
Privacy-Preserving
Cryptographic Protocols

Thesis for the degree of Philosophiae Doctor

Trondheim, June 2012

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Mathematical Sciences

Asgeir Steine

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Mathematical Sciences

© Asgeir Steine

ISBN 978-82-471-3651-5 (printed ver.)
ISBN 978-82-471-3653-9 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2012:179

Printed by NTNU-trykk

Acknowledgement

This thesis is the result of my four years of PhD-research with the Department of
Mathematical Sciences and the Faculty of Information Technology, Mathematics
and Electrical Engineering at NTNU.

During my time of PhD-studies some people have been present in my life
that deserve a special thanks.

First and foremost I would like to thank my supervisor Kristian Gjøsteen
and co-authors George Petrides and Øystein Thuen. You have been essential for
the fulfillment of this thesis and invaluable as friends and moral support along
the way. I would also like to thank Professor Ivan Damg̊ard of the university of
Århus and his wonderful group of PhD-students and post.docs. I learned a lot
during my stay with you.

Lastly I want to thank my friends and family for always being there for me
when I need you.

Thank you.

i

ii

Introduction

The modern development of electronic communications has opened the door to
new and fantastic possibilities, but also information security challenges. One
particular concern is that the privacy of the individual user is failing. As more
and more personal and sensitive information finds its way online, the power of
data mining and automatic profiling grows. There are many examples where
content providers gather sensitive information on their users. Mobile network
providers store location data and communication logs. Banks store where and
when their users make transactions. Automatic toll booth systems register when
and where the cars pass them. It seems as if every new service adds another
example to the list.

While laws often protect the users from abuse of their sensitive data, it seems
difficult for the authorities to check whether or not the rules are being followed.
Even when the service provider has honest intentions, dishonest employees may
access and exploit the stored data. Recent attacks by hacker groups like Anony-
mous and LulzSec also illustrate the difficulty of securing sensitive data records
from outside threats. We feel that it is important to indicate that privacy pre-
serving alternatives to today’s infrastructures can be developed and that these
alternatives do not significantly hinder the efficiency of the services.

Privacy preserving protocols should be designed so that no service provider
has access to sensitive information he does not strictly need to provide the ser-
vice. By dividing the overall knowledge about users between multiple service
providers the severity of security breaches can be limited. In two of the papers
of this thesis we design alternative protocols for mobile network authentication
and mobile payment systems. In our model for mobile networks the mobile ser-
vice providers are not directly responsible for maintaining the network. Each
service provider leases network access from network providers. We can thereby
design our protocols so that the network provider only learns the location of
users (not identity), while the service provider learns the identity (not location).
Building on this mobile network protocol we consider a mobile payment system
where the merchant does not learn the shopper’s identity and the bank can not
link user transactions to the merchants involved.

In the following sections we will briefly describe the tools and models that
we use to analyse security, and the content of the five papers that constitute this
thesis.

1 Protocol analysis

A cryptographic protocol can be thought of as a set of interactive algorithms
for one or more communicating parties designed to securely realise some defined
goal. The term securely in this context does not have a universal meaning, but
must be explicitly defined. In fact defining the correct notion of security for a
protocol is a significant part of its analysis. Consider the Needham-Schroeder
authentication protocol [7] for example. Needham and Schroeder proved their
authentication protocol secure in their model. Later however, Lowe discovered

1

[6] that the protocol was vulnerable to man in the middle attacks. This does not
mean that there was something wrong with Needham and Schroeder’s proof.
Their model and security definition was simply to weak to capture these kinds
of attacks. They assumed that users of the system would not participate in
attacks.

The preceding example illustrates the importance of explicitly defining what
kind of security our protocols can provide and the challenge of finding the correct
level of security for the goals we want to achieve.

Game based security A common method to gain confidence in a cryptographic
protocol’s security is to show that any successful attacker can be used to solve one
or more well-studied hard problems. This is usually done by so-called sequences-
of-games as described in [8].

