because it is not easy to separate the different
types of sandstone. In the next subchapter we will consider the elastic properties
as the dataset and we will use the rock-physics model introduced in Chapter 2.2,
which will do it easier to separate the different type of sandstone.

We want to see how good the estimated LF profile x̂ fits to the LF reference
profile x for the different α values of the expectation. We have used values of α
between 1/2 and 2. This have been tested by use of score and logscore, defined
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Figure 4.2: The reference profile x, the estimated profile x̂, and the posterior
marginals p(xt = k|d) for k = {1, 2, 3, 4} and all t when the petrophysical vari-
ables are used as the dataset d and α=1 so we have the original petrophysical
expectations.

in formula 3.3 and 3.4. Figure 4.3 displays logscore and score as functions of α.
We can observe that both logscore and score start with values equal to -1380 for
logscore and 0.35 for score and seems to converge towards a value, -780 for logscore
and 0.63 for score. This means that when the two expectations are similar is the
score only 0.35, and when we have the original expectations have score converged
to the constant value 0.63. From this we know that 63 % of the estimated profile
x̂ is equal to the reference profile x when we have the original expectations, given
in equation 4.1, or a larger distance between the two expectations. Both score and
logscore indicate that the LF classification could have been better.

24



0.5 1.0 1.5 2.0

−
1

3
0

0
−

1
2

0
0

−
1

1
0

0
−

1
0

0
0

−
9

0
0

−
8

0
0

log score

alpha

lo
g

s
c
o

re

0.5 1.0 1.5 2.0

0
.3

5
0

.4
0

0
.4

5
0

.5
0

0
.5

5
0

.6
0

score

alpha

s
c
o

re

Figure 4.3: Logscore and score as functions of the distance α.

4.2 Elastic properties

We next consider a Gaussian distribution for the elastic properties y = (y1, . . . ,yN ),
with yt = (VP , VS , ρ)

T
t for t=1, . . . , N and where the superscript T means trans-

pose. The distribution is given as yt = N(yt; fRPM (c, φ, xt), T ), where fRPM is
the rock-physics model described in Chapter 2.2 and T is random error, describing
the degree of accuracy of the model. We set the random error to be T = τ · I3,
where I3 is a identity matrix with size 3 and τ is a given value.

We marginalize outmt from the model to get an approximate likelihood p(y|x).
This is done by linearizing the rock-physics model fRPM around the expectation
of the petrophysical variables

fRPM (Ct, φt, xt) ≈ fRPM (µC , µφ, xt) + Fxt

((
Ct
φt

)
−
(
µC
µφ

))
, (4.4)

where Ct and φt are the petrophysical variables at depth t, Fxt
is a 3 × 2 matrix

consisting of the derivative of fRPM with respect to Ct and φt when xt is a given
class and µC and µφ are dependent of xt like equation 4.1.

The expectation to yt given xt is

E(yt|xt) = E(E(yt|Ct, φt, xt))

= E(fRPM (Ct, φt, xt)) = E

(
fRPM (µC , µφ, xt) + Fxt

((
Ct
φt

)
−
(
µC
µφ

)))
= fRPM (µC , µφ, xt),
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and the variance to yt given xt is

V ar(yt|xt) = E(V ar(yt|Ct, φt, xt)) + V ar(E(yt|Ct, φt, xt))

= E(T ) + V ar

(
fRPM (µC , µφ, xt) + Fxt

((
Ct
φt

)
−
(
µC
µφ

)))
= T + Fxt

V ar

((
Ct
φt

) ∣∣xt)FTxt
.

Then the distribution for the elastic properties yt given a class xt is given as

yt|xt ∼ N
(
fRPM (µC , µφ, xt), T + Fxt

V ar

((
Ct
φt

) ∣∣xt)FTxt

)
, (4.5)

for all depth t, and yt is no longer dependent of the petrophysical variables, only
of their distribution.

We have simulated values of the elastic properties VP , VS and ρ from this
distribution, by first simulating the LF reference profile x from P. Cross-plots
of this values are displayed in Figure 4.4. Figure 4.4(a) and 4.4(b) shows the
simulated P-velocity and S-velocity as functions of the simulated density ρ. Figure
4.4(c) shows the simulated S-velocity given as a function of the simulated P-velocity.
We can observe that these figures seems to be similar to Figure 2.3-2.5, which is
expected from the distribution to the elastic attributes.

