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Sammendrag

I genetiske assosiasjonsstudier ønsker man å studere mulige sammenhenger mellom
genetiske markører og sykdom. For hver genetiske markør utføres en hypotesetest.
Siden antallet genetiske markører er stort (i størrelsesorden hundretusener) snakker
vi her om fagfeltet multippel testing. En populær strategi i multippel testing er å
estimere et effektivt antall tester og deretter bruke metoder basert p̊a uavhengige
tester for å kontrollere den totale type I feilen. Fokuset i denne masteroppgaven
har vært å studere ulike metoder for å estimere effektivt antall uavhengige tester.
Metodene har blitt anvendt p̊a et stort datasett fra TOP studien ved Universitetet
i Oslo og Oslo Universitetssykehus der man har studert sykdommene schizofreni
og bipolar lidelse. Korrelasjon mellom de genetiske markørene er sentral i de ulike
metodene, og i denne masteroppgaven har vi studert metoder basert p̊a enten
haplotype eller genotype korrelasjon mellom markørene.
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Abstract

In Genome-Wide Association Studies (GWAS) the aim is to look for association
between genetic markers and phenotype (disease). For each genetic marker we
perform an hypothesis test. Since the number of markers is high (in the order
of hundred thousands), we use multiple hypothesis tests. One popular strategy
in multippel testing is to estimate an effective number of independent tests, and
then use methods based on independent tests to control the total type I error.
The focus of this thesis has been to study different methods for estimating the
effective number of independent tests. The methods are applied to a large data
set on bipolar disorder and schizophrenia in Norwegian individuals from the TOP
study at the University of Oslo and Oslo University Hospital (OUS). A key feature
of these methods is the correlation between the genetic markers. The methods
considered in this thesis are based on either haplotype or genotype correlation and
one focus of this thesis has been to study the difference between haplotype and
genotype correlation.
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Chapter 1

Introduction

A Genome-Wide Association Study (GWAS) is used to identify genetic variations
that may have influence on health and disease. A GWAS include scanning the
complete set of DNA of many people with the goal to find genetic variations
that are associated with a particular disease (National Human Genome Research
Institute 2011). Association between genetic variants and disease can be assessed
using hypothesis testing. The data analyzed are often available as genotype data,
but commonly used tests are based on haplotype data.

In a GWAS, many hypotheses need to be evaluated, and therefore the general-
ization of the theory for single hypothesis testing to multiple hypotheses testing
is of importance. Resampling procedures are considered as the gold standard in
multiple testing problems within this field. One approximation to resampling pro-
cedures is the use of the Šidák method for independent tests and define an estimate
of the effective number of independent tests. Several researchers have worked on
this problem. In this thesis, different methods for estimating the effective number
of independent tests will be considered and tested on a data set from the TOP
study (TOP 2012c). To compare with the gold standard, we will also use the minP
resampling procedure to control the familywise error rate, FWER.

In Chapter 2 we present some background in biology. The data analyzed in this
thesis is presented in Chapter 3. Since data are available as genotype data and
many commonly used methods are based on haplotype data we have in Chapter
4 and 5 compared haplotype and genotype correlation for both a theoretical grid
and a real data set. Chapter 6 and 7 will focus on hypothesis testing in general and
on the theory for multiple testing. Methods for estimating the effective number
of independent tests are presented in Chapter 8, and applied to the TOP data
in Chapter 9. In Chapter 10, applications for the whole genome are discussed.
Finally, the thesis ends with discussion and conclusion in Chapter 11.
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Chapter 2

Background in biology

2.1 DNA

A DNA molecule is built up of two intertwined chains which form a double helical
structure. The chains consists of nucleotides, which contains a phosphate group,
a deoxyribose sugar molecule and one of four nitrogenous bases. The four possible
nitrogenous bases in a DNA molecule are adenine, thymine, cytosine and guanine,
and they are usually named only with a capital letter, A, T, C or G (Griffiths,
Gelbart, Lewontin & Miller 2002, p. 4). The two nucleotide chains that form the
helix structure are held together by weak bonds between one base from each chain.
The two bases connected by weak bonds forms different base pairs. There are only
two different base pairs in the DNA molecule, A-T and C-G, because between
these bases there are only two possibilities for weak bonds to occur.

A genome is the total amount of DNA in an organism, built up of long DNA
molecules. Human cells contains in total 46 chromosomes, which form 23 pairs
of chromosomes, and each chromosome carry a different set of genes. A gene is
a region of the chromosomal DNA that is involved in the production of proteins,
and a gene contains information for one protein. A protein is built up of a chain of
amino acids, which is called a polypeptide (Griffiths et al. 2002, p. 5). Any gene
may exist in different form in different individuals.

2.2 SNP - Single nucleotide polymorphisms

A single nucleotide polymorphism (SNP) is a variation in a DNA sequence (Human
Genome Project Information 2011). This variation occurs when a single nucleotide
in the DNA sequence is changed. For example when the base adenine is altered
with the base thymine. A SNP will change a subsequence of the DNA, for exam-
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CHAPTER 2. BACKGROUND IN BIOLOGY 5

ple if the DNA sequence AAGGCTAA is changed to ATGGCTAA, i.e. the second
base adenine is altered with thymine, we see that we have a SNP in this DNA
sequence. The entire human genome consists of about 3 · 109 bases, and the SNPs
occurs often, about every 100 to 300 bases along the entire genome. A variation
in a DNA sequence, when a single base is altered must occur in at least 1% of the
population to be considered as a SNP. In about 2/3 of the SNPs the two bases
that are altered are cytosine and guanine. Some of the SNPs may have influence
on the risk for a person to develop a particular disease. Some of the SNPs occur in
non-coding regions of the genome, which means a region of the genome that does
not code for production of proteins. The SNPs that occur in the coding regions of
the genome may influence genes that are involved in production of proteins, and
may then have some influence in the risk for getting different diseases.

2.3 Biological definitions

Allele One particular gene may exist in different forms in different individuals.
Alleles are different forms of the same gene that can exist at a particular locus
(Griffiths et al. 2002, p. 654).

Gamete A gamete is a reproductive cell with haploid chromosome number
(Thompson & Thompson 1980, p. 353). This means that they consist of only
one copy of each chromosome.

Genotype A genotype is an unordered set of alleles present at one locus (Thompson
& Thompson 1980, p. 353). For a locus with alleles A and a, the possible genotypes
are AA, Aa and aa.

Haplotype A haplotype is an ordered set of alleles from closely linked loci. The
alleles in a haplotype are usually inherited together (Thompson & Thompson 1980,
p. 353). For a person having alleles A at one locus and b at an neighboring locus,
the haplotype is denoted Ab.

Hardy-Weinberg equilibrium When the frequency distribution of the geno-
types AA,Aa and aa is stable at p2, 2pq and q2, the locus is in Hardy-Weinberg
equilibrium. (Griffiths et al. 2002, p. 564).

Locus A locus is the position of a gene on a chromosome (Thompson & Thompson
1980, p. 157).
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Minor allele frequency (MAF) Minor allele frequency (MAF) is the fre-
quency of the rarer allele (Ziegler & König 2010, p. 98).

Phenotype Phenotypes are groups that are used for characterization of organ-
isms by physiology (Griffiths et al. 2002, p. 7). Examples of phenotypes are “blue
eyes” and “blood type B”.

2.4 Hardy-Weinberg disequilibrium

When allele and genotype frequencies are estimated it is of interest to look for
non-random association between the the two alleles at a given locus. For a locus
X with alleles A and a, we define an indicator variable as (Weir 2008)

Xi =

{
1 if allele is A
0 if allele is a

, i = 1, 2

where the subscript i = 1, 2 denote the first and second gamete at the locus, re-
spectively.

Using this indicator variable, we define the following probability

P (Xi = 1) = pA, i = 1, 2,

and we have the expected values

E(Xi) = pA, i = 1, 2

E(X1X2) = PAA. (2.1)

The variance of the random variable Xi is then

Var(Xi) = pA(1− pA). (2.2)

From Equation (2.1) and (2.2) we get

Cov(X1, X2) = PAA − p2
A

Corr(X1, X2) =
PAA − p2

A

pA(1− pA)
.

The correlation Corr(X1, X2) is referred to as the within-population inbreeding
coefficient fA (Weir 2008)

Corr(X1, X2) =
PAA − p2

A

pA(1− pA)
= fA. (2.3)
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Rewriting Equation (2.3) we observe that the genotype frequencies in the general
case then can be parameterized as

PAA = p2
A + fApApa

PAa = 2pApa(1− fA)

Paa = p2
a + fApApa. (2.4)

The upper and lower bound for the inbreeding coefficient, fA, are found from
Equation (2.4) as

PAA = p2
A + fApApa > 0

PAa = 2pApa(1− fA) > 0

Paa = p2
a + fApApa > 0.

Rewriting these inequalities gives the bounds for fA as (Weir 2008)

−min(pA/pa, pa/pA) ≤ fA ≤ 1.

When we assume random mating in a very large population, genotype frequencies
are the products of allele frequencies. Let the two alleles at one locus be A, a, the
expected genotype frequencies under random mating is then given by

PAA = p2
A

PAa = 2pApa

Paa = p2
a.

Hardy-Weinberg disequilibrium describes departures from these frequencies, and
can be described using a disequilibrium coefficient denoted DA, given by Weir
(2008)

DA = fApA(1− pA).

Equation (2.4) can then be rewritten as

PAA = p2
A +DA

PAa = 2pApa − 2DA

Paa = p2
a +DA.

The upper and lower bound for the Hardy-Weinberg disequilibrium coefficient DA

is found from the following inequalities

PAA = p2
A +DA ≥ 0

PAa = 2pApa − 2DA ≥ 0

Paa = p2
a +DA ≥ 0.
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These inequalities gives

p2
A +DA ≥ 0

DA ≥ −p2
A

p2
a +DA ≥ 0

DA ≥ −p2
a,

and then
DA ≥ −min{−p2

A, p
2
a}.

The upper bound for DA are found from the inequality

2pApa − 2DA ≥ 0,

which gives the inequality
DA ≤ pApa.

The upper and lower bounds for the Hardy-Weinberg disequilibrium coefficient,
DA, can be summarized as

max{−p2
A,−p2

a} ≤ DA ≤ pApa.

We see that the disequilibrium coefficient DA depends on the allele frequencies
and the maximal range for DA is [−0.25, 0.25] since the maximum product of al-
lele frequencies is obtained when pA = pa = 0.5.





Chapter 3

The TOP study

3.1 TOP

The Thematic Organized Psychosis Research study (TOP study) was started at
the University of Oslo (UIO) in 2003 (TOP 2012c), and Professor Dr.med Ole A.
Andreassen is the head of the study (TOP 2012b). The goal of the TOP study is
to obtain information about the causes for severe mental disorders with focus on
schizophrenia and bipolar disorder. In 2012 the TOP project was appointed K.G.
Jebsen Centre for Psychotic Research (TOP 2012b). The K.G. Jebsen Centre for
Psychotic Research is a cooperation project between the University in Oslo (UiO),
the University in Bergen (UiB) and Oslo University Hospital (OUS). The centre
has different projects and partners both in Norway and abroad.

The TOP study started in 2003 including patients from the University Hospitals
in Oslo in (TOP 2012c). Today the database also includes individuals from other
parts of the country, about 1100 individuals with disease and around 500 healthy
individuals in a control group (TOP 2012a). The information about the data in
the TOP study are collected in different ways, in the clinic, neurophysological
tests, MR and genetic analysis (TOP 2012a).

3.2 Schizophrenia and bipolar disorder

The lifetime risk of the severe mental disorder schizophrenia is nearly 1% (Athanasiu,
Mattingsdal, Kähler, Brown, Gustadsson, Agartx & et. al 2010). Persons that are
affected with schizophrenia may hear voices that other people do not hear and can
believe that other persons are able to read their minds or to control their thoughts
(National Institute of Mental Health 2012b).

10
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Bipolar disorder (BD) is a severe mental illness (Djurovic, Gustafsson, Mattings-
dal, Athanasiu, Bjella, Tesli & et. al 2010) with also is known as a manic-depressive
illness (National Institute of Mental Health 2012a). At least half of the individ-
uals affected with bipolar disorder develop the disease before age 25. The first
symptoms of a bipolar disorder may be misunderstood as symptoms of many sep-
arate problems, not as a part of a larger problem or disorder (National Institute
of Mental Health 2012a).

3.3 The TOP8 data

We have been given permisson by Professor Dr.med Ole A. Andreassen at the TOP
study, to analyze the TOP8 data set. The TOP8 data set consists of all samples
from the previous TOP studies, including studies in schizophrenia (Athanasiu
et al. 2010) and bipolar disorder (Djurovic et al. 2010). The data set contains as
shown in Table 3.1 data for a total number of 1551 individuals, 1124 individuals
with disease and 417 individuals not affected by schizophrenia or bipolar disorder.
Among the 1551 individuals the disease status is missing for ten of the individu-
als. Among the individuals in the study, there are 770 males and 780 females, and
missing values for ten of the individuals.

The cases in the TOP study had to satisfy some predefined criteria (TOP 2012a).
These criteria are

- Psychotic disorder

- Age 16-65

- The disease are not caused by organic disease or drugs

- The patient must be able to give informed consent

- The patient must be able to speak and understand a Scandinavian language

The sample analyzed in the TOP study was genotyped using Affymetrix Genome-
Wide Human SNP Array 6.0 (Athanasiu et al. 2010). The preprocessing of the
genotype data includes removing of individuals and SNPs with high percentage of
missing genotype data. All SNPs with minor allele frequency below 1% was re-
moved from the study. The SNPs in the study was also tested for Hardy-Weinberg
disequilibrium removing all SNPs with p-value < 0.01.

The aim of the data analysis in this thesis is not to arrive at medical findings, but
to use real data to compare different methods. This has proven especial impact
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Table 3.1: The TOP8 study

Sex Affected / Unaffected
Male 770 Affected 1124
Female 780 Unaffected 417
Missing 1 Missing 10
Total 1551 Total 1551

for the result for comparing the LD and CLD correlation which is described in
Chapter 4 and 5.





Chapter 4

Linkage disequilibrium and
correlation

In this chapter, correlation between SNPs based both on haplotypes and geno-
types will be presented. Haplotype correlation will be presented in Section 4.1
and genotypecorrelation will be presented in Section 4.2. Haplotype and genotype
correlation will be compared theoretically in Section 4.3.

We consider two biallelic loci X and Y with alleles A, a and B, b respectively. We
define two random variables, Xi and Yi, describing the alleles at locus X and Y
respectively, and let subscript i = 1 indicate the first gamete at the locus, and
subscript i = 2 indicates the second gamete. The random variables are illustrated
in Figure 4.1. We define the random variables as (Weir 2008)

Xi =

{
1 if allele is A
0 if allele is a

, i = 1, 2 (4.1)

and

Yi =

{
1 if allele is B
0 if allele is b.

, i = 1, 2. (4.2)

For the two random variables in Equation (4.1) and (4.2) we define six probabilities
that describes frequencies of alleles and combinations of alleles at different loci and
on different gametes. These probabilities are defined as (Weir 2008)

14
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Figure 4.1: Two biallelic loci, X and Y

P (Xi = 1) =pA, i = 1, 2

P (Yi = 1) =pB, i = 1, 2

P (Xi = 1, Yi = 1) =PAB, i = 1, 2

P (Xi = 1, Yj = 1) =PA/B, i, j = 1, 2, i 6= j

P (X1 = 1, X2 = 1) =PAA

P (Y1 = 1, Y2 = 1) =PBB. (4.3)

Figure 4.2 illustrates the situation where we consider alleles and combinations of
alleles at different loci and on different gametes. The Hardy-Weinberg disequi-
librium coefficients are described in Section 2.4, and the linkage disequilibrium
measures DAB and DA/B will be defined later in Section 4.1 and 4.2.

4.1 Haplotype correlation and linkage disequilib-

rium

From the probabilities defined in Equation (4.3) we see that the expected values
of the random variables defined in Equation (4.1) and (4.2) are (Weir 2008)

E(Xi) =pA, i = 1, 2, and

E(Yi) =pB, i = 1, 2

where the subscript i indicates the first or second gamete for the individual.
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Figure 4.2: Figure illustrating Hardy-Weinberg disequilibrium, linkage disequilib-
rium and composite linkage disequilibrium between alleles at two loci X and Y with
alleles A, a and B, b respectively. DA and DB are the Hardy-Weinberg disequilib-
rium coefficients for locus X and Y respectively. DAB is the linkage disequilibrium
measure between two alleles at different loci on the same gamete. DA/B describes
linkage disequilibrium between two alleles that are both at different loci and on
different gametes. The linkage disequilibrium measures DAB and DA/B will be
defined later in this chapter.

The variances of Xi and Yi are

Var(Xi) =pA(1− pA), i = 1, 2 and

Var(Yi) =pB(1− pB), i = 1, 2 (4.4)

where the subscript i indicates the first or second gamete for the individual.

For the random variables Xi and Yi we have the following expected values

E(X2
i ) = 02 · P (Xi = 0) + 12 · P (Xi = 1) = pA , i = 1, 2

E(Y 2
i ) = 02 · P (Yi = 0) + 12 · P (Yi = 1) = pB , i = 1, 2,

and

E(XiYi) = 0 · 0 · P (Xi = 0 ∩ Yi = 0) + 0 · 1 · P (Xi = 0 ∩ Yi = 1)+

1 · 0 · P (Xi = 1 ∩ Yi = 0) + 1 · 1 · P (Xi = 1 ∩ Yi = 1) = PAB, i = 1, 2.
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The covariance between the random variables Xi and Yi is given by (Weir 2008)

Cov(Xi, Yi) =E(XiYi)− E(Xi)E(Yi)

=PAB − pApB. (4.5)

From the variances in Equation (4.4) and the covariance calculated in Equation
(4.5) the correlation between the random variables Xi and Yi is given by

Corr(Xi, Yi) =
PAB − pApB√

pA(1− pA)pB(1− pB)
. (4.6)

Corr(Xi, Yi) measures the correlation between the alleles at two different loci, X
and Y, on the same gamete.

Linkage disequilibrium

For two loci, X and Y, with alleles A, a and B, b respectively, the four possible com-
binations of alleles are AB, ab, Ab and aB with probabilities given by PAB, Pab, PAb
and PaB respectively. Linkage disequilibrium (LD) measures non random associ-
ation between alleles. The linkage disequilibrium measure D was by Lewontin &
Kojima (1960) defined as

D = PABPab − PAbPaB.
The linkage disequilibrium measure D describes the difference between the ob-
served haplotype frequency and the expected haplotype frequency under equilib-
rium, when the alleles A and B are inherited independently. D can also be written
in terms of allelic and haplotypic frequencies as

D = PAB − pApB, (4.7)

where PAB is the probability for haplotype AB. For two loci X and Y, two alleles A
and B are in linkage equilibrium when D = 0. This means that the estimated hap-
lotype frequency equals the expected haplotype frequency under the equilibrium
condition when the alleles A and B are inherited independently. Two alleles are
in LD when D 6= 0, which means that the estimated haplotype frequency differs
from the expected haplotype frequency under equilibrium. Linkage disequilibrium
is affected by the activity of recombination (Kulle, Frigessi, Edvardsen, Kristensen
& Wojnowski 2008).

From Equation (4.5) and (4.7) we observe that the linkage disequilibrium measure
D defined by Lewontin & Kojima (1960) represents the covariance between the
random variables Xi and Yi defined in Equation (4.1) and (4.2) since

D = PAB − pApB = Cov(Xi, Yi).
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Haplotype frequencies in terms of D

Since linkage disequilibrium is defined as the difference between the observed hap-
lotype frequency and expected haplotype frequency under equilibrium we can in
general write

PAB = pApB +DAB

PAb = pApb +DAb

PaB = papB +DaB

Pab = papb +Dab (4.8)

where Dxy denotes the linkage disequilibrium between alleles x and y.