Initially one would define the desired security goal as a game played by the
attacker. The game models some interaction between an attacker and the proto-
col in question. The attacker wins the game if he can compromise the protocol’s
security. Next one goes through a sequence of steps each time introducing a new
game slightly different from the previous until one arrives at a final game where
no compromise is possible. To complete the argument one bounds the attackers
chances to distinguish each game from its predecessor.

One way to bound the attackers distinguishing chances for a given pair of
games is to prove that a distinguishing attacker can be used to build a solver
for one of the assumed hard problems (and that this solver uses essentially the
same amount of resources as the attacker). By the above procedure one proves
that any adversary has its advantage against the initial game bounded by the
sum of its distinguishing advantages and thus that it is essentially as hard to
win the security game as it is to solve the underlying hard problems.

Simulation based security Cryptographic protocols vary in complexity from
protocols for achieving basic properties like authentication, integrity or confiden-
tiality to sophisticated multi-party protocols like electronic elections or privacy
preserving online auctions. Typically the more sophisticated protocols are con-
structed using the simpler protocols as subprotocols. It is therefore desirable
to analyse protocols in a modular way by defining security notions that are
preserved under composition of protocols.

A simple idea for achieving modular security is to define security as an ideal
functionality modelling how the protocol ideally should behave if we had an
incorruptible trusted third party to manage it. To prove that a protocol realises
the security of this ideal functionality one proves the existence of an efficient
simulator such that no (appropriately bounded) adversarial environment is able
to distinguish if he is interacting with the protocol or with the ideal functionality
composed with the simulator.

Since the adversarial environment is unspecified this way of defining security
gives guarantees that are preserved under composition of protocols. Frameworks
for this kind of security modelling are called simulation based and the two main

2

such frameworks are the universal composability framework of [2] and the reac-
tive simulatability framework of [1]. Although the idea behind simulation based
security is simple, many technical issues must be resolved to make such a model
formal.

Formal methods Another approach for analysing complicated protocols is to
assume “perfect” cryptographic primitives. By defining formal rules about the
terms in the protocols and how they can be used to attack the system, one builds
a logic for reasoning about protocol security. These kinds of formal models stem
from the work of Dolev and Yao [5] and have lead to quite powerful tools (like
Scyther and ProVerif) for automatic analysis of protocols. The analysis in such
models are often simpler than in game based analysis. However since the proofs
only apply to ideal crypto primitives, the path from a formal security proof to
real world security is longer than for game based proofs.

Lately there has been some effort to come up with models that combine
the best features from both the game based security paradigm and the formal
models. A nice survey on these topics can be found in [4].

2 Our work

Our work consist of five papers all in the field of protocol analysis. We emphasise
the privacy aspect of protocol security.

Paper I: Dynamic Group Signatures with Tokens A group signature
scheme is a variant of cryptographic signatures allowing the signer to remain
anonymous within a group. It allows any member of the group to sign messages
on the group’s behalf. Groups can be created by an authority called the group
manager. Under special circumstances signatures can be opened by an authority
called the opener to reveal the signers identity.

In this paper we develop a variant of group signatures that we call token
based group signatures. With token based group signatures the group member
issues tokens to each member of the group which allow them to sign messages
within a time window. This simplifies the problem of dynamically updating the
members of the group while maintaining anonymity. We define security notions
for the token based group signatures and give a generic construction using non-
interactive zero knowledge proofs.

Group signatures have a number of interesting properties that make them
suitable for anonymous authentication schemes. By signing a challenge, a user
can prove that he is indeed a member of the group without revealing his identity.
The verifier also get a guarantee that the opener has the power to obtain the
signer’s identity from the signature. Group signatures can therefore be used to
build a public-key alternative to the authentication protocol of paper IV.

3

Paper II: Formal Verification of Reductions in Cryptography In this
paper we consider a way of formalising black-box reductions of indistinguisha-
bility games by modelling each game as an interactive state machine with an
associated set of probability distributions. The idea is that proper standardis-
ation of notation for security games is one step towards automatic verification
of game based security proofs. We proceed by defining maps between such state
machines and sufficient conditions for when such maps lead to reductions. As an
example we apply our techniques to prove the standard security reduction (see
[9]) of the ElGamal encryption scheme.

