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Abstract

This dissertation investigates a particular reduction of the three body prob-
lem, using a combination of Riemannian geometry and geometric invari-
ant theory of three body motions in Euclidean space.

Our point of departure is the reduction that is described in [HS07].
Here, we present this reduction from a new point of view. This viewpoint
emphasizes the flexibility in the choice of geometric invariants of three
body motions, within one particular class of systems of invariants. Many
of our important calculations are based on the singular value decomposi-
tion of matrices, and we show that the flexibility of the geometric invari-
ants is strongly related to the flexibility of the singular value decomposi-
tion.

In addition, we go some steps further than [HS07]: In the context
of the three dimensional three body problem, we calculate the reduced
equations of motion in terms of our chosen system of invariants. The
rotational part of this reduction is extended to the general case of many
particle systems evolving in three dimensional space. We also include a
large discussion on the conformal geometry of the shape invariants of the
three body problem.
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1.1 Background

The aim of this dissertation is to gain a better understanding of geometric re-
duction in classical mechanics. Rather than taking an abstract and coordinate
free point of view, we try to understand reduction in general by consideration
of particular examples, namely many particle systems with an emphasis on the
three body problem. The three body problem provides a rich soil for such an
investigation, due to the following:

(i) In the spatial three body problem, we have a minimal example of non-
Abelian reduction. The rotation group SO(3), which is a symmetry group
of the spatial three body problem, is without doubt the most important
and also the simplest compact non-Abelian Lie group.

(ii) The group action of SO(3) on the configuration space of the three body
problem has three different isotropy types. Hence, in the SO(3)-reduction
of the three body problem we must handle the singularities of the group
action and the associated quotient map. The number of such singulari-
ties is however not overwhelming.

(iii) In the three body problem, we can take significant advantage of the democ-
racy group, which we will identify with the orthogonal group O(2). This



1. INTRODUCTION

group represents the symmetries of the SO(3)-equivariant kinematic ge-
ometry of the configuration space. Hence, we can say that the three body
problem is an example with a minimal non-trivial democracy group.

The three body problem can be taken as a “minimal example” exhibiting
these features, i.e. a mechanical system with a non-Abelian group action with
singularities and non-trivial democracy group. Rather than being directed to-
wards astronomy, this study investigates these mathematical and geometrical
structures, and aims at making them transparent.

We deliberately use the term geometry ambiguously: First, this term de-
notes the kinematic geometry of the configuration space, i.e. the Riemannian
differential geometry of the configuration space. Our focus on Riemannian ge-
ometry is somehow in opposition with the more commonly used symplectic
approach to classical mechanics. Secondly, the term geometry denotes the Eu-
clidean geometry of three dimensional space. We aim at expressing the laws
of motion in terms of Euclidean-geometric properties. In effect this amounts
to expressing the laws of motion in terms of Euclidean-geometric invariants of
three body configurations. Regarding the Euclidean geometry as a Klein ge-
ometry with symmetry group E+(3) = R3

� SO(3), we are led to the study of
SO(3)-invariants of the configuration space.

The combination of the kinematic geometry and the Euclidean Klein ge-
ometry yields the SO(3)-equivariant kinematic geometry of three body configu-
rations, which can be regarded as a synthesis of the kinematic geometry and
the Euclidean geometry. This geometry will be taken as the background for our
studies in dynamics.

This does not imply that the notions of equivariant geometry will always be
in the foreground. The mathematical substance always boils down calculations
with relations between various variables, and we try not to obscure this by us-
ing an advanced terminology. When doing mathematics, it may be tempting
to prefer abstract terminology and seemingly advanced concepts. This may be
a double-edged sword: Under an abstract point of view, we may see some im-
portant structures very clearly, but there is always a danger that we loose con-
tent. Facing this dilemma, we must always look for a healthy balance. In the
present work, we tend towards using an elementary terminology. The more ad-
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1.1. Background

vanced concepts will rather serve as a guide through the resulting wilderness:
Our chosen variables are meant to reveal the equivariant kinematic geometry
of the three body problem, as well as the action of the democracy group. The
resulting set of variables is however treated in the most elementary way.

The starting point of this investigation is the article [HS07] by Hsiang and
Straume, which partially originates from [HS95]. One of the main objectives in
the work of Hsiang and Straume is to find out to what extent the dynamics of
three body motions is determined by the evolution of shape. In their work they
parametrize three body shapes over a round sphere – the shape sphere – and in
[HS08] they concluded that in the case of zero total angular momentum, three
body motions are completely determined by geometric properties of the shape
curves, i.e. the evolution of shape represented by a curve on the shape sphere.
The generalization of this to general motions is still work in progress, and the
present thesis can be regarded as a contribution in that direction. This con-
tribution includes the following: (i) Interpretation and systematization of the
variables of [HS07] by means of the singular value decomposition of matrices.
(ii) Deduction of the reduced equations in the most general case, including a
correction of the equations for the planar case in [HS07]. (iii) Generalization of
the Euler equations in [HS07] to many particle systems and deformable bodies.
(iv) Adaptation of Lemaitre’s regularization [Lem64] of binary collisions.

1.1.1 Overview

This thesis consists of 5 chapters. The present chapter, which is Chapter 1, is
the introduction chapter, and contains an overview over the dissertation, as
well as a tiny discussion of the present results and future work. We also give a
short note on various relations between geometry and many particle systems.
Finally, we give an introduction to our approach to the three body problem.

Chapter 2 contains a discussion of many particle kinematics. In our termi-
nology, many includes also infinitely many. This leads us to a Hilbert space
formalism, which has two important advantages: (i) We see that our theory
is a theory about inertial mass in motion in space that does not depend on
finiteness of the number of particles, and (ii) we are moved in the direction
of a coordinate-free approach. At the core of our application of Hilbert spaces

3



1. INTRODUCTION

lies the constituent space, which is a Hilbert space that is intended to represent
the inertial mass of the system. In Section 2.3 we give a fairly comprehensive
account on the notion of Jacobi vectors in many particle systems, with an em-
phasis on their flexibility, which we encode by the Jacobi groupoid. We need
a thorough understanding of this topic in our study of the three body prob-
lem; several places we explicitly use the flexibility of the Jacobi groupoid to do
important calculations. Our treatment of Jacobi vectors builds on [Str06], but
in order to understand also transitions between Jacobi vectors associated with
different mass distributions, we have to turn the topic upside down. In Sec-
tion 2.5 we introduce the singular value decomposition of many particle con-
figurations. We are particularly interested in some aspects of the perturbation
theory of the singular value decomposition. Later, we will use this as the basis of
our treatment of the three body problem, and also of our investigation of many
particle motions with constant total angular momentum. Another important
aspect of our study of the singular value decomposition is the introduction of
the notion of multi-valued gauges. In Section 2.7, we generalize the Euler equa-
tions of [HS07] to arbitrary many-particle systems. The Euler equations arise in
the study of many-particle motions using one particular rotating frame, namely
the principal axes frame. To some extent, the Euler equations determine the ro-
tation of the principal frame, and they can be regarded as a manifestation of the
conservation of total angular momentum.

Chapter 3 contains the first part of our treatment of the three body problem,
and focuses mainly on computations in terms of geometric invariants of three
body motions. The first sections of this chapter concerns the specialization of
some of the results in Chapter 2 to this particular case. In Section 3.7 we treat
the reduction of Newton’s equations of motion in the three body problem to a
set of differential equations in a complete set of geometric invariants of three
body motions. In Section 3.8 we give an alternative derivation of the reduced
equations of motion, based on a method due to Poincaré [Poi01]. Finally, in
Section 3.9, we treat a singular case which is not covered by the reduced equa-
tions of motion.

Chapter 4 investigates various shape spaces for the three body problem, i.e.
spaces of three body configurations modulo scaling and rotation. In the first
sections, we discuss various representations of three body shapes, and in par-
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1.1. Background

ticular, we investigate the flexibility in the choice of such a representation. This
flexibility is closely related to the flexibility in choice of Jacobi vectors. In Sec-
tion 4.3 we use this flexibility to discuss the hyperbolic geometry of three body
shapes. In Section 4.4 we discuss the geometry of three body shapes that is in-
duced by the kinematical structure of the three body problem itself. This leads
to a study of three body shapes in terms of spherical geometry, a study that
gives us a nice geometric representation of the reduced equations of motion
and also a relation between the spherical area and the rotational orientation
of three body motions with zero angular momentum. Finally, we demonstrate
how the shape sphere may provide a fertile ground for the study of regulariza-
tion of binary collisions.

In Chapter 5 we give some applications of the theory developed in the pre-
vious chapters. First, in Section 5.1 we apply the reduced equations of motion
to classify the homographic motions of the three body problem. We do this for a
1-parameter family of potential functions, and present a slightly more detailed
classification than the classification found in [Pyl41]. In Section 5.2 we sketch a
path towards the solution of Cabral’s constant inclination problem[Cab90].

1.1.2 Discussion

This thesis can be understood as a critical review of the approach of [HS07]
and [Sal11]. With some exceptions most of the results stand the test. The most
notable exceptions are the reduced equations of motion in the case of non-
vanishing total angular momentum, and the proposed approach to the con-
stant inclination problem in [Sal11]. Along with the revision of the reduced
equations of motion, we also gain a better understanding of the singularities of
the reduction procedure.

From personal correspondence with Eldar Straume, we know that the par-
ticular shape coordinates that are used in [HS07] grew out of the observation
that the kinematic geometry of three body shapes is spherical, and that these
coordinates were introduced in order to make this geometry transparent. With
this point of departure, it was then desirable to find a physical interpretation
of these variables. In the present work we started with a new definition of
these variables based on the singular value decomposition of matrices, and in
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1. INTRODUCTION

some sense, we turned everything upside down, and made a new point of de-
parture for the investigation of the three body problem. It is not an unusual
phenomenon in mathematics that the presentations of a theory move far away
from the way the theory was conceived.

Above we mentioned the revisions suggested by the present work. Here, we
will mention some points where we go beyond [HS07]:

Our treatment of the singularities of the reduction of the three body prob-
lem, and in particular the umbilic shape invariant motion in Section 3.9 is an
important part of the understanding of the revised reduction procedure.

We recognize that the present reduction depends on a multi-valued choice
of gauge, and that the resulting finite gauge group is a very nice book-keeping
device.

In the application of the reduced equations of motion to the constant in-
clination problem, we are not able to proceed far. We only give a quite simple
reformulation of the problem. An important aspect of this is however, that we
are able to shed some light on the article [Sal11] by a straightforward applica-
tion of the finite gauge group associated with the multi-valued choice of gauge.

The treatment of the regularization of binary collision also presents a new
insight, namely that our approach to the reduction of the three body problem,
and in particular the shape sphere is very well suited to understanding this
topic. In particular, it reveals clearly the relation between the classical regu-
larisation of the planar Kepler problem and the regularization of the three body
problem.

The presence of hyperbolic geometry in the study of three body shapes
is alluded to in [HS07] and mentioned in [Mon02]. In this thesis, we give a
thorough presentation of this topic. In particular, we make the connection
with the Jacobi vector flexibility very clear, and show also the limitations of this
line of thought, namely that every hyperbolic shape invariant corresponds to
mass distribution-invariant properties of three body configurations, but that
the converse is not true.

Finally, we will claim that the present work provides a larger context for the
study of the three body problem. In the generalization of the Euler equations
of [HS07], we determine precisely the range of validity of these equations, in
terms of which types of mechanical systems and which three body configura-
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1.1. Background

tions they are valid for. Our investigation of the flexibility of the choice of Ja-
cobi vectors provides a conceptual context for quite a few computational tricks
that are used in our study of the three body problem. The multi-valued gauge
and the associated finite gauge group yields a systematic way to distinguish be-
tween legal and illegal operations on the data involved in the reduction.

1.1.3 Main results

From the above discussion, we see that much of the material in this dissertation
can be regarded as investigations and explorations of the three body problem
as a rich mathematical landscape. Another important facet is the attempt to es-
tablish a simple and reliable computational framework, mainly by application
of the singular value decomposition. There are however a few pertinent main
results which we want to point out:

• Derivation of the reduced equations of motion og the three body problem
(cf. Section 3.7 (Section 3.7)), as well as investigation of their range of
validity.

• Derivation of the generalized Euler equations, and discussion of their
range of validity (cf. Theorem 2.7.4 (Theorem 2.7.4)).

• The thorough investigation of Jacobi transformations (cf. Section 2.3),
and clarification of their role in the conformal geometry of the shape
space of the three body problem (cf. Section 4.3).

1.1.4 Future work

Finally, we mention some possible directions of future work.

• We want to find a more detailed characterization of the phenomena de-
scribed in Definition 3.9.8 and Lemma 5.1.2, i.e. three body motions
where the total angular momentum vector is always parallel to the plane
spanned by the configuration.

7
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• We want to get a better understanding of the possible application of con-
formal and hyperbolic geometry to the study of evolution of three body
shapes. This seems to presuppose a better understanding of properties
of the potential function that are independent of the mass distribution.
One such property is reflected by the fact that the equilateral triangle is
a relative equilibrium, for every mass distribution. Are there more such
properties?

• We want to follow the path indicated in Section 5.2 to its end, and solve
the constant inclination problem.

• We want to give a detailed account on the regularization of binary colli-
sions.

• We want to study the limit of the present reduction when one or more of
the two masses tend to 0, in order to connect the present approach with
classical astronomical perturbation computations.

• We want to study periodic solutions of the three body problem, in con-
tinuation of [CM00] and [Sal12].

1.2 Geometry and many particle systems

In this section, we will formulate some guidelines of our research on many par-
ticle systems. In short, they are the following:

(i) Separation of kinematic geometry from dynamics. The kinematic geom-
etry is regarded as the background on which the dynamics takes place.

(ii) Description of kinematic geometry and dynamics in terms of Euclidean
geometric invariants of many particle configurations.

8



1.2. Geometry and many particle systems

1.2.1 Kinematic geometry

The space of positions

Let us regard a system of n mass points P1,P2, . . . ,Pn moving in Euclidean space
E3. The position of the system is defined as the point P = (P1,P2, . . . ,Pn) ∈ (E3)n .

We assume that there is a chosen segment AB in E3 which is defined to be
of length 1. For a given orthonormal frame of reference centred at O ∈ E3, the
position of the system is represented by n displacement vectors

1, 2, 3, . . . , n ∈R3, i =−−→
OPi

The tuple X = ( 1, 2, . . . , n) is called the position vector of the system with
respect to the given frame of reference. Accordingly, the space of position vectors
is identified with (R3)n =R3×n .

We note that for the given frame of reference, there is a canonical action of
R3×n on (E3)n , and that this action is free and transitive. Accordingly, there is an
induced canonical trivialization of the tangent bundle

T (E3)n → (E3)n ×R3×n . (1.1)

For a given mass distribution m1,m2, . . . ,mn , we define an inner product

〈X ,Y 〉 =∑
i

mi ( i · i ) (1.2)

on R3×n , which can be regarded as a Riemannian metric on the tangent bundle
(1.1) of (E3)n . This metric is independent of the choice of orthonormal frame of
reference, and depends only on the choice of length scale and the mass distri-
bution.

Definition 1.2.1. The kinematic geometry of (E3)n associated with the mass
distribution m1, . . . ,mn is the Riemannian geometry associated with the quadratic
form (1.2) on the tangent bundle (1.1).

For a given motion P (t ), the velocity vector Ṗ (t ), which is a curve in R3×n is
defined by

Ṗ (t ) = lim
Δt→0

−−−−−−−−−−→
P (t )P (t +Δt )

Δt
.

9



1. INTRODUCTION

Ṗ is thus defined as a vector in R3×n , and in virtue of (1.1) we can regard (P, Ṗ )
as a tangent vector to (E3)n .

As a Riemannian geometry, the kinematic geometry provides us with a no-
tion of covariant acceleration vectors. Because of the simple form of the kine-
matic metric, this assumes the usual form

P̈ (t ) =
(

d

d t
˙ 1(t ),

d

d t
˙ 2(t ), . . . ,

d

d t
˙ n(t )

)
,

for a motion P (t ) with Ṗ (t ) = ( ˙ i (t ))n
i=1. Hence we note that for a position vector

representation X (t ) = ( i (t ))n
i=1 of the motion P (t ), Ṗ = Ẋ and P̈ = Ẍ .

Furthermore, we have the notion of the covariant gradient in the Rieman-
nian geometry, and for a function U (P ), the gradient is the vector field satisfies

∇U (P ) =
(

1

m1

∂U

∂ 1
, . . . ,

1

mn

∂U

∂ n

)
∈R3×n ,

where ∂U
∂ i

is the usual gradient given by

∂U

∂ i
=
[
∂U

∂xi
,
∂U

∂yi
,
∂U

∂zi

]t

,

where xi , yi , zi are the components of the position vector i .
This construction can be descried in a quite different way. The kinematic

metric yields an isomorphism m from the space of vector fields to the space of
1-forms, and we can define ∇U = m−1dU .

Now we can treat the equations of motion in the following way:

Proposition 1.2.2. In the kinematic geometry of (E3)n associated with the mass
distribution m1, . . . ,mn, the Newtonian equations of motion for a conservative
system with potential function U can be written as

P̈ =∇U , or equivalently dU = mP̈ . (1.3)

Proof. This is a simple restatement of Newton’s equations of motion

mi ¨ i = ∂U

∂ i

associated with conservative systems.

10



1.2. Geometry and many particle systems

At the first glance, equations as (1.3) looks like a trivial restatement of New-
ton’s equations, and surely, there is not very much more to it. There is however
one big difference: Equation (1.3) is a statement within the language of Rie-
mannian geometry, and as such coordinate free.

The usual notion of kinetic energy is closely related to the kinematic metric:
For a motion P (t ) in (E3)n , with velocity Ṗ = ( ˙ i ), the kinetic energy can be
written as

T = 1

2

∑
i

mi ( ˙ i · ˙ i ) = 1

2
〈Ṗ , Ṗ〉.

The notion of orthogonality in the kinematic geometry has a straightforward
interpretation: Along a motion P (t ) of the system

Ṫ = 〈Ṗ , P̈〉.
Hence, the kinetic energy is preserved precisely when P̈ ⊥ Ṗ .

For this reason the notion of orthogonality also plays an important role in
the study of constrained systems. If M ⊂ (E3)n is a sub-manifold, M inherits a
Riemannian geometry, for which we have intrinsic notions of covariant accel-
eration and gradients which are defined by orthogonal projection onto the tan-
gent spaces of M . Interpreted in the induced structure on M , the equations of
motion on the form (1.3) correspond to the equations of motion of the system
holonomically constrained to M , i.e. in the case where the constraint forces
does not affect the total energy. This is the case precisely when the constraint
forces are orthogonal to M .

After this discussion our notion of Riemannian kinematic geometry should
be quite clear.

1.2.2 Euclidean geometry and symmetry

Regarded as Klein geometry [Kle72] the oriented Euclidean space E3 has the
symmetry group E+(3) of translations and rotations. The space (E3)n inherits
an induced E+(3)-action, and physical processes are invariant under this ac-
tion of E+(3). Accordingly, the actual points P1,P2, . . . ,Pn are less significant
than the geometric relations among the points. Classical physics is regarded to
be invariant also under reflection, and hence admits a larger symmetry group,

11



1. INTRODUCTION

namely the group E(3) generated by the reflections in Euclidean space. In this
work, orientation plays an important role in the formalism, and hence, we find
it convenient to restrict ourselves to the orientation preserving Euclidean trans-
formations.

Geometric properties of point sets P1, . . . ,Pn can usually be expressed by
real functions

f : (E3)n →R

that are invariant under the Euclidean group. Such invariants can be identified
with functions on the congruence moduli space

(E3)n

E(3)
,

i.e. the space of congruence classes of n-particle positions.
The oriented Euclidean group is the semi-direct product of the group R3 of

translations and the group SO(3) of rotations. Here, R3 is the normal subgroup,
and we perform the reduction in two stages, first by consideration of the R3

symmetry on (E3)n and then subsequently by consideration of the symmetry
action (

E+(3)

R3
∼= SO(3),

(E3)n

R3
∼=R3(n−1)

)
.

In this thesis the first step is done by means of Jacobi maps

J : (E3)n →R3×(n−1),

a special class of SO(3)-equivariant linear maps. A chosen Jacobi map gives a
representation of n-particle positions by 3× (n −1)-matrices. The columns of
such matrices are called Jacobi vectors.

The second step in the reduction is taken care of by the standard (diagonal)
action of SO(3) on R3(n−1), and its invariants, which can be regarded as func-
tions on the congruence moduli space

R3(n−1)

SO(3)
∼= (E3)n

E+(3)
(1.4)

12



1.3. Reduction of the three body problem

1.3 Reduction of the three body problem

In the study of the three body problem by means of geometric invariants, we
follow [HS07] and describe three body motions in terms of a size variable, the
hyper-radius ρ, together with two variables ϕ,θ that records the shape. To-
gether the variables ρ,ϕ,θ determine the congruence class of three body con-
figurations, and can, within some limitations, be regarded as coordinates of the
congruence moduli space (1.4) of the three body problem. Hence, ρ,ϕ,θ yields
a complete representation of static properties of three body configurations.

The fundamental Newtonian description of the three body problem has 9
degrees of freedom, i.e. an 18-dimensional phase space. When we fix the cen-
tre of mass at the origin, the number of degrees of freedom is reduced to 6,
which yields a 12-dimensional phase space. Hence, on this level of reduction
the three body problem is represented by a system of 12 ordinary differential
equations. Using the 3-dimensional rotational symmetry, we are able to reduce
this to a system of 9 ordinary differential equations. In other words, we have a
9-dimensional reduced phase space.

On the other hand, the quantities ρ,ϕ,θ, ρ̇,ϕ̇, θ̇ can be regarded as coordi-
nates in the tangent bundle of the congruence moduli space (1.4). This tan-
gent bundle is a 6-dimensional subspace of the reduced phase space. Hence,
we should not expect to be able to reduce the three body problem completely
to the reduced configuration space. This seems obvious also from a physical
point of view: Knowing the dynamics of shape and size of the three body con-
figurations, we still miss information about the rotational motion.

To some extent, the rotational motion is determined by the total angular
momentum vector Ω. This quantity is not SO(3)-invariant. We can however
choose a rotating coordinate system in which the components g1, g2, g3 of Ω
yield SO(3)-invariant quantities. This can be done in several ways. In our ap-
proach, we use the rotating principal axes frame. A gauge for the SO(3)-symmetry
of the three body problem is the same as a SO(3)-equivariant choice of a frame
of reference for every three body configuration. Unfortunately, it is impossible
to give a global choice of gauge in the three body problem. Using the princi-
pal frame, we construct a multi-valued choice of gauge which is defined almost
everywhere on the configuration space. Fortunately, the principal frame yields
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1. INTRODUCTION

analytic choices of gauge along analytic three body motions, and this analyt-
ical version of the principal axes frame extends throughout the configuration
space.

Partially depending on the choice of principal axes gauge, we thus describe
three body motions by means of the nine ambiguous variables

ρ,ϕ,θ, ρ̇,ϕ̇, θ̇, g1, g2, g3, (1.5)

for which we will express the reduction of the Newtonian equations of motion.
We rely on two different but equally effective and adequate methods:

The first method is very “old fashioned”: Since the equations of motion are
geometrically invariant, they can be expressed by means of our chosen set of
basic geometric invariants (1.5). Practically, this is done by brute force: We do
algebraic manipulations on the original Newtonian equations of motion, ma-
nipulations which are cumbersome, but completely feasible, in particular with
some help of a computer algebra system.

The second method is due to Poincaré [Poi01]: We interpret the six variables

ρ̇,ϕ̇, θ̇, g1, g2, g3

as a system of differential forms on the configuration space of the three body
problem. After computation of the structure coefficients of this system, it is
straightforward to write down the equations of motion.

None of these methods yield elegant treatments of the singularities of our
description of the three body problem, and a large portion of the present work
concerns the treatment of these singularities by various ad-hoc methods.

From the present investigations, we extract a particular view on geomet-
ric mechanics, namely that Poincaré’s article [Poi01] from 1901 gives a highly
adequate and flexible differential geometric framework for classical mechan-
ics. Poincaré’s method reveals the importance of the Lie bracket in Lagrangian
mechanics, and combined with geometric and differential geometric ideas, we
have a rich variety of tools, which can be organized into a toolbox which may
be called geometric mechanics. We will discuss the relation between Poincaré’s
method and symplectic geometry in greater detail in Section 3.8.3.

14



2.1 Introduction

This chapter concerns the symmetry reduction of many particle dynamics. By
many we mean finite, countably infinite, or even uncountably infinite. Hence in
our terminology, even a deformable body in the sense of continuum mechanics
will be called a many particle system.

The aim of this chapter is (i) to investigate the notion of Jacobi vectors for
finite many particle systems (ii) to introduce the singular value decomposition
and the principal axes as computational tools adapted to the study of many
particle systems (iii) to give a geometric expression of conservation of total an-
gular momentum, in terms of the principal frame. This leads to the so-called
Euler equations, which is a generalization of the classical Euler equations of
rigid body dynamics.

As an important tool we introduce the constituent space. This is a Hilbert
space that is intended to represent the physically significant information con-
cerning the constituents of the system. The underlying vector space can be
regarded as a subspace of the free vector space generated by the set of mass
points, while the inner product represents the mass distribution.

The main motivation of the investigation of the Jacobi vectors is to be able
to carry out a rigorous study of hyperbolic and conformal geometry in the three
body problem (cf. Section 4.3.3).



2. MANY PARTICLE SYSTEMS

The main motivation of the investigation of the Euler equations is to broaden
the understanding of the Euler equations in [HS07]. It is not obvious that the
generalization is valuable in itself. This generalization may however shed some
light on the Euler equations of the three body problem.

Initially in the process that led to this dissertation, the introduction of the
singular value decomposition was intended to give a foundation for the dis-
cussion of the Euler equations. Later it played an increasingly important role,
and now it permeates completely our discussion of the three body problem in
Chapter 3. It can be said to give a new point of departure for the study of the
three body problem in the style of [HS07].

2.2 The position space

The spatial position of an n particle system is represented by n points

P1,P2, . . . ,Pn

in Euclidean space E3. We can think of the constituents of the system as a set
B = {1,2, . . . ,n}, and the position of the system as a mapping B → E3.

Similarly, for an arbitrary set B , we can consider the set of mappings B → E3,
and thereby positions of systems with constituent set B . Hence, we define the
set of positions by

C = {F : B → E3}.

The inertial mass of the many particle system can be represented by a σ-
algebra σ over B together with a positive measure m on (B ,σ) satisfying m(B) <
∞. Without going into the details of measure theory, we simply assume the
existence of a real Hilbert space

H =L 2(B ,m)

whose elements can be represented by real functions on B that are square inte-
grable with respect to the mass distribution. In the case where this construction
is valid, we define H to be the constituent space of the system.

16



2.2. The position space

If we provide E3 with a length scale and an orthonormal frame of reference,
i.e. an isometry E3 →R3, we get a vector space structure on E3. Accordingly, for
every position B → E3, we get a unique linear map

R〈B〉→R3

from the real vector space R〈B〉 freely generated by B . Hence, we can represent
the set of positions by the vector space

C = HomR(R〈B〉,R3)

In the light of the following considerations, we may find the space C too large
in the case where B is infinite:

(i) Two different elements f , g ∈ C may be physically indistinguishable, e.g.
if they agree outside a mass-less subset of B .

(ii) An element f ∈ C may yield a position of the system where the moment
of inertia is infinite.

In order to cope with (i), we can identify elements f , g ∈C which agree out-
side a mass-less subset of B . (ii) can be dealt with by throwing away elements
f ∈C such that ∫

B
( f · f )dm

is either undefined or infinite. Here, f · f denotes the point-wise inner product.
With this in mind, we find it reasonable to work with the following space:

Definition 2.2.1 (Position vector space). For a system with constituent space
H , we define the space of position vectors to be the space

C =B(H ,R3)

of bounded linear transformations H →R3.

17



2. MANY PARTICLE SYSTEMS

The elements of C can be regarded as equivalence classes of functions F : B →
R3 for which the x, y , and z-components are square-integrable functions on
(B ,m).

In the case of the n-body problem, there is a natural identification of C

with the space M3×n of real 3×n-matrices where the i -th column of the matrix
representative of a configuration is the position vector i of particle i . In terms
of the standard basis ei of Rn , the following matrix represents a position vector
X [

X (e1)|X (e2)| · · · |X (en)
]= [

1| 2| · · · | n
]

,

where i is the position of particle i .

2.2.1 The constituent space

Above, the constituent space was defined as the real Hilbert space

H =L 2(B ,m).

For a square-integrable function f : B →R, we let [ f ] denote the corresponding
element of H , i.e. the L 2-equivalence class.

We have the following important and familiar examples of constituent spaces:

(i) If B is a compact subset of R3 and m is given by integration of a smooth
mass density function ρ, we can express the inner product in H as

〈 f , g 〉 =
∫

B
f g ρdV

(ii) In the case of n bodies, we can represent the elements of H by row vec-
tors = [x1, x2, . . . xn], = [y1, y2, . . . , yn]. The inner product is then given
by

〈 , 〉 =∑
i

mi xi yi

For a subset A ⊂ B we have the characteristic function χA , and since m(A) ≤
m(B) <∞, we can average elements of H and C over A: For an element ∈H ,

18



2.2. The position space

we have the mass weighted average value

〈 ,χA〉
‖χA‖

,

and the centre of mass of the restriction of X to A is given by

X (χA)

‖χA‖
∈R3.

As m(B) is assumed to be finite, the constant function 1 is square integrable,
and yields an important element of H that will be denoted by 1. This element
satisfies

〈1, [ f ]〉 =
∫

B
f dm,

where [ f ] ∈ H is the element representing f : B → R. The linear functional
1/m(B) : H →R is the same as the mass-weighted average over B . The orthog-
onal complement of 1 will be called the barycentric constituent space and de-
noted by H 0. This yields the following important orthogonal decomposition
of the constituent space

H =R〈1〉⊕H 0 (2.1)

into the subspace R〈1〉 spanned by 1 and the barycentric constituent space H 0.
The symmetry groups O(H ) and O(H 0) are called democracy groups. Later

we will have much use O(H 0), which can be thought of as the subgroup of
O(H ) for which 1 is fixed. In the case of the n-body problem with equal masses,
both of these groups contains the group of permutations of n the indices. Hence,
in this case, the democracy symmetry enforces that particles with equal mass
are equal.

The notion of the constituent space allows for the following abstraction:
The kinematic geometry is completely determined by the constituent space H ,
and the only reminiscent of the constituent set B that we possibly will need, is
the characteristic function χB = 1. Hence, from a kinematic point of view, we
only need to consider the Hilbert space H , and when discussing mean values,
we may have to take into consideration the distinguished vector 1 ∈ H , or at
least the linear subspace spanned by 1. In the study of dynamics, B will however
usually be indispensable.
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2. MANY PARTICLE SYSTEMS

2.2.2 The Hilbert space C of positions

The Euclidean geometry of R3 is represented by the scalar product

· = xx ′ + y y ′ + zz ′, where =
⎡⎣x

y
z

⎤⎦ , =
⎡⎣x ′

y ′

z ′

⎤⎦ .

Since H is self dual, we can describe the position space as a product

C =B(H ,R⊕R⊕R) =B(H ,R)⊕B(H ,R)⊕B(H ,R) =H ⊕H ⊕H , (2.2)

and hence, a configuration is represented by a tuple

X =
⎡⎣ ⎤⎦ ∈H ⊕H ⊕H . (2.3)

The corresponding linear operator H →R3 is given by

X ( ) =
⎡⎣〈 , 〉
〈 , 〉
〈 , 〉

⎤⎦ .

Accordingly, for an n-body position represented by a matrix

X = [
1| 2| · · · | n

]=
⎡⎣x1 · · · xn

y1 · · · yn

z1 · · · zn

⎤⎦ , (2.4)

the corresponding elements , , ∈H =Rn are given by

=
[

x1
m1

x2
m2

· · · xn
mn

]
=
[

y1

m1

y2

m2
· · · yn

mn

]
=
[

z1
m1

z2
m2

· · · zn
mn

]
.
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2.2. The position space

We can give C a Hilbert space structure as the orthogonal sum of three
copies of H . This yields the following inner product:

〈X , X ′〉 = 〈 , ′〉+〈 , ′〉+〈 , ′〉.

Using the transformation interpretation of the position vectors, we can write
this as

〈X ′, X 〉 = tr(X ′X t ),

where X t : R3 →H is the Hilbert-space transpose of X : H →R3 in the follow-
ing sense: If ∈R3 and ∈H , then 〈X t , 〉H = 〈 , X 〉R3 .

Expressed by integrals of functions on B , this inner product satisfies

〈[F ], [G]〉 =
∫

B
(F ·G)dm,

where F,G : B → R3 and F ·G is the point-wise inner product. In the case of n
point masses, this specializes to

〈X , X ′〉 =
n∑

i=1
mi (xi x ′

i + yi y ′
i + zi z ′

i ) =
n∑

i=1
mi ( i · i ),

i.e. a sum of Euclidean inner products ( i · i ), weighted by the respective
masses of the particles.

2.2.3 Kinematics

For a motion X (t ) of the system, i.e. a curve in the position space C , we have
the time derivative

Ẋ (t ) = lim
Δt→0

X (t +Δt )−X (t )

Δt
,

where we take the limit in the Hilbert space C . In this way differentiable curves
X (t ) yield velocity curves Ẋ (t ) in C . Under the usual identification of the tan-
gent bundle T C with C ×C , (X (t ), Ẋ (t )) is the tangent lift of X (t ).

In the infinite-dimensional case, a motion X (t ) does not specify particular
mappings Ft : B →R3, and hence it does not make sense to talk about a velocity
field Ḟt : B → R3 associated with a motion X (t ). On the other hand, if χA is the
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2. MANY PARTICLE SYSTEMS

characteristic function of a subset A ⊂B with mass m(A) > 0, 〈X (t ), [χA]〉/m(A)
yields the motion of the centre of mass of A. As long as Ẋ (t ) exists, 〈Ẋ (t ), [χA]〉/m(A)
yields the velocity of the centre of mass of A. This follows from differentiability
of the inner product 〈−,−〉. Hence, Ẋ (t ) seems to give a good way to keep track
of velocities of physically significant parts of the system.

In the case of n mass points, the position space is a finite dimensional vec-
tor space. Consequently there is only one notion of convergence, and for a mo-
tion given in the matrix representation (2.4) the velocity is

Ẋ (t ) =
⎡⎣ẋ1(t ) · · · ẋn(t )

ẏ1(t ) · · · ẏn(t )
ż1(t ) · · · żn(t )

⎤⎦ .

If B is a compact subset ofR3, the mass distribution is given by a smooth density
function ρ : B →R, and X (t ) is represented by a smooth function F : B×[a,b] →
R3, then the velocity field ∂F

∂t : B × [a,b] →R3 yields a curve
[
∂F
∂t

]
in C . Now Ẋ is

represented by ∂F
∂t , i.e.

(∗) Ẋ =
[
∂F

∂t

]
∈C .

This is proved as follows: If A ⊂ B , then the velocity of the centre of mass A(t )
of A is given by

d

d t
A(t ) = d

d t

∫
A

F (b, t )ρd V =
∫

A

∂F

∂t
ρd V =

〈[
∂F
∂t

]
,χA

〉
m(A)

.

(∗) is now seen to hold since the characteristic functions χA generate a dense
subspace of H .

In the case of the n-body problem, where B = {1,2, . . . ,n}, the application of
this formalism to the one-point set {i } ⊂ B yields

〈X (t ),χ{i }〉 = i (t ) and 〈Ẋ (t ),χ{i }〉 = ˙ i (t ),

where i (t ) is the position of particle i , and ˙ i (t ) its velocity.
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2.2. The position space

Finally, we present the kinetic energy, which is essentially equivalent to the
inner product on C . In the case where B is a compact subset of R3, the total
kinetic energy T of the motion F : B × [a,b] is usually defined by

T =
∫

B

(
1

2
ρ
∂F

∂t
(b, t )

)
d V = 1

2

〈[
∂F

∂t

]
,

[
∂F

∂t

]〉
= 1

2
〈Ẋ (t ), Ẋ (t )〉.

Similarly, for n-body motions,

T =∑
i

(
1

2
mi (ẋ2

i + ẏ2
i + ż2

i )

)
= 1

2
〈Ẋ , Ẋ 〉.

Conforming to these examples will employ the following general definition of
the kinetic energy of a motion X (t ) in C :

T = 1

2
〈Ẋ , Ẋ 〉

2.2.4 The configuration space

Within the Galilean theory of relativity [Gal32], absolute positions are physically
insignificant. This phenomenon can be discussed by means of transformations
of the Galilean space-time. We will not go into that topic here, but simply state
that we will consider only systems for which the relative positions yield an ad-
equate description, and hence go directly to formulations in terms of relative
positions.

We will define a configuration space M whose points represent relative po-
sitions of the system. This contrasts the position space C that records absolute
positions. The relation between M and C can be described as follows:

The physical translation symmetry is represented by an affine action of R3

on C . In terms of functions F : B →R3, this action is represented by point-wise
translation, i.e. ⎛⎝⎡⎣x

y
z

⎤⎦+F

⎞⎠ (b) = F (b)+
⎡⎣x

y
z

⎤⎦ .

In terms of the matrix representation of n-body systems (2.4) this yields

+ [· · · | i | · · ·
]= [· · · | i + |· · ·] ,
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2. MANY PARTICLE SYSTEMS

where , i ∈ R3. In terms of the representation (2.3), this action can be de-
scribed as ⎡⎣x

y
z

⎤⎦+X =
⎡⎣ +x1

+ y1
+ z1

⎤⎦ ,

and hence we see that the action of R3 on C is properly represented by the
subspace

R3〈1〉 =R〈1〉⊕R〈1〉⊕R〈1〉 ⊂H ⊕H ⊕H ∼=C , (2.5)

in the following sense: Two position vectors X , X ′ represent the same config-
uration if and only if (X − X ′) ∈ R3〈1〉. The configuration space is defined as
follows:

Definition 2.2.2 (Configuration space). The configuration space associated with
the position space C is the quotient

M = C

R3〈1〉 ,

i.e. the space of many particle position vectors modulo translation symmetry.
We will regard M as a Hilbert space where the metric is induced by the

projection C →M .

The configuration space M can be identified with a subspace M 0 ⊂ C ,
namely the orthogonal complement of R3〈1〉 ⊂C :

Definition 2.2.3 (Barycentric configuration space). The orthogonal comple-
ment M 0 = R3〈1〉⊥ ⊂ C is called the barycentric configuration space. As a sub-
space of C , M 0 inherits a Hilbert space structure.

Clearly, for any given mass distribution, there is a canonical isometry

M ∼=M 0.

M is universally well defined as a quotient of C . This contrasts M 0, which
depends on the choice of mass distribution. When we consider a fixed mass
distribution, we will however not distinguish between the configuration space
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2.2. The position space

and the barycentric configuration space. On the other hand, when we are inter-
ested in different mass distributions, we will sometimes retain the distinction
between M and M 0.

The barycentric configuration space can be described as the space of posi-
tions X = ( , , ) such that

〈 ,1〉 = 〈 ,1〉 = 〈 ,1〉 = 0, i.e. X (1) = 0.

Hence M 0 is the same as the space of positions with the centre of mass at the
origin. In the case of the n-body problem, the above conditions read∑

i
mi xi =

∑
i

mi yi =
∑

i
mi zi = 0.

Using the decompositions (2.2) and (2.1), we have the following identifica-
tions

M = H

R〈1〉 ⊕
H

R〈1〉 ⊕
H

R〈1〉 and M 0 =H 0 ⊕H 0 ⊕H 0,

and the identification of M with M 0 is identical to the direct sum of three
copies of the identification H /R〈1〉 ∼=H 0.

2.2.5 Rotational symmetries

By the standard representation of SO(3) on R3, the position space C inherits a
natural SO(3)-action that can be described as follows:

(Q, X ) �→Q ◦X , where Q ∈ SO(3), X ∈C ∼=B(H ,R3)

This action of SO(3) on C is isometric and reflects the rotational symmetry of
Euclidean geometry.

The subspace R3〈1〉 ⊂ C defined in (2.5) is clearly SO(3)-invariant, and ac-
cordingly, we have an induced representation of SO(3) on the configuration
space M =C /R3〈1〉. For the same reason, M 0 =R3〈1〉⊥ ⊂C∗ is SO(3)-invariant.
Accordingly, the barycentric configuration space M 0 also inherits an action of
SO(3).

The natural maps M 0 → C → M are SO(3) equivariant, and in the follow-
ing, we will take the described SO(3)-actions as the default actions of SO(3) on
M , M 0 and C .
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2. MANY PARTICLE SYSTEMS

2.3 Jacobi vectors in the n-body problem

In this section we will consider the case where H is finite dimensional, i.e. the
case of n mass points. It is possible to extend parts of the following discus-
sion to the case where H is infinite dimensional and separable, using infinite
orthonormal sequences. We will however not go into that discussion here.

In many cases, the position space C has a fairly natural coordinatization,
which although depends on a choice of frame of reference in Euclidean space:
The set of coordinates of all the particles constitutes such a coordinatization.
On the other hand, the configuration space M has in general no natural co-
ordinatization, and in this section we will consider a particular class of such
coordinatizations, namely the coordinatization given by a set of Jacobi vectors.
The special feature of Jacobi vectors is that they yield a good representation
if the SO(3)-equivariant kinematic geometry of the n-body problem, and thus
gives optimally simple expressions of the kinetic energy and the total angular
momentum.

Classically, the Jacobi vectors dates back at least to Jacobi[Jac43]. In the lit-
erature of astronomy, quantum mechanics and molecular dynamics it is com-
mon to work with one fixed choice of Jacobi vectors. We are however interested
in understanding the flexibility in choice of Jacobi vectors, and in the present
work, we extend the discussion of Jacobi vectors that is found in [Str06], and in-
vestigate transitions between different choices of Jacobi vectors from a slightly
different perspective.

In our terminology, a Jacobi map represents a choice of Jacobi vectors, while
a transition between two choices of Jacobi vectors is represented by a Jacobi
transformation. We can take the Jacobi maps and the Jacobi transformations
respectively as objects and arrows in a groupoid, which will be called the Jacobi
groupoid. Hence, our main goal can be expressed as understanding the so-
called Jacobi groupoid.

Among the particular applications of our understanding of the Jacobi gro-
upoid, we can mention the elegant analysis of the potential function found in
Section 3.4 and the introduction of hyperbolic geometry in the study of the
three body problem in Section 4.3.

Finally, we mention that from the point of view of invariant theory, a choice
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2.3. Jacobi vectors

of Jacobi vectors yields a complete system of SO(3)-equivariant translation in-
variant functions C →R3.

2.3.1 A non-standard definition of Jacobi vectors

For a given mass distribution and corresponding mass dependent inner prod-
uct, we present the position space as an orthogonal direct sum

C =M 0 ⊕R3〈1〉 (
R3〈1〉 =R1⊕R1⊕R1⊂H ⊕H ⊕H =C

)
,

with the corresponding orthogonal decomposition of the constituent space

H =H 0 ⊕R〈1〉,

with respect to the mass dependent inner product on H . Accordingly we have
the following description of the barycentric configuration space:

M 0 =H 0 ⊕H 0 ⊕H 0.

Now we define the notion of Jacobi vectors, in the following non-standard way:
For a given orthonormal basis B = ( 1, 2, . . . , n−1) of H 0 and a position vec-
tor X = ( , , ) ∈C =H ⊕H ⊕H , we define the vectors

i = X ( i ) =
⎡⎣xi

yi

zi

⎤⎦=
⎡⎣〈 , i 〉
〈 , i 〉
〈 , i 〉

⎤⎦ ∈R3,

to be the Jacobi vectors associated with the position vector X and the basis B

of H 0. Note that the notion of orthonormality of B depends on the mass dis-
tribution. Hence, different mass distributions yield different classes of allowed
choices of Jacobi vectors.

O(H 0) acts freely and transitively on the set of bases of H 0, and accord-
ingly, the set of Jacobi vectors allowed by a given mass distributions can be put
in bijection with O(H 0). Equivalently, we have the free and transitive action of
O(n −1) on the set of orthonormal bases of H 0, which implies that we can put
the set of allowed Jacobi vectors in bijective correspondence with O(n−1). The
actions of O(H ) and O(n −1) are of course essentially the same.
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From the point of view of Jacobi vectors, we can say that the democracy
groups O(H 0) and O(n−1) enforces that different choices of Jacobi vectors are
born equal.

2.3.2 Jacobi maps

The Jacobi vectors 1, . . . , n−1 can be regarded as the columns of a 3× (n −1)-
matrix J (X ) ∈ M3×(n−1) with real coefficients. For the given basis B of H 0, this
defines a linear transformation J : C → M3×(n−1), which has the following prop-
erties:

(J1) J annihilates R3〈1〉 ⊂C .
This is a manifestation of translation invariance (c.f. (2.5)).