We know that

pA + pa = 1 and

pB + pb = 1. (4.9)

Adding the equations for PAB and PAb from Equation (4.8) and using the result
in Equation (4.9) gives

PAB + PAb = pApB +DAB + pApb +DAb

= pA(pB + pb) +DAB +DAb

= pA +DAB +DAb

= pA. (4.10)

From Equation (4.10) we see that

DAb = −DAB.

Similarly, we get
DaB = −DAB.

Adding the equations for PAB and Pab give

PAb + Pab = pApb +DAb + papb +Dab

= pb(pA + pa) +DAb +Dab

= pb +DAb +Dab

= pb. (4.11)

From Equation (4.11) we get

Dab = −DAb = DAB.
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From these equations we observe that

DAB = Dab = −DAb = −DaB = D.

Then, Equation (4.8) can be rewritten as

PAB = pApB +D

PAb = pApb −D
PaB = papB −D
Pab = papb +D.

We will use DAB = D to denote the linkage disequilibrium between two alleles at
different loci on the same gamete.

The LD measure D′

The LD measure D′ (Lewontin 1964) is a normalized measure where the measure
D is normalized by using the maximum possible deviation from equilibrium given
the observed allele frequencies, denoted by Dmax . The measure D′ is given by

D′ =
|D|
Dmax

,

where Dmax is given by

Dmax =

{
min{pApb, papB} for D > 0
min{pApB, papb} for D < 0

(4.12)

We then observe that
0 ≤ D′ ≤ 1.

For positive linkage disequilibrium, D > 0 we have from Equation (4.7)

PAB > pApB.

This means that the observed haplotype frequency is greater than the expected
haplotype frequency under independence (the equilibrium condition). Then, D > 0
indicates that the probability of haplotype AB is greater than the probability of
the haplotype under the equilibrium condition.

For negative linkage disequilibrium, D < 0, Equation (4.7) give

PAB < pApB.

This means that the observed haplotype frequency is less than the expected hap-
lotype frequency under independence (the equilibrium condition). D < 0 gives
that the probability to inherit the haplotype AB is less than the probability for
inheriting alleles A and B under the equilibrium condition.
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Gametic correlation coefficient, ρLD

The LD measure D can also be scaled by the square root of the product of all
allelic frequencies, which gives the gametic correlation coefficient as (Weir 1996,
p. 137)

ρLD =
D

√
pApbpapB

.

By using
pa = 1− pA

and
pb = 1− pB

we can rewrite ρLD as

ρLD =
D√

pA(1− pA)pB(1− pB)
. (4.13)

We see that the range for ρLD is

−1 ≤ ρLD ≤ 1.

Comparison of the LD measures

All the LD measures described above, D, D′ and ρLD, include the the difference
between the observed haplotype frequency and the expected haplotype frequency
under the equilibrium condition. We have seen that the LD measures have differ-
ent ranges. The range of D depends on the observed allele frequencies, which is
not a desirable property. The measures D′ and ρLD can take values in the interval
[-1,1]. We also observe that when we have a situation with rare alleles, but a small
value of LD between them, we can get D′ equal to one and a small value of ρLD.
This shows that using the correlation coefficient ρLD may be a better choice for a
situation with rare alleles because it is more easy to interpret.

4.2 Genotype correlation and composite linkage

disequilibrium

A genotype is an unordered sequence of the two alleles present at both gametes
at one locus. The random variables defined in Equation (4.1) and (4.2) describes
alleles present at one locus and one gamete. We observe that the genotype at each
locus can be described by a sum of the random variables representing each of the
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alleles present at one locus. At locus X we observe that the genotype may be given
by the sum

X ′ = X1 +X2

where X1 and X2 are the random variables defined in Equation (4.1) representing
the alleles present at the first and second gamete respectively. For locus Y, the
genotype is defined by the new variable Y ′,

Y ′ = Y1 + Y2

where Y1 and Y2 are the random variables defined in Equation (4.2) representing
the alleles present at the first and second gamete respectively.

These new variables will be given as

X ′ =


0 if genotype is aa
1 if genotype is Aa
2 if genotype is AA

(4.14)

and

Y ′ =


0 if genotype is bb
1 if genotype is Bb
2 if genotype is BB

. (4.15)

For the variables defined in Equation (4.14) and (4.15) we find the following prob-
abilities

P (X ′ = 2) = P (X1 = 1, X2 = 1) = PAA
P (X ′ = 1) = P (X1 = 1, X2 = 0) = P (X1 = 0, X2 = 1) = PAa
P (X ′ = 0) = P (X1 = 0, X2 = 0) = Paa
P (Y ′ = 2) = P (Y1 = 1, Y2 = 1) = PBB
P (Y ′ = 1) = P (Y1 = 1, Y2 = 0) = P (Y1 = 0, Y2 = 1) = PBb
P (Y ′ = 0) = P (Y1 = 0, Y2 = 0) = Pbb

We observe that the expected values of the variables X ′ and Y ′ are

E(X ′) = E(X1 +X2) = E(X1) + E(X2) = 2pA

E(Y ′) = E(Y1 + Y2) = E(Y1) + E(Y2) = 2pB. (4.16)

The expected values can also be written as

E(X ′) = 0 · P (X ′ = 0) + 1 · P (X ′ = 1) + 2 · P (X ′ = 2) = 1 · PAa + 2 · PAA

and
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E(Y ′) = 0 · P (Y ′ = 0) + 1 · P (Y ′ = 1) + 2 · P (Y ′ = 2) = 1 · PBb + 2 · PBB.

These equations gives

pA = PAA +
1

2
PAa and

pB = PBB +
1

2
PBb. (4.17)

Using Equation (4.3) we also see that

E(X ′Y ′) =E[(X1 +X2)(Y1 + Y2)]

=E[X1Y1 +X1Y2 +X2Y1 +X2Y2]

=E[X1Y1] + E[X1Y2] + E[X2Y1] + E[X2Y2]

=PAB + PA/B + PA/B + PAB

=2(PAB + PA/B). (4.18)

In the most general case we do not assume Hardy-Weinberg equilibrium, which
means that the alleles present at different gametes at the same locus in general
are not independent of each other. Using Equation (4.4) we see that the variance
of X ′ and Y ′ is

Var(X ′) =Var(X1 +X2)

=Var(X1) + Var(X2) + 2Cov(X1, X2)

=2pA(1− pA) + 2(PAA − p2
A)

=2[pA(1− pA) +DA],

where DA is the Hardy-Weinberg disequilibrium coefficient

DA = PAA − p2
A

defined in Section 2.4.

Similar calculations show that the variance of Y ′ is given by

Var(Y ′) = 2[pB(1− pB) +DB]

where DB is the Hardy-Weinberg disequilibrium coefficient

DB = PBB − p2
B.
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The covariance between X ′ and Y ′ is from Equation (4.16) and (4.18)

Cov(X ′, Y ′) =2(PAB + PA/B)− 2pA2pB

=2[PAB + PA/B − 2pApB] (4.19)

and the correlation is then given by

Corr(X ′, Y ′) =
Cov(X ′, Y ′)√

Var(X ′)
√

Var(Y ′)

=
2[PAB + PA/B − 2pApB]√

2[pA(1− pA) +DA]
√

2[pB(1− pB) +DB]

=
PAB + PA/B − 2pApB√

[pA(1− pA) +DA]
√

[pB(1− pB) +DB]
. (4.20)

We observe that Corr(X ′, Y ′) given in Equation (4.20) measures genotype correla-
tion between two loci X and Y, where the genotypes are represented by the sums
of random variables, X ′ and Y ′.

Generalization of linkage disequilibrium to the two gamete
case

Consider two biallelic loci, X and Y, with alleles A, a and B, b respectively as
defined in Equation (4.1) and (4.2). We have in total ten possible haplotype com-
binations of the four alleles present at these two loci. These frequencies are given
in Table 4.1.

We use the notation P xy
xy to denote the haplotypes present at both gametes for loci

X and Y, where the subscript indicates the haplotype present at one gamete and
the superscript indicates the haplotype present at the other gamete. For example,
PAb
AB indicates that the haplotype present at one gamete is AB and the haplotype

present at the other gamete is Ab.

From the ten possible haplotype combinations described in Table 4.1, only nine
of these probabilities can be directly observed from genotypic data. In general
it is not possible to distinguish between the double heterozygotes (AB, ab) and
(Ab, aB), we can only observe the total frequency for these two double heterozy-
gotes as shown in Table 4.2.

The probabilities in Table 4.2 are related to the probabilities defined in Equation
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Table 4.1: Possible haplotype frequencies for two biallelic loci.

Haplotype Frequency
(AB,AB) PAB

AB

(AB,Ab) PAb
AB

(Ab,Ab) PAb
Ab

(AB, aB) PAB
aB

(Ab, aB) P aB
Ab

(AB, ab) PAB
ab

(Ab, ab) PAb
ab

(aB, aB) P aB
aB

(aB, ab) P aB
ab

(ab, ab) P ab
ab

Table 4.2: Possible haplotype pairs for two biallelic loci.

Locus Y

BB Bb bb

AA PAB
AB PAB

Ab PAb
Ab

Locus X Aa PAB
aB P aB

Ab + PAB
ab PAb

ab

aa P aB
aB P aB

ab P ab
ab

(4.3). From Table 4.2 we observe that we have the following relationships

PAA = PAB
AB + PAB

Ab + PAb
Ab

PAa = PAB
aB + P aB

Ab + PAB
ab + PAb

ab

Paa = P aB
aB + P aB

ab + P ab
ab

which gives as in Equation (4.17)

pA = PAA +
1

2
PAa.

Similarly, we get

PBB = PAB
AB + PAB

aB + P aB
aB

PBb = PAB
Ab + P aB

Ab + PAB
ab + P aB

ab

Pbb = PAb
Ab + PAb

ab + P ab
ab
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and as in Equation (4.17)

pB = PBb +
1

2
PBb.

According to Weir (1996, p. 122) and the proof in Appendix B we have that

PAB = PAB
AB +

1

2
(PAB

Ab + PAB
aB + PAB

ab ).

The LD measure D as defined in Equation (4.7) describes the association between
two alleles on two different loci on the same gamete. The generalization of the LD
measure D to the case where we consider two loci on two gametes was described
by Weir (1996, p. 125). Considering two loci and two gametes we also need to take
into account possible disequilibrium between alleles that are both at different loci
and on different gametes. This measure of linkage disequilibrium is denoted DA/B

and is defined by Weir (1996, p. 122) by introducing the non-gametic frequency,
denoted PA/B. The non-gametic frequency, PA/B describes the frequency of alleles
A and B at different loci and on different gametes.

The non-gametic frequency, PA/B, is by Weir (1996, p. 122) given by

PA/B = PAB
AB +

1

2
(PAB

Ab + PAB
aB + P aB

Ab ),

which is proved in Appendix B.

We also observe that the sum of PAB and PA/B can be written as

PAB + PA/B = 2PAB
AB + PAB

Ab + PAB
aB +

1

2
(PAB

ab + P aB
Ab ).

The digenic disequilibrium, DA/B, is defined as (Weir 1996, p. 122)

DA/B = PA/B − pApB. (4.21)

We see that the digenic disequilibrium is related to the disequilibrium measure
DAB defined for the one gamete case. Both DAB and DA/B measure the difference
between the observed haplotype frequency and the expected frequency under the
equilibrium condition.

Composite linkage disequilibrium correlation

Weir (1996, p. 126) defined a composite linkage disequilibrium measure, denoted
∆AB,
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∆AB =PAB + PA/B − 2pApB

=DAB +DA/B (4.22)

where DA/B is the digenic linkage disequilibrium measure for non random associ-
ation between alleles at different gametes and different loci as defined in Equation
(4.21).

The composite linkage disequilibrium correlation was by Weir (1996, p. 137) de-
fined as

ρCLD =
∆AB√

[pA(1− pA) +DA]
√

[pB(1− pB) +DB]
(4.23)

where DA and DB are the Hardy-Weinberg disequilibrium coefficients as defined
in Section 2.4.

From Equation (4.19) and (4.22) we observe that

Cov(X ′, Y ′) = 2(PAB + PA/B − 2pApB)

= 2∆AB. (4.24)

Equation (4.24) shows that the composite linkage disequilibrium measure ∆AB

equals half the covariance between the genotypic variables X ′ and Y ′ defined in
Equation (4.14) and (4.15).

From Equation (4.20) and (4.23) we observe the following relationship

ρCLD = Corr(X1 +X2, Y1 + Y2)

= Corr(X ′, Y ′). (4.25)

This shows that the composite linkage disequilibrium correlation describes the
genotype correlation for alleles at different loci and on different gametes.

The upper and lower bound for the linkage disequilibrium coefficient D is given
in Equation (4.12) and for the composite linkage disequilibrium measure ∆AB as
described in Equation (4.22), Hamilton & Cole (2004) described the upper and
lower bounds for the composite linkage disequilibrium measure ∆AB as

max(−2pApB,−2papb) ≤ ∆AB ≤ min(2pApb, 2papB).
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4.3 LD vs. CLD correlation

Numerical example

We will use the example from Weir (1996, p. 123) to illustrate the difference be-
tween LD and CLD correlation. We denote the frequency of genotypes AA,Aa
and aa by PA

A , P
a
A, P

a
a , respectively, and similarly for loci with alleles B and b.

Table 4.3: Genotypic frequencies for two alleles at each of two loci.

Locus Y

BB Bb Bb

AA PAB
AB = 0.20 PAb

AB = 0.18 PAb
Ab = 0.02 PA

A = 0.40

Locus X Aa PAB
aB = 0.26 P aB

Ab = 0.04, PAB
ab = 0.08 PAb

ab = 0.02 P a
A = 0.40

aa P aB
aB = 0.04 P aB

ab = 0.10 P ab
ab = 0.06 P a

a = 0.20

Total PB
B = 0.50 P b

B = 0.40 P b
b = 0.10 1

Table 4.4: Haplotypic frequencies for two alleles at each of two loci.

A/B A/b aB ab

AB PAB
AB = 0.20 1

2
PAB
Ab = 0.09 1

2
PAB
aB = 0.13 1

2
PAB
ab = 0.04 PAB = 0.46

Ab 1
2
PAb
AB = 0.09 PAb

Ab = 0.02 1
2
PAb
aB = 0.02 1

2
PAb
ab = 0.01 PAb = 0.14

a/B 1
2
P aB
AB = 0.13 1

2
PAB
ab = 0.04 P aB

aB = 0.04 1
2
P aB
ab = 0.05 Pa/B = 0.26

a/b 1
2
PAb
aB = 0.02 1

2
P ab
Ab = 0.01 1

2
P ab
aB = 0.05 P ab

ab = 0.06 Pa/b = 0.14

PA/B = 0.44 PA/b = 0.16 PaB = 0.24 Pab = 0.16 1

Table 4.3 and 4.4 shows an numerical example of genotypic frequencies for two
alleles at each of two loci. The two tables shows the same example, but Table 4.4 is
rewritten for use in estimation of the composite linkage disequilibrium correlation
as defined in Equation (4.20). From these two tables, we can easily set up the
estimates for LD and CLD correlation as defined in Equations (4.6) and (4.20).
We get
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PAB = PAB
AB +

1

2
(PAb

AB + PAB
aB + PAB

ab )

= 0.20 +
1

2
(0.18 + 0.26 + 0.08)

= 0.46

and

PAB + PA/B = 2PAB
AB + PAb

AB + PAB
aB +

1

2
(P aB

Ab + PAB
ab )

= 2 · 0.20 + 0.18 + 0.26 +
1

2
(0.08 + 0.04)

= 0.9.

The Hardy-Weinberg coefficients are calculated from Table 4.3 as

DA = PAA − p2
A = 0.40− (0.60)2 = 0.04

and

DB = PBB − p2
B = 0.50− (0.70)2 = 0.01.

We see that

ρLD =
PAB − pApB√
pApBpapb

=
0.46− 0.60 · 0.70√

0.60 · 0.40 · 0.70 · 0.30

= 0.1781742

and

ρCLD =
PAB + PA/B − 2pApB√

(pApa +DA)(pBpb +DB)

=
0.9− 2 · 0.60 · 0.70√

(0.60 · 0.40 + 0.04)(0.70 · 0.30 + 0.01)

= 0.2417469.

From this example we observe that the CLD correlation, ρCLD, is more extreme
than the LD correlation ρLD. We want to investigate if this is a general finding,
and then use this to decide which measure of correlation, ρLD or ρCLD, we want
to use in multiple testing correction problems.
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MAF and LD correlation

Figure 4.3: Histogram of MAF for the theoretical grid.

We do not know the real distribution of the minor allele frequencies (MAF) for
SNPs in a general population, and therefore we implemented in R (R Development
Core Team 2011) a theoretical grid which not is realistic because the grid includes
all possible combinations of probabilities. The R code is shown in Appendix D.
The distribution of the minor allele frequencies for the theoretical grid is shown in
Figure 4.3, and in Chapter 5 we will see how the distribution of the minor allele
frequencies will be for a real data set, chromosome 22 of the TOP8 data.

CLD vs. LD correlation in the general case

To study the CLD correlation compared to the LD correlation we used the the-
oretical grid for all combinations of probabilities to estimate the haplotype and
genotype correlation, ρLD and ρCLD, as defined in Equation (4.13) and (4.23).
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Figure 4.4: Plot of ρCLD vs ρLD using the theoretical grid. The horizontal and
vertical lines are plotted at ρLD and ρCLD equal to 0.8 in absolute value.

From Figure 4.4 we see the CLD correlation as defined in Equation (4.23) plotted
against the LD correlation as defined in Equation (4.13). The horizontal lines and
vertical lines are all plotted at the correlation values equal to 0.8 in absolute value.
From Figure 4.4 we clearly see that the CLD correlation is more extreme than the
LD correlation, since we have more points where |ρCLD| > 0.8 than points where
|ρLD| > 0.8. This plot indicates that the CLD correlation is more extreme than
the LD correlation.

Table 4.5: Summary statistics for LD and CLD correlation

Min. 1st Qu. Median Mean 3rd Qu. Max.

LD −1.000 −0.2357 0.000 −2.218 · 10−05 −0.2357 1.000

CLD −1.000 −0.3440 0.000 4.814 · 10−12 −0.3440 1.000

Table 4.5 shows the summary statistics for the LD and CLD correlation calculated
based on the theoretical grid. The results for the first and third quantile in Table
4.5 shows indicates that the CLD correlation is more extreme than the LD corre-
lation.
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Table 4.6: Summary statistics for the absolute difference between LD and CLD
correlation

LD,CLD Min. 1st Qu. Median Mean 3rd Qu. Max.

LD,CLD> 0.01 −0.9524 −0.2319 −0.0951 −0.1167 −0.0024 0.7071

CLD,LD< −0.01 −0.9524 −0.2319 −0.0951 −0.1167 −0.0024 0.7071

Table 4.7: LD vs. CLD correlation for the theoretical matrix

ρCLD, ρLD ρCLD − ρLD proportion

ρCLD, ρLD > 0.01 ρCLD − ρLD > 0 0.7554417

ρCLD, ρLD > 0.01 ρCLD − ρLD < 0 0.2414901

ρCLD, ρLD < −0.01 ρCLD − ρLD > 0 0.7554417

ρCLD, ρLD < −0.01 ρCLD − ρLD < 0 0.2414901

For the case where both correlations are positive and greater than 0.01, the results
of Table 4.6 shows that the mean difference is equal to -0.1167, and for the case
when both correlation are negative with value less than 0.01 we see that the mean
difference is also equal to -0.1167. For both cases we also observe that the CLD
correlation is greater than the LD correlation in approximately 75% of the cases,
as shown in Table 4.7.

