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Abstract

In reservoir simulations, one of the biggest challenges is solving large models
with complex geological properties. Because reservoirs can be several kilome-
ters long, and still be geologically inhomogeneous over centimeter scales, the
computational power required to solve a full set of mass balance equations can
be immense. Several methods for overcoming this challenge has been proposed,
including various upscaling and multiscale methods.

One of these methods is the Multiscale Finite Volume (MsFV) method, which
aims to create a set of basis functions for the pressure which can be computed
in parallel and reused for different boundary conditions. This thesis aims to
give a thorough study of the MsFV-method itself, before extending it to three
dimensional, unstructured grids. An implementation was done as a module
for the MATLAB Reservoir Simulation Toolbox developed by SINTEF Applied
Mathematics. A new variant of the method designed to overcome some of the
computational challenges arising from an extension to 3D was also formulated.

The implementation was then applied to both synthetic and realistic grids
and permeabilities, and compared against a full two point flux approximation
(TPFA) solver.



Norsk sammendrag

En av de største utfordringene innen reservoarsimulering i dag oppstår ved
løsning av store modeller med komplekse geologiske egenskaper. Siden reser-
voarer kan være flere kilometer lange og allikevel være svært inhomogene
fra centimeter til centimeter kan det være svært beregningskrevende å løse
et fullt sett med massebevaringslikninger for et slikt system. Flere metoder for
å håndtere slike modeller har blitt utviklet, deriblant forskjellige oppskalering-
og flerskalametoder.

En av disse metodene er den flerskala endelige volummetoden (MsFV) som
konstruerer et sett basisfunksjoner for systemtrykket som kan beregnes paral-
lelt og gjenbrukes for forskjellige grensebetingelser. Denne oppgaven forsøker
først å gi en grundig gjennomgang av MsFV-metoden, som deretter utvides
til tredimensjonale, ustrukturerte gitter. En implementasjon ble gjort som en
modul til SINTEF Anvendt matematikk sin MATLAB Reservoir Simulation
Toolbox. Oppgaven inneholder også en formulering av en ny metode som
er laget med hensyn på å løse problemer som oppstår fra generaliseringen til
3D.

Implementasjonene ble deretter testet på både syntesiske og realistiske gitter
og permeabiliteter, og løsningene ble sammenlignet mot en full topunkts-løser.
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Chapter 1
Theoretical background

1.1 Problem statement

The model problem we will study has its origins in the study of fluid mechanics
for reservoir flow. Our primary example will be incompressible single phase
flow in and around porous media, modelled by the continuity equation

∂(φρ)

∂t
+∇ · (ρv) = q, (1.1)

where ρ is the fluid density, φ a porosity distribution, v the fluid velocity and
q any source and sink terms. We will study the incompressible flow problem
where the fluid density is a constant so that time derivative vanishes and leaves
us with the simple equation

∇ · (ρv) = q (1.2)

∇v =
q
ρ

(1.3)

which states that flux out of some closed surface is equal to the source and sink
terms on the inside. For slow moving fluids, like on the onside of an reservoir,
we can apply Darcy’s law:

v = −K
µ
(∇p + ρg∇z), (1.4)

= −λ(∇p + ρG) (1.5)
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which models filtration through media like sand, porous rock and so on. Es-
sentially, the term inside the parenthesis describe the forces applied in the fluid:
There is a pressure term∇p which models the force arising from a difference in
pressure over some distance, as well as a term ρg∇z = ρG which describes the
fluid column pressing down giving rise to a difference in pressure. The pres-
sure is then multiplied with λ = K

µ which is the permeability tensor divided by
the fluid viscosity, which implies that higher viscosity leads to slower flow in a
linear way.

By inserting the expression for fluid velocity from Darcy’s law into (1.2) we get

∇ · v = ∇ · [−λ (∇p− ρG)] =
q
ρ

(1.6)

For the purpose of testing the multiscale finite volume (MsFV) method we will
consider the scenario where gravity is negligible (the gravity contribution is a
separate term and can easily be integrated into a more generic function on the
right hand side along with the source and sink terms):

−∇ · λ∇p =
q
ρ

(1.7)

1.2 Finite volume methods

Finite volume methods for solutions of partial differential equations are inter-
esting when it comes to solving flow problems because they are conservative.
This means that any solutions will ensure that the property we are solving the
equations for, typically some fluid, will remain constant when considering a
problem without source terms. This is not to say that other approaches like
finite difference schemes or finite element methods always produce unwanted
quantities when solving fluid problems, rather that they cannot be guaranteed
not to do so. The different methods can sometimes lead to both the same re-
sults and the same sets of linear equations, leaving the choice between different
methods more of a choice between different perspectives on the same problem
instead of entirely different approaches.

While other methods for solving partial differential equations like finite dif-
ference methods (FDM) or finite element methods (FEM) originate from math-
ematical considerations, finite volume methods (FVM) have their origins in a
more physical understanding of flow problems. While for example FDM con-
sists of Taylor expanding different terms of the differential equation around
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grid points to achieve a linear equation set, under the assumption of the so-
lution is sufficiently smooth without any obvious physical interpretation, the
FVM approach is to consider the problem divided into cells and then applying
conservation laws over the cell edges to obtain a linear equation set.

The multiscale solver bases itself on a discretization of (1.7) from an exisiting
method, and for this purpose we will need the two point flux finite volume
approximation (TPFA), which is the most common method used in reservoir
simulators today. A 2D FVM formulation with equidistant grid size in both
x and y directions h = hx = hy will be used as an example to simplify the
notation, and the calculations done for unstructured grids in 3D is a straight
forward extension.

We will quickly restate the notation for such problems, which should be famil-
iar to anyone who has previous experience with numerical analysis:

h =
xn − x0

n
, (1.8)

xi = x0 + ih, (1.9)

yi = y0 + ih (1.10)

(1.11)

where n + 1 is the number of grid points in both directions.

We note that (1.4), when omitting the gravitational pull, states the fluid velocity
as

v = −λ∇p. (1.12)

If we integrate (1.7) over some square cell Ω in 2D we get

−
∫

Ω
∇ · λ∇p =

∫
Ω

q
ρ

. (1.13)

Since the boundary is piecewise smooth and the domain is compact we can use
the divergence theorem∫

Ω
(∇ · u)dA =

∫
∂Ω

(u · n)dS (1.14)

(1.15)

to reformulate the problem as

−
∫

∂Ω
(λ∇p · n)dS =

∫
Ω

q
ρ

dA. (1.16)
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By using the notation

qx
i+1/2,j = −

∫
∂Ωi

(λ∇p · ni)dS (1.17)

where qi is the flux out of the edge corresponding to cell (i,j) in x-direction on
the right cell wall (denoted by the index i + 1/2), we can describe the total flux
out of cell (i,j) as

qup + qdown + qle f t + qright = sources inside (1.18)

qy
i,j+1/2 + qy

i,j−1/2 + qx
i−1/2,j + qx

i+1/2,j =
∫

Ω

q
ρ

dA. (1.19)

(1.20)

Since we want equations for ui j, we need to relate the cell edge fluxes to the
pressure. We begin by expressing the flux in one direction as

∂px

∂x
= − qx

λx . (1.21)

We integrate from cell i to i + 1 and get∫ xi+1

xi

∂px

∂x
dx = −

∫ xi+1

xi

qx

λx dx, (1.22)

pi+1,j − pi,j = −
∫ xi+1

xi

qx

λx dx. (1.23)

(1.24)

We approximate the integral on the right hand side by setting the flux to a con-
stant value between the cell centers since we seek cell wise constant pressure.
For λx we can simply solve the integral analytically when keeping in mind that
λx is also defined as cell wise constant. Since h is a constant in our model, one
half of both the cells will be included in the integral.

pi+1,j − pi,j = −qi+1/2,j

∫ xi+1

xi

1
λx dx, (1.25)

pi+1,j − pi,j = −qi+1/2,j

[
h
2

(
1

λx
i,j

+
1

λx
i+1,j

)]
, (1.26)

qi+1/2,j = (pi,j − pi+1,j)

[
h
2

(
1

λx
i,j

+
1

λx
i+1,j

)]−1

, (1.27)

=
2(pi,j − pi+1,j)

h

(
1

λx
i,j

+
1

λx
i+1,j

)−1

. (1.28)
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Since we now have qi+1/2,j expressed as a function of ui, we can insert the ex-
pressions into (1.18). To make the equations clearer, we will use the shorthand

λ̄x
i+1,j =

[
h
2

(
1

λx
i,j

+
1

λx
i+1,j

)]−1

(1.29)

making the flux expression much easier to read:

qi+1/2,j = λ̄x
i+1,j(pi,j − pi+1,j) (1.30)

The reason for selecting this notation isn’t just for readability: When it comes to
implementing the actual solver, this makes it easy to encapsulate the complex-
ity of the transmissability into a single routine which can be reused without
redoing the calculations later.

This choice of notation leads to the conservation for each cell being∫
Ωi,j

q
ρ
= λ̄x

i+1,j (pi,j − pi+1,j) + λ̄x
i−1,j(pi,j − pi−1,j) + (1.31)

λ̄
y
i,j+1 (pi,j − pi,j+1) + λ̄

y
i,j−1(pi,j − pi,j−1).

Since we are interested in generating a linear equation set with pi,j as the un-
knowns, we can reorder the terms based on the indices:∫

Ω

q
ρ
= pi,j

(
λ̄x

i+1,j + λ̄x
i−1,j + λ̄

y
i,j+1 + λ̄

y
i,j−1

)
− (1.32)

λ̄x
i+1,j pi+1,j − λ̄x

i−1,j pi−1,j − λ̄
y
i,j+1 pi,j+1 − λ̄

y
i,j−1 pi,j−1

Since we have a total of n + 1 nodes, we will define m = n− 1 to simplify the
treatment of the inner nodes.

We now see that by ordering the cells in our system in some practical way, we
can create a linear system with m2 unknowns where each cell pressure depends
on it’s nearest neighbours. By letting the ordering run in horizontal direction
from left to right, we can create a vector for the pressure unknowns

pi+jm = pi,j (1.33)

and in the same manner define a source term vector from the left hand side of
(1.31).

b̄i+jm =
∫

Ω

q
ρ

. (1.34)
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The integral over each cell can in practical implementations be solved using a
quadrature or for actual physical systems it can be sufficient to have cell wise
constant source terms, leaving b̄ as a simple reordering of the source terms
multiplied with h2.

Since p consists of the inner points of the grid, we must add inn the values
λ̄

y
i,j pi,j for defined values of pi,j ∈ ∂Ω to b̄ at the correct elements. This will be

the first m elements, corresponding to the influence from the upper edge, the
last m elements as the influence from below and every m-th element starting
from the first and the m-th element to handle the left and right edges. If we
denote this sum of Dirichlet boundary conditions and integral source terms as
b we finally have a linear system

Ap = b. (1.35)

Since each element is defined by the nearest neighbours, this matrix will have a
tridiagonal sparse block structure as shown in in Figure 1.1. In addition, since
we assume that transmissability between cells is symmetric, the matrix itself
will be symmetric.

Figure 1.1: Pentadiagonal sparse matrix for the finite volume 2d pressure solver
for a 4x4 system

The classical model equation for numerical methods is the Poisson equation.
Since our model equation (1.7) is very similar to the Poisson problem

∇2φ = f (1.36)

which could be seen as a special case of (1.7) for constant λ = 1. This can
be a useful sanity check: Since for example the five point stencil created using

12



finite difference methods gives rise to a symmetric sparse block tridiagonal
matrix, we can see that we are on the right path. While this is fairly trivial for
the volume method itself, as it has been stated many times before in teaching
materials, it can be useful when testing our solver implementation: A sanity
check would be to pass inn constant values for λ; If the resulting solution is
significantly different from the Poisson solution, something is obviously wrong!
It is also worth noting that applying FDM and FVM will both result in the same
equation set for this problem: The two perspectives coincide and the difference
scheme is conservative.

For equidistant nodes, this scheme is consistent [Aav04],

lim
h→0

e(u)
h
→ 0, (1.37)

where e(u) is the error from the real solution. It is also stable under the l2 norm

‖x‖ =
√

∑i x2
i , which by the Lax equivalence theorem [LeV07] means that it is

convergent.

13



Chapter 2
The Multiscale Finite Volume
method

2.1 The Multiscale approach

While there exist schemes for solving pressure and transport problems to an
arbitrary degree of precision, this is often not feasible or practical. A typical
physical problem requiring pressure and transport calculations would be an oil
reservoir where oil and gas is layered in between different types of rock and
sand. The geological complexity can be immense: Changes in rock type can
vary on a very small spatial scale, requiring a very high resolution to capture
all the details required for fluid transport. Since reservoirs typically can be
several kilometers long, it is anything but trivial to compute fluid transport
even with methods that always converge to an accurate solution.

To alleviate the need for solving these extremely large systems in full detail,
multiscale methods have been developed. The key idea of the multiscale ap-
proach in reservoir simulation is that the pressure and transport, while tightly
connected, have different requirements. The pressure has weaker dependency
on the global changes in permeability than the fluid flow; this can be exploited
by making a lower resolution pressure solution before calculating fluid trans-
mission from the resulting pressure. For the MsFV-method, this is done by
constructing basis functions for the pressure which try to capture the varia-
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tions small scale permeability by solving a series of local problems with dif-
ferent pressure configurations. This is advantageous because solving several
small problems may both be quicker and scale better than a single big problem,
and because the process can be made highly parallel, optimal for modern tech-
nology like multi-core computers, distributed computing and scientific GPU-
environments like CUDA where memory is distributed and a high degree of
parallelism is required.

2.2 The method summarized

Since we will soon describe the MsFV-method in great detail, it will be useful
to have a short statement of the different steps without describing all details:

1. The method first solves many small unit pressure problems distributed
over a coarse grid to obtain a pressure basis. Each block covers a subdi-
vision of the fine cells.

2. These basis functions are then used to estimate the flux in another coarse
grid, which is shifted compared to the previous grid from unitary pres-
sure so that the old corners become the center points.

3. By applying conservation laws, these fluxes can be used to find the pres-
sure on the coarse grid

4. The basis functions found in step 2 can then be scaled with these pressure
values to find a pressure value in all fine cells.

5. Another set of problems can be solved using the flux from the initial
pressure solution to get another pressure solution giving conservative fine
flow.

2.3 Grids

At the core of MsFV-method, there are several grids which must be fully un-
derstood to be able to implement the method:

Definition 1. Ω is the problem domain, defined as a number of connected fine cells
spanning the entire domain.

15



Definition 2. Ω̄ refers to the coarse grid which covers Ω. The coarse blocks each
contain a subdivision of the fine underlying grid. On figure 2.1 this is defined by the
thick black lines with the corner nodes xi marked by black squares. For a block ∈ Ω̄ we
will use Ω̄i

Definition 3. Ω̃ is the dual volumes created by the polyhedron found by taking the
geometrical center points of the coarse volumes. On figure 2.1 the dual coarse grid is
defined by the blue lines with the corners (primal center nodes) xk marked in red.

It is important to note that while the illustrations for simplicity show an equidis-
tant grid with right angles, there are no such restrictions on the method itself.

2.4 Basis functions

The MsFV-method relies on constructing several basis functions which are de-
fined on smaller subproblems of the main problem. The basis function φk

i is the
solution of the reduced homogeneous problem

−∇ · λ∇φk
i = 0 on Ω̃i, φk

i = νk
i on ∂Ω̃i (2.1)

For all coarse blocks Ω̃i in the dual coarse grid block Ω̃. The boundary con-
ditions on the edges/faces of each cell are themselves solutions of the same
equation for a lower dimension:

−∇ · λ∇νk
i = 0 on F (2.2)

b

b b b

b

bb

bb

r r

rr

xk

xi

Figure 2.1: Coarse grid and dual coarse grid illustrated.
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with the boundary condition νk
i (xl) = δlk on the edges F. For three dimensions,

this requirement becomes a linear interpolation along the edges of each face.
The i index refers to the primal grid corner node xi which is at the center of the
current dual cell and the k index refers to the dual grid corner node xk where
pressure is set to one. This implies that we will get two basis functions per dual
block in 1D, four in 2D and eight in 3D to cover all corners. The basis functions
are defined to be zero outside each dual cell. The lower dimensional problem as
the boundary solution was originally proposed by [HW97] in their multiscale
finite element (MsFE) method as an alternative to the linear interpolation often
used in finite element formulations. As we will see later, having good pressure
solutions on the boundaries of the basis functions is important because we
will use the pressure basis solutions close to the boundaries to construct mass
balance equations to find the global pressure. The MsFV-method is closely
related to the MsFE-method described in [HW97], which uses basis functions
in a similar manner.

(a) (b)

Figure 2.2: The four basis functions (a) assemble into a single function (b) which
vanishes on neighbouring points

While the formalism quickly can get confusing with all the indices, the essence
is this: We will find solutions of the homogeneous pressure equation for each
dual coarse grid block with unit value at one corner and zero at the others. By
doing this for all dual blocks, we eventually arrive at a basis function for each
primary grid center point which vanishes at all other center points (compact
support in the same manner as FEM elements). Also, since the boundary con-
ditions on the edges overlap from neighbouring dual cell to the next, we have
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Figure 2.3: 1d solution of the pressure equation to be used as a boundary for
the 2d solver.

over the edges continuity for all i for a given k. The basis functions for a single
corner point xk can then be added together to create a continuous function for
that specific primal cell center which vanishes at all other coarse nodes. This
assembly can be seen visualized in Figure 2.2b if the preceding description is
not clear.

For an example of how the pressure basis functions reflect the underlying per-
meability structure, see how the permeability distribution (along the xy-axis)
is reflected in the bumps on the corresponding basis functions above in Figure
2.4. It is also worth noting that for these homogeneous solutions of the pres-
sure equation, the solutions are monotonically decreasing from the high value
to the low: If there would be an increase in pressure somewhere in the path
from pressure 1 to 0 without any source terms the solution would be unphysi-
cal.

2.4.1 Correction functions

While the basis functions can be used to estimate flow from pressure on the
coarse nodes, it assumes no-flow along the edges of the coarse blocks induced
by any source terms. It also makes an assumption of flow along the edges
only depending on the pressure in the neighbouring coarse block centers. This
assumption can be violated by for example a high transmissibility value and
source terms on the edge of some block. To account for this we can solve the full
problem, including source term, on the dual block in almost the same manner
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as the basis functions φk
i :

−∇ · λ∇φk
i = q on Ω̃i, φk

i = νk on ∂Ω̃i (2.3)

with boundary condition defined in the same way.

−∇ · λ∇νk = q on F. (2.4)

Note that instead of setting the boundary condition for νk to the Kronecker
delta, we simply set it to zero at all corners since the correction function at-
tempts to capture the pressure contribution from the source terms.