Paper III: A Novel Framework for Protocol Analysis Taking the uni-
versal composability framework of [2] as a starting point. We redo some of its
definitions to avoid certain technicalities and better suit our needs as a simula-
tion based security framework. Perhaps the most striking change we have made
is to add a message queue for scheduling of messages. As in the original for-
mulation we only allow one active party at a time, but where Canetti’s version
only allows the active party to send one single message we additionally allow the
party to enqueue messages. The effect of this extension is that many protocols
become easier to model, however it may introduce some technicalities in the
security proofs as one has to show that the simulator can simulate the queue
correctly.

In the universal composability framework it is a clear preference towards
modelling single session protocols. For instance an encrypted channel would be
modelled by a functionality that can send only one secure message. By composing
multiple instances of the same functionality one is able to send multiple messages
securely. As a result it becomes important that each machine is able to create
new instances of its sub-protocols during protocol execution, which makes the
framework quite technical. While this single session preference sometimes lead
to simplified analysis, this approach also has its disadvantages. One issue is that
the parties of a protocol instance has to agree in advance on a session identifier
(name of the particular instance corresponding to that session).

In settings as in Paper IV, where one of the parties should remain anonymous,
this issue becomes troublesome. We therefore prefer the multi-session approach
and consider the simpler scenario where all machines are instantiated before
protocol execution in a fixed communication graph, thereby avoiding these issues.

Paper IV: Towards Privacy Preserving Mobile Communications The
mobile phone protocols in use today do not give a high priority to the user’s
privacy. The mobile service provider has easy access to each user’s location,
can see who the users call and listen in on their conversations. We sketch an
alternative setup where the service provider is split into two parties. One party,
the service provider, handles authentication and user identities. The other party,
the network provider, handles the network but learns as little as possible about
the user’s identities.

4

We build our mobile phone protocol step by step using the adapted universal
composability framework of Paper III. The first step in this work is to create a key
establishment and authentication protocol and its corresponding functionality.

In this protocol the user first authenticates himself to the service provider to
prove that he is a subscriber and should have access to the network. If the service
provider is satisfied, he tells the network provider to proceed by establishing
symmetric keys with the user.

On top of the key establishment functionality we build a secure channel
between the network provider and users, using the shared keys. In the next step
we use the secure channel to build an anonymous internet access functionality
where the users can connect to a global network, while hiding behind pseudonyms
managed by the network provider. Finally we sketch how the internet access
functionality can be used to provide telephony over the global network, using
public key encryption and pseudonyms.

Paper V: Weak Blind Signatures and Mobile Payment In this paper
we introduce and analyse a mobile payment system in the adapted universal
composability framework of Paper III. We use a simplified version of the internet
access functionality defined in Paper IV. A mobile payment system allows users
and merchants to perform transactions by means of the users mobile device. In
addition to regular transaction security one important issue is the privacy of the
users. The mobile device communicates with the merchant via some short range
communication standard while simultaneously communicating with its bank over
the anonymous internet connection.

The protocol uses the notion of blind signatures introduced initially in [3],
but adapted to our framework. Blind signatures have been developed especially
for the purpose of privacy preserving payment systems. By allowing users to
request signatures from the bank without revealing the contents of the message
to be signed, the user can have the bank sign transaction data and the merchant’s
identity without actually disclosing these values to the bank.

As opposed to previous adaptions of blind signatures to the universal compos-
ability framework, our definition is independent of the communication channels
in use and so can be reused in different scenarios where other communication
devices are assumed.

References

1. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for
secure reactive systems. In TCC, volume 2951 of Lecture Notes in Computer Science,
pages 336–354. Springer, 2004.

2. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

3. D. Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203.
Plenum Press, New York, 1982.

5

4. Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of symbolic
methods in computational analysis of cryptographic systems. J. Autom. Reasoning,
46(3-4):225–259, 2011.

5. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–207, 1983.

6. Gavin Lowe. Breaking and fixing the needham-schroeder public-key protocol using
fdr. In TACAS, volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer, 1996.

7. Roger M. Needham and Michael D. Schroeder. Using encryption for authentication
in large networks of computers. Commun. ACM, 21:993–999, December 1978.