From Figure 4.5a and 4.5b we observe that for our theoretical grid the CLD correla-
tion ρCLD tend to be more extreme than the LD correlation because the histograms
shows more extreme values for the CLD correlation in Figure 4.5b than for the LD
correlation in Figure 4.5a.

From Figure 4.6a and 4.6b we see histogram of the difference between the absolute
values of the CLD and the LD correlation. Figure 4.6a shows histogram for the
difference when both the CLD and LD correlation are positive and in Figure 4.6b
we see the histogram for the difference when both the CLD and LD correlation
are negative. From both these figures, we observe that the CLD correlation tend
to be more extreme than the LD correlation.
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(a) (b)

Figure 4.5: (a) Histogram of LD correlation for the theoretical grid. (b) Histogram
of CLD correlation for the theoretical grid. From these figures we see that for the
theoretical grid, we have more extreme values of CLD correlation compared to
the results using LD correlation, which indicates that the CLD correlation is more
extreme than the LD correlation.

(a) (b)

Figure 4.6: (a) Histogram of difference |ρCLD| − |ρLD| when both correlations are
positive. (b) Histogram of difference |ρCLD| − |ρLD| when both correlations are
negative. From these figures we observe that the CLD correlation is more extreme
than the LD correlation.
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LD vs. CLD

We have seen that for the theoretical grid, the CLD correlation is more extreme
than the LD correlation in approximately 75% of the cases. For comparison we also
investigated the difference between the squared correlation measures for LD and
CLD correlation, ρ2

LD and ρ2
CLD, respectively and we observed similar relationship,

ρ2
CLD was more extreme than ρ2

LD in approximately 75% of the cases. From Figure
4.3 we see the distribution of the minor allele frequencies for the theoretical grid.
We do not know how the distribution of the minor allele frequencies for a general
population, and in Chapter 5 we will see the distribution of the minor allele fre-
quencies for chromosome 22 of the TOP data. In Section 5.5 we will look at how
the LD and CLD correlations can be estimated based on the observed data from
the TOP8 data set, to see which estimated values of ρCLD and ρLD we will have for
a real data set, instead of using a theoretical grid with all possible combinations.



Chapter 5

Estimation

In previous chapter we have showed that SNP dependence can be assessed by
calculating the linear correlation between SNPs, based on either haplotypes or
genotypes. In this chapter, methods for estimating LD and CLD correlation based
on observed genotype data will be presented. We will also present some methods
for estimating haplotypes and haplotype blocks.

According to Weir (1996, p. 137), linkage disequilibrium correlation (haplotype
correlation) is given by

ρLD =
D√

pA(1− pA)pB(1− pB)

as described in Section 4.1.

The composite linkage disequilibrium correlation (genotype correlation) is defined
as (Weir 1996, p. 137)

ρCLD =
∆AB√

(pA(1− pA) +DA)(pB(1− pB) +DB)

which is described in Section 4.2. DA and DB are the Hardy-Weinberg disequilib-
rium coefficients defined in Section 2.4.

5.1 Estimating LD correlation from genotype data

Consider two loci X and Y with alleles A, a and B, b respectively. The possible
pairwise haplotype combinations of these alleles are AB, aB, Ab and ab.

34
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From Equation (4.7) the linkage disequilibrium measure D is estimated by

D̂ = P̂ABP̂ab − P̂AbP̂aB
= P̂AB − p̂Ap̂B.

The LD correlation as described in Section 4.1 is then estimated by

ρ̂LD =
P̂AB − p̂Ap̂B√
p̂Ap̂ap̂B p̂b

. (5.1)

For two biallelic loci there are in total nine possible observable genotypes. We will
denote the observed genotype counts, n1, ..., n9, as shown in Table 5.1. Here n be
the number of individuals in the study.

Table 5.1: Table for observed genotype counts

Locus Y
BB Bb bb Total

AA n1 n2 n3 nAA
Locus X Aa n4 n5 n6 nAa

aa n7 n8 n9 naa
Total nBB nBb nbb n

The corresponding genotype frequencies are given by

pi =
ni
n
, i = 1, ..., 9. (5.2)

Assuming HWE as described in Section 2.4, the probabilities p1, ..., p9 defined in
Equation (5.2) can be written as shown in Table 5.2.

From Equation (5.1) we observe that the only unknown parameter is the haplo-
type frequency PAB, which can be estimated using maximum likelihood estimation.

In general, the likelihood function for a 9-nomial distribution is given by

n!

n1! · · ·n9!

9∏
i=1

pni
i . (5.3)
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Table 5.2: Genotypic frequencies for two loci assuming HWE.

p1 = P 2
AB

p2 = PABPAb
p3 = P 2

Ab

p4 = PABPaB
p5 = PABPab + PAbPaB
p6 = PAbPab
p7 = P 2

aB

p8 = PaBPab
p9 = P 2

ab

From Table 5.2 and Equation (5.3) we see that the likelihood function for our
parameters θ = (PAB, PAb, PaB, Pab) given the observed data can be written as

L(θ|n1, ..., n9) ∝ P 2n1
AB (PABPAb)

n2P n3
Ab (PABPaB)n4·

(PABPab + PAbPaB)n5(PAbPab)
n6P 2n7

aB (PaBPab)
n8P 2n9

ab .

The log-likelihood function can then be written as (Foulkes 2009, p. 68)

logL(θ|n1, ..., n9) ∝ (2n1 + n2 + n4)logPAB + (2n3 + n2 + n6)logPAb

+ (2n7 + n4 + n8)logPaB

+ (2n9 + n8 + n6)logPab + n5log(PABPab + PAbPaB)

From Table 5.3 we have the following relationships

PAb = pA − PAB
PaB = pB − PAB
Pab = 1− PAB − PAb − PaB.

Then, we can write the log-likelihood function as

logL(PAB|n1, ..., n9) ∝ (2n1 + n2 + n4)logPAB + (2n3 + n2 + n6)log(pA − PAB)

+ (2n7 + n4 + n8)log(pB − PAB)

+ (2n9 + n8 + n6)log(PAB − PAb − PaB)

+ n5log(PAB(PAB − PAb − PaB) + (pA − PAB)(pB − PAB)),
(5.4)

where we observe that the only unknown parameter is the haplotype frequency
PAB. We use maximum likelihood estimation with this log-likelihood function to
estimate PAB, and then we get the estimate of ρLD,
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ρ̂LD =
D̂√

p̂A(1− p̂A)p̂B(1− p̂B)

=
P̂AB − p̂Ap̂B√

p̂A(1− p̂A)p̂B(1− p̂B)
.

The Pearson correlation coefficient

Pearson’s correlation coefficient is denoted by r. The correlation coefficient for two
random variables X and Y is in general given by

ρX,Y =Corr(X, Y )

=
Cov(X, Y )

σXσY

=
E[(X − µX)(Y − µY )]

σXσY
,

where µX and µY are the expected values of X and Y respectively and σX and σY
are the standard deviations of X and Y respectively.

Pearson’s product moment sample correlation, r

r =
sXY
sXsY

=
1

n−1

∑n
i=1(Xi − X̄)(Yi − Ȳ )√

1
n−1

∑n
i=1(Xi − X̄)2

√
1

n−1

∑n
i=1(Yi − Ȳ )2

where X̄, Ȳ and s2
X , s

2
Y are the sample mean and variance of the observed variables

X and Y , respectively. Pearson’s correlation coefficient takes values in [−1, 1].

The estimated haplotype frequencies for the SNP data, defined in Equation (4.1)
and (4.2), can be represented as shown in Table 5.3.
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Table 5.3: Table for estimated haplotype frequencies

Locus Y

B b Total

A P̂AB P̂Ab p̂A

Locus X a P̂aB P̂ab p̂a

Total p̂B p̂b 1

The data analyzed for each SNP are binary data and can in general be summarized
as shown in Table 5.4 where n is the number of individuals in the study.

Table 5.4: Binary data

Locus Y

1 0 Total

1 a b a+ b

Locus X 0 c d c+ d

Total a+ c b+ d 2n

The Φ-coefficient is the Pearson correlation coefficient for binary data and from
Table 5.4 we can estimate the Φ-coefficient as

Φ =
ad− bc√

(a+ b)(c+ d)(a+ c)(b+ d)
.

Following the notation in Table 5.3, the Φ-coefficient is given by

Φ =
P̂ABP̂ab − P̂AbP̂aB√

p̂Ap̂ap̂B p̂b
. (5.5)

From Equation (5.5) we observe that the pairwise haplotype correlation as defined
in Equation (4.6) is the Pearson correlation coefficient for binary data.

When allele counts are directly observed as given in Table 5.1, the haplotype
phase is often unknown. Then, the haplotype frequency PAB cannot be estimated
directly as a proportion of AB haplotypes among all haplotypes in the sample,
and therefore we used maximum likelihood estimation to estimate P̂AB. If the
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haplotype phase is not ambiguous, the Pearson correlation coefficient can be used
to estimate ρ̂LD. For the data analyzed in this thesis, the haplotype phase are
ambiguous, and if we want to use the Pearson correlation coefficient to estimate
ρ̂LD, we need to use the EM algorithm or other strategies and impute values for
unobserved data. The introduced uncertainty in the haplotype estimation can be
taken into account as in Kulle et al. (2008).

5.2 Estimating CLD correlation from genotype

data

According to Weir (1996, p. 122) and the proof in Appendix B, the gametic dise-
quilibrium can be estimated directly from the observed genotypic frequencies,

P̂AB = P̂AB
AB +

1

2

(
P̂AB
Ab + P̂AB

aB + P̂AB
ab

)
. (5.6)

The nongametic frequency, P̂A/B, is according to Weir (1996, p. 122) and the proof
in Appendix B estimated by

P̂A/B = P̂AB
AB +

1

2

(
P̂AB
Ab + P̂AB

aB + P̂ aB
Ab

)
. (5.7)

The sum of Equation (5.6) and (5.7) gives

P̂AB + P̂A/B = 2P̂AB
AB + P̂AB

Ab + P̂AB
aB +

1

2

(
P̂AB
ab + P̂Ab

aB

)
which can be estimated directly from the observed data as shown in Table 5.1 and
5.2.

From the numerical coding of the random variables defined in Equation (4.14) and
(4.15), we observe that the CLD correlation as defined in Equation (4.23) is the
Pearson correlation coefficient with the numerical coding 0, 1, 2. The numerical
coding represents the wild type allele homozygote, heterozygote and variant type
allele homozygote, respectively.

The estimated covariance between observed pairs of two random variables (Xi, Yi), i =
1, ..., n, where n is the number of observations, representing genotypes at different
locus defined as in Equation (4.14) and (4.15) is given by

Ĉov(X,Y) =
1

n

∑
XiYi −

1

n2

∑
Xi

∑
Yi (5.8)
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where
X = (X1, ..., Xn)

and
Y = (Y1, ..., Yn).

Following the notation introduced in Table 5.1 we observe that Equation (5.8)
gives

Ĉov(X,Y) =
1

n

(
2n4 + n5 + 4n1 + 2n2 −

1

n2
(nAa + 2nAA)(nBb + 2nBB)

)
.

From Equation (4.24) we have observed that

Ĉov(X,Y) = 2∆AB.

The allele frequencies, pA and pB are estimated by

p̂A =
(2nAA + nAa)

2n

p̂B =
(2nBB + nBb)

2n
.

The empirical variance of X is then given by

V̂ar(X) =
1

n

∑
X2
i −

(∑
Xi

n

)2

=
1

n
(nAa + 4nAA)−

(
nAa + 2nAA

n

)2

=
nAa + 2nAA

n
+

2nAA
n
−
(
nAa + 2nAA

n

)2

=2p̂A + 2p̂AA − 4p̂A2

=2[p̂A(1− p̂A)] + P̂AA − p̂A2

=2[p̂A(1− p̂A) + D̂A].

Similarly, we get the empirical variance of Y,

V̂ar(Y) = 2[p̂B(1− p̂B) + D̂B].

The estimate of the composite linkage disequilibrium correlation is then

ρ̂CLD =
∆̂AB√

(p̂A(1− p̂A) + D̂A)(p̂B(1− p̂B) + D̂B)
.
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5.3 Estimating LD and CLD correlation using R

We have implemented in R a function for estimating both the LD and CLD cor-
relation (Appendix D), ρLD and ρCLD. As described by Gao, Starmer & Martin
(2008), the CLD correlation is estimated using numerical coding 0, 1, 2 of the three
possible genotypes, aa, aA and AA, respectively. Since we do not know which of
the alleles at each SNP that are considered as the high risk allele, our numerical
coding of the data is based on the observed frequency of the different genotypes in
the data, where we assume the less common allele to be the high risk allele. The
homozygote with the assumed high risk allele, AA is coded as 2. The heterozygote
genotypes are coded as 1, and the most common genotype are coded as 0. For
some of the SNPs we observed only two different genotypes, and then the most
common genotype was coded as 0, and the least common genotype was coded as 1.
For chromosome 22 in the TOP8 data, we observed one SNP where the observed
frequency for two of the genotypes was equal. The numerical coding, 0, 1, 2 was
for this SNP chosen in alphabetical order.

We compared our function for estimating the LD and CLD correlation (Appendix
D) to the LD function from the genetics package (Warnes, with contributions from
Gregor Gorjanc, Leisch, & Man. 2011) in R. We have observed that our function
for estimating the LD correlation gives a small difference in the results compared
to the function from the genetics package. Looking at the description of the LD
function in the genetics package (Warnes et al. 2011), we see that this function
includes all information about the alleles in each SNP, not considering for which
pair of the SNPs we have pairwise complete observations. Our implemented func-
tion as described in Appendix D, takes into account if the observations for the
SNPs for all persons in the study are pairwise complete. Using this procedure,
we will loose some information about the allele frequencies at each SNP, but since
we want to compare the ρLD and ρCLD correlation and the ρCLD correlation is
based on pairwise complete observations, we decide to also use pairwise complete
observations in the estimation of the LD correlation, ρ̂LD, between the SNPs.

5.4 LD vs. CLD correlation on a real data set

In Section 4.3, we investigated the difference between the LD and CLD correlation
based on a theoretical grid of all possible combinations of the haplotype frequen-
cies p1, ..., p9 as described in Table 5.2. We then estimated the CLD and LD
correlations for the SNPs on chromosome 22 in the TOP8 data, and the summary
statistics for the two measures of correlations are given by Table 5.5.
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Table 5.5: Summary statistics for LD and CLD correlation for the TOP8 data.

Min. 1st Qu. Median Mean 3rd Qu. Max.

LD -0.9961000 -0.0180600 -0.0001673 0.0007110 0.0179200 0.9998000

CLD -0.9962000 -0.0180300 -0.0001713 0.0006997 0.0178500 1.0000000

We compared the LD and CLD correlations for the two cases when both are
positive and both are negative, to see if one of the correlation measures seems
to be more extreme than the other and compare to the theoretical results as
described in Table 4.5, 4.6 and 4.7. We compared the CLD correlation and the LD
correlation and we observe from the results in Table 5.6 that the LD correlation is
more extreme than the CLD correlation in approximately 52% of the cases.

Table 5.6: LD vs CLD correlation for the TOP8 data.

ρCLD, ρLD ρCLD − ρLD proportion

ρCLD, ρLD > 0.01 ρCLD − ρLD > 0 0.480584

ρCLD, ρLD > 0.01 ρCLD − ρLD < 0 0.519416

ρCLD, ρLD < −0.01 ρCLD − ρLD > 0 0.515839

ρCLD, ρLD < −0.01 ρCLD − ρLD < 0 0.484161

One great advantage with the use of the CLD correlation instead of the LD corre-
lation is that estimation of the CLD correlation is less computationally intensive.
The CLD correlation is estimated directly from the observed genotypes, and es-
timating LD correlation we need to estimate haplotype frequencies as discussed
in Section 5.1. In the TOP8 data, chromosome 22 contained 8928 SNPs for 1551
individuals. We estimated the CLD correlation matrix for this chromosome using
the cor function in R (R Development Core Team 2011), and the computation
time was approximately 20 minutes 1. The LD correlation matrix for the same
chromosome was estimated using maximum likelihood estimation as described in
Appendix D and the computation time was approximately 4 days.

14 CPU cors, 1.8 GHz Intel i7
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MAF and LD correlation

Figure 5.1: Histogram of MAF for chromosome 22 of the TOP8 data.

From Figure 5.1 we see the distribution of the minor allele frequencies for chromo-
some 22 of the TOP8 data.

From Figure 5.2 we observe that the maximal LD correlation between SNPs de-
pends on the MAF for the different SNPs, and from Table 5.7 we observe that the
smallest maximal value of the LD correlation is obtained when one SNP has MAF
0.01 and the other SNP has MAF 0.5, the maximal LD correlation is then equal to
0.10050. From Table 5.7 we also observe that the maximal LD correlation between
two SNPs is obtained when the MAF for both SNPs are equal, the maximal LD
correlation is then equal to 1.

From Figure 5.3 we observe that the maximal LD correlation between different
pairs of SNPs in the TOP8 data are strongly dependent on the MAF for the
different SNPs.
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Table 5.7: MAF and maximal LD correlation

MAF 0.01 0.05 0.1 0.2 0.3 0.4 0.5

0.01 1.00000 0.43809 0.30151 0.20100 0.15352 0.12309 0.10050

0.05 0.43809 1.00000 0.68825 0.45883 0.35044 0.28098 0.22942

0.1 0.30151 0.68825 1.00000 0.66667 0.50918 0.40825 0.33333

0.2 0.20101 0.45883 0.66667 1.00000 0.76376 0.61237 0.50000

0.3 0.15352 0.35044 0.50918 0.76376 1.00000 0.80178 0.65465

0.4 0.12309 0.28098 0.40825 0.61237 0.80178 1.00000 0.81650

0.5 0.10050 0.22942 0.33333 0.50000 0.65465 0.81650 1.00000

Figure 5.2: Plot of maximal LD correlation for a grid of MAF between 0.01 and 0.5.
The MAF in the interval 0.01-0.5 are indexed by 1-7, respectively. We observe that
the maximal LD correlation between SNPs depends on the MAF for the different
SNPs.
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Figure 5.3: Correlation plot for the 50 first SNPs on chromosome 22 in the TOP8
data using maximal value of LD correlation between the pairs of SNPs. From this
plot we observe that the maximal LD correlation between two SNPs is strongly
dependent on the MAF for each SNP.
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5.5 Estimating haplotypes

There exists several software programs for estimating haplotypes along the genome,
for example the programs HAPLOVIEW (Barret, Fry, Maller & Daly 2005) and
PHASE (Stephens & Scheet 2005, Stephens, Smith & Donnelly 2001). The de-
fault algorithm for estimating the haplotypes in HAPLOVIEW is the algorithm
described by Gabriel (2002).

The method by Gabriel (2002) for estimating haplotypes is based on confidence
intervals for the scaled linkage disequilibrium measure D′, described in Section
4.1. The history of recombination between a pair of SNPs can be estimated using
the scaled LD measure, D′. When we have a sample with rare alleles or we have
only a small number of samples, it is known (Gabriel 2002) that the values of the
LD measure D′ will fluctuate upward. Therefore, the method by Gabriel (2002) is
based on confidence intervals for D′ rather than points estimates.

The method by Gabriel (2002) classifies the pair of SNPs into three categories,
“strong LD”, “historical evidence of recombination” and “others”. Pairs of SNPs
are classified as “strong LD” when the one sided upper bound for the confidence
interval for D′ is > 0.98 and the lower confidence bound is > 0.7. If the upper
confidence bound for D′ is < 0.9, the pairs of SNPs are classified as “strong evi-
dence for historical recombination”.