2.5 Coarse pressure solver

By observing that the basis functions for each point xk are continuous when
summing over the different neighbouring dual grid cells, we can define

φk = ∑
i

φk
i . (2.5)

We are interested in the pressure solution in the multiscale approximation space
Ums = span(φk). The idea is that the independent pressure basis functions

Figure 2.4: The basis function reflects the underlying permittivity changes
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capture the influence of the local permeability structure and that for a solution
{pk} of the global pressure defined on all primal coarse grid center nodes xk
we can write the solution for all points in the approximation space as

p = ∑
k

pkφk = ∑
k

∑
i

pkφk
i . (2.6)

Since the basis functions vanish at all but one xk we see that φk(xk) = pk, so
such a linear combination solution from the coarse solution will have the same
values at all the coarse nodes. The basis functions will act as interpolants,
giving a gradual transition between various coarse nodes while still reflecting
the underlying permeability.

We now have an extension from some coarse solution {pk} to the fine grid for
all nodes. The next objective is to obtain equations for finding such a coarse
pressure solution. The solution is set up mass balance equations defined by
(1.18) for every primal cell as induced by the pressures {pk} when applied to
the basis functions. The index for some cell in the primal coarse grid Ω̄ will be
l, following convention from [LAKK].

We can formulate the flux out of primary coarse grid block Bl induced the
pressure differential over the block edge by basis function φk as

fk,l =
∫

∂Bl

n · λ∇φkds. (2.7)

This again leads to the mass balance equations for each cell Bl

∑
k

pk fk,l =
∫

Bl

q. (2.8)

There is one unknown pk for each block on the primal grid so that we have
a sufficient number of equations to determine the pressure for all the coarse
nodes.

2.6 Interpolating the coarse pressure field

Once we have solved the small linear equation set for the pressure, we can use
the basis functions to find pressure values in all fine cells simply by adding
together the basis functions multiplied with the corresponding coarse pressure
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values. Since the basis functions φk capture the local variations in transmissi-
bility in their local domain, the idea is that this linear combination will give a
good approximation of the much more computationally intensive solution on
the fine cells.

2.7 Fine flux reconstruction

The reconstructed pressure will be continuous and the pressure solver is fully
stand alone. However, while the reconstructed pressure is continuous, it will
not be smooth; A naive attempt to calculate fluid velocity using some approxi-
mation of

u = −λ∇p (2.9)

may result in non-conservative flow across the edges of dual grid blocks at the
fine level since the pressure only has piecewise continuous derivative, with a
discontinuity at the edges. This is a problem because the primary motivation
for using a finite volume method its conservative properties.

We can construct a new set of basis functions, commonly referred to as the fine
scale basis functions, to resolve this fine flow. This consists of simply solving
the full problem (1.7) in each primal coarse block Ω̄k with the flux from the
original pressure solution as the boundary condition. Source terms can be
handled in different ways, one of which being to simply distributing the source
terms inside the block equally. This leads to another set of pressure values
which coincide along the edges of primal cells and can be used with some
discretization of (2.9) to find the flow. While this new pressure makes the flux
continuous, it can theoretically make the pressure discontinuous, so this step
should only be done if we are interested in the fluid velocity.

2.8 Variants

Since the MsFV-method was introduced in 2003, there have been a multitude
of papers published on the method, its advantages and disadvantages. The
method has also been extended to overcome weaknesses and variants proposed
to handle different types of problems. This section summarizes some of the
more important developments.
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2.8.1 Iterative and adaptive formulation

The biggest weaknesses of the original formulation [JLT03] are the error aris-
ing from the decoupling of the local problems and the basis functions’ inability
to handle complex flow from small wells and other features not captured by
the basis functions. The assumption is that the reduced one dimensional prob-
lem along the edges will be sufficient to estimate the pressure along the edges.
However, this decoupling fails for problems solved in highly anisotropic het-
erogeneous mediums [LJ07]. Intuitively this isn’t hard to understand: If the
pressure problem could be approximated well by a series of lower dimensional
problems everywhere, the influence from changes in pressure would only be
constrained to a small local neighbourhood, something which isn’t the case.
There are, however, ways of overcoming this problem: In [HJ11] a solution was
proposed where the correction functions remove errors in the solution. By us-
ing an iterative approach, parts of the pressure field not captured by the basis
functions can be estimated and added to the solution.

The central idea is to calculate the correction functions normally during the first
iteration and when the pressure solution has been assembled apply a smoother
of the form

uj+1 = uj + B( f − Auj). (2.10)

This smoother will typically be some cheap iterative linear solver (Jacobi, Gauss-
Seidel) which could theoretically solve the full problem with sufficient itera-
tions. While the solver could be used to solve the entire linear system for the
full problem with a large amount of iterations, it is instead applied a few times
to the MsFV solution to smooth out the solution and correct the pressure along
the edges of the dual blocks as shown in Figure 2.5. Since the error will be
greatest on the edges of each Ω̃i, a few iterations of a smoother can improve
the pressure in those areas based on the neighbours fairly quickly.

When the smoother has been applied, this solution is then used as a boundary
condition for a new set of correction functions. The coarse pressure can then be
solved with the new correction flux, without the need to regenerate anything
but the b vector since the correction functions only influence the right hand
side of 2.8. The smoother can then be reapplied and the process repeated to get
gradually better solutions. This approach was first described in [HBHJ08].

This approach makes the MsFV-method into something closely resembling the
successful multigrid methods used for similar problems, described in [Saa03],
which also use both smoothing, restriction (coarse system) and prolongation
(here described as the interpolation) steps.
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(a) Before iterating (b) After 1 iteration

(c) After 5 iterations (d) After 50 iterations

Figure 2.5: The iterative MsFV-method reduces error on coarse cell edges. Fig-
ure from the pre-master project.

Since these iterations are dominated by the computations required to recom-
pute the basis functions in each step, it can be useful to calculate which basis
functions need to be recomputed. In [HJ11] some methods of deciding which
functions to update are described.

One thing to consider is to calculate the residual of the solution,

R = Axi − b, (2.11)

where xi is the solution vector after step i. This can then be used to identify
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fine cells with large errors using

|ri|
‖R‖ > εa. (2.12)

This can also be applied to the right hand side of the coarse pressure system
2.8 (q)

1
1 + εb

<
qn

q∗
< 1 + εb, (2.13)

and to the mobility λ
1

1 + εb
<

λn

λ∗
< 1 + εb. (2.14)

In both the preceding equations n denote the current state and * the previously
updated state. Note that the consideration of the mobility is only required in
multiphase systems where the relative permeability of a cell can change.

Once we have identified these critical fine cells, we can then update as needed
the corresponding correction functions (and basis functions for the multiphase
case) during the next iteration. If an block contains a critical fine cell, the
corresponding functions are updated.

2.8.2 Extension to multiphase problems

The MsFV-method is fairly straight forward to extend to multiphase problems.
The main difference from the single phase model is that the basis functions
must be regenerated every time step, because the local relative permeability
depends on the different phases. [HJ09, JLT05]. While this has an increased
computational cost, multiphase problems are in general more computationally
intensive.
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Chapter 3
Operator formulation of the
Multiscale Finite Volume
method

3.1 Introduction

An interesting development in research on the MsFV-method is the formula-
tion of the method as a set of operators on an linear equation set described
described in [ZT08], [NB08] and [LTL10]. This version formulates the method
as a set of operators which act upon the full linear system created using some
discretization of the pressure problem, and not as a method that solve the pres-
sure problem directly. This formulation is especially interesting since it makes
the implementation and deployment of the multiscale solver into an already ex-
isting framework easier: The sometimes very complex code used for generation
of equation sets for commercial reservoir simulation software does not have to
be modified to enable a multiscale solver - rather, a new solver is implemented
which acts on the linear equation sets generated, without much knowledge on
how the systems themselves are generated.

The operator formulation itself is just another perspective on the same method,
but it has some useful observations about the linear algebra involved, for exam-
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ple how the resulting equation sets can be efficiently solved using the General-
ized Minimal Residual method (GMRES). In addition to this, it makes extension
to complex grids much easier if a dual grid can be created. For this thesis, the
goal is to adapt the operator formulation to the MATLAB Reservoir Toolbox
(MRST).

The notation and treatment here mirrors [ZT08] and [LTL10] closely, while aim-
ing to make the material more available by being more explicit than the articles
have room for.

3.2 Notation and preliminaries

The operator formulation starts with some linear equation set

Au = r, (3.1)

similar to the one described in Section 1.2. This equation set typically has the
pressure as the unknown u and a right hand side r describing the influence
from source terms and boundary conditions on the mass balance. The matrix
A represents the influence from the different cells on each other.

The key insight in the operator formulation is that if we categorize unknowns
according to whether they are on coarse center nodes, internal and inner nodes
(see Figure 3.1) of the dual grid, the rest of the method implementation does
not need any geometrical understanding of the geometry. In the original for-
mulation, the algorithm must revisit the geometry numerous times in assem-
bling and applying the basis functions, which can lead to many special cases
and difficult implementation. In the operator formulation, this is handled by
letting the topological information in the system matrix A handle most of the
geometry.

Inner, edge and center nodes will be denoted by indices i, e and n respectively.
Center nodes refer to the geometric center nodes of the primal coarse blocks,
edge nodes are the nodes situated on the edge of each dual block and inner
nodes are the rest of the nodes. All nodes can be categorized according to this
partitioning scheme,

I f = In ∪ Ie ∪ Ii. (3.2)

26



3.3 Permuting the system and breaking symmetry

An important part of the operator formulation is the use of permutation matri-
ces.

Definition 4. A permutation matrix consists of row vectors ei where element j is δij
and each ei is unique:

P =


ei1
ei2
...

ein .

 (3.3)

Since each vector ei is unitary and only non-zero in position i, for some arbitrary
vector v ∈ Rn Pv has the same values as v: The elements are simply moved to
other positions (the elements need not move, as by our definition the identity
matrix is an example of a permutation matrix). This can be seen intuitively by
appealing to the algorithm of matrix-vector multiplication:

(Av)i =
n

∑
k=1

Aikvk, (3.4)

which with A = P would become
n

∑
k=1

Pikvk =
n

∑
k=1

δkjvk = vj, (3.5)

such that each row Pi picks one element from v and places it in place i. A
well known result is that permutation matrices can be inverted by transposing:
P−1 = PT .

When solving systems of linear equations in PDE applications, the ordering of
the points is fairly arbitrary. If nodes are ordered left to right or top to bottom
according to the topology should not affect the solution of the linear system1.
This can be shown by applying a permutation matrix to the left hand side of
(3.1).

PAu = PAP−1Pu = PAPTPu = Pr (3.6)

If we then denote a specific permutation matrix as P̃ and P̃AP̃T = Ã, P̃r = r̃
and P̃u = ũ we arrive at a permuted system

Ãũ = r̃ (3.7)
1It can however sometimes alter the structure of the system matrix in a way that is beneficial for

linear solvers

27



Figure 3.1: The example grid showing inner (orange), edge (blue) and center
(green) cells

(a) (b)

Figure 3.2: The original system using left-right ordering (a) is permuted accord-
ing to cells’ status as inner (orange), edge (blue) and center (green) (b) based
on the grid in 3.1

In our case, P̃ will be defined so that the system is reordered according to (3.2).
This will result in a system where the inner nodes are ordered first, then the
edge nodes and last the central nodes. Since the same equations define the
same nodes in the permuted system, this has some interesting implications for
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the permuted system matrix,

Ã =

 Ãii Ãie 0
Ãei Ãee Ãen
0 Ãne Ãnn

 . (3.8)

The first subscript of each block here signifies which category influences the
mass balance equation and the seconds subscript indicates what category is
being influenced. For example, the block Ãie contains the influence the inner
node pressures have on the edge nodes’ pressure. Note that the zero blocks
arise from the assumption of a five point stencil where no central nodes influ-
ence inner nodes and vice versa.

Currently (3.8) represents a system where nodes influence each other in a fully
symmetric way. The first step towards the operator formulation is to break this
symmetry by removing the influence of the inner nodes on the edge nodes and
similarly make central nodes unaffected by edge nodes (Aei = 0, Ane = 0). This
mirrors the approach in Section 2.6, where the algorithm extrapolates from
the coarse pressure solution using basis functions constructed from the edge
pressure. Of course, this symmetry breaking is not cost free; It places higher
importance on some nodes relatively to others and as we will see, for highly
anisotropic mediums and difficult geometries this can be problematic for the
quality of the solution 2. The reordered system is then

M =

Ãii Ãie 0
0 Mee Ãen
0 0 Mnn

 . (3.9)

Note that the diagonal blocks of self influence for edge nodes and central nodes
has been replaced by a new set of matrices Mii and Mee.

Mee is defined by taking the influence on the edge nodes from the inner nodes,
Ãie and removing it:

Mee = Ãee + diag

[
∑

i
ÃT

ie

]
, (3.10)

which ensures that there is no mass balance loss to equations no longer in the
system. Following convention from [ZT08], diag is an operator transforming a
vector to a diagonal matrix. Mnn is a special case, as it forms the linear system
corresponding to the coarse pressure system, as in Section 2.5.

2For an example of a highly anisotropic case, see the Upper Ness layers in Section 7.6.1
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(3.9) will be denoted as the MsFV matrix and can be understood to define a
new linear system

Mũ = q =

qi
r̃e
qn

 . (3.11)

This redefinition as a new system is not strictly needed to implement a pres-
sure solver, but it will be useful when implementing the method as a iterative
method to increase the accuracy of the method.

3.4 Solving the decoupled system

Because this system is upper block triangular we can, without any prior knowl-
edge of the algorithm, use block elimination to find an explicit inverse. How-
ever, to make the connection between the previous formulation of the algorithm
and the operator formulation, we will split the inverse in two parts: One part
for the block which will influence [0 0 qn]T and one part for the influence on
[qi r̃e 0]T . This is because the solution for the coarse nodes, qn is an important
step of the algorithm.

If we name these components of the inverse B′ and C respectively we get

MM−1 = M(C + B′) = I (3.12)Ãii Ãie 0
0 Mee Ãen
0 0 Mnn

a d 0
b e 0
c f 0

+

0 0 g
0 0 h
0 0 i

 =

 I 0 0
0 I 0
0 0 I

 (3.13)

If we first solve for B′ we get the equations

Meeh + Ãeni = 0 (3.14)

Ãiig + Ãieh = 0 (3.15)

Mnni = I (3.16)

Solving this system is a simple process of backwards substitution and gives

B′ =

0 0 Ã−1
ii Ãie M−1

ee Ãen
0 0 −M−1

ee Ãen
0 0 Inn

M−1
nn (3.17)
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Solving for C is also mostly trivial:

Ãiia + Ãieb = I (3.18)

Ãiid + Ãiee = 0 (3.19)

Meeb = 0 (3.20)

Meee = I, (3.21)

which gives

C =

Ã−1
ii −Ã−1

ii Ãie M−1
ee 0

0 M−1
ee 0

0 0 0

 (3.22)

If we use the assumption that B only influences qn we can write the solution of
(3.11) as

ũ = BM−1
nn qn︸ ︷︷ ︸

Interpolate coarse solution

+ Cq︸︷︷︸
Correction functions

(3.23)

When armed with knowledge of the MsFV-method in its original formulation,
it becomes apparent that this corresponds to solving a coarse system M−1

nn qn
for pressure values in the coarse nodes and then interpolating the solution us-
ing the interpolation matrix B, which is reflected in the structure of B itself: It
maps coarse pressure to the coarse nodes using an identity matrix, and then
maps central nodes’ influence to the edge pressure, which is then reused to
extrapolate to the inner nodes. C represents the correction functions and han-
dles handles effects not captured by the basis functions, for instance complex
behavior from wells. The difference between the correction functions and the
interpolated solutions can be seen in Figures 3.3a, 3.3b and 3.3c.

3.5 Coarse pressure system

To solve the coarse system
Mnnũn = qn, (3.24)

we need a way to assemble the flux contribution across the edges of primal
coarse blocks as done in Section 2.5 into a right hand side qn as well as find
Mnn.

To do this, we define the control volume summation operator χ. χ has one row
for each block Ω̄i and does the summation of values corresponding to fine cells
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Figure 3.3: The interpolated (a) and corrected (b) solutions of a problem with
mixed boundary conditions and two pressure wells combine to the final solu-
tion (c).

inside this block. To achieve this, it is defined as

χik =

{
1 when xk is inside Ω̄i

0 otherwise
(3.25)

When applied to a vector each row can be seen as looping over all cells and
picking the values from those inside that rows coarse block. As all operators, it
may or may not be beneficial to implement it as an actual matrix.

Taking (3.23) and inserting for ũ in (3.11) while applying the control volume
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summation operator we get

χÃũn = χÃBũn + χÃCq = χr̃ (3.26)

Since this is the same mass balance we formulated in (3.24) we can select

Mnn = χÃB, (3.27)

and finally by rearranging the terms so Mnn is on the left hand side;

Mnnũn = χr̃− χÃCq = qn. (3.28)

When we have a solution ũ it is important to permute back to the original
ordering to make sense of the results for plotting and analysis: Since the inverse
of a permutation matrix is its transpose, we simply write u = P̃Tũ

This is sufficient for the pressure solver, but an additional step is needed for
finding a suitable field for flux construction. Note also that in Section 3.7 addi-
tional steps for an iterative smoother is presented.

3.6 Constructing a conservative fine flux field

To reconstruct a conservative fine flow field, we must produce another permu-
tation matrix P̄. P̄ orders the unknowns based on which primal coarse block
Ω̄i it is in. All unknowns corresponding to block i will come in order and again
we define a permuted system

Ā = P̄AP̄T (3.29)

ū = P̄u (3.30)

r̄ = P̄r. (3.31)

An example of Ā can be seen in Figure 3.4 with green marking the coarse
blocks. The idea is to use Neumann boundary conditions on the coarse pri-
mal elements based on the pressure solution in the previous section. Since the
coarse problem (3.24) is constructed to ensure mass balance between each Ω̄i,
the system is conservative over the coarse blocks. From this solution we can
then construct a fine conservative flow by taking the current flux over each
primal boundary as the boundary condition for each local problem. Since the
discretization is assumed to be a FVM discretization leading to conservative
flow, the resulting solution will be conservative at all cells. However, as the
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Figure 3.4: The system permuted by P̄ so that the grid is lexicographic in the
primal blocks

boundary is strictly a restriction on the magnitude of the flux and not the pres-
sure value itself, the reconstructed solution is not guaranteed to be a continuous
in terms of pressure.