8. Victor Shoup. Sequences of games: A tool for taming complexity in security proofs,
2004.

9. Yiannis Tsiounis and Moti Yung. On the security of elgamal based encryption. In
Public Key Cryptography, volume 1431 of Lecture Notes in Computer Science, pages
117–134. Springer, 1998.

6

Paper I

Dynamic Signatures with Tokens
Asgeir Steine and Øystein Thuen

Preprint

7

8

Dynamic Group Signatures with Tokens

Asgeir Steine and Øystein Thuen

NTNU, Trondheim, Norway.

Abstract. We propose a group signature scheme with efficient member revocation. In our
scheme, special tokens are used in the creation of group signatures. These tokens can only be
used by the group’s members, and allows for anonymous group signatures. We present new
security requirements for this setting and show the existence of such a scheme. Our proposed
scheme uses general NIZK-proofs, and is thus not practical.

1 Introduction

Group signatures are digital signatures where users sign on behalf of a group. This allows the user
to remain anonymous and still create valid signatures. A special authority known as the opener is
allowed to reveal the identity that created a signature.

In most group signature schemes every eligible user is given its own secret key. This secret key
along with the public information is enough to create signatures. One problem with this approach
is to remove a user from the group, and revoke his ability to create valid signatures. Many attempts
have been made to create efficient schemes where users can also easily and efficiently be revoked. In
schemes where the group manager and the opener is the same entity, this is quite easy and several
schemes exist. If we require that the group manager is unable to open signatures and reveal the
signer, the problem of revocation becomes much harder.

We propose a new kind of group signature scheme. A user can sign messages only if he has
a valid token. The token must be previously requested from a token issuer, and is valid for some
predefined period. This approach very easily enables adding and revoking users of the system, but at
the cost that users must occasionally acquire new tokens to create signatures. Such communication
is not uncommon. In many networks, the users have continually contact with a base station, and
receiving new tokens may not be a large extra expense.

We define new security requirements for this kind of scheme, based on the standard definitions
of group signatures; anonymity, untraceability and non-frameability. We also show that it is possible
to create a secure, fully dynamic group signature scheme using tokens. Our approach and definitions
are based on the article [3], which defined dynamic group signatures without revocation.

The scheme we propose uses a general NIZK proof system. Due to these proofs, the scheme is
not practical, but shows that such a system is achievable.

1.1 Related Work

We do not know of any work on group signatures using tokens as a way to implement revocation.
There have however been proposed numerous group signature schemes.

Group signatures were first introduced by Chaum and van Heyst in 1991 [8]. In the original
proposal the members of the group were static. Many efficient implementations of such a scheme
was proposed, including [1], [4] and [6]. Some of these included adding and revoking users from the
group. These schemes are all based around having a single group manager that both handles user
keys and can open signatures. In this setting the users have to trust the group manager, as he will
know the identity behind every signature.

In the 2004 paper [3], Bellare et al. proposed a unified framework to prove security for dynamic
group signature schemes. Here they separate the Key Issuer from the Opener. This allows for
stronger security definitions in which only the Opener can identify a signer, and the users remain
anonymous even to the Key Issuer. Bellare et al. defines three security requirements for group
signatures: anonymity, traceability and non-frameability. They show that various other security

9

definitions like unlinkability and coalition resistance are included in these three security goals.
However they do not include revocation in their security definition.

Our work is strongly influenced by this paper.
After the paper [3] several group signature schemes using separate Key Issuer and Opener have

been proposed. This includes [9], [13], [7] and [10]. These papers either do not include revocation
or require expensive operations every time revocation occurs.

A different way to handle revocation is known as verifier-local revocation. Here only the ver-
ifiers have to do additional computations when revocation of users happens. Several papers use
this approach [5], [2], [12], [11]. None of these papers however, separate the Key Issuer from the
Opener. We do not know of any papers that use this approach and satisfies the strongest security
requirements as defined by Bellare et al.

As of yet, we do not know of an efficient group signature scheme with secure revocation that
satisfies the strongest security definitions. We propose a different approach that may be useful in
certain applications.