To find the posterior marginal distribution p(xt = k|d) for all states k=1,2,3,4
and for all t = 1, . . . , N , when data d is the elastic properties, we run the forward-
backward algorithm explained in Chapter 3.1. The entire procedure is replicated
B=100 times for every τ value of the likelihood variance. The code for simulation
of data, for the forward-backward algorithm and for the rock-physics model are
written in R (R Development Core Team, 2011). We compute the mean value of
the B posterior marginal distributions and use this to compute a HMM classifier, a
estimated profile x̂, as in equation 3.2. Figure 4.5 displays the LF reference profile
x, the estimated LF profile x̂ and the posterior marginal distribution p(xt = k|d)
for all states k when the likelihood variance τ=0.1. We can also in this case observe
that the estimated profile has the same trend as the reference profile, but is not
similar for all t = 1, . . . , N where N=1000. For the values of t where the estimated
LF class are similar to the reference class for a large size of t, e.g from t=-580 m to
t=-750 m, is the posterior marginal PDFs nearly perfect predicted. We can see that
for these points are the posterior marginal PDFs almost a binary zero-one function
for all states k. When the estimated LF class are similar to the reference class for a
smaller size of t, e.g from t=-420 m to t=-450 m, is the prediction of the posterior
marginal PDFs worse. The posterior marginal PDFs is no longer a binary zero-one
function. When the estimated LF profile and the reference LF profile differs are
the posterior marginal PDFs smooth across these borders.

The posterior marginal PDF for k=1 is easy to determine, and it is almost a
binary zero-one function for all depth t, except the few depths where the estimated
profile differs from the reference profile. Gas saturated sandstone is easy to sepa-
rate from the other LF classes in the petrophysical model since the modulus and
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Figure 4.4: Plot of the simulated elastic properties: (a) The simulated P-velocity as
a function of the simulated density ρ. (b) The simulated S-velocity as a function of
the simulated density ρ. (c) The simulated S-velocity as a function of the simulated
P-velocity.

the density for gas are quite different the other moduli and densities, see Table
2.1. For k=2 is the prediction of the posterior marginal PDF a little bit worse, we
have no longer a binary zero-one function for every t, only for the depths where
the estimated LF class are similar to the reference class for a large size of t. Oil
saturated sandstone is possible to separate through the petrophysical model, be-
cause the fluid modulus and density for oil are different from the other fluid moduli
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and densities. The difference are not so great as for gas, which result in a worse
prediction for oil than for gas. For k=3 and k=4 are the prediction hardest. The
posterior marginal PDFs are only zero when the reference profile is equal to 1 or 2
for a large size of depth t, and it is never equal to one. It is hard to separate brine
saturated sandstone from shale since we get the same value from the petrophysical
model whether the LF class is shale or brine. We use the petrophysical distribution
to separate shale and brine, but this is not enough and we get a bad prediction.

We again want to see how good the estimated LF profile x̂ fits to the reference
profile x. We let τ in the likelihood variance vary between 0.001 and 1. Figure
4.6 shows logscore and score as functions of τ when N=1000. We can observe that
both logscore and score decrease as a function of the likelihood variance τ . Logscore
starts with a value of 0 and seem to go slowly against a constant value of -790 and
score starts with a value of 1 and seem to go slowly against a constant value of
0.64. This means that when the likelihood variance τ is zero is the estimated LF
profile the same as the reference profile, and when the likelihood variance become
greater is the estimated LF profile more different to the reference profile, which
is naturally. In the case where Figure 4.5 is given, for τ=0.1, is score=0.86 and
logscore= -308, which indicate a pretty good prediction.

For large τ we have the same situation as for α=1/2 in Figure 4.3 in the previous
subchapter, in both cases it is difficult to separate sandstone from shale. When τ
is large it is too much uncertainty that we can separate sandstone and shale and
when α=1/2 are the expectation for sandstone and shale similar and we cannot
separate them.