For this operation, we will need the block diagonal part of Ā which will be
referred to as ĀD. Each diagonal block represents the mass balance contribu-
tion of cells inside some primal block Ω̄i on other cells within the same block.
Analogously to the treatment of Ω̃, off-diagonal blocks refer to the contribution
from coarse blocks j 6= i and will be removed from the system. To remove this
influence, we must alter the diagonal of ĀD so that the nodes from different
coarse blocks have no more influence:

D = ĀD − diag

{
∑

j
Ājk − ĀD

jk

}
. (3.32)

In other words, we subtract the sum of the off-diagonal elements from the
diagonal. Note that while [ZT08] and [LTL10] uses a plus sign in (3.32), this
will lead to the wrong results when implemented.

This leads to a new problem,

Dū = r̄− (Ā− D)P̄u. (3.33)

where the right hand side is local problems for each primal block Ω̄i and the
right hand side represents Neumann boundaries leading to continuous flux
using the pressure solution.
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Note that this step is optional and is not required when only interested in the
pressure solution.

3.7 Multiscale iterations

Since the solution of the multiscale solution in general does not coincide with
the full solution, there is some interest in being able to improve the solution to
an arbitrary degree of precision without incurring a heavy computational cost.
The operator formulation is no exception, and in [LTL10] several approaches
for converging to the correct solution were considered. We will consider both
MsFV-iterations and one of the more promising smoothers.

3.7.1 MsFV iterations using GMRES

To construct an iterative method from the MsFV-formulation, a new solution
should have source terms corresponding compensating for the localization er-
ror made when formulating the method. The first step is to formalize the right
hand side of the multiscale system. The first terms, corresponding to the inner
and edge nodes are the same as for the original system r̃. The last terms in
the vector, however, will be the entries of qn which correspond to a flux in-
tegral over the edges of each Ω̄i. To create the resulting vector, we will use
R = [00Inn], an operator with the following properties:

RT

Vii
Vee
Vii

 =

 0
0

Vii

 (3.34)

RTR =

0 0 0
0 0 0
0 0 Inn

 (3.35)

It is then straightforward to define an operator Q so that

q = Qr̃, (3.36)

by using the properties of R along with the definition of qn from Equation 3.28
to get

Q = I − RT R︸ ︷︷ ︸
Identity except the last n elements

+ RT(χ− χÃC).︸ ︷︷ ︸
Gathering the last n from qn

(3.37)
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Where n is the number of inner nodes. This operator transforms any right hand
side terms for the original system into an appropriate right hand side vector
for multiscale operator M.

If we have some solution ũν we want to improve, we can then add the residual
error as a new source term to get an improved solution ĩµ,

ũµ = ũν + M−1Q(r̃− Ãũν). (3.38)

In (3.38) the residual is the difference between the original right hand side and
the original system matrix multiplied with multiscale pressure solution. This
is a measure of the error inherit in the multiscale method when compared to
the original system, which is added to the system as a new multiscale solution.
This is potentially a fixed point iteration scheme when ĩµ = ĩν+1:

ũν+1 = ũν + ωM−1Q(r̃− Ãũν). (3.39)

We have here added an relaxation parameter ω which can be used to stabilize
the iterations by letting the increments be sufficiently small. To avoid delving
into iterative theory, we will simply note that this is a Richardson iteration with
preconditioner M−1Q. As noted in [LTL10], a better alternative is to solve the
problem using the Generalized Minimal Residual Method (GMRES), which is
both faster and converges monotonically to the exact solution.

3.7.2 Iterative smoothing

Instead of using the multiscale formulation for iterations, we can instead suc-
cessively apply a smoother. As mentioned in Section 2.8.1, the errors are os-
cillatory near the edges of coarse volumes and a smoother will then be able
to quickly remove large amounts of the errors. The resulting pressure with
the highly oscillatory errors removed can then be reused for another MsFV
iteration. [LTL10] suggests that the Dirichlet Multiplicative Schwarz (DMS) al-
gorithm gives good performance, but in principle any kind of cheap smoother
can be used.

The idea is to use the system permuted by the ordering in the primal blocks as
in Section 3.6 to construct ĀD and ĀU , where ĀU is the upper block diagonal
part of Ā. We then get the DMS iterations,

ūν+1 = ūν + ω(ĀU + ĀD)−1ūν. (3.40)
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As well as the Dirichlet Additive Schwarz (DAS) iterations,

ūν+1 = ūν + ω(ĀU)−1ūν. (3.41)

These iterations are obviously cheap; The system ĀU + ĀD is upper block Hes-
senberg and fairly inexpensive to solve.
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Chapter 4
The MATLAB Reservoir
Simulation Toolbox

4.1 Introduction

Actual realization of numerical models for reservoir simulation is a very com-
plex task. The software should ideally simultaneously implement modern
methods, quickly give solutions with a high degree of precision and be easy
to use. It is hard to achieve all these things at the same time, and choices will
be made. In this section some of the various standards will be presented, as
well as the reasoning behind the choices made in the Matlab Reservoir Toolbox
which will be used for a prototype implementation.

4.2 Types of grids

4.2.1 Cartesian grids

Uniform Cartesian grids are the most common type of grids in academic re-
search due to their ease of implementation for most methods. They consist of
equidistant nodes in each direction, forming squares in 2D and cubes in 3D.
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The grid spacing can also vary, for example if adaptivity is needed.

A simple Cartesian grid is shown in Figure 4.1.

Figure 4.1: An Cartesian grid with uniform grid spacing

4.2.2 Corner point grids

Corner point grids are the de facto standard for reservoir simulation, and can
be seen as a midpoint between cartesian grids and fully unstructured grids. In
corner point grids, the grid consists of "pillars" on which the corners of all cells
in the grid are defined. The pillars are ordered by their spatial position. This
gives much more flexibility than Cartesian grids when it comes to representing
for example faults.

An example, including a fault is shown in Figure 4.2.

4.2.3 Unstructured grids

Fully unstructured grids explicitly define cells by their points and neighbouring
structure. This means that any grid can be approximated closely, with the only
restriction being linear polynomials used for the edges. An example can be
seen in Figure 4.3.
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Figure 4.2: A corner point model with fault

Figure 4.3: A corner point model with fault

4.3 Grid and geometry representation in MRST

For the Matlab Reservoir Toolbox (MRST) the developers chose to represent all
grids in the same normalized format. No matter how complex the structure
may be, the data format is fundamentally the same. This has the advantage of
making it easy to implement a method for different grids: If the method works
on the unstructured grids in 2D and 3D, it will work for all the different grids
in the toolbox.

The downside of this choice is of course that there is a large overhead to repre-
senting any grid in a fully general data format. For instance, if we are to create
a 2D grid with NxN equidistant nodes we will require storage for all the node
positions, storage for all the cell faces in the system and the cells themselves.
Each cell will need storage for indices of its four faces, each face must store
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the indices of two nodal points and each node must store a tuple (x, y) for the
coordinates. In addition, a lot of additional data will be generated, like the
neighbour structure of the faces. If we were to just store the essential informa-
tion required to represent this grid, just the distance between two nodes, the
number of nodes in each direction and the coordinates of one corner.

The overhead is smaller for more complex grids and this approach has the
advantage of making new methods easier to prototype as only one grid datas-
tructure should be considered. A typical grid in MRST will be a struct, which
will have the following fields:

• cells containing cell data

• faces containing face data

• nodes containing nodes data

• cartDims shows, for Cartesian grids, the cell count along different axes.
Is a vector of length 2 and 3 in 2D and 3D respectively.

• type gives hints for the type of grid and what operations has been run on
it, for instance of face normals have been calculated.

• griddim is the dimension of the grid, a scalar 2 or 3.

All geometrical data builds upon the nodes structure, which is defined as

• num - a scalar describing the number of total nodes in the model

• coords - a num× griddim matrix where row i contains the coordinates of
point i.

The nodes contain all the positions in space for the grid. The faces struct
builds upon this, and relies on nodes for spatial positions.

• num gives the number of total faces in the model

• nodePos is an indirection map into the faces.nodes array. This means that
to lookup the coordinates of face i, we must access
faces.faces(faces.nodePos(i):faces.nodePos(i+1)-1) to find the in-
dices.
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• neighbors is an array num×2 long, where row i gives the indices of the
neighbouring cells of face i. 0 is given where the face has no neighbor,
for example on the edge of the domain.

• tag no current official usage.

• nodes - see nodePos for usage.

• normals contains the normal vectors for face i in row i. The orientation
of the normals when applied to a cell depend on the position of the cell
in the neighbor array.

• centroids contains the centroid for face i in row i.

• areas contains the area of face i in element i.

And again we can use the definition of the faces to create 3D cells, which are
defined in the cells struct:

• num gives the number of total cells in the model

• facePos is an indirection map into the cells.faces array. The usage is
analogous to the nodePos in faces.

• indexMap maps active cells to global cell indices.

• faces - this is where indices from facePos can be used to lookup actual
face indices.

• volumes contains the volume of cell i in row i.

• centroids contains the centroid for cell i in row i.

With variable number of faces per cell and nodes per face, this can be used
to construct any general grid under the assumption that any curved surfaces
can be accurately approximated using piecewise linear polynomials. MRST has
utilities for importing grids in common data formats, like .grdecl, the Eclipse
data format.
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Chapter 5
Implementation of the
MsFV-method

5.1 Implementation in the earlier project

Before writing this master’s thesis, a project was performed to gain a better
understanding of the method along with a literature study. The implementation
was done from the ground up in MATLAB, with two-point flux approximation
of permeability and only equidistant 2D grids being used. The implementation
used the original formulation, without any linear algebra required.

5.2 Primal grid

The first component needed to create a MsFV-implementation is a coarse grid.
There are several approaches for creating a coarse grid, but forunately for us,
MRST already has a coarse grid module which supports different partitioning
schemes for creating a coarse grid. We will use the existing routines for this
purpose.

The coarse grid module in MRST defines coarse grids in the same manner as
a fine grid. While not every aspect of a fine grid is duplicated - for instance,
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nodes for the coarse grid is implicitly defined via the fine grid - a lot of useful
information is contained in the module, for example routines for calculating
centroids, volumes and face areas.

5.2.1 Partition uniformly

The simplest partitioning scheme is the uniform partitioning scheme, called
by partitionUI which generates a coarse grid with a given number of coarse
volumes along each axis of the logical coordinates i, j, k. The resulting parti-
tions are approximately equal in size, following a load balanced scheme for
distributing the fine cells. An example is shown in Figure 5.1b.

5.2.2 Partition by layers

Multiscale solutions usually aim for some degree of homogeneity inside each
coarse block. To achieve this, a uniform partitioning scheme is not always
suitable. For example, when faced with a layered permeability distribution
such as the one found in sedimentary rocks, it can be useful to let the natural
layers disconnect each set of coarse blocks. An example of this can be seen in
Figure 5.1c, where the function partitionLayers is used to partition the grid
with the permeability distribution shown in Figure 5.1a into different layers.

5.2.3 Process partition

Partitioning the grid using logical indices is useful because it is fast and geom-
etry independent, but since blocks which are logically next to each other can be
physically separated near for example faults, MRST provides a routine to han-
dle this situation. For example, the coarse grid in Figure 5.1c has coarse blocks
which are divided in two by the fault, but are still categorized as the same
block. This can be seen by the colors in the different layers near the fault. After
a call to processPartition, the disconnected blocks have been reassigned a
new index, and the number of partitions has increased from 60 to 72.
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(a) Permeability setup (b) Results for partitionUI

(c) Results for partitionLayers (d) Results after processPartition

Figure 5.1: Outputs from the MRST coarse grid module

5.3 Dual grid

While a dual grid is trivial to define for simple grids such as the one shown in
Figure 3.1, defining a dual grid for more complex structures is difficult. The
intuitive definition of a dual grid,

Definition 5. For some grid Ω̄ let the geometric center points of each block i be x̄i.
The dual grid, Ω̃, is defined by letting x̄i from neighbouring coarse blocks be connected,
and letting this partitioning of the domain represent a grid.

Creating a fully realized dual grid using this definition for general unstructured
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grids is hard. If the domain is not a convex set, a dual grid created by this
definition is not always well defined:

Definition 6. A set is convex if ∀ points pi, pj ∈ Ω if the points defined by

(1− θ)pi + θpj (5.1)

∀θ ∈ R(0, 1) are also all found in Ω.

This is apparent from Figure 5.2, where a non-convex domain of three coarse
triangular elements give rise to a dual grid which exists outside of the domain
(marked in blue). This is of course highly unwanted, as the permeability field
may be undefined there and the dual element may cross over restrictive bound-
ary conditions.

Fortunately, the operator formulation of the MsFV.method described in Chapter
3 only requires an ordering of nodes into central (In), edge (Ie) and inner (Ii)
nodes for the dual grid to work. Ordering each fine cell to a specific coarse
block is only required for the primal grid, which simplfies the generation of
both grids significantly:

We can use existing modules to generate the primal grid Ω̄, since generating
coarse grids is an operation common to many multiscale and upscaling meth-

bb

b

b b

Figure 5.2: A straightforward interpretation of the dual grid can fail for non-
convex domains
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ods. From this we can use Definition 5 and subdivide each coarse block into
different categories. There are some challenges to this approach:

1. How do we ensure that the edge cells across different Ω̄i are connected
over the boundary? If this fails, the blocks of system matrix will not be
disconnected and the solver will solve an almost full system.

2. How can the solver handle non-neighbouring connections where the log-
ical neighbour is not the physical neighbour, for instance when the prob-
lem has faults?

Several approaches were considered for the generation of grids. For 2D, the
grid generation is simple: We can for example use a shortest path algorithm on
the graph of the system matrix A from Ω̄is center to its face centroids. If we
choose a simple unit cost for each node traversal or weight it according to the
corresponding cell permeability, we will get the correct grid for unstructured
2D cells. In 3D, however, this fails because the generalization of a general line
is a surface and this has an geometric interpretation which is hard to implement
for graph algorithms. Ensuring that the dual blocks Ω̃i are closed,

Definition 7. A dual block Ω̃i will be defined as closed iff no fine cell Ωk ∈ Ω̃i
categorized as an inner cell Ii is connected through the system matrix A directly to a
Ωj ∈ Ω̃h 6=i also categorized ∈ Ii.

is a big challenge. Since unstructured grids can have a potentially very high
number of faces in special cases, this is not necessarily always achievable. When
starting the work on the possible partitioning schemes, several requirements
were designed:

1. The scheme should partition simple right angled Cartesian grids correctly.
This is the simplest goal, but it is still important as any scheme which fails
on Cartesian grids are bound to fail on more complex grids.

2. The scheme should handle non-neighbouring connections

3. The scheme should have low computational complexity to ensure fast
grid generation

4. All the required data should either be easy to compute or already exist in
MRST routines for geometry
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(b) Angled fault grid

(c) A coarse block subset of real geometry

Figure 5.3: Test grids for partitioning schemes with the coarse blocks in differ-
ent colors.

5.3.1 Planar partitioning scheme

Since the MsFV-method using the operator formulation only considers geom-
etry during the generation of the coarse grids, it was important to construct
a scheme which would correctly partition simple Cartesian grids to begin the
implementation. If the solver is implemented using encapsulation so that the
partitioner is independent from the rest of the solver, it is easy to test out new
algorithms without changing the rest of the solver.

The planar scheme is based on the assumption of each coarse block Ω̄i will be
close to a right angled hexahedron. The scheme will still produce results for
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other types of coarse blocks, with varying degrees of accuracy.

The algorithm picks a pivot point which is some corner of Ω̄i. In MRST the
coarse grid is not a fully defined grid with corners, but is rather defined by
the fine cells which spans the block. To find a pivot point, we simply extract
all the points corresponding to corners of fine cells on each surface of Ω̄i. We
then select an arbitrary surface and find the set difference with the points from
other surfaces until we are left with a single point and three surfaces which are
each other’s neighbours in 3D space. While we are theoretically guaranteed to
always find such a point when working with true 3D grids, occasionally special
cases generated by MRST can fail this selection process. The algorithm detects
this, and restarts with a new coarse face if the process fails to find a pivot after
checking all neighbouring surfaces for a pivot point.

To ensure that the volume of each Ω̃i will be of the approximate same size as
each Ω̄i and that the edge nodes will be connected to edge nodes from the
neighbouring Ω̃i, the centroids of the coarse faces will be used in the partition-
ing scheme. The three coarse neighbour face centroids define, pairwise along
with the coarse block volume centroid, a plane which divides a cube in two
parts of equal volume.

We will use a particular definition of a plane for this purpose,

Definition 8. For a vector normal to the plane N and a single point p0 on the plane,
the plane itself is defined as the set of all points p for which

N · (p− p0) = 0. (5.2)

While this form can verify if a point is on the plane, it also has an additional
benefit: The sign of (5.2) when evaluated for points not on the plane will signify
which side of the plane a point is situated in. This is apparent if we consider
the definition as a dot product: The sign of the solution will depend on the
angle between the vector from the plane point to the point under consideration
and the normal vector because

a · b = ‖a‖ ‖b‖ cos θ. (5.3)

This leads to the points being on the plane when this angle is π/2. Since
cos(π/2+ dx) is negative and cos(π/2− dx) is positive for small perturbations
dx, taking

s(p) =
n · (p− p0)

|n · (p− p0)|
= sign(n · (p− p0)). (5.4)
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on a set of points will classify their position relative to the plane.

The edge cells Ωh ∈ Ie will be any cells intersected by these planes. Since each
cell is comprised of points we can identify the fine cells Ωk inside Ω̄i intersected
by each plane using (5.4) on the set of points pj ∈ Ωk:

Category of Ωk =


In if the centroid of Ω̄i is inside Ωk

Ie when
∣∣∣∑pk∈Ωk

s(pk)
∣∣∣ < N

Ii otherwise

(5.5)

Where N is the number of points defining the cell 1. The sum for Ie gives
the correct answer because |s(p)| = 1∀p so that the absolute value of the sum
will equal the number of points in the cell if all points are on the same side of
the plane. In Figure 5.4b this process is shown in the xy-plane along with the
resulting categories of the fine cells.

This scheme obviously work for hexahedral coarse blocks in Cartesian grids:
Since the cubes have equal faces, any choice of pivot will result in three faces
with orthogonal normal vectors. This result of the algorithm on a single coarse
block is shown in Figure 5.5a, with the three face centroids shown in red and
the block centroid shown in green. When several of these blocks are assembled
together as shown in Figure 5.5b, the centroids of the faces coincide across the
coarse blocks, and the dual grid can be seen intersecting the different primal
blocks (in different colours).

However, there are some obvious problems with this scheme: The pivot point
is arbitrary and for more complex geometrical structures, the scheme can fail
to partition the domain correctly. Potentially, for a special case primal grid
block, the pivot can be a point where three almost parallel faces meet and the
partitioning scheme will generate three planes which are very similar. There is
also the issue of centroids only matching on three faces - while we know that
the faces will start at a suitable point, there are no guarantees that they will
end up somewhere reasonable.