The method of Gabriel (2002) define a haplotype block as a region where only
a small proportion (5%) of the SNP pairs show “strong evidence of historical
recombination”, and a haplotype block is found by counting the number of SNP
pairs over a region which show “strong evidence of historical recombination”.





Chapter 6

Hypothesis testing

In this chapter, we will present some background for single hypothesis testing.
Test for HWE will be presented in Section 6.3, and a test for association between
genotype and phenotype will be presented in Section 6.4.

Definition. The two complementary hypotheses in a hypothesis testing problem are
the null hypothesis, H0 and the alternative hypothesis H1 (Casella & Berger 2002,
p. 373).

Let θ denote a population parameter, then a general hypothesis testing problem
can be written as

H0 : θ ∈ Θ0 and H1 : θ ∈ ΘC
0 (6.1)

where Θ0 are a subset of the parameter space and ΘC
0 are the complement of Θ0.

While testing the hypothesis in Equation (6.1), two types of errors are possible,
type I error and type II error. Type I error describes the probability of rejecting
H0 while H0 is true. Type II error describes the probability of accepting H0 while
the alternative hypotehsis H1 is true.

Definition. Type I error is defined as the probability of erroneously rejecting a
true null hypothesis,

P (type I error) = α.

Definition. Type II error is defined as the probability of not rejecting H0 when
H0 is false,

P (type II error) = β.

Type I errors is named false positives, type II errors are named false negatives.
The two types of errors for a single hypothesis test can be summarized in Table
6.1 (Casella & Berger 2002).

48
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Table 6.1: Single hypothesis testing set-up

Not reject H0 Reject H0

H0 true Correct Type I error
H0 false Type II error Correct

6.1 P -values

Let X = (X1, ..., Xn) be independent and identical distributed variables.

Definition. A p-value p(X) is a test statistic satisfying 0 ≤ p(x) ≤ 1 for every
sample point x. Small values give evidence that H1 is true. A p-value is valid if,
for every θ ∈ Θ0 and every 0 ≤ α ≤ 1,

Pθ(p(X) ≤ α) ≤ α

where α is the significance level (Casella & Berger 2002, p. 397).

The p-value gives information about the probability of observing what we have
observed or more extreme given that the null-hypothesis H0 is true. When the
p-value is small, we reject the null hypothesis. If the p-value is less than the signif-
icance level, then we reject H0, i.e the probability of rejecting the null hypothesis
is less than or equal to the given significance level.

If Pθ(p(X) ≤ α) = α, the p-value is called an exact p-value. The probability
distribution of the p-value is then the uniform distribution.

6.2 Power of a test

The power of a single hypothesis test is the probability of rejecting the null hy-
pothesis given that it is false. Let X = (X1, ..., Xn) be independent and identically
distributed variables. The power function of a hypothesis test with rejection region
R is defined by (Casella & Berger 2002, p. 383)

β(θ) = Pθ(X ∈ R).
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6.3 Test for Hardy-Weinberg equilibrium

When assuming Hardy-Weinberg equilibrium (HWE) in a case-control study, HWE
should only be assumed for the control group, not for the cases in the study.
Assumption of HWE among the cases may lead to erroneous conclusions about
association between genotype and phenotype, and because of this, association
between genotype and phenotype can be seen as non-random mating.

Goodness-of-fit test for HWE

Consider a biallelic locus, X, with alleles A and a. The frequencies for the geno-
types at the locus can be summarized as shown in Table 6.2.

Table 6.2: Genotype frequencies for locus X

AA Aa aa Total
PAA PAa Paa 1

The allele frequencies, pA and pa, are given by

pA = PAA +
1

2
PAa

and

pa = Paa +
1

2
PAa.

The sum of the allele frequencies is

pA + pa = 1.

We use the χ2 test for deviation to test for HWE. Assume data for locus X for
n individuals. The observed and expected counts for locus X are summarized in
Table 6.3.

The χ2 test statistic for deviation is given by

χ2 =
(nAA − np2

A)2

np2
A

+
(nAa − 2npA(1− pA))2

2npA(1− pA)
+

(naa − n(1− pA)2)2

n(1− pA)2
.

This test statistic is χ2 distributed with one degree of freedom, and is used to test
the null hypothesis of Hardy-Weinberg equilibrium.
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Table 6.3: Test for HWE

Genotype AA Aa aa Total
Observed nAA nAa naa n
Expected np2

A 2npA(1− pA) n(1− pA)2 n

6.4 Test for association between genotype and

phenotype

The presentation in this section is based on Langaas & Bakke (2012). When con-
sidering biallelic markers, there are several possible genetic models for association
between genotype and phenotype to consider (Ziegler & König 2010, p. 30).
The three most popular different genetic models are the recessive, additive and
dominant models, and are based on the number of the high risk allele at the loci.
For biallelic markers, we index the three genotypes as aa, aA and AA where A
is assumed to be the high risk allele. We use the numerical coding 0, 1, 2 for the
genotypes aa, aA and AA respectively.

Table 6.4: SNP data

0 1 2 Total
Case x0 x1 x2 n1

Control y0 y1 y2 n2

Total m0 m1 m2 n

For a given biallelic SNP in the study we can set up a 2× 3 contingency table as
shown in Table 6.4. The total number of cases is given by n1 and the total number
of controls is n2. The number of individuals with genotype i, i = 0, 1, 2 is given by
mi, i = 0, 1, 2 respectively. The total number of individuals in the study is

n = n1 + n2 = m0 +m1 +m2.

Each individual i, i = 1, ..., n is denoted by z = (x0, ..., y2).

Genetic models

We denote the prevalence, P (case), of the disease by

prevalence = P (case) = k.
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This can not be observed in a case-control study.

We define fi, i = 0, 1, 2 to be the penetrance, i.e. the probability that the individual
belongs to the case group given that the individual has genotype i,

fi = P (case|genotype i). (6.2)

When testing for association between genotype and phenotype, the null hypothesis
of no association between genotype and phenotype can be expressed in terms of
the penetrances, fi, i = 0, 1, 2 as defined in Equation (6.2),

H0 : f0 = f1 = f2. (6.3)

The null hypothesis in Equation (6.3) can also be given in terms of the conditional
probabilities of having genotype i given the disease status of the individual. We
define pi as the conditional probability for an individual having genotype i given
that the individual belongs to the case group, and qi as the conditional probability
of having genotype i given that the individual belongs to the control group,

pi = P (genotype i|case),

and
qi = P (genotype i|control).

Using Bayes’ rule, P (A|B) = P (B|A)P (A)/P (B), we have

fi = P (case|genotype i)

=
P (genotype i|case)P (case)

P (genotype i)

=
kpi
gi
,

and

1− fi = P (control|genotype i)

=
P (genotype i|control)P (control)

P (genotype i)

=
(1− k)qi

gi
.

The equations for fi and 1− fi can be rewritten as
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pi =
figi
k

and qi =
(1− fi)gi
(1− k)

.

When the null hypothesis defined in Equation (6.3) is true, all pi/qi will be equal,
and since both probabilities pi and qi sum to one, we have pi = qi, i = 0, 1, 2. The
equivalent form of the null hypothesis in Equation (6.3) is given by

H0 : p0 = q0, p1 = q1, p2 = q2.

When testing for association between genotype and phenotype, the alternative
hypothesis will be different for the recessive, additive and dominant models. In
the recessive model, we assume that two copies of the high risk allele at a locus
is necessary for having the disease. The alternative hypothesis for the recessive
model can then be given by

H1 : f0 = f1 < f2, or H1 : p0/q0 = p1/q1 < p2/q2.

In the additive model, we assume that genotype aA gives an increased risk of the
disease compared to the risk when having genotype aa, but a smaller risk than
when having genotype AA. The alternative hypothesis for the additive model is
then given by

H1 : f0 < f1 < f2, or H1 : p0/q0 < p1/q1 < p2/q2.

In the dominant model, we assume that individuals having one or two copies of
the high risk allele will be affected by the disease. The alternative hypothesis for
the dominant model is given by

H1 : f0 < f1 = f2, or H1 : p0/q0 < p1/q1 = p2/q2.

The genetic models are illustrated in Figure 6.1, where the y-axis represents the
probability of disease.

The Cochran-Armitage test for trend

The Cochran-Armitage test for trend (CATTs) is often used to test for association
between genotype and phenotype. The CATTs statistic can, following the notation
by Langaas & Bakke (2012), be written as

CATTs =

∑2
i=0 si(n2xi − n1yi)√

n1n2(
∑2

i=0 s
2
imi − 1

n
(
∑2

i=0 simi)2

,

where s0, s1, s2 are scores describing the genetic model. The absolute value of the
CATTs statistic is invariant under linear transformation of the scores, and the
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Figure 6.1: Figure illustrating the three different genetic models, recessive, additive
and dominant model.

scores for the CATTs test statistic are (s0, s1, s2) = (0, s, 1). The index s denotes
the chosen genetic model, and the recessive, additive and dominant model are
denoted by s = 0, 1/2, 1 respectively. This test statistic asymptotically has the
standard normal distribution under H0, and the squared statistic then asymptot-
ically has the chi-square distribution with one degree of freedom.

The CATTs statistic can also be expressed in terms of the Pearson correlation
coefficient. Let r be the Pearson correlation coefficient between the score vector
and the disease status vector and n be the number of individuals in the study.
Then, the CATTs statistic is given by

CATTs =
√
nr.
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MAX3 test

The MAX3 statistic is the maximum of the CATTs statistics for the recessive,
additive and dominant model, and is given by

max(CATT0,CATT1/2,CATT1).

For the data analyzed in this thesis, we do not know which of the alleles at each
locus that is assumed to be the high risk allele. When the potential high risk allele
is unknown, we can use

MAX3 = max(|CATT0|, |CATT1/2|, |CATT1|). (6.4)

which will cover all possible combinations of genetic models when the high risk
allele is unknown. The p-value for the MAX3 statistic defined in Equation (6.4) is
given by

P (MAX3 < t) = P (|CATT0| < t, |CATT1/2| < t, |CATT1| < t).

Conditioning on sufficient statistic

When analyzing a GWAS data set, the row sums will in general be different for the
different SNPs because there are a different number of missing data for each SNP.
The column sums M = (m0,m1,m2) will be different for most of the SNPs. Condi-
tioning on the column sums, M = (m0,m1,m2), we get a trivariate hypergeometric
probability

P (Z = z|M = (m0,m1,m2)) =

(
m0

x0

)(
m1

x1

)(
m2

x2

)(
n
n1

) ,

where n1 is the number of cases and n is the total number of individuals in the
study.

Under the null hypothesis of no association between genotype and phenotype, the
column margins M = (m0,m1,m2) are sufficient statistics for the genotype fre-
quencies (g0, g1, g2). Conditioning on the sufficient statistics, the column margins,
gives the conditional p-value (Langaas & Bakke 2012), denoted the C p-value

p(zobs) = P (T (Z) ≥ T (zobs)|M = (m0,m1,m2))

=
∑

T (z)≥T (zobs)

P (Z = z|M = (m0,m1,m2)), (6.5)

where the sum T (Z) ≥ T (zobs) is over all possible tables with column margin
M = (m0,m1,m2) where the MAX3 test observator T (Z) is larger than or equal



CHAPTER 6. HYPOTHESIS TESTING 56

to the observable MAX3 test observator T (zobs).

In a general situation we consider r× c contingency tables of nonnegative integers
where r and c are positive integers. Following the notation introduced in Table
6.4 the number of tables having row sums (n1, ..., nr) are (Bakke & Langaas 2012)

r∏
i=1

(
ni + c− 1

c− 1

)
.

In this thesis, we consider a case-control study where the data for each SNP can
be represented by a 2× 3 contingency table as shown in Table 6.4. The number of
2× 3 tables with given row sums (n1, n2) and column sums (m0,m1,m2) are given
by (Bakke & Langaas 2012)(

n1 + 2

2

)
−
(
n1 −m0 + 1

2

)
−
(
n1 −m1 + 1

2

)
−
(
n1 −m2 + 1

2

)
+

(
n1 −m0 −m1

2

)
+

(
n1 −m0 −m2

2

)
+

(
n1 −m1 −m2

2

)
The maximal number of tables with given row sums as a function of the column
sums, for 2× c tables when n is the lesser of the two row sums, for 2× 2 tables is
n + 1 (Bakke & Langaas 2012). For 2× 3 tables, the maximum number of tables
is (

n+ 2

2

)
− 3

(
n−m+ 1

2

)
+ rmax(n−m, 0),

where m and r are unique integers such that n = 3m + r and 0 ≤ r < 3. When
conditioning on the column margins, M = (m0,m1,m2) we observe that the pos-
sible number of contingency tables is reduced. The calculation of the C p-value in
Equation (6.5) includes then a sum over a small number of tables compared to the
maximal possible number of contingency tables, and then the estimation of the C
p-value is less computational intensive.

For the TOP data analyzed in this thesis we have in the order of n1 = 1100 cases
and n2 = 400 controls, which gives the maximum number of conditional tables
equal to 80601. The maximum number of tables without conditioning on the row
sums are 4.9 · 1010, which shows that conditioning on the column margins gives
substantial decrease in the computational complexity of the problem.





Chapter 7

Multiple testing

Analyzing experimental data often involve many simultaneous hypothesis tests.
For each null hypothesis, an individual test is performed, and the significance level
is usually set to α = 0.05. This means that the probability of making a type I error
is at most 5%. For the multiple testing problem, where in total m hypotheses are
tested, the total type I error rate could be larger than 5% when we do not adjust
for multiple testing. The goal in multiple testing problems is to control the total
type I error rate at a given significance level. In a multiple testing problem, we
have m hypotheses, H0i, i = 1, ...,m to be evaluated simultaneously. The multiple
testing problem for a total number of m hypotheses can be summarized in Table
7.1 (Benjamini & Hochberg 1995).

Table 7.1: Multiple testing set-up

Not reject H0 Reject H0 All
H0 true U V m0

H0 false T S m−m0

Total m−R R m

In Table 7.1, V represents the number of type I errors, the number of erroneously
rejected null hypotheses and T represents the number of type II errors, the num-
ber of hypotheses that are not rejected when H0 is false. The total number of
hypotheses in the multiple testing problem are denoted by m, and m0 represents
the number of true null hypotheses. The two only known variables in Table 7.1
are m and R.
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7.1 Type I error rates

The definition of the familywise error rate (FWER), is given by the number of
type I errors among all hypotheses. Assume V is the number of type I errors.
Then, (Ge, Dudoit & Speed 2003, p. 7)

FWER = P (V > 0).

Strong control means control of the type I multiple error rate under any combi-
nation of true and false hypotheses (Ge et al. 2003, p. 8). Weak control means
control of the type I multiple error rate under the complete null hypothesis. If
the type I multiple error rate can be controlled under any combination of true and
false hypotheses, it follows that the type I multiple error rate also can be controlled
under the complete null hypothesis. This means that strong control implies weak
control. The complete null hypothesis is the hypothesis that assume all m null
hypotheses are true. The complete null hypothesis is denoted by HC

0 .

Some researchers distinguish between two different types of FWER, named FWEC
and FWEP (Westfall & Young 1993, p. 9). A familywise error rate gives the proba-
bility of rejecting one or more true null hypotheses. FWEC is the familywise error
rate calculated under the complete null hypothesis, i.e. when all subhypotheses
H0i are assumed to be true. The FWEC is given by

FWEC = P (Reject at least one H0i|all H0i are true).

The FWEP is the familywise error rate calculated under the partial null hypothesis,
i.e. assuming that only a subset of the null hypotheses are true. Then,

FWEP = P (Reject at least one H0i, i = j1, ...., jt|H0j1 , ....., H0jt are true).

From this expression we see that the FWEP depends upon which subset of null
hypotheses that are true.

We also have similar expressions for the type I error rate that can be used, i.e. the
per comparison error rate

PCER = E(V )/m

where m is the total number of tests.

The false discovery rate, FDR, is defined as

FDR = E

(
V

R
· I(R > 0)

)
.

Here we must use the indicator function since we need to consider the special case
where R, the total number of rejections can be zero.
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FWER vs FDR

Comparing FWER and FDR we see that the FWER and FDR are equivalent if
all the null hypotheses are true (Benjamini & Hochberg 1995). If only a subset of
the hypotheses are true the FDR is less than the FWER. The differences between
the FWER and FDR becomes larger when the number of non-true null hypotheses
increase (Benjamini & Hochberg 1995), which also will give increase in power.

Comparing the definitions of FWER and FDR, we see that one difference is that
FWER focuses on probabilities while FDR focuses on expectations. Researchers
that use the FWER criterion to control the type I error for the multiple testing
problem are interested in the probability of erroneously reporting any result as
statistically significant. For researchers using the FDR criterion, the most impor-
tant is the proportion of false positives among all rejected hypotheses.

The Bonferroni procedure is the most known method for control of the FWER,
while the Benjamini Hochberg step-up procedure is the most popular procedure
for control of FDR. When analyzing SNP data, FWER is considered as the gold
standard, but for gene expression data, the FDR is considered as the gold standard.

7.2 Distribution for the smallest p-value

Consider testing one hypothesis H0 vs. H1 using significance level α = 0.05. The
probability of declaring one test significant at 5% level is exact 0.05 when the
p-values are exact. Assume that we divide the interval between from 0 to 1 into
equal-sized intervals of length 0.05. Then we will have 20 intervals between 0
and 1. The probability for one p-value to fall in one of these intervals is then
exact 0.05, and the probability of declaring one hypothesis test as significant at
5% level is exact 0.05. In multiple testing we assume that m tests are performed.
The probability of declaring at least one of the m tests significant at level 0.05 is,
assuming independent tests and under the complete null hypothesis,

P
(

min
i
pi ≤ 0.05

)
= 1− P

(
min
i
pi > 0.05

)
= 1− P (all pi > 0.05)

= 1− (1− 0.05)m.

In general, this can be written as

F (α) = 1− (1− α)m

and then,
f(α) = F ′(α) = m(1− α)m−1



CHAPTER 7. MULTIPLE TESTING 61

which has the form of a beta distribution f(α) ∼ Beta(1,m) (Westfall & Young
1993, p. 8).

7.3 Adjusted p-values

In multiple testing, we often use adjusted p-values instead of the raw p-values.
Raw p-values, pi, are the lowest nominal level to reject H0. The adjusted p-value
p̃i is the nominal level of the simultaneous test procedure at which H0i is just
rejected, given the values of all test statistics involved. For any multiple testing
procedure which controls FWER or FDR, the adjusted p-values can be defined as
(Westfall & Young 1993, p. 11)

p̃i = inf{α ∈ [0, 1]|H0i is rejected at nominal level FWER/FDR = α}.

When a multiple number of tests is performed and all hypotheses with adjusted
p-value below α are rejected, FWER/FDR will control the type I error at level α.

For a multiple testing problem considering m hypotheses simultaneously we will
correct for multiple testing using a individual significance level, αp, for each indi-
vidual test. We use a multiple testing correction method to find the significance
level, αp, for each individual test. Using αp for the individual tests, the total type
I error rate will be controlled at level α.