(J2) J restricts to an isometry

M 0 → M3×(n−1),

where M3×(n−1) is equipped with the Frobenius inner product

〈X ,Y 〉 = tr(X Y t )

and M 0 is equipped with the mass dependent inner product inherited
from C .
This means that J respects the kinematic geometry.

(J3) For every Q ∈ SO(3) and every position X ∈C , J (QX ) =Q J (X ).
This means that J respects the rotational symmetries of C and M3×(n−1).

Following [Str06] we characterize the choice of Jacobi vectors by these prop-
erties. We will however use a somehow different terminology:

Definition 2.3.1 (Jacobi map). A linear map J : C → M3×(n−1) satisfying (J1),
(J2) and (J3) above with respect to a mass distribution m is called a Jacobi map
admitted by m.

Above we observed that orthonormal bases B of H 0 yield Jacobi maps. The
converse is also true:
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Lemma 2.3.2. Suppose that J : C → M3×(n−1) is a Jacobi map. Then there exists
an orthonormal basis 1, . . . , (n−1) of H 0 such that

J (X ) =
⎡⎣· · · 〈 , i 〉 · · ·
· · · 〈 , i 〉 · · ·
· · · 〈 , i 〉 · · ·

⎤⎦ (2.6)

Proof. Let Cx ⊂ C be the space of configurations where all the particles lie on
the x-axis, and let Mx ⊂ M3×(n−1) be the space of matrices for which the second
and third rows are 0.

By (J3), J is SO(3)-equivariant and thus, J must map Cx into Mx ; they are
both fix-point sets of the group of rotations around the x-axis. Hence, J induces
a linear map Jx : Cx → Mx .

Cx is naturally identified with H , while Mx is naturally identified withRn−1.
Hence, Jx is represented by (n −1) linear functionals J i

x : H → R, and since H

is a Hilbert space, this gives us (n −1) elements i ⊂H .
By (J1) J (R3〈1〉) = 0, i.e.

〈 i ,1〉 = J i
x (1) = 0,

and hence, 1, . . . , n−1 ∈H 0.
We can carry out similar constructions with the y-axis and the z-axis, and

thus provide similar functionals J i
y , J i

z : H →R.
The Jacobi map is now given by

J (X ) =

⎡⎢⎣· · · J i
x ( ) · · ·

· · · J i
y ( ) · · ·

· · · J i
z ( ) · · ·

⎤⎥⎦
Following (J3), this expression is invariant under permutation of the axes. It
follows that J i

x = J i
y = J i

z , and hence that (2.6) above holds, since J i
x ( ) = i ( )

for all ∈H . It remains to show that the frame ( 1, . . . , n−1) is orthonormal.
Define the elements of M 0 on the form

E i
x =

⎡⎣ i

0
0

⎤⎦ i = 1,2, . . . ,n −1.
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Now,

J (E i
x ) =

⎡⎣〈 1, i 〉 · · · 〈 n−1, i 〉
0 · · · 0
0 · · · 0

⎤⎦ ,

and by the isometry condition (J2) we deduce that

〈 i , j 〉 = 〈E i
x ,E j

x〉 = tr
(

J
(
E i

x

)
J
(
E j

x

)t )= n−1∑
k=1

〈 i , k〉〈 k , j 〉.

Hence the frame B = ( 1, . . . , n−1) is orthonormal.

We sum up this section and the previous one with the following proposition:

Proposition 2.3.3. Consider a many particle system with a given mass distribu-
tion m. Then the formula

J (X ) = [
X ( 1)| · · · |X ( n−1)

]
defines a bijective correspondence between Jacobi maps J : C → M3×(n−1) and
orthonormal frames ( 1, 2, . . . , n−1) in H 0.

2.3.3 Jacobi vectors and the kinetic energy

Since Jacobi maps J : C → M3×(n−1) restrict to isometries M 0 → M3×(n−1), we
have the following proposition:

Proposition 2.3.4. For an n-body motion X (t ) with the centre of mass at the
origin and a given Jacobi map J with corresponding evolution of Jacobi vectors

1(t ), . . . , n−1(t ), the kinetic energy can be written as

T = 1

2
tr(J (Ẋ )J (Ẋ )t ) = 1

2
〈J (Ẋ ), J (Ẋ )〉 = 1

2

∑
i

( ˙ i · ˙ i ).

Later, in Proposition 2.4.6, we will see that the total angular momentum
obeys a similar simplification when we work with Jacobi vectors.
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2.3. Jacobi vectors

2.3.4 Jacobi transformations and the Jacobi groupoid

Here, we will investigate transitions between different Jacobi maps.

Definition 2.3.5 (Jacobi transformation). Let J , J ′ be two Jacobi maps, possi-
bly associated with different mass distributions. A linear automorphism A of
M3×(n−1) is called a Jacobi transformation from J 1 to J 2 if J 2 = A ◦ J 1. Symboli-
cally, we write this as

A : J 1 → J 2.

This suggests that the Jacobi transformations fit nicely into a groupoid, since
they are by definition invertible. We isolate this groupoid as a separate object:

Definition 2.3.6 (Jacobi groupoid). The Jacobi groupoid J is defined in the
following way:

Objects: Jacobi maps J 1, J 2, . . .

Arrows: Jacobi transformations A : J 1 → J 2

Composition: Composition of automorphisms of M3×(n−1).

The rest of this section can be regarded as an investigation of the Jacobi
groupoid. First we show that each Jacobi transformation can be represented by
an invertible (n −1)× (n −1)-matrix:

For any given matrix A ∈ GLn−1(R) we get a linear automorphism of M3×(n−1)

given by matrix multiplication from the right. This gives an anti-representation
GLn−1(R) → Aut

(
M3×(n−1)

)
, which we denote by A �→ A∗, where A∗(B) = B A for

every B ∈ M3×(n−1).

Lemma 2.3.7. For every pair of Jacobi maps J 1, J 2 ∈ J , there exists a unique
arrow

J 1 → J 2.

This arrow is of the form A∗ : J 1 → J 2 where A ∈ GLn−1(R). This yields an anti-
homomorphism of groupoids,

J → GLn−1(R).
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Proof. Assume that we are given two possibly different mass distributions m1,m2

for the n-body problem. Denote by 〈−,−〉1,〈−,−〉2 the two associated inner
products on H and by ‖−‖1,‖−‖2 the associated norms.

Assume that we are given Jacobi maps J 1, J 2 associated with the two mass
distributions, and let ( 1

1, . . . , 1
n−1), ( 2

1, . . . , 2
n−1) be the corresponding orthonor-

mal frames (cf. Proposition 2.3.3). This yields the following two bases for H :

B1 =
( 1

0, 1
1, . . . , 1

n−1

)
, B2 =

( 2
0, . . . , 2

1, . . . , 2
n−1

)
, (2.7)

where we have defined
1
0 =

1

‖1‖1

2
0 =

1

‖1‖2
.

Both of these bases are orthonormal in the respective inner products, and are
related by a matrix Ã = [a j

i ] such that

2
i =

∑
j

a j
i

1
j , i .e. a j

i = 〈 2
i , 1

j 〉1

An important observation is that a j
0 = 0. Hence, for a position vector X , the

associated Jacobi vectors k
i = X ( k

i ), k = 1,2 are related by

2
i =

n−1∑
j=1

a j
i

1
j , i .e. J 2 = A∗ ◦ J 1,

where

A =

⎡⎢⎣ a1
1 · · · a1

n−1
...

...
an−1

1 · · · an−1
n−1

⎤⎥⎦ .

The matrix A induces a Jacobi transformation A∗ : J 1 → J 2, which is by con-
struction the only Jacobi transformation J 1 → J 2.

The following commutative diagram describes the situation:
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2.3. Jacobi vectors

C M

M 0
1

M 0
2

M3×(n−1)

M3×(n−1)

⊃

⊃

π

∼=

∼=

π2
1π1

2

J1

J 2

∼=

∼=

A2
1A1

2

Here, M 0
1 ,M 0

2 denotes the orthogonal complements of the subspace

R3〈1〉 ⊂C cf.(2.5).

with respect to the inner products associated with the different mass distri-
butions m1,m2. Both of them are naturally identified with the configuration
space M =C /R3〈1〉, and therefore also with each other via the projection maps
πi : C → M i . J 1, J 2 are the given Jacobi maps, and the transition functions Ai

j

are uniquely defined by commutativity of the diagram. We see that J i , Ai
j cor-

responds to πi ,πi
j by the pair of isomorphisms M i → M3×(n−1).

The fact that A j
i is given by right matrix multiplication can not be read di-

rectly out of the above diagram, unless we take into consideration that this is a
diagram in the category of representations of SO(3).

2.3.5 The Jacobi groupoid associated with a fixed mass distribution

Definition 2.3.8. For a fixed mass distribution m, we let Jm ⊂ J denote the
full sub-groupoid of Jacobi transformations between Jacobi maps admitted by
the mass distribution m. Jm will be called the Jacobi groupoid associated with
the mass distribution m.
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2. MANY PARTICLE SYSTEMS

By Proposition 2.3.3 and Lemma 2.3.7, we see that there is a canonical ac-
tion of O(n−1) on the set of Jacobi maps J ∈Jm , and that this action is free and
transitive. From this we conclude the following:

Corollary 2.3.9. A choice of reference object J ∈Jm defines a bijection from the
set of objects of Jm to O(n − 1). In other words: If J is given, every J ′ ∈ Jm is
uniquely determined by the unique element Q ∈O(n −1) with

Q∗ : J → J ′.

2.3.6 Mass distributions with common Jacobi maps

In this section we will prove that the mass distributions m are classified by the
associated Jacobi groupoids Jm . Since each Jm is O(n −1)-homogenous, it is
necessary and sufficient to investigate the following claim: If two mass distri-
butions m,m′ admit a common Jacobi map J, then m = m′.

The two body problem

It will be useful for us to consider an example where this breaks down, namely
the two body problem: For two mass points P1,P2 with position vectors 1, 2

and mass distribution (m1,m2), the orthogonal complement of 1= [1,1]t is the
line spanned by ±[−m2,m1]t , and hence the possible choices of Jacobi vectors
are given by unit vectors of the form

1 =±
⎡⎣−√ m2

m1(m1+m2)√
m1

m2(m1+m2)

⎤⎦ .

The corresponding Jacobi vectors are

1 =±
√

m1m2

m1 +m2
( 1 − 2).

Hence, for different mass distributions (mi ), (m′
i ), the associated Jacobi vectors

are related by an element of O(1) if and only if the reduced masses

m1m2

m1 +m2
,

m′
1m′

2

m′
1 +m′

2
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2.3. Jacobi vectors

are equal. Hence, there will exist one-parameter families of mass distributions
with common Jacobi maps.

The n body problem

With n > 2 in mind, let us study the general case. We look at two mass distribu-
tions (mi ), (m′

i ), with a common Jacobi map

J : C → M3×(n−1).

Along with the two mass distributions, we have inner products 〈,〉m ,〈,〉m′ on
C , and also possibly different notions of centre of mass, which is reflected by
possibly different orthogonal complements H 0,H 0′ of 1 in H .

For each pair of labels i , j , we can find a transformation Qi j ∈O(n−1) which
gives a Jacobi map

Ji j =Q∗
i j ◦ J

such that the corresponding 〈,〉m-orthonormal basis ( 1, . . . , n−1) of H 0satisfies

1 ∈ span(ei ,e j ), (2.8)

where (e1,e2, . . . ,en) is the standard basis forRn . By Corollary 2.3.9 the existence
of Qi j is clear.

Similarly as in the case of the two body problem, we must have

1 =±
(
−
√

mi

m j (mi +m j )
e j +

√
m j

mi (mi +m j )
ei

)
,

and the corresponding first Jacobi vector is

1 = Ji j (X ) =±
√

mi m j

mi +m j
( i − j ), (2.9)

i.e. the Jacobi vector of the two body system Pi ,P j with mass distribution mi ,m j .
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Modulo sign, the first element of the representation of Ji j by an 〈,〉m′-ortho-

normal basis ( ′
1, . . . , ′

n−1) for H 0′
will satisfy ′

1 ∈ span(ei ,e j ), and as above,

′
1 =±

⎛⎜⎝−
√√√√ m′

i

m′
j (m′

i +m′
j )

e j +
√√√√ m′

j

m′
i (m′

i +m j )′
ei

⎞⎟⎠ .

The corresponding first Jacobi vector is

′
1 = Ji j (X ) =±

√√√√ m′
i m′

j

m′
i +m′

j

( i − j ),

i.e. the Jacobi vector of the two body system Pi ,P j with mass distribution (m′
i ,m′

j ).

Since 1 = Ji j (X ) = ′
1, the reduced masses

μi j =
mi m j

mi +m j
and μ′

i j =
m′

i m′
j

m′
i +m′

j

must be equal, and we conclude the following:

Lemma 2.3.10. The mass distributions m,m′ have a Jacobi map in common if
and only if all the reduced masses μi j and μ′

i j (i �= j ) are pairwise equal.

In the case of n = 2, equality of the reduced masses is clearly not sufficient
to pin down the mass distribution. However, in the case of n ≥ 3, the mass dis-
tribution is completely determined by the distribution of the reduced masses.
This follows from the following simple algebraic observation:

Let ai , Ai range over (0,∞). Then the equations

Ak = ai a j

a j +ak
{i , j ,k} = {1,2,3}

have the unique solution

ai =
2Ai A j Ak

Ai A j − A j Ak + Ak Ai
{i , j ,k} = {1,2,3}.
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When n > 2, we can choose triples 1 ≤ ι1 < ι2 < ι3 ≤ n and apply the algebraic
observation to the masses mιk = ak and the reduced masses μι j ιk = Ai . In this
way we see that the mass distribution is completely determined by the distri-
bution of reduced masses:

Lemma 2.3.11. For n > 2, the mass distribution m = (m1, . . . ,mn) is uniquely
determined by the corresponding distribution of pairwise reduced masses

μi j =
mi m j

mi +m j
, i , j = 1,2, . . . ,n

Together, the two above results yields:

Theorem 2.3.12. Consider an n body system with 2 < n <∞, and suppose that
the two mass distributions m,m′ admit a common Jacobi map J : C → M3×(n−1).
Then m = m′.

Proof. Lemma 2.3.10 tells us that the distribution of reduced masses is deter-
mined by the set of admitted Jacobi maps, while Lemma 2.3.11 tells us that the
mass distribution is uniquely determined by the distribution of reduced masses
when n > 2.

2.3.7 Similar mass distributions

Two mass distributions m = (m1, . . . ,mn), m′ = (m′
1, . . . ,m′

n) are called similar if
there exists a real number λ such that

m′ =λm = (λm1, . . . ,λmn).

Similarly, for two similar mass distributions, the associated kinematic inner
products 〈,〉m , 〈,〉m′ on the position space C are related by the scaling factor�
λ: If , ∈C , then

〈 , 〉m′ =λ〈 , 〉m =
〈�

λ ,
�
λ

〉
m

.

Accordingly, the decompositions H = R1⊕H 0 are identical for the two inner
products, and if the basis ( 1, . . . , n−1) of H 0 yields a Jacobi map J ′ ∈ Jm′ ,
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then (
�
λ 1, . . . ,

�
λ n−1) yields a Jacobi map J ∈Jm . The corresponding Jacobi

transformation φ : J ′ → J is then given by multiplication with
�
λ.

Now, if ψ : J ′ → J ′′ is another Jacobi transformation where J ′′ ∈ Jm , then
ψ◦φ−1 : J → J ′′ is a Jacobi transformation within Jm , and is accordingly repre-
sented by an orthogonal matrix Q ∈O(n−1). Hence, ψ is clearly represented by
the similarity matrix

�
λQ. This yields the following result:

Corollary 2.3.13. Two mass distributions m,m′ are similar if and only if every
Jacobi transformation from any J ∈Jm to any J ′ ∈Jm′ is represented by a simi-
larity matrix.

2.3.8 How large is the Jacobi groupoid?

We ask the following question:

Question 2.3.14. Which matrices A ∈ GLn−1R can represent Jacobi transforma-
tions A∗ : J → J ′ for the n-body problem?

In other words: What is the image of the groupoid mapping

J → GLn−1(R)

(cf. Lemma 2.3.7)?
This question is important for our understanding of the hyperbolic geome-

try of the three body problem. Proposition 4.3.11 yields a solution in the case of
the three body problem. In the following, we present some small steps towards
a general answer to Question 2.3.14.

Reformulation in terms of diagonal matrices

Let us assume that A ∈ GLn−1R yields a Jacobi transformation A∗ : J 1 → J 2 be-
tween Jacobi maps associated with two mass distributions m1,m2. Since each
of the Jmi are in bijection with O(n − 1), we can find Jacobi maps J 1

o , J 2
o and

P,Q ∈O(n −1) such that PAQ is diagonal and gives an arrow

(PAQ)∗ : J 1
o → J 2

o .
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2.3. Jacobi vectors

PAQ is the matrix of singular values of A. In this way we can restrict the problem
to the class of diagonal matrices. Equivalently, we can aim at formulating an
answer to Question 2.3.14 in terms of relations between the singular values of
A.

This problem can be now phrased as follows: For a given set (a1, . . . , an−1)
of real numbers, we want to find bases 0, . . . , n−1, ′

0, . . . , ′
n−1 of H =Rn such

that 0, ′
0 ∈ span(1), and a set (b1, . . . ,bn−1) of real numbers such that

i = ai
′
i +bi

′
0 i = 1, . . . ,n −1,

and such that the bases ( i ), ( ′
i ) are orthonormal in a mass dependent in-

ner product on H = Rn , i.e. in an inner product in which the standard basis
(e1, . . . ,en) of Rn is orthogonal.

Diagonality of inner products in Rn yields 1
2 n(n −1) constraints, since the

off-diagonal elements are all zero. On the other hand the bases ( i ), ( ′
i ) are

determined by the basis ( i ) and the (n − 1) real numbers b1, . . . ,bn−1 as well
as the proportion b0 = 0 : ′

0. When we choose the basis ( i ), we must obey
the constraint that 0‖1. This gives n −1 real constraints, and the basis i can
hence be chosen in a space of dimension n2 − (n − 1). Hence we are allowed
to adjust n2 − (n −1)+n = n(n −1)+1 parameters in order to satisfy 1

2 n(n −1)
constraints. From this argument, it is tempting to believe that every element of
GLn−1R can represent at Jacobi transformation.

Anyhow, we leave this as an open problem:

Question 2.3.15. Find relations among the singular values a1, . . . , an−1 of ma-
trices A which let us determine whether or not A represents a Jacobi transfor-
mation.

2.3.9 A note on translation invariant functions

Here we return to the general case of many particle systems with possibly in-
finitely many particles.
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For a vector in the constituent space H = L 2(B ,m) we get an SO(3)-
equivariant linear function

T : C →R3 T (X ) = X ( ) =
⎡⎣〈 , 〉
〈 , 〉
〈 , 〉

⎤⎦ ,

where , , ∈H are the coordinate elements associated with the position X ∈
C . By the method of the proof of Lemma 2.3.2 we can demonstrate that every
SO(3)-equivariant linear function C →R3 is of the form T for a vector ∈H .

On the other hand, T is translation-invariant if and only if ⊥ 1, i.e. if
∈H 0 with respect to the given mass distribution.

We conclude that every translation invariant SO(3)-equivariant linear func-
tion T : C →R3 is of the form T = T where ∈H 0.

This observation yields a nice approach to the following example, which is
taken from [Str06]:

Example 2.3.16. Consider the n-body problem. For a pair (i , j ) of indices, the
mapping

ρi j : X = [ 1, 2, . . . , n] �→ i − j

is SO(3)-equivariant and translation invariant. Accordingly, there exists a vector

i j ∈H 0 such that

i − j = X ( i j ).

This vector satisfies

i j = 1

mi
ei − 1

m j
e j

where ei ,e j are standard basis vectors of Rn . [Str06] investigates the structure
of the subset { i j } ⊂ H 0, defining the notion of weighted root system of n body
systems, proposing to use it as a book-keeping device for the relative distances.

With this device, the inter-particle distances are computed by the formula

ri j = ‖X ( i j )‖
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Another example is given by a choice of Jacobi vectors 1, . . . , n−1. Since
each individual Jacobi vector i can be regarded as a SO(3)-equivariant transla-
tion invariant function C →R3, we know that there have to exist vectors 1, . . . , n−1 ∈
H 0 such that the Jacobi vectors of a configuration X are given by i = X ( i ).

2.4 Rotational symmetries and momentum maps

The introduction of Jacobi vectors gives us a method of elimination of the trans-
lational symmetry of many particle systems. Here, we turn to the rotational
symmetry. In this section the dimension of H is allowed to be infinite.

The material in this section can be applied without elimination of the trans-
lational degrees of freedom. Hence, it will be convenient to abandon the dis-
tinction between the position space C and the configuration space M as well
as the distinction between H and H 0. In the following we will talk about the
configuration space

M =B(H ,R3),

having in mind that H can stand for either H or H 0 (using the previous nota-
tion), and that M can stand for either C or M (using the previous notation).

However, the interpretation of the results depends on the interpretation of
the symbol M : When M denotes the position vector space, the quantities are
defined with respect to a fixed spatial origin. On the other hand, when M de-
notes the space of configurations, all the quantities are defined relative to the
centre of mass.

Using the identification M = B(H ,R3) of configurations with linear oper-
ators, we have actions ϕ and ψ of O(3) and O(H ) respectively on M given by
composition of linear operators:

ϕ(U , X ) =U ◦X , ψ(Q, X ) = X ◦Qt ,

where U ∈O(3) and Q ∈O(H ). These actions are isometric, since

tr(U ◦X ◦Qt ◦Q ◦Y t ◦U t ) = tr(X ◦ (Qt ◦Q)◦Y t ◦ (U t ◦U )) = tr(X Y t ),

and they obviously commute. Following [Str06], these groups form a maximal
pair of commuting subgroups of O(M ). Hence, O(H ) can be regarded as the
symmetry group of the O(3)-equivariant geometry of the configuration space.
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2.4.1 Momentum maps of simple mechanical systems

Consider a manifold M with a given Lagrange function

L : T M →R,

such that L is of the form
L = K +U ,

where K is a Riemannian metric on M and U is a smooth function. Such a
Lagrange system is called a simple mechanical system.

Let G ×M → M be a smooth action of a Lie group G with Lie algebra g. On
the infinitesimal leve, the action is characterized by a vector bundle map

ξ : g×M → T M .

The Riemannian metric K yields a canonical self duality T M ∼= T ∗M , and an
associated dual map ξ∗ : T M → g∗ ×M , which gives a linear map

ΩG : T M → g∗.

Definition 2.4.1 (Momentum map). ΩG is called the momentum map associ-
ated with the action of G on the Lagrange system (M ,L).

The momentum map is characterized in the following way: If ε ∈ g and ∈
Tp M , then

K
(
ξ((ε, p)),

)= 〈ε,ΩG ( )〉,
where 〈−,−〉 denotes the dual pairing between g and g∗.

An inner product space V can be regarded as a simple mechanical sys-
tem, where the kinetic energy is given by the inner product and the potential
function is constant. Hence, the notion of momentum maps extends also to
G-actions on inner product spaces.

In the case where G acts by symmetries of the Lagrange function L, ΩG is
conserved:

Proposition 2.4.2 (Noether’s theorem). For a simple mechanical system (M ,L)
with a Lie symmetry group G, ΩG is conserved along the orbits of the Lagrange
system.
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In the case where the bundle map ξ : g×M → T M is injective, i.e. when the
G-action is free, there is an induced inner product 〈−,−〉ξ in the bundle g×M ,
and accordingly a smooth family (Ip )p∈M of isomorphisms Ip : g → g∗. This
observation forms the basis for the following definition:

Definition 2.4.3 (G-velocity). When the action of G on the simple mechanical
system (M ,L) is free, we define the G-velocity to be the mapping ωG : T M → g
given by

ωG ( ) = I−1
p ΩG ( ), for ∈ Tm M .

The G-velocity ωG can be described in the following way: By orthogonal
projection onto the image of ξ : g× M → T M , we can define a bundle map
T M → g×M , which gives a fibre-wise linear map ωG : T M → g. It is straight-
forward to check that ωG is equivariant with respect to the adjoint represen-
tation of G on g, and hence an Ehresmann connection in the principal bundle
M → M/G . In the literature this connection is called the mechanical connection
(cf. [CMR01]).

2.4.2 Momentum maps for many particle systems

The Lie algebra of the orthogonal group O(n) can be identified with the Lie alge-
bra so(n) of skew-symmetric n ×n-matrices, which can be given a bi-invariant
inner product defined by the formula

〈A,B〉 = 1

2
tr(AB t ).

This inner product will be regarded as the standard inner product on so(n), and
yields a natural identification of the dual vector space so(n)∗ with so(n) itself.

For the case n = 3, we note that the usual identification of so(3) with R3,⎡⎣ 0 −z y
z 0 −x
−y x 0

⎤⎦ �→
⎡⎣x

y
z

⎤⎦ (2.10)

is isometric with respect to the standard inner products on so(3) and R3. Nota-
tionally, we represent this important identification as follows:
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Definition 2.4.4. Consider the correspondence (2.10).
For a vector ∈R3, we let [ ] denote the corresponding 3×3-matrix, while

for a matrix A ∈ so(3), we let
−→
A denote the corresponding vector in R3.

With this identification, the actions of elements U ∈ SO(3) are related as
follows:

U
−→
A =

−−−−→
U AU t and [U ] =U [ ]U t . (2.11)

A useful exterior product

Let us regard a Hilbert space H together with the space V =B(H ,Rn) of linear
transformations from H to Rn . We define an exterior product

× : V ⊗V → so(n)

by

X ×Y = Y X t −X Y t ,

where X t : Rn →H is the Hilbert space dual of X : H →Rn .
Restricted to so(n) ⊂B(Rn ,Rn) this product yields the common Lie bracket:

A×B = B At − AB t = AB −B A = [A,B ] for A,B ∈ so(n),

and in the case n = 3 the composite

(R3)⊗2 B(R1,R3)⊗2 so(3) R3
∼= × ∼=

is identical to the standard ×-product on R3.
Our most important application of this product is to give a neat representa-

tion of the momentum map associated with the action of the orthogonal group
O(n) that is given by matrix multiplication:

Lemma 2.4.5 (Momentum map). Let H be a real Hilbert space. The momentum
map

Ω : T V → so(n)
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associated with the left action of the orthogonal group O(n) on the Hilbert space
V =B(H ,Rn) of linear transformations H →Rn is given by

Ω(X , Ẋ ) = X × Ẋ

where we have identified T V with V ×V in the way that is usual for vector spaces.

Proof. The group action corresponds to the a Lie algebra action

(A, X ) �→ AX for A ∈ so(n), X ∈V ,

and following Section 2.4.1, the momentum map is characterized by the for-
mula

〈Ω(X , Ẋ ), A〉so(n) = 〈AX , Ẋ 〉V .

The calculation

〈Ω(X , Ẋ ), A〉so(n) = 1

2
tr
(
(X × Ẋ )At )

= 1

2
tr(Ẋ X t At )+ 1

2
tr(AX Ẋ t )

= 〈AX , Ẋ 〉V

proves that the characterizing formula holds whenΩ is defined as in the Lemma.

Applied to a motion X (t ) in a configuration space M = B(H ,R3), Ω is the
total angular momentum with respect to the centre of mass. Using the identifi-
cation of R3 with so(3) (cf. Definition 2.4.4), we arrive

−−−−−−→
Ω(X , Ẋ ) =−−−−→

X × Ẋ =
⎡⎣〈 , ˙〉H −〈 , ˙ 〉H
〈 , ˙ 〉H −〈 , ˙〉H
〈 , ˙ 〉H −〈 , ˙ 〉H

⎤⎦ . (2.12)

In the case of n mass points with masses m1, . . . ,mn , we can translate this back
to the language of position vectors 1, . . . , n and velocity vectors ˙ 1, . . . , ˙ n of
configurations with the centre of mass at the origin. This yields the expression

−−−−−−→
Ω(X , Ẋ ) =

⎡⎣Σi mi (yi żi − ẏi zi )
Σi mi (zi ẋi − żi xi )
Σi mi (yi ẏi − ẋi yi )

⎤⎦=
n∑

i=1
mi ( i × ˙ i ).
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2. MANY PARTICLE SYSTEMS

Hence, we recover the standard notion of total angular momentum with respect
to the centre of mass.

In the case where dimH = n, we can introduce Jacobi vectors. This yields
a particularly simple form of the total angular momentum:

Proposition 2.4.6. In terms of Jacobi vectors [ 1, . . . , n−1] = J (X ), the total an-
gular momentum of a motion X (t ) with the centre of mass at the origin satisfies

Ω(X , Ẋ ) = J (X )×
(

d

d t
J (X )

)
= [∑n−1

i=1 ( i × ˙ i )
] ∈ so(3),

Hence, the Jacobi vectors allow us to express the total angular momentum
independently of the choice of mass distribution. The situation is similar to
that of Proposition 2.3.4, and we can in fact use the properties given by these
two propositions to characterize Jacobi vectors.

We prove Proposition 2.4.6 in the following way: Let ( 1, . . . , n−1) be the
basis of H 0 associated with the Jacobi map J . Then formula (2.12) reads

−→
Ω =∑

i

⎡⎣〈 , i 〉〈˙, i 〉−〈 , i 〉〈 ˙ , i 〉
〈 , i 〉〈 ˙ , i 〉−〈 , i 〉〈˙, i 〉
〈 , i 〉〈 ˙ , i 〉−〈 , i 〉〈 ˙ , i 〉

⎤⎦=∑
i

i × ˙ i

Equivariance of the momentum map

The adjoint representation Ad of O(n) on so(n) and the co-adjoint representa-
tion Ad∗ of O(n) on so(n)∗, are given by

AdU A =U AU t , Ad∗
U B =U t BU , for B ∈ so(n) ∼= so(n)∗,

where we use the identifications given by the standard inner product. For a
given element U ∈O(n) and X ,Y ∈B(H ,Rn), we have

(U X )×U Y =U Y X tU t −U X Y tU t =U (X ×Y )U t .

This shows that the momentum map can be regarded as an equivariant map
from M to (so(n)∗, Ad∗).
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2.5. Invariant theory and the singular value decomposition

In the case n = 3, where we identify so(3) and so(3)∗ with R3, the adjoint
representation and the co-adjoint representation is represented by the stan-
dard action of SO(3) on Rn , and when we interpret X ×Y as a vector in R3, we
have

(U X )× (U Y ) =U (X ×Y ).

This formula fails for elements U ∈O(3) with negative determinant.

2.5 Invariant theory and the singular value
decomposition

In [Hsi99], the orbit structures of the actions of SO(3) and O(H ) on the config-
uration space M = B(H ,R3) are investigated closely by means of classical in-
variant theory, in the case of a finite number of mass points. Here, we partially
reproduce this description, and extend it to the infinite dimensional context.
For the most, we will relate this invariant theory to the singular value decom-
position of linear transformations. The singular value decomposition will so to
speak be our our interface to the SO(3),O(H )-invariant theory.

When it comes to the definition of the configuration space M and the con-
stituent space H , we still follow the intentionally ambiguous convention of
Section 2.4. This implies that we the use of the singular value decomposition is
independent of the use of Jacobi vectors.

2.5.1 Invariant theory

The matrix coefficients of X �→ X X t give a complete set of O(H )-invariants on
M , and since symmetric matrices are orthogonally diagonalizable, the eigen-
values give a complete set O(3)-invariants of X X t . Hence, the set

μ1,μ2,μ3

of eigenvalues of X X t give a complete set of simultaneous O(H )- and O(3)-
invariants. In this way [Hsi99] identifies the orbit space

M

O(3)×O(H )
(2.13)
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2. MANY PARTICLE SYSTEMS

with the cone {μ1 ≥μ2 ≥μ3 ≥ 0} ⊆R3.
Now we will describe a fundamental domain by embedding this cone in

M : Choose an element A ∈ M in the following way: If dim(H ) ≥ 3, take any
orthonormal set 1, 2, 3 in H , and let

A =
⎡⎣ 1

2

3

⎤⎦ (2.14)

In the case where dimH = 2, we let

A =
⎡⎣ 1

2

0,

⎤⎦ (2.15)

where ( 1, 2) is an orthonormal basis of H .
We introduce the gyration radii ri satisfying r 2

i = μi . It follows from the
identification of the orbit space (2.13) with the cone {μ1 ≥μ2 ≥μ2 ≥ 0} that

Δ=
{[r1

r2
r3

]
· A | r1 ≥ r2 ≥ r3 ≥ 0

}
⊂M

is a fundamental domain for the action of SO(3)×O(H ) on M . This means
that each SO(3)×O(H )-orbit intersects Δ in exactly one point. This implies
that for every configuration X , there exists a real diagonal matrix R together
with elements U ∈ SO(3) and P ∈O(H ) such that

X =U R AP.

The statement that Δ is a fundamental domain is hence equivalent to the ex-
istence of singular value decompositions and the uniqueness of the partially
ordered set of positive singular values. Hence we will regard r1,r2,r3 as funda-
mental invariants of the O(3)-equivariant kinematic geometry of many particle
systems, and in the following we will have great use of both the ri and the sin-
gular value decomposition.
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2.5. Invariant theory and the singular value decomposition

2.5.2 The singular value decomposition

Definition 2.5.1. The space S of singular value decompositions associated with
the configuration space M =B(H ,R3) is defined to be the product

S = SO(3)×D3,H ×V3,H , (2.16)

where SO(3) is the rotation group, while D3,H , V3,H are defined as follows:

V3,H = The orbit A ·O(H ) ⊂M . (cf. (2.14) and (2.15))

D3,H =
{

{Diagonal 3×3-matrices, third diag. elem. = 0} if dimH = 2

{Diagonal 3×3-matrices} if dimH > 2

The composition map S →M will be denoted by Φ:

Φ(U ,R,Q) =U RQ for (U ,R,Q) ∈ S.

Note that V3,H has the following description: For dimH > 2, the elements
of this space are of the form ⎡⎣ 1

2

3

⎤⎦
where 1, 2, 3 ∈ H are orthonormal. Hence in this case, V3,H is simply the
Stiefel manifold of 3-frames in H . In the case where dimH = 2, V3,H consists
of elements ⎡⎣ 1

2

0

⎤⎦
where ( 1, 2) forms an orthonormal basis for H ∼=R2. Hence in this case V3,H

can be put in bijection with O(2).

Definition 2.5.2. For an element (U ,R,Q) ∈ S, we use the following terminol-
ogy:
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2. MANY PARTICLE SYSTEMS

(i) The columns 1, 2, 3 of U are called principal axes vectors, and consti-
tutes the principal axes frame ( 1, 2, 3). The matrix U will be called the
principal axes matrix.

(ii) The diagonal elements r1,r2,r3 of R are called gyration radii.

(iii) The vectors 1, 2, 3 ∈ H forming Q are called inner configuration vec-
tors.

This terminology comes from the following sources: The term inner config-
uration vector is used only in this thesis. The term gyration radius is found in
the literature of molecule dynamics, see e.g.[YKMK07]. For a discussion of the
principal axes, see Section 2.6.3.

In the case where we study the barycentric configuration space M 0, H

represents the barycentric constituent space H 0. Hence, in this case, the in-
ner configuration vectors i ∈ H 0. When we study the n-body problem we
can work with the coordinate vectors of 1, 2, 3 with respect to an orthonor-
mal basis ( 1, . . . , n−1) of H 0. Such a basis can be given by a Jacobi map (cf.
Lemma 2.3.2). As we see, the singular value decomposition works equally well
with or without the Jacobi vectors.

A very important property of the singular value decomposition is its univer-
sal existence, which we will express in the following way:

Lemma 2.5.3. The multiplication map Φ : S →M is surjective.

Proof. This is simply a restatement of the fact that every element in B(H ,R3)
admits a real singular value decomposition. As noted above, this is also a direct
consequence of the discussion of O(3)×O(H )-invariants, which is also found
in [Hsi99]. Furthermore, we will also implicitly prove this result later, with an
emphasis on the differentiability properties of the singular value decomposi-
tion.

The actions of O(3) and O(H ) on M lifts to the obvious actions on S:

A(U ,R,Q) = (AU ,R,Q) B(U ,R,Q) = (U ,R,QB t ),
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2.5. Invariant theory and the singular value decomposition

where A ∈O(3) and B ∈O(H ). Clearly

Φ(A(U ,R,Q)) = A(U RQ) = AΦ(U ,R,Q)

Φ(B(U ,R,Q)) =U RQB t = BΦ(U ,R,Q).

We learn from this the following good reasons to consider the singular value
decomposition:

(i) Using a singular value decomposition, the basic kinematic invariants r1,r2,r3

are readily available.

(ii) The singular value decomposition gives the actions of O(3) and O(H ) on
M optimally transparent representations.

2.5.3 Analytic perturbation theory of the singular value
decomposition

In this section we turn to the analytic perturbation theory of the singular value
decomposition. It is surprisingly difficult to find references to this in the lit-
erature. As a consequence of this, it seems necessary to include it here. We
will build on the analytic perturbation theory of diagonalization, which is suf-
ficiently well developed, and in this respect we rely on [Kat66].

Since the configuration space M =B(H ,R3) is regarded as a Hilbert space,
the notion of analytic curves is completely unproblematic. Since absolute con-
vergence implies convergence, the theory is for most practical purposes identi-
cal to the theory of real analytic functions in one variable.

As a subspace of M , V3,H inherits a notion of analyticity, while SO(3) and
D3,H possess standard analytic structures, regarded matrix spaces. This de-
fines an analytic structure on the space S = SO(3) × D3,H ×V3,H of singular
value decompositions.

Now we set out to prove that any analytic curve X (t ) in M admits an ana-
lytic lifting to S. Because of the complications in the case dimH < 3, we state
and prove this result in the following general form:

Lemma 2.5.4 (Analyticity of the singular value decomposition). Let E ,E ′ be
Hilbert spaces with dimE ≥ dimE ′ and dimE ′ = k <∞. An analytic curve X (t )
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2. MANY PARTICLE SYSTEMS

in M = B(E ,E ′) admits a singular value decomposition (U (t ),R(t ),Q(t )) such
that U (t ), R(t ) and Q(t ) depends analytically on t .

Proof. If X (t ) is an analytic curve in M = B(E ,E ′), then X (t )X (t )t is an ana-
lytic family of self-adjoint operators on E ′. According to [Kat66], such a family
admits analytic diagonalization. Hence there exists a positively oriented ana-
lytic orthonormal family 1, 2, . . . , k of vectors in E ′ diagonalizing X X t and
corresponding analytic families μ1,μ2, . . . ,μk of eigenvalues.

Since X X t is positive semi-definite, the eigenvalues μi ≥ 0, and the power
series expansions of the μi must be of the form

μi (t ) = (t −a)2n(a0 +a1(t −a)+·· · ) where n ≥ 0.

We can now choose gyration-radii ri = ±�μi in such a way that they depend
analytically on t , by using one of the following expansions at t = a:

ri (t ) = (t −a)n(
�

a0 + a1

2
�

a0
(t −a)+·· · )

ri (t ) =−(t −a)n(
�

a0 + a1

2
�

a0
(t −a)+·· · )

Hence, from the diagonalization of X X t , we get analytic families 1, 2, · · · , k

of principal axes vectors, as well as analytic families of gyration-radii r1,r2, . . . ,rk ,
and in order to complete the singular value decomposition, we have to specify
the inner configuration vectors 1, 2, . . . , k .

Without loss of generality, we can assume that the singular values ri are
ordered in such a way that there exist a natural number K ≤ k such that ri (t ) = 0
for all t if and only if i > K .

First, let us define 1, . . . , K : For i ≤ K and for all t such that ri (t ) �= 0, we
define

i (t ) = 1

ri (t )
X t (t ) i (t ).

This formula determines i (t ) for all t either directly or by means of analytic
continuation: For all t such that ri (t ) �= 0, we can easily check that ‖ i (t )‖ = 1.
Hence, if ri has a zero at t = t0, X t

i must have a zero of exactly the same order.
Hence, i (t ) can be defined by analytic continuation through the zeros of ri (t ).
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2.5. Invariant theory and the singular value decomposition

After the construction of 1, . . . , K we choose the vectors K+1, . . . , k by
analytic extension of the frame 1, . . . , K to an orthonormal frame in E ′. The
existence and analyticity of such an extension follows directly from the prop-
erties Gram-Schmidt procedure, which can be expressed entirely by rational
functions.

This result has the following specialization:

Lemma 2.5.5. If X (t ) is an analytic curve in the configuration space M =B(H ,R3),
then there exists an analytic curve (U (t ),R(t ),Q(t )) in the space S of singular
value decompositions such that

Φ(U (t ),R(t ),Q(t )) =U (t )R(t )Q(t ) = X (t )

Proof. In the case where dimH ≥ 3, this is covered by direct application of
Lemma 2.5.4. In the case where dimH < 3, we apply the same lemma to the
transpose X (t )t , i.e. the case where E =H and E ′ =R3.

2.5.4 Smooth perturbation theory of the singular value
decomposition

We can also lift continuous curves from M to S provided that they stay inside a
specific domain, namely the domain of regular configurations:

Definition 2.5.6. For dimH > 3, we define the space Mr of regular configu-
rations to consist of configurations X ∈ M such that X X t has three distinct
non-zero eigenvalues. The space Sr ⊂ S of regular singular value decomposi-
tions consists of singular value decompositions such that the squares r 2

i of the
gyration-radii are non-zero and distinct.

For dimH ≤ 3, we define the spaces Mr ,Sr are defined to consist of singu-
lar value decompositions where the squares r 2

i of the gyration-radii are distinct.

Mr is clearly an open and dense subset of M .
In the context of Banach manifolds (cf. [Lan99]), we have the following re-

sult:
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Lemma 2.5.7. The restriction

Φr : Sr →Mr

of Φ : S →M is a local diffeomorphism of class Cω.

Proof. We investigate the invertibility of the derivative

Φ∗ : T S → T M

of the multiplication map Φ : S → M , and use the inverse function theorem to
draw our conclusion. This is done under the assumption that dimH ≥ 3. The
case dimH = 2 differs only in insignificant details, and we leave that out here.

Thus we let H be a Hilbert space of dimension ≥ 3 and M the correspond-
ing configuration space. Furthermore, let M3×3 be the vector space of real 3×3-
matrices, D3 ⊂ M3×3 the subspace of diagonal matrices, and V the Stiefel man-
ifold of orthonormal 3-frames in H . We regard the space of singular value de-
composition as a submanifold

S =O(3)×D3 ×V ⊂ M3×3 ×D3 ×M .

The tangent bundle T M of M is identified with M ×M , and the tangent
bundle T S of S can be regarded as a sub-bundle of

T (M3×3 ×D3 ×M) = (M3×3 ×D3 ×M )× (M3×3 ×D3 ×M ).

Under these identifications,

Φ∗(U ,R,Q,U̇ , Ṙ,Q̇) = (U RQ,U̇ RQ +U ṘQ +U RQ̇).

Our aim is to show that Φ∗ is a fibre-wise isomorphism.
For a given point (U ,R,Q) ∈ S, we want to understand the derivative

Φ∗ : T(U ,R,Q)Sr → TU RQMr .

Since Φ is SO(3)-equivariant, we loose no generality in assuming that U is the
identity matrix, and hence that U̇ is skew symmetric.

Since R is diagonal, Ṙ is also diagonal.
Let 1, 2, 3 ∈ H be the triple representing Q, let V denote the subspace

span{ 1, 2, 3} ⊂ H and let W = V ⊥. When regarding Q and Q̇ as a linear
operators H →R3, we observe the following facts:
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2.5. Invariant theory and the singular value decomposition

(i) In the basis ( 1, 2, 3) of V , Q|V is represented by the identity matrix.

(ii) In the basis ( 1, 2, 3) of V , Q̇|V is represented by a skew symmetric ma-
trix that we will denote by A.

(iii) Q|W = 0.

(iv) Q̇|W can be any linear transformation W →R3.

In the basis ( 1, 2, 3) of V we thus get

Φ∗(U ,R,Q,U̇ , Ṙ,Q̇)|V = U̇ R +R +R A

Φ∗(U ,R,Q,U̇ , Ṙ,Q̇)|W = RQ̇|W
(2.17)

Now, for any given B ∈M = TU RQM , we ask if there exist a unique solution
of the equation

Φ∗(U ,R,Q,U̇ , Ṙ,Q̇) = B

among the tangent vectors at (U ,R,Q) ∈ S.
Considering the restrictions to the subspace W ⊂H , we see that

Φ∗(U ,R,Q,U̇ , Ṙ,Q̇)|W = B |W
always gives a unique value of Q̇|W , provided that the diagonal elements of R
are all non-zero. This is the origin of the non-zero condition in Definition 2.5.6.
In the case where dimH ≤ 3, dimW = 0, and hence for dimH ≤ 3 we do not
need the non-zero condition in Definition 2.5.6.