Table 4.1 compares the predicted LF profile x̂ and the reference LF profile
x, with use of a classification matrix for x versus x̂. In a classification matrix
we can determine whether the predicted value matches the actual value. Perfect
prediction would make x̂ identical to x and would make all non-diagonal terms in
the classification matrix zero. We can observe that the prediction is good for τ=0.1,
but not perfect since not all of the non-diagonal terms in the classification matrix is
zero. The prediction for gas saturated sandstone is perfect and the prediction for oil
saturated sandstone is nearly perfect, as seen in Figure 4.5. The prediction of brine
saturated sandstone and shale are not so good, which agree with the discussion of
Figure 4.5. We can from the classification matrix easy observe that 100 of the LF
class in the reference class given as shale has been estimated as brine saturated
sandstone.

Table 4.1: Classification matrix of x versus x̂ for the likelihood variance τ=0.1.
x \ x̂ Gas sand Oil sand Brine sand Shale Sum

Gas sand 227 9 0 0 236
Oil sand 0 189 6 0 195

Brine sand 0 0 337 18 355
Shale 0 0 100 114 214
Sum 227 198 443 132 1000
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Figure 4.5: The LF reference profile x, the estimated profile x̂, and the posterior
marginals p(xt = k|d) for k = {1, 2, 3, 4} when the likelihood variance τ=0.1.
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Chapter 5

North Sea well log

We will in this chapter use real test data in the form of a well log from a reser-
voir in the North Sea. Indirectly, from well log measurements made along the
length of drilled wells, we can obtain information on the rock type alternations.
This well log consists of gamma-ray radioactivity, porosity, density, pressure- and
shear-velocities. These data are a sequence of measurements taken every 15 cm at
depths between 2013 m and 2640 m. We consider a subset of this dataset, depths
from 2160m to 2250m. This subset of the well log has been studied in Eidsvik
et al. (2004). We model the facies with 3 possible states, xt ∈ {1, 2, 3}, which
correspond to oil- and brine-saturated sandstone and shale, respectively. The well
log measurements give information of the rock type at the locations where they are
taken. For example, high clay content may be indicative of shale. The goal for this
chapter is to use the dataset to assign one of these three rock types.

The petrophysical variable clay content can be computed from gamma-ray(Gr)
by using the following equation:

C =
Gr −min(Gr)

max(Gr)−min(Gr)
.

The dataset consisting of the petrophysical variables and elastic properties is
shown in Figure 5.1, where the subset of the well log considered is separated by
lines.

The prior model for the LF classes is also in this situation defined as a stationary
Markov chain through the reference reservoir, with a transition matrix defined as

P =

0.984 0 0.016
0.008 0.982 0.010
0.007 0.037 0.956

 ,

with rows and columns corresponding to oil- and brine-saturated sandstone and
to shale. This transition matrix is the same as used for the synthetic test data in
Chapter 4, from Larsen et al. (2006), where the row and the column corresponding
to gas-saturated sandstone are removed and the remaining transition matrix is
normalized. The stationary prior PDF for P is π0(x)=(0.324,0.455,0.221)
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When we cross-plot the clay content C and the porosity φ from the well log, see
Figure 5.2(a), we can observe that we need to change the petrophysical distribution
given in Chapter 4.1, equation 4.1 and 4.2, to match the actual characteristics of
the well log. The petrophysical distribution for the real case is assumed to be
Gaussian, with expectation

µ(xt) =



[
0.35

0.32

]
, xt = 1, 2

[
0.75

0.39

]
, xt = 3

and covariance matrix

Σ =

[
0.152 0
0 0.022

]
.

To study the expected levels and the variability induced by the forward model,
we simulate the petrophysical variables mt given xt from this distribution for all
depth, after first simulating a profile x from the Markov chain prior model P. A
cross-plot of the simulated porosity as a function of the simulated clay content is
shown in Figure 5.2(b). We can observe that the petrophysical distribution might
have been better if the variance Σ was dependent of the rock type. We will not
consider this further here. We need to tune the rock-physics parameters, defined
in Chapter 2.2, from the local geology, to match the well log reasonably accurately.
This is done through trial and error, careful tuning would require more geological
information. We have tested how the model changes with increasing and decreasing
values of every parameters to find a good fit. The parameter values for the best fit
are given in Table 5.1. The bulk and shear modulus for clay content are increased,
and the bulk and shear modulus for quartz are decreased. The bulk modulus for
brine and oil have been increased. The densities for brine, oil and clay content has
been increased and the density for quartz has been decreased. The critical porosity
φ0 in the rock-physics model has been increased to 0.45 and the given depth Z used
is the mean of the depth values in the well log, equal to 2205 m.