7.4 Single-step procedures for control of FWER

There exists three different groups of commonly used multiple testing procedures
(Ge et al. 2003, p. 12), single-step, step-down and step-up procedures. In single-
step procedures each individual hypothesis is evaluated using rejection regions that
are independent of the result of the other hypotheses. In step-up and step-down
methods, the rejection region depends on the result of the other hypotheses. In
step-down procedures, the test statistics are ordered based on the most significant
test statistic, and step-up procedures starts with the least significant test statis-
tic. Step-down and step-up procedures are less conservative procedures than the
single-step procedures for control of FWER. For a single-step method, only one
p-value cutoff is used, while for step-down and step-up methods different cutoffs
are used based on the rank of the p-value in question. We will only consider single-
step procedures in this thesis.
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The Bonferroni method

The Bonferroni method is the simplest single-step method multiple testing proce-
dure for FWER control (Westfall & Young 1993, p. 44). The Bonferroni method
gives strong control of the FWER at significance level α. In multiple testing of m
tests, the Bonferroni method rejects the null hypothesis H0i when the p-value pi
is less than αp = α/m. The Bonferroni single-step adjusted p-value is given by

p̃i = min(mpi, 1).

The Bonferroni single-step method (Westfall & Young 1993, p. 44) is given by

P (Reject at least one Hi|HC
0 ) = P

(
min

1≤i≤m
pi ≤ α/m|HC

0

)
≤

m∑
i=1

P (pi ≤ α/m|HC
0 )

where the inequality above is named Bonferroni’s inequality.

Bonferroni and strong control

To show that Bonferroni’s method controls the FWER we use Booles’s inequality.
For m events Ai, i = 1, ...,m Boole’s inequality can be written as

P (∪mi=1Ai) ≤
m∑
i=1

Ai.

We let Ai denote the event

p̃i ≤ α.

Using the Bonferroni adjusted p-value we see that (Ge et al. 2003, p. 12)

FWER = P (V > 0) ≤ P [∪m0
i=1{p̃i ≤ α}] ≤

m0∑
i=1

P (p̃i ≤ α) ≤
m0∑
i=1

α/m = m0α/m ≤ α

given that the number of true null hypotheses is equal to m0.
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The Šidák method

The Šidák method is derived by assuming that all the individual tests are indepen-
dent. Assume that the total significance level is α. The Šidák single-step adjusted
p-value is given by

p̃i = 1− (1− α)m,

and the significance level for the individual tests is given by

αp = 1− (1− α)1/m

where m is the total number of tests (Westfall & Young 1993, p. 44).

Šidák’s method and strong control

The Šidák method provides strong control of the FWER.

P (V = 0) = P (∩m0
i=1{p̃i ≥ α})

=

m0∏
i=1

P (p̃i ≥ α)

=

m0∏
i=1

P (pi ≥ 1− (1− α)1/m)

= {(1− α)1/m}m0 .

The FWER is in Section 7.1 defined as

FWER = P (V > 0) = 1− P (V = 0),

and this gives

FWER = P (V > 0)

= 1− P (V = 0)

= 1− (1− α)m0/m

≤ α.
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Figure 7.1: Plot of Bonferroni and Šidák correction for different values of α. FWER
control at level α and αp is the individual significance level.

Bonferroni vs. Šidák

Figure 7.1 shows the Bonferroni correction and Šidák correction for m = 10000
tests, and for different p-values in the interval [0,1]. This plot shows that the
two procedures for multiple testing corrections are approximately equal for small
values of α. Bonferroni and Šidák correction gives approximately equal results up
to about α = 0.1. The plot of the Bonferroni correction shows a straight line as
expected, and the plot for the Šidák correction is as we would expect nonlinear.

minP single-step procedure

The minP adjusted p-values are by Westfall & Young (1993, p. 46) defined as

p̃i = P

(
min

1≤l≤m
Pl ≤ pi|HC

0

)
where HC

0 denotes the complete null hypothesis as defined in Section 7.1, and Pl
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is the random variable for the raw p-value of the lth hypothesis.

Resampling procedures based on minP adjusted p-values will provide weak control
of the FWER under all conditions. We have

FWER = P (V > 0)

= 1− P (V = 0)

= 1− P (all pi > αp)

= 1− P (min pi > αp)

= P (min p ≤ αp)

≤ α.

The minP single-step procedure is a less conservative procedure than the Bonfer-
roni procedure and if the data are independent less conservative than the Šidák pro-
cedure. An alternative to the minP procedure is the maxT single-step procedure.
The maxT adjusted p-values, p̃i, are based on the tests statistics, Ti, i = 1, ...,m,
and is by Westfall & Young (1993, p. 50) defined as

p̃i = P

(
max
1≤j≤k

|Tj| ≥ |ti||HC
0

)
.

In this thesis, we do not have complete observations of our data. We have different
number of missing data for each SNP and the test statistics, Ti, i = 1, ...,m, will
then not be identically distributed. Therefore we do not consider maxT p-values,
but use the more computationally intensive minP procedure.

minP and resampling

Resampling procedures are considered the gold standard in multiple testing prob-
lems. For case-control data as described in Table 6.4, we permuted the disease
status vector, and for each permutation of the data, all m p-values was calcu-
lated and the minimum p-value was recorded. We repeated B times, to get B
minPj, j = 1, ..., B values. As estimate for αp we use the α · B order statistic in
the minP distribution. The resampling algorithm was implemented using the C
p-value as described in Section 6.4. We used B = 100000 resampled data sets in
the resampling procedure.



Chapter 8

Multiple correction methods
based on an effective number of
independent tests, Meff

When performing hypothesis testing with a large number of SNPs, the correlation
structure among the SNPs in the data set needs to be considered. We have in
Section 7.4 presented different methods to control the FWER when multiple hy-
potheses are considered. The Šidák method assumes independent tests, while the
Bonferroni method allows for any correlation structure between dependent tests.
The effective number of independent tests are denoted as Meff. Methods based on
Meff use Šidák correction where the number of tests, m, are replaced with Meff.
Bonferroni and Šidák method keep the total error rate at a nominal level, α, by
adjusting the error rates for each test at level αp. We have seen in Section 7.4 that
the formula for the individual significance level, αp, for the Bonferroni method is

αp = α/m

and using Šidák method αp is given by

αp = 1− (1− α)1/m

where m is the number of tests and α is the FWER significance level chosen.

Different methods to estimate the effective number of independent tests, Meff,
have been studied by researchers, for example Cheverud (2001), Nyholt (2004),
Gao et al. (2008) and Moskvina & Schmidt (2008). The methods described by
Nyholt (2004), Gao et al. (2008) and Moskvina & Schmidt (2008) for a single
chromosome will be presented in the next sections. Application of the methods to
genome-wide estimates will be discussed in Chapter 10.
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8.1 The Cheverud-Nyholt method

The method of Nyholt (2004) is based on the method of Cheverud (2001). The idea
of the method of Cheverud (2001) was to use the variance of the eigenvalues of the
correlation matrix to construct Meff. The method of Cheverud (2001) and Nyholt
(2004) is based on spectral decomposition (SpD) of the pairwise correlation matrix
between the SNPs. The difference between the methods of Cheverud (2001) and
Nyholt (2004) is that the correlation matrix in the method of Cheverud (2001) is
based on genotype data and the correlation matrix in the method of Nyholt (2004)
is based on haplotype data as described in Section 4.1, thus information on pheno-
types is not needed. Nyholt (2004) improved the method of Cheverud (2001) by
removing all SNPs in perfect LD except one before estimating Meff (Nyholt 2005).

Cheverud (2001) estimated the effective number of independent tests by

Meff = m

(
1− (m− 1)

Var(λ)

m2

)
, (8.1)

where Var(λobs) is the variance of the eigenvalues of the correlation matrix based
on genotypic data. In the method of Nyholt (2004), the estimate of the effective
number of tests in Equation (8.1) was rewritten as

Meff = 1 + (m− 1)

(
1− Var(λ)

m

)
(8.2)

where Var(λ) is the variance of the eigenvalues of the correlation matrix based on
pairwise linkage disequilibrium between the SNPs. The significance level for the
individual tests, αp, are found by using the Šidák method which gives

αp = 1− (1− α)1/Meff

where Meff is the effective number of tests.

When the SNPs are independent the correlation between SNPs are zero. Then
all the eigenvalues λ1, ....., λm are equal to 1. The variance of the eigenvalues is
zero (Var(λ) = 0), so by using Equation (8.2), Meff = m. The other special case
is when there are perfect correlation between the SNPs. For this case, the first
eigenvalue of the correlation matrix is equal to m, and the others are equal to zero.
This means that Var(λ) = m and the effective number of independent tests from
Equation (8.2) is Meff = 1.

The formula for the effective number of tests in Equation (8.2) is based on an
interpolation of the two extreme cases (Salyakina, Seaman, Browning, Dudbridge



CHAPTER 8. MULTIPLE CORRECTION METHODS 68

& Muller-Myhsok 2005), when the correlation between the SNPs are zero and
when we have perfect correlation between the SNPs.

The general formula for linear interpolation between two points in the (x, y) plane
is given by

y = ya + (a− xa)
(yb − ya)
(xb − xa)

.

In the method of Nyholt (2004), let x describe the variance of the eigenvalues,
and let y describe the effective number of independent tests. The interpolation
between the two points in the (x, y) plane (0,m) (zero correlation) and (m, 1)
(perfect correlation) can be used to define Meff as follows

Meff = m+ Var(λ)
(1−m)

m

= 1 + (m− 1) + Var(λ)
(1−m)

m

= 1 + (m− 1)

(
1− Var(λ)

m

)
,

which is the known form of the Meff used in the method of Nyholt (2004).

8.2 Moskvina’s alternative formulation for Ny-

holt’s method

Moskvina & Schmidt (2008) gave an alternative formulation of Nyholt’s method.
This alternative method shows that the numerical expense and uncertainty with
calculating eigenvalues of a large matrix can be avoided by direct calculation from
the correlation matrix. Let C = (rjk), j, k = 1, .....,m be the correlation matrix
with eigenvalues λ1, ....., λm. The average of these eigenvalues is

1

m

m∑
j=1

λj =
1

m
trace(C) =

1

m

m∑
j=1

rjj = 1.

This gives the estimated variance as

V̂ar(λ) =
1

m− 1

m∑
j=1

(λj − 1)2 =
1

m− 1

(
m∑
j=1

λ2
j −m

)
. (8.3)

Inserting the estimated variance from Equation (8.3) into the method of Nyholt
(2004) as given in Equation (8.2) gives
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Meff = m+ 1− 1

m

m∑
j=1

λ2
j .

The eigenvalues of the correlation matrix, C, are denoted λj, j = 1, ...,m and the
eigenvalues of the squared matrix, C2, are then λ2

j , j = 1, ...,m. This gives

m∑
j=1

λ2
j = trace(C2) =

m∑
j=1

m∑
k=1

r2
jk.

This shows that Meff can be computed directly from the correlation coefficients by

Meff = 1 +
1

m

m∑
j=1

m∑
k=1

(1− r2
jk).

8.3 The method of Gao et al. (2008)

The method of Gao et al. (2008), the simpleM method, use the composite linkage
disequilibrium (CLD) correlation to calculate the pairwise correlation matrix. The
CLD correlation is described in Section 4.2. The method use the eigenvalues of
the correlation matrix to estimate the effective number of tests, Meff, and then the
Bonferroni correction with Meff to estimate αp. Later Šidák correction was used
in the method of Gao et al. (2008) instead of Bonferroni correction (Gao, Becker,
Becker, Starmer & Province 2010). Since Šidák’s method is based on independent
tests this seems more appropriate than using the Bonferroni method, although for
small α the two methods give approximately the same results as shown in Section
7.4.

The eigenvalues from the CLD correlation matrix, λ1, ....., λm, are sorted in de-
creasing order,

λ1 ≥ λ2 ≥ ..... ≥ λm.

The sum of the diagonal elements of C (called the total variance) is given by

trace(C) =
∑
i

λi

where C is the correlation matrix, and λi are the eigenvalues of the correlation
matrix.
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Suppose we have a n ×m matrix with the numerical coding 0, 1, 2 for each SNP.
The standardized matrix where all columns has mean zero and standard devia-
tion equal to one is denoted by Z. The idea in principal components analysis
(PCA) is to find a number of q < m linear combinations which best represents
the original data (Ripley 1996, p. 289). The principal components are found by
taking the singular value decomposition Z = UDVT , as described in Appendix C,
where D is the diagonal matrix of the eigenvalues of Z, D = diag(λ1, ..., λm). The
principal components are then the columns of the ZV matrix (Ripley 1996, p. 289).

The proportion of the total variance accounted for by each of the principal com-
ponents equals

δi =
λi∑m
j=1 λj

.

Because
∑m

j=1 λj = m, we see that

δi =
λi
m
.

This is the ratio of the eigenvalue to the sum of all eigenvalues in the matrix, i.e.
the ratio of the eigenvalue to the trace of the diagonal matrix of eigenvalues.

In principal components analysis, the first principal component explain most of
the variation in the data. The second principal component is normal to the first
principal component and will explain most of the remaining variation in the data
after the first principal component is found. This means that to explain a given
percent of the total variation in the data, only the first x eigenvalues are needed
given a predetermined cutoff. This gives∑x

i=1 λi
m

> c

where c is the predetermined cutoff.

In general we want to find the number of eigenvalues, x, such that we are able
to explain a given percent of the variation for the data. The effective number of
independent tests from Gao et al. (2008) is given by

Meff = x.

Gao et al. (2010) used Šidák correction to calculate the significance level for each
individual test,

αp = 1− (1− α)(1/Meff).
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The number of nonzero eigenvalues

The method of Gao et al. (2008) was originally defined as calculating the eigen-
values from the matrix of pairwise CLD correlations between the SNPs. Gao
et al. (2008) analyzed a relatively small data set with 1723 SNPs and 500 persons.
The method was originally described without dividing the correlation matrix into
blocks, but analyzing the data set in Gao et al. (2008) the data were divided
into smaller blocks, all of size ∼ 133 SNPs. It was not written explicitly by Gao
et al. (2008) why this block size was used. Alternative methods for choosing block
sizes was also discussed by Gao et al. (2008), and using a software program called
HAPLOVIEW (Barret et al. 2005), the data set was divided into blocks of size
about 100− 140 SNPs.

The data analyzed in Gao et al. (2008) are divided into blocks with the justifi-
cation that there is a problem with calculating eigenvalues efficiently when the
number of SNPs is large. We observe from the theory in Appendix C that for an
n× p matrix, where n ≤ p, the maximal number of nonzero eigenvalues is equal to
n− 1. Without using blocks we see that for the data set with 1723 SNPs and 500
persons analyzed in Gao et al. (2008), the maximal number of nonzero eigenvalues
will be equal to 500−1 = 499. The results of Gao et al. (2008) using blocks shows
that the effective number of independent tests using ∼ 133 SNPs in each block is
Meff = 1132, which seems to have been found from the sum of the estimates for
each block.

From Gao et al. (2010) we see that in the Illumnia 1M data there are n = 656
individuals. From command line 81 in the R code of Gao X. (2012) we observe
that the method used block size equal to 133, but in the article it is not explicitly
given which block size that is used. As explained above the maximal number of
nonzero eigenvalues in this correlation matrix is n−1 = 655, so because the chosen
block size equal to 133 is less than n − 1 = 655, the problem with the number of
nonzero eigenvalues is avoided in Gao et al. (2010).

We observe that the problem with the number of nonzero eigenvalues in the case
when n ≤ p can be avoided by dividing the correlation matrix into blocks of size
at most equal to n. For each block of size n the maximal number of nonzero
eigenvalues then is equal to n − 1, and assuming independence between blocks,
the sum of the Meff’s for each block will be an estimate for the total number of
independent tests, Meff.
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8.4 The method of Moskvina and Schmidt (2008)

The method by Moskvina & Schmidt (2008) use the following estimate of the
overall type I error probability, FWER,

α ≤ 1− (1− αp)Meff ,

where αp is the individual significance level and Meff is the estimate of the effective
number of independent tests. The estimate Meff is given by

Meff = 1 +
m∑
j=2

κj,

where

κj =
1

log(1− αp)
log

1− 1

(1− αp)

√
2

π

∫ σ

−σ
e−x

2/2Φ

 rjx− σ√
1− r2

j

 dx

 . (8.4)

In Equation (8.4), rj = max1≤k≤j−1 |rkj|, where rkj is the pairwise haplotypic
Pearson’s correlation coefficient between SNP at locus k and SNP at locus j as
described in Section 4.1. Φ(x) is the cumulative distribution function of the stan-
dard normal distribution and σ is the (1− αp/2) quantile.

For αp ≤ 0.01, Moskvina & Schmidt (2008) gave the approximation

κj ≈
√

1− r−1.31·log10 αp

j . (8.5)

We now go through the presentation of the method of Moskvina & Schmidt (2008)
considering a case-control study where we for each SNP can set up a table as shown
in Table 8.1.

Table 8.1: Data for SNP at locus X

0 1 Total
Case x0 x1 n∗1
Control y0 y1 n∗2
Total m0 m1 n∗

In Table 8.1 n∗1 = 2n1, n
∗
2 and n∗ = 2n, where n is the total number of individuals

and n1 and n2 is the total number of cases and controls, respectively. We consider



CHAPTER 8. MULTIPLE CORRECTION METHODS 73

a biallelic SNP with alleles A and a, which in Table 8.1 is denoted by 1 and 0
respectively, assuming that A is the high risk allele. The total number of allele a
and allele A among the 2n gametes are m0 and m1, respectively.

We define the probabilities

p1 = P (allele A|case)

and

p2 = P (allele a|control).

For each SNP, the information about each individual can be expressed by a vector

Z = (zi) = (1, 0, 0, 1, 1, ....),

of length n∗. Each individual is represented with two elements representing each
gamete, indicating whether the high risk allele is present or not present.

We have the following estimators

p̂1 =
x1

n∗1
, p̂2 =

y1

n∗2
,

for cases and controls, respectively.

We will test for difference in the frequency of the high risk allele between the case
and control group using an allelic test. The null hypothesis for the allelic test is
that there is no difference in frequency between the two groups,

H0 : p1 = p2.

For the high risk allele, A, we have the following estimator for the total population

p̂ =
x1 + y1

n∗
≈ p under H0.

We use the test-statistic

T =
p̂1 − p̂2√

p(1− p)
(

1
n∗1

+ 1
n∗2

) ≈ N(0, 1) under H0.

Rewriting the estimators gives

p̂1 − p̂2 = p̂1 −
y1

n∗2
= p̂1 −

m1 − x1

n∗2
= p̂1 −

n∗p− n∗1p̂1

n∗2
=
n∗(p̂1 − p)

n∗2
.
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The test-statistic T can then be rewritten as

T =
n∗(p̂1 − p)

n∗2

√
p(1− p)

(
1
n∗1

+ 1
n∗2

) .

Table 8.2: Data for SNP at locus Y

0 1 Total

Case x
′
0 x

′
1 n∗1

Control y
′
0 y

′
1 n∗2

Total m
′
0 m

′
1 n∗

We now turn to another SNP, at locus Y, and we use similar notation as shown in
Table 8.2. n∗1 = 2n1, n

∗
2 and n∗ = 2n, where n is the total number of individuals and

n1 and n2 is the total number of cases and controls, respectively. The estimators
are

p̂
′

1 =
x
′
1

n∗1
, p̂
′

2 =
y
′
1

n∗2
,

and

p̂
′
=
x
′
1 + y

′
1

n∗
≈ p

′
under H0.

The test observator is as for locus X

T ′ =
p̂
′
1 − p̂

′
2√

p(1− p)
(

1
n∗1

+ 1
n∗2

)
=

n∗(p̂2 − p)

n
′
1

√
p(1− p)

(
1
n∗1

+ 1
n∗2

) ≈ N(0, 1) under H0.