Under the restriction to V , we get the equations

ṙi = 〈 i , i 〉
r j ui + rk ai = 〈 k , j 〉
rk ui + r j ai = 〈 j , k〉

, (2.18)

where 1, 2, 3 is the triple in H representing B ∈M , and {i , j ,k} = {1,2,3},

U̇ =
⎡⎣ 0 −u3 u2

u3 0 −u1

−u2 u1 0

⎤⎦ , and A =
⎡⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤⎦ .
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Clearly, the system (2.18) has a unique solution (ṙi ,ui , ai ) if and only if the de-
terminant r 2

j − r 2
i �= 0. This is the origin of the distinct eigenvalue condition in

Definition 2.5.6.
From these considerations it is clear that Φ∗ is a fibre-wise isomorphism

precisely when the squares r 2
i of the gyration-radii are non-zero and distinct,

i.e. over the space Mr of regular configurations.
By the inverse function theorem for smooth mappings between open sets

of Banach spaces (cf. [Lan99]), it follows that Φ induces a local diffeomorphism
Sr →Mr . Since Φ is analytic, the local inverses will also be analytic. This proves
Lemma 2.5.7.

As an immediate consequence, we have the following curve lifting lemma:

Lemma 2.5.8. Let X (t ) be a curve in Mr of smoothness class C n, where n ∈
{∞,ω,0,1,2, . . .}. If Σ0 ∈ Sr is a singular value decomposition of X (0), then there
exists a unique curveΣ(t ) in Sr such thatΦ(Σ(t )) = X (t ) andΣ(0) =Σ0. The curve
Σ(t ) is of the same smoothness class as X (t ).

At the first sight, it may seem probable that we can extend Lemma 2.5.8
outside Mr . Following Lemma 2.5.5, analyticity of X (t ) is clearly a sufficient
condition for extension to all of M . Extension to the space of matrices X with
rank X > 1, clearly requires more than C∞-smoothness: A C∞-motion X (t ) with
rank X > 1, may have discontinuous singular value decomposition data. An
obvious example of this is given by the following family of 2×2-matrices:

X (t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1+e−

1
t 0

0 1−e−
1
t

]
t > 0

[
1 0

0 1

]
t = 0

[
1 e

1
t

e
1
t 1

]
t < 0
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2.5. Invariant theory and the singular value decomposition

For t > 0, X (t ) is diagonalized by the standard basis of R2 while for t < 0, X (t ) is
diagonalized by [

1
1

]
,

[
1
−1

]
.

Accordingly, the diagonalizing basis is not even continuous.

2.5.5 The principal axes frame and the inertia operator

For a motion X (t ) with singular value decomposition (U (t ),R(t ),Q(t )) the col-
umn vectors 1, 2, 3 of U constitutes the principal axes frame. Classically, the
principal frame is characterized as a diagonalizing frame for the inertia opera-
tor, which is defined as follows:

We consider a purely rotational motion through the configuration X0, given
by the angular velocity ξ ∈R3. The motion is then described as X (t ) = exp([ξ]t )X0,
and the corresponding total angular momentum vector Ω ∈R3 is given by

[Ω] = X0 × Ẋ = X0 × ([ξ]X0)

(cf. Definition 2.4.4). This yields a linear operator

IX0 : R3 →R3, ξ �→Ω,

which is called the inertia operator. This operator is identical to the operator Ip

that appeared in Definition 2.4.3.
The coordinate vectors of Ω and ξ in the principal frame are respectively

U tΩ and U tξ, and they are related by

[U tΩ] =U t [Ω]U

= (U t X )× (U t [ξ]UU t X

= (RQ)× (U t [ξ]U RQ)

= [U tξ]R2 +R2[U tξ]

Hence if we write

U tΩ= g =
⎡⎣g1

g2

g3

⎤⎦ and U tξ= h =
⎡⎣ω1

ω2

ω3

⎤⎦ and Λ=
⎡⎣r 2

2 + r 2
3

r 2
3 + r 2

1
r 2

1 + r 2
2

⎤⎦
57



2. MANY PARTICLE SYSTEMS

we can conclude, after some calculations, that

g =Λh i.e. IX0 =UΛU t . (2.19)

Hence, the principal frame diagonalizes the inertia operator. The diagonal ele-
ments

λ1 = r 2
2 + r 2

3 , λ2 = r 2
3 + r 2

1 , λ3 = r 2
1 + r 2

2 (2.20)

of Λ are the eigenvalues of the inertia operator IX , and are called the principal
moments of inertia of the configuration X with respect to the principal frame
( 1, 2, 3).

For later reference, we note that

(RQ)× ([ ]RQ) = [Λ ], (2.21)

where R,Q belongs to a singular value decomposition (U ,R,Q) ∈ S of X ∈M .

2.6 The principal axes gauge and many particle systems

2.6.1 General discussion in terms of principal bundles

In this section we take a step back, in order to consider simple mechanical sys-
tems for which the configuration space is a principal bundle π : P → B with
compact structure group G . Let g denote the Lie algebra of G . Hence, the fol-
lowing is of relevance only for the principal stratum P of the action of SO(3) on
the configuration space M . We assume that G acts by isometries of the kine-
matic geometry of P .

The kernel of the derivative π∗ of the projection π : P → B yields a distri-
bution V P ⊂ T P , which is called vertical distribution. The orthogonal comple-
ment HP = V P⊥ ⊂ T P is called the horizontal distribution. The vertical dis-
tribution is integrable, and can be regarded as an attribute of the projection π

itself; the leaves of the corresponding foliation are the G-orbits in P . On the
other hand, the horizontal distribution depends on the kinematic geometry,
and can be non-integrable, both locally and globally.
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2.6. The principal axes gauge and many particle systems

The derivative of the group action induces a vector bundle isomorphism
g×P →V P . On the other hand, the orthogonal projection T P →V P induces a
1-form

ω : T P → g,

the mechanical connection form, which is an Ehresmann connection. In the
sense of Section 2.4.1, ω is the same as the G-velocity. The curvature

dω− 1

2
[ω,ω]

of ω measures to what extent the horizontal distribution HP is locally inte-
grable.

In [LR97] a local choice of gauge over an open set U ⊂ B is defined to be a
local section

σ : U → P.

Since G acts freely, such a section gives an isomorphism

π−1(U ) →U ×G .

Equivalently, we may represent the local gauge by a mapping

σ̃ : π−1(U ) →G ,

where σ̃(g p) = g σ̃(p) for g ∈ G , and p ∈ P . We can reconstruct σ from σ̃, pro-
vided that σ̃ is transversal to the projection π. Hence, a choice of gauge may be
interpreted as a local trivialization of the principal bundle. The Darboux deriva-
tive associated with σ̃ is defined by means of the left trivialization T G → g as the
composite

ωσ : T (π−1(U )) → TG → g,

and gives a complete characterization of σ̃ modulo G-translation. By the fun-
damental theorem of the Darboux derivative [Sha97] the 1-form ωσ contains all
the interesting local information about the choice of gauge.

The two g-valued 1-forms ω,ωσ have different benefits:

• ω is a natural part of the kinematic geometry, but may have non-trivial
curvature.
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• ωσ has no curvature, but is not naturally given.

The curvature of ω is the local obstruction to finding a gauge σ for which ω =
ωσ. From a geometric point of view, it would be favourable to find such a gauge:
Locally, we would be able to find a trivialization π−1(U ) ∼=U ×G , where the G-
component is everywhere orthogonal to U . For a G-invariant simple mechan-
ical system on P , we would be able to fully reduce the system (locally) to the
base space B , in the sense that we would acquire a simple mechanical system
on B , which would determine the moduli curves γ(t ) in B directly. From the
moduli curves we would be able to find curves g (t ) in G such that the motions
of the original system were of the form g (t )σ(γ(t )).

When ω has non-trivial curvature, it is impossible to reduce the system to
the level of B in such a simple way.

Our main example of a simple mechanical system in the form of a principal
bundle is given by the action of SO(3) on the regular part Mr of configuration
space M .

2.6.2 Global considerations: Multi-valued gauges

The local considerations stop here. When it comes to the question of existence
of a global gauge σ : B → P we also have to take into consideration global topo-
logical obstructions. It is well known that such obstructions exist for many
body systems [Eck35]; they give rise to inevitable body frame singularities. In
[LMAC98] it is suggested to consider multi-valued choices of gauge, and in the
following, we will develop that idea.

We can formulate the core of the idea of multi-valued gauges in the follow-
ing way: When we lack global sections in P → B , we may consider the following
options:

(i) Consider gauges defined by restriction of P to subsets U ⊂ B , i.e. local
gauges.

(ii) Consider gauges defined on the pullback of P through mappings B̃ → B .
The multi-valued gauges that we will define below falls into this category.
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2.6. The principal axes gauge and many particle systems

Regarding our terminology, we note the following: Many authors reserve
the term covering space to path connected spaces. For us it is favourable to
admit non-connected covering spaces: The essential properties are (i) surjec-
tivity, (ii) path lifting property, and (iii) local diffeomorphism. We can always
restrict the discussion to one path component of the covering space, but when
we do this change in terminology, we gain the liberty not having to count path
components.

Definition 2.6.1. A multi-valued gauge in the principal bundle π : P → B con-
sists of a covering space

π : B̃ → B

and a mapping σ : B̃ → P which gives a commutative diagram

P

B

B̃ πP

π

σ

An equivalent characterization is the following: A multi-valued gauge con-
sists of covering space B̃ → B together with a global section in the pullback
bundle P̃ → B̃ . Using the set-theoretical definition

P̃ = P ×B B̃ = {(p,b) ∈ P × B̃ : π(p) =π(b)}

of this pullback, the connection to Definition 2.6.1 is revealed: There is a bijec-
tion between the set of global sections σ̃ : B̃ → P̃ and mappings σ : B̃ → P such
that πP ◦σ=πB̃ .

Every covering space B̃ → B comes with its own symmetry group Σ that
acts by permutations in the fibres. The global picture can be captured by the
fundamental group π1(B) together with the group Γ(B̃) of permutations of the
path components of B̃ . Their product π1(B)×Γ then acts transitively on every
fibre, and the kernel of ineffectiveness is π1(B̃)×Γ(B), uniformly. Hence, there
is a group

Σ= π1(B)×Γ(B̃)

π(B̃)×Γ(B)
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which makes B̃ → B a principal bundle with structure group Σ.
In other words: When we use a multi-valued gauge, we replace the original

principal bundle P → B with a principal bundle B̃ → B with discrete structure
group. Hence, when the multi-valued gauge σ : B̃ → P is given, we can specify a
local gauge in P → B by giving a local gauge in B̃ → B . In our study of the three
body problem, we will meet the question of giving local gauges in a bundle of
the type B̃ → B disguised as questions about conventions for singular value de-
composition data, and also carry out explicit computations with the structure
group Σ associated with a multi-valued gauge.

2.6.3 The principal axes frame as a multi-valued gauge

For a given regular configuration X ∈ Mr , there exists a finite number of prin-
cipal frames

( 1, 2, 3),

which are related by permutations and changes in sign. If we decide to work in
the gauge of positively oriented principal axes, the freedom in choice of prin-
cipal frame is encoded by the finite subgroup SO(3,Z) ⊂ SO(3) consisting of
matrices with integer coefficients.

We want to describe the principal axes gauge as a multi-valued gauge in the
principal SO(3)-bundle

Mr →M r = Mr

SO(3)
.

In our description, we will use the space

Sr = SO(3)×Sr

of singular value decompositions where

Sr = D3,H ×V3×H

(cf. (2.16)). Sr can be regarded as a trivial principal bundle

Sr → Sr
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2.6. The principal axes gauge and many particle systems

with structure group SO(3).
We observe that the map Sr →Mr is a principal bundle with a certain finite

structure group Σ, which can be described as follows: The group SO(3,Z) acts
on Sr in the following way: For A ∈ SO(3,Z) and (U ,R,Q) ∈ Sr , we let

A(U ,R,Q) = (U At , AR At , AQ)

Additionally, the subgroup Odi ag (3) ⊂O(3) of diagonal matrices in acts on Sr in
the following way: For B ∈Odi ag (3), we let

B(U ,R,Q) = (U ,RB ,BQ).

Let Σ be the group of transformations of Sr generated by SO(3,Z) together with
Odi ag (3).

The multiplication map Φr : Sr → Mr is clearly Σ-invariant. On the other
hand, if (U ,R,Q) and (U ′,R ′,Q ′) are two singular value decompositions of the
same element X ∈ Mr , then they are related by a unique transformation in Σ.
This transformation is given by application of A = U tU ′ ∈ SO(3,Z) before ap-
plication of B = (At R−1 A)R ′ ∈ Odi ag (3). Hence, Σ acts freely and transitively on
the fibres of Φr .

Since Φr : Sr → Mr is SO(3)-equivariant and Sr /SO(3) ∼= Sr , we get an in-
duced mapping Φr : Sr → M r . The action of Σ commutes with the action of
SO(3) on Sr , and we have the following diagram where the rows and columns
are principal bundles:

Sr

Sr

Mr

M r

SO(3) SO(3)

Σ

Σ
Φr

Φr

π π

,

Referring to this diagram, we note the following:
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(i) Sr can be regarded as the pullback of Mr → M r along Sr → M r : The
pullback Φ

∗
r Mr can be identified with the space{

((R,Q), X ) ∈ Sr ×Mr : RQ = X mod SO(3)
}

Since Mr is a principal bundle, there exists precisely one U ∈ SO(3) such
that U RQ = X , if ((R,Q), X ) ∈Φ

∗
r Mr . Hence, the tuple ((R,Q), X ) ∈Φ

∗
r Mr

contains precisely the same information as the tuple (U ,R,Q) ∈ Sr , and
Sr → Sr is thus isomorphic to the pullback bundle.

(ii) There is a global section in Sr → Sr , given by (R,Q) �→ (I ,R,Q). The corre-
sponding map Sr →Mr is given by (R,Q) �→ RQ.

(iii) Σ acts freely and transitively on the fibres of Sr →M r .

The connection

As we noted above, action of SO(3) on Mr lifts to the obvious SO(3)-action on
Sr . We will use this to compute the momentum map of (Mr ,SO(3)), lifted to
the language of singular value decompositions.

Let us consider a motion (U (t ),R(t ),Q(t )) in Sr with velocity (U̇ (t ), Ṙ(t ),Q̇(t )).
On the level of many particle configurations, the corresponding velocity is

Ẋ = U̇ RQ +U ṘQ +U RQ̇.

The principal axes gauge is now represented by the mapping Sr → SO(3) given
by

σ̃(U ,R,Q) �→U ,

and the corresponding flat connection is represented by

ωσ : (U ,R,Q,U̇ , Ṙ,Q̇) �→ U̇U t

This mapping is Σ-invariant, and accordingly ωσ descends to a well defined
differential geometric object on Mr . In terms of ωσ, we can interpret the gauge
map Sr → Mr as an integral manifold of the distribution kerωσ on Mr . This
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2.7. Characterization of motions with constant total angular momentum

yields an interesging approach to construction of multi-valued gauges from flat
connections.

We compute the mechanical connection as follows: By the proof of Propo-
sition 2.7.3 later in this thesis, we will see that

[Ω] = (U RQ)× (U̇ RQ +PṘQ +U RQ̇)

=U [(Λμ− R̂ν)]U t ,

where μ,ν ∈ R3 respectively represents the skew symmetric matrices U tU̇ and
Q ×Q̇, and where

R̂ =
⎡⎣r2r3

r3r1

r1r2

⎤⎦ and Λ=
⎡⎣r 2

2 + r 2
3

r 2
3 + r 2

1
r 2

1 + r 2
2

⎤⎦ .

From this we can conclude that the mechanical connection ω satisfies

ω=UΛU T Ω=U (μ−Λ−1R̂ν),

(cf. (2.19)).

2.7 Characterization of motions with constant total
angular momentum

In this section, the configuration space M is still ambiguously defined, as in
Section 2.4. Hence M can denote (i) the position vector space or (ii) the con-
figuration space. In case (i) we work with the total angular momentum with
respect to a fixed spatial origin, while in case (ii) the total angular momentum
is defined with respect to the centre of mass.

Motivated by the lifting results of Lemma 2.5.5 and 2.5.8, we will now study
motions X (t ) in M together with their lifting (U (t ),R(t ),Q(t )) to the space S of
singular value decompositions.

First, we will establish some formulae that are valid in any rotating frame.
Then, we will study our favourite rotating frame, namely the principal axes
frame. Finally, we use this to deduce the Euler equations for many body mo-
tions with constant angular momentum.
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2.7.1 Rotating frames

A rotating frame is a time dependent positively oriented orthonormal basis
( 1, 2, 3) of R3. Such a frame can be represented by a curve U (t ) in SO(3), and
we consider here only the case where U (t ) is a differentiable function of t . De-
fine μ(t ) to be the coordinate vector of the angular velocity of the rotating frame

within the rotating frame. In other words, μ=−−−→
U tU̇ ∈R3 (cf. Definition 2.4.4.)

Proposition 2.7.1. Consider a rotating frame in R3 with differentiable matrix
representation U (t ) = [ 1(t )| 2(t )| 3(t )] and angular velocity μ(t ). If Ω(t ) is a
differentiable time-dependent vector in R3 with coordinate vector g =U tΩ, then

ġ =−[μ]g+U t Ω̇

(cf. Definition 2.4.4).

Proof. The proof is a straightforward application of the product rule for differ-
entiation of matrix products.

We are particularly interested in the following immediate application of
Proposition 2.7.1:

Corollary 2.7.2. Suppose that X is a continuously differentiable many body mo-
tion with a continuously differentiable rotating frame represented by a curve
U (t ) in SO(3) with continuous angular velocity vector μ(t ) in R3.

In this case the total angular momentum Ω= X × Ẋ is conserved if and only
if

ġ =−[μ]g,

where g =U tΩ is the coordinate vector of the total angular momentum.

Proof. Let us suppose that X (t ) is a continuously differentiable many body mo-
tion, and that U (t ) is a continuously differentiable rotating frame.

Assume that X (t ) has conserved total angular momentum Ω. Then by the
product rule, g is differentiable, and satisfies

ġ = d

d t
(U tΩ) = U̇ tU g+U t Ω̇=−[μ]g.
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2.7. Characterization of motions with constant total angular momentum

Suppose on the other hand that ġ = −[μ]g. Then we can judge the rate of
change of Ω=U g by the product rule, which gives

Ω̇= d

d t
(U g) = U̇ g+U ġ = (U̇ −U (U tU̇ ))g = 0.

We note that this theorem applies to any rotating frame, not only the prin-
cipal frame.

2.7.2 Euler equations

Here we will give a characterization of many particle motions with conserved
total angular momentum. This characterization can be regarded as a general-
ization of the Euler equations for the rigid body (cf. [Arn89])

For a twice differentiable motion X (t ) in M with a twice differentiable sin-
gular value decomposition (U (t ),R(t ),Q(t )), we define the following dependent
objects:

We have the matrices R, R̂

R =
⎡⎣r1

r2

r3

⎤⎦ R̂ =
⎡⎣r2r3

r3r1

r2r3

⎤⎦
the matrix of principal moments of inertia,

Λ=
⎡⎣λ1

λ2

λ3

⎤⎦ where λi = r 2
j + r 2

k ({i , j ,k} = {1,2,3}),

and the associated matrix

Λ̂=
⎡⎣λ2λ3

λ3λ1

λ1λ2

⎤⎦ .
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These matrices satisfy (ΛX )× (ΛY ) = Λ̂(X ×Y ) and (R X )× (RY ) = R̂(X ×Y ) for
configurations X ,Y ∈M . We also recall the coordinate vector

g =U tΩ

of the total angular momentum in the principal frame, the angular velocity of

the principal frame μ=−−−→
U tU̇ , and the inner angular velocity

ν=
⎡⎣ν1

ν2

ν3

⎤⎦=−−−−→
Q ×Q̇

The data
R, R̂,Λ,Λ̂,g,μ,ν (2.22)

depends on the choice of principal axes. We shall see that there exist relations
among these data that determines the motion of the principal frame. Hence,
the data (2.22) can be regarded as an adequate description of the rotational
motion of many particle systems.

First we see how the angular velocity μ of the principal frame is determined
by the other quantities.

Proposition 2.7.3. Under reference to the above definitions, the angular velocity
μ(t ) of the principal axes frame satisfies

Λμ= g− R̂ν.

Proof. We can express g in terms of the singular value decomposition data in
the following way:

[g] = [U tΩ] =U t (X × Ẋ )U t

= [
(RQ)× (

[μ]RQ
)]+ [

(RQ)× (ṘQ)
]+ [

(RQ)× (RQ̇)
]

.
(2.23)

We prove the proposition by investigation of the terms of this expression:

The first term: Equation (2.21) yields the formula

(RQ)× ([μ]RQ) = [Λμ] (2.24)

68



2.7. Characterization of motions with constant total angular momentum

for the first term in (2.23).

The second term: By the definition of the product ×, we have

(RQ)× (ṘQ) = ṘQQt Rt −RQQt Ṙt = ṘRt −RṘt = 0, (2.25)

since Q is orthogonal and R, Ṙ are diagonal.

The third term: The matrix R̂ was defined in such a way that

(RQ)× (RQ̇) = R̂ (Q ×Q̇) = R̂ ν, (2.26)

where ν=Q ×Q̇.
The proposition now follows directly from (2.23), (2.24), (2.25) and (2.26).

The reconstruction of the principal frame

For non-collinear motions, Λ is invertible, and

μ=Λ−1(g− R̂ν).

Hence, in this case U is determined by its initial and a differential equation on
the form

U tU̇ = F (ri , gi ,νi ). (2.27)

For given ri (t ), gi (t ),νi (t ), this can be regarded as a quadrature in SO(3). Later,
we will see that these required data are given in an intrinsic way, and hence,
we can determine U (t ) by first determining the data ri , gi ,νi intrinsically, and
then integrate (2.27). In general, we are however not interested in the extrinsic
rotation U (t ). A small exception is given in the proof of Lemma 2.8.1.

For collinear motions, Λ is singular and μ(t ) will be well defined modulo a
summand along the collinearity. Hence, in this case U (t ) will be well defined
modulo rotations about the axis of collinearity. Since such rotations are physi-
cally insignificant, we see that the variables ri , gi ,νi yields a satisfying geomet-
ric description of the motion even in this case.

We remark that the above quadrature (2.27) in SO(3) yields an interesting
indication of the difficulties of non-Abelian reduction, and similar problems
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can in principle involve various types of groups. In our case, the calculation of
the quadrature is complicated by the fact that SO(3) is a simple group.

On the other hand, in reduction with a solvable symmetry group G , the cor-
responding quadrature could be solved by a sequence of 1-dimensional quadra-
tures. Correspondingly, we could work with a chain G0 ⊂ G1 ⊂ ·· · ⊂ Gn = G of
normal subgroups where Gi /Gi−1 is Abelian, and do a stepwise Abelian reduc-
tion.

The case where G is Abelian, the situation is particularly simple, since we
can diagonalize (2.27), and thus reduce the problem to a finite number of one-
dimensional quadratures.

According to the level of difficulty of solving (2.27), we should distinguish
between the following types of reduction:

(i) Non-Abelian vs Abelian reduction.

(ii) Solvable vs non-solvable reduction.

(iii) Reduction with (semi)simple group vs other groups.

The Euler equation

The main result in this section is the following:

Theorem 2.7.4 (Euler equation). Suppose that X (t ) is a curve in M with a dif-
ferentiable singular value decomposition (U (t ),R(t ),Q(t )).

If the total angular momentum Ω is constant, then

Λ̂ġ =−g× (Λg)+ (R̂ν)× (Λg) (2.28)

(For the notation cf. the discussion before (2.22)).
Conversely, for motions such that Λ is invertible, this equation implies con-

servation of total angular momentum.

Proof. By Corollary 2.7.2 and the definition of the objects in (2.22), we see that
conservation of angular momentum Ω implies

Λ̂ġ =−(Λμ)× (Λg).
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2.7. Characterization of motions with constant total angular momentum

Together with (2.7.3), this gives (2.28). Thus it is clear that the validity of the
Euler equations follows from the conservation of angular momentum.

The matrices Λ̂,Λ are both at the same time either non-singular or non-
invertible. If Λ is invertible, then the Euler equation (2.28) implies that ġ =
−μ×g. This implies that the total angular momentum Ω is conserved (cf. Corol-
lary 2.7.2).

On component form, the Euler equations reads

λ2λ3ġ1 = g2g3 (λ2 −λ3)+ r3r1ν2λ3g3 − r1r2ν3λ2g2

λ3λ1ġ2 = g3g1 (λ3 −λ1)+ r1r2ν3λ1g1 − r2r3ν1λ3g3

λ1λ2ġ3 = g1g2 (λ1 −λ2)+ r2r3ν1λ2g2 − r3r1ν2λ1g1.

Analytic motions

For a motion X (t ) with an analytic singular value decomposition (U (t ),R(t ),Q(t )),
we may add the following refinement: Since the zeros of non-zero real analytic
functions in one real variable are isolated, the motion X (t ) is collinear at iso-
lated instances of time, unless the motion is purely collinear. Hence we have
the following slight extension of Theorem 2.7.4, which follows from continuity.

Theorem 2.7.5. For analytic many body motions that are not purely collinear,
the Euler equation (2.28), referring to an analytic singular value decomposition
is equivalent to conservation of total angular momentum.

Motions that are never collinear

For differentiable motions which are never collinear, we have the following re-
sult:

Theorem 2.7.6. If X (t ) is a differentiable many particle motion which is never
collinear, and (U (t ),R(t ),Q(t )) is a differentiable singular value decomposition,
then X (t ) has constant angular momentum if and only if

ġ =−(Λ−1g)×g+ (Λ−1R̂ν)×g (2.29)
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Proof. Since Λ is invertible when the configuration is not collinear, Proposi-
tion 2.7.3 yields

μ=Λ−1g−Λ−1R̂ν.

Using this formula, the theorem follows directly from Corollary 2.7.2.

In this case, i.e. when the motions are never collinear, the Euler equation
(2.29) can be written as

ġ1 = g2g3

(
1

λ3
− 1

λ2

)
+ r3r1

λ2
ν2g3 − r1r2

λ3
ν3g2

ġ2 = g3g1

(
1

λ1
− 1

λ3

)
+ r1r2

λ3
ν3g1 − r2r3

λ1
ν1g3

ġ3 = g1g2

(
1

λ2
− 1

λ1

)
+ r2r3

λ1
ν1g2 − r3r1

λ2
ν2g1

.

2.7.3 Collinear motions and the Euler equations

As we saw above, the case of collinear motions needs some special treatment.
For the sake of completeness, we include the following brief discussion:

Definition 2.7.7. A many particle configuration X ∈ M is collinear if X : H →
R3 is of rank 1. A many body motion X (t ) is collinear if the configurations X (t )
are always collinear.

Using the singular value decomposition data, we could rather say that the
motion is collinear if two of the gyration-radii ri = 0, or equivalently, if one of
the moments of inertia λi = 0.

Without loss of generality, we can hence assume that λ1 = r 2
2 + r 2

3 = 0. Ac-
cordingly, λ2 = λ3 = r 2

1 . In this case the particles are always contained in the
line spanned by the first principal axes vector 1, and the Euler equations are

λ2λ3ġ1 = 0 0 = g3g1r 2
1 0 =−g1g2r 2

1

On the other hand by Proposition 2.7.3,

g1 =λ1μ1 + r2r3ν1 = 0.

This proves the following:
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Proposition 2.7.8. Every collinear many body motion satisfies the Euler equa-
tion (2.28).

Hence, in this case the Euler equations are useless, and we need another
characterization of collinear motions with conserved total angular momentum:

Proposition 2.7.9. For a purely collinear continuously differentiable many body
motion with non-zero total angular momentum, the total angular momentum
is conserved if and only if the following conditions are satisfied:

(i) The motion takes place in a fixed plane.

(ii) The length ‖Ω‖ of the angular momentum is constant.

Proof. A collinear motion X (t ) can be written as

X (t ) =
⎡⎣x

y
z

⎤⎦ ,

where x(t ), y(t ), z(t ) ∈ R and (t ) ∈ H . With (t ) = [x(t ), y(t ), z(t )]t and the
usual identification of so(3) with R3, we get

Ω= X × Ẋ = ‖ ‖2( × ˙ ) (2.30)

Hence, is always perpendicular to Ω, and if Ω is constant and non-zero, is
confined to the fixed plane perpendicular to Ω.

On the other hand, if the motion X (t ) takes place in a fixed plane Π, then Ω

is perpendicular to Π, and clearly, Ω is constant and non-zero if and only if the
length ‖Ω‖ is constant and non-zero.

In order to characterize collinear motion with zero angular momentum, we
have to extend our terminology a little bit: By a rectilinear motion, we mean
motion X (t ) in M such that all the particles lie on a fixed line, and a total col-
lapse occurs when they all collide. With this terminology, we have the following
result:
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Proposition 2.7.10. A collinear many body motion with zero angular momen-
tum is rectilinear on any time interval that is free of total collapses.

Proof. Using the terminology from the preceding proof, as well as equation
(2.30), the condition Ω= 0 can be rewritten as(∑

(s2
i )
) × ˙ = 0.

Now, on a time interval a < t < b without total collapses,
∑

(s2
i ) > 0, and hence

× ˙ = 0. This implies that ∥ ˙ . But since ‖ ‖ = 1, this implies that ˙ = 0,
i.e., that is constant. Thus, for a < t < b, the columns of X are all contained
in the linear span of the constant vector , and hence, the motion is rectilinear
on this time interval.

2.8 Applications

There are several applications of Theorem 2.7.4, Theorem 2.7.5 and Theorem
2.7.6. They seem to fall in two categories:

First, we have systems where the natural description of the system is strongly
linked to the principal axes frame. An important example of this is the rigid
body, where the principal axes frame actually rotates along with the body. The
simplest extension of this is the class of “rigid” bodies with inner angular mo-
mentum, say for instance a satellite with momentum wheel. Another example
is the spinning top (cf. [Arn89]), which however needs a treatment of the exter-
nal force. Using Proposition 2.7.1, this is straightforward.

There exist a slightly more general class of systems that admits strong links
between the principal axes frame and the natural description, namely the class
of systems that are rectangularly deformable along the principal axes with re-
spect to the centre of mass. An example of this is the system of three point
masses m1,m2,m3, where m1 = m3 and m1,m3 are connected with m2 by rigid
links of equal length. For such a system, Q̇ = 0, and hence the classical Euler
equations of the rigid body are still valid.

The second category of applications utilizes weaker couplings between the
principal axes frame and the configurations. A striking example of this occurs
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for coplanar many body configurations: In this case, one of the principal axes
will be orthogonal to the plane spanned by the bodies. In particular, a config-
uration of three bodies will always lie in a plane. Hence, we can expect that
the Euler equations may be more useful in the study of the three body problem
than in the n body problem for n > 3. For the application of the Euler equations
in the three body problem, see [HS95, HS07] and also Chapter 3 in the present
dissertation.

2.8.1 Planar and coplanar motions with conserved angular
momentum

By planar motion, we understand a motion X (t ) in the configuration space M

such that the image of X : H → R3 is contained in a fixed plane Π0 through
the origin of R3. On the other hand, under coplanar motion, the image imX is
contained in a moving plane Π(t ) through the origin of R3.

From our ambiguous definition of the configuration space M (cf. the be-
ginning of Section 2.4), the notion of planarity is also quite flexible, and using
a coordinate system with the centre of mass fixed in the origin, the notions of
planarity and coplanarity has the following meanings: A motion is planar (resp.
coplanar) if the bodies at all instances of time lie in a fixed (resp. possibly vary-
ing) affine plane in R3.

In [Saa88], Theorem 2.8.2 below is proved under the dynamics imposed by a
potential function depending only on the relative distances of the bodies. Here
we prove this result as a consequence of analyticity. This can be regarded as a
solution in a conjecture proposed by Straume in [Str01].

In order to simplify our argument, we use the following characterization of
planar motion:

Lemma 2.8.1. A many particle motion X (t ) is planar if and only if it has a sin-
gular value decomposition such that

r3(t ) = 0 and g(t ) = (0,0,‖Ω‖), (2.31)

where r3 is the third gyration-radius and g is the coordinate vector in the princi-
pal axes frame of the total angular momentum vector Ω.

75



2. MANY PARTICLE SYSTEMS

Proof. Clearly, for a planar motion, the total angular momentum vector Ω is
perpendicular to the fixed plane Π0, and we can choose a principal axes frame
such that (2.31) holds for all t .

Let us assume that (2.31) is satisfied in a principal axes frame for an analytic
many body motion X (t ). By Proposition 2.7.3 and equation (2.31), the angular
velocity μ of the principal axes frame satisfies

Λμ= g− R̂ν=
⎡⎣g1 − r2r3ν1

g2 − r3r1ν2

g3 − r1r2ν3

⎤⎦=
⎡⎣ 0

0
‖Ω‖− r1r2ν3

⎤⎦ .

The principal axes frame matrix U (t ) is hence determined by the differential
equation

U tU̇ = 1

r 2
1 + r 2

2

⎡⎣ 0 −(‖Ω‖− r1r2ν3) 0
(‖Ω‖− r1r2ν3) 0 0

0 0 0

⎤⎦ ,

and consequently U (t ) can be written on the form

U (t ) =U0

⎡⎣cosθ −sinθ

sinθ cosθ
1

⎤⎦ ,

where U0 ∈ SO(3) and

θ′(t ) = ‖Ω‖− r1r2ν3

r 2
1 + r 2

2

.

It follows that

X (t ) =U0

⎡⎣cosθ −sinθ

sinθ cosθ
1

⎤⎦⎡⎣r1(t )
r2(t )

0

⎤⎦Q,

and hence the motion X (t ) is confined to the fixed plane Π0 spanned by the
first two columns of U0.

Thus, equation (2.31) gives necessary and sufficient conditions for planar
motion.
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Using this characterization of planar motion, we can easily prove the fol-
lowing result:

Theorem 2.8.2. Consider an analytic coplanar many body motion with con-
served angular momentum. Assume that the bodies span a plane perpendicular
to the total angular momentum at one instance of time. Then the motion is con-
fined to this plane.

Proof. Let X (t ) be a coplanar motion. Without loss of generality we can assume
that r3(t ) = 0 for all t . Hence the first part of (2.31) is automatically satisfied.

Now, we assume that X (t ) spans a plane perpendicular to Ω at t = 0. Under
this assumption, we will show that also the second part of (2.31) is satisfied, and
hence that the motion is planar.

The proof goes as follows: By induction, we prove that all the derivatives g(n)

of g are 0 at t = 0. Then the result follows from the assumption of analyticity.
Write the Euler equations on the form

Λ̂ġ =−g× (Λg)+ × (Λg), (2.32)

where = (r2r3ν1 ,r3r1ν2 ,r1r2ν3). By r3 = 0, we see that = (0,0,r1r2ν3). At
t = 0, all the vectors on the right side of (2.32) are parallel, since Ω is perpen-
dicular to the plane spanned by the configuration at t = 0. Since Λ̂ is invertible
when the configuration spans a plane, we conclude that ġ = 0 at t = 0.

As induction hypothesis, we assume that g(i )(0) = 0 for 1 ≤ i ≤ K . By re-
peated derivation of (2.32) and application of the induction hypothesis, we ar-
rive

Λ̂(0)
(
g(K+1)(0)

)= (K )(0)× (Λ(0)g(0))

But (K ) = (0,0,∗) is parallel to Λ(0)g(0) = (0,0,λ3‖Ω‖), and hence

Λ̂(0)g(K+1)(0) = 0. (2.33)

Since we assumed that the columns of X (0) span a plane, Λ̂(0) must be invert-
ible. Thus, by equation (2.33), the derivative g(K+1)(0) = 0. By induction, we
conclude that g(n) = 0 whenever n ≥ 1. The analyticity assumption implies that
g is constant.

77



2. MANY PARTICLE SYSTEMS

This proves that g(t ) = g(0) = (0,0,‖Ω‖) for all t . Since r3(t ) = 0 for all t ,
Lemma 2.8.1 implies that the motion is planar, and thus confined to the plane
spanned by the bodies at t = 0.

In the case that Ω= 0, this implies the following result:

Corollary 2.8.3. A coplanar analytic many body motion with zero total angular
momentum is planar.

Proof. When the total angular momentum is zero, every plane is perpendicular
to the angular momentum. Hence if the configuration spans a plane at one
instance of time, the rest of the motion will be confined to this plane.

If the case where the configuration never spans a plane, we rely on Propo-
sition 2.7.9, which shows that the motion is planar also in this case.

2.8.2 Existence of the angular velocity

The angular velocity vector ω ∈R3 of a motion X (t ) is defined by

[Ω] = X × ([ω]X ) (2.34)

where Ω is the total angular momentum. ω is the same as the SO(3)-velocity
defined in Section 2.4 and the mechanical connection defined in Section 2.6.

When X is not collinear, the map ω �→ Ω is invertible, and hence for such
motion, we have a well defined notion of angular velocity. Here we will point
out the observation that in the case of analytic motions X (t ), ω can be defined
by means of analytic continuation.

Since purely collinear motions are planary, it is possible to define ω to be
the unique solution of (2.34) where ω‖Ω.

Accordingly, the interesting part is to study analytic motions that are not
purely collinear.

By (2.19) we have the relation

U tΩ=ΛU tω,

and hence
ω=UΛU tΩ=UΛg =U (μ+Λ−1R̂ν).
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By analyticity of the singular value decomposition, the data U ,μ,ν, R̂ are ana-
lytic in time. Trivially, Λ−1 is also analytic when all the λi > 0. It remains to
show that Λ−1R̂ is analytic in the case where some of the λi (t ) = 0 at t = 0. The
non-zero elements of this matrix are all on the diagonal, and of the form

x(t )y(t )

x(t )2 + y(t )2 (2.35)

where x(t ), y(t ) are analytic real valued functions which may satisfy x(0) = y(0) =
0. Now, if 0 this is a zero of x(t ) (resp. y(t )) of order p (resp. q), then x(t )y(t ) has
a zero of order P = pq , while x(t )2+y(t )2 has a zero of order Q = min{p2, q2}. In
any case, P ≥ Q, and hence the expression (2.35) admits analytic continuation
through 0.

This shows that Λ−1R̂ admits analytic continuation even through collinear
configurations and accordingly

ω=U (μ+Λ−1R̂ν)

admits analytic continuation through the collinearities. We summarize this as
follows:

Proposition 2.8.4. Any analytic many body motion X (t ) admits a choice of an-
gular velocity ω(t ) that is analytic in time.

The angular velocity ω can be regarded as the angular velocity of the rotat-
ing Tisserand frame, which seems to be useful in astronomy and geophysics. In
the study of the planar three body problem, some authors give this frame the
name Fujiwara coordinates [DFPCS08]. By integration of the analytic angular
velocity, we get the following result:

Corollary 2.8.5. The Tisserand frame of an analytic many particle motion X (t )
can be chosen in such a way that it depends analytically on time, even at passages
through collinearities.

2.8.3 Rigid body with internal rotors.

As a final simple case study, let us consider a rigid body with one or more in-
ternal rotors. We can think of this a solid hull with some attached momentum
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wheels, i.e. axially symmetric rotors, so that the direction of the principal axes
is not affected by the internal rotations. Furthermore, we assume that the mo-
tion of the momentum wheels relative to the hull is prescribed in advance, even
though this assumption is quite unphysical.

The prescribed motion of the momentum wheels can be represented by the
internal angular momentum

ΩI = [w1, w2, w3]t ,

which is defined to be the total angular momentum of the motion with the pre-
scribed internal rotations in the case where the principal axes frame coincides
with the standard basis of R3. We will assume that ΩI is fixed. For such a motion
Proposition 2.7.3 yields

ΩI = g = R̂ν= [r2r3ν1,r3r1ν2,r1r2ν3]t .

The identities wi = r j rkνi holds even for a motion where the principal frame is
not fixed, and the Euler equations now read

ġ1 = g2g3

(
1

λ3
− 1

λ2

)
+ w2

λ2
g3 − w3

λ3
g2

ġ2 = g3g1

(
1

λ1
− 1

λ3

)
+ w3

λ3
g1 − w1

λ1
g3

ġ3 = g1g2

(
1

λ2
− 1

λ1

)
+ w1

λ1
g2 − w2

λ2
g1

By conservation of the length of the total angular momentum, this system has
the following first integral

(I1) g 2
1 + g 2

2 + g 2
3 =C1.

We also have the following integral,

(I2)
1

2

(
(g1 −w1)2

λ1
+ (g2 −w2)2

λ2
+ (g3 −w3)2

λ3

)
=C2,

which is the kinetic energy of the motion modified in such a way that the inter-
nal rotation i eliminated. Note that the total kinetic energy is not conserved: In
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order to force the internal angular momentum to be constant, we may have to
increase or decrease the total energy.

In a similar way as for the rigid body, we can describe the motion by the
curves of intersection between the family (I1) of spheres and the family (I2) of
ellipsoids, but in contrast to the case of the rigid body, the ellipsoids are now
centred at (w1, w2, w3).

This example indicates how the Euler equations may yield very simple cal-
culations in cases where the motion of the principal axes frame is tightly linked
to the motion of the system itself.
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3.1 Introduction

The three body problem concerns the gravitational interaction between three
mass points and the resulting dynamics. By P1,P2,P3, we will denote the po-
sitions of three bodies in Euclidean space, and for a given origin O, the posi-

tion vectors
−−→
OPi are denoted by i . We let m1,m2,m3 respectively denote the

masses associated with mass points located at P1,P2,P3. The inter-particle dis-
tances |Pi P j | are denoted by ri j .

The aggregate

(m1,m2,m3,P1,P2,P3),

or equivalently

(m1,m2,m3, 1, 2, 3)

will be called an m-triangle. This is a spatial triangle with positive weights as-
sociated with the vertices.

In the most important case, the particles interact according to Newton’s law
of gravitation:

mi ¨ i =
∑
j �=i

mi m j

r 3
i j

( j − i ), i , j = 1,2,3,



3. THE THREE BODY PROBLEM

Figure 3.1: The most studied instance of the three body problem. Artist: Sindre
Sydnes.

but we will also consider the more general case of a potential of power e, which
gives

mi ¨ i = e
∑
j �=i

mi m j

r e+2
i j

( j − i ), i , j = 1,2,3, (3.1)

where the Newtonian gravitation corresponds to the case e = 1. The data are
scaled in such a way that Newton’s constant of gravitation G = 1.

Our aim is to provide a background for the geometric study of three body
motions satisfying (3.1). Such motions are analytic in t as long as all the ri j �= 0.
When ri j → 0 as t → t0, the motion suffers a collision at t0. The maximal time-
interval of existence for a motion X (t ) will be an open interval (a,b) ⊂R where
a,b are either infinite or instances of collision. As long as the initial configu-
ration is not a collision configuration, the maximal interval of existence will be
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non-empty. Except of our discussion of the regularization of binary collision in
Section 4.5, we will not mention the maximal interval of existence. Hence our
results should be interpreted to be valid on the maximal interval of existence.

We can describe the three body problem as a Lagrange system in (R3)3 with
Lagrange function

L = 1

2

3∑
i=1

mi ( ˙ i · ˙ i )+U ,

where · denotes the usual scalar product in R3 and the potential function U is
given by

U = m1m2

r e
12

+ m2m3

r e
23

+ m3m1

r e
31

.

We see that one of the main features of the potential function is that it is a ho-
mogeneous function of the position vectors of degree −e.

The three body problem satisfies in general the three following classical
conservation laws: The integral of linear momentum takes the form

∑
i

mi ˙ i = Constant ,

the integral of angular momentum takes the form

Ω=∑
i

i × ˙ i = Constant, (3.2)

and the energy integral takes the form

h = 1

2

∑
i

mi ˙ i · ˙ i −U ( 1, 2, 3) = Constant.

The study of the three body problem aims at understanding the dynamics
defined by (3.1). This problem dates back to Newton’s Principia, where Newton
failed to give a good account on the lunar motion (cf. Figure 3.1). The subse-
quent development of the three body problem is too rich to be discussed here.
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3.2 Jacobi vectors: Coordinates on the configuration
space

The topic of Jacobi vectors is thoroughly investigated in Section 2.3. We will
present the application of this theory on the three body problem, i.e. the case
where n = 3. In order to make the chapter about the three body problem rela-
tively self contained, we will repeat some of the material of Section 2.3.