Cartesian block

The Cartesian test case from Figure 5.3a is shown in Figure 5.6a. As expected,
the results are good: The planes connect across edges of primal blocks and a

1This also works mathematically if we define the sum over all points inside the fine cell, but this
is impossible to actually implement.
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right angled primal grid gives a right angled dual grid. The only problems
observed for this test case is that with certain grid sizes the scheme ends up
creating faces of coarse blocks two blocks thick. However, as seen in Section
7.4, this is not much of a problem in terms of solution quality and is pretty
much unavoidable for more complex grids.

Sloped fault

The sloped fault, which was shown in Figure 5.3b, has unsurprisingly correct
partitioning for the right angled blocks. However, near the fault, the sloped
edges cause problems for the algorithm and the scheme fails as shown in Fig-
ure 5.6b. Why does the planar scheme fail near the fault? The answer lies in the
definition of the primal grid in MRST: Along the fault, each coarse block has
more than six faces to ensure that each face only touches two coarse blocks. The
algorithm then chooses pivot points without being able to distinguish between
the faces and the planes along the xy-plane then have seemingly arbitrary cen-
troids as starting points. Because the grid is no longer right angled at all faces,
the planes nearly parallel to the xy-plane end up not connecting at any primal
faces at the fault.

This is a situation typical of real geological models where it is impossible to
create a right angled coarse hexahedron and still preserve the complex under-
lying geometry. Having small coarse faces on the edges where the surface is
non-smooth is to be expected, and should be handled by the dual grid scheme.

Realistic subset

In the realistic reservoir model subset originally shown in Figure 5.3c, the pla-
nar scheme produces very bad results (Figure 5.6c). The pivot choice is unfor-
tunate and results in the three nearly parallel coarse faces which then leads to
three partitioning planes intersecting the same fine cells. The results of such
failures can be disastrous, leading to anything from reduced solution accuracy
to singular systems.

Conclusion

To summarize the planar algorithm, it is important to note that this is a first
attempt towards generating dual grids. It is a failure for typical unstructured
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grids, but handles the basic Cartesian grid very well. This was significant be-
cause it enabled the development and testing of the rest of the MsFV-method
on regular grids before revisiting the partitioning problem later. Since the par-
titioning scheme is the only part of the module which requires geometrical
handling, it is easy to swap in another scheme if the code is well structured
and developed with encapsulation in mind.
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(b) The plane categorizes fine cells

Figure 5.4: (a) shows a typical coarse block along with the pivot node and the
three faces selected by the planar partitioning algorithm. (b) shows how, in an
2D cutout, the planar algorithm will categorize fine cells.
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(a) Planar partitioning on a single coarse block (b) Planar partitioning on four coarse blocks

Figure 5.5: The planar algorithm on simple right angled Cartesian grids
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(a) Simple cartesian grid (b) Angled fault grid

(c) A coarse block subset of real geometry

Figure 5.6: Results for the planar algorithm

5.3.2 Improved planar partitioning

Because the planar partitioning scheme had problems handling discontinuous
features typical of realistic grid models, another scheme was created which
sought to ensure that the planes would be connected across all main faces of
the primal block Ω̄i. The assumption of the algorithm is that each coarse block
has, when visually inspected, roughly six main faces. The algorithm should be
able to identify these main faces and ignore small faces which are close to each
other.
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Improved selection algorithm

The first step of the new algorithm is the Improved selection algorithm:
for all Blocks Ω̃i ∈ Ω̃ do

Set normal vectors to be oriented outwards from Ω̃i
Find face T1 (Top) and T2 (Bottom) using maximum and minimum of the
face normal vectors’ z-components respectively
Sort the remaining faces by area and select the four largest for further
processing
Select one of the four faces arbitrarily and denote it A1. Find A2 by

max(arccos(Nxy
A1
· Nxy

Fi
))

where Nxy
Fi

are the x & y components of the normal vectors of the three
remaining faces.
The remaining two faces are B1 and B2.

end for

This algorithm finds six faces of Ω̃i and matches them up so that they are
hopefully opposing each other. By selecting the minimum and maximum of
the normal vector z-components for the top and bottom (the normal vectors
are unitary, ‖N‖ = 1) we exploit the fact that most realistic grids seem to have
well defined top and bottom faces.

However, the same approach is not successful for the other four faces: We
cannot know of the coarse faces will be aligned with any axes. Therefore we
simply pick the four largest faces (to ensure that we do not pick degenerate
faces) and maximise the angle in the xy-plane between them using arccos on
the dot product of the Nxy

Fi
vectors. This approach will identify the correct faces

if the coarse partitioning scheme results in approximately Cartesian blocks.

Two examples illustrate this: Since the algorithm chooses four faces weighted
by area before maximizing the angle between them, the algorithm will work for
some coarse blocks, exemplified by Figure 5.7a where the pairs (red and green)
are selected correctly. The same step applied to a coarse block with two faces
comprised almost entirely of smaller faces will result in a bad choice of coarse
faces as seen in Figure 5.7b.
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(a) Selection algorithm succeeds be-
cause the largest faces are opposing
each other

(b) Selection algorithm fails because the four
largest faces are not opposing each other.

Figure 5.7: A 2D cut-out showing coarse blocks for which the improved selec-
tion algorithm selects correct faces (5.7a) and suboptimal faces (5.7b). Each pair
of faces selected are illustrated with red and green respectively.

Using several planes to connect the grid

Once we have these points it is obvious that like the original planar partitioning
scheme, we can construct planes by selecting two sets of faces from T, A, B,
taking one face centroid from each set and using it along with the block volume
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centroid C. Any such combinations can be used to create a plane which touches
the center and two face centroids.

We desire a function which, for two sets of faces {A1, A2} = A and {B1, B2} =
B2 and the block centroid C, constructs a surface such that the surface function
changes sign at all the face centroids CAi and CBi as well as at C. In addition
we want this surface to be continuous to ensure that the partitioning results
in a closed surface (Definition 7). It is also preferable if the surface is at least
piecewise smooth to avoid clustering of fine cells when determining which fine
cells are intersected.

The solution is to use a special Divider plane to further partition Ω̃i. This plane
is constructed as to ensure that it only intersects C and not any other face
centroids. To achieve this, a normal vector is constructed so that it lies between
the vectors from C to CA1 and C to CB1 :

NDivider =
CA1 − C + CB1 − C

2
=

CA1 + CB1

2
− C (5.6)

NDivider along with C and (5.2) then defines a plane (PDivider) which partitions
Ω̃i in two halves. This is shown in Figure 5.8a. Using this plane, we can define

δDivider(p) =

{
1 if PDivider(p) is equal to PDivider(CA1)

0 otherwise
(5.7)

and

δ̄Divider(p) = (δDivider(p) + 1) mod 2. (5.8)

(δ̄Divider is obviously 1 where δDivider is 0 and vice versa)

We now want to create a combination of the planes defined by C, CA1 , CB1

denoted P1 and C, CA2 , CB2 denoted as P2, which is zero at all five points:

Pimproved(p) = P1(p)δDivider(p) + P2(p)δ̄Divider(p). (5.9)

The resulting function will be zero at the centroids while still representing a
continuous surface and can be used in the same manner as the earlier plane
without modifying the implementation significantly.

2A and B can be either of T, A, B mentioned in the preceding paragraph
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(a) The divider plane

Figure 5.8: Given two opposing pairs of faces A and B, the divider plane (blue)
partitions the coarse cell into two halves. Each normal vector originates on the
centroid of the corresponding faces.

Cartesian block

The result of the improved planar algorithm on the base Cartesian case can be
seen in Figure 5.9a. The result is the same as the original plane scheme: Since
for the opposing faces we have NA1 = −NA2 , both P1, P2 are equal and the
algorithm is simply a more expensive way to get the same result. It is worth
noting that if checking the position of a point relative to a single plane has a
cost of k, this scheme has a cost of 3k - one evaluation for each plane and one
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for the orientation delta. If the grid is right angled and Cartesian and speed is
essential, the improved algorithm will result in a needless speed hit.

Sloped fault

The results for the sloped fault are improved from the previous case: Unsur-
prisingly, the Cartesian blocks are partitioned correctly. In the blocks connected
to the fault, the results are more interesting: The algorithm correctly identifies
the significant faces and partitions across the fault just as desired.

Realistic subset

The biggest improvement is seen in Figure 5.9c: Instead of getting overlapping
planes, the algorithm successfully finds a partitioning of the domain reminis-
cent of the cross structure seen in Cartesian blocks. Of course, the algorithm
can still fail if the blocks does not have any large faces altogether or if the coarse
block is not convex - the planes can then risk cutting through empty space. The
algorithm is based on the assumption of the coarse block partitioner to be able
to produce well formed blocks and as such manual tuning may be required.
The advantage of this approach is that any progress made on coarse grids for
other multiscale / upscaling methods will improve the MsFV-method results
automatically.
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(a) Simple cartesian grid (b) Angled fault grid

(c) A coarse block subset of real geometry

Figure 5.9: Results for the improved planar algorithm
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5.3.3 Polynomial partitioning

Another approach considered was to use polynomials to interpolate the points.
This treatment will assume that the data available are the face centroids as well
as the block centroids, which coincides with what MRST’s coarse grid module
produces. The selection algorithm from Section 5.3.2 is used to select the points,
but instead of using each tuple A1, A2, B1, B2, C to create two planes, a single
interpolation polynomial is created.

This is done using a Vandermonde matrix. While creating an interpolation
polynomial can be done in many ways, this is one of the easiest to implement
with access to linear algebra subroutines and the results often coincide with
Lagrangian interpolation. Since we have a set of five points p for each surface
second degree polynomials is an obvious choice to get the required degrees of
freedom.

We require a set of coefficients ci such that

f (x, y, z) = c0 + c1x+ c2y+ c3z+ c4xy+ c5xz+ c6yz+ c7x2 + c8y2 + c9z2 (5.10)

and
f (xj, yj, zj) = 1∀(xj, yj, zj) ∈ p (5.11)

.

Since the coefficients are constants, this is a linear equation set:

Vc =


1 x1 y1 z1 x1y1 x1z1 y1z1 x2

1 y2
1 z2

1
1 x2 y2 z2 x2y2 x2z2 y2z2 x2

2 y2
2 z2

2
...

1 xn yn zn xnyn xnzn ynzn x2
n y2

n z2
n




c1
c2
...

cn

 =


1
1
...
1

 (5.12)

The polynomial is set to 1 at the interpolation points in order to force a nontriv-
ial solution. To get the normal zero form polynomial required for categorization
of points, the function evaluation is simply:

f̃ (x, y, z) = f (x, y, z)− 1. (5.13)

While a second degree polynomial obviously provides enough degrees of free-
dom for five points, there is no guarantee that the resulting surface will be
appropriate for partitioning.
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Cartesian block

In Figure 5.10a we can see that the polynomial scheme fails for simple Cartesian
blocks. While the grid is connected across coarse blocks at the face centroids,
the polynomial properties end up warping the surface near the edges where
no points are provided. This results in none-closed dual cells and should be
considered a failure. If more data on the coarse cell faces were provided, the
results could probably be improved into something reminiscent of the planar
algorithm.

Sloped fault

In an interesting twist, the polynomial scheme applied to the fault as shown
in Figure 5.10b results in good results across the faultline, but some strictly
Cartesian blocks fail, again because of the low amount of points. This shows
that the polynomial scheme has some promise, but with the current available
data the results are inferior to the improved planar partitioning algorithm.

Realistic subset

For the realistic grid subset, the polynomial interpolation looks similar to the
planar scheme (Figure 5.10c). However, the same warping effects are present
and the scheme categorizes more fine cells as edge cells than the improved
planar scheme - probably because of the curvature of the planes which ends up
intersecting more fine cells than a single plane more or less aligned with the
coordinate axes.

5.3.4 Face merging

An alternative to the face selection algorithm in Section 5.3.2 was created dur-
ing the testing process. The idea is to, when faced with a large amount of
small faces on a coarse block, to merge smaller faces until a reasonable amount
of faces exist. We will assume that the top and bottom face is preselected so that
we require only four faces from the remaining set.

while N f aces > 4 do
Fmin ← smallest face
Fneighbour ← find(arccos(VFmin ·VFi )∀Fi ∈ f aces
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(a) Simple cartesian grid (b) Angled fault grid

(c) A coarse block subset of real geometry

Figure 5.10: Results for the polynomial partitioning algorithm

FA
merged ← FA

min + FA
neighbour

FC
merged ← FA

minFC
min + FA

neighbourFA
centroid

Faces← Faces− Fmin, Fneighbour + Fnew
end while

Where superscript A refers to area, C the centroid and VFi the vector from C to
FC

i .

While this algorithm produces a better choice of faces for degenerate blocks
with a high amount of faces, it will generally not connect the dual grid across
primal boundaries because the probability of merging faces in the same way for
different blocks is low. The approach combined with other selection heuristics
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may have some merit in applying a partitioning scheme meant for cubic coarse
blocks to for example PEBI-grids where a fitting of right angles will lead to a
large amount of coarse faces. For the scope of this thesis, however, it should be
regarded as a failure.

5.3.5 Logical partitioning schemes

While the partitioning schemes utilising geometric information seem quite suc-
cessful at handling faults and some types of complex geometry, they have a
weakness in that they are dependent on being able to identify coarse faces cor-
rectly. This is not always the case: A grid can be fully Cartesian when looking
at the logical indices i, j, k for each cell, but highly challenging when visualized
in space. As an example of this, the grid shown in Figure 5.11a will be used,
where a regular 2D grid has had its coordinates permuted by a function,

f (x, y) = 0.1 sin(πx) sin(3(−π/2 + πy), (5.14)

to get a grid which is logically Cartesian, but with large varieties in cell ar-
eas and faces. The resulting coarse grid has no obvious large faces which the
algorithm can select for connecting the dual grid over centroids.

There is also the question of speed. A complex algorithm using planes requires
a large amount of lookups in the data structures to find the points correspond-
ing to fine cells, and a lot of time is spent categorizing every single point in
relation to the different partition functions. For simpler grids without faults,
such as the grid in Figure 5.3a, a lot of time could be saved by a faster algorithm.

To partition using a logical algorithm, the we require the logical coordinates of
each fine cell. If the grid is ordered in x and y direction with Nx and Ny nodes
respectively, the logical indices i, j can be extracted from the index α by the way
of

i = mod(α, Nx) (5.15)

j = mod(α− i, Nx Ny). (5.16)

This relies on the fact that the nodes are ordered after each other, and is done
in MATLAB using the sub2ind function.

To partition the domain so it becomes the correct dual grid for our coarse
grid, we have to partition the domain in the same manner as the partitionUI

routine. partitionUI uses a load balanced linear distribution to distribute the

65



logical indices in each direction across coarse blocks and we will do the same.
Because of time constraints, we will limit ourselves to grids where the inactive
blocks are on the edges of the domain.

The algorithm finds the minimum and maximum coordinate in each logical
direction, which is then used to construct a load balanced linear range across
that logical direction. The center points of each interval is then selected, because
we know that this is where the edges of the dual grid will intersect. Once all
such points are found, they can then be used to categorize all cells with the
same logical index in any dimension as edge nodes. These are stored as logical
arrays indexing into the list of cells.

To find the inner cells and central cells, it is then just a manner of doing in-
tersection operations on the logical vectors: The central cells are obviously the
cells categorized as belonging to all edges and the inner are those belonging
to no edges at all. When implemented using vector operations to do most the
heavy lifting, the code looks like this:

1 function dual = partitionUIdual(CG, blockSizes)

2 G = CG.parent;

3 n = G.cells.num;

4 % Decrement all positions because working with zero indexing is

easier

5 % to work with when partitioning ...

6 cells = G.cells.indexMap -1;

7 % Find positions of all the nodes in ijk space

8 spaces = cell(G.griddim ,1);

9 [spaces {:}] = ind2sub(G.cartDims , G.cells.indexMap);

10 uniques = cell(G.griddim ,1);

11 for d = 1:G.griddim

12 ms = min(spaces{d});

13 Ms = max(spaces{d});

14 % Find the number of positions in the current dimension

15 M = Ms - ms + 1;

16 % Do a load balanced distribution of the positions in the same

manner

17 % as in the primal grid. Cast to double to avoid integer

division

18 % problems.

19 balanced = lbLinDist(double (0:(Ms -ms)), double(M), double(

blockSizes(d)));

20 u = unique(balanced);

21 uniques{d} = zeros(numel(u) ,1);

22 index = 1;

23 for i = 1:numel(u)

24 % Keep a running index and find the midpoints of the

intervals
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25 % to use as centerpoints for the dual grid

26 Ni = sum(balanced == u(i));

27 uniques{d}(i) = index + round(Ni/2) - 1;

28 index = index + Ni;

29 end

30 end

31 % Gather all the different positions in each D where the grid has

dual edges

32 tmp = zeros(n,G.griddim);

33 for d = 1:G.griddim

34 ii = uniques{d};

35 for i = 1:numel(ii)

36 tmp(:,d) = tmp(:,d) | spaces{d} == ii(i);

37 end

38 end

39 % The central nodes are those which are in two sets of edges in 2D,

and 3

40 % sets of edges in 3D. Increment to get one indexing.

41 dual.nn = cells(sum(tmp ,2)==G.griddim)+1;

42 % Any node which exists in more than one edge must be filtered to

43 % decouple the edge system. Increment to get original indexing.

44 dual.lineedge = cells(sum(tmp ,2) >1)+1’;

45 % Do an OR on each dimension to find all nodes corresponding to the

46 % midpoints of each primal coarse block

47 if G.griddim == 3

48 tmp = tmp(:,1) | tmp(:,2) | tmp(:,3);

49 else

50 tmp = tmp(:,1) | tmp(:,2);

51 end

52 % Find the indices of nodes on the edge , increment to get back to

one indexing

53 dual.ee = cells(tmp == 1)+1;

54 % Use the new behavior of setdiff to ensure forward compatability

55 % Ensure that the different edges are distinct

56 dual.lineedge = setdiff(dual.lineedge , dual.nn,’R2012a ’);

57 dual.ee = setdiff(setdiff(dual.ee, dual.lineedge ,’R2012a ’), dual.nn ,

’R2012a ’);

58 dual.ii = setdiff(G.cells.indexMap , [dual.ee; dual.nn; dual.lineedge

]);

The coordinates are never used when constructing the dual grid, resulting in an
algorithm which is invariant to transformations on the underlying coordinates.
When applied to the grid in Figure 5.11a, the planar algorithm fails to connect
the dual grid across dual edges (Figure 5.11e). Logical partitioning, however, is
successful in creating a dual grid in spite of the transformed coordinates, shown
in Figure 5.11f. When applied to a simple flow channel boundary condition
and lognormal permeability (see Section 7.3.1 for more details), the solution
using the logical algorithm (Figure 5.11d) is markedly better than the planar
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algorithm (Figure 5.11c) when compared to the TPFA reference solution (Figure
5.11b).