Since the test-statistics T and T ′ are linear combinations of p̂1 and p̂2, respectively,
we have

Corr(T, T ′) = Corr(p̂1, p̂
′

1). (8.6)

Under H0, we have

Corr(p̂1, p̂
′

1) = Corr(p̂, p̂
′
). (8.7)
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From Equation (8.4), we have p̂ =
∑
zi

n∗
, which gives

Corr(p̂, p̂
′
) = Corr

(∑
zi,
∑

z
′

i

)
. (8.8)

We also have

Cov

(
n∗∑
i=1

zi,

n∗∑
i=1

z
′

i

)
= n∗Cov(zi, z

′

i)

and the variance

Var

(
n∗∑
i=1

zi

)
=

n∗∑
i=1

Var(zi) = n∗Var(zi)

and

Var

(
n∗∑
i=1

z′i

)
=

n∗∑
i=1

Var(z′i) = n∗Var(z
′

i)

Then,

Corr

(
n∗∑
i=1

zi,
n∗∑
i=1

z
′

i

)
=

n∗Cov(zi, z
′
i)√

n∗n∗Var(zi)Var(z
′
i)

=
Cov(zi, z

′
i)√

Var(zi)Var(z
′
i)

= Corr(zi, z
′

i). (8.9)

We are interested in the correlation between the two test statistics at two loci, X
and Y. From Equation (8.6), (8.7), (8.8) and (8.9), we observe that

Corr(T, T ′) = Corr(p̂1, p̂
′

1) = Corr(p̂, p̂
′
) = Corr

(
n∗∑
i=1

zi,

n∗∑
i=1

z
′

i

)
= Corr(zi, z

′

i) = ρ.

Under H0 both T and T ′ approximately follows a N(0, 1) distribution, i.e. the
expected values and variances are given by

E(T ) = 0

E(T ′) = 0

Var(T ) = 1

Var(T ′) = 1.
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This gives

(T, T ′) ∼ binormal(0, 1, 0, 1, ρ).

We accept H0 for loci X when T ∈ [−σ, σ], σ = zα/2 and H0 for loci Y when
T ′ ∈ [−σ, σ], σ = zα/2. H0 for both loci X and Y are accepted when

(T, T ′) ∈ [−σ, σ]× [−σ, σ], where σ = zα/2.

We assume that each of the individual tests has significance level αp. We as-
sume the null hypothesis, H0, that no marker is associated with the disease status
(Moskvina & Schmidt 2008). We let Oj, j = 1, ...,m denote the event that the
allelic test for the jth marker does not give a significant result at level αp. The
probability of event Oj is P (Oj) = 1− αp.

The total type I error probability when testing m hypotheses simultaneously is
given by

α = 1− P (O1 ∩ · · · ∩Om)

= 1− P (O1)P (O2|O1)P (O3|O1 ∩O2) · · ·P (Om|O1 ∩ · · ·Om−1)

≤ 1− P (O1)P (O2|O1)P (O3|O2) · · ·P (Om|Om−1)

= 1− P (O1 ∩O2)P (O2 ∩O3) · · ·P (Om1 ∩Om)

P (O2) · · ·P (Om−1)
. (8.10)

From Moskvina & Schmidt (2008) we have

P (Oj|O1 ∩ ... ∩Oj−1) ≥ P (Oj|Ok)

for any k < j, which explains the inequality in Equation (8.10).

Moskvina & Schmidt (2008) use the maximal correlation between a SNP and the
previous markers, rj = max1≤k≤j−1 |rkj|. From the inequality in Equation (8.10)
we observe that using maximal correlation, we choose the maximal P (Oj|Ok), k =
1, ..., j − 1 which is closest to the value of P (Oj|O1 ∩ . . . ∩Oj−1).

We will now work further with P (OX ∩ OY ) to be inserted into the numerator of
Equation (8.10). The acceptance probability for locus X and locus Y is given by

P (OX ∩OY ) = P (accept H0 for locus X ∩ accept H0 for locus Y).

This means that both T and T ′ need to be inside the acceptance region [−σ, σ].
This results in a bivariate two dimensional integral for both T and T ′ for the SNPs.
We insert the estimate of ρj with the absolute value |rj|.
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P (OX ∩OY ) =
1

2π
√

1− r2
j

∫ σ

−σ

∫ σ

−σ
exp

(
− 1

2(1− r2
j )

(x2 − 2rjxy + y2)

)
dydx

It can be shown that this integral equals

=
1

2π
√

1− r2
j

∫ σ

−σ
e−x

2/2

Φ

 rjx+ σ√
1− r2

j

− Φ

 rjx− σ√
1− r2

j

 dx.

Further, it can be shown that

1

2π
√

1− r2
j

∫ σ

−σ
e−x

2/2

Φ

 rjx+ σ√
1− r2

j

− Φ

 rjx− σ√
1− r2

j

 dx

= 1− αp −
√

2

π

∫ σ

−σ
e−x

2/2

Φ

 rjx− σ√
1− r2

j

 dx,

which gives

P (OX ∩OY ) = 1− αp −
√

2

π

∫ σ

−σ
e−x

2/2

Φ

 rjx− σ√
1− r2

j

 dx.

From this, we have from Equation (8.10),

α ≤ 1− P (O1 ∩O2)P (O2 ∩O3) · · ·P (Om1 ∩Om)

P (O2) · · ·P (Om−1)

= 1−

∏m
j=2

(
1− αp −

√
2
π

∫ σ
−σ e

−x2/2Φ

(
rjx−σ√

1−r2
j

)
dx

)
(1− αp)m−2

= 1− (1− αp)
m∏
j=2

1− αp −
√

2

π

∫ σ

−σ
e−x

2/2Φ

 rjx− σ√
1− r2

j

 dx

 .

This shows that the method by Moskvina & Schmidt (2008) controls the FWER,

α ≤ 1− (1− α)
m∏
j=2

1− α−
√

2

π

∫ σ

−σ
e−x

2/2Φ

 rjx− σ√
1− r2

j

 dx

 .
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8.5 The Beta-distribution method

Dudbridge & Gusnanto (2008) described a method for estimating the effective
number of tests based on the beta distribution. If it exists an effective number of
tests, Meff, the minimum p-value should follow a beta distribution

Beta(1,Meff)

as described in Section 7.2. The general Beta(a, b) distribution is given by (Casella
& Berger 2002, p. 623)

f(x|a, b) =
1

B(a, b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1, a > 0, b > 0,

where the constant B(a, b) is defined in terms of gamma functions and is given by

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

For the general Beta(a, b) distribution, the expected value and variance are given
by (Casella & Berger 2002, p. 623)

E(X) =
a

a+ b
and Var(X) =

ab

(a+ b)2(a+ b+ 1)
.

Assume independent data xi, i = 1..., B, of B observations of the minimum p-
values, and let x̄ and s2 denote the sample mean and variance, respectively.

Moment estimators

The moment estimators for the Beta(a, b) distribution are found by solving the
equations

x̄ =
a

a+ b
and s2 =

ab

(a+ b)2(a+ b+ 1)

where x̄ and s2 are the sample mean and variance of the observations, respectively.
The moment estimators are then given by

â = x̄

(
x̄(1− x̄)

s2
− 1

)
and

b̂ = (1− x̄)

(
x̄(1− x̄)

s2
− 1

)
,
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where x̄ and s2 are the sample mean and variance of the observations, respectively.
Dudbridge & Koeleman (2004) tested the null-hypothesis whether a = 1, and
under this null hypothesis, the method of moments estimate of b is

b̂ =
1− x̄
x̄

.

Maximum likelihood estimator

The maximum likelihood estimator is asymptotically efficient (Casella & Berger
2002, p. 472), and therefore we want to use the maximum likelihood estimator to
estimate the parameter b of the Beta(1, b) distribution. The likelihood-function
for the Beta(1, b) distribution is given by

L(b|x) =
B∏
i=1

b(1− xi)b−1.

This gives the maximum likelihood estimator for b

b̂ = − B∑B
i=1 ln(1− xi)

,

where B is the number of observations in the data set used.

This method can only be used if a set of B minimum p-values are available. The
role of the method is a qualitatively assessment of the distribution of the minimum
p-values.

8.6 Other methods for estimating Meff

The method of Chen and Liu (2011)

The method of Chen & Liu (2011) consists of three steps

1. For each SNP i, i = 1, ...,m, we estimate the absolute CLD coefficient be-
tween this SNP and any of the other SNPs |rij|, j 6= i.

2. Calculate Ri =
∑m

j=1 |rij|k, i = 1, 2, ...,m, where the positive constant k is a
statistical test-dependent parameter.
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3. Estimate the effective number of independent tests by

Meff =
m∑
i=1

1

Ri

.

As described by Chen & Liu (2011), the statistical test-dependent parameter is
equal to k = 7 when the statistical test is the Cochran-Armitage test for trend as
described in Section 6.1. When the statistical test used is Pearson’s χ2-test with 2
degrees of freedom, then the parameter is equal to k = 3. No explanation of how
k is found is given by Chen & Liu (2011).

The method of Li and Ji (2005)

The method of Li & Ji (2005) is as the method of Cheverud (2001) and Nyholt
(2004) based on the eigenvalues of the correlation matrix. Li & Ji (2005) considered
a total number of m tests, where the m tests contains c, 1 ≤ c ≤ m copies of m/c
independent tests. The eigenvalues of the correlation matrix are

λi = c, i = 1, ...,m/c

λi = 0, i = (m/c+ 1, ...,m).

From the method of Nyholt (2004) we then get

Meff = 1 + (m− 1)

(
1− Var(λobs)

m

)
,

which gives
Meff = m+ 1− c.

As described above we have a total of m/c independent tests, and then we observe
that

r =
m+ 1− c
m/c

=
c(m+ 1− c)

m
≥ 1, 1 ≤ c ≤ m. (8.11)

From Equation (8.11) we observe that for 1 ≤ c ≤ m, the method of Cheverud
(2001) and Nyholt (2004) will overestimate the effective number of independent
tests and give conservative results.

The method of Li & Ji (2005) is based on decomposition of the eigenvalues into
an integral part and an nonintegral part. The integral part of the eigenvalue
represents identical tests, and the nonintegral part represents partially correlated
tests. Li & Ji (2005) described an estimate for the effective number of independent
tests, Meff, as
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Meff =
m∑
i=1

f(|λi|),

where

f(x) = I(x ≥ 1) + (x− bxc), x ≥ 0. (8.12)

In Equation (8.12), I(x ≥ 1) is the indicator function and bxc is the floor func-
tion. In the method by Li & Ji (2005) perfectly correlated tests will be counted
as I(x ≥ 1), and partially correlated tests will be counted as (x− bxc).

The method of Galwey (2009)

The method of Galwey (2009) is an improvement of the method of Li & Ji (2005).
Compared to the method of Li & Ji (2005), the method of Galwey (2009) will give
more weight to the fractional part of the eigenvalues, than to the integer part. We
let λi, i = 1, ...,m denote the eigenvalues of the correlation matrix. The method
of Galwey (2009) for estimating the effective number of independent tests can be
set up as

Meff =

(∑m
i=1

√
λi
)2∑m

i=1 λi
.

As for the method of Gao et al. (2008) described in Section 8.3, we use
∑m

i=1 λi =
m, and rewrite the method of Galwey (2009) as

Meff =

(∑m
i=1

√
λi
)2

m
.

In general, when we have complete observations of our data, the correlation matrix
will be positive semidefinite, and hence all eigenvalues will be positive. For the data
analyzed in this thesis, we do not have complete observations, we have different
number of missing data for different SNPs. Therefore, the correlation matrix is
calculated based on pairwise complete observations, which means that the matrix
will not be positive semidefinite, and some of the eigenvalues may then be zero.
The problem with negative eigenvalues is avoided in the method of Galwey (2009)
by assuming that all negative eigenvalues are small in absolute value, and therefore
are set equal to zero.
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8.7 Comparing the different methods

The methods of Nyholt (2004), Gao et al. (2008) and Moskvina & Schmidt (2008)
are described in Section 8.1, 8.3 and 8.4, respectively. The method of Nyholt (2004)
use the whole correlation matrix, the method of Gao et al. (2008) use blocks of
predetermined size and the method of Moskvina & Schmidt (2008) use a sliding
window around each SNP as illustrated in Figure 8.1a, 8.1b and 8.1c, respectively.
Chen & Liu (2011) gave three desired properties for a method to calculate Meff.
These properties are

1. When all tests are completely independent, then all the m eigenvalues are
equal to 1, and the variance of the eigenvalues is then Var(λ) = 0. This gives
Meff = m

2. When all tests are completely correlated, one eigenvalue is equal to m, the
other are equal to 0. In this situation, Var(λ) = m. The effective number of
independent tests is then Meff = 1.

3. When the m tests is composed of c, 1 ≤ c ≤ m copies of m/c independent
tests, the effective number of independent tests is m/c.

We have observed that the methods of Nyholt (2004) and Moskvina & Schmidt
(2008) are described for the two different cases when the SNPs are perfectly corre-
lated and when the SNPs are completely independent, which means that these two
methods satisfies the first and second property described above. It has been shown
by Salyakina et al. (2005) and Li & Ji (2005) that the method by Nyholt (2004)
gives conservative results for the effective number of independent tests when the
SNPs are partially correlated, which means that the methods by Cheverud (2001)
and Nyholt (2004) do not satisfy the third property.

Chen & Liu (2011) observed that the method by Gao et al. (2008) does not satisfy
the second property, they observed that when all tests are completely independent,
the method by Gao et al. (2008) will always underestimate the effective number
of independent tests for all predetermined cutoff’s c < 1. In Section 8.3 we have
observed that the method of Gao et al. (2008) depends on the block size used and
will give conservative results for partially correlated SNPs, which means that the
method of Gao et al. (2008) also does not satisfy the third property as described
above.

The method of Chen & Liu (2011) and Li & Ji (2005) satisfies all the three prop-
erties described above.
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(a) (b) (c)

Figure 8.1: (a) The method of Nyholt (2004). (b) The method of Gao et al.
(2008). (c) The method of Moskvina and Schmidt (2008). Figure illustrating the
difference between the methods of Nyholt (2004), Gao et al. (2008) and Moskvina
and Schmidt (2008). The method of Nyholt use the eigenvalues of the whole
correlation matrix, the method of Gao uses blocks of fixed size, and the method
of Moskvina uses a window around each SNP marker.

We observed that the methods of Nyholt (2004) and Gao et al. (2008) estimates the
effective number of independent tests, Meff, and then uses the method of Šidák to
find the individual significance level. The method of Moskvina & Schmidt (2008)
first estimates the individual significance level, αp, and then uses the method of
Šidák to find the estimate the effective number of independent tests.

An important contribution of the method of Moskvina & Schmidt (2008) is that the
correlation between the test-observators are equal to the estimated Pearson corre-
lation between the SNPs. Han, Kang & Eskin (2009) showed that this relationship
between the test-observators and the correlation between SNPs in general not will
be as for the method of Moskvina & Schmidt (2008). We have observed that the
method of Chen & Liu (2011) as the method of Moskvina & Schmidt (2008) de-
pends on the statistical test used, but Chen & Liu (2011) does not describe how
the statistical test-dependent parameter is found. Based on the observations de-
scribed in this chapter, we have observed that the Meff estimate using the method
of Moskvina & Schmidt (2008) and Chen & Liu (2011) depends on the statistical
test used, and the Meff estimate using the other methods does not depend on the
statistical test used. One interesting question is whether the Meff estimate should
be dependent or independent of the statistical test used.



Chapter 9

TOP8 - Data analysis

In this chapter the multiple testing correction methods presented in Chapter 8
will applied to chromosome 22 of the TOP data. The different methods are im-
plemented using estimates of either LD or CLD correlation,

ρ̂LD =
P̂AB − p̂Ap̂B√
p̂Ap̂ap̂B p̂b

,

and

ρ̂CLD =
∆̂AB√

(p̂A(1− p̂A) + D̂A)(p̂B(1− p̂B) + D̂B)
,

as described in Chapter 5.

9.1 TOP8 - chromosome 22

The data from the TOP study for chromosome 22 contains information about 1551
individuals and 8928 SNPs. Chromosome 22 was the smallest chromosome of all
22 chromosomes in the TOP data. We have different numbers of missing data
for each SNP and therefore we used pairwise complete observations to calculate
the CLD correlation matrix. When the correlation matrix is calculated based on
only pairwise complete observations, the correlation matrix may not be positive
semidefinite, which may give negative eigenvalues.

According to the observations in Section 8.3, the maximum number of nonzero
eigenvalues of the correlation matrix are equal to 1551 − 1 = 1550. From Figure
9.1 we see that the first 1550 eigenvalues of the CLD correlation matrix are positive
and decreasing. The rest of the in total 8928 eigenvalues of the CLD correlation

84
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Figure 9.1: Plot of the first 1550 eigenvalues of the ρCLD correlation matrix. We
see that all the 1550 first eigenvalues are positive and decreasing.

matrix are small with both positive and negative signs as expected.

In Galwey (2009) the problem with negative eigenvalues was avoided by assuming
the negative eigenvalues to be small in absolute value, and therefore set equal to
zero. The methods described in Chapter 8 are in our analysis implemented by
setting the negative eigenvalues equal to zero.

9.2 Estimates of the effective number of inde-

pendent tests, Meff

We used the methods by Nyholt (2004), Gao et al. (2008) and Moskvina & Schmidt
(2008) to compare the estimate of the effective number of independent tests. The
method of Nyholt (2004) was impemented as originally described, and according
to the observations in Section 8.3 we implemented the method of Gao et al. (2008)
using blocks of fixed size. The method of Moskvina & Schmidt (2008) was imple-
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mented both exact and by the approximation formula for individual significance
level less than or equal to αp = 0.01. R-code for the different methods are given
in Appendix D.

The Cheverud-Nyholt method

The method by Nyholt (2004) was as shown in Section 8.1 implemented using the
variance of the eigenvalues of the pairwise LD correlation matrix.

As described in Section 8.3, the maximal number of nonzero eigenvalues for a n×p,
n < p matrix is equal to n − 1. For the data analyzed in this thesis, n = 1551.
Using only the first n− 1 = 1550 eigenvalues, the effective number of tests is

Meff = 8872.378.

The significance level threshold for the individual tests are found using the method
of Šidák as described in Section 7.4.

The estimate Meff = 8872.378 gives the individual significance level

αp = 1− (1− 0.05)(1/8872.378) = 5.78 · 10−6.

Using the CLD matrix and the first n− 1 = 1550 eigenvalues we get

Meff = 8872.384,

and the individual significance level

αp = 1− (1− 0.05)(1/8872.384) = 5.78 · 10−6,

which we observe is the same result as obtained when using the LD correlation
matrix.

Moskvina’s alternative formulation of Nyholt’s method

Moskvina & Schmidt (2008) showed that the estimate of effective number of inde-
pendent tests defined by Nyholt (2004) can be calculated directly from the corre-
lation coefficients of the pairwise correlation matrix.

We implemented Moskvina’s alternative formulation of Nyholt’s method in R, and
for chromosome 22 in the TOP8 data, the estimate of the effective number of
independent tests using the LD correlation matrix was

Meff = 8913.441,
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with the corresponding individual significance level, αp = 1− (1− 0.05)1/8913.441 =
5.75 · 10−6.

Using the CLD correlation matrix, we get the estimate

Meff = 8913.508,

with the corresponding individual significance level, αp = 1− (1− 0.05)1/8913.441 =
5.75 · 10−6.

We observe that there is a difference in the results using the method of Nyholt
(2004) with the 1550 first eigenvalues and Moskvina’s alternative formulation of
Nyholt’s method. Because we have different proportion of missing data for each
SNP, the correlation matrix based on pairwise complete observations may not be
positive semidefinite, giving some negative eigenvalues. The method of Nyholt
(2004) use the eigenvalues of the correlation matrix while Moskvina’s alternative
formulation of the method uses the whole correlation matrix, which may explain
the difference in the results between the method of Nyholt (2004) and Moskvina’s
alternative formulation of Nyholt’s method.