2 Syntax and Notation

The group signature schemes we are considering consist of a tuple of algorithms GS = (Key-
Gen, UserKeyGen, Revoke, TokenIssue, Sign, Verify, Open). The scheme is an interactive
protocol between three types of parties, the users, the token issuer and the opener. The token
issuer runs the algorithms Join, Revoke and TokenIssue. Since the token issuer decides who is
eligible to receive tokens, he controls which users are allowed to create signatures. In other sim-
ilar schemes, this entity is sometimes called the group manager. Each algorithm is described below.

KeyGen is the initial setup phase run by a trusted third party. The input is a security pa-
rameter k. KeyGen produces a triple of keys, (gpk, ok, tik). The public group key gpk is made
available to everyone, the opening key ok is sent to the opener and the token issue key tik is sent
to the token issuer.

UserKeyGen takes security parameter k as input and generates a key pair (rk , sk). We assume
that UserKeyGen is trusted and every user can securely generate a key pair. We also assume
that the request key rk is made public and identifies the user, while sk is securely sent to the user.
This can all be implemented if the existence of a PKI is assumed.

Join A user wanting to join the group submits his identity. If the user is eligible to join, his
request key is added to the list CurrentUsers.

Revoke has access to the user list CurrentUsers. On input a request key rk , the corresponding
entry is removed from CurrentUsers.

TokenIssue takes as input the token issue key tik , a request key rk and a time t. The algorithm
returns a token τ or ⊥ if the request key is not in CurrentUsers.

Sign takes as input a users signing key sk , a token τ , a time t and a message m. It outputs a
signature σ.

Verify takes as input the group public key, a message m, a signature σ and a time interval T .
It returns 1 if σ is a valid signature on m for the given time interval and 0 otherwise.

Open takes as input the opening key ok , a message m and a valid signature σ. The algorithm
tries to trace the user that produced the signature. If it is successful it returns its public key rk .
Otherwise it returns 0.

These schemes work as follows. A user in the group contacts the Token Issuer with his id and a
time stamp t. The time stamp is in the close future, say within one hour. The user receives a token
which can be used to create signatures on any message, using the algorithm Sign. The signature
is valid until the time specified and can be transmitted over the network. Note that even if a user
is revoked, the user can use tokens until they expire.

The time period a token is valid can be adjusted to accommodate the needs of the scheme.
Note that since a user identifies to the TokenIssuer, very short validity period could allow for
traffic analysis when the user uses the token, and thus break the anonymity.

10

The Token Issuer can add and remove users using the algorithms Join and Revoke. Anyone
can run Verify and choose their desired time interval. The algorithm Open can only be executed
by the Opener, which has the opening key.

3 Security Goals

We define three experiments which define the security we are interested in. A group scheme is
traceable if every valid signature can be opened to reveal the signer. It satisfies non-frameability if
no subset of users, token issuer and opener together can create a signature that traces to an honest
user. The last security property is anonymity, which ensures that only the opener can identify the
signer that created a signature.

The adversaries attacking the different experiments defining security get access to a set of
oracles. We describe these oracles.

AddUser takes no input and generates keys for a new user. This user is added to the group.
Its public request key rk is returned.

CorruptUser takes a request key as input and returns the corresponding secret signing key.
Revoke takes a request key as input and removes this user from the group.
RequestToken takes a request key and a time stamp as input and returns a token if the

request key is valid.
Sign takes a request key, a token, a message and a time stamp as input. It outputs a signature

on the message which has been made by the corresponding signing key.
Open takes a message and a valid signature as input. It returns the request key of the creator

of the signature.

We start by defining traceability. The adversary is given the group key and the opening key
as well as access to the oracles AddUser , CorruptUser , Revoke and RequestToken. The adversary
wins if he can produce a signature and a message that does not trace back to any of the users. We
note that the adversary has access to all private keys of the system. We formally define traceability
in the following experiment.