We will employ coordinates with respect to an inertial system with the ori-
gin at the centre of mass of the m-triangle, i.e. barycentric coordinates. Equiva-
lently, the coordinate vectors i and their velocities ˙ i satisfy∑

i
mi i = 0,

∑
i

mi ˙ i = 0,

Hence the configuration space of the three body problem with mass distribu-
tion m1,m2,m3 is given by

M = {( 1, 2, 3) : Σi mi i = 0}.

This implies that we use the terms configuration space and barycentric configu-
ration space synonymously. Thus, we regard the configuration space as a sub-
space of the position space. The inner product on M is

〈( 1, 2, 3), ( 1, 2, 3)〉 =∑
i

mi ( i · i ),

and the natural SO(3)-action is given by

Q( 1, 2, 3) = (Q 1,Q 2,Q 3), Q ∈O(3)

In the following we will also consider the inner product space M3×2 of real 3×2-
matrices with the inner product

〈X ,Y 〉 = tr(X Y t ),

and SO(3)-action given by left matrix multiplication, (Q, X ) �→QX .
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3.2. Jacobi vectors

3.2.1 Jacobi maps

A choice of Jacobi vectors is represented by a Jacobi map

J : ( 1, 2, 3) �→ X = [ 1| 2] ∈ M3×2

that restricts to an SO(3)-equivariant isometry M → M3×2. Under a choice of
Jacobi vectors, we have the formulae

T = 1

2

∑
i

mi ( ˙ i · ˙ i ) = 1

2
( ˙ 1 · ˙ 1 + ˙ 2 · ˙ 2) = 1

2
tr(Ẋ Ẋ t )

and
Ω=∑

i
mi ( i × ˙ i ) = 1 × ˙ 1 + 2 × ˙ 2 =

−−−−→
X × Ẋ ,

where we use the identification between vectors in R3 and skew symmetric
3×3-matrices given in Definition 2.4.4.

According to Corollary 2.3.9, if J , J ′ are two different choices of Jacobi vec-
tors, then there exists an element Q ∈O(2) such that

J ′( 1, 2, 3) = J ( 1, 2, 3)Qt . (3.3)

Conversely, if J is a valid choice of Jacobi vectors and Q ∈O(2), then (3.3) defines
an equally valid choice of Jacobi vectors.

3.2.2 Jacobi vectors and dynamics

When we study isolated systems within the Galilean theory of relativity, the
barycentric configuration space M is invariant under the dynamics, and the
dynamics on M can be studied by means of the Lagrange function

L = T +U ,

interpreted as a function on the barycentric configuration space.
A Jacobi map J : M → M3×2 is simply a reparametrization of M , and the

dynamics will be determined by the corresponding Lagrange function

L = T (Ẋ )+U (X ),
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3. THE THREE BODY PROBLEM

where X (t ) denotes the Jacobi vector representation of three body motions. As
noted above, the kinetic energy term is on the simple mass independent form
T = 1

2 tr(Ẋ Ẋ t ). On the other hand, the form of the potential function U is rather
complicated. Later we will show how we can use the flexibility that is encoded
by the Jacobi groupoid to give U a more transparent form.

3.2.3 A specific choice of Jacobi vectors

The following formulae yield a family of Jacobi maps:

1 =
√

m j mk

m j +mk
( j − k )

2 =
√

mi (m j +mk )

mi +m j +mk

(
i −

m j j +mk k

m j +mk

) (3.4)

where {i , j ,k} = {1,2,3}.

3.3 The singular value decomposition

From now on we will identify the configuration space of the three body problem
with the space M = M3×2 of real 3×2-matrices by means of a Jacobi map J : M ∼=
M3×2.

Unless otherwise stated, the choice of Jacobi map is regarded as fixed. Hence,
we will apply the singular value decomposition after the Jacobi map. Since the
singular value decomposition trivializes the democracy action, it will provide a
transparent representation of Jacobi transformations between different Jacobi
maps.

This section will serve as a brief recapitulation of Section 2.5. We will how-
ever make some adjustments. Instead of working with the full space SO(3)×
D3,H ×V3,H of singular value decompositions, we will regard singular value
decompositions on the form

X = P ·R ·Q =Φ(P,R,Q), (3.5)
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3.3. The singular value decomposition

where P ∈ SO(3), R is a diagonal matrix where the third diagonal element is 0,
and Q is a matrix where the two first rows forms a positively oriented frame in
R2. Hence, we focus on one path component of the previously defined space S
of singular value decompositions, and we redefine S accordingly.

From the singular value decomposition, we get a positively oriented or-
thonormal frame 1, 2, 3 in R3 such that

P = [ 1| 2| 3],

and we define variables ρ,ϕ,θ such that

R = ρ�
2

⎡⎣cos ϕ
2 + sin ϕ

2 0 0
0 cos ϕ

2 − sin ϕ
2 0

0 0 0

⎤⎦ Q =

⎡⎢⎣ cos θ
2 sin θ

2
−sin θ

2 cos θ
2

0 0

⎤⎥⎦
For notational convenience, we will occasionally use the short-hands r1,r2,r3

for the diagonal elements of R. Clearly

r1 = ρ�
2

(
cos

ϕ

2
+ sin

ϕ

2

)
r2 = ρ�

2

(
cos

ϕ

2
− sin

ϕ

2

)
r3 = 0

(3.6)

Consequently ρ2 = r 2
1 + r 2

2 + r 2
3 . The normalization of ϕ, θ may seem unmoti-

vated, but we will have great advantage of this later. Note that the values of ϕ,θ
are significant modulo 4π. Hence, we can interpret (ϕ,θ) as point in the torus

T2 = R2

4πZ2 .

Using the singular value decomposition and the variables defined above,
we will consider the following representation of the matrix of Jacobi vectors:

X = P ·R ·Q, for (P,R,Q) ∈ S,
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3. THE THREE BODY PROBLEM

i.e.

X = ρ�
2

[
1| 2| 2

] ·
⎡⎣cos ϕ

2 + sin ϕ
2 0 0

0 cos ϕ
2 − sin ϕ

2 0
0 0 0

⎤⎦ ·

⎡⎢⎣ cos θ
2 sin θ

2
−sin θ

2 cos θ
2

0 0

⎤⎥⎦ (3.7)

Occasionally, we will also parametrize P by Euler angles α,β,γ.
We recall the notion of regular and singular configuration defined in Chap-

ter 2:

Definition 3.3.1 (Regular and singular configurations). A configuration X ∈ M
is called regular if the matrix X X t has three distinct eigenvalues, otherwise, it
is called singular.

We let Mr (Ms) denote the space of regular (singular) configurations, Sr =
Φ−1(Mr ) (Ss =Φ−1(Ms)) the space of singular value decompositions of regular
(singular) configurations, and Φr : Sr → Mr (Φs : Ss → Ms) the restriction of Φ.

Using Section 2.5, we easily deduce the following facts:

Lemma 3.3.2. (i) Φ : S → M is surjective.

(ii) Φr : Sr → Mr is a local diffeomorphism of class Cω.

(iii) The fibres of Φs : Ss → Ms are diffeomorphic to disjoint unions of circles,
with one exception, namely Φ−1(0), which is diffeomorphic to SO(3) ×
SO(2).

(iv) An analytic curve X (t ) in M can be lifted to an analytic curve (U (t ),R(t ),Q(t ))
in S. If X (0) is regular, this lifting is uniquely determined by U (0),R(0),Q(0).

Proof. (i) is proved in Lemma 2.5.4, while (ii) is proved in Lemma 2.5.7. In order
to prove (iii), we simply divide Ss into three regions characterized by (1) exactly
one of r1,r2 is 0, (2) r 2

1 = r 2
2 and (3) r1 = r2 = r3 = 0. The result is then verified

individually for these three cases. (iv) follows from Lemma 2.5.4.
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3.3. The singular value decomposition

Figure 3.2: The effect of change between polar and rectangular coordinates for
rectangular variations. The singularity is marked by a black dot. To the left:
Splitting of variations after transfer from rectangular to polar coordinates. To
the right: Pinching of variation after transfer from polar coordinates to rectan-
gular coordinates.

3.3.1 Lifting of the dynamics from M to S

Since the laws of motion of Lagrangian systems can be expressed by means of
variational principles [Arn89], it is important for us to understand to what ex-
tent it is possible to transfer variations of paths through the multiplication map
Φ : S → M defined in (3.5), i.e. to describe the three body dynamics on the level
of the space S of singular value decompositions. The general result is disap-
pointing: Because of the singularities of Φ, we can not globally lift the varia-
tional principle from M to S: For a motion passing through a singular value of
the map Φ, it is in general impossible to lift variations through Φ; the singulari-
ties will split them up.

In order to see this, we can consider a toy model: Instead of Φ, we consider
the polar coordinate mapping R2 →R2 given by

(r,θ) �→ (r cosθ,r sinθ)

An attempt to lift the rectangular variation γε(t ) = (1− t ,ε) through this map
yields the situation at the left side of Figure 3.2.

Conversely, we can not push variational principles down from S to M : Vari-
ations containing singularities of Φ are pinched at the singularities after map-
ping through Φ. See Figure 3.2.

We conclude that a global lifting of the dynamics from M to S through Φ is
not valid, since the variational principles are distorted by the singularities.
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3. THE THREE BODY PROBLEM

On the other hand, lifting of dynamics from Mr to Sr through Φr is still un-
problematic: Since Φr is a local diffeomorphism, it has nice path lifting prop-
erties. Also lifting of variations of paths from Mr to Sr through Φr is unprob-
lematic. We can say that Φr admits lifting of variations of paths: For a given
variation γε in Mr of the path X (t ) = γ0(t ) in Mr , and a prescribed point s ∈ Sr

with Φr (s) = X (0), there exist a unique variation γ̃ε such that γ̃0(0) = s and
γε = Φr ◦ γ̃ε. Hence, we can lift variational calculus from Mr to Sr , and con-
sequently also the Lagrangian dynamics.

Hence, on the regular part Sr → Mr , we have an unproblematic lifting of
the dynamics. In order to manage the global picture, we use the following strat-
egy, following Lemma 3.3.2: For a three body motion X (t ) which is analytic in
t , we can choose a singular value decomposition representation U (t ),R(t ),Q(t )
which is also analytic in t . With this device we can usually handle the singular-
ities by analytic continuation:

For a given analytic singular value decomposition of X (t ), r1,r2 becomes
analytic functions of t and since Ms is characterized by algebraic relations among
r1,r2, we have three possible relations between X (t ) and Ms : (1) X (t ) never vis-
its Ms , (2) X (t ) visits Ms at isolated instances of time, (3) X (t ) stays in Ms for-
ever. The situations (1) and (2) will be handled by an understanding of situation
(1), which allows us to treat situation (2) by analytic continuation. The situation
(3) calls for a separate treatment.

3.3.2 Various quantities related to the singular value decomposition

Consider a three body motion given in term of its Jacobi vector matrix X (t ) =
[ 1(t )| 2(t )], and an associated singular value decomposition (P (t ),R(t ),Q(t )).
As noted above, the columns 1, 2, 3 of P yields a diagonalization of X X t ,
and hence, these vectors give an instantaneous principal frame for the config-
uration X .

In terms of multi-valued choices of gauge, we can lay this out as follows, at
least over the set of regular configurations:

Mr → Mr = Mr

SO(3)
and Sr → Sr =R2 ×SO(2)
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3.3. The singular value decomposition

are principal bundles with Φ : Sr → Mr as an intertwining operator. Since Sr →
M r is a covering map, the map

(R,Q) ∈ Sr �→ RQ ∈ Mr

can be understood as a multi-valued choice of gauge.
Let r1,r2,r3 denote the diagonal elements of R. The instantaneous principal

moments of inertia of X relative to the principal frame are

λ1 = r 2
2 + r 2

3 = r 2
2 = ρ2

2
(1− sinϕ)

λ2 = r 2
3 + r 2

1 = r 2
1 = ρ2

2
(1+ sinϕ)

λ3 = r 2
1 + r 2

2 = ρ2

(3.8)

(cf. (3.6) and (2.20))
Furthermore, we define the total angular momentum in the principal frame,

g = P tΩ, where Ω is the total angular momentum vector
−−−−→
X × Ẋ . The three com-

ponents
gi = i ·Ω, i = 1,2,3

can be regarded as three functions on the tangent bundle of the configuration
space. Note that g1, g2, g3 depend on our choice of singular value decomposi-
tion of the motion. Modulo this choice, g1, g2, g3 are SO(3)-invariant functions
on the tangent bundle of the configuration space.

Our phase space invariants have now entered the stage: ρ represents the
size, whileϕ,θ represents the shape of three body configurations. Finally, g1, g2, g3

represent the relation between the total angular momentum vector and the
spatial motion of m-triangles. Together they yield our preferred system

ρ,ϕ,θ, ρ̇,ϕ̇, θ̇, g1, g2, g3 (3.9)

of multi-valued SO(3)-invariants on the phase space, for which we will deduce
the equations of motion in the following sections. The fact that these variables
yield a complete geometric description of three body motions follows from the
reduction and reconstruction results below, i.e. from the fact that they simply
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3. THE THREE BODY PROBLEM

do the job. For us, this serves as a sufficient confirmation of the completeness
of this set of variables.

In the following section, we give our variables another interpretation, which
yields another indication on the completeness of (3.9).

3.3.3 Vector-bundle interpretation of the variables

ρ,ϕ,θ can be regarded as local coordinates on the reduced configuration space
M r = Mr /SO(3). Together with ρ̇,ϕ̇, θ̇ they yield a set of local bundle coordi-
nates on the tangent bundle T M r .

Together, all the variables (3.9) yields local bundle coordinates on the re-
duced tangent bundle (T Mr )/SO(3). This bundle has the natural structure of
a Lie algebroid [Wei96], and in Section 3.8 we will see that these variables are
well adapted to application of Poincaré’s equations, which can be regarded as
an application of the Lie algebroid structure of (T Mr )/SO(3).

Our variables are also adapted to the Lagrangian reduction that laid out in
[CMR01]:

From the action of SO(3) on Mr , we get the vertical distribution V Mr and
the horizontal distribution H Mr (cf. Section 2.6). By the natural isomorphisms
of (H Mr )/SO(3) with T (M r ), we can regard ρ,ϕ,θ, ρ̇,ϕ̇, θ̇ as bundle coordinates
on (H Mr )/SO(3). On the other hand, ρ,ϕ,θ, g1, g2, g3 can be regarded as bun-
dle coordinates on (V Mr )/SO(3), since g1, g2, g3 are SO(3)-invariant and anni-
hilate H Mr . The vector bundle (V Mr )/SO(3) can be identified with the adjoint
bundle (

so(3), AdSO(3)
)×SO(3) Mr → M r ,

an identification which is natural with respect to a chosen connection on the
principal bundle Mr → M r . Our approach implies application of the mechan-
ical connection (cf. Section 2.6), as in [CMR01], and our choice of coordinates
is well adapted to that approach, which to a large extent is formulated on the
bundle (

so(3), AdSO(3)
)×SO(3) Mr ⊕T M r ,

which is – with respect to the chosen connection – naturally isomorphic to
(T Mr )/SO(3).
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3.3. The singular value decomposition

3.3.4 Historical remark

The variables (3.9) are extensively in use in [HS07], and they were present al-
ready in [HS95]. Within that context, the emergence of the variables ϕ,θ seems
to start with the observation that the natural kinematic geometry of the space
of m-triangle shapes is isometric to a hemisphere of radius 1/2. Accordingly,
the spherical coordinates ϕ,θ is a choice of coordinates on the shape space
which fits the kinematic geometry very well. Hence, the introduction of these
variables seems to be based on the kinematic geometry.

We also find these spherical variablesϕ,θ in the earlier work [Lem64], where
they are introduced as spherical coordinates on a shape sphere, which is used
the global regularization of binary collisions (cf. Section 4.5).

3.3.5 The finite gauge group associated with the singular value
decomposition

As indicated in Section 2.6.3, the choice of a singular value decomposition (P,R,Q)
of a given configuration X depends on a finite set of choices; the application of
a singular value decomposition implies an arbitrary choice of gauge. An impor-
tant aspect of theories that depend on a choice of gauge is the understanding of
their gauge symmetries. This is treated in general in Section 2.6. Here we give a
detailed description of the gauge group in the case of the three body problem.

First, let us count the number of different singular value decompositions in
the case of regular three body configurations. Since the principal frame matrix
P is assumed to have determinant 1, and the columns of P are eigenvectors
of X X t where the third eigenvector belongs to the eigenvalue 0, we count 8
different choices of P .

When P is fixed we have the following situation: The squares r 2
1 ,r 2

2 of the
gyration-radii are determined by the order of 1, 2, 3, and thus given once
and for all. We can however freely choose the sign of r1. When r1 is given, the
first row of Q is

1 = 1

r1
X t

1.

Finally, the sign of r2 is determined by the corresponding formula for the sec-
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3. THE THREE BODY PROBLEM

ond row 2 of Q together with the requirement that the frame ( 1, 2) is pos-
itively oriented. Hence, when P is given in advance, the remaining gauge-
freedom can be represented by freedom in choice of sign of r1. This proves
the following lemma:

Lemma 3.3.3. A regular three body configuration has 8×2 = 16 different singular
value decompositions.

In other words: The multiplication map Φr : Sr → Mr is 16−1.

Now, we will represent the freedom in choice of singular value decompo-
sition by a finite group Σ which acts on the space S of singular value decom-
positions. We will need several different expressions for this group action: We
want to know how the group acts on the variables ϕ,θ, g1, g2, g3, and how it acts
on the columns of P . In order to achieve this, we start by giving generators in
terms of their action on the ( 1, 2, 3,r1,r2)-data. Since Q is determined by X ,
P and R, expressions in terms of P,R-data are sufficient.

The following transformations generate the group of gauge symmetries for
the singular value decomposition:

σ1 : ( 1, 2, 3,r1,r2) �→ (− 1, 2,− 3,−r1,r2)

σ2 : ( 1, 2, 3,r1,r2) �→ (− 1,− 2, 3,−r1,−r2)

σ3 : ( 1, 2, 3,r1,r2) �→ ( 2, 1,− 3,r2,−r1)

σ4 : ( 1, 2, 3,r1,r2) �→ ( 1, 2, 3,−r1,−r2)

(3.10)

Strictly speaking, this set of generators is redundant, since {σ1,σ3} generates
the whole group. Hence, we could obviously have given a more elegant set of
generators.

We translate this group action to a ( i ,ρ,ϕ,θ)-formulation: Since the effect
on i is described above, and ρ = (r 2

1 +r 2
2 )1/2 is clearly unaffected, it is sufficient

to describe this in terms of ϕ and θ. Using the above formulae, we arrive at the
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3.3. The singular value decomposition

following transformation rules for ϕ,θ:

σ1(ϕ,θ) = (3π−ϕ,θ)( mod 4π)

σ2(ϕ,θ) = (2π+ϕ,θ)( mod 4π)

σ3(ϕ,θ) = (π+ϕ,π+θ)( mod 4π)

σ4(ϕ,θ) = (2π+ϕ,2π+θ)( mod 4π).

(3.10’)

For the components g1, g2, g3 of the total angular momentum in the princi-
pal frame, the gauge transformations act in the following way:

σ1(g1, g2, g3) = (−g1, g2,−g3) σ2(g1, g2, g3) = (−g1,−g2, g3)

σ3(g1, g2, g3) = (g2, g1,−g3) σ4(g1, g2, g3) = (g1, g2, g3)
. (3.11)

When it comes to the λi , the only non-trivial transformation is σ3, which satis-
fies

σ3(λ1,λ2) = (λ2,λ1). (3.12)

The fundamental result concerning the group Σ is the following:

Lemma 3.3.4. For a regular three body configuration X , the group Σ generated
by σ1,σ2,σ3,σ4 acts freely and transitively on the set of admitted singular value
decompositions.

This is proved rigorously by exhibition of the 16 elements of the group gen-
erated by the σi , for instance by using a representation by 5×5-matrices sug-
gested by the definitions of the σi in terms of ( 1, 2, 3,r1,r2). This way we
see (i) that the action is free and (ii) that the number of elements of the group
matches the number of possible gauges.

Finally, we make the following remarks:

(i) Over the set of singular configurations, the action of Σ is neither free nor
transitive.

(ii) Σ is isomorphic to D4×Z2, where D4 is the symmetry group of the square.
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3.4 The potential function

The Euclidean geometric invariants of m-triangles can be expressed by means
of the basic invariants ρ,ϕ,θ. Another set of basic invariants is formed by the
relative distances ri j . The potential function

U = ∑
i< j

mi m j

r e
i j

,

is yet another geometrically invariant quantity.
U is most easily expressed as above, namely in terms of the relative dis-

tances ri j . It seems to be difficult to find a transparent formula for U in terms
of the Jacobi vectors 1, 2. On the other hand, we can deduce a quite simple
formula for U in terms of ρ,ϕ,θ. As a first step, we find formulae for the relative
distances ri j in terms of ρ,ϕ,θ.

Since U is SO(3)-invariant, we may consider a configuration X for which
the principal frame matrix P = I3×3. Hence, we can regard a configuration with
Jacobi vector representation of the form

X = [ 1| 2] = ρ�
2

⎡⎣cos ϕ
2 + sin ϕ

2 0 0
0 cos ϕ

2 − sin ϕ
2 0

0 0 0

⎤⎦
⎡⎢⎣ cos θ

2 sin θ
2

−sin θ
2 cos θ

2
0 0

⎤⎥⎦ .

Accordingly

1 = ρ�
2

⎡⎢⎣(cos ϕ
2 + sin ϕ

2 )cos θ
2

(sin ϕ
2 −cos ϕ

2 )sin θ
2

0

⎤⎥⎦
and hence

|| 1||2 = ρ2

2
(1+ sinϕcosθ). (3.13)

Jacobi transformations J 1 → J 2 between different Jacobi maps for the three
body problem with the fixed mass distributions corresponds to right matrix
multiplications

X �→ XQ
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for Q ∈ O(2). Since the action of SO(2) gives a rotation of the Jacobi vectors

1, 2 in the plane, and the action of the Jacobi transformation given by the
matrix [

cosφ sinφ

−sinφ cosφ

]
amounts to the transformation θ �→ θ+2φ of the shape variable θ, there exist
constants θi such that

1(θ−θi ) =
√

m j mk

m j +mk
( j − k ), (3.14)

where j , k are position vectors (cf. (2.9)). Together with (3.13), this observa-
tion yields the following lemma:

Lemma 3.4.1. For a given choice of Jacobi vectors and singular value decompo-
sition for the three body problem, there exist constants θ1,θ2,θ3 such that

r j k = ρ

√
m j +mk

2m j mk

√
1+ sin(ϕ)cos(θ−θi ), for {i , j ,k} = {1,2,3}

This proves the following proposition about the potential function:

Proposition 3.4.2. For a given choice of Jacobi vectors and singular value de-
composition for the three body problem, there exist constants θ1,θ2,θ3 such that
the potential function U has the following expression:

U = 1

ρe

3∑
i=1

μi(
1+ sin(ϕ)cos(θ−θi )

) e
2

where

μi = m j mk

(
2m j mk

m j +mk

) e
2

for {i , j ,k} = {1,2,3}.

We find similar expressions of the potential function both in [HS07] and
[Lem64].
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Definition 3.4.3. We define the shape potential U∗ by

U∗ =
3∑

i=1

μi(
1+ sin(ϕ)cos(θ−θi )

) e
2

In terms of the shape potential U∗, we will write the potential function as
U =U∗/ρe .

The constants θ1,θ2,θ3 depend on the choice of Jacobi vectors, but the set of
relative angles |θ1−θ2|, |θ2−θ3|, |θ3−θ1| is uniquely determined by the mass dis-
tribution m; a transition between different Jacobi maps J , J ′ ∈Jm will translate
the values θi with a common phase shift. Later, we will see that the converse
is almost true: Proposition 4.3.7 indirectly shows that the similarity class of the
mass distribution is uniquely determined by θ1,θ2,θ3.

Lemma 3.4.1 tells us that the binary collision of particle j with particle k
occurs for

ϕ= 2nπ+ π

2
and θ = 2nπ+ (θi +π) (3.15)

and
ϕ= 2nπ− π

2
and θ = 2nπ+θi , (3.16)

where n ∈Z and {i , j ,k} = {1,2,3}. In this way θ1, θ2 and θ3 determine the ϕ,θ-
coordinates that correspond to binary collision configurations.

Finally, we will make a remark on the differentiability of the shape potential
U∗. From the formula in Definition 3.4.3 we see that U∗ is a smooth function of
the variables ϕ,θ except at the points where sinϕcos(θ−θi ) =−1, i.e. precisely
at the collision points. Later, we will interpret ϕ,θ as spherical polar coordi-
nates. Under this interpretation, we can regard U∗ as a smooth function on the
sphere:

3.4.1 Spherical representation of the shape potential

Let us regardϕ,θ as spherical polar coordinates on the unit sphere S2 ⊂R3. This
interpretation will be further justified in Section 4.1. We do this in order to treat
the vector-algebraic presentation of the shape potential found in [HS07].

In such a representation, the binary collisions (3.15) and (3.16) are mapped
to precisely three points B1,B2,B3 ∈ S2 ⊂ R3. For a given point P = P (ϕ,θ) on
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the sphere S2, we apply the spherical cosine law to the spherical distance γi to
the binary collision Bi . This yields

cosγi = cos
(π

2
−ϕ

)
cos(θ− (π+θi )) =−sin(ϕ)cos(θ−θi )

Accordingly, the Euclidean distance |PBi | between P and Bi satisfies

|PBi |2 = ‖P‖2 +‖Bi‖2 −2P ·Bi = 2−2cosγi = 2(1+ sinϕcos(θ−θi )),

since P ·Bi = cosγ. Following Lemma 3.4.1, we thus get the following relation
between the relative distances r j k and the Euclidean distances |PBi | between
points on the sphere S2:

r j k = 1

2
ρ

√
m j +mk

m j mk
|PBi | (3.17)

Accordingly, the shape potential can be written as

U∗ = 2e/2
3∑

i=1

μi

|PBi |e
, (3.18)

where the μi are given in Proposition 3.4.2.
This formula shows that when we regard ϕ,θ as spherical polar coordinates

on the sphere S2 ⊂ R3, U can be regarded as a function on S2 which is analytic
everywhere except at the binary collision points B1,B2,B3.

An asymptotic formula

Recall that we defined γi to be the spherical distance between a point P on the
sphere and the binary collision point Bi . By an analysis of the behaviour of the
shape potential near the binary collision points Bi , we have

U∗ = 1

γe
i

F i (γi )+Gi (γ j ,γk ), (3.19)
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where F,G are strictly positive functions which are analytic near Bi . Hence,
asymptotically, at the binary collision points,

U∗ ∼ F i
0

γe
i

, (3.20)

for a constant F i
0. Near the binary collision point Bi the shape potential thus

resembles the potential of the planar Kepler problem. This observation forms
the basis for our regularization of binary collisions in the three body problem in
Section 4.5. The idea is that we can regularize each binary collision in the same
way as we would do with a planar Kepler problem, and then patch together
these regularizations to a global regularization.

3.4.2 The critical points of the shape potential

The potential function can be regarded as a function U (ρ,ϕ,θ), i.e. a function
on the ρ,ϕ,θ-space. The shape potential U∗ can be regarded as the restriction
of the potential function U to the surface ρ = 1.

In the following analysis of the shape potential, we will use the relative dis-
tance formulation of the potential function. In terms of the relative distances
r23,r31,r12 and the masses m1,m2,m3, the potential function is

U (r23,r31,r12) = m1m2

r e
12

+ m2m3

r e
23

m3m1

r e
31

,

and the polar moment of inertia with respect to the centre of mass I = ρ2 satis-
fies Lagrange’s formula [Lag72]

(m1 +m2 +m3)I = m1m2r 2
12 +m2m3r 2

23 +m3m1r 2
31. (3.21)

We have the following geometric restrictions on the relative distances:

ri j + r j k ≥ rki ≥ 0 for {i , j ,k} = {1,2,3} (3.22)

Together with the restriction I = ρ2 = 1, equation (3.22) singles out a triangle
shaped ellipsoidal region Δ with vertices given by

ri j = 0,
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and edges given by
ri j + r j k = rki .

The restriction of U to this region is clearly equivalent to the shape potential.
Lagrange’s multiplicator method on the interior of Δ gives the equation

∇U =λ(m1 +m2 +m3)∇I i .e.
−e

r e+1
j k

=λr j k ,

and accordingly, the only critical point of U in the interior of Δ is the equilateral
triangle, which is given by

r23 = r31 = r12.

If we turn to the interior of the edges of Δ, which are given by ri j = r j k +
rki , Lagrange’s multiplicator method leads to a rather complicated discussion.
Here, we find it useful to apply the shape potential U∗(ϕ,θ). Since each point of
the triangle Δ represents one triangle shape, there is a mapping R2 → Δ which
sends each (ϕ,θ) to the corresponding point in Δ, and since U∗ and U |Δ both
are defined given by restriction toρ = 1, we can regard U∗ as the pullback of U |Δ
along this mapping. Finally, since the edges of Δ corresponds to ϕ= π

2 mod π,
we can parametrize the edges by the variable θ. Hence, it is useful to investigate
the following function of θ:

U∗ =∑
i

μi

(1±cos(θ−θi ))
e
2

,

The interior of the edge r23 = r31 + r12 is parametrized over the interval (θ2,θ3),
if we assume that 0 ≤ θ1 < θ2 < θ3 < 2π. The terms

U∗
i (θ) = μi

(1±cos(θ−θi ))
e
2

are strictly convex functions of θ on the intervals (θi +2kπ,θi +2(k +1)π). Ac-
cordingly U∗ =U∗

1 +U∗
2 +U∗

3 is a strictly convex function on the interval (θ2,θ3),
and since U∗ → ∞ at the endpoint of this interval, we conclude that U∗ has
six critical points on the boundary of Δ, namely 3 poles at the binary collision
points B1,B2,B3 and 3 relative minima E1,E2,E3. The relative minima are sad-
dle points of U .
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U is clearly singular at the vertices of Δ, which are given by ri j = 0, i.e. at
the points that correspond to binary collisions.

We summarize this discussion as follows:

Lemma 3.4.4. For ϕ �= 0 mod π, U∗ is critical at (ϕ,θ)-values corresponding
to the points L,E1,E2,E3,B1,B2,B3 ∈ Δ above. L corresponds to the equilateral
configuration. Bi corresponds to binary collision configurations. Ei corresponds
to certain collinear configurations.

Note that the each of the points L,Ei ,Bi are represented by several values of
(ϕ,θ).

3.5 Geometric invariants of triangles

Along the lines of the previous section, we will here find ϕ,θ-expressions of
some geometric invariants of triangles. Later, we will need some information
about the triangle shape given by ϕ= 0 mod π. Therefore we give explicit for-
mulae for this case here. In particular, we need to know under what circum-
stances ϕ= 0 mod π corresponds to the equilateral shape.

Following Lemma 3.4.1, the relative distances rk j satisfies

r j k = ρ�
2

√
m j +mk

m j mk

√
1+ sinϕcos(θ−θi )

and for ϕ= 0 mod π we conclude as follows:

Lemma 3.5.1. Consider the three body problem with mass distribution m1,m2,m3,
and shape variables ϕ,θ as defined above.

In a configuration with ϕ= 0 mod π, the relative distances satisfies

r j k = ρ�
2

√
m j +mk

m j mk

Hence ϕ = 0 mod π represents the equilateral triangle if and only if m1 =
m2 = m3.
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Along these lines, we can also compute the lengths of the position vectors

i relative to the centre of mass. Following (3.4), the other Jacobi vector corre-
sponding to (3.14) is

2(θ−θi ) =
√

mi (m j +mk )

mi +m j +mk

(
i −

m j j +mk k

m j +mk

)
.

Since Σi mi i = 0, we can write this as

2(θ−θi ) =
√

mi (m j +mk )

mi +m j +mk

(
mi +m j +mk

m j +mk
i −

mi i +m j j +mk k

mi +m j +mk

)

=
√

mi (mi +m j +mk )

(m j +mk )
i .

In analogy with (3.13), we have

‖ 2‖2 = ρ2

2
(1− sinϕcos(θ−θi )),

and hence if we denote by ri the length ‖ i‖ of i , then we have

ri = ρ�
2

√
m j +mk

mi (mi +m j +mk )

√
1− sinϕcos(θ−θi ).

By specializing to the case ϕ= 0 mod π, we have some nice observations:
The orthocentre of the triangle ABC is defined as follows: Let l A be the line

through A which is perpendicular to the line BC . The three lines l A , lB , lC inter-
sects at a point which is called the orthocentre. It is straightforward to check
that 1 ⊥ 2 if and only if sin(θ − θi )sinϕ = 0. Hence ( j − k ) ⊥ i for all
{i , j ,k} = {1,2,3} if and only if ϕ = 0 mod π. Hence the configurations where
ϕ = 0 mod π have the characterizing property that the orthocentre and the
centre of mass are coincident. This observation is present in [Lem64], based
on a very different geometric argument.

Applied to the case where ϕ= 0 mod π, we get:

105



3. THE THREE BODY PROBLEM

Lemma 3.5.2. For a three body configuration with ϕ= 0 mod π, the distance ri

between particle i and the centre of mass satisfies

ri = ρ�
2

√
m j +mk

mi (mi +m j +mk )
. (3.23)

We have similar formulae for the central angles in the m-triangle: Let βi be
the angle between j and k . From the cosine law we get

cosβi =−
r 2

j k − r 2
j − r 2

k

2r j rk
=−

√
m j mk

(mi +m j )(mi +mk )
(3.24)

Hence, βi lies in the open interval (π/2,π). Similarly, for the angles δi between

k − i and j − i , we get

cosδi =
r 2

i j + r 2
i k − r 2

j k

2ri j ri k
=
√

m j mk

(mi +m j )(mi +mk )
. (3.25)

This last formula can also be verified in the following way: Since the orthocen-
tre and the centre of mass are coincident when ϕ = 0 mod π, we can easily
check that βi =π−δi , and hence cosδi =−cosβi .

3.6 Regular and singular configurations

Above, we defined a configuration X to be regular if the three eigenvalues r 2
1 ,r 2

2 ,r 2
3

of X X t are distinct. In terms of the variablesρ,φ,θ defined in Section 3.3, a con-
figuration X is regular if and only if ϕ �= 0 mod π

2 . This follows from the relation
(3.6) between r1,r2,r3 and ρ,ϕ.

We denoted by Mr the set of regular configurations. Define Ms to be the set
of singular configurations. X ∈ M can be singular in three different ways

Umbilic shape: This is the case where r 2
1 = r 2

2 , i.e. ϕ= 0 mod π.

Collinear shape: This is the case where either r1 = 0 or r2 = 0, i.e. ϕ= π
2 mod π.
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Triple collision shape: This is the case where r1 = r2 = 0.

We will not investigate triple collisions in this thesis, and hence this shape
will for the most be left out of the discussion. From our point of view, three
body motions cease to exist as they approach the triple collision.

The different types of singularity can be characterized by their isotropy types
in the SO(3)×SO(2)-action on the configuration space. The principal isotropy
type is represented by the group of elements of the type⎛⎝⎡⎣±1

±1
1

⎤⎦ ,

[±1
±1

]⎞⎠ ∈ SO(3)×SO(2)

The triple collision is the unique point where the action of SO(3)×SO(2) on the
configuration space has isotropy group SO(3)×SO(2).

Collinear configurations can be characterized as the points of isotropy type
O(2), where O(2) is identified with the group of elements of the type⎛⎝⎡⎣±1

±cosϑ ∓sinϑ

sinϑ cosϑ

⎤⎦ ,

[±1
±1

]⎞⎠ ∈ SO(3)×SO(2)

The isotropy groups associated with the umbilic shape are conjugate to the sub-
group of elements of the form⎛⎝⎡⎣±cosϑ ∓sinϑ 0

sinϑ cosϑ 0
0 0 ±1

⎤⎦ ,

[
cosϑ sinϑ

−sinϑ cosϑ

]⎞⎠ ∈ SO(3)×SO(2)

In any case, the different types of singularity corresponds to different isotropy
types in the SO(3)×SO(2)-action.

We observe that except of the umbilic shape, the singularities are mainly
related to the rotational action of SO(3). Hence, the umbilic shape singularity
can be regarded as an artefact of our formalism. On the other hand, the umbilic
shape singularity is related to the democracy representation, and hence from
this point of view a natural part of the SO(3)-equivariant kinematic geometry.
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3.7 The reduced dynamical equations

In this section we will express the equations of motion of the three body prob-
lem in terms of the variables ρ,ϕ,θ, g1, g2, g3 and their derivatives.

Our method is very straightforward: Since ρ,ϕ,θ, ρ̇,ϕ̇, θ̇, g1, g2, g3 can be
taken as basic SO(3)-invariants on the tangent bundle T Mr of the space Mr of
regular three body configurations, the equations of motion for the three body
problem should be expressible in terms of these variables and their derivatives.
In this section this will be provided by means of elementary algebraic manipu-
lations. Later, in Section 3.8, we will demonstrate a more differential-geometric
approach, using the method that was described by Poincaré in [Poi01].

Following the discussion of regular and singular configurations, we are forced
to distinguish between the following cases:

Regular motion: Motions confined to the space Mr of regular configurations,
i.e. motions where the squares r 2

1 ,r 2
2 of the gyration-radii are non-zero

and distinct.

Collinear motion: These are motions where r1r2 = 0, i.e. ϕ = π
2 mod π. Fol-

lowing Section 2.7.3, we know that collinear motions with conserved to-
tal angular momentum are planar – for purely kinematic reasons. This
allows us to embed the investigation of this case into an investigation of
the general case of planar motion.

Umbilic shape invariant motion: These are motions where r 2
1 = r 2

2 , i.e. ϕ= 0
mod π. This very special case is treated in Section 3.9. For e �= 2 such mo-
tions occur only in the case of three equal masses, in which case the um-
bilic shape is equilateral, and the motion is Lagrange’s equilateral motion
[Lag72]. In the case e = 2, Section 3.9 opens for the existence of another
class of umbilic shape invariant motions.

In the following, we will first discuss the planar case, and then the general
case. The techniques applied to the two cases are essentially equivalent, and
the planar case can be deduced directly from the general case by imposing
some restrictions on the variables. We find it however useful to exhibit both
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of the calculations. In this way we can show the essential features of the cal-
culations in the simple case of planar motion, and hide away the details in the
more complicated case of general motion, which will anyway be treated in de-
tail in Section 3.8. Again, we emphasise that our treatment of the planar case is
essential to our understanding of collinear configurations.

In Section 3.9, we will investigate the case of umbilic shape invariant mo-
tions, while in Chapter 4 we will see that the differential geometry of three body
shapes allows for an elegant and complete presentation of the reduction of the
planar three body problem to the evolution of shape and size. Hence, our con-
clusive account on our geometric reduction is postponed to Section 4.4.8.

3.7.1 The planar case

Without loss of generality, we assume that the motion takes place in the x y-
plane. By neglecting the z-component, we get the following singular value de-
composition of three body configurations:

X = ρ�
2

[
cosα −sinα

sinα cosα

][
cos ϕ

2 + sin ϕ
2 0

0 cos ϕ
2 − sin ϕ

2

][
cos θ

2 sin θ
2

−sin θ
2 cos θ

2

]
(3.26)

Let us denote by M2 the space of x y-planar configurations and

S2 = SO(2)×R2 ×SO(2)

the corresponding “z-neglected” space of singular value decompositions. This
restriction of the set of singular value decompositions is determined by the
choice of the normal vector 3, which is taken to be the unit vector in positive
z-direction.

The multiplication map S2 → M2 is singular only for ϕ = 0 mod π. Hence,
we can take α,ρ,ϕ,θ as proper coordinates of the planar three body problem,
valid for ϕ �= 0 mod π. Accordingly, the umbilic shape singularity of the general
problem is the only singularity that survives to the planar case.

In this coordinate system, the kinetic energy satisfies

T = 1

2
tr(Ẋ Ẋ t ) = 1

2
ρ̇2 + ρ2

8

(
ϕ̇2 + θ̇2)+ ρ2

2
α̇2 − ρ2

2
cosϕα̇θ̇,
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and total angular momentum is represented by the scalar α-momentum (in the
Lagrangian sense),

Ωs = ∂T

∂α̇
= ρ2(α̇− 1

2
cosϕθ̇).

The total angular momentum is the vector Ω =Ωs , which can also be calcu-
lated by direct application of the formula [Ω] = X × Ẋ after an embedding of the
x, y-plane into three dimensional space.

Using the formula for Ωs , we can express α̇ by the other variables as

α̇= ΩS

ρ2 + 1

2
cosϕθ̇. (3.27)

The equations of motion of the three body problem are equivalent to the Euler-
Lagrange equations associated with the Lagrange function

L = T + U∗(ϕ,θ)

ρe .

Direct computation yields

Ω̇s = d

d t

(
∂T

∂α̇

)
= d

d t

(
∂L

∂α̇

)
= ∂L

∂α
= 0,

ρ̈ = ρ

(
ϕ̇2 + θ̇2

4
+ α̇2 −cosϕθ̇α̇

)
− eU∗

ρe+1 ,

ρ2ϕ̈

4
=−ρρ̇

2
ϕ̇+ ρ2

2
sinϕθ̇ϕ̇+

U∗
ϕ

ρe ,

ρ2θ̈

4
= ρ2

2
cosϕα̈+ρρ̇ cosϕα̇− ρ2

2
sinϕα̇ϕ̇− ρρ̇

2
θ̇+ U∗

θ

ρe .

After elimination of α̇ and α̈ by (3.27), the Euler-Lagrange equations assumes
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the form
Ω̇s = 0

ρ̈ = Ω2
s

ρ3 + ρ

4

(
ϕ̇2 + sin2ϕθ̇

)− eU∗

ρe+1

ϕ̈= cosϕsinϕθ̇2 −2
ρ̇

ρ
ϕ̇+2

Ωs sinϕ

ρ2 θ̇+4
U∗

ϕ

ρ2+e

θ̈ =−2cotϕθ̇ϕ̇−2
ρ̇

ρ
θ̇−2

Ωs

ρ2 sinϕ
ϕ̇+4

U∗
θ

ρ2+e sin2ϕ

(3.28)

These equations determines the evolution ofρ,ϕ,θ for three body motions avoid-
ing the umbilic shape. Ωs can be regarded as a constant parameter in these
equations. In Section 4.4.7, we show that these equations have a nice differen-
tial geometric presentation which removes the umbilic singularity.

If we know Ωs ,ρ(t ),ϕ(t ),θ(t ), we can determine α(t ) by quadrature from
(3.27), and the evolution of the Jacobi vector matrix X (t ) is then determined by
equation (3.26) together with an initial value for α.

3.7.2 Regular motions

Here we will investigate motions in the space Mr of regular three body configu-
rations. It is straightforward to study the dynamics on the level of singular value
decompositions, since Φr : Sr → Mr is a local diffeomorphism.

We will make use of a full coordinatization of Sr , and for that reason we will
use Euler angles in SO(3) as auxiliary variables. This implies that we introduce
some new singularities, namely the gimbal lock singularities of the Euler an-
gles. Since our problem is SO(3)-invariant, these singularities can be moved
freely around and away from the motion under consideration. Accordingly, our
particular choice of Euler angle gauge has no effect on the final result.

In the present calculations, we use Euler angles α,β,γ in the z-x-z-gauge.
Accordingly, the principal axes matrix P = [ 1| 2| 3] equals⎡⎣cosαcosγ−cosβsinαsinγ −cosγsinα−cosαcosβsinγ sinβsinγ

cosαsinγ+cosβcosγsinα −sinαsinγ+cosαcosβcosγ −cosγsinβ

sinαsinβ cosαsinβ cosβ

⎤⎦
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3. THE THREE BODY PROBLEM

Combined with the variables ρ,ϕ,θ, this gives a set (α,β,γ,ρ,ϕ,θ) of coordi-
nates on the set Mr of regular three body configurations.