Moskvina’s alternative formulation is a less computationally intensive method than
the original method by Nyholt (2004), but this formulation requires the whole
correlation matrix and may hence not be a preferable method for estimating Meff.
The method of Nyholt (2004) use only the eigenvalues of the correlation matrix.

The method of Gao

The method of Gao et al. (2008) was implemented using c = 99.5% as the cutoff
value, indicating that the result should explain 99.5% of the variation in the data.

Implementing the method by Gao et al. (2008) without using blocks gives

Meff = 1351

as the estimate for the effective number of independent tests.

Since the method of Gao et al. (2008) is highly dependent on the block size, as
discussed in Section 8.3, we implemented the method by Gao et al. (2008) for
different block sizes up to block size equal to the number of individuals minus one,
n− 1 = 1550.
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Figure 9.2: Plot of the estimate Meff for the method of Gao (2008) for different
block sizes, b up to b = 1550. We observe that the effective number of tests
decreases when the block size are increasing and that the method of Gao (2008)
gives estimates of Meff in a relatively large interval.

From Figure 9.2 we see the estimate of the effective number of independent tests
using the method described by Gao et al. (2008) using blocks of fixed size. We
observe that using different block sizes in the method by Gao et al. (2008) will
give results in a relatively large interval for the estimate of Meff.
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Table 9.1: The Gao estimate for Meff for different block sizes

block size Meff, CLD
100 5361
150 5230
200 5145
250 5063
300 4987
350 4926
400 4871
450 4796
500 4749
550 4700
600 4641
650 4590
700 4540
750 4487
800 4447
850 4406
900 4339
950 4321
1000 4259
1050 4231
1100 4178
1150 4150
1200 4118
1250 4059
1300 4008
1350 3997
1400 3963
1450 3903
1500 3850
1550 3854
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Using the Šidák method as described in Section 7.4 we find the significance level
αp for the individual tests for different block sizes. From Table 9.1 the estimated
effective number of tests for block size b = 100 is Meff = 100, and using α = 0.05
the individual significance level threshold is

αp = 1− (1− α)1/Meff

= 1− (1− 0.05)1/5361

= 9.57 · 10−6.

For block size equal to b = n − 1 = 1550 the estimated effective number of tests
using the method of Gao et al. (2008) is

αp = 1− (1− α)1/Meff

= 1− (1− 0.05)1/3854

= 1.33 · 10−5.

We observe that the individual significance level, αp, varies from 9.57 · 10−6 to
1.33 · 10−5 using different block sizes in the method of Gao et al. (2008).

The method of Moskvina and Schmidt

From Section 8.4 we have observed that the method of Moskvina & Schmidt (2008)
gives the same results as the methods of Nyholt (2004) and Gao et al. (2008) for
the extreme cases when we have complete correlation or complete independence.
When all markers are completely independent, all κj = 1 and Meff = m and when
all markers are perfectly correlated, then all κj = 0 and Meff = 1.

We implemented the method by Moskvina & Schmidt (2008) as shown in Ap-
pendix D, both exact and using window size w. The significance level αp for each
of the individual tests was determined by estimating Meff for different values of αp,
where the individual significance level, αp, is reduced from the starting value until
the estimate of the overall type I error probability, α ≤ 1− (1−αp)Meff , passes the
predetermined level, here α = 0.05.

The results in Table 9.2 using the method by Moskvina & Schmidt (2008) with
the approximation formula and the LD correlation matrix gives estimates for the
effective number of independent tests in the interval 6249.893 − 6269.99, and the
individual significance level in the interval 8.18 − 8.20 · 10−6. Using the CLD
matrix we get the estimate of the effective number of independent tests in the
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Table 9.2: Results for the method of Moskvina using the LD and CLD correlation
matrix

w Meff, LD αp, LD Meff, CLD αp, CLD
20 6269.99 8.18 · 10−6 6252.445 8.20 · 10−6

25 6259.273 8.19 · 10−6 6241.887 8.21 · 10−6

30 6255.688 8.19 · 10−6 6238.231 8.22 · 10−6

35 6254.354 8.20 · 10−6 6237.008 8.22 · 10−6

40 6251.881 8.20 · 10−6 6234.495 8.22 · 10−6

45 6251.438 8.20 · 10−6 6234.058 8.22 · 10−6

50 6250.96 8.20 · 10−6 6233.581 8.22 · 10−6

55 6250.279 8.20 · 10−6 6232.900 8.22 · 10−6

60 6249.94 8.20 · 10−6 6232.571 8.22 · 10−6

65 6249.905 8.20 · 10−6 6232.427 8.23 · 10−6

70 6249.895 8.20 · 10−6 6232.419 8.23 · 10−6

75 6249.893 8.20 · 10−6 6232.415 8.23 · 10−6

interval 6232.415 − 6252.445 and the individual significance level in the interval
8.20− 8.23 · 10−6.

From Table 9.2 we observe that the method by Moskvina & Schmidt (2008) will
give approximately equal results for the effective number of tests when the win-
dow size is larger than w = 35, both using the LD and the CLD matrix. We also
observe that the individual significance level, αp, is approximately equal for the
different window sizes and both LD and CLD correlation matrix.

Using the LD correlation matrix and the exact formula we observe that the FWER
is controlled at level α ≤ 0.05 when the individual significance level is equal to

αp = 8.19 · 10−6,

and the estimate of the effective number of tests is given by

Meff =
log(1− α)

log(1− αp)

=
log(1− 0.05)

log(1− 8.19 · 10−6)

= 6262.892.

Using the CLD correlation matrix and the exact formula we observe that the
FWER is controlled at level α ≤ 0.05 when the individual significance level is
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equal to
αp = 8.21 · 10−6,

and the estimate of the effective number of tests is given by

Meff =
log(1− α)

log(1− αp)

=
log(1− 0.05)

log(1− 8.21 · 10−6)

= 6247.635.

Comparing the results from the method by Moskvina & Schmidt (2008) using both
the exact method and the approximation formula shows that when using window
size in the interval w = 20 − 25, the approximation gives result for Meff close to
the result for the exact formula, both using the LD and the CLD correlation.

The method of Chen and Liu

The method of Chen & Liu (2011) is implemented in R as shown in Appendix
D. Since we do not know which parameter k to use with the C p-value, we used
different values of the parameter k. With k = 3 and using the CLD correlation
matrix we get the estimate

Meff = 4161.581.

The individual significance level are found using the method of Sidak as described
in Section 7.4 and total type I error rate, α = 0.05,

αp = 1− (1− 0.05)(1/4161.581)

= 1.232536 · 10−5.

The method of Li and Ji

The method by Li & Ji (2005) is based on the eigenvalues of the correlation matrix
between the SNPs, and decomposes the eigenvalues into an integral part and an
nonintegral part as shown in Section 8.6. The negative eigenvalues of the correla-
tion matrix are set to zero, since the negative eigenvalues are assumed to be small
in absolute value.

Implementing the method of Li & Ji (2005) as described in Section 8.6 using the
LD correlation matrix gives the Meff estimate
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Meff = 2653.512,

with the corresponding individual significance level

αp = 1− (1− 0.05)(1/2653.512) = 1.93 · 10−5.

The method of Galwey

We implemented the method of Galwey (2009) as described in Section 8.6. Using
the LD correlation matrix, the estimate of the effective number of tests is

Meff = 1712.295,

with the corresponding individual significance level

αp = 1− (1− 0.05)(1/1712.295) = 3.0 · 10−5.

9.3 Resampling

We implemented a resampling procedure based on the C p-value as described in
Section 6.4 for estimating the significance level threshold, αp for the individual
tests. The R code is shown in Appendix D. For each resampled data set we per-
muted the disease status vector, by randomly drawing, without replacement, n1

cases and n2 controls from a total of n individuals, and the minimum C p-value
was recorded. The significance level threshold αp for the individual tests are found
by determining the 5% quantile of the empirical distribution of the minimum C
p-values.

From the results shown in Figure 9.4 we get the significance level threshold, αp,
for the individual tests from the 0.05 · 100000 order statistic equal to

αp = 9.71 · 10−6.

Using the Šidák method, the corresponding estimate of the effective number of
independent tests, Meff, is

Meff =
log(1− α)

log(1− αp)

=
log(1− 0.05)

log(1− 9.71 · 10−6)

= 5284.572. (9.1)
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Figure 9.3: Density plot of the minP C p-values for 100000 permutations of the
case-control data in the TOP study

Number of permutations in the resampling procedure

To investigate the number of permutations needed in a resampling procedure for
obtaining suitable results, we used the empirical distribution of the 100000 minP C
p-values obtained from our resampling procedure as described in Section 7.4. We
sampled subsets of size 1000 and 10000 of the minP C p-values and investigated
the 5% quantile of these subsets compared to the results of the other methods.

The observed resampled distribution shown in Figure 9.3 is a skewed distribution
with high density for the smallest values, and therefore, using only 1000 permuta-
tions, we may get results from the resampling procedure that are more conservative
than the Bonferroni procedure. This shows that more than 1000 permutations of
the data may be necessary to obtain suitable results for αp.



CHAPTER 9. TOP8 - DATA ANALYSIS 95

Figure 9.4: Beta(1,5284.572) distribution fitted to the minP values from the re-
sampling. The line represents the theoretical Beta(1,5284.572) distribution and
the open points represents the minP p-values from the resampling as described
above.

Beta distribution and min p-values

We fitted a Beta(1,Meff) distribution to the resampled minP p-values. From Equa-
tion (9.1) we get that the estimate of the effective number of independent tests
using the resampling procedure equal to Meff = 5284.572. Figure 9.4 shows den-
sity plot for our observed resampled distribution and the open points represents a
theoretical Beta(1, 5284.572) distribution.

The resampling procedure was implemented as shown in Appendix D. The C p-
value was calculated using the MaXact package in R (Tian & Xu 2009). The
sample mean, x̄, of the minP p-values is x̄ = 0.0001957351, and from Section 8.5,
we get the method of moments estimate of b when a = 1,

b̂ =
1− 0.0001957351

0.0001957351
= 5107.946.
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(a) (b)

Figure 9.5: (a) QQplot for the minP p-values from the resampling procedure,
plotted against a Beta(1, 5284.572) distribution based on 100000 observations. (b)
QQplot for the results of the beta method, plotted against a Beta(1, 5107.946)
distribution distribution based on 100000 observations.

The individual significance level is found using the method of Šidák as described
in Section 7.4,

αp = 1− (1− α)(1/Meff)

= 1− (1− 0.05)(1/5107.946)

= 1.00 · 10−5.

Maximum-likelihood estimation of Beta(1, b) distribution gives

b̂ = − B∑B
i=1 ln(1− xi)

= 5107.916,

where B is the number of permutations of the data.

From the QQ plots in Figure 9.5a and 9.5b we observe neither the method of mo-
ments estimator or the maximum likelihood estimator seems to give a reasonable
fit to a beta distribution.

9.4 Summary of the results

In this chapter, the multiple correction methods described in Chapter 8 have been
applied to real data from the TOP study and estimated results for the different
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Table 9.3: Summary of the results

Method Meff αp

Bonferroni 8928 5.60 · 10−6

Nyholt 8913.441 5.75 · 10−6

Moksvina, w = 25 6259.273 8.19 · 10−6

Moskvina, w = 45 6251.438 8.20 · 10−6

Gao, b = 100 5361 9.57 · 10−6

Resampling 5284.572 9.71 · 10−6

Beta method 5107.946 1.00 · 10−5

Gao, b = 500 4749 1.08 · 10−5

Chen and Liu 4161.581 1.23 · 10−5

Gao, b = 1550 3854 1.33 · 10−5

Li and Ji 2653.512 1.93 · 10−5

Galwey 1712.295 3.00 · 10−5

methods are shown in Table 9.3. The most conservative multiple testing procedure
is the Bonferroni method, described in Section 7.4.

The method of Nyholt (2004) and Moskvina & Schmidt (2008) are based on LD
correlation between the SNPs, and the method og Gao et al. (2008) and Chen &
Liu (2011) are based on CLD correlation between the SNPs. From Section 5.4 we
have observed that for chromosome 22 the CLD correlation is more extreme than
the LD correlation in approximately 52% of the cases, and the average difference
|CLD| − |LD| is equal to 0.1059.

Resampling based methods are considered as the gold standard in multiple testing
problems and from Table 9.3 we observe that the resampling-based method as de-
scribed in Section 7.4 using the C p-value gives αp = 9.71 · 10−6 as the individual
significance threshold. According to the observations in Section 8.3 we have ob-
served that the results of the method of Gao et al. (2008) is strongly dependent on
the block size used. From Table 9.3 we observe that using different block sizes the
method of Gao et al. (2008) gives estimated results that are both approximately
equal to the results of the resampling based method and results that are anti-
conservative compared to the resampling based method. These results indicates
that the method of Gao et al. (2008) is not a preferable method for estimating Meff.
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The method of Moskvina & Schmidt (2008) use a sliding window around each SNP
marker, and we expect this procedure to take more of the LD structure between
the SNPs into account than using either the full correlation matrix or smaller
blocks of fixed size as the method of Nyholt (2004) and Gao et al. (2008). For the
TOP8 data, the total number of elements in the correlation matrix is

N =
8928 · 8927

2
= 39850128.

Using the method of Moskvina & Schmidt (2008) with window size w = 20, we
observe that the number of correlations needed are

N = 0 + 1 + 2 + ...+ 19 + 20 · (8928− 20)

19 · 20

2
+ 20 · (8928− 20)

= 178350.

These results shows that using the method of Moskvina & Schmidt (2008) with
a small window size gives a less compuationally intensive problem than using a
method which requires the whole correlation matrix. We have also shown that
the method of Moskvina & Schmidt (2008) using a fixed window size gives results
close to the result of the resampling procedure.

Comparing the theory and results for the different methods for estimating Meff,
we will prefer to use the method of Moskvina & Schmidt (2008) to estimate the
effective number of independent tests because the method seems to be robust with
respect to the use of window size w, and the results are close to the results using
the resampling-based minP procedure.

The TOP8 data

Calculating the C p-value for each SNP on chromosome 22 analyzed in the TOP8
data we found the smallest p-value equal to 5.55 · 10−5. Comparing this result
to the results in Table 9.3 we observe that the smallest p-value are greater than
the individual significance level threshold for all the multiple correction methods
considered in Chapter 8, and hence no significant result for chromosome 22 of the
TOP8 data are discovered in this thesis.





Chapter 10

Application to GWAS

In Chapter 8, we have presented different methods for estimating the effective
number of independent tests for a single chromosome. Applications of the meth-
ods of Nyholt (2004), Gao et al. (2008) and Moskvina & Schmidt (2008) from one
single chromosome to the whole genome will be presented in Section 10.1, and
the method of Dudbridge & Gusnanto (2008) for estimating a genome-wide sig-
nificance threshold based on a permutation test will be presented in Section 10.2.
An alternative method for estimating the genome-wide significance level based on
the effective ratio of the Meff estimate against the total number of SNPs on each
chromosome will be presented in Section 10.3. In the following sections, we will
denote the effective number of independent tests for the whole genome and indi-
vidual chromosomes by Meff,g and Meff, respectively.

10.1 From Meff per chromosome to Meff,g for the

whole genome

Cheverud (2001) described two different alternatives for estimating the genome-
wide significance threshold. When all chromosomes are in linkage equilibrium, the
genome-wide effective number of independent tests can be found by summing the
different Meff estimates for the 22 chromosomes,

Meff,g =
22∑
i=1

{Meff}chromosome i.

and then use Meff,g in the method of Šidák as described in Section 7.4 to find the
genome-wide individual significance threshold, αp.

100
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The other alternative described by Cheverud (2001) for estimating the effective
number of tests is to construct one correlation matrix for the whole genome, and
use the variance of the eigenvalues in the method of Cheverud (2001) and Nyholt
(2004) as described in Section 8.1, but this will be a very computational intensive
problem.

Since SNPs on different chromosomes are expected to be in linkage disequilibrium
in general populations (Gao et al. 2008), the method of Gao et al. (2008) and Li
& Ji (2005) estimates the genome-wide effective number of independent tests by
the sum of the different Meff estimates for all 22 chromosomes.

From the results of Moskvina & Schmidt (2008) it is not written explicitly how the
genome-wide individual significance level, αp, is found. For the data analyzed by
Moskvina & Schmidt (2008), the sum of the chromosome-specific Meff estimates
using window-size equal to w = 20 is Meff,g = 298518.6. For this window-size,
Moskvina & Schmidt (2008) estimated the genome-wide significance level αp =
1.68 · 10−7 and the genome-wide effective number of tests Meff,g = 306981. We
observe that the Meff,g estimate using the method of Moskvina & Schmidt (2008)
is not equal to the sum of the chromosome-specific Meff estimates. The result may
indicate that the genome-wide significance level for the method of Moskvina &
Schmidt (2008) is estimated based on one single correlation matrix for the genome
and using a small window-size for this correlation matrix. These results shows that
the method of Moskvina & Schmidt (2008) does not seem to be additive as for other
methods where the estimate of Meff,g is found by summing the chromosome-specific
Meff estimates. Comparing with the other methods, the resampling procedure is
also not a additive method for estimating Meff,g. The method of Moskvina &
Schmidt (2008) and resampling procedures are based on estimating the individual
significance level, αp, and then use the method of Šidák to find the estimate of the
effective number of indepenent tests.

10.2 Genome-wide significance level

Resampling procedures are considered as the gold standard in multiple testing
correction. Dudbridge & Gusnanto (2008) described a permutation method for
estimating one single genome-wide significance threshold using a resampling pro-
cedure. For each resampled data set in the method of Dudbridge & Gusnanto
(2008), half the individuals in the data set was classified as cases and the other
half as controls. For each permutation the 1000 smallest p-values was recorded.

The genome-wide significance level threshold, αp, was by Dudbridge & Gusnanto
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(2008) set equal to the 5% quantile point of the distribution of the observed min-
imum p-values. In the method of Dudbridge & Gusnanto (2008), αp represents
the genome-wide individual significance level given a marker density. For a region
with low SNP densities, Dudbridge & Gusnanto (2008) expected the SNPs to be
independent, and the 5% significance level was by Dudbridge & Gusnanto (2008)
found using the method of Bonferroni as described in Section 7.4. In a region with
high SNP density, Dudbridge & Gusnanto (2008) expected the 5% significance
level to converge to an asymptote, giving the individual significance level for the
whole genome.

10.3 Effective ratio

We define the ratio between the effective number of independent tests for a chro-
mosome, Meff, and the total number of SNPs, m, on the chromosome as

effective ratio =
Meff

m
.

Similarly, we have the effective ratio for the whole genome

effective ratio =
Meff,g

m

where m is the total number of SNPs on the genome.

We denote the effective ratio for the whole genome by Mg, and the effective ratio
for the individual chromosomes by Mc.

Table 10.1: Effective ratio for the Illumnia 1M data analyzed by Gao et. al. (2010)

Method Mg Mc mean(Mc)
10000 permutations 0.49 0.49− 0.56 0.53
simpleM 0.53 0.50− 0.60 0.54
Keff, w = 20 0.68 0.65− 0.72 0.68

Table 10.1, 10.2 and 10.3 shows the effective ratio calculated from the results of
Gao et al. (2008), Gao et al. (2010) and Moskvina & Schmidt (2008). We observe
that the mean effective ratio for the 22 chromosomes are approximately equal to
the effective ratio for the whole genome. The results of the method of Gao et al.
(2008) gives the genome-wide effective ratio as 0.53 and 0.60 for the Illumnia 1M
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Table 10.2: Effective ratio for the Affymetrix 500K data analyzed by Gao et. al.
(2010)

Method Mg Mc mean(Mc)
10000 permutations 0.54 0.50− 0.62 0.57
simpleM 0.60 0.57− 0.68 0.61
Keff, w = 20 0.67 0.66− 0.74 0.70

Table 10.3: Effective ratio for the data analyzed by Moskvina and Schmidt (2008)

Method Mg Mc mean(Mc)
1000 permutations 0.60 0.46− 0.70 0.60
Keff, w = 10 0.66 0.64− 0.71 0.67
Keff, w = 20 0.65 0.63− 0.70 0.66

and Affymetrix 500K data analyzed by Gao et al. (2010), respectively. The results
using the method of Moskvina & Schmidt (2008) gives the genome-wide effective
ratio as 0.68, 0.67 and 0.65 for window size equal to w = 20. For window size
w = 10, the estimated genome-wide effective ratio was equal to 0.65.