ExptraceabilityA (k)
1 (gpk , ok , tik)← KeyGen(k)
2 AllUsers ← {}
3 CurrentUsers ← {}
4 CorruptUsers ← {}
5 (m,σ, T)← A(gpk , ok;AddUser ,CorruptUser ,Revoke,RequestToken)
6 if Verify(gpk , σ,m, T) = 1 and Open(ok ,m, σ) /∈ AllUsers
7 then return 1
8 return 0

We define the advantage of an adversary A against the experiment Exptraceability as

AdvtraceabilityA (k) = Pr[ExptraceabilityA (k) = 1]

Non-frameability is defined by the experiment below. Here the adversary is given both the Open-
ing Key and the Token Issue Key. He also has oracle access to AddUser , CorruptUser , Revoke and
Sign. The adversary wins if he can produce a valid signature on a user he has not corrupted,
without using the Sign-oracle.

Expnon−frame
A (k)

1 (gpk , ok , tik)← KeyGen(k)
2 AllUsers ← {}
3 CurrentUsers ← {}

11

4 CorruptUsers ← {}
5 (m,σ, T)← A(gpk , ok , tik ;AddUser ,CorruptUser ,Revoke,Sign)
6 if Verify(gpk ,m, σ, T) = 0
7 then return 0
8 rk ← Open(ok ,m, σ)
9 if the following hold, then return 1, else return 0

10 rk ∈ AllUsers
11 m was not queried to the Sign-oracle
12 rk /∈ CorruptUsers

We define the advantage as

Advnon−frameability
A (k) = Pr[Expnon−frame

A (k) = 1],

and say that a scheme is non-frameable if the advantage is negligible for all polynomial time ad-
versaries A.

For b ∈ {0, 1} we use the two experiments given below to define anonymity. Here the adversary
is given access to the Token Issue Key, but obviously not the opening key. The adversary has oracle
access to Challengeb, Open, AddUser , CorruptUser and Revoke. The oracle Challengeb takes two
request keys and one message and creates a signature using one of the keys, depending on the bit
b. The adversary can access this many times, and at some point returns a guess of the value of this
bit. The opening oracle will not open any of the signature that Challenge returns. The adversary
wins if he correctly guesses the value of b.

Exp
anonymityb

A (k)
1 (gpk , ok , tik)← KeyGen(k)
2 CurrentUsers ← {}
3 CorruptUsers ← {}
4 b′ ← A(gpk , tik ;Challengeb,Open,AddUser ,CorruptUser ,Revoke)
5 return b′

We define the advantage of an adversary A against the experiment Expanonymity as

Advanonymity
A (k) = |Pr

[
Exp

anonymity1

A (k) = 1
]
− Pr

[
Exp

anonymity0

A (k) = 1
]
|

and say that a scheme is anonymous if the advantage is negligible for all polynomial time adver-
saries.

We also need a game that describes that signatures should only be valid during some time
interval. In this experiment we keep a list of users and the time interval they where eligible to
receive tokens. The adversary wins if he can create a valid signature for a user in a time interval
the user could not receive tokens.

The advantage is defined in the usual way.

Advtime−non−malleability
A (k) = Pr[Exptime−non−mall

A (k) = 1]

And we say that a scheme is time-non-malleable if the advantage is negligible for all polynomial
time adversaries.

4 Building blocks

Our scheme uses three basic building blocks. We need an encryption scheme, a signature scheme
and a non-interactive zero-knowledge (NIZK) proof system. We discuss the security properties we

12

Exptime−non−mall
A (k)

1 (gpk , ok , tik)← KeyGen(k)
2 Users ← {}
3 CorruptUsers ← {}
4 (m,σ, t)← A(gpk , ok ;AddUser ,CorruptUser ,Revoke,TokenIssue)
5 rk ← Open(ok ,m, σ)
6 Let T be the time interval that rk could receive tokens
7 if Verify(gpk ,m, σ, t) = 1and t /∈ Tand rk /∈ CorruptUsers
8 then return 1
9 else return 0

require of these underlying schemes.

We denote an encryption scheme by three algorithms, the key generation algorithm Ke, the
encryption Enc and decryption Dec. The security requirement we need is known as indistinguisha-
bility under chosen ciphertext attack (Ind-CCA) and is defined in the experiment below.