By direct computation, we find that the kinetic energy T is given by

T = 1

2
ρ̇2 + ρ2

8
(ϕ̇2 + θ̇2)

+ ρ2

2
α̇2 + ρ2

4
(1−cos2αsinϕ)β̇2

+ ρ2

2

(
1− 1

4
(1−cos2β)(1−cos2αsinϕ)

)
γ̇2

− ρ2

2
cosϕ θ̇α̇− ρ2

2
cosβcosϕ θ̇γ̇

+ρ2 cosβ α̇γ̇− ρ2

2
sinβsin2αsinϕ β̇γ̇

(3.29)

and that
g1 = (β̇cosα+ γ̇sinαsinβ)λ1

g2 = (−β̇sinα+ γ̇cosαsinβ)λ2

g3 = (α̇+ γ̇cosβ− 1

2
θ̇cosϕ)λ3,

(3.30)

where λ1,λ2,λ3 are the principal moments of inertia

λ1 = 1

2
ρ2(1− sinϕ)

λ2 = 1

2
ρ2(1+ sinϕ)

λ2 = ρ2

Except of the Euler angle singularities β= 0 mod π, the relation (3.30) is invert-
ible, and we get

α̇= 1

2
θ̇cosϕ− g1 cosβsinα

λ1 sinβ
− g2 cosαcosβ

λ2 sinβ
+ g3

ρ2

β̇= g1 cosα

λ1
− g2 sinα

λ2

γ̇= g1 sinα

λ1 sinβ
+ g2 cosα

λ2 sinβ

. (3.31)
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Substituted into the expression (3.29), we get the following expression for the
kinetic energy:

T = T ρ+T σ+T ω = 1

2
ρ̇2 + ρ2

8
(ϕ̇2 + sinϕθ̇2)+ 1

2

(
g 2

1

λ1
+ g 2

2

λ2
+ g 2

3

λ3

)
(3.29’)

This is in complete accordance with [HS07], where it is pointed out that this
gives a decomposition of the kinetic energy T into kinetic energy due to change
of size

T ρ = 1

2
ρ̇2,

change of shape

T σ = ρ2

8
(ϕ̇2 + sin2ϕθ̇2)

and rotation

T ω = 1

2

(
g 2

1

λ1
+ g 2

2

λ2
+ g 2

3

λ3

)

In the literature, the decomposition T = T ρ +T σ +T ω is often referred to as
Saari’s decomposition.

The equations of motion of three body motions within the set of regular
configurations are equivalent to the Euler-Lagrange equations associated with
the Lagrange function

L = T + U∗

ρe .

We can thus express the equations of motion in terms of α,β,γ,ρ,ϕ,θ and their
derivatives up to order 2. By relation (3.31), we are able to eliminate α̇, β̇, γ̇, α̈, β̈, γ̈
from the equations of motion, in favour of g1, g2, g3, ġ1, ġ2, ġ3. Practically, this
requires a huge amount of algebraic operations, but the result is quite transpar-
ent:
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For the variables g1, g2, g3 we get the following equations

ġ1 = g2

[
g3

(
1

λ3
− 1

λ2

)
+ 1

2
θ̇cosϕ

]
ġ2 = g1

[
g3

(
1

λ1
− 1

λ3

)
− 1

2
θ̇cosϕ

]
ġ3 = g1g2

(
1

λ2
− 1

λ1

)
.

(3.32)

We have the equivalent form

ġ1 =−
(

1− sinϕ

1+ sinϕ

)
g2g3

ρ2 + 1

2
g2θ̇cosϕ

ġ2 =
(

1+ sinϕ

1− sinϕ

)
g3g1

ρ2 − 1

2
g1θ̇cosϕ

ġ3 =−
(

sinϕ

cos2ϕ

)
4g1g2

ρ2 .

(3.32’)

These equations are identical to the Euler equations (2.29); by direct computa-
tion we easily verify that

ν1 = ν2 = 0 and ν3 = θ̇, and
r1r2

λ3
=−1

2
cosϕ

in the present representation of the three body problem. As we saw in Chap-
ter 2, the Euler equations are valid for all non-collinear configurations, and in
the domain of validity, they are equivalent to conservation of total angular mo-
mentum. The Euler equations (3.32) of the three body problem were deduced
in [HS07].

For the variables ρ,ϕ,θ, we get the following equations:

ρ̈ = g 2
1

ρλ1
+ g 2

2

ρλ2
+ g 2

3

ρ3 + 1

4
ρϕ̇2 + 1

4
ρθ̇2 sin2ϕ−e

U∗

ρ1+e

ϕ̈= θ̇2 cosϕsinϕ+ g 2
2 cosϕ

λ2
2

− g 2
1 cosϕ

λ2
1

+2
θ̇g3 sinϕ

ρ2 −2
ρ̇ϕ̇

ρ
+4

U∗
ϕ

ρ2+e

θ̈ =−2
θ̇ϕ̇cosϕ

sinϕ
−2

g1g2 cosϕ

λ1λ2 sinϕ
−2

ρ̇θ̇

ρ
−2

ϕ̇g3

ρ2 sinϕ
+4

U∗
θ

ρ2+e sin2ϕ
,

(3.33)
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where U∗
ϕ , U∗

θ
denotes the partial derivatives with respect to ϕ,θ.

Following (3.29’), the total energy h satisfies

h = 1

2
ρ̇2 + ρ2

8
(ϕ̇2 + sinϕ θ̇2)+ 1

2

(
g 2

1

λ1
+ g 2

2

λ2
+ g 2

3

λ3

)
− U∗(ϕ,θ)

ρe ,

and this allows us to rewrite the equations of motion as

ρ̈ =− ρ̇2

ρ
+ 1

ρ

(
2−e

ρe U∗ +2h

)
ϕ̈=−2

ρ̇ϕ̇

ρ
+ 1

2
sin2ϕθ̇2 +2

θ̇g3 sinϕ

ρ2 +
4U∗

ϕ

ρ2+e

− 4cosϕ

ρ4

(
g 2

1

(1− sinϕ)2 − g 2
2

(1+ sinϕ)2

)

θ̈ =−2
ρ̇θ̇

ρ
−2cotϕ θ̇ϕ̇−2

ϕ̇g3

ρ2 sinϕ
+ 4U∗

θ

ρ2+e sin2ϕ
−16

g1g2

ρ4 sin2ϕ
,

(3.33’)

The equations (3.33’) and (3.32) are clearly equivalent to Newton’s equations of
motion for the three body problem within their domain of validity, which is the
set Mr of regular configurations.

3.7.3 A regular form of the reduced equations of motion

In order to allow for an interpretation of the reduced equations of motion out-
side the set Mr of regular configurations, we can rewrite the Euler equations
as

cos2(ϕ) ġ1 =− 1

ρ2 (1− sinϕ)2g2g3 + 1

2
cos3(ϕ)θ̇g2

cos2(ϕ) ġ2 = 1

ρ2 (1+ sinϕ)2g3g1 − 1

2
cos3(ϕ)θ̇g1

cos2(ϕ) ġ3 =− 4

ρ2 sinϕg1g2,

(3.34)

115



3. THE THREE BODY PROBLEM

and the reduced equations as

0 = ρ̈+ ρ̇2

ρ
− 1

ρ

(
2−e

ρe U∗ +2h

)
0 = cos3ϕϕ̈+2cos3ϕ

ρ̇ϕ̇

ρ
− sinϕcos4ϕ θ̇2 −2cos3ϕ

θ̇g3 sinϕ

ρ2 −cos3ϕ
4U∗

ϕ

ρ2+e

+ 4

ρ4

(
g 2

1 (1+ sinϕ)2 − g 2
2 (1− sinϕ)2)

0 = ρ2 sin2(ϕ)θ̈+2sin2(ϕ)ρρ̇θ̇+2ρ2 sinϕcosϕ θ̇ϕ̇

+2sinϕϕ̇g3 −
4U∗

θ

ρe −2cosϕġ3.

(3.35)
These equations are equivalent to (3.32),(3.33) on Mr . Additionally, they also
give meaning when ϕ= 0 mod π

2 . The physical meaning is not obvious at this
point, but will be clarified in Section 3.7.6.

3.7.4 The Lagrange-Jacobi equation

The Lagrange-Jacobi equation (cf. [Lag72][Jac43]) is a general relation which
holds for all many particle systems with motion determined by a homogeneous
potential function. Here we point out that the ρ̈-equation in (3.35) is simply a
restatement of the Lagrange-Jacobi equation, and hence universally valid.

If the potential function U ( 1, . . . , n) is homogeneous of degree e, then the
expression U ( 1, . . . , n) of the potential function U in terms of the Jacobi vec-
tors 1, . . . , n is still homogeneous of degree e. The polar moment of inertia
with respect to the centre of mass is

I = 〈X , X 〉 = ρ2,

Using that U is homogeneous of degree e, we arrive

Ï = 2〈Ẋ , Ẋ 〉+2〈X , Ẍ 〉 = 4T +2〈X ,∇U 〉 = 4T −2eU .

This can also be written as

Ï = 2(e −2)U +4h.
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Here h = T −U is the total energy. Using I = ρ2, we arrive

ρ̈ =− ρ̇2

ρ
+ 1

ρ
((e −2)U +2h) , (3.36)

an equation which is clearly equivalent to the ρ̈-equation in (3.35). This proves
the following:

Proposition 3.7.1. Equation (3.36) is valid for all many particle systems with
dynamics given by a homogeneous potential function.

3.7.5 Relation between the planar case and the general case

With our conventions for the three body problem, the discussion of Section 2.8.1
implies that a three body motion is planar if and only if g1 = g2 = 0. Setting
g1 = g2 = 0, g3 = Ωs , we see that the reduced equations (3.33) in the general
case are identical to the reduced equations in the planar case (3.28).

The non-planar reduction does not apply to the case of collinear motions.
Since collinear motions are planar (cf. Section 2.7.3), we can apply the general
equations (3.33) to the collinear case if we adopt the same convention as the
preferred convention for the planar case, namely

g1 = g2 = 0, g3 =Ωs . (3.37)

Since this convention is compatible with the modified Euler equations (3.34),
we see that the general system (3.34),(3.35) holds also for collinear three body
motions following this convention.

3.7.6 Extension of the domain of validity by means of analyticity

By the Cauchy-Kowalevski theorem, we know that collision free three body mo-
tions are analytic in time, since Newton’s equations of motion are analytic away
from the collision points. By the analyticity of the singular value decomposi-
tion, we infer that ρ,ϕ,θ, g1, g2, g3 can be taken to be analytic functions of time.

When ϕ is analytic in t , we know that ϕ= π
2 mod π either for all t or for iso-

lated instances of t . Hence in order to study collinearity, it is sufficient to study
either purely collinear motions or passages through collinear configurations.
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At the singularities at ϕ= 0 mod π, we have the same situation: Because of
analyticity we have either an umbilic configuration for all t , or passages through
umbilic configurations at isolated instances of time.

The modified equations (3.34),(3.35) are given by analytic expressions, and
will hence remain valid at passages through the singular set. By analyticity, they
determine the three body motions passing through the singularities.

Since collinear motions are planar, we see that our reduced equations cover
all three body motions except of the umbilic shape invariant motions. This class
of motions is discussed in Section 3.9.

3.7.7 The reconstruction problem

We have seen how three body motions determine ρ,ϕ,θ, g1, g2, g3, whose evo-
lution is governed by the reduced equations of motion (3.32) and (3.33). In this
situation, the following question arise: To what extent is the spatial three body
motion determined by the evolution of ρ,ϕ,θ, g1, g2, g3?

Since ρ,ϕ,θ, g1, g2, g3 is intended to be a complete set of geometrical in-
variants of three body motions, the answer should be obvious: They determine
three body motions modulo choice of inertial system. We demonstrate this by
indication of the steps of the reconstruction procedure:

Let us assume that we are given an analytic solution

ρ(t ),ϕ(t ),θ(t ), g1(t ), g2(t ), g3(t )

of (3.34) and (3.35). The Euler angles α(t ),β(t ),γ(t ) are determined by equa-
tion (3.31) together initial values, which can be represented by any element
P0 ∈ SO(3). If we avoid the singularities β = 0, λ1 = 0, λ2 = 0 this works fine.
Hence, if we restrict the discussion to motions in Mr , we can get along by patch-
ing up different Euler angle gauges. In this way we reconstruct a principal frame
matrix P (t ) as an analytic curve in SO(3). The evolution of ρ(t ),ϕ(t ),θ(t ),P (t )),
specifies a singular value decomposition (P (t ),R(t ),Q(t )) of the three body mo-
tion X , from which we can determine the Jacobi vectors by[

1(t )| 2(t )
]= X (t ) = P (t ) ·R(t ) ·Q(t ).
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In the case of purely collinear motions, we get along in a similar way, using
the similar reconstruction procedure for the planar problem, based on (3.27).

Thus we see that we are able to recover the evolution of the Jacobi vectors

1(t ), 2(t ). For a prescribed linear motion (t ) = · t + of the centre of mass,
we can invert (3.4) in order to find the actual motions 1(t ), 2(t ), 3(t ) of the
particles in space.

The reconstruction process depends on our choice of the linear motion
of the centre of mass and the constant rotation matrix P0. Hence, the recon-
structed motion 1(t ), 2(t ), 3(t ) is – modulo choice of inertial system – uniquely
determined by

ρ(t ),ϕ(t ),θ(t ), g1(t ), g2(t ), g3(t ).

3.8 Poincaré’s principle

Here we give a more conceptual and differential geometric deduction of the
reduced equations (3.34),(3.35) in the case of regular three body configurations.

3.8.1 General considerations

Consider a smooth manifold M with a given Lagrange function L : T M →R. As
is well known, the motions of such a system are stationary points for the action
integral ∫

Ldt

when we consider variations keeping endpoints fixed. As long as L is smooth, it
is safe to consider smooth variations in the class of smooth curves; the motions
are at least as smooth as the Lagrange function.

Following [Poi01], we will derive the equations of motion for a Lagrange
system in an anholonomic frame, the so-called Poincaré equations.

Anholonomic frames

An anholonomic frame is a system

ω1,ω2, . . . ,ωn

119



3. THE THREE BODY PROBLEM

of point-wise linearly independent 1-forms spanning the cotangent bundle T ∗M .
Equivalently, we can consider the dual frame

X1, X2, . . . , Xn

of vector fields on M , satisfying ωi (X j ) = δi
j , where δi

j is the Kronecker delta.

Locally, an anholonomic frame is characterized by the structure coefficients ck
i j ,

which can be defined in any one of the following equivalent ways:

dωk =−ck
i jω

i ∧ω j , dωk (Xi , X j ) =−ck
i j , [Xi , X j ] = ck

i j Xk .

In these formulae as well as in the following computations, we use Einstein’s
summation convention.

The frame ω1,ω2, . . . ,ωn yields a trivialization ψ : T M → M ×Rn of the tan-
gent bundle:

ψ : v �→ [π(v), (ω1(v), . . . ,ωn(v))],

where π is the projection T M → M . Hence, using a local coordinate system
(x1, . . . , xn) and the frame ω1, . . . ,ωn , any function F on the tangent bundle is
locally represented by a function F : Rn ×Rn →R:

F = F (x1, . . . , xn ,ω1, . . . ,ωn),

where we implicitly interpret the ωi as coordinate functions on T M . With this
notation, the function ∂F

∂ωi (x1, . . . ,ωn) can be interpreted as a function

∂F

∂ωi
: T M →R

on the tangent bundle. For a vector field X on M which is locally represented
by f i ∂

∂xi , we define as usual the derivative

X F = f i ∂F

∂xi
: T M →R.

With these definitions, X F and ∂F
∂ωi depend on the choice of frame ω1, . . . ,ωn ,

but not on the choice of coordinates x1, . . . , xn , since ∂F
∂ωi depends only on the

restrictions of F to the fibres Tp M .
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Calculus of variations

Let us consider a smooth curve γ(t ) t ∈ [t0, t1] together with a smooth variation
γu(t ) =α(t ,u), where (t ,u) ∈ [t0, t1]× (−ε,ε) and α(t ,0) = γ(t ).

From the variation α, we get the variational vector field

αu = ∂α

∂u
=α∗

(
∂

∂u

)
=αi

u Xi ,

i.e. αi
u =ωi (αu) = α∗ωi ( ∂

∂u ). Recall that Xi denotes the vector field dual to ωi .
Similarly, the velocity

αt = ∂α

∂t
=α∗

(
∂

∂t

)
=αi

t Xi ,

i.e. αi
t =ωi (αt ) =α∗ωi ( ∂

∂t ).

αi
t ,αi

u are now regarded as functions of (t ,u), and since [ ∂
∂t , ∂

∂u ] = 0 on [t0, t1]×
(−ε,ε), we get

∂αk
t

∂u
= ∂

∂u

(
α∗ωk

(
∂

∂t

))
= L ∂

∂u
(α∗ωk )

(
∂

∂t

)
+α∗ωk

([
∂

∂u
,
∂

∂t

])
= d(α∗ωk )

(
∂

∂u
,
∂

∂t

)
+d

(
α∗ωk

(
∂

∂u

))(
∂

∂t

)
+0

= dωk
(
α∗

∂

∂u
,α∗

∂

∂t

)
+ ∂αk

u

∂t

= dωk (αi
u Xi ,α j

t X j )+ ∂αk
u

∂t

=−ck
i jα

i
uα

j
t +

∂αk
u

∂t
.

(3.38)

In local coordinates, we represent respectively α(u, t ) and γ(t ) by xi (u, t )
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and xi (t ), and thus get

d

du
Γ[γu] =

∫t1

t0

∂

∂u
L(. . . , xi (u, t ), . . . ,αi

t , . . .)dt

=
∫t1

t0

(
∂L

∂xi

∂xi

∂u
+ ∂L

∂ωk

∂αk
t

∂u

)
dt

=
∫t1

t0

(
αi

u Xi L+ ∂L

∂ωk
ck

i jα
i
uα

j
t +

∂L

∂ωk

∂αu

∂t

)
d t

and finally, by integration of parts, keeping the end-points fixed

d

du
Γ[γu] =

∫t1

t0

(
Xi L− ∂L

∂ωk
ck

i jα
j
t −

d

d t

(
∂L

∂ωk

))
αi

ud t

Hence, we see that stationarity of the action integral at γ is equivalent to the
equations

d

d t

∂L

∂ωi
=− ∂L

∂ωk
ck

i jω
j +Xi L, i = 1,2, . . . ,n, (3.39)

which characterizes the motions of the Lagrange system. These equations can
be called the Poincaré equations associated with the Lagrange function L and
the anholonomic frame ω1, . . . ,ωn .

Let us make the correct interpretation of this equation precise: Along a
curve γ(t ) in M , we can interpret ∂L

∂ωi and − ∂L
∂ωk ck

i jω
j + Xi L as functions of t ,

and equation (3.39) shall be interpreted as an identity of functions of t .

3.8.2 Application to the three body problem

Using the coordinates (α,β,γ,ρ,ϕ,θ) defined in Section 3.7, we will now apply
Poincaré’s equations to the three body problem. This implicitly amounts to a
lifting from M to S, and we must have in mind that this lifting is straightforward
only over the regular part Mr ⊂ M .

The anholonomic frame

Let g = (g1, g2, g3) denote the total angular momentum in the principal frame,
i.e. g = P tΩ = P t (X × Ẋ ), where P (t ) is the principal frame matrix and X (t ) is
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3.8. Poincaré’s principle

the three body motion under consideration. We can regard g1, g2, g3 as 1-forms
on the configuration space. We will rather use the 1-forms ωi = λ−1

i gi for our
computations. By direct computation, we have

ω1 = cosαdβ+ sinαsinβdγ

ω2 =−sinαdβ+cosαsinβdγ

ω3 = dα+cosβdγ− 1

2
cosϕdθ.

(3.40)

We will now apply Poincaré’s principle to the anholonomic frame

dρ,dϕ,dθ,ω1,ω2,ω3. (3.41)

In the following we will use
{ρ,ϕ,θ,1,2,3}

as index set, and in order to gain conformity with the above notation, we can
define

ωρ = dρ, ωϕ = dϕ and ωθ = dθ.

The structure coefficients ck
i j of the frame (3.41) are determined by

d2ρ = d2ϕ= d2θ = 0

dω1 =−ω2 ∧ω3 + 1

2
cosϕ dθ∧ω2

dω2 =−ω3 ∧ω1 − 1

2
cosϕ dθ∧ω1

dω3 =−ω1 ∧ω2 + 1

2
sinϕ dϕ∧dθ,

and the dual frame is given by

Xρ = ∂

∂ρ
, Xϕ = ∂

∂ϕ
, Xθ =

∂

∂θ
+ 1

2
cosϕ

∂

∂α

X1 =−cotβsinα
∂

∂α
+cosα

∂

∂β
+ sinα

sinβ

∂

∂γ

X2 =−cotβcosα
∂

∂α
− sinα

∂

∂β
+ cosα

sinβ

∂

∂γ

X3 = ∂

∂α
.
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3. THE THREE BODY PROBLEM

Note that these formulae shows that X1, X2, X3 spans the tangent spaces of the
SO(3) orbits.

From the equations (3.40) above, we see that the 1-formsω1,ω2,ω3 are glob-
ally well defined, but that ω1,ω2 seem to be linearly dependent for sinβ= 0. On
the other hand, ω1,ω2,ω3 has a physical interpretation which is independent of
the choice of Euler angle gauge. Hence, the sinβ = 0-singularity is just associ-
ated with singularity of the Euler angles α,β,γ. Hence, we can regard ω1,ω2,ω3

are globally linearly independent and well defined on S. Dually, we seemingly
experience a blow-up of the vector fields X1, X2, X3 for sinβ= 0. The degree of
well-definedness of X1, X2, X3 does not depend on the choice of Euler angles,
and hence, this singularity should also be blamed on the Euler angle singular-
ity. Accordingly, we will regard X1, X2, X3 as globally well defined on S.

Hence when we apply the one-forms ω1,ω2,ω3, we overcome the problem
of Euler-angle-singularities. The singularities of Φ : S → M for ϕ = 0 mod π

2 ,
however, still remain.

The Lagrange function

In our system of 1-forms, the Lagrange function can be expressed as

L = 1

2
dρ2 + ρ2

8

(
dϕ2 + sin2ϕ dθ2)+ 1

2

(
λ1(ω1)2 +λ2(ω2)2 +λ3(ω3)2)+U (ρ,φ,θ).

(3.42)
As announced above, the generalized momenta associated with ω1,ω2,ω3

are indeed
∂L

∂ωi
= gi ,

where gi are the components of the total angular momentum, as defined above.
The other momenta are

∂L

∂(dρ)
= dρ,

∂L

∂(dϕ)
= ρ2

4
dϕ,

∂L

∂(dθ)
= ρ2 sin2ϕ

4
dθ

This notation may look odd. However, when we regard dρ,dϕ,dθ as coordinate
functions on the tangent bundle T M , it makes sense.
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3.8. Poincaré’s principle

The equations of motion

Now we are ready to present the Poincaré equations for three body motions
within the set of regular configurations:

The dρ-equation: We have

XρL = ρ

4

(
dϕ2 + sin2ϕdθ2)+ 1

ρ

(
λ1(ω1)2 +λ2(ω2)2 +λ3(ω3)2)+ ∂

∂ρ
U ,

since ∂
∂ρλi = 2

ρλi . Since all the structure coefficients ci
ρ j = 0, we get the follow-

ing equation:

ρ̈ = ρ

4

(
ϕ̇2 + sin2ϕθ̇2)+ 1

ρ

(
λ1(ω1)2 +λ2(ω2)2 +λ3(ω3)2)+ ∂

∂ρ
U . (3.43)

The dϕ-equation: We have

XϕL = ρ2

4
sinϕcosϕdθ2 + ρ2 cosϕ

4

(
(ω2)2 − (ω1)2)+ ∂

∂ϕ
U .

The only relevant structure coefficient is c3
ϕθ

= −1
2 sinϕ, which yields the fol-

lowing equation:

ρ2

4
ϕ̈+ ρρ̇ϕ̇

2
= 1

2
sinϕg3θ̇+ ρ2

4
sinϕcosϕθ̇2

+ ρ2 cosϕ

4

(
(ω2)2 − (ω1)2)+ ∂

∂ϕ
U .

(3.44)

The dθ-equation: We have

XθL = ∂

∂θ
U ,

and the relevant structure coefficients are

c3
θϕ = 1

2
sinϕ, c2

θ1 =−c1
θ2 =

1

2
cosϕ.
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Accordingly, the corresponding Poincaré equation is

ρ2 sin2ϕ

4
θ̈+ ρ sin2ϕ

2
ρ̇θ̇+ ρ2 sinϕcosϕ

2
ϕ̇θ̇

=−1

2
sinϕg3ϕ̇+ 1

2
cosϕ

(
g1ω

2 − g2ω
1)+ ∂

∂θ
U

(3.45)

The ωi -equations We note that X1L = X2L = X3L = 0, c1
2θ = −c2

1θ = 1
2 cosϕ

and ck
i j = 1 when (i , j ,k) is an even permutation of (1,2,3). Hence the three

remaining equations are

ġ1 =−c3
12g3ω

2 − c2
13g2ω

3 − c2
1θg2θ̇ = g2g3

(
1

λ3
− 1

λ2

)
+ 1

2
cosϕg2θ̇

ġ2 =−c3
21g3ω

1 − c1
23g1ω

3 − c1
2θg1θ̇ = g3g1

(
1

λ1
− 1

λ3

)
− 1

2
cosϕg1θ̇

ġ3 =−c2
31g2ω

1 − c1
32g2ω

2 = g1g2

(
1

λ2
− 1

λ1

) (3.46)

By inspection, we see that the equations (3.43)–(3.46) are identical to the
reduced equations of motion given in Section 3.7.

3.8.3 A remark on Lagrangian and Hamiltonian formalism

The intention of this section is to demonstrate that Poincaré’s equations reveal
important aspects of the relation between Lagrangian and Hamiltonian formal-
ism in classical mechanics. The symplectic structure of cotangent bundles, and
the Poisson structure on their function algebras plays a preeminent role in the
Hamiltonian formalism. On the Lagrangian side, the Lie bracket plays an al-
most equivalent role, and the connection is revealed by the following observa-
tion:

Vector fields X ,Y , . . . on M can be regarded as smooth functions on the
cotangent bundle T ∗M , and the Lie bracket [−,−] and the Poisson bracket {−,−}
are related by

[X ,Y ] = {Y , X }.

126



3.8. Poincaré’s principle

This justifies the claim that the Poisson bracket and the Lie bracket are essen-
tially the same thing. There are several extensions to this correspondence. An
example of this is the extension to symmetric contravariant tensors given by
the Schouten bracket.

As an extension of the Schouten bracket, we can consider the Lie derivative
LX F along the vector field X of a function F : T M →R. This is given by

LX F ( ) = d

d s
F (ψs

∗ ), ∈ T M ,

where ψs is the flow on M generated by X , and ψs∗ the corresponding flow on
the tangent bundle.

Let us consider a simple mechanical system on a manifold M , i.e. a La-
grange system where the Lagrange function is on the form

L = 1

2
K +U (3.47)

where K is a Riemannian metric on M and U is a smooth function on M .
K yields a correspondence between T M and T ∗M , and hence a correspon-

dence between covariant and contravariant tensors. Thereby we can define a
correspondence between vector fields and 1-forms: For a given vector field X ,
we let ΩX denote the corresponding 1-form, which is defined to satisfy ΩX ( ) =
K (X , ) for every ∈ T M . We will call ΩX the canonical momentum associated
with the vector field X . Similarly, for every 1-form Ω, we will define a vector
field XΩ by ΩXΩ

=Ω. We can thus define a bracket {−,−} acting on 1-forms on
M and smooth function on the tangent bundle T M by

{Ω,F } = LXΩ
F

Notationally, we intentionally allude to the Poisson-bracket defined for func-
tions on the tangent bundle T M .

With our notation, we are able to reproduce the Poisson equations in a La-
grangian setting:
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Proposition 3.8.1. γ : R → M is a motion of the Lagrange system on M with
Lagrange function (3.47) if and only if

d

dt
Ω= {Ω,L} (3.48)

is satisfied along γ for every 1-form Ω on M.

Proof. Here we will use the fact that motions of Lagrange systems in local coor-
dinate systems are characterized by the usual Euler-Lagrange equations.

First we note that if Ω belongs to a coordinate vector field ∂
∂xk in a coordi-

nate system (x1, . . . , xn), i.e. Ω=Ω ∂

∂xi
, then

Ω(γ̇(t )) = gk j d x j (γ̇(t )) = gk j ẋ j = ∂L

∂ẋk
,

where gi j are the coefficients of the Riemannian metric. On the other hand,

{Ω,L} = LX (L)(γ̇(t ))

= L ∂

∂xk

(
1

2
gi j d xi d x j +U

)
(γ̇(t ))

= 1

2

∂gi j

∂xk
d xi d x j (γ̇(t ))+ ∂U

∂xk
(γ(t ))

= 1

2

∂gi j

∂xk
ẋi ẋ j + ∂U

∂xk
(xi )

= ∂L

∂xk
.

.

Hence, if γ satisfies (3.48) for all Ω, then this holds for all Ω ∂

∂xi
. Accordingly,

d

d t

(
∂L

∂ẋk

)
= ∂L

∂xk
k = 1,2, . . . ,n

along γ. This proves the first implication in the theorem above, and we turn our
attention to the converse implication:

Without loss of generality, we can look at the situation in a small neighbor-
hood of t = 0. We now assume that γ satisfies the Euler-Lagrange equations,
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3.9. Umbilic shape invariant motion

and thus that the Euler-Lagrange equations are satisfied in any coordinate sys-
tem. Let Ω be any given 1-form on M . If Ω|γ(0) = 0, the equations are trivially
satisfied,and if Ω|γ(0) �= 0, it is possible to choose a small coordinate domain
(x1, . . . , xn) around γ(0) such that Ω = Ω ∂

∂x1
. By the above formulae for Ω and

{Ω,L} together with the assumption that the Euler-Lagrange equations hold for
γ, we see that (3.48) holds for every motion γ(t ) of the Lagrange system.

In this way, we see that there is a formal similarity between Poincaré’s equa-
tions for Lagrangian systems and Poisson’s equations for Hamiltonian system,
and that these equations are equivalent when the following conditions are sat-
isfied:

• The Lagrange function is of the form L = 1
2 K+U , where K is a Riemannian

metric and U is a smooth function on M .

• We restrict the application of Poisson’s equations to functions which are
linear in the generalized momenta.

Under these conditions, we see that the structure coefficients in Poincaré’s equa-
tions can be regarded as a manifestation of the symplectic structure on the
cotangent bundle.

3.9 Umbilic shape invariant motion

3.9.1 Introduction

Here we will study the following particular type of shape invariant three body
motions:

Definition 3.9.1. The umbilic shape is the shape of a configuration satisfying
one of the following equivalent conditions:

(i) The gyration-radii r1,r2 are of the same magnitude.

(ii) The moments of inertia λ1,λ2 are equal, i.e.

λ1 =λ2 = ρ2

2
, λ3 = ρ2
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3. THE THREE BODY PROBLEM

(iii) 1, 2 can be chosen freely among the orthonormal bases of the linear
space spanned by the configurations.

(iv) ϕ= 0 mod π.

Note that umbilic configurations can not be collinear, since collinearity is
characterized by ϕ = π

2 mod π. Hence, if a three body configuration is not
collinear and not regular, then it is umbilic.

Our main reason to study this class of motions, is that they can not be taken
care of with our reduced equations (3.35), because of the coordinate singularity
at ϕ= 0 mod π.

The conclusion of this investigation is the following: The class of umbilic
shape-invariant three body motions consists of motions of the following type:

(i) Planar motions of three equal masses forming the shape of an equilateral
triangle, namely Lagrange’s solution [Lag72].

(ii) Motions where the power of the potential function e = 2 and the total
angular momentum Ω is contained in the plane spanned by the three
body configuration.

Remark: It is not completely clear whether or not the class of three body mo-
tions of type (ii) is empty, and this is formulated as an open problem.

3.9.2 Preliminary investigations

The umbilic shape

We recall the following facts from Section 3.4: Let r j k denote the distance be-
tween particle j and particle k, and let ri denote the length of the position vec-
tor i relative to the centre of mass, and let βi denote the angle between j and

k .
Lemma 3.5.1 tells us that

r 2
j k = ρ2

2

m j +mk

m j mk
, (3.49)
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while (3.23) yields

r 2
i = ρ2

2

m j +mk

mi M
, (3.50)

where M = m1 +m2 +m3. Finally (3.24) yields

cosβi =−
√

m j mk

(M −m j )(M −mk )
. (3.51)

With these formulae, we have a very good understanding of how the umbilic
shape depends on the mass distribution.

The Lagrange-Jacobi-equation

According to Proposition 3.7.1, the ρ̈-equation in (3.35) is valid also for the um-
bilic shape. Here, we will write this equation as

ρ̈ =− ρ̇2

ρ
+ 1

ρ

(
2−e

ρe u∗ +2h

)
, (3.52)

where h is total energy and u∗ is the value of the potential function U on the
umbilic configuration with ρ = 1.

Since ϕ= 0 mod π, the energy integral reads

h = 1

2
ρ̇2 + 1

2

(
g 2

1

λ1
+ g 2

2

λ2
+ g 2

3

ρ2

)
− u∗

ρe = 1

2
ρ̇2 + 1

2

(
2g 2

1

ρ2 + 2g 2
2

ρ2 + g 2
3

ρ2

)
− u∗

ρe .

We can use this to eliminate ρ̇ from (3.52). This yields the following useful form
of the Lagrange-Jacobi equation:

ρ̈ = 2g 2
1

ρ3 + 2g 2
2

ρ3 + g 2
3

ρ3 − e u∗

ρe+1 (3.53)

The Euler equations and the non-planar case

The deduction of the Euler equations (cf. Theorem 2.7.4) is valid for every non-
collinear three body motion and hence, we conclude that the Euler equations
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are valid also for the umbilic shape. For umbilic motions the Euler equations
assumes the following form:

ġ1 =−g2

(
g3

ρ2 − θ̇

2

)
, ġ2 = g1

(
g3

ρ2 − θ̇

2

)
, ġ3 = 0. (3.54)

Note that the application of the Euler equations presupposes a choice of singu-
lar value decomposition of the motion, and that the term θ̇ depends on such a
choice.

As stated in Definition 3.9.1 (iii) above, the vectors 1, 2 can be rotated
freely in the variable planeΠ(t ) spanned by the three body configuration. Hence,
we can adopt the following convention:

Convention 3.9.2. For umbilic motions, we choose the first principal axes vec-
tor 1 to be perpendicular to the total angular momentum Ω, i.e. g1 = 0

Since g 2
1 + g 2

2 + g 2
3 = ‖Ω‖, we conclude that

g 2
2 = ‖Ω‖2 − g 2

3

Accordingly g1, g2, g3 are constant under this convention, and θ̇ is thus deter-
mined by the Euler equations. This yields the following lemma:

Lemma 3.9.3. For a non-planar umbilic shape-invariant three body motion,

θ̇ = 2g3

ρ2 .

Without loss of generality, we may align the total angular momentum Ω

with the positive z-axis, and hence write Ω = ‖Ω‖ , where is the unit vector
in z-direction. Using this convention, 1 is in the x, y-plane, and hence we can
parametrize the motion of 1 by an angle γ(t ) such that

1 =
(

cosγ
sinγ

0

)
γ is called the precession angle. The other principal axes vectors can be written
as

2 =
(−cosβsinγ

cosβcosγ
sinβ

)
3 =

(
sinβsinγ
−sinβcosγ

cosβ

)
.
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Here we recognize the Euler angles (α,β,γ) given in Section 3.7.2, with α = 0.
The constraint α= 0 is a result of our convention g1 = 0.

The angle β, which is called the inclination angle, is the angle between the
normal vector 3 and the total angular momentum vector Ω. It follows from
ġ3 = 0 that β is constant.

The rate of change of the precession angle γ is found by (3.31), which yields

γ̇= 2g2

ρ2 sinβ
= 2‖Ω‖sinβ

ρ2 sinβ
= 2‖Ω‖

ρ2 . (3.55)

Adaption to the planar case

The above equations are valid also in the planar case. In this case, we take

1 =
⎡⎣cosγ

sinγ

0

⎤⎦ , 2 =
⎡⎣−sinγ

cosγ
0

⎤⎦ , 3 =
⎡⎣0

0
1

⎤⎦ .

We may and shall assume that γ̇ satisfies (3.55). The purpose of this seemingly
odd convention is to unify the treatment of the planar and the non-planar case.
With this convention, Lemma 3.9.3 is still valid. This can be seen from (3.27), if
we note that in the planar case, the precession angleγ is identical to the variable
α in our reduction of the three body problem in the planar case (cf. (3.26)).

3.9.3 Particle kinematics

We will use the singular value decomposition to investigate the motion of the
Jacobi vectors 1, 2. Let P = [ 1| 2| 3] and X = [ 1, 2]. The gyration-radii
are (±1

2

�
2)ρ, and hence, the Jacobi vectors are given by

X = [
1| 2

]= ρ
[

1| 2| 3
][± 1

2

�
2

± 1
2

�
2

0

][
cos θ

2 sin θ
2

−sin θ
2 cos θ

2
0 0

]
,

i.e.

1 =±1

2

�
2ρ( 1 cos

θ

2
− 2 sin

θ

2
)

2 =±1

2

�
2ρ( 1 sin

θ

2
+ 2 cos

θ

2
)
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This implies that
�

2 i /ρ are vectors of unit length rotating in the plane spanned

by 1, 2 with angular velocity − θ̇
2 relative to ( 1, 2).

On the other hand, the position vectors 1, 2, 3 relative to the centre of
mass are, as usual, given by fixed linear combinations of the i . Hence, we
conclude the following:

Lemma 3.9.4. The normalized position vectors i (t )/ρ rotate with angular ve-

locity − θ̇
2 relative to the frame ( 1, 2).

Since the motion is shape invariant and takes place in the plane Π(t ) =
span( 1, 2), there exist real numbers ri ,α0

i such that the position vector of par-
ticle i is given by

i = ρri
[
cos(αi ) 1 + sin(αi ) 2

]
, αi =α+α0

i , (3.56)

where α = α(t ) depends on time t . Note that all the ri �= 0, since the config-
uration is not collinear. Lemma 3.9.3 and 3.9.4 give the rate of change of the
rotation angle α:

Lemma 3.9.5. For an umbilic shape invariant three body motion with constant
angular momentum Ω �= 0,

α̇=− g3

ρ2 , (3.57)

where α is defined in terms of the position vectors and the principal frame by
(3.56), and the principal frame follows the above conventions, i.e. that g1 = 0 in
the non-planar case, and that γ̇ follows (3.55) in the planar case.

The angles αi of rotation

Using (3.57), we have the following integral formula for the rotational angle:

αi (s) =αi (0)− g3

∫s

0

d t

ρ2 . (3.58)

Hence, for a three body motion with an infinite interval of existence, we have
the following: If g3 �= 0 and there exist a real number M such that ρ(t ) ∈ (0, M)
for all t ∈ R, then αi will be unbounded. Regarded as an angle, αi will hence
experience an infinite number of revolutions.
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The kinematic acceleration

Differentiation of (3.56) and application of Lemma 3.9.5 and equations (3.53)
and (3.55) yield

¨ i =−2g 2
2

ρ4

(
ρri (cosαi 1 − sinαi 2)

)
− eu∗

ρe+2 (ρri (cosαi 1 + sinαi 2))

(3.59)

We will write this as

¨ i =− eu∗

ρe+2 i −
2g 2

2

ρ4
∗
i

where
∗
i = ρri [cosαi 1 − sinαi 2] ,

i.e. the reflection of i in the 1-axis.

The dynamical acceleration

Here we will analyse the gravitational forces acting on each body, in order to
determine the acceleration due to the dynamics. Note that we assume that the
centre of mass is at the origin, i.e. Σi mi i = 0.

Let {i , j ,k} = {1,2,3}, and let Fi denote the force on particle i coming from
the interaction with particle j and particle k. Then the dynamic acceleration is

Fi

mi
= em j

r e+2
i j

( j − i )+ emk

r e+2
i k

( k − i ),

where e is the power of the potential, and ri k ,ri j are inter-particle distances.
Using mk k =−mi i −m j j , we see that

ρe+2Fi

mi
= Ai j i +Bi j j (3.60)

where

Ai j =−e

(
m j

d e+2
i j

+ m j +mk

d e+2
i k

)
Bi j = em j

(
1

d e+2
i j

− 1

d e+2
i k

)
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Here, we have introduced normalized particle distances di j = ρ−1ri j . Following
(3.49),

d 2
i j =

mi +m j

2mi m j
,

and accordingly,

Bi j = 0 ⇐⇒ m j = mk . (3.61)

3.9.4 The force balance

The balance between the dynamical acceleration Fi /mi and the kinematic ac-
celeration ¨ i , i.e.

ρe+2Fi

mi
= ρe+2 ¨ i ,

yields
Ai j i +Bi j j =−eu∗

i −2ρe−2g 2
2

∗
i , (3.62)

where

i = i

ρ
and ∗

i =
∗
i

ρ
, i = 1,2,3.

Ai j ,Bi j ,e,u∗, g 2
2 are constant coefficients, and the i , ∗

i are of fixed length.
Since umbilic configurations can not be collinear, j and i must be linearly
independent.

Application to the planar case

Following Lemma 2.8.1 and the assumption that g1 = 0, we see that the motion
is planar if and only if g2 = 0. From the linear independence of i , j and (3.61)
we conclude that m j = mk for all j ,k = 1,2,3. Hence, planar motion occurs only
in the case of three equal masses, in which case the umbilic shape is identical
to the equilateral shape.

For later reference we summarize this as follows:

Lemma 3.9.6. Let X (t ) be a planar umbilic shape invariant three body motion
for the three body problem with mass distribution m1,m2,m3. Then
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3.9. Umbilic shape invariant motion

(i) m1 = m2 = m3

(ii) The triangle formed by the configuration X (t ) is equilateral for all t .

Hence, in this case we encounter Lagrange’s solution, and the motion is
determined by the following:

(i) The Lagrange-Jacobi equation (3.53), which now assumes the form

ρ̈ = Ω2
s

ρ3 − 2u∗

ρe+1 ,

where Ωs = g3 is the scalar angular momentum.

(ii) Conservation of total angular momentum.

The non-planar case

Recall that under the present conventions, planarity is equivalent to the condi-
tion g2 = 0. Hence, throughout the following study of the planar case, we will
assume that g2 �= 0.

If ρ(t ) is bounded and non-zero for all real t and g3 �= 0, then αi will be
unbounded, and hence we can find an instance of time where i = ∗

i . In the
following, we will see that this leads to contradiction: Since i , j are always
linearly independent, i = ∗

i implies that Bi j = 0, i.e. that m j = mk . Applica-
tion of this argument to j , k implies that m1 = m2 = m3. Hence, we encounter
the case of three identical masses, and consequently the equilateral triangle. In
this case all Bi j = 0, and hence the force balance assumes the form

ρe+2Fi

mi
= Ai j i , i , j = 1,2,3.

This implies that i = ± ∗
i for i = 1,2,3 and for all t . We conclude that each

of the tree particles lies on the lines spanned by 1 and 2. Since the centre
of mass coincides with the origin, this can not be the case unless the configu-
ration is collinear. Since collinear configurations are not umbilic, the assumed
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3. THE THREE BODY PROBLEM

behaviour of ρ can not occur. Accordingly, we can assume either that ρ → 0 in
finite time or that supt ρ(t ) =∞.

If ρe−2 is not bounded away from 0, we see that we can make the ∗
i -term

in the force balance as small as we want by consideration of instances of time
sufficiently close to the boundary of the maximal interval of existence of the
motion, and since i , j are linearly independent, we again conclude that Bi j =
0 for i , j = 1,2,3, and hence that m1 = m2 = m3. Again, this contradicts the
assumption of umbilic shape.

If ρe−2 is not bounded away from ∞, we conclude that g 2
2 = 0. This implies

planar motion.
Following this discussion, the remaining possibilities for umbilic shape in-

variant non-planar motions are the following:

(i) The case g3 = 0

(ii) The case where e = 2 and g3 �= 0.

The case e = 2, g3 �= 0.

In the case where e = 2, the force balance reads

Ai j i +Bi j j =−eu∗
i −2g2

∗
i ,

and by taking the inner product of this equation with , and dividing by sinβ,
which is nonzero since g3 �= 0, we get

Ai j ri sinαi +Bi j r j sinα j =−eu∗ri sinαi +2g2ri sinαi .

Since we assumed g3 �= 0, α̇ �= 0, and as a consequence of this, sin(αi ),sin(α j )
are linearly independent as functions of t . Accordingly, the constant coefficient
Bi j = 0. Again this contradicts the umbilicity assumption. Hence, this case can
not occur.

The case g3 = 0, e �= 2

Here, we can assume that Ω �= 0, since the opposite assumption implies pla-
narity (cf. Corollary 2.8.3). From the convention g1 = 0 we see that this case is
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3.9. Umbilic shape invariant motion

characterized by

Ω= g2 2.

In other words, we can take the angle of inclination β to be π
2 , and the principal

frame now reads:

1 =
⎡⎣cosγ

sinγ

0

⎤⎦ , 2 =
⎡⎣0

0
1

⎤⎦ , 3 =
⎡⎣ sinγ

−cosγ
0

⎤⎦ .

From α̇=−g2/ρ2 = 0 we conclude that the normalized position vectors

i = i /ρ, ∗
i = i /ρ (3.63)

are constant, and the force balance (3.62) can be written as

ρe−2 ∗
i = 1

2g 2
2

(
eu∗

i − Ai j i −Bi j j
)

.

Hence ρ(e−2) must be constant, and under the assumption e �= 2, we can con-
clude that ρ is constant.