The TOP8 data

From Section 8.3 and 9.2 we observed that the estimate of Meff using the method
of Gao et al. (2008) is highly dependent on the block size used. Therefore, the
effective ratio for the method of Gao et al. (2008) is not a preferable method for
estimating Meff.

For the method of Moskvina & Schmidt (2008) using window size w = 25 the
estimated effective number of independent tests for chromosome 22 of the TOP8
data was Meff = 6259.273, which gives the effective ratio

effective ratio =
Meff

m
=

6259.273

8928
= 0.70108.

We observe that this estimated effective ratio is approximately equal to the effec-
tive ratio for the method of Moskvina & Schmidt (2008) given in Table 10.1, 10.2
and 10.3.

We implemented the minP single-step procedure based on the conditional p-value
as defined in Section 6.4 to control the FWER. In Section 9.3, we estimated the
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individual significance level and the corresponding effective number of tests as
5284.572. This gives the effective ratio

effective ratio =
Meff

m

=
5284.572

8928
= 0.59191.

The results from Gao et al. (2010) and Moskvina & Schmidt (2008) showed that
the effective ratio for the permutation procedure was 0.49, 0.54 and 0.60, respec-
tively. Moskvina & Schmidt (2008) used only 1000 permutations of the data, Gao
et al. (2010) used 10000 permutations. The number of resampled data sets may
influence the precision in the result, but this topic was not considered in this thesis.

Effective ratio as a method for estimating Meff and Meff,g

In this section, we have presented the effective ratio for individual chromosomes
and for the whole genome, and we have observed from the data analyzed by Gao
et al. (2010) and Moskvina & Schmidt (2008) that the effective ratio seems to be
stable for the different chromosomes. Based on these observations, two interesting
questions occurs, does it exists an effective ratio for individual chromosomes and
the whole genome, and what is the value of the effective ratio. If it exists such an
effective ratio, we can determine the effective number of tests for a GWAS or a
single chromosome by multiplying the total number of SNPs by the effective ratio,
which gives a result that is not dependent of the statistical test used. Considering
the effective ratio as a method for estimating Meff and Meff,g, it is reasonable
to think that the effective ratio will depend on the density of SNPs along the
chromosomes.





Chapter 11

Discussion and Conclusion

In this thesis, different methods for estimating the effective number of independent
tests have been presented and some possible applications of the methods in a
GWAS have been discussed. In a multiple testing problem, the correlation between
pairs of SNPs is of importance, and in this thesis we have considered correlation
between SNPs based both on haplotypes and genotypes.

LD vs. CLD correlation

We observed that using the theoretical grid as described in Section 4.3 the CLD
correlation was more extreme than the LD correlation in approximately 75% of
the cases, and based on the TOP8 data, the LD correlation was more extreme
than the CLD correlation in approximately 52% of the cases (see Section 5.4). In
Chapter 5 we observed that the maximal LD correlation between SNPs depends
on the minor allele frequencies for the different SNPs. We investigated the dis-
tribution for the minor allele frequencies, both based on a theoretical grid and
for chromosome 22 of the TOP8 data. We observed that the distribution for the
minor allele frequencies is different for the theoretical grid and for the TOP8 data,
which may explain our opposite results when comparing LD and CLD correlation.
More work on this topic is needed.

When analyzing GWAS data, the haplotype phase is in general unknown. Using
LD correlation we need to estimate the haplotype frequency PAB as defined in
Equation (4.3). This can be done by using maximum likelihood estimation, but
for all individuals Hardy-Weinberg equilibrium must be assumed. The CLD cor-
relation does not assume HWE and can be estimated directly from the observed
genotype data. As shown in Section 5.5 estimating the CLD correlation matrix is a
less computationally intensive problem than estimating the LD correlation matrix.

106
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Our observations in Chapter 4 and 5 give no reasons for choosing LD correlation
in favor of CLD correlation when analyzing GWAS data.

Methods for estimating Meff

The gold standard for multiple testing problem within this field is resampling-
based methods, e.g. minP procedure, but these methods are time consuming and
computationally intensive. Cheverud (2001) was the first to propose a method for
estimating the effective number of independent tests, Meff, and then applied the
method of Šidák to find the individual significance level. Different methods for
estimating Meff for individual chromosomes have been presented in Chapter 8 and
applied to the TOP8 data in Chapter 9.

As described in Section 8.3 we have observed that the result of the method of
Gao et al. (2008) is highly dependent on the block size used and therefore we will
not recommend this method. Based on our observations comparing the different
methods, the method of Moskvina & Schmidt (2008) is a more preferable method
for estimating Meff. The method of Moskvina & Schmidt (2008) is robust with
respect to window size w and the results are close to the result of the resampling
procedure, minP.

GWAS

When considering GWAS, we have two possible views for the individual signif-
icance level for each test when considering the whole genome. One view is to
consider the same significance level for all chromosomes, the other view is to con-
sider chromosome-specific individual significance levels. Dudbridge & Gusnanto
(2008) described a method for estimating one genome-wide individual significance
level, while Cheverud (2001) suggested that each individual chromosome should be
tested at individual chromosome-specific thresholds since the densities of markers
will be different for different chromosomes. Discussion of these two alternatives
can be a topic for future work. Is it more sensible to estimate one significance
level for the whole genome or should we estimate chromosome specific individual
significance levels?

Different views of multiple testing correction

A different view of multiple testing have been introduced by Dudbridge & Gus-
nanto (2008). This new approach suggests that in a multiple testing problem,
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we should correct not only for the collected markers, but also for the uncollected
markers. Dudbridge & Gusnanto (2008) estimated one single individual signif-
icance threshold by subsampling SNPs at different SNP densities. The current
view as presented in this thesis is that the effective number of independent tests
depends on the number of SNPs genotyped, and eventually on a effective ratio.
Because of the development of the genotyping technology, we expect the number
of uncollected markers to decrease. As pointed out by Han et al. (2009), the differ-
ent views of multiple testing correction will converge as the number of uncollected
markers goes to zero.

Estimating Meff and Meff,g or use effective ratio?

In Chapter 10 an alternative method for estimating the genome-wide effective
number of independent tests based on an effective ratio was presented. If there
exists such an effective ratio, the genome-wide effective number of independent
tests can be found by multiplying the total number of SNPs with the effective
ratio as described in Section 10.3. Using the different methods for estimating the
effective number of independent tests presented in Chapter 8, we get an estimate
of Meff for each chromosome, which are used to find the estimate of the effective
number of independent tests for the whole genome.

Based on our observations, two interesting questions is if there exists such an
effective ratio and what is the value of the effective ratio. Another interesting
question for future work is whether chromosome-specific individual significance
levels can be estimated using the effective ratio or if we should estimate the effective
number of tests based on the methods presented in Chapter 8.

Conclusion

In this thesis, different methods for estimating the effective number of independent
tests have been studied and tested on a large data set on schizophrenia and bipolar
disorder from the TOP study. The different methods were compared both theoret-
ically and when applied to the TOP8 data. The different methods and the results
were also compared to the resampling-based minP procedure. The methods were
tested using either haplotype or genotype correlation. According to the literature,
resampling-based procedures are considered as the gold standard for multiple test-
ing problems within this field. Due to computational complexity we would like to
do a less time consuming method by using a method for estimating the effective
number of independent tests. But, as shown in this thesis, estimating the full LD
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correlation matrix will be very time consuming. Based on our observations in this
thesis, we will recommend to use the method of Moskvina & Schmidt (2008) since
this method is robust with respect to window size and the result is close to the
result of the minP procedure.
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Appendix A

Notation

m Total number of tests

n Total number of individuals

α Experimentwide significance level, FWER

αp Significance level for individual tests

Meff Effective number of independent tests

LD,ρLD Linkage disequilibrium correlation

CLD,ρCLD Composite linkage disequilibrium correlation

r Pearson correlation coefficient

DA Hardy-Weinberg disequilibrium

∆AB Composite linkage disequilibrium

pA Frequency of allele A

PAB Frequency of haplotype AB

f(x|θ) Probability density function

L(θ|x) Likelihood function

FWER Family-wise error rate

FDR False discovery rate
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Appendix B

Proof of PAB and PA/B from Weir

(1996)

Proof. From Section 4.1 we have

PAB = E(X1Y1) = E(X2Y2).

We define

P (h1, h2) = P (haplotype h1 on gamete 1 and haplotype h2 on gamete 2)

Then, we have

E(X1Y1) =
∑

P (AB, xy), xy = {AB,Ab, aB, ab}

and

E(X2Y2) =
∑

P (xy,AB), xy = {AB,Ab, aB, ab}.

We get

2PAB =
∑

P (AB, xy) +
∑

P (xy,AB)

= P (AB,AB) + P (AB,Ab) + P (AB, aB) + P (AB, ab)+

P (AB,AB) + P (Ab,AB) + P (aB,AB) + P (ab, AB) (B.1)
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According to Weir (1996) we have

PAB
AB = P (AB,AB)

PAB
Ab = P (AB,Ab) + P (Ab,AB)

PAB
aB = P (AB, aB) + P (aB,AB)

PAB
ab = P (AB, ab) + P (ab, AB)

P aB
Ab = P (Ab, aB) + P (aB,Ab).

Equation (B.1) can then be rewritten as

2PAB = PAB
AB + PAB

Ab + PAB
aB + PAB

ab ,

and then

PAB = PAB
AB +

1

2
(PAB

Ab + PAB
aB + PAB

ab ),

which we observe is the formula for PAB according to Weir (1996, p. 122).

Similarly, for PA/B as defined in Section (ref) we have

PA/B = E(X1Y2) = E(X2Y1),

where

E(X1Y2) =
∑

P (Ay, xB), xy = {AB,Ab, aB, ab}

and

E(X2Y1) =
∑

P (xB,Ay), xy = {AB,Ab, aB, ab}.

This gives

2PA/B =
∑

P (Ay, xB) +
∑

P (xB,Ay)

= P (AB,AB) + P (AB, aB) + P (Ab, aB) + P (Ab,AB)

P (AB,AB) + P (AB,Ab) + P (aB,AB) + P (aB,Ab)

= 2PAB
AB + PAB

Ab + PAB
aB + P aB

Ab ,

and then, according to Weir (1996, p. 122) we have

PA/B = PAB
AB +

1

2
(PAB

Ab + PAb
aB + P aB

Ab ).



Appendix C

Singular value decomposition

Singular value decomposition (SVD) is defined as

Z = UDV T

where Z is a n×p matrix, U is a n×p matrix, D is a p×p matrix and V is a p×p
matrix (Ripley 1996, p. 289). The elements of the matrix U is the eigenvectors
of ZZT , the elements of V are the eigenvectors of ZTZ and the matrix D is a
diagonal matrix of the singular values of Z, which is equal to√

diag(eigenvalues(ZZT ))

The matrices ZZT and ZTZ have the same eigenvalues but different eigenvectors.
This can be seen by

ZTZe = λe

ZZTZe = Zλe

ZZT e∗ = λe∗

where e∗ = Ze.

We will use this result were the matrix Z is a centered and scaled version of the
genotype matrix where n equals the number of persons and p equals the number
of SNP’s. Since the data are centered the maximal number of nonzero eigenvalues
are equal to n− 1.
We must assume that the matrix Z of the genotypes are centered and scaled. The
estimate for correlation is given by

ρ̂ =
1

n− 1
(ZTZ)
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Appendix D

R-code

Estimating LD and CLD correlation

correlation <- function(numgeno1,numgeno2)

{

nvec <- rep(0,9)

nNA <- 0

nnotNA <- 0

for(i in 1:1551) #0=AA;1=Aa,2=aa

{

if((is.na(numgeno1[i])==TRUE)||(is.na(numgeno2[i])==TRUE))

{

nNA <- nNA +1

i <- i+1

}

else{

nnotNA <- nnotNA +1

if(numgeno1[i]==0) #AA

{

if(numgeno2[i]==0)

{

nvec[1] <- nvec[1]+1

}

if(numgeno2[i]==1)

{

nvec[2] <- nvec[2]+1

}

120



APPENDIX D. R-CODE 121

if(numgeno2[i]==2)

{

nvec[3] <- nvec[3]+1

}

}

if(numgeno1[i]==1) #Aa

{

if(numgeno2[i]==0)

{

nvec[4] <- nvec[4]+1

}

if(numgeno2[i]==1)

{

nvec[5] <- nvec[5]+1

}

if(numgeno2[i]==2)

{

nvec[6] <- nvec[6]+1

}

}

if(numgeno1[i]==2) #aa

{

if(numgeno2[i]==0)

{

nvec[7] <- nvec[7]+1

}

if(numgeno2[i]==1)

{

nvec[8] <- nvec[8]+1

}

if(numgeno2[i]==2)

{

nvec[9] <- nvec[9]+1

}

}

}

}

# BB Bb bb

#AA nvec[1] nvec[2] nvec[3]

#Aa nvec[4] nvec[5] nvec[6]
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#aa nvec[7] nvec[8] nvec[9]

p <- rep(NA,9)

n <- nnotNA

for(i in 1:9)

{

p[i] <- nvec[i]/n

}

PAA <- (p[1]+p[2]+p[3])

PAa <- (p[4]+p[5]+p[6])

Paa <- (p[7]+p[8]+p[9])

PBB <- (p[1]+p[4]+p[7])

PBb <- (p[2]+p[5]+p[8])

Pbb <- (p[3]+p[6]+p[9])

pA <- PAA + (1/2)*PAa

pa <- 1-pA

pB <- PBB + (1/2)*PBb

pb <- 1-pB

Dmin <- max(-pA * pB, -pa * pb)

pmin <- pA * pB + Dmin

Dmax <- min(pA * pb, pB * pa)

pmax <- pA * pB + Dmax

loglik <- function(pAB,...){(2 * nvec[1]+nvec[2]+nvec[4])*log(pAB)+

(2*nvec[3]+nvec[2]+nvec[6])*log(pA - pAB) +

(2*nvec[7]+nvec[4]+nvec[8])*log(pB - pAB)+(2*nvec[9]+nvec[8]+

nvec[6])*log(1 - pA - pB + pAB)+nvec[5] *

log(pAB*(1 - pA - pB + pAB)+(pA - pAB)*(pB - pAB))

}

solution <- optimize(loglik, lower = pmin + .Machine$double.eps,

upper = pmax - .Machine$double.eps, maximum = TRUE)

pAB <- solution$maximum

#P_{AB} + P_{A/B}:

PABAdB <- 2*p[1]+p[2]+p[4]+(1/2)*p[5] #p5 - (AB,ab) and (Ab,aB)
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D <- pAB - (pA*pB)

DA <- PAA - (pA^2)

DB <- PBB - (pB^2)

rhoLD <- D/sqrt(pA*pa*pB*pb)

rhoCLD <- (PABAdB - (2*pA*pB))/(sqrt((pA*pa+DA)*(pB*pb+DB)))

return(list("rhoLD"=rhoLD,"rhoCLD"=rhoCLD))

}

The method of Nyholt

nyholt <- function(matr)

{

Mvec <- NA

Nyholt <- NA

Mvec <- dim(matr)[2]

thislambda <- eigen(matr)$values

Nyholt<- 1+(Mvec-1)*(1- var(thislambda)/Mvec)

return(Nyholt)

}

The method of Gao

gao <- function(mat,M,r)

{

blokk <- seq(r,M,r)

Mvec <- M

k <- length(blokk)

Mgaovec <- rep(NA,k)

blokkmat1 <- mat[1:blokk[1],1:blokk[1]]

e <- eigen(blokkmat1)

lambda <- e$values

percexplny <- cumsum(lambda)/sum(lambda)

Mgaovec[1] <- min((1:length(lambda))[percexplny >=varexpl])

for(j in 2:k)
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{

a <- blokk[j-1]+1

b <- blokk[j]

blokkmat <- mat[a:b,a:b]

e <- eigen(blokkmat)

lambda <- e$values

percexplny <- cumsum(lambda)/sum(lambda)

Mgaovec[j] <- min((1:length(lambda))[percexplny >=varexpl])

}

a <- blokk[j]+1

b <- 8928

blokkmat <- mat[a:b,a:b]

e <- eigen(blokkmat)

lambda <- e$values

percexplny <- cumsum(lambda)/sum(lambda)

Mgaovec[j+1] <- min((1:length(lambda))[percexplny >=varexpl])

Meff = sum(Mgaovec)

return(Meff)

}

The method of Moskvina

moskvina <- function(mat,M,w,alpha)

{

r <- 0

sumKappa <- 0

Keff <- 0

kappavec <- rep(NA,M-1)

corr <- rep(NA,M-1)

for(i in 1:M)

{

if(i<=w)

{

r <- max(abs(mat[i,1:(i-1)]))

}

if(i>w)

{
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r <- max(abs(mat[i,(i-w):(i-1)]))

}

kappavec[i] <- sqrt(1-r^(-1.31*log10(alpha)))

sumKappa <- sumKappa+ kappavec[i]

corr[i] <- max(abs(mat[i,1:(i-1)]))

}

Keff <- 1 + sumKappa

Pn <- 1 - (1-alpha)^(Keff)

return(list("Keff"=Keff,,"fwer"=Pn))

}

The method of Moskvina without approximation

s<-numgenods

c<-corrmat

m<-8928

r<-rep(0,length(s[1,]))

for(i in 2:m)

{

r[i]<-max(abs(corrmat[i,1:(i-1)]))

}

const<-sqrt(2/pi)

Pi<-function(alfa){

b<-1-alfa

sigma<-qnorm(1-alfa/2)

prod<-1

for(i in 2:m){

const2<-1/sqrt(1-r[i]^2)

prod<-prod*(1-const/b*integrate(function(x)exp(-x^2/2)*

pnorm((r[i]*x-sigma)*const2),-sigma,sigma)$value)

}

1-b*prod

}
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Resampling procedure to control FWER

library(MaXact)

B <- 100000

ninner <- 100

nouter <- B/ninner

geno <- dget(paste(datadir,"numgenods22.dd",sep=""))

disease <- read.table(paste(datadir,"TOP8chr22Disease.txt",sep=""))

geno <- geno[disease!=-9,]

dis <- disease[disease!=-9]

nsnp <- dim(geno)[2]

mmat <- matrix(0,ncol=3,nrow=nsnp)

mmat[,1] <- apply(geno==0,2,sum,na.rm=TRUE)

mmat[,2] <- apply(geno==1,2,sum,na.rm=TRUE)

mmat[,3] <- apply(geno==2,2,sum,na.rm=TRUE)

bigminP <- NULL

set.seed(123)

for (i in 1:nouter)

{

minP <- rep(NA,ninner)

for (j in 1:ninner)

{

newstatus <- sample(dis,replace=F)

minP[j] <- min(calcCpvalfrommat3(newstatus,geno,nsnp,mmat))

}

cat(minP,file="minP.res","\n",append=TRUE)

bigminP <- c(bigminP,minP)

}

write.table(bigminP,"bigminP.res")
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