ExpInd−CCAb

A (k)
1 (pk, sk)← Ke(k)
2 d← A(pk;Che(b, ·, ·),Dec(sk, ·))
3 return d

For b ∈ {0, 1}, we define the experiments ExpInd−CCAb . An adversary A is given a normal
decryption oracle and a challenge oracle Che. The challenge oracle takes two messages m0 and
m1 as input and encrypts mb according to the bit b. The decryption oracle will not decrypt any
ciphertext which the challenge oracle has produced. We define the advantage of the adversaries
against the two experiments in the normal way.

AdvInd−CCA
A (k) = |Pr[ExpInd−CCA1

A = 1]− Pr[ExpInd−CCA0

A = 1]|
We say that the encryption scheme satisfies Ind-CCA if the advantage is negligible for all polyno-
mial time adversaries.

The second building block is a signature scheme, denote as (Ks,Sig ,Ver), where Ks is the key
generation algorithm and Sig , Ver denotes the signature and verification algorithms. The security
we need is unforgeability under a chosen message attack (unforge-CMA). This security is given in
the experiment below.

Expunforge−CMA
A (k)

1 (pk, sk)← Ks(k)
2 (m,σ)← A(pk; Sig(sk, ·))
3 if V erify(m,σ) = 1and A did not query Sig(sk,m)
4 then return 1
5 else return 0

We define
Advunforge−CMA

A (k) = Pr[Expunforge−CMA
A (k) = 1]

and say that the scheme is unforgeable if the advantage is negligible for all polynomial time adver-
saries.

The last component we need is simulation-sound NIZK-proof for membership in a NP-language.
An NP-relation ρ is a subset of {0, 1}∗×{0, 1}∗ such that given (x,w), one can test for membership
in ρ in polynomial time for all x. If (x,w) ∈ ρ we say that x is a statement (or theorem) and w a
corresponding witness (or proof). For a given ρ, we let Lρ be the set of all valid statements.

13

The algorithms P (prove) and V (verify) has access to a common reference string. The proof
systems we require has a simulator SIM. The simulator can simulate proofs that are indistinguish-
able from real proofs, for valid statements. The security requirements are defined below.

Expzk0

A (k)
1 (CRS , state)← SIM(gen, k)
2 d← A(CRS ;Prove0)
3 return d

Expzk1

A (k)

1 (CRS , state)
r← {0, 1}c

2 d← A(CRS ;Prove1)
3 return d

Let (P, V, SIM) be a proof system. To define zero-knowledge for (P, V, SIM) we define two
experiments Expzk0 and Expzk1 . The oracles Prove0 and Prove1 takes a valid statement x and
witness w as input. Prove0 simulates a proof by using the proof stage of SIM, while Prove1 uses
the real prover P . An adversary wins if he has a non-negligible probability to distinguish these two
experiments

Advzero−knowledge
A (k) = |Pr[Expzk1

A (k) = 1]− Pr[Expzk0

A (k) = 1]|
Expsim−soundness

A (k)
1 (CRS , state)← SIM(gen, k)
2 (x, π)← A(CRS; SIM(prove, state, ·))
3 if x /∈ Lρ

4 and π was not returned by SIM(prove, state, ·)
5 and V (k, x, π,CRS) = 1
6 then return 1
7 else return 0

Simulation soundness states that no adversary should be able to create valid proofs on false
statements. It is defined in the experiment above. We define

Advsimulation−soundness
A (k) = Pr[Expsim−soundness

A (k) = 1],

and say that a scheme has simulation soundness if Advsim−soundness
A (k) is negligible for all poly-

nomial time adversaries A.

5 Our construction

We first explain the underlying ideas of the scheme. Each user of the system creates a pair (rk, sk)
of signature keys. To create a group signature a user needs a token τ , which is a signature on his
own key rk and a time stamp. The user then signs a message and token creating a signature σ2. The
user then encrypts the signature σ2 together with the token and his own public key and proves
using a NIZK-proof that everything is done properly. This binds everything together. The final
group signature is the ciphertext and the NIZK-proof. The encryption is done using the Opener’s
public key, which enables him to reveal the identity of the signer.