When ρ is constant, the Lagrange-Jacobi equation (3.53) yields

2g 2
2

ρ2 = eu∗

ρe ,

and following (3.59) we see that

¨ i =−4g 2
2

ρ3 ri cosαi 1,

i.e. that the kinematic accelerations are horizontal. Such horizontal accelera-
tions can be balanced by the dynamical accelerations if and only if the three
particles all lie on the line spanned by 1, i.e. in the case of collinear motion.
This contradicts the umbilicity assumption, and hence this case can not occur.
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3. THE THREE BODY PROBLEM

The case g3 = 0, e = 2

In this case, the variability of ρ can be eliminated from the force balance. Using
(3.63), we write the force balance of particle i as

(Bi ) : Ai j i +Bi j j =−2u∗
i −2g 2

2
∗
i ,

and the question is now if all the equations B1,B2,B3 can be satisfied at the
same time. Since the centre of mass coincides with the origin, the three equa-
tions B1,B2,B3 are dependent: The linear combination m1B1 +m2B2 +m3B3

yields the trivial equation 0 = 0. Hence it is sufficient to investigate whether or
not two of the equations can be satisfied.

Now we ask the following question: Which parameters can we adjust in or-
der to satisfy B1,B2,B3?

(i) g2 can in principle take any real value.
(ii) The lengths and relative angles of the normalized position vectors i are

determined respectively by (3.50) and (3.51). The particles can however freely
undergo a collective rotation in the 1, 2-plane. Hence, we can regard the
equations B1,B2,B3 as a system of rank 4 over R with two unknowns, namely
g2 and the angular orientation of the normalized position vectors.

Let us define the following basis for the plane spanned by 1, 2:

Bi = ( i , 2) = (cosαi 1 + sinαi 2,−sinαi 1 +cosαi 2) .

In this basis, j has the coordinate vector

[ j ]Bi =
[

r j cosβk

r j sinβk

]
where βk = α j −αi , when (i , j ,k) is a cyclic permutation of (1,2,3). Note that
the angles βk are given by (3.51). The coordinate vectors of i , ∗

i are

[ i ]Bi =
[

ri

0

]
[ ∗

i ]Bi =
[

ri cos2αi

−ri sin2αi

]
In the basis Bi , the components of the force balance (Bi ) are

Ai j ri +Bi j r j cosβk +2u∗ri =−2g 2
2 ri cos2αi

Bi j r j sinβk = 2g 2
2 ri sin2αi

(3.64)
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3.9. Umbilic shape invariant motion

In the case m1 = m2 = m3, every Bi j = 0, and since g2,ri �= 0, we conclude
that sin2αi = 0, i.e. that each αi = 0 mod π

2 . Since the centre of mass is at the
origin, this must imply collinearity, and hence this contradicts umbilicity. We
conclude that in the case of three equal masses, the problem does not have a
solution.

In the case where the mass distribution is uneven, we can proceed as fol-
lows:

Since this problem is invariant under change of the sign of g2, we can as-
sume that α1 ∈ (−π/2,π/2). Hence, we can work with the variable x = sinα1

instead of α1. Since α2 =α1 +β3 and α3 =α1 −β2, we have

sinα2 = x cosβ3 +
√

1−x2 sinβ3 and sinα3 = x cosβ2 −
√

1−x2 sinβ2

In this way, we can eliminate the angles αi from the force balance (3.64), and
acquire a complicated set of non-linear equations in the unknowns x = sinα1

and y = g 2
2 , depending on the mass distribution m1,m2,m3 through the rela-

tions (3.49), (3.50), (3.51). This leads to the following open problem:

Question 3.9.7. For which mass distributions m1,m2,m3 and which

(x, y) ∈ (−1,1)× (0,∞)

are the equations (3.64) satisfied?

In this formulation, there are 5 parameters. There is however a scaling sym-
metry among the parameters: If we scale the mass distribution with the factor
λ, (3.64) is affected in the following way: Ai j ,Bi j ,u∗ are scaled with the factor

λ3, the ri are scaled with the factor 1/
�
λ, while y = g 2

2 is scaled with a factor
λ3. Hence, this problem is invariant under rescaling of the mass distribution.
Accordingly, we can reduce the problem to the four variables

m2

m1
,

m3

m1
, x, y.

As noted above, we can eliminate one of the force balance equations by the
relation m1B1+m2B2+m3B3 = 0. Hence our problem can be formulated as four
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3. THE THREE BODY PROBLEM

non-linear equations in four unknowns. A more detailed investigation of this
question could not be included here because of time constraints.

In order to simplify references to this problem, we add the following defini-
tion:

Definition 3.9.8 (Exceptional three body motions). An umbilic shape invariant
three body motion X (t ) with non-zero angular momentum Ω such that Ω and
is always contained in the variable plane spanned by the three particles is called
an exceptional three body motion.

According to the above discussion, we do not know whether or not any ex-
ceptional three body motions exist. The only thing that we know is the follow-
ing:

Proposition 3.9.9. (i) Exceptional three body motions can occur only in the
case e = 2.

(ii) Exceptional three body motions do not occur in the case of three equal
masses

3.9.5 Conclusions

After this investigation, this is our conclusion:

Theorem 3.9.10 (Umbilic shape-invariant motion). Assume that

X (t ) = ( 1, 2, 3)

is an umbilic shape-invariant motion of the three body problem with potential
function

U =∑ mi m j

r e
i j

(e > 0).

If the motion is not exceptional in the sense of Definition 3.9.8 we have the
following:

(i) The mass distribution is even, i.e. m1 = m2 = m3
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3.9. Umbilic shape invariant motion

(ii) The configuration is equilateral.

(iii) The motion is planar.

(iv) The angular velocity

α̇=±‖Ω‖
ρ2 .

(v) The hyper-radius

ρ =
√∑

i
mi

2
i

is determined by

ρ̈ =− ρ̇2

ρ
− 1

ρ

(
2−e

ρe u∗ +2h

)
,

where h is the total energy and u∗ is the constant ρeU

Since the motion is shape-invariant, the motion is determined by the an-
gular velocity and the hyper-radius ρ. Hence, to determine such a motion, we
first find ρ(t ) by (v), and then α(t ) by quadrature of (iv). Hence, the only non-
exceptional umbilic shape invariant three body motion is Lagrange’s equilateral
solution [Lag72] in the case of three equal masses.
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4.1 Introduction

In this chapter we will investigate various spaces of three body shapes. The
shape spaces vary both in size and structure, depending on which aspects of
the three body problem we want to emphasise.

First we will discuss various representations of three body shapes, as well
as the transitions between different representations. As we shall see, this is in-
timately related to the Jacobi groupoid (cf. Definition 2.3.6). We will use this
flexibility to point out how the geometry of the hyperbolic plane can be given
a natural place in the study of the three body problem. Later, we introduce
the kinematic geometry of three body shapes, and demonstrate how this can
be used to give a differential geometric description of the reduced equations of
motion of the three body problem. In the planar case, this allows us to eliminate
the umbilic shape singularity of the reduction. Finally, we show how the space
of three body shapes yields a good background for discussing regularization of
binary collisions in the three body problem.



4. SHAPE SPACES

4.2 Representations of m-triangle shapes

4.2.1 The obvious representation of triangular shapes

Congruence classes of m-triangles can be parametrized by the relative distances
r23,r31,r12 subject to the conditions

0 ≤ r j k ≤ rki + ri j {i , j ,k} = {1,2,3}. (4.1)

When we exclude the trivial triangle r23 = r31 = r12 = 0, each similarity class can
be represented by an m-triangle satisfying

m2m3r 2
23 +m3m1r 2

31 +m1m2r 2
12

m1 +m2 +m3
= 1 (4.2)

(cf. (3.21)). Together, (4.1) and (4.2) single out an ellipsoidal triangle Δ ⊂ R3

with non-trivial angles at each vertex. The edges of Δ correspond to configura-
tions where r j k = rki + ri j , i.e. collinear configurations, while the vertices cor-
responds to configurations where r j k = 0, i.e. binary collisions. We summarize
this as follows:

Proposition 4.2.1. The set of triangle shapes can be identified with an ellipsoidal
triangle Δ⊂R3 together with an isolated point representing the triple collision.

As a subspace of R3, the triangle Δ inherits notions of analytic curves and
smooth curves, notions which in general do not coincide with the notion of
smooth and analytic motions of the three body problem. We note however that
the analytic structure on the boundary of Δ fits the analytic structure of the
three body problem quite well: An analytic curve on the boundary of the tri-
angle must be contained in one edge, say r23 = r31 + r12 for all t . Hence, the
binary collision r1 = 0 is excluded for a collinear motion where P1 initially lies
between P2,P3. This fits very well with Sundman’s regularization of the three
body problem (in the case e = 1), where the binary collisions are regularized
by means of elastic collisions. This implies that the mass points will not pass
through each other, and accordingly, purely collinear motions have precisely
one unreachable binary collision, namely the collision between the two mass
points that are separated by the third mass. Hence, the induced analytic struc-
ture of Δ⊂R3 fits very well with Sundman’s regularization.
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4.2. Representations of m-triangle shapes

4.2.2 The shape sphere

The space M o of oriented three body configurations which is introduced in [HS07]
contains tuples ( 1, 2, ), where 1, 2 are Jacobi vectors and is a unit vector
perpendicular to span( 1, 2). We can hence say that an oriented m-triangle
has positive or negative orientation according to the sign of

det( 1, 2, ).

This determinant is 0 for collinear configurations and for the trivial configura-
tion, i.e. the triple collision.

We will also consider oriented three body positions, namely tuples

( 1, 2, 3, ) where ⊥ { 3 − 2, 3 − 1},

and we will extend Jacobi maps to act on oriented positions: If we consider a Ja-
cobi map J and an oriented three body position ( 1, 2, 3, ), and J ( 1, 2, 3) =
[ 1| 2], then we define

J ( 1, 2, 3, ) = ( 1, 2, ).

Since { 3− 2, 3− 1} and { 1, 2} span precisely the same subspace of R3, this
extension is unproblematic.

Note however that for different Jacobi maps J , J ′ two oriented three body
configurations ( 1, 2, ) and ( ′

1, ′
2, ) associated with the same oriented po-

sition ( 1, 2, 3, ) can have opposite orientation, but if the Jacobi transforma-
tion J → J ′ is represented by a matrix of positive determinant, the orientations
will be the same.

Choosing to be the third principal axes vector 3 associated with a singu-
lar value decomposition yields a factorization

S → M o → M

of the multiplication map Φ : S → M associated with the singular value de-
composition. In this respect, our application of the singular value decompo-
sition can be regarded as an extension of the space of oriented configurations
in [HS07].
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4. SHAPE SPACES

In order to gain flexibility, we will temporarily use some more redundant in-
formation: We will represent a three body configuration by a matrix [ 1, 2, 3] ∈
SO(3) together with two complex numbers ξ1,ξ2 such that the corresponding
Jacobi vectors are

i = re(ξi ) 1 + im(ξi ) 2. (4.3)

In this way, we represent three body configurations by elements of SO(3)×C2.
We will call ξ1,ξ2 complex Jacobi vectors with respect to the frame 1, 2, 3.

The choice i = i , where i belongs to a principal axes frame gives a map-
ping S → SO(3)×C2 and a commutative diagram

S

SO(3)×C2

M o M

1-1 onto

.

In [HS07] it is noted that the projection ( 1, 2, ) �→ ,

π3 : M 0 → S2 (4.4)

is a vector bundle of rank 4. Under the restriction to the case where i = i (the
principal axes vectors), the present introduction of the complex numbers ξ1,ξ2

yields local trivialisations of that bundle. This trivialization depends on 1, 2,
and hence it can not be interpreted as a global trivializaton of (4.4).

The assignment ( i ) �→ (ξi ) can be lifted up to the level of three body posi-
tions in space, where an oriented three body position ( 1, 2, 3, 1, 2, 3) with
the centre of mass at the origin is represented by a complex triple η1,η2,η3 in
such a way that

i = re(ηi ) 1 + im(ηi ) 2. (4.5)

When ( 1, 2, 3) are given, this gives a bijection between ( i )-data and (ηi )-
data.

The complex numbers ξ1,ξ2 clearly represents the shape and size of m-
triangles properly. This justifies that we leave the vectors 1, 2, 3 out of the
discussion for a while.

148



4.2. Representations of m-triangle shapes

In the complex plane, the group of proper similarity transformations is rep-
resented by

C× =C\ {0}

and the space of non-trivial m-triangles modulo oriented similarity transfor-
mations is

C2 \ {0}

C× =CP 1 =C∗,

where CP 1 is the complex projective line and C∗ = C∪ {∞} is the Riemann
sphere. Accordingly, we have the following proposition:

Proposition 4.2.2. The space of non-trivial oriented three body configurations
modulo similarity transformations is diffeomorphic to the sphere S2.

This should be compared with Proposition 4.2.1, which tells us that the
space of unoriented shapes is an ellipsoidal triangle.

When considering homogeneous coordinates on CP 1, the shape of an ori-
ented m-triangle with complex Jacobi vectors ξ1,ξ2 is represented by

[ξ1 : ξ2] ∈CP 1.

When considering the Riemann sphere, the shape of an oriented m-triangle
with complex Jacobi vectors ξ1,ξ2 is represented by the extended complex num-
ber

ζ= ξ2

ξ1
∈C∗ =C∪∞.

In the following we will consider this representation of three body shapes, i.e.
regard oriented three body shapes as points on the Riemann sphere.

The space of unoriented shapes

We discussed the space of unoriented shapes in Section 4.2.1 by means of the
relative distances r23,r31,r12. But in this section we study unoriented shapes
by means of oriented three body configurations ( 1, 2, ), together with the
involution “change of orientation”

( 1, 2, ) �→ ( 1, 2,− )
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4. SHAPE SPACES

On the level of ( 1, 2, 3, 1, 2)-data (cf. (4.3)), we can represent this invo-
lution in several ways, but from Lemma 4.2.6 below, we see that the effect on the

1, 2-data are inessential. Hence we can represent the change of orientation
by the involution

τ : ( 1, 2, 3) �→ ( ′
1, ′

2, ′
3) = (− 1, 2,− 3)

On the level of complex Jacobi vectors and the shape-sphere C∗, this yields

τ : (ξ1,ξ2) �→ (ξ1,ξ2)

τ : ζ �→ ζ

Hence, change of orientation induces a reflection of the shape-sphere C∗ in
the extended real line R∗ ⊂ C∗, and three body configurations with im(ζ) �= 0
are seen to have precisely two shape-sphere representations corresponding to
opposite orientations, on opposite hemispheres. From this point of view, the
space of unoriented triangular shapes, i.e. oriented triangles modulo change of
orientation, is a closed disk:

Proposition 4.2.3. The space M∗ of unoriented triangle shapes is homeomor-
phic to a closed disk.

In Section 4.2.1, we identified this space with an ellipsoidal triangle. In the
triangle representation and the disc representation, the smooth structures dif-
fer on the boundary. This turns out to be a fruitful contradiction, which we will
discuss in Section 4.5 in connection with the regularization of binary collisions
in the three body problem.

4.2.3 Interpretation of ϕ and θ as spherical coordinates on the
shape sphere.

In our coordinatization of the three body problem, we can regard ϕ,θ as shape
parameters. This raises the following question: For a three body configuration
with given values of ϕ,θ, what is the corresponding point on the shape-sphere
C∗?
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4.2. Representations of m-triangle shapes

In the case where ( 1, 2, 3) is taken to be the principal frame, such a con-
figuration is represented by the complex Jacobi vectors

ξ1 = (cos
ϕ

2
+ sin

ϕ

2
)cos

θ

2
− i (cos

ϕ

2
− sin

ϕ

2
)sin

θ

2

ξ2 = (cos
ϕ

2
+ sin

ϕ

2
)sin

θ

2
+ i (cos

ϕ

2
− sin

ϕ

2
)cos

θ

2

(cf. Section 3.3 and (4.3)), and the corresponding shape representation is

ζ= sinθ sinϕ+ i cosϕ

1+ sinϕcosθ
∈C∗ (4.6)

Consider the unit sphere S2 ⊂ R3, and let us identify the complex plane C

with the y z-plane in such a way that the imaginary axis coincides with the z-
axis. Let us consider the stereographic projection of the sphere from the point
(−1,0,0) onto the complex plane. From the three-point homogeneity of the
conformal sphere [Jah11] we see that this stereographic projection is the unique
conformal map of S2 onto C∗ satisfying the following constraints:

(−1,0,0) �→∞
(1,0,0) �→ 0

(0,0,1) �→ i .

(4.7)

Under the inverse projection C∗ →S2 ⊂R3, the point ζ in (4.6) is mapped to the
point ⎡⎣x

y
z

⎤⎦=
⎡⎣sinϕcosθ

sinϕsinθ

cosϕ

⎤⎦ ∈R3

Accordingly, we have the following interpretation of the shape variables ϕ,θ:

Proposition 4.2.4. Under the identification of the shape sphere C∗ with the unit
sphere S2 ⊂R3 given by (4.7), we can regard the shape variables ϕ,θ as spherical
polar coordinates centred at x = y = 0, z = 1.
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4. SHAPE SPACES

In section Section 3.4, we saw that the shape potential U∗(ϕ,θ) can be in-
terpreted as a function on the sphere S2 ⊂ R3. The present discussion gives a
firm confirmation of this point of view. We will develop this theme further in
Section 4.4, and in particular note that the unit-sphere geometry of S2 can be
given a central role in the study of the dynamics of three body problem.

4.2.4 The groupoid of shape transformations

Here we will consider the space of framed three body positions,

C F = {( 1, 2, 3, 1, 2, 3) : 3 ⊥ ( 2 − 1), ( 3 − 1)}

as well as the space of oriented three body positions,

C O = {( , 1, 2, 3) : ⊥ ( 2 − 1), ( 3 − 1)} .

Obviously, the vectors 1, 2 are physically insignificant, and we will see that
the shape-sphere representations of three body configurations – as we should
expect – factors through the obvious projection C F →C O .

Definition 4.2.5. The mapping C F →C∗

( 1, 2, 3, 1, 2, 3) �→ ( 1, 2, 3, 1, 2) �→ (ξ1,ξ2) �→ ζ= ξ2

ξ1

associated with a Jacobi map J : ( 1, 2, 3) �→ ( 1, 2) will be called a shape map
for the three body problem.

We observe that shape maps σ,σ′ are related by Jacobi transformations to-
gether with transformations of the orthonormal frames ( 1, 2, 3). Such trans-
formations between shape maps yields the shape groupoid, where the objects
are shape maps, and the arrows are shape transformations.

How do transformations of 1, 2, 3 affect shape maps?

Heuristically, we know that shape maps factor through C F →C O . Here, we will
verify that this is indeed the case.
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4.2. Representations of m-triangle shapes

When we consider oriented m-triangles, the vector 3 = 3 should be re-
garded as given, and 1, 2 are allowed to vary in such a way that ( 1, 2, 3)
is always a positively oriented orthonormal frame. This allows for transforma-
tions

τϑ : ( 1, 2) �→ ( ′
1, ′

2),

where

[ ′
1| ′

2] = [ 1| 2] ·
[

cosϑ sinϑ

−sinϑ cosϑ

]
.

τϑ induces the following transformation of the variables ξi ,ζ:

ξi �→ ξ′i = e−iϑξi , i.e. ζ �→ ζ′ = ζ,

and accordingly, we can state the following result:

Lemma 4.2.6. In the study of shapes of oriented m-triangles, we have the fol-
lowing:

(i) Shape transformations given by transformations of the frame 1, 2, 3 are
trivial.

(ii) Shape maps can be regarded as maps C O →C∗

σ : ( , 1, 2, 3) �→ ζ.

How do Jacobi transformations affect shape maps?

A given Jacobi map J can be represented by real matrix [J j
i ] such that

i =
∑

j
J j

i j .

For a given frame ( 1, 2, 3) we have the same relation between the associated
complex numbers:

ξi =
∑

j
J j

i η j ,

where ξi are complex Jacobi vectors (4.3) and ηi are complex position vectors
(4.5).
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4. SHAPE SPACES

In this situation, application of Lemma 2.3.7, Corollary 2.3.9 and Corol-
lary 2.3.13 yields the following facts:

Fact I: If (ξi ), (ξ′i ) are complex Jacobi vectors associated with possibly different
Jacobi maps J , J ′, then there exist an invertible real matrix

A =
(
α11 α12

α21 α22

)
such that

ξi =α1iξ
′
1 +α2iξ

′
2.

Fact II: A is orthogonal if and only if the Jacobi maps J , J ′ are admitted by the
same mass distribution, i.e. if there exist a mass distribution m such that
J , J ′ ∈Jm .

Fact III: A is a similarity matrix if and only if J , J ′ are admitted by similar mass
distributions.

For different Jacobi maps J , J ′, we get different shape maps

σ : ( 1, 2, 3, 1, 2, 3) �→ (ξ1,ξ2) �→ ζ ∈C∗,

σ′ : ( 1, 2, 3, 1, 2, 3) �→ (ξ′1,ξ′2) �→ ζ′ ∈C∗,

and following Fact I above, for two such shape maps, there exist a real matrix

[α j
i ] such that

ζ′ = ξ′2
ξ′1

= α1
2ξ1 +α2

2ξ2

α1
1ξ1 +α2

1ξ2
= α1

2ζ+α2
2

α1
1ζ+α2

1

.

Using this formula and Fact I,II,III above we arrive at the following theorem:

Theorem 4.2.7. Let J , J ′ be two Jacobi maps for the three body problem, possibly
associated with different mass distributions, and let

( 1, 2, 3, ) �→
{
ζ

ζ′

respectively be the corresponding shape maps represented on the Riemann sphere
C∗. Then we have the following:
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4.2. Representations of m-triangle shapes

(i) Associated with (J , J ′) there exist an invertible real 2×2-matrix [α j
i ] such

that

ζ′ = α1
2ζ+α2

2

α1
1ζ+α2

1

. (4.8)

Hence the Jacobi transformation induce a fractional linear transformation
of the Riemann sphere C∗.

(ii) J , J ′ belong to similar mass distributions if and only if [α j
i ] can be chosen

among the orthogonal matrices.

(iii) J and J ′ yield the same shape map if and only if the Jacobi transformation
J → J ′ is given by scalar multiplication.

In other words, for every pair σ,σ′ of shape maps, there exist a unique real
fractional linear transformation φ : C∗ → C∗ such that σ′ = φ◦σ. In this situa-
tion, we will regard φ as an arrow φ : σ→σ′ in the shape groupoid.

The democracy representation of O(2) on the shape sphere.

The democracy group O(2) acts on the configuration space M by matrix multi-
plication from the right, and represents the freedom in choice of Jacobi vectors
for a given mass distribution. Now we will investigate the shape-sphere man-
ifestation of the democracy action. Following Theorem 4.2.7, we deduce that
the democracy representation yields fractional linear transformation of the Rie-
mann sphere C∗.

First we consider democracy transformations of positive determinant. The
corresponding transformations are fractional linear transformations of the type

ζ �→ cosϑζ− sinϑ

sinϑζ+cosϑ
.

The only fixed points of such transformations are

ζ=±i ,
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and the extended real line R∗ ⊂ C∗ is an invariant subset. Under this transfor-
mation

0 �→ − tanϑ.

According to [Jah11], such a fractional linear transformation is uniquely deter-
mined by the constraints

i �→ i

− i �→ −i

0 �→ − tanϑ.

,

Under the identification of C∗ with S2 ⊂R3 given by Proposition 4.2.4, this cor-
responds to a linear transformation of R3 with matrix⎡⎣cos2ϑ −sin2ϑ

sin2ϑ cos2ϑ
1

⎤⎦ .

Hence, on the level of ϕ,θ-variables, the corresponding transformation is

(ϕ,θ) �→ (ϕ,θ+2ϑ).

Democracy transformations of negative determinant correspond to frac-
tional linear transformations of the type

ζ �→ −cosϑζ+ sinϑ

sinϑζ+cosϑ
.

The fixed points of a transformation of this type are of the form

ζ± =−cosϑ±1

sinϑ
,

and clearly lies on the extended real line, and since such a transformation maps
the imaginary unit i to −i , this transformation is the unique fractional linear
transformation of the sphere satisfying

i �→ −i

ζ± �→ ζ±.
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The corresponding transformation of R3 is of the form

⎡⎣−cos2ϑ sin2ϑ
sin2ϑ cos2ϑ

−1

⎤⎦ ,

and the corresponding transformation of the shape variables is

(ϕ,θ) �→ (π−ϕ,2ϑ−θ).

4.3 Hyperbolic geometry of triangular shapes

From Theorem 4.2.7 we see that the freedom in choice of shape map is re-
lated to a representation of GL2R by fractional linear transformations on the
shape-sphere C∗. In this way, we encounter the group MöbR of real Möbius
transformations. Regarded as a transformation group of the sphere, MöbR is
a subgroup of the group of oriented conformal transformations. The group of
oriented conformal transformations of the round sphere is equivalent to the
group MöbC of complex fractional linear transformations

z �→ αz +β

γz +δ
,

[
α β

γ δ

]
∈ GL2C

of the Riemann sphere.

Mass-invariance and MöbR-invariance

We propose that it may be fruitful to study invariants of the group action (MöbR,C∗)
in connection with the three body problem. This is based on the following spe-
cialization of Theorem 4.2.7:

Theorem 4.3.1. Properties of oriented three body configurations which can be
expressed as invariants and covariants of the action of Möb(R) on the shape-
sphere C∗ are independent of the choice of mass distribution and Jacobi map.
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At this point of the exposition, it is not completely clear whether or not the
converse theorem is also true, namely whether or not properties of three body
configurations which are independent of choice of mass distributions and Ja-
cobi maps yields MöbR-invariants. This question is related to whether or not
the set of fractional linear transformations coming from shape transformations
generates the group MöbR. In Section 4.3.4, we will give a partial solution to
this problem.

Decomposition of the shape sphere

The extended real line R∗ ⊂C∗ is invariant under MöbR, and will be called the
equator of the shape sphere. The equator divides the shape-sphere into the
northern hemisphere which is defined to contain i ∈C∗, and the southern hemi-
sphere, which contains −i . Correspondingly, we will call i the north pole and −i
the south pole.

The connected component Möb+R of the identity in MöbR consists of frac-
tional linear transformations with positive determinant. This subgroup leaves
the decomposition

C∗ = Southern hemisphere ∪ Northern hemisphere ∪ Equator

invariant. The elements of negative determinant in MöbR interchanges the
hemispheres and leaves the equator invariant (cf. the above discussion of the
shape-sphere representation of the democracy group.).

Regarded as Klein geometries [Kle72], the actions of Möb+R on each of the
hemispheres are equivalent to hyperbolic geometry [Jah11], while the action of
Möb+R on the extended real line R∗ is equivalent to 1-dimensional real projec-
tive geometry. We will use the following sections to discuss these geometries.

4.3.1 Excursions into the MöbR-geometry of the shape sphere

The equator and collinear configurations

We can give a very simple example of Theorem 4.3.1: Since the equator R∗ ⊂C∗

is MöbR-invariant, the property

(∗) ζ ∈ equator =R∗
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4.3. Hyperbolic geometry of triangular shapes

must reflect a property of three body configurations which is independent of
the mass distribution. We will see that this is indeed the case: (∗) is equivalent
to

ξ1 = rξ2 for r ∈R.

In terms of Jacobi vectors and position vectors, this yields

1 = r 2, i .e. i = r j k 1, for r j k ∈R.

Accordingly, ( 1, 2, 3) is collinear. Collinearity is a property which is clearly
independent of choice of mass distribution and Jacobi map.

Proposition 4.3.2. The equator of the shape-sphere corresponds to the set of
non-trivial collinear three body configurations.

We will continue along these lines in Section 4.3.2.

Circles and linear motions

When the three mass points move with uniform velocity along straight lines
in an inertial system, we call the three body motion linear. The statement "this
three body motion is linear" is independent of the mass distribution, and hence
we can hope to characterize such motions in a MöbR-invariant way on the
shape sphere.

In the case of planar motions, we can accomplish this in the following very
simple way: For a planar linear motion, the complex Jacobi vectors are of the
form

ξi (t ) = (ξ1
i t +ξ0

i ), ξ
j
i ∈C,

within a fixed frame ( 1, 2, 3) of reference. The corresponding shape curve is

ζ(t ) = ξ1
2t +ξ0

2

ξ1
1t +ξ0

1

, t ∈R⊂R∗

Hence, the shape curve ζ(t ) lies on the image of the extended real line under a
Möbius transformation C∗ → C∗. Since Möbius transformations maps circles
to circles, we have the following:
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Proposition 4.3.3. For a linear three body motion in a fixed plane, the corre-
sponding shape curve lies on a circle in the shape sphere.

In connection to this, we note the following:

(i) The notion of circles is the same in the Riemann sphere C∗ and the Eu-
clidean sphere S2. This means that circularity is a geometric notion within
the MöbR-geometry.

(ii) We can realize every circle on the shape-sphere as the shape curve of a
linear planar motion.

(iii) In the non-planar case, the story is more complicated since linear mo-
tions generically give non-linear complex Jacobi vectors ξi (t ).

The shape curves of planar linear motions have an equivalent characteri-
zation in terms of the Schwartz-derivative: ζ(t ) is the shape curve of a linear
planar motion if and only if the Schwartz derivative

ζ′′′

ζ′
− 3

2

(
ζ′′

ζ′

)2

= 0.

(cf. [Neh52]) The linear three body motions are the geodesics of the kinematic
geometry of the configuration space, and the dynamics of three body motions
can be described as the deviation from geodesic motion. In the planar case,
such geodesic motions correspond to circular motions on the shape sphere.
Hence, we can characterize the shape curves of planar linear motions in terms
of the Schwartz-derivative. This opens the following question:

Question 4.3.4. To what extent can we characterize the dynamics of three body
motions in terms of the Schwartz derivative or other conformal invariants of
curves on the shape sphere?
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4.3. Hyperbolic geometry of triangular shapes

4.3.2 Shape sphere geography

As noted above, the shape-sphere C∗ ∼= S2 ⊂R3 of oriented m-triangles is spher-
ical, and we considered the following decomposition:

Equator: R∗ = {z ∈C∗ : im(z) = 0}

Northern hemisphere: C∗
+ = {z ∈C∗ : im(z) > 0}

Southern hemisphere: C∗
− = {z ∈C∗ : im(z) < 0}

(4.9)

The flexibility in choice of Jacobi vectors is represented by a group action of
MöbR on C∗, and the partition C∗ = C∗+ ∪R∗ ∪C∗− is preserved by the identity
component Möb+R ⊂ MöbR. This splits the geometry (Möb+R,C∗) into one
copy of projective geometry on R∗ and two copies of the hyperbolic geometry
on C∗+ and C∗−.

Hence, when we want to describe features of the shape-sphere geography
in a mass-distribution invariant way, we should be able to apply the languages
of hyperbolic geometry and projective geometry.

Since the hyperbolic description is independent of the choice of Jacobi vec-
tors and mass distribution, this can be worked out in one specific setting. We
choose the case of equal masses m1 = m2 = m3 = 1 and the particular choice of
Jacobi vectors given by (3.4). In the language of complex configuration vectors
and complex Jacobi vectors, this is the following Jacobi transformation:

ξ1 =
√

1

2
(η2 −η1)

ξ2 =
√

2

3

(
η3 − η1 +η2

2

)
=
√

2

3

(η3 −η1

2
+ η3 −η2

2

) (4.10)

(cf. (4.5) and (3.4)).

Isosceles and equilateral triangles

An isosceles triangle (P1,P2,P3) of type i is a triangle where the distances |Pi P j | =
|Pi Pk |. For an isosceles triangle of type 1, there must exist a complex number

z = r eiϑ = r (cosϑ+ i sinϑ)

161



4. SHAPE SPACES

such that the complex position vectors η1,η2,η3 satisfy

η1 −η2 = z(η2 −η3), η1 −η3 =−z(η2 −η3).

Here ϑ represents the base angle in the triangle.
Using the particular mass distribution m1 = m2 = m3 = 1 and the particular

Jacobi map given by (4.10), the corresponding points in shape space satisfy

ζ= z − z�
3

= 2i

3

�
3sinϑ (4.11)

Hence, the isosceles triangles of type 1 are represented by the extended imag-
inary line iR∗ ⊂ C∗. The intersections iR∗ ∩C∗+, iR∗ ∩C∗− are thus hyperbolic
lines respectively in C∗+ and C∗−, since the hyperbolic lines in C∗

± are precisely
the circle segments which meets the equator orthogonally. Hence, the set of
isosceles triangles of type 1 is represented by a hyperbolic line in C∗

±.
Using the relAbeling symmetry, we can conclude the following: The set of

isosceles triangles is represented by three hyperbolic lines in C∗
±.Since ±i are

the only fixed point of non-trivial democracy transformations, we conclude
that the three lines intersect precisely at ±i . Because of the relAbeling sym-
metry, the intersection angles of the hyperbolic lines are π

3 .
The fact that ±i represents equilateral triangles can also be seen directly

from (4.11).
Returning to arbitrary mass distributions and Jacobi maps, we get the fol-

lowing general result in the language of hyperbolic geometry:

Proposition 4.3.5. The equilateral configurations are represented by three circles
S1,S2,S3 inC∗ such that Si∩C∗

± are hyperbolic lines with triple intersections with
intersection angles π

3 (cf. Figure 4.1).

4.3.3 The monotonicity theorem

In [Mon02] Montgomery shows that bounded three body motions with zero an-
gular momentum and no triple collisions suffers infinitely many collinearities.
In the language of the shape-sphere C∗, we would rather say that the shape
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4.3. Hyperbolic geometry of triangular shapes

Figure 4.1: Stereographic projection of the hemisphere C∗+ with the hyperbolic
lines of Proposition 4.3.5 indicated. This particular figure represents an arbi-
trary mass distribution.

curve crosses the equator infinitely many times. The article [Mon02] applies
the conformal geometry of the shape sphere. In [HS08], an auxiliary result –
which is called the monotonicity theorem – is proved somewhat differently than
in [Mon02]. As an indication on how the hyperbolic geometry of the three body
shapes can be applied, we will reformulate an auxiliary result in the language
of hyperbolic geometry.

We will consider an oriented three body motion X (t ) with zero angular mo-
mentum, and consider a time interval (t1, t2) where the shape curve γ(t ) is on
the northern hemisphere C∗+ ⊂C∗. Let L ∈C∗ denote the equilateral shape. For
a given choice of length unit on C∗+, we let d(t ) denote the hyperbolic distance
from L to γ(t ).

Note that d(t ) →∞ when γ(t ) →R∗ ⊂C∗; the hyperbolic distance from L to
the equator is infinite. Hence, if d(t ) →∞ as t → t1, then the three body motion
approaches a collinearity as t = t1.
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Under the above assumptions, we can reformulate Montgomery’s result as
follows: Let (t1, t2) be a maximal time interval for which the shape curve γ(t )
associated with the motion X (t ) stays at the northern hemisphere. Then we
have the following:

(i) t1, t2 are finite.

(ii) There exists an instance of time tc ∈ (t1, t2) such that d(t ) is monotoni-
cally decreasing on (t1, t2) and increasing at (tc , t2).

From this result, we can see that there will be finite time intervals between
each collinearity, and hence the motions under considerations will suffer in-
finitely many collinearities. This result – which is the main result in [Mon02] –
seems to have very little in common with the hyperbolic geometry of the shape
sphere. Now we have seen how we can formulate an important lemma to this
by means of hyperbolic geometry. This indicates that the hyperbolic geome-
try can play an important role in the study of three body motions. It remains
however to show that this approach gives technical or conceptual advantages.

4.3.4 Binary collisions and projective geometry

Binary collision configurations are clearly collinear, and hence they are repre-
sented by three points B1,B2,B3 on the equator R∗, which we will label by the
index of the non-colliding body.

The projective line is three point homogeneous, and hence we see that ev-
ery distinct triple ζ1,ζ2,ζ3 ∈R∗ can be mapped to the binary collision points of
the three body problem. Hence, in the language of the projective line, the only
thing that we can say is the following: The binary collisions are represented by
three distinct points on the equator R∗.

Note that this does not imply that every distinct triple in R∗ can represent
the binary collision points of the three body problem under some shape map.
This indicates that the converse of Theorem 4.3.1 is not true.

If (B1,B2,B3), (ζ1,ζ2,ζ3) are two distinct triples in R∗ there is a unique trans-
formation

ζ′ = aζ+b

cζ+d
,

[
a b
c d

]
∈ GL2R
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relating them. In this way we see that the position of the binary collision points
determines the shape map completely, since two shape maps with coincident
binary collision points must be identical. By Theorem 4.2.7 item (iii) we con-
clude that the position of the binary collision points determines the Jacobi maps
modulo scalar multiplication, and following Corollary 2.3.13 we conclude the
following:

Proposition 4.3.6. The similarity class of mass distributions in the three body
problem is uniquely determined by the relative position of the images of the bi-
nary collision configurations under an associated shape map C O →C∗.

We can go even further, and give simple formulae relating the positions of
the binary collision points on the shape-sphere with the normalized mass dis-
tribution.

For a general mass distribution m1,m2,m3 and the Jacobi vectors (3.4), we
get

B1 =
√

m1m3

m2(m1 +m2 +m3)
, B2 =−

√
m2m3

m1(m1 +m2 +m3)
, B3 =∞, (4.12)

and in terms of the normalized masses mi = mi /(m1 +m2 +m3) we thus have
the formulae

B1 =
√

m1m3

m2
, B2 =−

√
m2m3

m1
, B3 =∞,

and together with Σi mi = 1, and an interpretation of B1,B2 as real numbers, we
get

m1 = 1+B1B2

1− B2
B1

, m2 = 1+B1B2

1− B1
B2

, m3 =−B1B2. (4.13)

This gives an explicit way to reconstruct the mass distribution from the position
of the binary collision points B1,B2,B3, provided that B3 =∞. First, we will see
how this can be related to the spherical distances between the collision points.

Recall that every Jacobi map J is related to (3.4) by a unique democracy
transformation Q ∈O(2). Hence, if B ′

1,B ′
2,B ′

3 ∈C∗ are the binary collision points
given by a specific shape map σ′ induced by a Jacobi map J ′, there is a unique
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democracy transformation Q ∈ O(2) that transforms the shape map and the
Jacobi map in such a way that the binary collision points are mapped to points
B1,B2,B3 satisfying

B1 > 0 B2 < 0 B3 =∞, (4.14)

Following the uniqueness of Q, this set of collision point mus coincide with the
collision points (4.12) belonging to (3.4), and accordingly, the normalized mass
distribution is given by (4.13).

Using the inverse stereographic projection C∗ → S2, democracy transfor-
mations acts by isometries of the spherical geometry, and hence preserves spher-
ical distances. Furthermore, we find a relation between the spherical distances
|B ′

i B ′
j | between B ′

i and B ′
j regarded as points on the sphere S2 ⊂ R3 and the bi-

nary collision positions Bi ∈R∗ satisfying (4.14). This relation is as follows:

B1 = tan

(
π−|B ′

1B ′
3|

2

)
, B2 =− tan

(
π−|B ′

2B ′
3|

2

)
From this and (4.13) we conclude the following:

Proposition 4.3.7. The similarity class of mass distributions in the three body
problem are uniquely determined by the spherical distances

|B ′
1B ′

2|, |B ′
2B ′

3|, |B ′
3B ′

1|
between the points B ′

1,B ′
2,B ′

3 ∈C∗ ∼= S2 ⊂R3 representing binary collisions.

Central triangles and the Jacobi groupoid

Equation (4.14), which can be made valid for every mass distribution by the
correct choice of Jacobi map is quite powerful. It tells us that Bi ,B j always lie
on opposite sides of the spherical antipodal point B∗

k of Bk , measured along the
equator R∗.

Regarding this in the hyperbolic plane C∗+, we see the three hyperbolic lines
of the form Bi B∗

i intersect precisely at the imaginary unit i . This implies that
the hyperbolic asymptotic triangle B1B2B3 contains i in the interior. This is a
very important property, and translating the terminology of [HS07] to the lan-
guage of hyperbolic geometry, we make the following definition:
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Definition 4.3.8. An asymptotic triangle in the hyperbolic geometry of the hemi-
sphere C∗+ is called central if it contains i in the interior.

An equivalent condition is that the binary collision points Bi and their an-
tipodal points B∗

i can be ordered the following way along the equator circle
R∗ ⊂C∗:

B1,B∗
3 ,B2,B∗

1 ,B3,B∗
2 ,B1

From the above discussion, we see that the binary collision points B1,B2,B3 ∈
C∗ will always form a central triangle, since B∗

3 always is situated between B1

and B2 along the equator. By the following proposition, every central triangle
can be taken as the triangle of collision points for the three body problem:

Proposition 4.3.9. Let B1,B2,B3 be three distinct points on the equator R∗ ⊂C∗

and δ the democracy transformation of the sphere C∗ satisfying δ(B3) =∞ and
δ(B1) > 0.

Then the B1,B2,B3 is a central triangle if and only if the images wi = δ(Bi )
satisfies

m1 = 1+w1w2

1−w2/w1
> 0, m2 = 1+w1w2

1−w1/w2
> 0 and m3 =−w1w2 > 0. (4.15)

Proof. Let us regard B1,B2,B3 as points on the circle S1 and regard δ as the

stereographic projection from S1 to R∗ defined by δ(B3) = ∞, δ
(

B1
|B1|

)
= 1 and

δ(B3) = 0. Hence, without loss of generality, we may assume that

w3 = δ(B3) =∞, δ(B∗
3 ) = 0, w1 = δ(B1) > 0.

Under these assumptions, the third inequality of (4.15) is satisfied if and
only w2 < 0, i.e. if and only if B∗

3 is situated between B1 and B2 along the equator
circle R∗ ⊂C∗.

Now, we will look at the relation between B∗
3 ,B1 and B∗

2 . From Figure 4.2 we
see that B1 is situated between B∗

3 and B∗
2 if and only if 0 < w1 < w∗

2 .

167



4. SHAPE SPACES

RO

B3

B∗
3

B2

B∗
2

w2 w∗
2

B1

w1

α

α

Figure 4.2: Geometric construction showing that every central triangle can rep-
resent the binary collision points for some mass distribution m1,m2,m3.

The angle ∠B2B3B∗
2 is orthogonal, since B2B∗

2 is a diameter. This implies
that the angles ∠w2B3O and ∠B3w∗

2 O are equal. Accordingly, the triangles
Δw2B3O and ΔB3w∗

2 O are congruent and since |OB3| = 1 we conclude that

w∗
2 =− 1

w2

when we regard w2, w∗
2 as points on the real line.

From this we conclude that the ordering

B2,B∗
3 ,B1,B∗

2

along the half circle from B2 to B∗
2 is satisfied if and only if

−1 = w∗
2 w2 < w1w2 < 0,

i.e. if and only if
w1w2 < 0 and 1+w1w2 > 0.

The latter condition is clearly equivalent to (4.15). Since the ordering of the
Bi ,B∗

i is uniquely determined by the restriction to the circular segment B2B∗
2 ,
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and because of the characterization of central triangles by means of the order-
ing of the collision points and their antipodes, we conclude that the proposition
is valid.

Using the interpretation suggested by (4.13), this proposition establishes
a 1−1-correspondence between normalized mass distributions m1,m2,m3 of
the three body problem and central triangles {B1,B2,B3} ⊂ R∗ ⊂C∗ modulo ro-
tation.

In the following, we apply this observation to our study of the Jacobi groupoid:

Definition 4.3.10. We define the central triangle groupoid as follows:

Objects: Central triangles (B1,B2,B3) on the hemisphere C∗+

Arrows: 2×2-matrices with positive determinant: A ∈ GL+
2 (R) yields an arrow

(B1,B2,B3) → (B ′
1,B ′

2,B ′
3) if and only if Bi �→ B ′

i under the induced frac-
tional linear transformation of the shape-sphere C∗ (cf. (4.8)).

Composition: Matrix multiplication.

Following the correspondence between mass distributions and central tri-
angles we see the following:

(i) Jacobi transformations with positive determinant induce arrows in the
central triangle groupoid.

(ii) If A : (B1,B2,B3) → (B ′
1,B ′

2,B ′
3) is an arrow in the central triangle groupoid,

then A will yield a Jacobi transformation A∗ : J → J ′, where J (J ′) is a Ja-
cobi map associated with a mass distribution m1,m2,m3 (m′

1,m′
2,m′

3) as-
sociated with the central triangles: Let (mi ), (m′

i ) be the normalized mass
distributions associated with (Bi ), (B ′

i ), and let J0, J ′0 be Jacobi maps re-
spectively associated with the two mass distributions. After application
of appropriate democracy transformations, we can assume that (Bi ), (B ′

i )
are the positions of the binary collision points under the shape maps as-
sociated with J0, J ′0.