Table 5.1: The rock-physics model parameters for the real case
Matrix components

Kc = 40 GPa Gc= 12 GPa ρc = 2.8g/cm3

Kq= 20 GPa Gq= 11 GPa ρq = 2.5g/cm3

Fluid bulk modulus
Koil= 1.5 GPa Kbrine= 3.6 GPa
Fluid density
ρoil = 1.1g/cm3 ρbrine = 1.2g/cm3

We have simulated the elastic properties yt given xt for all depth t, from the
distribution given in Chapter 4.2, equation 4.5. T in the likelihood variance is in
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this real case assumed to be
T = τ2 · Tm,

where τ is a given constant and Tm is

Tm =

0.182 0 0
0 0.152 0
0 0 0.12

 .

Different cross-plots are given in Figure 5.3 - 5.5. In each plot, the (a) cross-plot
refers to the well log given and the (b) cross-plot to the simulated values of the
elastic properties. For the simulated values of the elastic properties in these plots
are τ set equal to 1. We can observe that the simulated values fit reasonably well
to the the well log. The simulated values could be better tuned from rock-physics
relations or the likelihood variance T, but this would require more expert opinion
from geophysicists.

To assign the rock types to each measurement depth and to assess the posterior
marginal distribution, we use the forward-backward algorithm introduced in Chap-
ter 3.1, in the same way as for the synthetic test data in the previous chapter. Also
in this case the code for the forward-backward algorithm and for the rock-physics
model are written in R (R Development Core Team, 2011). As the data d we use
the elastic properties VP , VS and ρ from the well log. We will define a naive profile
from the well log, where the naive class is defined as

x̂naivet = argmaxk[p(dt|xt = k)π0(xt = k)], (5.1)

where p(dt|xt) is the likelihood function with the same distribution as given in
equation 4.5 and π0(xt) is the stationary distribution for class xt. This is done for
two different τ in T in the likelihood variance, τ equal to 0.5 and to 2. The naive
profile x̂naive, the estimated profile x̂, given in Chapter 3.1, equation 3.2, and the
posterior marginal distribution p(xt = k|d) for k=1,2,3 as a function of depth t are
given in Figure 5.6 for τ equal to 0.5 and in Figure 5.7 for τ equal to 2.

For both values of the τ the estimated profile is equal to the naive profile for
some values of the depth t, but not all. The naive estimator is different for the
two values of τ . For the smallest τ we get, as expected, a lot more details than
for the highest τ in the likelihood variance. For τ = 0.5 the naive profile jumps
42 times, and the estimated profile jumps 24 times. For τ = 2 the naive profile
jumps 24 times and the estimated profile jumps 10 times. We can observe that
it seems to be oil-saturated sandstone in the top of actual subset of the well log
for both cases of the likelihood variance. From the posterior marginal distribution
we observe that this is more sure for the smallest value of τ . From these plots it
can seem like brine-saturated sandstone and shale are in layers in the rest of the
studied subset of the well log. The posterior marginal distribution seems to be a
binary zero-one function for mostly all t, at least for the smallest τ . This means
that the prediction is good for τ = 0.5. For τ = 2 the prediction is worse. The
posterior marginal distribution is not a binary zero-one function for all t, only the
depth t where the estimated profile is equal to the naive profile.

33



1.5 2.5 3.5 4.5

−
2
6
0
0

−
2
5
0
0

−
2
4
0
0

−
2
3
0
0

−
2
2
0
0

−
2
1
0
0

−
2
0
0
0

Vp

1.0 2.0

−
2
6
0
0

−
2
5
0
0

−
2
4
0
0

−
2
3
0
0

−
2
2
0
0

−
2
1
0
0

−
2
0
0
0

Vs

1.8 2.2 2.6

−
2
6
0
0

−
2
5
0
0

−
2
4
0
0

−
2
3
0
0

−
2
2
0
0

−
2
1
0
0

−
2
0
0
0

Density

0.0 0.4 0.8

−
2
6
0
0

−
2
5
0
0

−
2
4
0
0

−
2
3
0
0

−
2
2
0
0

−
2
1
0
0

−
2
0
0
0

Clay content

0.1 0.3 0.5

−
2
6
0
0

−
2
5
0
0

−
2
4
0
0

−
2
3
0
0

−
2
2
0
0

−
2
1
0
0

−
2
0
0
0

Porosity

Figure 5.1: Pressure- and shear velocity, VP and VS , density, clay content and
porosity from the well log, where the studied area between -2160 m and -2250 m
is shown.