The numerical error verifies what should be obvious from the figures: The
relative norm of the error is much lower for the logical case (‖e‖ = 0.012) than
for the planar case (‖e‖ = 0.454).

When it comes to the test cases, the logical algorithm can only be applied to
the structured grids. The results for the Cartesian case is, as expected, good.
The algorithm coincides with the planar algorithm in Figure 5.12a. For the
fault, shown in Figure 5.12b, the algorithm fails to connect across the fault, as
expected.
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(a) The twisted grid

 

 

(b) TPFA Reference solution on the twisted grid

 

 

(c) MsFV-solution (Planar algorithm)

 

 

(d) MsFV-solution (Logical algorithm)

(e) Dual grid (Planar algorithm) (f) Dual grid (Logical algorithm)

Figure 5.11: For a grid with twisted geometry, the logical algorithm improves
the results greatly 69



(a) Simple cartesian grid (b) Angled fault grid

Figure 5.12: Results for the logical partitioning algorithm. Unstructured grid
omitted because of missing Cartesian mapping.

5.3.6 Performance and implementation

The initial version of the dual grid module suffered from bad performance.
This came from the calling of the anonymous categorization function for each
fine cell, leading to a huge overhead from the many repmat-calls needed for
this logic. Fortunately, categorizing all points in a single pass and then looking
up the values for each fine cell was feasible, and the partition speed increased
drastically. It is important to note that while speed is important for all parts
of the MsFV-method, the partitioning step can be considered as a part of grid
processing and, if stored, need only be done once for all manner of boundary
conditions and permeability set ups. It is therefore not as critical as the pressure
solution steps themselves.

The resulting code for a single coarse block looks like this:

1 nodeInd = cell(numel(blockInd) ,1);

2 nodeIndices = [];

3 current = 1;

4 % BlockInd is the indices of all fine cells corresponding to the

current coarse block

5 for c = 1:numel(blockInd)

6 fa = cg.parent.cells.faces(cg.parent.cells.facePos(blockInd(c)):

cg.parent.cells.facePos(blockInd(c)+1) -1);

7 tmp = [];

8 for f = 1:numel(fa)
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9 tmp = [tmp cg.parent.faces.nodes(cg.parent.faces.nodePos(fa(

f)):(cg.parent.faces.nodePos(fa(f)+1) -1)) ’];

10 end

11 nodeInd{c} = current:current+length(tmp) -1;

12 nodeIndices = [nodeIndices tmp];

13 current = current + length(tmp);

14 end

15 coords = cg.parent.nodes.coords(nodeIndices ,:);

16 orient = zeros(size(coords ,1),cg.griddim);

17 for pp = 1:cg.griddim

18 % Save the orientation of all points

19 % func is a cell array of functions created by the partition

scheme

20 orient(:,pp) = func{pp}( coords);

21 end

22
23 for c = 1: numel(blockInd)

24 nodePos = nodeInd{c};

25 for pp = 1:cg.griddim

26 orientation = orient(nodePos , pp);

27 if abs(sum(sign(orientation))) < numel(orientation)

28 % Categorize fine node as edge node

29 dual.edges{i,pp} = [dual.edges{i,pp} blockInd(c)];

30 % If some function categorizes the cell as edge , we can

stop checking

31 break;

32 end

33 end

34 end

By using a cell array of anonymous functions for the partitioning scheme, the
logic for categorizing points is separate from function generation and it is easy
to implement new methods in the future.

While the different partitioning schemes have different complexity, the geomet-
rical algorithms which uses planes to partition the domain should be similar
in run time because the overhead of traversing data structures in MATLAB is
large. The logical algorithm is a special case which should be drastically faster,
but is not applicable to complex geometries.

A series of performance tests on the algorithms were run on a 2.67 GHz In-
tel Xeon CPU. Two different scenarios were considered for increasing domain
sizes: Constant block size, where each coarse block was 5× 5× 5 and constant
block count, which always produces 5 dual blocks along each axis. The domain
was N × N × N with varying as N = 50, 60, ..., 200 giving between 125 000 and
8 000 000 nodes. The results can be seen in Figure 5.13. As is to be expected,
the time required is mostly dependent on the number of coarse blocks, with
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both planar and improved planar (listed as polyplane) using roughly the same
amount of time. Constant block count is a lot faster, as is to be expected since
the face selection and function generation happens only once for each coarse
block. The logical algorithm is much faster, with a seemingly constant parti-
tioning time near one second for all grid sizes.

Figure 5.13: The performance of the different partition algorithms

5.3.7 Summary and further work

While a lot of progress has been made towards generalizing a dual grid, the
schemes fail for some special cases. More complex partitioning schemes could
be considered, for example by using splines instead of planes which curve
along the geological layers of the model. A non-geometrical approach might
also be successful, using search algorithms on the system graph or using more
complex optimization principles to find surfaces which both ensure a closed
surface and compensate for geological patterns.

Solving this problem for general grids is a difficult problem and requires the
developer to strike a balance between execution speed, code complexity and
geometrical flexibility. The current schemes developed in this thesis handle
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complex unstructured grids from real data with a fairly high success rate and
will automatically take advantages of improvements done in MRST’s coarse
grid module. Some degree of visual verification is required before use and
for especially difficult situations, manual tweaking is required. The difficulty
posed by imposing grids on unstructured grids is significant and while meth-
ods may be trivial to implement for purely academic cases, creating a general
"one size fits all"-solution for unstructured grids with discontinuities is difficult
and time consuming.

5.4 Permuting the system and handling wells

The first step of the algorithm is to create permutation matrices. For this step,
we will assume that both a primal and a dual grid exists as defined in Section
5.3: One list for each category (inner, node and edge) containing the indices of
the fine cells contained in each category of Ω̃. We will also assume a partition
vector for Ω̄ with one entry However, before creating the permutation matrices,
we need to preprocess these vectors to handle the different types of wells sup-
ported in MRST. For the implementation, we require all rate wells to be defined
before the BHP wells in the well data structure. The reasons for this will become
apparent in the section on rate wells.

There are two types of wells supported in MRST: Rate wells and bottom hole
pressure wells (BHP).

Bottom hole pressure wells

BHP wells are analogous to Dirichlet boundary conditions - a BHP well forces
any connected cells to have a specific pressure value. In applied terms this
could be used to model say a well kept at constant pressure while producing
or injecting, depending on the pressure differential. The most common model
for BHP wells is the Peaceman Well Model[Pea83] which makes it possible to
calculate an equivalent source term from a vertical well with a given radius rw.
For a cell with widths hx, hy, pressure p0, well pressure pw f and a height h this
source term is given as

q =
2π(p0 − pw f )

√
KxKyh

µ ln(r0/rw)
, (5.17)
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where the equivalent well block radius given as,

r0 = 0.28

[
(Ky/Kx)1/2h2

x + (Kx/Ky)1/2h2
y

]1/2

(Ky/Kx)1/4 + (Kx/Ky)1/4 (5.18)

for an anisotropic medium. We will not delve into the derivations behind this
equation, but simply note that it reduces the well implementation to adding a
source term in the right hand side of the linear system.

MRST adds an additional equation for this system, but since this equation is
simply added to be able to be extracted later by the TPFA solver for the correct
pressure, it can be omitted from the system and safely ignored, as long as we
remember to insert the value in the solution state.

Rate wells

A rate well is analogous to a Neumann boundary condition - a rate well gives
restrictions on the derivative in the point, representing a steady stream into or
from the reservoir at that well. For rate wells, the implementation is slightly
more complex than BHP wells: Another equation is added for each well, which
is then connected to the appropriate well cells. The additional equation is a a
discrete derivative restriction connected to some cell from the well cells, and at
the same time the corresponding cells are connected with free flow conditions
inbetween them according to the Peaceman well index.

To implement rate wells in MsFV-method, we cannot ignore the additional
equations. After some testing, it was decided that the additional equations
should be categorized as actual nodes would. This will ensure that the rate
wells will be solved along with the equation system for the corresponding fine
nodes. To do this, we must categorize the extra equations in the dual grid
the same as the cells it corresponds to. A rate well containing more than one
cell will be categorized in the order Node, Edge and Inner, because this is the
importance of the nodes when it comes to influence the solution: Nodes are
solved first using the coarse system, followed by interpolation to the edge and
inner nodes.

The resulting code looks like this, before creating the permutation matrices:

1 % Number of cells in the system

2 Nc = N - Nw;

3 % "Real" nodes are all nodes not corresponding to BHP well cells

4 real_nodes = N - Nbhp;
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5
6 passed = false;

7 for i = 1:Nw

8 w = opt.wells(i);

9 if strcmp(w.type ,’rate’)

10 if passed

11 error(’Rate wells should come before BHP wells in the

msfvm solver ’)

12 end

13 contact_ii = intersect(w.cells , dual.ii);

14 contact_nn = intersect(w.cells , dual.nn);

15 contact_ee = intersect(w.cells , dual.ee);

16 if sum([any(contact_ii) ...

17 any(contact_nn) ...

18 any(contact_ee)]) > 1

19 warning(’well:msfvmwellisect ’,’Rate well intersects

several different node categories ..’)

20 end

21 if any(contact_nn)

22 dual.nn = [dual.nn Nc+i];

23 elseif any(contact_ee)

24 dual.ee = [dual.ee Nc+i];

25 else

26 dual.ii = [dual.ii Nc+i];

27 end

28 %add the well nodes to the same partition as the connected

29 %cells (the first cell is chosen arbitrarily

30 CG.partition = vertcat(CG.partition , CG.partition(w.cells (1)

));

31 else

32 passed = true;

33 end

34 end

Note that we also update the partition vector, to ensure that the operators which
require an ordering in Ω̄ still work (notably the restrict operator χ and the
permutation operator for the flux reconstruction P̄).

We require BHP wells to be ordered after Rate wells so that the dual_partition
function does not have side effects (reordering the well structure) or become too
complex.

Once all nodes are accounted for and categorized, creating permutation matri-
ces is trivial. The permutation matrix for Ω̃ is just a straightforward concatena-
tion of the different categorizations which is then used as indices for each row
in the permutation matrix:

1 ordering = double ([dual.ii dual.ee dual.nn]);

2 dual.P = sparse (1:Nc ,...
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3 ordering ,...

4 1) > 0;

This results in one nonzero element for each row in the permutation matrix
and the greater than sign transforms it into a logical sparse matrix for efficient
storage.

The creation of the permutation matrix for Ω̄ is created in a similar way, using
find to ensure that all indices from the same coarse block ends up in sequence:

1 ind = 1;

2 for i=1:CG.cells.num

3 tmp = find(CG.partition == i);

4 ordering(ind:(ind+length(tmp) -1)) = tmp;

5 ind = ind + length(tmp);

6 end

7 dual.P_flux = sparse (1: real_nodes ,...

8 ordering (1: real_nodes) ,...

9 1) > 0;

5.5 Implementing the operators

While some of the operators described in Chapter 3 are trivial to implement,
there are some pitfalls when implementing the operator formulation of the
MsFV-method.

First, we need the different blocks described in the operator treatment. This is
done by permuting the system and slicing the correct values:

1 n_i = length(DG.ii); n_e = n_i + length(DG.ee); n_n = n_e + length(

DG.nn);

2 Nf = DG.N;

3 % Permute the system and ignore BHP wells

4 A = DG.P*state.A(1:Nf, 1:Nf)*DG.P’;

5 r = DG.P*state.rhs(1:Nf);

6 % Internal nodes ’ influence on internal nodes

7 A_ii = A(1:n_i , 1:n_i);

8 % Edge nodes ’ influence on internal nodes

9 A_ie = A(1:n_i , (n_i+1):n_e);

10 % Edge nodes ’ influence on edge nodes

11 A_ee = A((n_i+1):n_e , (n_i +1):n_e);

12 % Center nodes ’ influence on edge nodes

13 A_en = A((n_i+1):n_e , (n_e +1):n_n);
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One important thing to note is that while the operator formulation is formu-
lated so that explicit inverses seem necessary, this can lead to extremely inef-
ficient implementations. While M−1

ee and A−1
ii are needed for many operators,

forming them explicitly is not advised. In MATLAB,

1 inv(A)*B; % Explicit inverse

2 A\ B; % Equivalent linear solver formulation

have the same result because Ax = b can be solved as x = A−1b which is solved
using the backslash/mldivide operator in best practice MATLAB. Although we
need to do this several times to form all operators, it is still much faster than
forming an explicit inverse. Using inv(A) can take hours when the backslash
operator uses minutes.

Another important thing to note is the formation of the C operator. Recall C,

C =

Ã−1
ii −Ã−1

ii Ãie M−1
ee 0

0 M−1
ee 0

0 0 0

 , (5.19)

which has a large amount of zero elements. However, the blocks which are
non-zero are in general very dense or unpredictable, being inverses. Since the
sparse matrix format has a large overhead when creating large matrices with
many nonzero elements, we instead opt to form a function which multiplies
vectors with C. This both enables us to apply the earlier optimizations using
the backslash operator for the lone inverses M−1

ee and Ã−1
ii , and avoids the

sparse matrix overhead. The idea is to note that the matrix multiplication of
such a block matrix can be written row wise:

Cv =

Ã−1
ii −Ã−1

ii Ãie M−1
ee 0

0 M−1
ee 0

0 0 0

r1
r2
r3

 =

Ã−1
ii r1 − Ã−1

ii Ãie M−1
ee r2

M−1
ee r2
0

 (5.20)

Which can be then realized in MATLAB as

1 function Cr = Cxr(A_ii , M_ee , A_ie , Nf, Ni, Ne, r)

2 %multiply C operator with a given vector r

3 Cr = zeros(Nf ,1);

4 Cr(1:Ni) = A_ii\(r(1:Ni) + -A_ie*(M_ee\r((Ni+1):(Ni+Ne))));

5 Cr(Ni+1:Ni + Ne) = M_ee\r((Ni+1):(Ni+Ne));

6 end

which scales much better in terms of memory and speed than forming the
operator explicitly. This is a general technique which should be applied to any
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instances of matrices which are neither dense nor sparse, but which have blocks
of both.

The rest of the operators are easy to form explicitly and while optimization
may improve the runtime marginally, it is much more important to retain the
clarity of the code so it closely corresponds with the treatment in section 3. The
main code for the pressure solver, when operator generation is tucked away in
function calls, looks like this:

1 X = restrictOperator(CG , DG , Nf);

2 M_ee = multiDiagonal(A_ee , A_ie);

3 B = formB(CG, A_ie , A_en , A_ii , M_ee);

4 M_nn = X*A*B;

5 Cr = Cxr(A_ii , M_ee , A_ie , Nf , Ni , Ne , r);

6
7 % Generate coarse rhs

8 q_n = X*r - X*A*Cr;

9 % Solve coarse system

10 U_n = mldivide(M_nn , q_n);

11
12 % Interpolate solution and add inn correction functions

13 U = (B*U_n + Cr);

14 % Undo the permutation to return to the original numbering

15 state.pressure = DG.P’*U;

16 if opt.Reconstruct

17 % Permute system according to primal ordering

18 Abar = DG.P_flux*state.A(1:Nf, 1:Nf)*DG.P_flux ’;

19 D = formD(Abar , CG, Nf);

20 % Reconstruct fine pressure

21 state.pressure_reconstructed = DG.P_flux ’* mldivide(D,...

22 DG.P_flux*state.rhs(1:Nf) - (Abar - D)*DG.P_flux*state.

pressure);

23 end

which is clean, readable and easy to debug3.

5.6 Implementing iterative variants

5.6.1 Arnoldi iterations using smoothers

To implement the iterative variants, it was important that it was easy to exper-
iment with different variants without changing large parts of the code. The
steps required is the iterations themselves, which correspond to solving and

3Some calls related to debugging and output have been omitted for clarity
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interpolating a new coarse system using the multiscale method, as well as the
optional smoothing steps which remove errors near coarse edges.

Since the Dirichlet smoothers come naturally from the primal coarse grid or-
dering, we will use this ordering when smoothing.

1 % Ordinary MsFV iterations

2 fprintf(’Doing MsFV %d iterations with %d sub -smoothing iterations

(%s)\n’, opt.Iterations , opt.Subiterations , opt.Smoother);

3 % Create permuted systems for the Dirichlet smoothers

4 Abar = DG.P_flux*state.A(1:Nf, 1:Nf)*DG.P_flux ’;

5 [D Up] = DU(Abar , CG , Nf);

6 rbar = DG.P_flux *(DG.P’*r);

7 switch lower(opt.Smoother)

8 case ’dms’

9 smoother = @(res) (D+Up)\res;

10 case ’das’

11 smoother = @(res) D\res;

12 case ’jacobi ’

13 smoother = @(res) Abar*res;

14 end

15 error = @(Ubar) norm(invG(r - A*(DG.P*(DG.P_flux ’*Ubar))))/norm(

invG(rbar));

16 for v = 1:opt.Iterations

17 % Calculate the residual

18 res = r - A*U;

19 % Permute to the coarse block ordering via the original

20 % ordering

21 Ubar = DG.P_flux *(DG.P’*U);

22 fprintf(’Iteration %d:\n’, v);

23 for sub = 1:opt.Subiterations

24 e = error(Ubar);

25 res = rbar - Abar*Ubar;

26 Ubar = Ubar + omega *( smoother(res));

27 end

28 if e<opt.Tolerance

29 % Converged

30 break

31 end

32 % Permute back

33 U = DG.P*(DG.P_flux ’*Ubar)

34 % Perform MsFV iteration with updated pressure

35 U = U + omega*invG(res);

36 end

Note the use of the relative preconditioned error for convergence testing: This
is done to achieve parity with the MATLAB GMRES function which outputs
preconditioned residuals. Some calls related to output and debugging have
been omitted for clarity.

79



5.6.2 GMRES iterations

GMRES is a very useful algorithm, which guarantees convergence and numer-
ical stability. This comes at a cost, however, as the method is significantly
more difficult to implement than for example Jacobi iterations. Fortunately,
MATLAB contains a standard GMRES implementation which handles general
preconditioned Arnoldi systems. Since we in Section 3.7.1 noted that the MsFV
iterations can be formulated as a preconditioned Arnoldi iteration, using the
default MATLAB solver is no problem:

1 invG = @(U) Ginv(U, Ctimes , M_nn , Nf , R, X, A, B);

2 U = gmres(@(u) A*u,r,opt.Restart ,opt.Tolerance ,opt.Iterations ,invG ,

[], U);

Note that we are passing a function handle for the preconditioner, instead of
a preconditioner matrix, so that the more complex MsFV logic can be used
instead of matrix multiplication.
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Chapter 6
Theoretical performance

6.1 Performance analysis of the original formula-
tion

We will in this section denote the fine grid size as N, the size of a coarse grid
cell as N̄c (approximates both dual and primal as they only differ by 1 in size)
and t(n) as the time spent to solve a system of n unknowns in a sparse system.
We will assume that solving the linear systems dominate the running time over
simple flux calculations and matrix assembly.