Now, there exist a unique Jacobi transformation A∗
0 : J0 → J∗0 , which must

map the central triangle (Bi ) to the central triangle (B ′
i ). Accordingly, A0
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and A induce the same fractional linear transformation of C∗, and we
conclude that there exist a real number λ such that

A =λA0

Accordingly,we can regard A as a Jacobi transformation from the Jacobi
map J = J0 to the Jacobi map J ′ = λJ ′0, which is associated with the mass
distribution (m′

i /|λ|).

Following this discussion we have the following characterization of the Ja-
cobi transformations:

Proposition 4.3.11. An invertible 2×2-matrix A is the matrix of a Jacobi trans-
formation if and only if either

A or

[
0 1
1 0

]
A

represents an arrow in the central triangle groupoid.

The reason for introducing the second matrix in the above equation is that
the discussion of the central triangle groupoid concerns only matrices with
positive determinants, while in the discussion of the Jacobi groupoid, we con-
sider also matrices with negative determinant.

This raises the following question: For which matrices

A =
[
α1

1 α2
1

α1
2 α2

2

]
∈GL+

2 (R)

do there exist two central triangles (Bi ), (B ′
i ) in C∗+ that are mapped onto each

other by the Möbius transformation

ζ �→ α1
2ζ+α2

2

α1
1ζ+α2

1

.

We can give a simple answer to this question: Suppose that the matrix A
is given. We may diagonalize A using the singular value decomposition and
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democracy transformations of the shape sphere. Hence, we can restrict our
discussion to the fractional linear transformations of the form

ζ �→αζ where α> 0.

Since A belongs to the central triangle groupoid if and only if the inverse A−1

belongs to the same groupoid, we can assume that α ≤ 1. The question now
goes as follows: Given α ∈ (0,1], do there exist a central triangle B1,B2,B3 such
that αB1,αB2,αB3 is central?

The answer is clearly yes: Let Δ = (B1,B2,B3) be any triangle with B3 = ∞
and B2 = −B1. Then Δ is central if and only if |B1| < 1. This property is clearly
invariant under multiplication with any α ∈ (0,1]. Accordingly, there exist a
central triangle which is mapped to a central triangle under multiplication with
α.

This discussion leads to the following conclusion:

Theorem 4.3.12. For every element A ∈ GL2R, there exist two Jacobi maps J , J ′

for the three body problem such that A induces an arrow

A∗ : J → J ′.

This solves Question 2.3.14 in the case of n = 3, but do not give us the
converse of Theorem 4.3.1. The central triangles themselves yield a universal
counter-example: The class of central triangles is not invariant under the group
of Möbius transformations.

Hence, in order to refine Theorem 4.3.1 we should replace the geometry
given by the group of Möbius transformations by a “geometry” given by the
central triangle groupoid. On the other hand, we can regard Theorem 4.3.1 as
a sufficient basis for our application of hyperbolic geometry in the study of the
three body problem, when we are aware of the directions of the implications.

171
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4.4 Kinematic geometry of the shape spaces

As above will mostly neglect the triple collision configuration, i.e. the zero con-
figuration. This will be reflected by our use of the notation V × for the set V \ {0}
of non-trivial elements of a vector space V . Since M denotes the vector space
of three body configurations, M× will denote the space of non-zero three body
configurations.

In order to study the kinematic geometry of the shape spaces, we will use
Figure 4.3 as a major tool. Our main goal is to understand the central column

M× → M×

SO(3)
→ M∗,

where the points in the moduli space M×/SO(3) represent non-trivial three
body configurations modulo congruence and the points of M∗ represent non-
trivial three body configurations modulo similarity, i.e. three body shapes. This
sequence is naturally given by the three body problem. We want to study this
sequence by means of the two other parallel sequences in Figure 4.3. The se-
quence on the left hand side is associated with the singular value decompo-
sition of three body configurations. In this sequence, we have a simple de-
scription of the Riemannian geometry. The sequence on the right hand side
is related to the shape-sphere construction (cf. Proposition 4.2.2), and here we
have a good understanding of the quotient construction in the case of oriented
m-triangles.

4.4.1 Topological preliminaries

The involution τ : C∗ →C∗ given by complex conjugation represents change in
orientation of oriented m-triangles. This yields the above identification

M∗ ∼= C∗

τ
∼=C∗

+∪R∗ ∼=D2

of the shape space with the closed 2-disc.
On the other side we have the torus T2 which is parametrized by the vari-

ables ϕ,θ over the interval [−2π,2π]. The finite gauge group Σ defined in Sec-
tion 3.3.5 acts on T2 according to (3.10’). The mapping T2 → M∗ is Σ-invariant.
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S SO(3)×C2

SO(3)× (0,∞)×T2

SO(3)× (R2)××SO(2) SO(3)× (C2)×

M×

M×
SO(3)

M∗

(0,∞)×T2

T2

(C2)×/U (1)

C∗

⊂

∼ = Φ

⊃

Figure 4.3: Commutative diagram which shows the relation between the shape-
sphere construction and the singular value decomposition.
For a vector space V we use V × to denote the space of non-trivial elements.

Hence, there exist an induced map

T2

Σ
→ M∗

which is a diffeomorphism on the open complement of {(ϕ,θ) : ϕ= 0 mod π
2 } ⊂

T2. By inspection of the generators of Σ, we can infer that

T2

Σ
∼=

[0, π2 ]×S1

∼ ,

where ∼ is the equivalence relation given by

(0,θ) ∼ (0,θ+π)
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4. SHAPE SPACES

and the quotient map

T2 → [0, π2 ]×S1

∼
is given by

(ϕ mod 4π,θ mod 4π) �→ [
(ϕ′,θ mod 2π) mod ∼] ,

where ϕ′ = mi nk∈Z(|ϕ+kπ|, |kπ−ϕ|).
The quotient space ([0, π2 ]×S1)/ ∼ has the following topological description:

It is a cylinder A where one of the boundary circles ∂±A is glued to itself along
a 2−1 mapping S1 → ∂±A. Topologically, T2

Σ is a Möbius band.
All the points (0,θ) represent the same shape. Hence, the set of points of

this form is collapsed to one point by the projection

T2

Σ
→ M∗.

On the other hand, the set of point (ϕ,θ) ∈ (0, π2 )×S1 is mapped injectively. This
gives an interpretation of ϕ,θ as polar coordinates on the disc D2, where we use
the above identification of the shape space with a closed disk.

By commutativity of diagrams, we see that this coordinatization coincides
with the coordinatization of C∗ given in Section 4.2.3, modulo the projection
C∗ →C∗/τ=D2.

In the study of oriented m-triangles by means of the left column of fig-
ure 4.3, we implicitly work with the subgroup Σ′ ⊂Σ given by

σ ∈Σ′ ⇐⇒ σ 3 = 3,

i.e. the group of gauge transformations of the singular value decompositions
keeping 3 fixed. The quotient space

T2

Σ′ =
[0,π]×S1

∼′

where the equivalence relation ∼′ is given by

(0,θ) ∼′ (0,θ+π) and (π,θ) ∼′ (π,θ+π).
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4.4. Kinematic geometry of the shape spaces

The resulting quotient space is homeomorphic to the Klein bottle.
There is a surjection

[0,π]×S1

∼′ →C∗

which collapses the circles ϕ = 0,ϕ = π to two distinct points, and this a local
diffeomorphism for ϕ �= 0,π. This yields another reason for interpreting ϕ,θ as
spherical polar coordinates on the shape-sphere C∗, over the ranges 0 ≤ϕ≤ π,
0 ≤ θ ≤ 2π.

4.4.2 The analytic structures

Kinematic analyticity of shape curves

Since we are mainly interested in studying analytic three body motions X (t ),
the analytic (Cω) structures of M×, M×/SO(3), M∗ are of interest, and our main
lies in the following question: Which curves in M∗ come from analytic virtual
three body motions.

An analytic singular value decomposition U (t ),R(t ),Q(t ) representation of
X (t ) yields an analytic curve (U (t ),ξ1(t ),ξ2(t )) in SO(3)×C2. The corresponding
curve ζ(t ) = ξ1(t )/ξ2(t ) on the Riemann sphere C∗ is analytic with respect to
the usual analytic structure on the Riemann sphere, which is the same as the
analytic structure of the round sphere regarded as analytic submanifold of R3.
The opposite is obviously also true: Any smooth curve in C∗ lifts to an analytic
virtual three body motion. We summarize this as follows:

Proposition 4.4.1. The curves in the shape-sphere C∗ which are analytic in the
usual sense corresponds precisely to the shape curves of analytic virtual three
body motions.

Now, we turn our attention to the shape space M∗. In this case the bound-
ary needs some attention.

If we regard the shape space M∗ ∼= D2 as the quotient of C∗ by the con-
jugation map, we get an analytic structure on M∗. Over the interior region
(i nt )(M∗) = M∗ \ ∂M∗, the projection C∗+ ∪C∗− → int(M∗) is an analytic local
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4. SHAPE SPACES

diffeomorphism, and hence the analytic structure of int(M∗) is the usual ana-
lytic structure of the open disk in R2.

When it comes to the boundary ∂M∗, the situation is quite different. If we
identify M∗ with the closure of the northern hemisphere, i.e. M∗ = C∗+, the
quotient map is represented by

ζ= a + i b �→ ζ′ = a + i |b|

From this we see that a C 1-smooth curveγ(t ) inC∗ withγ(0) =∈R∗ ⊂C∗ projects
to a curve γ(t ) in M∗ where the two one-sided derivatives satisfies

im(γ′(0+)) =−im(γ′(0−)).

Since the stereographic projection is angle-preserving, we have the following
proposition:

Proposition 4.4.2. The shape space M∗ of the three body problem admits a home-
omorphism M∗ ∼= D2. In the natural analytic structure induced by the analytic
structure of the three body problem, a curve γ(t ) in D2 is C 1 smooth if and only if

• The part of γ that lies in the interior int(D2) is C 1-smooth in the usual
sense.

• At points where γ(t ) ∈ ∂D2, the oriented angles ϑ± between the one sided
velocity vectors γ′(t±) and the inward pointing normal N of ∂D2 satisfy
ϑ− =−ϑ+.

Hence, smooth curves with non-vanishing velocity through points at the
boundary of M∗ ∼=D2 follow the usual reflection law, where the incoming angle
is equal to the outgoing angle. See figure 4.4

Now we turn to the study of analyticity. An analytic curve through 0 in C∗

γ(t ) = (a1 + i b1)t + (a2 + i b2)t 2 +·· ·

is transformed to a curve

γ(t ) = a1t +a2t 2 +·· ·+ i |b1t +b2t 2 +·· · |
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P

Figure 4.4: Reflection of C 1-curves in a point P at the boundary of D2.

in M∗ ∼=C∗+∪R∗.
As above, we are interested in the change of sign of the imaginary part of

γ(t ), which measures the part of the motion which is transversal to the equator
of the shape sphere. For small t , the first non-zero term bk t k dominates the
change in sign of

∑
i bi t i near 0. If k is even, there is no change in sign near 0.

If k is odd, there is a local change in sign, and we conclude that γ(t ) is analytic
at 0 if and only if it is analytic on a pointed neighbourhood of 0, and the first
non-zero one sided derivatives satisfies

im(γ(k)(0−)) =−im(γ(k)(0+)) if k is odd. (4.16)

It may also be of some interest to describe the analytic functions on the
shape space M∗. Since we can identify analytic functions on M∗, with conju-
gation invariant functions on C∗, we can conclude that the analytic functions
on the shape space M∗ can be identified with analytic functions f on the disc
D2 ⊂ R2 for which the normal derivative at the boundary is 0. Similarly, we see
that the normal derivatives of any odd order must vanish.

Proposition 4.4.3. The smooth structure of the shape space M∗ of the three body
problem can be described in the following way:
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Topology: M∗ is homeomorphic to the closed unit disc D2 via the mapping

M∗ f1 �� C∗+∪R∗ f2 �� D2

where f1 is a section of C∗ → M∗ and f2 is given by stereographic projec-
tion in −i ∈C∗.

Smooth structure in terms of analytic functions: A function f : M∗ ∼=D2 → R

is analytic if and only if it is an analytic function on the subset D2 ⊂ R2,
and that the non-vanishing normal derivatives at the boundary are all of
even order.

Smooth structure in terms of analytic curves: A curve in M∗ ∼= D2 is analytic
if the induced curve in D2 ⊂R2 is analytic in the interior of D2 and that the
non-zero one-sided derivatives of the lowest order at the boundary satisfies
(4.16).

The practical consequences of this proposition are the following: (i) In the
study of shape curves, we have a notion of continuation at the boundary of M∗,
which is given by the reflection law. (ii) If we want to study the quantum me-
chanics of the three body problem in terms of smooth functions on the shape
space, we can work with smooth functions on the unit disc where the normal
derivatives at the boundary of odd orders vanish.

4.4.3 The Riemannian geometry

For a compact group G with a continuous isometric action on a metric space
(M ,d), the orbit space B = M/G has a natural metric, namely the orbital dis-
tance metric, which is defined as follows: For two moduli classes [m], [m′] ∈ B ,
we define the orbital distance by

d([m], [m′]) = min
g∈G

{d(g m,m′)}

as long as G is compact and everything is continuous, this minimum value ex-
ists. Hence B inherits an orbital distance metric.
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4.4. Kinematic geometry of the shape spaces

Needless to say, the topology induced by the orbital distance metric is iden-
tical to the quotient topology.

When M is a Riemannian manifold, d is the induced distance function and
G is a compact Lie group, we can give a differential geometric description of the
orbital distance metric. The fact that the orbit space B in general is not a mani-
fold complicates the discussion. The smooth structure is however as described
above, and it is possible give a stratification B0 ⊂ B1 ⊂ . . . ⊂ Bk = B where the
smooth structure of Bi \ Bi−1 is that of a smooth manifold (cf. [BdCH09])

If we restrict the discussion to a subset M(K ) ⊂ M of fixed isotropy type (K ),
the quotient map yields a smooth map between smooth manifolds

π : M(K ) → B(K ).

The subsets M(K ) ⊂ M of fixed isotropy type yields a partition of M into smooth
submanifolds, and the induced distance function on B(K ) is associated with a
Riemannian metric which is defined as follows:

The tangent bundle T M(K ) splits orthogonally as T M(K ) = ker(π∗)⊕H M(K ).
There is precisely one Riemannian metric on B(K ) such that H M(K ) → T B(K ) is a
fibre-wise isometry. Hence, each stratum B(K ) has a natural Riemannian metric.
The space B is called a stratified Riemannian manifold. The essential features
of B are the following: (i) The orbital distance function d : B ×B → (0,∞). (ii)
The Riemannian manifold structures on the strata B(K ) ⊂ B . The structure of
the projection map M → B is referred to as a stratified Riemannian submersion
(cf. [BdCH09]).

Let us turn our attention to the three body problem. On the open subset
Mr ⊂ M consisting of regular configurations, SO(3) acts freely. Hence, the cor-
responding quotient map

π : Mr → M r ⊂ M = M/SO(3)

is a smooth map of smooth manifolds.
Using the singular value decomposition we can take U ,ρ,ϕ,θ as coordi-

nates on Mr over the ranges

U ∈ SO(3), ρ ∈ (0,∞), ϕ ∈ (0,
π

2
), θ ∈ (a,2π+a)
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where a is an arbitrary real number. In these coordinates, we can express the
quotient map as follows:

(U ,ρ,ϕ,θ) �→ (ρ,ϕ,θ).

We will study the tangent bundle T Mr using the coframe of Section 3.8,
namely

ω1,ω2,ω3,dρ,dϕ,dθ.

In this frame, the kinematic metric reads

K = dρ2 +ρ2 1

4

(
dϕ2 + sin2ϕdθ2)+ 1

2

(
λ1(ω1)2 +λ2(ω2)2 +λ3(ω3)2)

(cf. (3.42)), and we observe the following:

(i) v ∈ ker(π∗) if and only if dρ(v) = dϕ(v) = dθ(v) = 0, since ρ,ϕ,θ can be
taken as basic invariants of the SO(3)-action.

(ii) v ⊥ ker(π∗) if and only if ωi (v) = 0 for i = 1,2,3, since the three body mo-
tions perpendicular to ker(π∗) are precisely the motions with zero total
angular momentum.

Accordingly, the Riemannian orbital distance metric in M r is

ds
2 = dρ2 +ρ2 1

4

(
dϕ2 + sin2ϕdθ2) , (4.17)

and we recognize M r as the Riemannian cone over a subset of a sphere of radius
1
2 .

The orbit type stratification of M with respect to the SO(3)-action is as fol-
lows:

M(SO(3)) = {Triple collision configuration}

M(SO(2)) = {Collinear configurations}

M(I d) = {Configurations spanning a plane}

M(SO(3)) is only a point, and the restriction of the quotient map is simply the
mapping of a one point set onto one point.
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4.4. Kinematic geometry of the shape spaces

The stratum M(I d) contains Mr as a dense subset, and M(I d) \ Mr is pre-
cisely the set of configurations of umbilic shape. From the theory of stratified
Riemannian submersions, we know that

M(I d) →
M(I d)

SO(3)

is a Riemannian submersion. Hence, the singularity in the expression (4.17) at
the umbilic shape is only a coordinate singularity. Since ϕ ranges over [0, π2 )
in M(I d), we conclude that M(I d)/SO(3) is the Riemannian cone over an open
hemisphere of radius 1

2 .
The stratum M(SO(2)) can be parametrized by U ,ρ,ϕ,θ, withϕ= π

2 . M(SO(s))/SO(3)
is thus a Riemannian cone over a circle of radius 1

2 .
We see here that the metric structure of the stratified Riemannian manifold

M/SO(3) is determined by continuity together with the restriction to the open
and dense subset Mr of the principal stratum MSO(3).

When we want to define a relevant metric on the shape space M∗
r = M r /(scaling),

we can not rely on the orbital distance metric, since that metric is trivial. In-
stead we will rather regard M∗ as a subset of M :

M∗ = {(ρ,ϕ,θ) : ρ = 1}.

Clearly, the induced metric on M∗
r is the following:

ds2
∗ =

1

4

(
dϕ2 + sin2ϕ dθ2) ,

which is locally isometric to the metric of the round sphere of radius 1
2 . Hence,

M∗
r is isometric to a subset of the sphere of radius 1

2 . By continuity, we conclude
that the metric space M∗ is isometric to a closed hemisphere of radius 1

2 , and
that ϕ,θ yields a spherical coordinate system covering this hemisphere over
the parameter domain [0, π2 ]× [0,2π]. We summarize this discussion with the
following definition

Definition 4.4.4. The kinematic geometry of the shape space M∗ is the strati-
fied Riemannian geometry of the closed hemisphere of radius 1

2 .
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The pullback of the kinematic metric through C∗ → M∗, endows C∗ with
the geometry of the round sphere of radius 1

2 . This suggests the following defi-
nition:

Definition 4.4.5. The kinematic geometry of the shape-sphere C∗ is the Rie-
mannian geometry of the sphere of radius 1

2 .

4.4.4 The complex structure of the shape sphere

Through the identification of the shape-sphere with the Riemann sphere C∗,
we get a canonical complex structure on the shape sphere. In the variables ϕ,θ,
this complex structure can be represented by the 1,1-tensor

J =−sinϕ
∂

∂ϕ
⊗dθ+ 1

sinϕ

∂

∂θ
⊗dϕ. (4.18)

This object is an intrinsic part of the spherical geometry of the shape sphere,
but also as a manifestation of the conformal structure.

Since the projection C∗ → M∗ is not everywhere orientation preserving, the
complex structure can not be regarded as an object which is intrinsic to M∗.

4.4.5 Shape sphere area and geometric phase

We choose the orientation of the shape-sphere C∗ in such a way that the area
form – given by the Riemannian geometry and the choice of orientation – is
represented by the differential form

dA = 1

4
sinϕ dϕ∧dθ, (4.19)

which refers to the (ϕ,θ)-coordinatization given in Section 4.2.3. This choice of
orientation is compatible with the chosen complex structure, in the sense that

dA( , J ) = ‖ ‖2

for every tangent vector ∈ TC∗
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Here, we will investigate the curious fact that the area form is intimately re-
lated to the overall rotation of three body motions with total angular momen-
tum Ω= 0 – the so-called geometric phase. This topic is investigated in [HS07].
Here we give a treatment of this topic which is adapted to the terminology of
this thesis. There is a discrepancy in sign between my approach and that of
[HS07], the source of this discrepancy is presumably 2n + 1 sign conventions
which differs between the present work and [HS07].

Rotation of Jacobi vectors

Since we are interested in motions with Ω= 0, we can assume that the motion
takes place in the x y-plane, i.e. that 3 is the positive unit vector on the z-
axis. We consider the case of oriented m-triangles, i.e. three body motions
represented by curves on the shape-sphere C∗.

For a three body motion X (t ) with Jacobi vectors 1(t ), 2(t ) we define the
1-forms

Φi = i ×d i

‖ i‖2 = i × ˙ i

‖ i‖2 dt i = 1,2. (4.20)

These forms represent the angular velocity of the individual Jacobi vectors. In
the notation above, the Φi are 1-forms with values in R3, but since the motion is
assumed to take place in the x, y-plane, we will regard Φi as R-valued 1-forms,
given by projection to the z-axis. We note that the Φi are singular at i = 0.

We need a principal axes system which we will represent as

1 =
[

cosϑ(t )
sinϑ(t )

]
and 2 =

[−sinϑ(t )
cosϑ(t )

]
in the x, y-plane. Using the singular value decomposition (3.7), we write the
Jacobi vectors as

1 = ρ�
2

(r1b2 1 − r2b2 2) and 2 = ρ�
2

(r1b1 1 + r2b2 2),

where

r1 = cos
ϕ

2
+ sin

ϕ

2
, r2 = cos

ϕ

2
− sin

ϕ

2
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and

b1 = sin
θ

2
, b2 = cos

θ

2
.

The squared norms are

‖ 1‖2 = ρ2

2
(r 2

1 b1
2 + r 1

2 b2
1) = ρ2

2
(1+ sinϕcosθ)

and

‖ 2‖2 = ρ2

2
(r 2

1 b2
1 + r 2

2 b2
2) = ρ2

2
(1− sinϕcosθ).

If we represent the cross products by their z-components, we get

1 ×d 1 = ‖ 1‖2dϑ+ ρ2

4
sinθdϕ− ρ2

4
cosϕdθ

and

2 ×d 2 = ‖ 2‖2dϑ− ρ2

4
sinθdϕ− ρ2

4
cosϕdθ.

Under the assumption that Ω= 0, i.e. 1 ×d 1 + 2 ×d 2 = 0, we have

dϑ= 1

2
cosϕdθ.

When we put all this together, we arrive at

Φ1 = dϑ+
(

sinθ

2(1+ sinϕcosθ)

)
dϕ−

(
cosϕ

2(1+ sinϕcosθ)

)
dθ

=
(

cosϕsinϕcosθ

2(1+ sinϕcosθ)

)
dθ+

(
sinθ

2(1+ sinϕcosθ)

)
dϕ

Φ2 = dϑ−
(

sinθ

2(1− sinϕcosθ)

)
dϕ−

(
cosϕ

2(1− sinϕcosθ)

)
dθ

=−
(

cosϕsinϕcosθ

2(1− sinϕcosθ)

)
dθ−

(
sinθ

2(1− sinϕcosθ)

)
dϕ,

(4.21)

wherever this makes sense, i.e. away from the singularities i = 0.
This suggests that we can regard Φ1,Φ2 as 1-forms on the shape sphere, a

point of view which is confirmed by the fact that these expressions are invariant
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under the finite gauge group Σ′ consisting of transformations of singular value
decomposition data leaving 3 fixed. (cf. (3.10)).

By a straightforward calculation we see that

dΦ1 = dΦ2 =−1

2
sinϕdϕ∧dθ =−2dA.

i.e. that the exterior derivatives of Φ1,Φ2 are both identical to −2 times the area
form dA associated with the kinematic geometry of the shape sphere.

As we have already pointed out, the 1-forms Φi are singular at i = 0, i.e. at
some points Pi on the equator R∗ of the shape-sphere C∗. More mysteriously,
when regarded as 1-forms on the shape sphere, Φi appears to be singular at the
poles N ,S =±i ∈C∗, i.e. for ϕ= 0 mod π. To the lowest order in ϕ, Φ1 is of the
form

ϕcosθdθ+ sinθdϕ= sin2θd x −cos2θd y, (4.22)

where x, y are rectangular coordinates at the pole, defined by x = ϕcosθ, y =
ϕsinθ. There is a similar formula valid for Φ2. These formulae are not compat-
ible with smoothness of Φi at the poles. Hence, we should always be aware that
(4.20) and (4.21) are in a strict sense not equivalent. However, if we stay away
from the singularities, they are equivalent.

In the following, we will refer to the definition of Φ1,Φ2 given in (4.20), and
insist that the integral ∫

γ
Φi

is well defined even at passages through the singularities. This implies that we
regardΦi as a generalized differential form, i.e. something similar to a Schwartz
distribution. Such an interpretation is well-founded: The direction of i can
be regarded as a piecewise smooth function which may be discontinuous at
instances where i = 0. Regarded as the derivative of the direction of i , it
obviously make sense to integrate Φi along three body motions.

In the following, we will discuss the significance of these singularities for
integration of closed curves on the shape sphere, and we will consider curves γ
in C∗ and mappings Γ : D2 →C∗ of the disk D2 into the shape-sphere which are
piecewise smooth and continuous. Our goal is to use Stoke’s theorem to relate
the geometric phase to the spherical area.
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First, let us look at the singularity at the north pole N : From (4.22), we see
that the Φi are bounded at N . Hence, path integrals of Φi along small curve
segments close to the pole can be ignored. Hence, for a closed curve in the
upper hemisphere, γ : S1 →C∗+, with an extension Γ : D2 →C∗+, Stoke’s formula∫

s1
γ∗Φi =

∫
D2

Γ∗(dΦi ) =−2
∫
D2

Γ∗(dA) (4.23)

is valid, in spite of the apparent singularity. Furthermore, if γ is a curve passing
through the pole, we can approximate the integral∫

S1
γ∗Φi

as accurately as we want by replacing the passage through the singularity by a
small circular arc. Accordingly, (4.23) is valid even for a curve passing through
the north pole. These results are equally valid for the south pole S. This discus-
sion is summarized by formula (4.23), and the observation that polar singular-
ities are inessential to the integration of the forms Φi along shape curves.

The next step is to consider the singularities at Pi . Let r,ϑ be a spherical
polar coordinate system centred at Pi . For small r , we have

Φi ≈ dϑ. (4.24)

Accordingly, we can make ∫
γ
Φi −2π

as small as we want choosing a loop γ with winding number 1 with respect to
Pi in a sufficiently small neighbourhood of Pi , and hence, if we work modulo
2π, we can neglect path integrals of small loops around this singularity. In other
words: if γ : S1 →C∗ is a closed loop which do not pass through Pi and Γ : D2 →
C∗ is an extension, then∫

S1
γ∗Φi =

∫
D2

Γ∗(dΦi ) mod 2π

=−2
∫
D2

Γ∗(dA) mod 2π
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Since we are for the most interested in measuring angles modulo 2π, this for-
mula is clearly sufficient for our needs.

Let us consider passages through the singularity P1 with well defined in-
coming and outgoing directions. Suppose that

γ : S1 = R

2πZ
→C∗

is a closed loop with one passage through P1, at t = 0, belonging to a three body
motion X (t ) with Ω = 0. For ε > 0, we let γε be defined as follows: Let (a,b)
be the maximal interval containing 0 such that d(γ(t ),P1) < ε when a < t < b.
Define γε to be the restriction of γ to the interval [a,b].

Let γε be the circular arc going from γ(a) to γ(b) in the positive direction,
and γ be the modification of γ where we have replaced γε with γε. Then γ and
δ= γ−1

ε ◦γε are closed loops. If we lift δ to a three body motion Y (t ) with total
angular momentum Ω = 0, we see that we can compute the total rotational
motion of Y (t ) by integration of Φ2 along δ. If ε is sufficiently small, then Φ2

will be non-singular along δ. The integral of Φ2 along δ tends to 0 as ε → 0,
since dΦ2 = −2dA. Accordingly, the rotation of Y (t ) around the loop δ can be
made as small as we want by choosing ε sufficiently small. Hence the error in
computation of the rotation angle when we replace the original motion X (t )
with the lift X (t ) of γ vanishes when ε→ 0. Accordingly, the integration of the
rotation of 1 yields ∫

X (t )
Φ1 =−2

∫
D2

Γ∗(dA) mod 2π, (4.25)

where the integral ofΦ1 is taken along the given three body motion X (t ) defined
over an interval [a,b], which induces a closed loop γ : S1 → C∗ with extension
Γ : D∗ → C∗. By a subdivision argument, we see that this formula holds for any
number of passages through the singularities.

Following this discussion, we arrive at the following result:

Theorem 4.4.6. Let X (t ) be a piecewise smooth three body motion with vanish-
ing total angular momentum, defined for a ≤ t ≤ b. Assume that X (a) and X (b)
are of the same oriented shape. Let

γ : S1 =→C∗
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be a reparametrization of the associated shape curve, and let

Γ : D2 →C∗

be an extension of γ, i.e. a mapping such that the restriction to the boundary
S1 = ∂D2 ⊂D2 equals γ. Then we conclude the following:

The angle of rotation ψb
a relating X (a) to X (b) satisfies

ψb
a =−2

∫
D2

Γ∗(dA) mod 2π, (4.26)

i.e. it is (−2) times the oriented area of the image of Γ – modulo 2π.

Proof. This follows from the fact that we can calculate the angular difference
between the configurations X (a) and X (b) by means of the angular difference
between 1(a) and 1(b), i.e. by integration of Φ1 along the motion.

We can give a simple but illustrative example of this result. In the case where
m2 = m3, we consider the following three body motion: X (0) is an isosceles tri-
angle with particle 1 between particle 2 and 3. For 0 ≤ t ≤ 1, we let X (t ) belong
to the positively oriented isosceles triangles based at the line between particle
2 and particle 3. At t = 1, we let the particles 2 and 3 collide. For 1 ≤ t ≤ 2, we
let X (t ) be collinear. For some t ∈ (1,2), we pass through the binary collision
between particle 1 and particle 2 and finally, at t = 2 we arrive at a configura-
tion X (2) with the same shape as X (0), i.e. an isosceles triangle with particle 1
between the other particles.

At the level of the shape sphere, this motion yields a closed loop γ which
first traverses a meridian through the north pole from equator to equator, and
then returns along the equator to the initial position, in the positive direction.
Accordingly, for any extension Γ of γ to the disc D2, we have∫

D2
Γ∗(dA) = π

4
, (4.27)

since the area of the sphere of radius 1
2 is π.

Let us do a direct calculation of the angular difference: On the interval [0,1],
we can assume that the line spanned by particles 2,3 is parallel to the x-axis,
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4.4. Kinematic geometry of the shape spaces

and that particle 1 lies above that line, and on the y-axis. Since the triangles are
assumed to be positively oriented, we know that particle 2 must be to the left of
particle 3. On the interval [1,2], the particles will be collinear along the y-axis.
Since we pass through a collision between the particles 1,2, we see that we end
up with a collinear isosceles triangle aligned with the y-axis, and that particle
2 has the largest y-value. Accordingly, the angle of rotation between t = 0 and
t = 1 is

ψ2
0 =−π

2
. (4.28)

Clearly (4.27) and (4.28) are in complete accordance with Theorem 4.4.6.
If we assume that 1 is the Jacobi vector which is always parallel to the line

between particle 2 and particle 3 (cf. (3.4)), γ∗Φ1 = 0 except at the singularity
Pi , where this differential form is strictly speaking not well defined. We can in
other words regard γ∗Φ1 as a delta-function with a spike at t = 1. On the other
hand, when we calculate the angle of rotation by integration of the area form,
we avoid this difficulty, and can work with well defined differential-geometric
objects. Hence, there are significant advantages in computing the geometric
phase with the aid of the spherical area.

4.4.6 The equations of motion in spherical geometry

In the following section, it is essential to work with the shape-sphere C∗ rather
than the shape space M∗, since the complex structure of the shape space M∗

is not well defined. This affects the g3-terms in the reduced equations; if we
change the orientation of the configurations, the sign of g3 will also have to
change. We avoid these problems by working on the shape sphere, where the
two hemispheres represent the different orientations.

For an oriented three body motion ( (t ), X (t )), we let γ(t ) denote the cor-
responding shape curve in C∗. In the spherical shape coordinates, γ(t ) is rep-
resented by ϕ(t ),θ(t ), and the covariant acceleration satisfies

γ̈(t ) = (
ϕ̈− sinϕcosϕθ̇2) ∂

∂ϕ
+ (

θ̈+2cotϕϕ̇θ̇
) ∂

∂ϑ
,

wherever this makes sense, i.e. for ϕ �= 0 mod π.
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In the following we will express the reduced equations (3.35) in terms of
the geometry of the shape space. Because of the coupling to the Euler equa-
tions (3.34), we have to take into account the different choices of principal axes
gauge.

The equations of motion: For a shape curve γ(t ) represented in spherical
polar coordinates as (ϕ(t ),θ(t ), we express the ϕ,θ-components of the reduced
equations of motion (3.35) as

γ̈=−2
ρ̇

ρ
γ̇+ 1

ρ2+e ∇U∗ −ω3 J γ̇−G , (4.29)

where J is the complex structure and

G = (
ω2

1 −ω2
2

)
cosϕ

∂

∂ϕ
+ω1ω2 cotϕ

∂

∂θ
for ωi = gi

λi

Note that the geometric gradient of the shape potential is

∇U∗ = 4U∗
ϕ

∂

∂ϕ
+ 4U∗

θ

sin2ϕ

∂

∂θ
.

Hence, the dynamics of thee body motions in the set of regular configurations
can be represented by the spherical geometric equation (4.29) together with the
Lagrange-Jacobi equation (3.36) and the Euler equations (3.34). If we want to
apply analytic continuation of this system through the poles, we must be aware
that G is singular at the poles, and also Σ-gauge-dependent. Hence, we have to
keep track of our choice of gauge along the motion.

In the planar case, G = 0. As we will see, we can benefit a lot from this fact:

4.4.7 Planar motion

In the planar case, ω1 = ω2 = 0 and ω3 = ρ−2Ωs . The reduced equations (4.29)
assume the form

γ̈=−2
ρ̇

ρ
γ̇+ 1

ρ2+e ∇U∗ − Ωs

ρ2 J γ̇. (4.30)
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In contrast to (4.29), this can be regarded as an equality between smooth dif-
ferential geometric objects which are globally defined at the shape sphere. The
only external data are the scalar angular momentum Ωs and the logarithmic
derivative ρ̇/ρ.

The Lagrange-Jacobi equation can now be written as

ρ̈ = Ω2
s

ρ3 +ρv2 − eU∗

ρe+1 , (4.31)

where v2 is length of the shape velocity vector γ̇ in the kinematic geometry of
the shape sphere. Together (4.30) and (4.31) are equivalent to the reduced equa-
tions (3.28), wherever this makes sense, i.e. away from the poles ±i of the shape
sphere.

In the planar case, we can take some significant advantage of the differ-
ential geometric description: From Section 3.7.1, we know that except of the
umbilic shape invariant motions, planar motions X (t ) satisfy the Newtonian
equations of motion for the three body problem if and only if the associated set
ρ,ϕ,θ,Ωs satisfies the reduced equations (4.30). With the differential geometric
description, we can include the umbilic shape invariant motions:

Suppose that X (t ) is an umbilic shape invariant planar motion of the three
body problem. Following Theorem 3.9.10, we know that m1 = m2 = m3, that
the configuration is always equilateral, and that the motion is determined by
conservation of total angular momentum and the Lagrange-Jacobi equation.

On the other hand, if ρ(t ),ϕ(t ),θ(t ),Ω is a solution of (4.31) and (4.30) with
ϕ(t ) = 0 mod π. Then the associated shape curve γ(t ) satisfies γ̇= 0, and (4.30)
degenerates to

∇U∗ = 0.

Following Lemma 3.5.1 and Lemma 3.4.4, this occurs if and only if the mass
distribution satisfies m1 = m2 = m3, i.e. if and only if ϕ= 0 mod π corresponds
to the equilateral triangle. Hence, the differential geometric equation (4.30)
singles out precisely Lagrange’s equilateral solution in the case of three equal
masses, which is the only existing umbilic shape invariant three body motion.

Accordingly, we can conclude as follows:
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Theorem 4.4.7. Let X (t ) be a virtual planar three body motion, let γ(t ) be the
associated shape curve given by a shape map M → C∗ = S2, let ρ(t ) be the size
variable given by ρ2 = I = ∑

i mu‖ i‖2, and let Ωs be the scalar total angular
momentum of the motion.

Then X (t ) is a motion of the three body problem if and only if

(i) Ω̇s = 0

(ii) ρ,γ and Ωs satisfies the reduced equations (4.30), (4.31).

Proof. Three body motions exist and are analytic in t precisely on open inter-
vals which are free from binary and triple collisions. Independently of this, we
can see that solutions ρ(t ),γ(t ),Ωs (4.30) and (4.31) exists and are analytic in t
on time intervals where the singularities of (4.30) and (4.31) are avoided, i.e. at
points corresponding to binary and triple collisions.

Using the analyticity of shape maps M ∼= C2 → C∗, the singular value de-
composition, as well as the lifting condition (3.27), we conclude that virtual
motions X (t ) are analytic in t if and only if the associated data ρ(t ),γ(t ) are
analytic in t .

Since the reduced equations of motion are equivalent to the equations of
motion for the three body problem both for motions with γ(t ) = ±i and mo-
tions such that γ(t ) avoids ±i , and all the involved data are analytic in t , we
conclude that the theorem holds by continuity.

Now we are in position to give our final account on the reduction of the
three body problem:

4.4.8 Overview over the reduction of the three body problem

Theorem 4.4.7 shows that in the planar case, the formulation of the three body
problem by means of shape γ(t ) and size ρ(t ) has a global smooth descrip-
tion in terms of the kinematic geometry of the shape sphere. This reduction
is complete in the following sense: The reduced equations (4.31), (4.30) yields
a complete characterization of three body motions. In this reduction, the kine-
matic geometry of the shape-sphere is indispensable. We note that there is no
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trace left of the singular value decomposition in this formulation of the pla-
nar three body problem; the shape curve γ(t ) is determined by a shape map
M ∼=C2 →C∗, while the size ρ(t ) is determined by ρ2 = I =∑

i mi‖bai‖2.
The non-planar reduction, which is given in Section 3.7.2 is valid for an-

alytic motions such that ϕ = 0 mod π
2 only at isolated instances of time (cf.

Section 3.7.6). It should be possible to prove directly that these reduced equa-
tions yields analytic solutions even at passages through ϕ= 0 mod π

2 , provided
that these passages are not binary collisions. For the moment, we can give an
indirect justification using analyticity of motions X (t ) of the three body prob-
lem together with the analyticity of the singular value decomposition. In this
reduction, there are some traces of the singular value decomposition; this is for
instance manifested by the fact that g1, g2, g3 depends on the choice of princi-
pal axes gauge.

Since purely collinear three body motions are planar, this case is covered by
the planar reduction.

Finally, we have the exceptional motion given in Definition 3.9.8, which is
the only candidate for a three body motion which is not covered by the non-
planar reduction of Section 3.7.2 and the planar reduction of Theorem 4.4.7.

We summarize this as follows:

Theorem 4.4.8 (Geometric reduction of the three body problem). According to
the type of relevant reduction, the set of three body motions can be divided into
the following three groups:

(i) Exceptional motions (cf. Definition 3.9.8), which may or may not exist for
e = 2 (cf. Proposition 3.9.9).

(ii) Planar motions: The reduction is given by Theorem 4.4.7.

(iii) Motions which are neither purely planar nor purely exceptional: The re-
duction is given by Section 3.7.2 and analytic continuation (cf. Section 3.7.6).
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4.5 Regularization of binary collisions in the three body
problem.

The equations of motion of the three body problem are analytic in all the in-
volved parameters except at the collision points. Sundman [Sun12] proved the
existence of a new independent parameter τ, in which three body motions ad-
mit analytic continuation through binary collisions. Sundman also proved that
for motions with non-zero total angular momentum this continuation method
defines the three body motion for all t ∈ R. In the case of vanishing total angu-
lar momentum, Sundman proves that if the maximal time interval of the form
(a,b) where a <∞ (resp. b > −∞), then the motion tends to a triple collision
(resp. triple explosion) as t → a (resp. t → b).

In this section, we present aspects of Lemaitre’s regularization of the three
body problem [Lem64] in the case e = 1. We do not intend to give a detailed
exposition, but rather to show that the shape-sphere can be given a natural role
in the regularization of the three body problem, and that this can be accom-
plished by application of the classical regularization of the planar Kepler prob-
lem to the binary collision points B1,B2,B3 ∈C∗. This builds on the observation
that the dynamics of the shape curve at the approach of binary collision points
closely resembles the dynamics of the planar Kepler problem.

4.5.1 Jacobi’s dynamical metric

When we study a Lagrangian system on a smooth manifold M where the Lagrange
function can be expressed as the combination

L = 1

2
d s2 +U ,

of a Riemanninan metric d s2 and a smooth function U , the dynamics of mo-
tions on a fixed energy level

1

2

(
d s

d t

)2

−U = h

can be studied by means of the conformally modified metric

d s2
h = (U +h)d s2,

194



4.5. Regularization of binary collisions in the three body problem.

which yields a Riemannian metric on the subspace

Mh = {p ∈ M : U (p)+h ≥ 0} ⊂ M .

This metric will be called Jacobi’s dynamical metric for the energy level h.
Modulo reparametrization, the geodesics in the Riemannian manifold

(Mh ,d s2
h)

correspond precisely to the motions of the Lagrange system (M ,L) with total
energy h. Hence, in order go understand the unparametrized motions of the
system (M ,L), it is sufficient to understand the geodesics of the Riemannian
manifolds (Mh ,d s2

h); the time parametrization can be reconstructed using the
equation

d s

d t
=
�

U +h.

4.5.2 Regularization of the Kepler problem

The planar Kepler problem can be defined as the Lagrange system given by the
Lagrange function

L = 1

2
(d x2 +d y2)+ G√

x2 + y2
,

defined on the punctured x, y-plane M =R2 \ {0}. In polar coordinates r,θ, this
reads

L = 1

2
(dr 2 + r 2dθ2)+ G

r
.

Jacobi’s dynamical metric for the energy level h is

d s2
h =

(
h + G

r

)(
dr 2 + r 2dθ2) .

The Gaussian curvature of this metric is

κ=− Gh

2(hr +G)3 ,
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and we find it interesting to note that κ = 0 precisely when h = 0. For h = 0,
the Kepler orbits are parabolic. In the light of Jacobi’s dynamical metric we see
that these parabolas have an interpretation as geodesics on the flat Riemannian
manifold (Mh ,d s2

h).
κ is negative for positive energy levels h, and positive for negative energy

levels h. Combined with Jacobi-Morse theory, this yields an interesting ap-
proach to explain the Poincaré-stability of solutions of the Kepler problem. For
positive energy levels, the Kepler orbits tend to diverge from each other. This
tendency becomes more intense at passages through regions where κ is large
and negative, i.e. when r is close to 0. On the other hand, when h is negative,
κ is positive and the orbits will always remain close to each other. Note that for
two orbits passing on opposite sides of the singularity in r = 0, there may – and
will – occur dramatic effects which lie outside the scope of Jacobi-Morse theory.

For an interesting investigation of the relation between the curvature of
Jacobi’s dynamical metric and phase transitions in statistical mechanics, see
[Pet07].

Regularization of unparametrized curves

We take the flatness of d s2
0 as an encouragement to study the Kepler problem

using the geometry defined by Jacobi’s dynamical metric for h = 0,

d s2
0 =

G

r
dr 2 +Gr dθ2

as a background geometry.
Fortunately, in this geometry, the distance to the singularity r = 0 is always

finite. Let ρ denote this distance. In this way define a new set of coordinates,
(ρ,θ) in which the dynamical metric is of the form

d s2
0 = dρ2 + ρ2

4
dθ2.

By integration, we find that ρ = 2
�

Gr .
By inspection of the new form of the metric, we see that the space (Mh ,d s2

0)
can be regarded as a Riemannian cone over the circle of radius 1

2 , and that the
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singularity at r = 0 is equivalent to a cone with vertex angle π
3 . Such a cone can

be straightened out by application of the double covering S1(1) → S1( 1
2 ) of the

circle of radius 1 onto the circle of radius 1
2 . We can extend this covering to a

double covering R2 \ {0} →R2 \ {0} given by

(ρ,ϑ) �→ (ρ,θ), where θ = 2ϑ,

and in the new variables ρ,ϑ, Jacobi’s dynamical metric for the energy level
h = 0 in the Kepler problem reads

d s2
0 = dρ2 +ρ2dϑ2.