For the first case, τ equal to 0.5, the posterior PDFs is almost only a binary
zero-one functions. Again, a careful tuning of the geophysical parameters, and
the likelihood covariance model, could give more reliable results here, and might
provide more interpretation of the depositional environment.
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Figure 5.2: Cross-plot of the petrophysical variables, clay content C and porosity
φ, from the well log in (a) and simulated in (b).
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Figure 5.3: The shear velocity VS as a function of the density ρ from the well log
in (a) and simulated in (b).
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Figure 5.4: The pressure velocity VP as a function of the density ρ from the well
log in (a) and simulated in (b).
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Figure 5.5: The shear velocity VS as a function of the pressure velocity VP from
the well log in (a) and simulated in (b).
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Figure 5.6: The naive profile x̂naive, the estimated profile x̂, given in equation 3.2,
and the posterior marginal distribution p(xt = k|d) for k=1,2,3 as a function of
depth t with τ equal to 0.5.
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Figure 5.7: The naive profile x̂naive, the estimated profile x̂, given in equation 3.2,
and the posterior marginal distribution p(xt = k|d) for k=1,2,3 as a function of
depth t with τ equal to 2.
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Chapter 6

Conclusion

In this thesis a method to predict LF characteristics along a profile is presented.
The prediction was done by use of Bayesian inversion to obtain the posterior PDFs
of the LF classes and in that way we determined the most probably LF profile.
The posterior PDF is not analytically tractable, but has been assessed through
a forward-backward algorithm which compute the posterior distribution for all
hidden states variables. The prior model considered to reach the posterior PDF is
a stationary Markov chain prior model, which has been used to model the continuity
of the LF classes along the profile. A likelihood model was used to link LF classes
to a set of data. To relate the petrophysical variables to the elastic properties we
used forward rock-physics relations.

The most probably LF variables profile has been computed for different set
of data. We have first considered synthetic test data inspired by a North Sea
sandstone reservoir, where we used either the petrophysical variables or the elastic
properties as the data. At the end of this thesis is real data in form of a well log
from the North Sea considered as the set of data.

For the first case, the petrophysical variables in the synthetic test data, it was
hard to get a good prediction of the lithology/fluid profile. The reason for this
was that the petrophysical variables did not discriminate between gas-, oil- and
brine-saturated sandstone, which made it impossible to separate them from each
other. Through the prior model for LF transitions, we still made a reasonable
configuration of the LF profile.

For the second case, the elastic properties in the synthetic test data, we used the
forward rock-physics model in the likelihood model to relate the elastic properties
to the LF classes. In this case we marginalize over the petrophysical variables.
For this model it was easier to separate the different type of sandstone. The rock-
physics model did not separate brine-saturated sandstone and shale, this made it
hard to separate these two LF classes. In this case the prediction of gas- and oil-
saturated sandstone was good, but not the prediction of brine-saturated sandstone
and shale. We determined the most probably LF profile, where the configuration
for gas- and oil-saturated sandstone was the most sure configuration.

For both cases of the synthetic test data, we started by making a reference
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profile, which was used to simulate the synthetic test data. This reference profile
was uses as the truth profile and we used different scoring rules to check how good
the estimated profile fit to the reference profile. This scoring rules tells us that the
estimated profile did not fit too well to the reference profile for the petrophysical
variables, and that the prediction of the estimation profile was a lot better for the
elastic properties.

For the last case we used the elastic properties from the well log as data. In this
case we needed to tune the rock-physics parameters and the petrophysical variables
to match the well log. We determined the most probably LF profile also for this
case, which shown that it was oil-saturated sandstone in the top of the studied area
of the well log and brine-saturated sandstone and shale in layers in the rest of the
well log.

In a further research we can estimate model parameters, and use rock-physics
relations more carefully. This will result in a more reliable LF profile.
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