We will only concern ourselves with the pressure solver for this part. While
reconstructing conservative flow is analogous to the constructing the pressure
basis functions, we will concentrate on testing the pressure solver as it stands on
its own. The analysis will be applied to the original formulation from Section 2
applied to a 2D grid before some of the properties of the operator formulation
will be discussed.

Solving the full system

The cost of solving the full linear system - the time to beat - will of course be

t f ull = t(N2), (6.1)
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for a N × N fine grid. t can for example be a O(n1.2) solver.

Constructing the basis functions

We will, for each coarse cell, solve 4 basis problems (one for each corner) and
one correction function. These each consist of solving a t(N̄2

c ) system. In addi-
tion, each of these basis functions require four boundary conditions defined by

a t(N̄c). We will have
(

N
N̄c

)2
coarse blocks to handle. This becomes

tbasis = 5
(

N
N̄c

)2 [
t(N̄2

c ) + 4t(N̄c)
]

. (6.2)

Solving the coarse system

This is simply solving a linear equation set for the center pressure in all the
inner coarse blocks.

tcoarse = t((N − 2)2/(N̄c − 2)2). (6.3)

Total computational cost

tms f vm = tbasis + tcoarse (6.4)

= 5
(

N
N̄c

)2 [
t(N̄2

c ) + 4t(N̄c)
]
+ t((N − 2)2/(N̄c − 2)2) (6.5)

The reconstruction step for the flow is not included in these calculations, but

including it is trivial as it is simply another step of calculating another
(

N
N̄c

)2

sub problems.

If we are to employ the iterative MsFV steps, we must add an additional

tadaptive = ni

(
N
N̄c

)2
t(N̄2

c ) + ninsmoothtsmooth (6.6)

Where ni is the amount of iterations, nsmooth the amount of smoothing steps
in each iteration and tsmooth the cost of each smoothing iteration. tsmooth will
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typically be low, as we will choose a cheap smoother like Jacobi iterations,
which will be dominated by the matrix products for a running time of O(N2)

For further analysis of the runtime of various multiscale solvers, including the
MsFV-method, we refer to [KAL08].

6.2 Parallel potential

Historically, computer performance for serially executed programs has been
increasing steadily over the years. For example, the Intel Pentium 2 was intro-
duced in 1993 and had a clock speed of 60 MHz. Nine years later, in 2002, Intel’s
top model Pentium 3 Northwood had a clock speed of 3 GHz. Today, another
nine years later, the Intel i7 CPU has a maximum speed of 3.2 GHz. While there
are many subtleties in how this clock speed relates to actual execution speed,
as it is highly dependent on architectural features for the family of processors,
this shows how there are firm theoretical limits on the CPU speed which we
are rapidly approaching. This stems from the fact that there are physical limits
to how small circuits can be, since molecules are of a finite size, as well as the
difficulties in dissipating the heat from so small systems.

To avoid this problem, the CPU production has shifted focus from producing
CPUs with one fast core to producing several equal speed cores which execute
programs simultaneously. At the same time, graphical processing units (GPUs)
originally meant for computer games and 3D graphics have been re-purposed
for scientific calculations. GPUs are extremely parallel devices, capable of run-
ning thousands of simultaneous threads 1. While these approaches do not run
into the problems imposed by the laws of physics, it forces us to solve com-
putational problems differently. Giving a serial program to ten cores will not
mean that the problem will be solved ten times as quickly!

There are several criterion required for a problem to be suited for parallel com-
puting:

1. The problem must consist of independent subproblems: These subproblems
cannot depend on each other. For example, a recursive sum where each
term depends on the previous is hard to parallelize because each pro-
cessing unit will have to wait until some other unit completes before it
starts.

1Examples of such frameworks are OpenCL and CUDA. There are currently some limitations,
however, such as reduced floating point precision and no integer data types.
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2. The results should reside in separate places for all subproblems: If the processing
units have to form a serial queue to store the results, and this step consists
of a significant operation, performance will be lost.

3. The subproblems must be of approximately equal size, or have a predictable per-
formance: If the subproblems are of different size, some processing units
may take much longer to complete than others. The performance will
be determined by the last processing unit to finish. If the subproblems
are of different sizes, but the sizes are predictable, a good scheduler can
mitigate some of the slowdown by assigning problems dynamically.

There are two main steps of the MsFV-method which are computationally in-
tensive and are well suited for parallel programming: The construction of basis
functions for the coarse pressure, correction functions and for flux reconstruc-
tion. These problems can be seen as one type of problem, since they both
consist of solving subproblems on the coarse grids.

1. The generation of basis functions are fully independent of each other,
with each subproblem consisting of a local part of both the input data
(permeability) and the problem (solving a linear equation set).

2. The results are stored independently of each other.

3. The subproblems scale with the coarse grid, so as long as the coarse
grid contains an approximately equal geometric subdivision of the global
problem, each local problem will take about the same time to execute.

The step of assembling the pressure from the coarse solution and the basis
functions is also well suited for parallelism:

1. The process can be done for each coarse cell, leading to independent
multiplications and memory retrieval operations for each basis function.

2. The results are stored independently of each other since the coarse cells
partition the domain.

3. The problem of interpolating using the basis functions scale in the same
way as the generation of the basis functions.
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6.3 Operator formulation

While the original formulation consists of many subproblems, the Operator
formulation does away with many of the original steps and replaces them with
mostly equivalent linear algebra operations. Does the parallel potential remain?
We will assume, based on the results from large benchmarks on our reference
implementation, that the construction of the various basis functions dominate
the runtime. There are two sets of basis functions which must be generated, as
well as a set of boundary problems for the pressure basis functions.

6.3.1 Pressure basis functions

In the operator formulation the pressure basis functions are constructed when
Aii is inverted. For this operation to be suitable for parallell/distributed com-
puting, it is important that this operation can be broken down into smaller
subproblems.

Proposition 1. If the system matrix A of a linear system Ax = b can be permuted to
a block diagonal matrix, the system can be inverted for each block separately.

We already know from Chapter 3 that the solution of an permuted system can
easily be permuted back to the original problem. However, we must prove that
the block diagonal parts can be inverted separately. This is trivial; Consider the
multiplication with a block inverted solution,A1

A2
A3

 ·
A−1

1
A−1

2
A−1

3

 = (6.7)

A1 A−1
1

A2 A−1
2

A3 A−1
3

 =

I
I

I

 =I. (6.8)

To test the structure of the generated matrices, we need to generate this per-
mutation matrix: An simple algorithm was constructed to achieve this. The
algorithm is simple and inefficient for large datasets, but it produces the cor-
rect results. Our MsFV-implementation does not employ this structure directly,
since the inversion is done by built in MATLAB functions. For a high perfor-
mance solution, many different algorithms exist for finding subgraphs in a
graph which could be adapted. Decoupled systems are easy to solve for most

85



linear solvers regardless of this knowledge - it is only needed if we desire a
distributed solution.

The algorithm is fairly self explanatory, and works by taking An where n is the
size of the linear system and then finding nonzero elements in each row while
doing some bookkeeping over already categorized nodes.

1 function [category P] = findblocks(A)

2 [N ~] = size(A);

3 tmp = A;

4 for i = 1:N

5 % Use when sign calculating A^... to avoid numerical overflow

6 tmp = sign(tmp*tmp);

7 end

8 % Category counter , size of picked array

9 cat = 1; M = 0; picked = [];

10 % Category of node i in position i

11 category = zeros(N,1);

12 for i = 1:N

13 % Find nodes reachable from this position

14 nodes = find(tmp(i,:) ~= 0);

15 picked = unique ([ picked nodes]);

16 % If the selected nodes have been updated , we have

17 % a new category

18 if numel(picked) > M

19 %we have found a new category

20 category(nodes) = cat;

21 cat = cat + 1;

22 M = numel(picked);

23 end

24 if sum(category >0) == N

25 % All nodes have been categorized

26 break;

27 end

28 end

29 % Create new permutation matrix

30 c = unique(category);

31 ordering = [];

32 for i = 1:numel(c)

33 ordering = [ordering find(category == c(i)) ’];

34 end

35 P = sparse (1:N, ordering , 1) > 0;

36 end

We will use the 2D system shown in Figure 6.1 as an example. The Aii ma-
trix of this system is shown in Figure 6.1a. While this system is, upon visual
inspection, already block diagonal, there are only three obvious blocks, while
our system should theoretically have nine blocks - one for each closed subset
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of inner nodes. We apply the permutation matrix to the system in the regu-
lar way, PAiiPT , we get a clearly block diagonal structure (Figure 6.1b) which
shows the geometrical properties of the system: There are nine blocks in total
which come in the same order as the closed subsets of Figure 6.1. There is four
smaller blocks with connections between four cells, four medium blocks with
eight cells and a single large block with sixteen cells.

This property is also present for 3D systems. Because the block diagonal struc-
ture comes from each dual block’s cells nodes being disconnected from every
other dual block’s inner cells, the system is just as easy to solve in parallel in
3D.

(a) Aii (b) PAii PT

Figure 6.1: The 2D example dual grid
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6.3.2 Boundary problems

When interpolating the solution in the operator formulation, the first step in-
volves inverting for Mee. Recall (3.23),

ũ = BM−1
nn qn︸ ︷︷ ︸

Interpolate coarse solution

+ Cq︸︷︷︸
Correction functions

, (6.9)

which describes the interpolation from a coarse pressure solution where Mee
also must be inverted.

The structure of Mee for our 2D example system is shown in Figure 6.3a. When
permuted by each subgraph in the system matrix, we get a block diagonal
structure shown in Figure 6.3b. There are twelve different blocks, correspond-
ing to each of the twelve different edges in the system. The sizes of the edges
correspond to the sizes of the blocks, just as in the example for the inner nodes.

(a) A 3D example (b) Mee for the 3D example

Figure 6.2: The problem is different in 3D

When extended to the 3D example, however, the situation is different. For the
dual grid shown in Figure 6.2a, the edge problem Mee has a connected structure
as shown in Figure 6.2b. Unfortunately, in this system all cells are connected to
each other because the planes of the dual partition intersect each other. In 2D
this does not happen because the central nodes in In disconnect the edges.

This may or may not be a problem for high performance implementations of
the MsFV-method. While the edges should, for a big system, be a fairly minor
part of the domain because the number of edge nodes grows as O(N2) when
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the inner nodes grow by O(N3), this could be problematic for a highly parallel
implementation. When creating a parallel algorithm, it is important that the
serial parts are minimized: By Amdahl’s law any serial component can have a
significant impact on the speed up when many processing units are employed.

To solve this problem, a possible solution is to extend the definition of the
domain decomposition 3.2 to

I f = In ∪ Ie ∪ Ii ∪ Is. (6.10)

Where Is is the subset where the different edges intersect each other. When this
is done, redoing the steps in Chapter 3 should lead to a system where instead
of interpolating along the edges from the central nodes, the interpolation will
instead go from the central nodes to the nodes ∈ Is and further to the rest of
the edges, leading to the inversion of two block diagonal systems instead of a
single none-block diagonal system.

If we permute the system analogously to the earlier treatment with the new
indices included, the only differences in the method will be the B and C oper-
ators. We will disconnect Ass from the neighbouring edge nodes in the same
manner as with Aee,

Mss = Ãss + diag

[
∑

i
ÃT

se

]
. (6.11)

Once this is done, we can again block eliminate a reduced linear system,

M =


Aii Aie 0 0
0 Mee Aes 0
0 0 Mss Ans
0 0 0 Ann

 , (6.12)

leading to the new operators

B =


A−1

ii Aie M−1
ee Aes Asn M−1

ss
M−1

ee Aes Asn M−1
ss

Asn M−1
ss

I

 (6.13)

and

C =


A−1

ii −A−1
ii Aie M−1

ee A−1
ii Aie M−1

ee Aes M−1
ss 0

0 M−1
ee −M−1

ee Aes M−1
ss 0

0 0 M−1
ss 0

0 0 0 0

 . (6.14)
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While more complex in terms of representation, the structure of the matrices
is straightforward: The general pattern of solving a problem and then extrapo-
lating to a new set of nodes before repeating occurs many times in the solved
system. The non-zero parts of the original C matrix can be found in the upper
left parts of the new C matrix.

This altered method has the advantage of having much smaller condition num-
bers as well as approximately constant condition numbers for constant coarse
sizes. More importantly, it makes the edges possible to be inverted fully inde-
pendently of each other just as the inner nodes! While for some cases the error
is somewhat increased because of the additional localization assumptions, the
increased speed for large data sets, as well as the fantastic parallel potential
makes up for it as we will see in Section 6.3.4. For 2D, the two methods coin-
cide, as no edge boundaries overlap.

(a) Mee (b) PMeePT

Figure 6.3: The permuted 2D edge matrix Mee

6.3.3 Conservative flow basis functions

When looking at the step required for constructing a conservative pressure
field, it becomes apparent that the D matrix which must be inverted already
exists in a block diagonal form (Figure 6.4). This comes from the fact that
each primal coarse block is disconnected when creating D, which is also lexi-
cographic in the indices of Ω̄i.

90



Figure 6.4: The matrix D for the flow basis functions is already block diagonal

6.3.4 Condition numbers for Mee, Aii and D

The condition number of a matrix is a measure of how small changes in the
right hand side of the system Ax = b change the values of x. A smaller con-
dition number will result in smaller changes from these perturbations and for
many numerical linear algebra algorithms the condition number has a signifi-
cant influence on the speed and accuracy of the solution. Generally, we hope
for matrices with a low condition number. A block diagonal matrix, which
we have shown to be solvable blockwise, should have a low condition num-
ber, since the changes in the right hand side need not influence all the block
solutions, again reflecting that linear solvers can take advantage of the block
structure without being strictly aware of it.

For a normal matrix we know that the condition number κ(A) = |λmax/λmin|
and since the matrices are symmetric, they are also normal.

For a block diagonal matrix, the eigenvalues are equal to the eigenvalues of all
the blocks because the characteristic polynomial for the block matrix is∣∣∣∣∣∣

A1 − λI
A2 − λI

A3 − λI

∣∣∣∣∣∣ = |A1 − λI||A2 − λI||A3 − λI|, (6.15)

which has zeroes at all the eigenvalues of the blocks. Because of this, for coarse
partitions of constant size with uniform permeability, we should have the same
condition number for Aii and D regardless of the number of fine cells. This
should also apply to Mee in 2D, but not in 3D. When run on a series of different
cases with constant coarse sizes, the experiments seem to confirm the assump-
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tions (Table 6.1). The cases have a log normal permeability distribution and
constant coarse sizes 10× 10 and 10× 10× 10 for 2D and 3D respectively. The
condition numbers are calculated for subsets of the left hand side of the mul-
tiscale system and are as such independent of boundary conditions and well
configurations.

The condition numbers for the Mee system are the most interesting: With the
original formulation, the numbers are much larger and will steadily increase
with the problem size, but with the improved method derived in Section 6.3.2,
the condition numbers are much smaller and constant.

The condition numbers for Mee and Aii should depend on the ratio between the
smallest and largest permeability in the corresponding fine cells: If there are
large variations, the condition numbers will be larger, and iterative methods
will take longer to converge. To verify this, a 50 × 50 × 50 fine grid with a
5× 5× 5 coarse grid was generated. The permeability for every second cell was
set to 1 and the rest to a lower value, varying from 10−1 to 10−10. The resulting
condition numbers can be seen in Figure 6.5. From the plot it is obvious that
the larger variations lead to larger condition numbers. The improved method
has yet again a much lower condition number for Mee, here marked with an
asterisk.
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Figure 6.5: Condition numbers as a function of permeability variation. M∗ee is
the improved formulation
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Table 6.1: For constant coarse size, the condition numbers of some sub matrices
are constant. The improved method has much lower condition numbers for the
edge problems.

(a) Condition numbers in 2D

System size κ(Aii) κ(Mee) κ(D)
50× 50 46.3 144.6 58.5

100× 100 46.3 144.7 58.5
150× 150 46.3 144.7 58.5
200× 200 46.3 144.7 58.5
250× 250 46.3 144.7 58.5

(b) Condition numbers in 3D

System size κ(Aii) Original κ(Mee) Improved κ(Mee) κ(D)
30× 30× 30 52.2 705.7 57.8 85.3
40× 40× 40 52.2 942.1 57.9 85.3
50× 50× 50 52.2 1144.2 57.9 85.3
60× 60× 60 52.2 1264.0 57.9 85.3
70× 70× 70 52.2 1347.8 57.9 85.3
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Chapter 7
Results

7.1 Intro

Implementing a new method is only part of the job: A thorough verification
process is needed to map out the advantages and disadvantages of any new
method. For this, we need some preliminaries which should be familiar to
anyone experienced in numerical analysis.

The relative difference will be used for the error analysis. We will define the
error vector e as

ei = Pi − P̃i (7.1)

where P̃ and P are the multiscale and reference solutions respectively. This
results in a relative error which is independent of problem scaling. We will
furthermore use the relative l2 norm,

‖ē‖2 =
‖e‖2

‖P‖2
=

√
∑N

i=0 e2
i√

∑N
i=0 P2

i

(7.2)

as well as the relative maximum norm,

‖ē‖∞ =
‖e‖∞

‖P‖∞
=

max
0≤i<N

(|ei|)

max
0≤i<N

(|Pi|)
. (7.3)
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Because point wise error can be seen as a fairly strict measurement in itself,
both streamlines and pressure plots will be produced. When comparing plots
of reference and MsFV solutions, the colorbars will be synced to ensure the best
possible visual comparison.

For error plots, we will use the point wise absolute error scaled by the total
variation in the problem,

|ei|
|max(P)−min(P)| . (7.4)

7.2 Permeability generation and fluid type

For our synthetic examples, we will need to generate permeability for our ge-
ometries. To do this, we will use the Carman-Kozeny relation,

K =
1

8τA2
v

Φ3

(1−Φ)2 (7.5)

which relates porosity Φ, tortuosity τ and the specific surface area Av to the
permeability K. The tortuosity is the square root of the ratio between the length
of the average flow path and the distance between the arc points. We will not
delve deeper into this subject, but rather note that the approximation is meant
for flow with a low Reynolds number, just like Darcy’s law. For values we will
use Av = 6/(10µm) τ = 0.81.