These two steps are captured by the mapping

(ρ,ϑ) �→ (r,θ) =
(
ρ2

4G
,2ϑ

)
.

Using complex notation z = ρeϑi , w = r eθi , we can write this mapping as

z �→ w = z2

4G
.

In the new coordinates ρ,ϕ, Jacobi’s dynamical metric for the energy level
h in the Kepler problem satisfies

d s2
h =

(
G

r
+h

)(
dr 2 + r 2dθ2)

=
(

4G2

ρ2 +h

)(
ρ2

4G2 dρ2 + ρ4

4G
dϑ2

)
=
(
1+ h

4G2 ρ
2
)(

dρ2 +ρ2dϑ2) .

Hence, under the mapping (ρ,ϑ) �→ (r,θ), Jacobi’s dynamical metric for the en-
ergy level h in the Kepler problem transforms to Jacobi’s dynamical metric for
the energy level 1 for the Lagrangian system with Lagrange function

L = 1

2
(d x2 +d y2)+ 1

2

(
h

2G2

)
(x2 + y2),
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i.e. the harmonic oscillator with spring constant − h
2G2 . Note that for h < 0, the

spring constant is positive and for h > 0, the spring constant is negative. The
two cases correspond respectively to bounded elliptic motions and unbounded
hyperbolic motions of the harmonic oscillator.

This shows that there is a strong correspondence between the orbits of the
harmonic oscillator and the orbits of the Kepler problem, at least from a geo-
metric point of view.

Kepler motions cease to exist at the collision point r = 0. Now we will see
how the correspondence with the harmonic oscillator can help us to regularize
motions which pass through this point. As above, we let t denote the natural
time in the Kepler problem. Let τ denote the natural time in the harmonic os-
cillator, i.e. the curve parameter given by the energy level.

When we study collision orbits, we can assume –without loss of generality –
that the motion takes place along the x-axis. Modulo reparametrization of time
and space, the collision orbits of the harmonic oscillator are of one of the forms

x(τ) = sinτ, x(τ) = τ, x(τ) = sinhτ,

depending on the sign of the spring constant. Modulo reparametrization, this
yields Kepler orbits of the form

x(τ) = 1

4G
sin2τ,

1

4G
τ2, x(τ) = 1

4G
sinh2τ. (4.32)

If parametrize the motion with the natural time parameter t of the Kepler prob-
lem, x(t ) will satisfy the equations of motion of the Kepler problem, except at
the point x = 0. Hence, we can regard x(τ) as an extension of the solution of the
Kepler problem.

From the formulae (4.32) we see that the regularized Kepler-collisions –
modulo reparametrization – resemble elastic collisions, as if the direction of
time is reversed at the time of collision.

Hence, if γ(t ) is a Kepler motion with maximal interval of existence (0,1),
then γ(t ) will experience collisions at 0,1. With the above technique, we extend
the motion γ(t ) to a motion γ̃(t ) defined for all t by letting

γ̃(t ) = γ(t mod 1),
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where t mod 1 is interpreted as a real number in the interval [0,1). This motion
satisfies the equations of motion for the Kepler problem when t �∈Z. Note that
γ̃(t ) is not analytic for t ∈ Z. On the other hand, if we parametrize γ̃ by the
natural time parameter τ for the corresponding harmonic oscillator, we get a
curve γ̃(τ) which is analytic in τ for all τ ∈R.

Time regularization

As above, we let t denote the time scale of the Kepler problem, and τ the time
scale of the harmonic oscillator. Since τ can be used as a regularizing parameter
for the Kepler problem, we want to investigate the relation between t and τ.
Because of the rotational symmetry of the problem, it should be sufficient to
study purely radial motions.

For a motion r (t ) of the Kepler problem we have

dr

d t
=±

√
G

r
+h.

For a motion ρ(τ) of the harmonic oscillator, we similarly get

dρ

dτ
=±

√
1+ h

4G2 ρ
2 =±

√
1+ h

G
r ,

and since

dr = ρ

2G
dρ =

√
r

G
dρ,

we have

d t = dr√
G
r +h

=
√

r
G dρ√
G
r +h

=
√√√√ hr

G

( 1
h + r

G

)
G
r +h

dτ= r

G
dτ,

i.e.

dτ= G

r
d t =Ud t . (4.33)
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4.5.3 Regularization of the Kepler problem for e �= 1

We now ask the following question: Can we do a similar reduction in the case
where the potential function is of the form

U (x, y) = 1

r e , where r 2 = x2 + y2

and e �= 1.
Jacobi’s dynamical metric for the energy level h = 0 reads

d s2
0 =

1

r e

(
dr 2 + r 2dθ

)
.

We introduce a variable ρ, which satisfies

dρ = dr

r
e
2

In the case e �= 2, we can take

ρ = 2

2−e
r

2−e
2 , (4.34)

and the dynamical metric can be written as

d s2
0 = dρ2 +

(
2−e

2

)2

ρ2dθ2. (4.35)

For every e �= 0 this is the metric of a cone, where ρ measures the distance to
the vertex.

For e > 2, the vertex of this cone corresponds to r =∞. Hence, for e > 2, a
regularization by means of a flattening of the cone will yield a regularization of
infinity. From the following considerations, this seems reasonable: For large r ,
we have dτ ≈ 1

2

�
2r−e/2dr . Hence in the case e > 2, we can reach infinity for

finite values of τ. On the other hand, using the parameter τ, we will never be
able to reach r = 0. We see that if we insist on using the independent variable
τ in the case e > 2, it makes sense to regularize infinity rather than the collision
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point. After these considerations, we will place e > 2 outside the scope of our
discussion.

For e < 2 the vertex of the cone corresponds to r = 0. Hence, a flattening of
the cone will yield a regularization of the collision point.

For e = 2, we can take

ρ = lnr, (4.36)

and the dynamical metric is now

d s2
0 = dρ2 +dθ2,

i.e. the metric of an infinite cylinder R× S1. In the case e = 2 it is obviously
impossible to find a regularising map R2 →R2 for the metric d s2

0.
In the case e < 2 we will consider the possibility of regularizing maps R2 →

R2 of the form z �→ Azn . Such a regularization restricts to a map S1 → S1 of
winding number n. By measuring the ratio between the radius and circumfer-
ence of circles around the vertex of the cone, using the metric (4.35), we see that
such a regularizing map can exist only if

2

2−e
= n, i.e. e = 2

n −1

n
.

Since we are interested in 0 ≤ e < 2, n is allowed to range over all positive inte-
gers. The corresponding regularization maps are

z �→ zn

n2 .

In the variables ρ,ϑ, Jacobi’s dynamical metric assumes the form

d s2
h =

(
h

n2 ρ
2(n−1) +n

2n−4
n

)(
dρ2 +ρ2dϑ2) .

This can be regarded as Jacobi’s dynamical metric associated with the Lagrange
function

L = 1

2
(d x2 +d y2)+ h

n2 (x2 + y2)(n−1)
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and the energy level n
2n−4

n . Since n > 0, these Lagrange systems yield analytic
motions.

Accordingly, we see that the regularization of the Kepler problem can be
generalized only to a discrete set of values of e, and in particular not to the case
e = 2. We give the following examples of n,e-values and regularisation maps:

n = 1, e = 0, z �→ z

n = 2, e = 1, z �→ z2

4

n = 3, e = 4

3
, z �→ z3

9

Note that when n is odd, such a regularization yields passages through ρ = 0,
while for n even, it corresponds to elastic collisions at ρ = 0.

4.5.4 Regularization of the three body problem

A binary collision of the three body problem is – from a heuristic point of view
– mainly a question of the dynamics of shape. The overall rotational motion,
as well as the dynamics of the variable ρ is mainly determined by the motion
of the non-colliding body relative to the centre of mass of the colliding bodies.
This gives a reason for us to believe that the interesting features of a binary
collision are properly represented by the shape curve γ(t ) in C∗. Authors like
Sundman [Sun12] and Levi-Civita [LC20] can be interpreted as giving rigorous
confirmations of this point of view.

Following our heuristics, we should neglect data which are not directly re-
lated to the shape curve γ(t ). This leads to the following simplification of the
differential geometric representation (4.29) of the shape dynamics:

γ̈∼ 1

ρ3 ∇U∗, (4.37)

where we should regard ρ3 as a constant. The equivalence sign ∼ indicates
equality in the lowest order in the expansion in t at binary collisions points.

Formula (3.20) expresses the asymptotic behaviour of the shape potential
U∗ near the binary collision points Bi . Following our restriction to the case
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4.5. Regularization of binary collisions in the three body problem.

e = 1, we have the asymptotic formula

U∗ ∼ F i
0/ri (4.38)

where ri denotes the spherical distance to Bi .
Following the heuristic formulae (4.37),(4.38), we expect that the dynamics

of shape curves approaching the binary collision points Bi resembles the colli-
sion dynamics of the planar Kepler problem. This observation can be taken the
heuristic background of the following treatment of the binary collisions of the
three body problem.

Note that we do not claim that the dynamics of the shape curve near the
binary collision point in general resembles the dynamics of the planar Kepler
problem. As an example of this, we can take the following “counter-example”,
which is similar to Sitnikov’s solution [Cab90]: Let ε > 0 given. In the case of
two equal masses, say m2 = m3, there exist three body motion where the shape
curve moves along a meridian passing through the binary collision point B1,
such that the minimal distance between γ(t ) and B1 is less than ε, but where
the motion can be extended to all t ∈R without suffering any binary collisions.
This contrasts the Kepler problem, where a motion confined to a straight line
through the origin must experience a collision either in the future or in the past.
Hence, every neighbourhood of B1 meets shape curves which do not resemble
Kepler orbits.

Let d s2 denote the kinematic metric of the shape sphere, and let

d s2
0 =U∗d s2.

This is not a dynamical metric in the sense of Jacobi, but is chosen in order
to resemble Jacobi’s dynamical metric for the energy level h = 0 in the Kepler
problem. In the following we will study the binary collisions by means of d s2

0:
Let us investigate the asymptotic behaviour of this metric near binary colli-

sion point Bi on the shape-sphere C∗. If ri ,θi is a spherical coordinate system
centred at the binary collision Bi ∈R∗ ⊂C∗, the kinematic metric reads

d s2 = 1

4
(dr 2

i + sin2(ri )dθ2
i ) = 1

4
(dr 2

i + (r 2
i +·· · )dθ2

i ).
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The conformally modified metric is

d s2
0 = F i

0

(
1

ri
(1+a1ri +·· · )dr 2

i + ri (1+bi
1ri +·· ·+)dθ2

i

)
.

If we identify (ri ,θi ) with the complex number w = ri eiθi , we can define a map-
ping C∗ →C∗ by

z �→ w = z2

4F i
0

.

Define auxiliary variables ρi ,ϑi satisfying

ri =
ρ2

i

4F i
0

θi = 2ϑi .

In this new set of variables, we have

d s2
0 = (1+α1ρ

2
i +·· · )dρ2

i + (ρ2
i +β1ρ

4
i +·· · )dϑ2

i ∼ dρ2
i +ρ2

i dϑ2
i .

Hence, the metric d s2
0 is regularized at Bi by pullback to the variables ρ,ϑi .

Now, we will extend this and describe a map C∗ →C∗ which yields a simul-
taneous regularization of the three regularization points. We modify Lemaitre’s
regularization map [Lem64] slightly, and consider mappingsC∗ →C∗ which are
of the form

z �→ ζ(z) = −4w2w3z2

(w2 −w3)z4 −2(w2 +w3)z2 +1(w2 −w3)
, (4.39)

where we assume that w2, w3 are distinct and non-zero real numbers. Fig-
ure 4.5 explains some features of this map.

As C∗-valued function, ζ(z) is singular at S = {0,1, i ,−1,−i ,∞}, and the sin-
gularities are mapped in the following way:

ζ(0) = ζ(∞) = 0, ζ(1) = ζ(−1) = w2, ζ(i ) = ζ(−i ) = w3. (4.40)

If we exclude the singularities, we get a holomorphic local diffeomorphism

ζ : C∗ \ S →C∗ \ {0, w2, w3}.
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0−1 1

−i

i

∞

∞

w3 w20

Figure 4.5: Diagram showing main features of the regularization map z �→ ζ(z)
given by (4.39). Note that the point in infinity, ∞ ∈ C∗ is represented by the
boundary circles. The gray (resp. white) triangles in the left figure are mapped
to the gray (resp. white) hemisphere in the right figure. The mapping is singular
at the dots and the boundary circle in the left figure. Singular values are marked
by dots in the right figure. The correspondence between the dots in the figures
is given by (4.40).
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At the singularities, this mapping is locally analytically equivalent to

z �→ z2.

Hence, if we choose a democracy transformation such that the third binary col-
lision point B3 = 0 ∈ R∗, then we can apply the mapping z �→ ζ(z) in the case
w2 = B1, w3 = B2. Since the triangle B1,B2,B3 is always central, w2, w3 will al-
ways be distinct, finite and non-zero (cf. Definition 4.3.8).

The pullback of
d s2

0 =U∗d s2

through the mapping z �→ ζ(z) will be a smooth Riemannian metric on the Rie-
mann sphere C∗: This follows from the fact that z �→ ζ(z) is a local diffeomor-
phism away from the singularities, and locally equivalent to z �→ z2 at the sin-
gularities.

Let us define a new independent parameter τ satisfying dτ =U∗d t . Since
U∗ is always positive, and also analytic away from the binary collision points
B1,B2,B3, the shape curves of collision free three body motions will be analytic
in τ. Let us now consider at shape curve γ(t ) which approach the binary colli-
sion point Bi as t → 0, and apply the above regularization of the planar Kepler
problem to this situation. Let γ̃ be the lifting of γ through ζ. Then the mo-
tion γ̃(τ) will asymptotically – at the binary collision – look like the motion of
a harmonic oscillator. Hence, γ̃(τ) admits analytic continuation through the
collision point. Now we can extend γ through t = 0 by projection of γ̃ through
z �→ ζ(z).

First, we conclude from this that if we parametrize the shape curve γ by
the variable τ, then γ admits analytic continuation though the binary collision
points. Secondly, we conclude that this continuation implies that the shape
curve undergoes a collision-ejection motion at the binary collision, i.e. a mo-
tion similar to an elastic collision with a fixed point. Hence, under this regular-
ization, the shape curve will describe cusps at the binary collision points.

Note that this discussion of the regularization of the three body problem
does little justice to Sundman [Sun12]. Some of the most non-trivial parts of
his work concerns the behaviour of triple collisions, and in particular the fact
that three body motions with non-vanishing total angular momentum avoids
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4.5. Regularization of binary collisions in the three body problem.

triple collisions. For a treatment of related questions in the flavour of this thesis,
see [HS07].

4.5.5 The shape-space revisited

Let us for a moment return to the discussion of the shape of the shape space
M∗. Following Proposition 4.2.1, we should regard the shape space as a trian-
gular sub-region of an ellipsoid. Proposition 4.2.3 contradicts this, and claims
that the shape-sphere should be regarded as a closed disk D2 ⊂R2.

B3

B1

B2

Figure 4.6: The shape space M∗ represented as a spherical triangle with orthog-
onal corners. This can be regarded as the stereographic projection of one of the
gray regions of Figure 4.5, and hence this planar figure yields an appropriate
representation of the conformal structure.

In our discussion of the regularization of the three body problem, we have a
found third representation of the shape sphere: After pullback through the map
ζ : C∗ → C∗ of (4.39), the upper hemisphere of the shape-sphere can be identi-
fied with the spherical triangle with corners 0, i ,−1, i.e. a spherical triangle with
three orthogonal corners (cf. Figure 4.5). After stereographic projection in the
antipodal point of the pre-image of i ⊂C∗, we get a conformal equivalence with
a convex planar figure consisting of three congruent circular arcs joined at or-
thogonal vertices, as indicated in Figure 4.6.
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Bi

Figure 4.7: Near-collision shape curve, in the representation of the space of
three body shapes as a spherical triangle with orthogonal corners. The outgoing
ray is parallel to the outgoing ray since the corner is orthogonal.

This representation of the shape space is very well adapted to the study of
analytic m-triangle motions: In Section 4.4.2, we defined a non-standard no-
tion of analytic shape curves. Following Proposition 4.4.2 we will regard a shape
curve as analytic if it is analytic on the interior of the shape space M∗ and is
reflected at encounters with the boundary (cf. Figure 4.4). According to our
shape-sphere-description of Sundman’s regularization of the three body prob-
lem, we propose to call a curve in M∗ which pass through a collision point Bi

analytic if it is analytic on the interior of M∗, suffers reflections at the boundary,
and behaves like a collision-ejection motions at Bi .

Following our representation of the shape space as a spherical triangle with
orthogonal corners at the binary collision points Bi , we have the situation of
Figure 4.7, which indicates the parallelism between the incoming and outgoing
direction of shape curves with near-collision trajectories. Hence near-collision
trajectories will remain close to the collision-ejection trajectories associated
with binary collisions. This observation can be regarded as an independent jus-
tification of the naturality of the collision-ejection regularization; it is the natu-
ral choice given by continuity and the analytic structure of the shape sphere.
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5.1 Homographic solutions of the three body problem

A homographic solution of the three body problem is a motion where the tri-
angle formed by the three bodies is always of the same shape. If we choose a
representative ( 1, 2, 3) for the similarity class of such a motion, the motion
can always be represented as

i (t ) = ρ(t )R(t ) i ,

where ρ(t ) is a smooth real valued function in one variable and R(t ) is a curve
in SO(3). It follows from the description of three body motions by means of the
singular value decomposition (cf. (3.7)) and the definition of the variables ϕ,θ
that homographic motions satisfy either

(A) sinϕ= 0,

or

(B) ϕ̇= θ̇ = 0.

Case (A) clearly corresponds to the umbilic shape invariant motion which
was treated in Section 3.9, and in that case we concluded that umbilic shape
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invariant motions may occur (i) in the case of equal masses, in the form of La-
grange’s equilateral solution and (ii) in the case of exceptional motions in the
sense of Definition 3.9.8. In case (ii) it follows from Proposition 3.9.9 that the
power e of the potential is necessarily equal to 2.

Leaving the exceptional three body motions to the future, we concentrate
on the case where sinϕ �= 0. I.e. case (B) above, which is characterized by

ϕ̇= θ̇ = 0.

5.1.1 The planar case

In the planar case, it follows from Theorem 4.4.7 that shape invariant motions
occur only for

∇U∗ = 0

where U∗ is the shape potential interpreted as a function on the shape sphere.
From Lemma 3.4.4 we know that this occurs only for the equilateral shape L
and three collinear shapes E1,E2,E3. The corresponding solutions are precisely
Lagrange’s equilateral solutions [Lag72] and Euler’s collinear solutions [Eul67].

5.1.2 The non-planar case

Since collinearity implies planarity (cf. Proposition 2.7.9), we can in this case
assume that cosϕ �= 0, i.e. sinϕ �= ±1. Additionally, case (A) above included
sinϕ= 0. Hence, in the following we assume that

sinϕ,cosϕ �= −1,0,1.

In this situation we write the reduced equations (3.33’) as

(R1) ρ̈ = −ρ̇2

ρ
+ 1

ρ

(
(2−e)u∗

ρe +2h

)
(R2) g 2

1 (1+ sinϕ)2 − g 2
2 (1− sinϕ)2 = Aρ2−e

(R3) g1g2 = Bρ2−e ,
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5.1. Homographic solutions of the three body problem

where A =U∗
ϕ(ϕ,θ)cos3ϕ and B = 1

2 cotϕU∗
θ

. Following the assumption of non-
planarity together with Lemma 2.8.1 we conclude that either g1 or g2 must be
non-zero, i.e. that

g 2
1 + g 2

2 > 0.

The Euler equations (3.32’) now read

(E1) ġ1 =−
(

1− sinϕ

1+ sinϕ

)
g2g3

ρ2

(E2) ġ2 =
(

1+ sinϕ

1− sinϕ

)
g3g1

ρ2

(E3) ġ3 =−
(

4sinϕ

cos2ϕ

)
g1g2

ρ2 ,

since θ̇ = 0. The combination (1+ sinϕ)2g1(E1)+ (1− sinϕ)2g2(E2) yields

(1+ sinϕ)2g1ġ1 + (1− sinϕ)2g2ġ2 = 0.

Since ϕ̇= 0, this implies the existence of a constant C such that

(1+ sinϕ)2g 2
1 + (1− sinϕ)2g 2

2 =C . (5.1)

Since g 2
1 + g 2

2 > 0, we conclude that C > 0.
Combined with (R2), (5.1) yields

g 2
1 = C + Aρ2−e

2(1+ sinϕ)2 , g 2
2 = C − Aρ2−e

2(1− sinϕ)2 , i .e. g 2
1 g 2

2 = C 2 − A2ρ2(2−e)

4cos4ϕ
(5.2)

On the other hand, (R3) yields g 2
1 g 2

2 = B 2ρ2(2−e), and accordingly we conclude
that for non-umbilic non-planar shape invariant three body motions,

4cos4ϕB 2 + A2 =C 2ρ2(e−2). (5.3)

Since C > 0, this implies that ρe−2 is constant, and from (5.2), we see that g 2
1 , g 2

2
and g 2

3 = Ω2 − g 2
2 − g 2

2 are constant. By continuity, we conclude that g1, g2, g3

must be constant.
From (E3) it follows that g1g2 = 0. Both of them can not be zero, since this

implies planar motion. Accordingly, by an appropriate choice of gauge, we can
assume that g1 �= 0 and g2 = 0. From (E2) we then conclude that g3 = 0 i.e. that

Ω= g1 1 (5.4)
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The case e �= 2

In the following we show that (5.4) is absurd in the case where e �= 2. By (5.3) we
note that ρ is constant in this case.

The plane spanned by the three body configurationΠ(t ) = span( 1, 2) con-
tains the total angular momentum vector Ω= g1 1 and rotates around this vec-
tor. On the other hand, the configuration moves within the variable plane Π(t )
in such a way that there exists functions xi (t ), yi (t ) with

i (t ) = xi (t ) 1 + yi (t ) 2

Since sinϕ �= 0, the principal axes are uniquely determined by the configura-
tion, modulo a finite number of choices. This implies that xi (t ), yi (t ) are con-
stant, since ρ̇ = 0.

Now, we shall show that x1 = x2 = x3, and hence the motion is collinear
along 2: Suppose that x1 > x2 ≥ x3. Then, by the attraction of the other par-
ticles on particle 1, particle 1 should experience a negative acceleration ẍ1 < 0.
This acceleration is not balanced by the rotation of the configuration, since
the rotation axis lies along 1. This contradicts the constancy of the xi . Ac-
cordingly, x1 = x2 = x3, and the motion is collinear. Since collinear motions
always take place in the invariable plane, this contradicts the assumption of
non-planarity.

From this we conclude the following:

Lemma 5.1.1. There do not exist any non-planar non-umbilic shape-invariant
motions for the three body problem with e �= 2.

The case e = 2

In the choice of gauge giving (5.4), i.e. g2 = g3 = 0, g1 �= 0, (R2) and (R3) yields

U∗
θ = 0, U∗

ϕ = g 2
1 cosϕ

(1− sinϕ)2 . (5.5)

Hence, these are necessary conditions the shape (ϕ,θ) has to satisfy for shape
invariant (i.e. homographic) non-planar non-umbilic three body motions with
e = 2.
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On the other hand, for a given constant value of g1, shape variables ϕ,θ sat-
isfying (5.5) and sinϕ �= −1,0,1 we can, in fact, construct a homographic three
body motion solution with e = 2: Let g2 = g3 = 0 and let ρ(t ) be a solution of
(R1), which in this case reads

ρ̈+ ρ̇2

ρ
− 2h

ρ
= 0. (5.6)

This yields a solution
ρ(t ),ϕ,θ, g1, g2, g3

of the reduced equations. Consequently, by straightforward reconstruction we
obtain a three body motion X (t ) = ( 1(t ), 2(t ), 3(t )) with the centre of mass
fixed at the origin which satisfies:

(i) Shape-invariance

(ii) Ω ∈ span( 1, 2, 3)

We summarize this as follows:

Lemma 5.1.2. In the case e = 2, (5.5), g2 = g3 = 0 and (5.6) yield necessary and
sufficient conditions for non-planar non-umbilic homographic three body mo-
tions.

For every pair ϕ,θ such that

ϕ �= 0 mod
π

2
, U∗

θ (ϕ,θ) = 0 and
U∗

ϕ

cosϕ
> 0, (5.7)

we can find a value of g1 such that (5.5) is satisfied. Thus, the crucial ques-
tion is wether there exist values of ϕ,θ satisfying (5.7). We will not discuss this
question in full generality here, but rather discuss some special cases:

Let us consider the case of two equal masses m2 = m3. We choose the Jacobi
vectors such that ϕ = π

2 ,θ = 0 corresponds to the binary collision B1. Since
m2 = m3, there is a symmetry of the system that is given by relabeling of the
equal masses, and which yields a democracy transformation that permutes the
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binary collisions B2,B3. On the level of the shape shere C∗ this symmetry is
represented by reflection (i.e. inversion) in the circle through 0, i ,∞∈C∗. From
this, one can see that U∗

θ
= 0 when

(∗) (ϕ,θ) ∈
(
−π

2
,
π

2

)
× {0},

and that U∗(ϕ,0) is a monotonically increasing function of ϕ sufficiently close
to π

2 . For such values of (ϕ,θ), U∗
ϕ/cosϕ> 0, since cosϕ≥ 0 whenϕ ∈ (−π/2,π/2).

We conclude that there will exist solutions of (5.5) in the case of two equal
masses.

Banachiewitz [Ban06] and Wintner’s book [Win47] have given examples of
three body motions of the above kind, namely with isosceles triangle shape and
with two equal masses.

5.1.3 Conclusions

Following the discussion in this section, we can give the following classification
of homographic three body motions:

Theorem 5.1.3. The homographic motions of the three body problem with po-
tential function

U = ∑
i< j

mi m j

r e
i j

belongs to the following classes:

(i) Planar motions with one of the shapes E1,E2,E3,L given in Lemma 3.4.4.

(ii) Motions with Ω �= 0 and non-umbilic shape given by Lemma 5.1.2.
Such motions exist only for e = 2.

(iii) Exceptional motions (cf. Definition 3.9.8).
Such motions exist only for e = 2.

Pylarinos presents a similar result in [Pyl41]: He identifies the planar mo-
tions (i) above as the only homographic solutions in the case e �= 2. In the case
e = 2 Pylarinos states that there exist motions that, in the terminology of this
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dissertation, satisifies g1 �= 0, g2 = g3 = 0. We go beyond Pylarinos’ work when
we give the characterizations (ii) and (iii) of this class of motion.

As a step towards a more precise classification of homographic motions
[Pyl49] gives a partial characterisation of general three body motions satisfying
g1 �= 2, g2 = g3 = 0; they have to satisfy an equation of the form

A1

r e
23

+ A2

r e
31

+ A3

r e
12

= 0,

where A1, A2, A3 are some constants, which depends on the motion, and ri j are
the relative distances.

Within the formalism of the present dissertation, we easily arrive the fol-
lowing conditions:

θ̇ = 0

U∗
θ = 0

ϕ̈=−2ρ̇ϕ̇

ρ
+

4U∗
ϕ

ρ2+e

ρ̈ = 2g 2
1

ρ3(1− sinϕ)
+ 1

4
ϕ̇2 − eU∗

ρ2+e

It seems plausible that Pylarinos’ partial characterization is equivalent to the
second equation of our characterization, namely U∗

θ
= 0.
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5.2 The constant inclination problem

Along a three body motion X (t ), the configurations span a variable plane Π(t )
with normal vector n(t ). The inclination angle β(t ) is defined to be the angle
between the normal vector n(t ) and the total angular momentum vector Ω. The
inclination angle β(t ) can equally well be characterized as the angle between
the variable plane Π(t ) and the invariable plane Π0 =Ω⊥.

In order to eliminate time in the three body problem, [Bir27] suggests that
it is possible to use the inclination angle as independent parameter. From this
perspective, it is of some interest to understand three body motions where the
inclination angle is constant. For planar three body motions, the angle of in-
clination is evidently 0. In the case e = 1, [Cab90] gives a complete description
of the non-empty class of three body motions with constant inclination angle
π
2 . He also puts forth the conjecture that the only possible constant angles of
inclination are 0 and π

2 . In this section, we will indicate a possible path towards
a proof of this conjecture.

Since we can take the third principal axes vector 3(t ) as the normal vector
of the variable plane, we see that the inclination β is constant if and only if
g3 =Ω · 3 is constant. Hence, β = 0 if and only if Ω = g3 3, while β = π

2 if and
only if Ω = g1 1 + g 2 2. In light of this, we can pose Cabral’s question in the
following way:

Question. Does there exist a motion for the three body problem with such that

ġ3 = 0, 0 < g 2
3 , and 0 < g 2

1 + g 2
2

for all instances of time?
Is the answer dependent on the power e of the potential?

Since the three body motions under consideration are all analytic, it is suf-
ficient to investigate this question over arbitrarily small non-empty time inter-
vals.
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5.2.1 Reduction of the problem

Lemma 5.2.1. For a three body motion with ϕ= 0 mod π
2 , the inclination angle

β= 0 mod π
2 .

Proof. Since collinear motions are planar (cf. Proposition 2.7.9), the assertion
holds for ϕ= 2k+1

2 π, i.e. the ϕ-values associated with collinear configurations.
Since umbilic shape invariant motions are either planar or exceptional (cf.

Theorem 3.9.10), the assertion also holds for ϕ = kπ, i.e. the ϕ-values associ-
ated with umbilic configurations.

Accordingly, in our quest for three body motions with constant angle of in-
clination β ∈ (0, π2 ), we can assume that ϕ �= kπ

2 for all t in the time interval
under consideration.

5.2.2 Restriction of the gauge group

From the third Euler equation (3.34), we get

0 = cos2ϕ ġ3 =− 4

ρ2 sinϕ g1g2

Hence, we conclude that either g1 or g2 is zero. The finite gauge group Σ (cf.
(3.10)) contains a transformation that interchanges g1 and g2 at the same time
as (−ϕ) is substituted for ϕ. Hence, by considering both positive and negative
values for ϕ, we can, without loss of generality, assume that g1 = 0. This implies
that g 2

2 = ‖Ω‖2 − g 2
3 and hence g1, g2, g3 are constant along the motion.

In assuming g1 = 0, we have made a choice which restricts our remaining
freedom in choice of gauge: 1 must be one of the two unit vectors perpen-
dicular to both Ω and 3. Hence, 1, 2, 3 are uniquely determined modulo
their individual sign. This limits the freedom in choice of gauge. For instance,
the generator σ3 in (3.10) violates our gauge assumptions. By direct inspection
of the group elements, one finds that the gauge freedom is restricted to a sub-
group Σ′ ⊂ Σ with 8 elements, and that this group is generated by σ1,σ2,σ4.
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Following (3.10’) and (3.11), we can take the following set of generators for Σ′:

σ2 : (g1, g2, g3,ϕ,θ) �→ (−g1,−g2, g3,2π+ϕ,θ)

σ2 ◦σ1 : (g1, g2, g3,ϕ,θ) �→ (g1,−g2,−g3,π−ϕ,θ)

σ2 ◦σ4 : (g1, g2, g3,ϕ,θ) �→ (−g1,−g2, g3,ϕ,2π+θ),

(5.8)

where we should have in mind that ϕ,θ are interpreted modulo 4π (cf. (3.7))

5.2.3 Investigation of θ̇

According to our choice of gauge, and the assumed non-planarity, we know that
g 2

2 > 0. Hence we deduce from the first Euler equation (3.34) that

θ̇ = η(ϕ)
2g3

ρ2 , (5.9)

where

η(ϕ) = 1− sinϕ

(1+ sinϕ)cosϕ
= (1− sinϕ)2

cos3ϕ
= cosϕ

(1+ sinϕ)2

We notice that

η′(ϕ) =− 2− sinϕ

(1+ sinϕ)2 ≤−1

4

Accordingly, η(ϕ) is well defined, continuous and monotonically decreasing on
intervals where sinϕ �= −1. Knowing the limits

η(ϕ) →

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

+∞ ϕ→−π
2 from above

1 ϕ→ 0

0 ϕ→ π
2

−1 ϕ→π

−∞ ϕ→ 3π
2 from below

,

and the periodicity of η(ϕ), it seems like we have a good understanding of this
function, and this gives us the following result:

Lemma 5.2.2. For three body motions with constant inclination, θ̇ is non-zero
and hence of one sign on time intervals such that ϕ �= kπ

2 , for k = 0,±1,±2, . . ..
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5.2.4 On the effect of gauge transformations

In [Sal11] we find a proposed solution of the constant inclination problem based
on surprising effects of gauge transformations. Here we refute this approach by
means of our careful investigation of the finite group of gauge symmetries.

Let us consider a given three body motion X (t ) with constant inclination
β �= 0 mod π

2 , and ϕ(t ) �= 0 mod π
2 on an open time interval. On this interval,

we can choose several descriptions of the motion in terms of gi ,ρ,ϕ,θ. The as-
sumption 1 ⊥Ω above restricts the gauge freedom, which is now parametrized
by the subgroup Σ′ ⊂Σ generated by σ1,σ2,σ4. [Sal11] proposes that we can ac-
quire new information from (5.9) by regarding this equation in various different
gauges. We see however that this is not the case:

From (5.8) we see that the quantity θ̇ is obviously invariant under the group
Σ′. g3 and η(ϕ) are clearly invariant under σ2 and σ2 ◦σ4. Hence, it remains
to investigate the action of σ2 ◦σ1: Under this transformation, g3 is mapped to
−g3, and ϕ is mapped to π−ϕ. After noting that η(π−ϕ) = −η(ϕ), we see that
the transformed equation is

θ̇ = (−η(ϕ))
2(−g3)

ρ2 = η(ϕ)
2g3

ρ2 .

As we should expect, this equation is Σ′-invariant, and hence, the gauge-invari-
ance can not help us to come closer to a solution of the constant inclination
problem.

5.2.5 Investigation of ϕ̇

After differentiation of (5.9), we get

d

d t
(ρ2θ̇) = 2g3η

′(ϕ) i.e. θ̈ = η′(ϕ)
2g3

ρ2 − 2θ̇ρ̇

ρ
. (5.9’)

Comparison with the third equation in (3.33) now yields

ϕ̇= 2

g3

U∗
θ

ρe H(ϕ), (5.10)
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5. APPLICATIONS TO THE THREE BODY PROBLEM

where

H(ϕ) = 1

3

cotϕ

η(ϕ)
= cos2ϕ (1+ sinϕ)

3sinϕ (1− sinϕ)
= (1+ sinϕ)2

3sinϕ

This can be expressed by the simple formula

ρ2θ̇ϕ̇= 4

3
cotϕ

U∗
θ

ρe

Following (5.10), we have the following result:

Lemma 5.2.3. For three body motions with constant inclination, ϕ̇ does not
change sign on time intervals where U∗

θ
�= 0, sinϕ �= −1,0.

5.2.6 Investigation of ρ̇

Similarly as above, we differentiate (5.10), and compare with the second re-
duced equation in (3.33), which yields

ρ̇ = 2g3ρ
e

(2−e)U∗
θ

(
g 2

3η(ηcosϕ+1)sinϕ

ρ3H
− K cosϕ

ρ3H

+
U∗

ϕ −U∗
θθ

Hη

ρe+1H
− Uθ

ρe

U∗
θϕ

H +U∗
θ

H ′

g 2
3ρ

e−1

)
,

(5.11)

where

K (ϕ) =−
(

g2

1+ sinϕ

)2

.

We can also write this as

ρ̇ = 2g3ρ
e−1

(2−e)U∗
θ

3tanϕ(1− sinϕ)

(1+ sinϕ)4

(
2sinϕ

g 2
3

ρ2 + (1+ sinϕ)
g 2

2

ρ2

)

+ 2g3ρ
e−1

(2−e)U∗
θ

1

(1+ sinϕ)2

(
3sinϕ

U∗
ϕ

ρe −cosϕ
U∗

θθ

ρe

)

− 2ρ

(2−e)g3

1+ sinϕ

3sin2ϕ

(
sinϕ(1+ sinϕ)

U∗
θϕ

ρe −cosϕ(1− sinϕ)
U∗

θ

ρe

)
.

(5.11’)
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5.2. The constant inclination problem

If we multiply this equation by (e −2), we see that in the case e = 2, we have
a relation

F (ρ,ϕ,θ) = 0 (5.12)

between the variables ρ,ϕ,θ, and hence, we get a much simpler situation.

5.2.7 Reformulation of the problem

The case e �= 2:

From the assumption ġ3 = 0 and the gauge-restriction g1 = 0 we have deduced
a system of first order ordinary differential equations for ρ,ϕ,θ. We regard this
as a vector field ⎡⎣ρ̇ϕ̇

θ̇

⎤⎦= X (ρ,ϕ,θ),

defined on the ρ,ϕ,θ-space. Note that X depends on the constant parameters
g2, g3, as well as the power e in the potential function U .

We have not yet invoked the first reduced equation, (3.33), which is equiv-
alent to conservation of the total energy h. Since ρ̇,ϕ̇, θ̇ are expressed as func-
tions of ρ,ϕ,θ, we can express the energy h as a function of ρ,ϕ,θ,

h = f (ρ,ϕ,θ).

Observe that both the vector field X and the function f depend on the constant
parameters g 2, g 3 and e.

Clearly, an integral curve for X such that f is constant along the curve sat-
isfies the reduced equations (3.33). Hence for our purpose, we can find both
necessary and sufficient conditions by studying the relation between X and f .

The case e = 2

In this case, the ρ̇-equation is degenerated. In this case, we will determine ρ̇

from the conservation of energy. In this way we acquire an energy-dependent
family of vector fields

221



5. APPLICATIONS TO THE THREE BODY PROBLEM

Xh =
⎡⎣θ̇ϕ̇
ρ̇

⎤⎦ ,

and the question is now whether or not (5.12) can be satisfied along integral
curves of any of the vector fields Xh .

U∗
θ

-singularity

We note that our data are singular for U∗
θ
= 0. By analyticity, we can localize the

constant inclination problem, and hence consider the two separate cases:

(i) U∗
θ
= 0 for all t .

(ii) U∗
θ
�= 0 for all t .

However, it may be of considerable interest also to study how curves approach
U∗

θ
= 0. Note that case (i) implies that ϕ̇= 0.

General conclusions

For e �= 2 and modulo some exceptional cases, we can reduce the constant in-
clination problem to the following question:

Question 5.2.4. Does there exist integral curves of X (ρ,ϕ,θ; g2, g3,e) along which
h = f (ρ,ϕ,θ; g2, g3,e) is constant?

During the work with this thesis, there has been some attempts to prove the
non-existence of such paths in the case e = 1 and three equal masses. After nu-
merical computations of ḣ, ḧ,

...
h along the vector field X , we have found some

non-decisive evidence that such paths are quite exceptional. In the present im-
plementation, these computations demand lots of computational power. As a
consequence of this the evidence is for the moment too sparse for making a re-
liable judgement. Hence, our present knowledge is contained in Lemma 5.2.2,
Lemma 5.2.3 and Question 5.2.4, and we can hope that this is a fruitful starting
point for future investigations.
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5.2. The constant inclination problem

Figure 5.1: Examples of plots of the curves Γ1,Γ2,Γ3 for g2 = 0.9, g3 = 0.215 (left)
and g2 = 0.9, g3 = 0.9 (right) in the case of three equal masses. The dotted lines
represent the grid, while the black curves represent Γ1,Γ2,Γ3. The lower right
corner represents a binary collision.

These preliminary investigations have been carried out in the following way:
Using the scaling symmetry, we see that we can limit our investigation to the
case ρ = 1, if we allow g2 and g3 to vary freely. Hence, we can investigate the
three curves Γ1,Γ2,Γ3 in the ϕ,θ-plane that are defined respectively by

ḣ = 0, ḧ = 0 and
...
h = 0,

and search for values of g2 and g3 such that the curves Γ1,Γ2,Γ3 experiences a
triple crossing. In the absence of such triple crossings for given values of g2 and
g3, we conclude that h can not be constant along any of the integral curves of
the vector field X .

Illustrations of examples of numerically computed curvesΓ1,Γ2,Γ3 are given
in Figure 5.1.

Using numerical computations, it is in principle difficult to confirm the ex-
istence of such triple crossings of Γ1,Γ2,Γ3. On the other hand, such crossings
can be detected quite rigorously by studying the relative topology of Γ1 and the
set of common points of Γ2 and Γ3. If we can detect a difference in this relative
topology, we can be quite sure about the existence of a triple intersection, and
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5. APPLICATIONS TO THE THREE BODY PROBLEM

thus conclude that there exist values of g2 and g3 and a point ϕ,θ where

ḣ = ḧ = ...
h = 0.

This raises however the question about the higher derivatives of h, a question
which must be answered in order to confirm that h is actually constant along
the integral curve. This can however be investigated indirectly by finding ap-
propriate initial conditions for the possible constant inclination motion with
the initial shape identical to the shape represented by the triple intersection of
Γ1, Γ3 and Γ3. After integration from these initial conditions, we can compute
the angle of inclination in order to support or discredit the hypothesis that the
inclination angle is constant.

We can use this numerical approach to survey the constant inclination prob-
lem, in order to find possible routes for rigorous proofs, which must however
rely on entirely different principles. Hopefully, the analytical computations pre-
sented in this section can be useful in such an attempt.
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symbols:
Σ, 63, 95
λi , 93, 112
g, gi , 68, 93
ρ, 89
σi , 96
θ, 89, 150
ϕ, 89, 150
ri , 89

angular velocity, 78
anholonomic frame, 119
anoholonomic frame

3-body problem, 123

central triangle, 167
central triangle groupoid, 169
collinear motions

many particle systems, 72
configuration space, 24

barycentric, 24
stratification, 180
3-body problem, 86

constituent space, 18

barycentric, 19
curve lifting, 56

3-body problem, 90

democracy
group, 19, 155

energy
kinetic, 23, 30, 113

3-body problem, 87
equations of motion

Newton, 84
reduced

non-singular, 116
overview, 193
planar, 111
planar spherical, 190
Poincaré, 125
regular, 115
regular spherical, 190

Euler equation
analytic case, 71
general case, 70
regular case, 71
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Euler equations
3-body problem, 114

exceptional three body motion, 142

gauge
local, 59
multi valued, 63
multi-valued, 60
principal axes, 58–65

gauge group
Σ, 63, 95

Gauss
curvature, 195

geometric phase, 187
geometry

hyperbolic, 158
Möbius, 158
projective, 158, 164

gyration radii, 49

harmonic oscillator, 197
hyperbolic

geometry, 158

inertia operator, 57
isotropy types, 107

Jacobi
dynamical metric, 194, 195
groupoid, 31
map, 28

3-body-problem, 87
transformation, 31

characterisation, 171
3-body problem, 154

vectors
angular velocity form, 183
complex, 148
many particle systems, 26–41
3-body problem, 86
Ω, 46

Klein
bottle, 175
geometry, 158

Lagrange-Jacobi equation, 116
Lagrangian reduction, 94
Lie algebroid, 94
Lie bracket, 126

mass distribution
vs collision points, 166

mass distributions
equal, 34
similar, 38

mechanical connection, 59, 65
Möbius

band, 174
geometry, 158
group, 157
transformation, 154

momentum map, 44
inner product space, 42
simple mechanical system, 42

monotonicity theorem, 162

orbital distance metric, 178
orthocentre, 105
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planarity vs. coplanarity, 75
Poincaré

equations
general, 122
3-body problem, 125

position space, 17, 20
3-body problem

framed, 152
potential

function, 98, 99
shape potential, 100

asymptotic, 102
critical points, 104
spherical representation, 100

principal axes, 49, 57
matrix, 50

principal bundle, 58
connection, 58

principal moments of inertia, 93
projective

geometry, 158
projective geometry, 164

reconstruction
many particle systems, 69
3-body problem, 118

reduction
planar, 109
spatial, 111

regular configuration
many particle systems, 53
3-body problem, 90

regularization
Kepler problem, 195–199

e �= 1, 200
time, 199

three body problem, 194–206
binary collision, 206
regularization map, 204

relative distances, 99, 105
Riemann

sphere, 149
rigid body with internal rotors, 79

shape
groupoid, 152, 154
map, 152
space

corner, 208
smooth structure, 177
spherical triangle, 207

space disk, 150
space triangular, 146
sphere, 149

analyticity, 175
area, 182, 187
complex structure, 182
geography, 161
isosceles triangles, 161

transformation, 152
shape space, 207–208

disk
smooth curve, 176

simple mechanical system, 42
SVD, 49–57

existence, 50
smooth, 53
space, 49
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symmetry
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total angular momentum, 45
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translation invariance, 39

umbilic shape, 129
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