For the porosity we will use a Gaussian random field with standard deviation
2.5, minimum value 0.2 and maximum value 0.4, unless otherwise is noted.
When generating layered permeability,

7.3 2D validation

Simple 2D cases are a good candidate for early validation of the method be-
cause it makes it trivial to visualize the entire domain. While 3D is the most
interesting case for real life computational examples, all of the previous work
done on the MsFV-method has been validated in 2D, which makes it important
to have a 2D solver for validation purposes.

There are two ways to impose pressure differentials upon a system: Wells and
boundary conditions. For the basic 2D validation, we will employ a grid con-
sisting of 200× 100 fine cells and 10× 5 coarse grid for a total of 400 fine cells
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in each coarse block. For these examples the previously mentioned Carman-
Kozeny relation will be used to generate the permeability distribution.

7.3.1 Flow channel

The first example is a simple flow channel, with a total of 1m3 units of fluid
being injected at the left edge (Neumann boundary) at x = 0, and zero pres-
sure boundary condition along the right edge (Dirichlet boundary) at x = 200,
with no flow-boundary along the top and bottom faces at y = 0 and y = 100.
This should give a steady flow from the left to right, with a monotonically
decreasing pressure to go along with it. The domain has size Lx = 200 and
Ly = 100.

(a) Reference (b) Multiscale solution

(c) Permeability (d) Error

Figure 7.1: Results for the two dimensional flow channel example with both
Neumann (x = 0) and Dirichlet (x = 200) boundary conditions

The results can be seen in Figure 7.1. The multiscale pressure solution 7.1b is
qualitatively very close to the reference solution 7.1a and it is hard to spot any
significant difference. When looking at the error plot in Figure 7.1d, however,
the error is significantly larger near the edges of dual volumes. For instance,
there are five primal coarse blocks along the y-axis at y = 0, 20, 40... which
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results in the dual grid having edges at y = 10, 30, 50, ....

Generally, the error is always largest near the edges of the dual grid because
of the localization assumption, but if there are large differences in permeability
along the edges, the edge solutions will be very bad at interpolating correctly,
since a solution accounting for the entire grid would simply flow around the
impermeable block if there was low permeability around it, leading to reduced
pressure drop over the impermeable cell. This can be illustrated as in Figure
7.2a, where a single impermeable block leads to very little flow and a large
pressure drop, but the same system when the neighbouring cells are included
leads to a much smaller pressure drop as in Figure 7.2b. Clearly, the localization
assumption can fail in terms of the point wise error in the system - the average
error is still small, ‖ē‖2 = 0.026, or less than three per cent.

The expected flow pattern is shown in Figure 7.3a and, as expected, is a steady
flow from left to right, curving around the areas with high permeability. When
constructing a flow field from the non-smooth initial pressure solution, shown
in Figure 7.3c we can see that the discontinuities of the derivative becomes
problematic: The pressure lines end up being non-smooth and occasionally
sharp 90 degree turns are produced in the flow pattern. Starting lines at x = 0
wind up being clustered close together and the streamlines are obviously not
physically realistic. This is as expected, considering how the pressure is non-
smooth at all dual cell boundaries, which makes any attempt to construct a
flow field mathematically problematic - flow induced by the change in pressure
across coarse blocks is not well defined.

When using the reconstructed pressure field meant for flow fields, the results
are much better (Figure 7.3e): Qualitatively speaking, the patterns show the
expected curving around high permeability areas, as well as the areas where
the flow lines are very close to each other (for instance at y = 90).

(a) Thin edge (b) Double edge

Figure 7.2: A single impermeable cell can pose problems for the localization
assumption when interpolating pressure values

98



(a) Reference flow, channel (b) Reference flow, 2 wells

(c) Multiscale flow, channel (d) Multiscale flow, 2 wells

(e) Conservative multiscale flow, channel (f) Conservative multiscale flow, 2 wells

Figure 7.3: Results for the 2D flowchannel example

7.3.2 Two wells

To verify that both rate and BHP wells behave correctly in 2D, we will solve a
problem with one of each type placed at (Lx

1
8 , Ly

1
8 ) and (Lx

7
8 , Ly

7
8 ) so that the

lower left corner has a rate well pumping in 1m3/s units of fluid and the lower
right corner has a BHP well which enforces zero pressure. Combined with
no-flow conditions along the boundary this should lead to a steady change
in pressure from the lower left corner to the upper right, as shown in 7.4a.
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The multiscale solution 7.4b is qualitatively very similar, but seems to have
higher error near the wells themselves, as shown in Figure 7.4d. This is not
unexpected, as the treatment of wells in the MsFV-method has some problems
modelling a strict point well: The wells are first added in an integral sense
to the system (distributed over a coarse block), while the correction functions
are used to reduce the error of the integral approximation. The error again
shows the dual coarse boundaries, illustrating that the choice of dual grid can
influence the quality of the solution.

While the approach to point wells leads to some error around the wells them-
selves with the largest relative error being large near the BHP well, the relative
error is very low at ‖ē‖2 = 0.041. This is in general quite a good result because
while the error near the wells is significant, the general smoothness of pressure
solutions makes this unproblematic for the rest of the domain.

When observing the flow patterns, we again see that the reference flow (7.3b)
is very similar to the flow from the reconstructed pressure field (7.3f). The
multiscale flow (7.3d) shows the fact that the non-smooth pressure does not
lead to meaningful flow fields - the streamlines end up alongside the edge dual
volumes in many places since the discontinuities act as a barrier for the flow.
Flow lines also intersect each other near the wells, which should never happen
for incompressible flow.

7.4 Effects of coarse grid selection

7.4.1 Variations in permeability

It is important to note that the selection of the coarse grid can influence the
solution. We first saw this in Section 7.3.1 where a coarse dual block boundary
intersected both high permeability and low permeability cells leading to a high
local error. The assumptions made by the algorithm is not always valid. For
example, take a domain consisting of low, uniform permeability everywhere
except a small circle near the center of the domain where the permeability is 106

Darcy. The low permeability continues on the inside of the circle as shown in
Figure 7.5b. We will reuse the boundary condition from Section 7.3.1, inducing
flow across the domain. A coarse grid of 3× 3 is used.

The result is interesting: The error, shown in Figure 7.5c, is low in the domain
outside of the circle. This is unsurprising, as this is the same problem we
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solved earlier. Inside the circle, however, the error is very large: Even though
there should be very low pressure inside the impermeable circle since there are
no source terms there, there is a significant pressure increase from the edge of
the wall to the center.

Why does this happen? The example has been constructed so that the circle
is entirely within the central primal coarse block Ω̄i as shown in Figure 7.5a.
This results in the center point of Ω̄i being inside circle. When constructing the
linear system for finding the pressure at this center point, the MsFV-method
estimates the flux across the boundaries of Ω̄i induced by the basis functions
which intersect Ω̄i. There is obviously no induced flow from the basis functions
corresponding to unit pressure at the center node because of the circle, but the
other nodes will result in flux into Ω̄i. Since this flux sum estimates that there
should be positive pressure at the center node, this value is then interpolated
using the basis functions.

The basis functions prevent there from being pressure outside of the circle, but
the unexpected result of there being pressure inside an impermeable cell with
no source terms remains. Even though this is a synthetic example, it shows
that the localization assumption can lead to unpredictable results when there

(a) Reference (b) Multiscale solution

(c) Permeability (d) Error

Figure 7.4: Results for the 2D flowchannel example
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is great variation in permeability within a coarse block.

(a) Multiscale solution (b) Permeability (c) Error

Figure 7.5: Results for the 2D flowchannel example

7.4.2 The thickness of dual boundaries

The thickness of the dual boundaries is difficult to manage. For some grids is
is difficult to ensure a dual grid two cells thick everywhere and for unstruc-
tured grids the partitioning schemes almost always result in two or three cells
thickness in some places. However, this is not actually a problem. While the
description of the original algorithm from Chapter 2 does not describe how to
handle this situation, the operator formulation in Chapter 3 handles this im-
plicitly by being a pure linear algebra formulation: The solution is extrapolated
from coarse center points using the edge nodes, but there are no restrictions
placed on the edge nodes in terms of thickness.

There is of course an extra computational cost associated with the solution of a
bigger linear system for the edge nodes’ basis functions, but numerical experi-
ments indicate that the difference between a dual grid with two cell thickness
and one cell thickness is negligible compared to the difference in error caused
by how the dual grid overlaps the underlying permeability. There are even
some cases where having a double thickness can be advantageous for the error,
for example in the situation illustrated in Figures 7.2a and 7.2a.

102



7.5 3D validation

7.5.1 Flow channel with fault

To validate the 3D implementation, a simple sloped fault will be used with
lognormal permeability layers with mean values 100, 400, 50 and 350 in each
layer, emulating the distribution found in sedimentary rocks. The standard
deviation is 4.5. The flow channel boundary condition from the 2D validation
will be reused. The dual grid for this fault was shown in Section 5.3.2.

The permeability is shown in Figure 7.6c and the reference and multiscale so-
lutions can be seen in Figure 7.6a and 7.6b respectively. The error seems to
be slightly higher near the changes in permeability and near the fault, but in
general, the whole domain has an error comparable to the same example run
without a fault. The relative error is fairly low, at ‖ē‖2 = 0.094. This indicates
that the handling of faults with the planar algorithm is good, something which
has not been achieved before in research on the method. Having a method
which is robust in regards to faults and other discontinuities in the grid is ex-
tremely important, as such features will be found in almost all realistic reservoir
data sets. The fact that the algorithm automatically creates dual grids capable
of handling faults without being explicitly told that the fault is there is also
promising.
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(a) Reference (b) Multiscale solution

(c) Permeability (d) Error

Figure 7.6: Results for the 2D flowchannel example
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7.6 Realistic datasets

Since the results for Cartesian grids and synthetic permeability cases were
good, we will attempt to handle both realistic geometry and realistic perme-
ability. The first test consists of two subsets of the highly challenging SPE10
dataset, which provides a difficult permeability configuration in a Cartesian
geometry and the second test will be an example of realistic geometry in the
Johansen dataset.

The examples chosen are not used because they represent problems the MsFV-
method solve without any problems; rather, they have been selected so that the
solutions will illustrate the weaknesses of the method.

7.6.1 The SPE10 dataset

For an example of a highly heterogeneous permeability, we will turn to the
SPE10 dataset. The SPE10 dataset was originally published by the Society for
Petroleum Engineers in 2001[CB01] with the purpose of comparing different
upscaling techniques on a very challenging dataset. Since multiscale methods
use solutions on several scales to get results, they are closely related to tradi-
tional upscaling methods, and the SPE10 data set is a good candidate pushing
the MsFV-method to its limits.

The SPE10 dataset consists of 60× 220× 85 fine cells and can be divided into
two parts: The upper 35 layers are called the Tarbert formation and consists of a
highly challenging layered permeability. The lower 50 layers are called the upper
Ness layers and contains several channel-like structures in the permeability. An
example layer from Tarbert and Ness can be found in Figures 7.7a and 7.7b
respectively. Hollow visualizations of the permeability in horizontal (Fig. 7.8b)
and vertical (Fig. 7.8c) directions, as well as the porosity (Fig. 7.8a) are provided
in Figure 7.8.

The physical dimensions in the xy-plane are 1200× 2200 feet or about 365× 670
meters. We will use the well set up from the original testing environment,
shown in Figure 7.7a. There are four producer wells, which are kept at 200
bars pressure near the corners and a single injector well with 500 bars pressure.
All wells are 12.5 cm in radius and penetrate through all the layers. For both
cases, we will consider a subset of 30 layers, with sampling for plots being
done in layer 22 and 12 to avoid the coarse boundaries. The coarse grid will
consist of 5 × 5 × 5× fine cells, in accordance with the SPE10 example from
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(a) Tarbert (b) Upper Ness

[LTL10]. Informal tests suggest that much bigger coarse blocks for a case with
this degree of anisotropy leads to completely unusable solutions.

Figure 7.7: The four producer wells (P1-4) and the injector well (I1) in the SPE10
subset.

The aspect ratio combined with the highly heterogeneous environments is ex-
tremely challenging and non-iterative variants of the MsFV-method typically
struggles with such setups because of the highly non-local features of the pres-
sure, with both channels and greatly varying permeability [KAL08]. The fact
that the placement of the wells can have a large influence on the pressure dis-
tribution because of the large variance in permeability does not bode well, as
the well handling in the MsFV-method partially considers wells in an integral
sense when constructing the right hand side of the coarse system.
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(a) Porosity

(b) Horizontal permeability (c) Vertical permeability

Figure 7.8: SPE10 geological data
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Table 7.1: Error and runtime for the Tarbert layers

Normal Improved
‖ē‖2 2.039 0.040
‖ē‖∞ 276.321 0.893
toperators 8m32s 1m27s

Tarbert formation

The Tarbert formation, as exemplified by Figure 7.7a, has a highly heteroge-
neous lognormal permeability distribution with a range spanning 107 mD. The
results can be seen in Figure 7.10, where the original operator formulation
(7.10b and 7.10d), the decoupled formulation (7.10a and 7.10c) can be seen to-
gether with the reference solution (Figures 7.10e and 7.10f).

The results are overall good, as is to be expected considering that for small
coarse volumes, the local permeability will be fairly uniform. The pressure
drop around the BHP wells in the corners seem underestimated in the MsFV
solutions, most likely because of the difference in well handling combined with
the differences in local permeability. The lower right corner of both MsFV solu-
tions at layer 12 end up with a large pressure increase near the well where the
solver fails. This is much more pronounced in the solution without speedup.
For layer 22, the solution quality is excellent, except in a small neighbourhood
around the corner wells.

In terms of the error, there are some surprises. The results in Section 7.6.2 seem
to imply that the speedup method gains greater speed at the cost of accuracy,
but the results for the benchmark seem to indicate that the new method is
significantly better for the lower layers of SPE10, as shown in Table 7.1, as well
as significantly faster by a factor of about 5.

A possible explanation for the disparity is that the shale layers complicate the
solution process, but this does not explain why the error is slightly larger for the
new method when applied to simple 3D examples such as case 1. The highly
non-uniform permeability of SPE10 could make the edge problems easier to
solve independently of each other instead of as a single coupled system because
of high variations in permeability intersecting the edges.

The streamlines for the Tarbert case is shown in Figure 7.9a. A streamline
originates in the center of all the cells for the central producer well to ensure
that the flow pattern is captured. The original solution has red streamlines and
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Figure 7.9: Streamlines for the Tarbert subset. Red comes from the TPFA ref-
erence solution and blue from the MsFV approximation, after pressure recon-
struction

the MsFV solution is shown in blue. On the positive side, the flow pattern
seems very similar in terms of where the flow goes. While there seems to be
fewer streamlines to the wells on the right hand side, this could be explained by
the great local variations in permeability, which makes the streamlines sensitive
to small perturbations and the slightly different well handling of the multiscale
method.

All in all, the MsFV handles the Tarbert formation fairly well. For the most
part, the solutions are visually indistinguishable and the flow patterns seem
somewhat similar. The fact that the faster method is also the best at solving
this formation is surprising and very interesting.
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(a) Layer 12 MsFV (Speedup) (b) Layer 12 MsFV

(c) Layer 22 MsFV (Speedup) (d) Layer 22 MsFV

(e) Layer 12 TPFA Reference (f) Layer 22 TPFA Reference

Figure 7.10: The results for the Tarbert SPE10 layers
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Table 7.2: Error and runtime for the upper Ness layers

Normal Improved
‖ē‖2 16.631 2.457
‖ē‖∞ 2355.499 120.324
toperators 8m41s 1m30s

Upper Ness

The Ness layers are the most challenging part of the SPE10. As can be deducted
from Figure 7.7b there are two different distributions of very low (shown in
blue) and very high permeability (shown in red). The aspect ratio of each of
these channels is also large, as some channels run for the entire length of the
model with a thin thickness. Highly anisotropic problems is known to be a
problem for the MsFV-method [KAL08] and this seems to extend to 3D: The
original formulation is shown in Figures 7.12b and 7.12d and the improved
formulation is shown in Figures 7.12a and 7.12c, and the results are poor. It
is not easy to tell which version of the method fares better from the plots,
but Table 7.2 reveals that the improved method is significantly better both in
runtime and error wise, but still too high to be counted as a successful solve.

The streamlines, in Figure 7.11a, flow towards the wells, but most terminate
before reaching a well because of the poor solution quality.

0
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300

400
0 100 200 300 400 500 600 700

Figure 7.11: Streamlines for the Ness subset. Red comes from the TPFA ref-
erence solution and blue from the MsFV approximation, after pressure recon-
struction
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(a) Layer 12 MsFV (Speedup) (b) Layer 12 MsFV

(c) Layer 22 MsFV (Speedup) (d) Layer 22 MsFV

(e) Layer 12 TPFA Reference (f) Layer 22 TPFA Reference

Figure 7.12: The results for the upper Ness SPE10 layers
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7.6.2 The Johansen formation

The Johansen dataset is a corner point grid constructed for the purpose of eval-
uating possible large scale CO2 storage underneath the ocean. It is publicly
available [EDH+09] and an example of a corner point grid with realistic per-
meability. The model consists of a subset of the Johansen formation, which is
embedded between two shale layers with very low porosity and permeability.
In the current form, the model is based on both 2D and 3D seismic data, as well
as data extrapolated from similar reservoirs. Although the dataset is meant for
CO2 storage simulation, it is also a publicly available model suitable for reg-
ular reservoir simulation. While not representing any actual well system this
enables us to create easily reproducible results on realistic data sets.

The subset we will use is shown in Figure 7.13a For our pressure solver, we are
interested in the actual rocks inside the shale layers, which can be visualized
by filtering away the very low porosity as shown in Figure 7.13b. Note that
while we will use the porosity to filter away parts of the data set, the porosity
is not in use when solving for incompressible flow. It is in this case, however,
correlated with permeability and is therefore convenient to use to remove the
shale layers with very low permeability. As can be seen from the plots, the
geometry contains complexities typical of realistic data sets: A big fault as
well as bumps and non-smooth surfaces. The permeability for the actual rocks
is distributed as shown in Figure 7.13a and has a distribution which looks
normally distributed in a range of about 30 in order of magnitude.

We will employ a 15 × 15 × 3 dual grid for the simulation. This grid, with
the horizontal part of the dual grid stripped away for clarity, can be seen in
Figure 7.13b. The planar partitioning algorithm handles the corner point grid
as expected from the earlier experiments.

The results for the shale layers are not too good - for both the original MsFV-
method (Figure 7.16a) and the new formulation (Figure 7.16b) the error is sig-
nificant. Some areas overestimate the pressure drastically and others underesti-
mate the pressure to zero. This probably happens because of the extremely low
porosity, which makes it difficult to create good quality pressure basis functions
since there is very little flow going on.

When looking at the inner layer with more normal porosity levels, however,
the results are much better. The original formulation (Figure 7.15b) success-
fully captures the solution from a qualitative perspective1. This is shown in the

1Because of this, the reference solution has been omitted to save space
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(a) The permeability distribution for the rocks in
the Johansen dataset, given in Darcy

(b) Dual grid without the horizontal parts

Table 7.3: Johansen error

Normal (inner) Improved (inner) Normal (outer) Improved (outer)
‖ē‖2 0.030 0.354 1.660 13.2047
‖ē‖∞ 0.234 16.023 195.174 1285.423
toperators 11.5s 6.6s

error values shown in Table 7.3 as well as in the error plots (Figure 7.15d &
7.15c): The error is low for the normal MsFV solution (‖ē‖2 = 0.03) and signifi-
cantly higher for the improved variant (‖ē‖2 = 0.35). Why does the decoupled
MsFV-method fail? The increased locality which comes from solving each edge
problem independently seems to fail when a dual cell intersects both the shale
layers and the rocks in between: This is especially apparent when looking at
the small segment which is isolated near the lower left corner in the plots. In
the original formulation, the error is low there, but with the decoupled formu-
lation, the error is very high. Since both versions seem to struggle with the low
porosity shale layers, this is not a big surprise. Care should therefore be taken
when orienting dual grids for real world cases.
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(a) Permeability (b) Permeability under shale layer

Figure 7.13: The geometry and geology of the Johansen formation

Figure 7.14: The well setup for the Johansen formation
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(a) MsFV-method (speedup) for the inner rocks (b) MsFV-method for the inner rocks

(c) Error (speedup) (d) Error

Figure 7.15: The results for the two methods for the inner rocks

(a) MsFV (b) MsFV (Speedup) (c) TPFA Reference

Figure 7.16: Results for the outer layers with very low permeability
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7.6.3 SAIGUP

Introduction

For a second example of real world geometry, we will look at a dataset from the
Sensitivity Analysis of the Impact of Geological Uncertainties on Production
(SAIGUP) project. The project aims to estimate how geological uncertainties
impact production forecasts, and has a publicly available dataset which can be
used by MRST[Reg]. The dataset contains faults and complex geometry, with
real world permeability characteristics.

Characteristics

The permeability can be seen in Figures 7.17a (horizontal) and 7.17b (vertical).
The permeability of the SAIGUP model is fairly challenging, with both layers
with different permeability as well as some channel like structures near the
leftmost edge. The span in permeability is 107, which is almost as much as the
challenging SPE10 cases, but the permeability values are in general not so close
to zero as was the case in SPE10.

There are a number of faults all over the model which presents a more challeng-
ing geometry than the Johansen data set. Especially challenging is the faults
which give a drop in height, but does not fully disconnect parts of the grid such
as the fault in the Johansen formation. While we in Section 7.5.1 could adjust
our coarse grid size to the fault location, the faults are here in many different
locations with no obvious pattern. The partitioning algorithm employed is not
specifically fault aware, but will hopefully be able to create a dual grid.

Methodology

The model is embedded in a logically Cartesian grid with a size of 40× 120× 20
fine cells. Not all cells are marked as active, giving a total of 78720 cells to
solve for. Some initial testing was done using homogeneous permeability to
find an appropriate coarse grid: It was decided to be 13× 25× 3 giving coarse
blocks consisting of approximately 3× 5× 7 = 105 fine cells. The testing using
homogeneous permeability was done so that we can distinguish between the
weaknesses of the method and the partitioning algorithm. As the MsFV-method
has had problems with highly anisotropic mediums when solving subsets of
SPE10, this is an important distinction. The small coarse block sizes ensure
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that the coarse blocks are convex as well as fairly small. The z-direction is the
coarsest partition because of the significant curvature in the domain - when
there is a large amount of local curvature, the geometric approach of shooting
planes can quickly categorize too many cells as edge cells.

The boundary condition is a large pressure differential from the right to the left
of the model2. The pressure is 500 Pascal at the right and 200 Pascal at the left,
with no-flow on the other faces. The boundary condition was chosen because
it would ensure flow across the entire domain, showing any area where the
method fails. Some areas could potentially also be isolated when partitioning
the domain, which would be easy to see in a flow-everywhere scenario.

Results

Since the geometry and permeability is quite complex, we will plot both the
top and bottom layer as well as a layer logically in the middle along the z-axis.
The top and bottom is interesting because that is where the grid ends and the
middle is interesting because it would be the most relevant for a real world
simulation since most of the domain by definition would be the interior.

For the original formulation, the results are excellent: For the middle layer,
shown in Figure 7.19b the solution is visually indistinguishable from the TPFA
reference solution in Figure 7.19a. The top and bottom layers (Figures 7.18b and
7.20b respectively) are also very close to the TPFA solutions (shown in Figures
7.18a and 7.20a) with the exception of some small areas where the solution is
fairly bad. These small areas correspond to primal coarse blocks where most
of the logically defined block has been set to inactive, which results in too few
cells to define a meaningful dual grid. An idea for further work would be
to merge all coarse blocks under a certain size into the neighbours while still
aiming for hexahedral coarse blocks.

The improved faster solution, however, fails dramatically when trying to solve
SAIGUP. The results for the top, middle and bottom layer is shown in Figures
7.18c, 7.19c and 7.20c. The solution is unusable and bears little resemblance,
if any, to the reference solutions. This could be because the dual grid is not
oriented to the large changes in permeability - since the variant solves each
edge problem independently, this could lead to singular submatrices which
would be unproblematic in the original formulation, where there are multiple

2The orientation left/right is used in the natural manner for the figures used here. In the model,
left is the maximum y-coordinate and right the minimum y-coordinate.
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Table 7.4: Error and runtime for the SAIGUP dataset

Normal Improved
‖ē‖2 0.147 191.771
‖ē‖∞ 13.652 766.245
toperators 24.6s 19.46s

paths in the graph to each node.

The error and timing results can be seen in Table 7.4.

(a) Horizontal permeability (b) Vertical permeability

(c) Coarse grids

Figure 7.17: SAIGUP permeability set up, geometry and coarse grids
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(a) Layer 1 Reference TPFA

(b) Layer 1 MsFV-method, original formulation

(c) Layer 1 MsFV-method, faster formulation

Figure 7.18: The lower layer of the SAIGUP case
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(a) Layer 10 Reference TPFA

(b) Layer 10 MsFV-method, original formulation

(c) Layer 10 MsFV-method, faster formulation

Figure 7.19: The middle layer of the SAIGUP case
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(a) Layer 20 Reference TPFA

(b) Layer 20 MsFV-method, original formulation

(c) Layer 20 MsFV-method, faster formulation

Figure 7.20: The topmost layer of the SAIGUP case
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7.7 Iterative solvers

When validating the iterative solvers, we will use the preconditioned residual,

‖M−1Q(r̃− Ãũ)‖2, (7.6)

to measure the error. The preconditioner is applied to the residual to achieve
parity between MATLAB’s builtin GMRES implementation and the Dirichlet
smoothers.

7.7.1 Flow channel

To test the implementation of the iterative solvers, we will first reuse the flow
channel example from Section 7.3.1.

GMRES converges to machine precision very quickly, as seen in Figure 7.21a.
The smoother cycles take much longer to converge, as shown in Figures 7.22a
and 7.22b. Only 1000 iterations are shown, but the patterns are clear: Using
smoothing cycles results in a steady drop during each cycle, with an small in-
crease in error when doing another multiscale iteration. The effect of smoothing
steps drop off after time, making another multiscale iteration necessary. This
could theoretically be done adaptively, by for example measuring maximum of
the residual each iteration before deciding to do more smoothing steps.

Since GMRES is obviously a lot faster, does this mean that smooth-cycles are
useless? No, because GMRES is a complicated algorithm which requires global
information during solving steps. It uses a lot of memory and is not easily
suited for parallel processing in the way smoothers are: Since smoothers can
work on each local coarse block, an implementation will have little communi-
cation overhead.
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Figure 7.21: Convergence for GMRES applied to the flow channel example

(a) DAS and DMS iterations - ns = 10 (b) Convergence for different smoothings steps ns

Figure 7.22: A comparison of different smoothing cycles for the MsFV-
iterations.
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7.7.2 SAIGUP

We then turn our attention to the realistic SAIGUP case previously seen in
Section 7.6.3. The GMRES and DAS/DMS-cycles were performed with a max-
imum of 2000 iterations. Each smooth cycle consisted of 40 steps. The original
formulation of the MsFV was employed, as the faster variant diverged when
iterated.

GMRES using the MsFV-method as a preconditioner, seen in Figure 7.23a, con-
verges in 74 iterations. Doing GMRES without a MsFV preconditioner on the
same initial residual does not results in convergence in 2000 iterations, which
makes the use of the MsFV preconditioner worthwhile in this case.

(a) Preconditioned GMRES (b) DAS and DMS

Figure 7.23: The iterative results for the SAIGUP dataset.

For the smoother cycles, something interesting happens: As can be seen in Fig-
ure 7.23b, the residual oscillates wildly. If we study the graph more closely,
however, it becomes apparent that the error increases after each MsFV-solution,
but steadily converges when looking at the smoothing cycles. The reason for
this is that in small part of the domain the grid seems fairly disconnected from
the neighbours: This leads to the MsFV-method getting high error there regard-
less of the error in the other areas. This can be seen in Figure 7.24a, where the
error in the lower layer is shown. The solution is converging in all areas except
for this small area where the method fails, and the residual stagnates, dominat-
ing the norm. It should be noted that the iterative algorithm takes a very long
time to converge, and any benefit to be had in real world scenarios would be
to remove oscillatory errors with a select few iterations instead of doing a full
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solve.

Figure 7.24: The error in the lower layer of the SAIGUP formation after 2000
DMS iterations.
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7.8 Speed tests

7.8.1 Original formulation versus new formulation

The original formulation, as mentioned in Section REF, has some problems
when extended to three dimensions because of the edge overlap in the linear
systems. A new, analgous method, was formulated to solve this problem. To
test the speed of the new methods, a benchmark was run where the computa-
tion of the operators, which includes all the pressure basis functions, was timed
for different subsets of SPE10. Twelve runs were completed as shown in Figure
7.25a, which shows a significant speed increase for the new method. The first
run takes the lower 5 layers of SPE10, the second the lower 10 and so on.

The benchmark was run on a computational server with 24 Intel Xeon 2.67GHz
processors. When tested in serial mode, MATLAB was set to -singleCompThread.
The speed observed in serial mode was similar to workstation performance, but
the benchmarks were still run on the computational server to ensure a homoge-
nous testing environment.

The speed increase is very significant. For the serial version, the speedup for
the larger data sets lie between 6 and 7, giving the new method a significant
advantage even with no parallelism. For the parallel version, the speedup was
just below 5. Further parallelism could be extracted by exploiting the matrix
structure described in Section REF by for example finding graph cycles using
some graph algorithm 3 and reordering the systems accordingly. Note that
MATLAB’s built in linear algebra functionality is tuned for multiprocessing,
and because of this the lower speedup for the 24 CPU case could simply be be-
cause a much larger dataset would be required for the runtime to be dominated
by the linear systems.

The error is also lower for the faster method by a factor 3 which is very promis-
ing, just like in Section 7.6.1.

7.8.2 Performance

Note: We will only concern ourselves with the improved method for this sec-
tion.

The test setup is the same as in Section 7.8.1. The distribution of the time spent

3For example depth first search

127



(a) MsFV

Figure 7.25: The two variants of the method tested for both for a single CPU
and for 24 CPUs.

for the MsFV-method can be shown in Figure 7.26a. Note that the most compu-
tationally intensive steps are the creation of the dual partition and the operator
generation. This is unsurprising, as the dual partition is computationally de-
manding and the operator generation is where all the large linear equation sets
are solved. The operator generation seems to dominate the other steps as the
problem size increases: Not unsurprising, as the partitioning algorithm was
proposed to have a run time of O(3N) where N is the number of fine cells.
Solving linear equations is much more computationally intensive, even with
the optimizations we have done.

The coarse system and the interpolation steps are dwarfed by the partitioning
and operator generation. Fortunately, both partitioning and creating the opera-
tors can be considered to be preprocessing steps because they need only be done
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once for different combinations of boundary conditions and well setups 4. The
main appeal of the MsFV-method is in repeated solutions, for example when
testing different well conditions or iterating a multiphase problem, and parallel
computing.

The solution of the coarse system as well as the interpolation steps are however
required every time a new solution is required. In Figure 7.26b, these steps
are compared to the solution of the full TPFA system. As should be expected,
solving the full system is vastly more expensive.

4Provided the wells are BHP wells which does not add equations to the system
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(a) The time spent in different steps in the MsFV solver. Preprocessing
steps marked with asterisk (*). Note that the solution time is vastly
dominated by the operator generation, which indicates good imple-
mentation performance

(b) TPFA vs MsFV

Figure 7.26: The distribution of time spent for the different benchmarks. Solv-
ing a coarse system and interpolating is much cheaper than solving a full sys-
tem.
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Chapter 8
Conclusion

8.1 Summary of results

After a literature study an implementation of the Multiscale Finite Volume
method was written for the MATLAB Reservoir Simulation Toolbox. The im-
plementation handles single phase Darcy flow with boundary conditions, wells,
flux reconstruction for conservative flow as well as three different approaches
to iterative multiscale solutions (GMRES, DAS and DMS). The implementation
has a focus on modularity and should be easy to modify for new experiments.
The performance of the implementation after optimizations seems asymptoti-
cally dominated by the solution of the linear equations.

Several different methods for generating dual grids on unstructured grids were
created and implemented, which handles Cartesian grids and delivers very
promising results for corner point and unstructured grids. Altogether this rep-
resents the first implementation of the Multiscale Finite Volume method on
complex 3D grids capable of handling fully unstructured grids, given some
restrictions on the primal coarse grid. Other research on the subject includes
work on logically Cartesian grids [SNA11] as well as different methods for
handling faults [HDJ11].

A new variant of the MsFV-method was developed to overcome challenges in
solution speed in 3D. The new variant is significantly faster and performs bet-
ter on some datasets (SPE10: Tarbert and Ness) and worse on others (SAIGUP).
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The new variant generates matrix systems which have greatly reduced condi-
tion numbers, and are easy to solve in parallel. Some analysis on parallelizing
the operator formulation of the MsFV-method was developed, showing that the
operator formulation with modifications can be solved using distributed com-
puting. While the error is much larger on some complex datasets, experiments
indicate that the large error is a result of both complex permeability and com-
plex geometry: Using the same geometry with uniform permeability leads to
low error, and the permeability is not more difficult than the upper Ness layers.

The method was validated on both 2D and 3D cases, including both syn-
thetic and realistic datasets. While the method itself has problems with highly
anisotropic mediums, the implementation itself does not seem like the limiting
factor in any of the datasets attempted. With the exception of the highly chal-
lenging cases, the MsFV-methods error seems to be near around 1/10 in the
relative norm. Using the method as both a preconditioner for GMRES and in
smoother cycles, the error could be reduced to machine precision.

8.2 Further work

8.2.1 Partitioning algorithms

Creating dual grids is a very difficult problem, and there is always room for
improvement. Adaptive coarsening of the grid with dynamic adjustments of
the coarse grid based on local changes in permeability is one possible idea
to handle the weaknesses of the method. The other is to both improve the
speed and success rate of the dual grid generation, for example by combining
logical and geometric partitioning so that the logical indices is used in areas
without faults. The dual grid generation could also be extended to grids where
hexahedral coarse blocks does not make sense, for instance in 2.5D PEBI grids.

The primal partitioning algorithms are not especially geometry aware, which
forces the user to make repeated attempts to find an coarse primal grid which
results in a suitable dual grid for the MsFV-method. An improved algorithm
could postprocess the grids created by MRST’s dual grid functionality to give
better results with the method.

For grids with special orientations, such as PEBI grids which have six sides in
each cell in the xy-plane, a logically Cartesian grid with the same bounding
coordinates could be produced. Since the dual grid is trivial to produce for

132



such a grid, this could then be used to sample the nearest cells in the PEBI grid
to categorize the nodes. This would probably require some postprocessing to
ensure that the edge cells are connected.

8.2.2 Parallel implementation

The MsFV-method is very well suited for parallel implementation and imple-
menting a distributed solver in a more low level programming language would
be a natural next step for anyone interested in using the MsFV-method for real
world cases with more than a few million fine cells.

If one has access to the parallel computing toolbox, many parts of the MsFV-
module can be parallelized with little or no changes to the underlying code,
for example the dual grid generation. Unfortunately, I did not have access to
this toolbox on the university workstations where I wrote most of the code.
Note that the solver is still parallel in the most computationally intensive parts
(basis generation and interpolation) where the parallelism depends on the im-
plementation of mldivide in MATLAB. A special linear solver which can detect
the decoupled problems and solve them independently could possibly make
the implementation faster, and make a distributed solve with minimized com-
munication costs.

8.2.3 Other discretizations

While the implementation currently uses the TPFA discretization, creating a
solver using other discretizations should be fairly straight forward, depending
on the matrix systems involved and could significantly improve the accuracy
of the solutions. For example, implementing multipoint stencils in the current
framework would only require an categorization of the nodes corresponding to
boundary conditions into the familiar inner, edge and central node categories.
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Appendix A
Rapid experimentation using
setup GUI

The MSFV-method has a large amount of possible configuration parameters:

• Different geometries have different challenges

• Some types permeabilities can have an huge qualitative influence on the
solution

• The choice of coarse partitions must be done with care, as the method is
very sensitive to the choice of partitioning around complex geometry

• With the different dual partitioning schemes developed in this thesis,
there are several options which all influence the error

• Boundary conditions and wells obviously have a big influence on the
solution

Clearly this many degrees of freedom can be intimidating when trying to un-
derstand the advantages and disadvantages of an implementation. Early in the
process, a decision was made to set up a user interface to make it easy to ex-
periment with different parameters and problems. This would not only make it
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easier to test the method systematically, but it would also facilitate experimen-
tation, which is a key component in scientific work. Several of the cases used
in Chapter 7 were selected after experiments with the user interface.

The user interface itself can be seen as a wrapper for the MSFVM_Testing func-
tion, which is a function containing set up procedures for a wide range of grids,
sizes, permeabilities and other configurations. Since grid selection is distinct
from say boundary conditions, this functions offers a wide range of cases meant
to encompass many aspects of the testing of reservoir simulation methods, not
necessarily restricted to the MsFV-method. The interface also makes it trivial
to reproduce many of the results in this thesis if further analysis is needed. A
screenshot can be seen in Figure A.1.

Figure A.1: The setup GUI
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