We explain the scheme in detail. Let (Ke, Enc,Dec) be an IND-CCA secure encryption scheme.
Let (Ks,Sig ,Ver) be an Unforge-CMA secure signature scheme. Let (P, V, SIM) be a simulation
sound NIZK proof system for an NP-relation ρ. We define the relation ρ as follows. Let x =
(pke, pks, t,m, c) be a statement and w = (rk, τ, σ2, r) a corresponding witness. We define

(x,w) ∈ ρ⇔
⎧⎨
⎩

Ver(pks, (rk, t), τ) = 1
Ver(rk, (τ,m), σ2) = 1
Enc(pke, (τ, σ2, rk), r) = c

14

The scheme is described in detail below.

KeyGen(k)
1 (pks, sks)← Ks(k)
2 (pke, ske)← Ke(k)

3 CRS
r← {0, 1}c

4 gpk ← (k, CRS, pks, pke)
5 ok ← ske
6 tik ← sks
7 return (gpk , ok , tik)

UserKeyGen(k)
1 (rk, sk)← KS(k)
2 return (rk, sk)

Join(rk)
1 if the user is not eligible to join the group
2 then return 0
3 Add rk to the lists CurrentUsers and AllUsers
4 return 1

TokenIssue(tik , rk, t)
1 if t is not a valid time or rk /∈ CurrentUsers
2 then return 0
3 τ ← Sig(tik , (rk , t))
4 return τ

Sign(sk, τ,m, t)
1 σ2 ← Sig(sk, (τ,m))

2 r
r← {0, 1}k

3 c← Enc(pke, (τ, σ2, rk), r)
4 x← (pke, pks, t,m, c)
5 w ← (rk, τ, σ2, r)
6 π ← Pρ(x,w)
7 σ ← (c, π)
8 return σ

Verify(m,σ, t)
1 (c, π)← σ
2 if t is not a valid time
3 then return 0
4 x← (t,m, c)
5 return Vρ(x, π)

Open(ok,m, σ, t)
1 (c, π)← σ
2 (τ, σ2, rk)← Dec(ok, c)
3 if Ver(pks, (rk, t), τ) = 1and Ver(rk, (τ,m), σ2) = 1
4 then return rk
5 else return0

15

6 Security Proofs

In this section we prove that our proposed scheme satisfies the security requirements of a group
signature scheme.

Theorem 1 If (Ke,Enc,Dec) is an IND-CCA secure encryption scheme, (P, V, SIM) is a NIZK
proof system that satisfies soundness, simulation-soundness and zero-knowledge and (KS ,Sign,Verify)
is a signature scheme which is unforgeable against Chosen Message Attacks, then our scheme is
anonymous, traceable and non-frameable.

We first define a set of default oracles which will be used in the proofs. The oracles have access
to all variables the underlying experiment creates.

Adduser()
1 (rk , sk)← Ks(k)
2 Add rk to CurrentUsers and AllUsers
3 usk [rk]← sk
4 return rk

CorruptUser(rk)
1 if rk /∈ CurrentUsers
2 then return 0
3 Add rk to CorruptUsers
4 return usk [rk]

Revoke(rk)
1 if rk /∈ CurrentUsers
2 then return
3 if rk ∈ CorruptUsers
4 then Remove rk from CorruptUsers
5
6 Remove rk from CurrentUsers

RequestToken(rk, t)
1 if t is not a valid time or rk /∈ CurrentUsers
2 then return 0
3 return Sig(tik , (rk, t))

Sign(rk, τ,m, t)
1 if rk ∈ CurrentUsers
2 then return Sig(usk [rk], τ,m, t)

Challengeb(rk0, rk1,m)
1 if rk0 /∈ CurrentUsersor rk1 /∈ CurrentUsers
2 then return 0
3 Let t be a valid time stamp
4 τ ← Sig(tik , (rkb, t))
5 σ ← Sign(usk [rkb], τ,m, t)
6 Note that the adversary is not allowed to call the Open-oracle with (m,σ).
7 return σ

Open(m,σ)
1 if V erify(m,σ) = 0
2 then return 0
3 rk ← Open(ok,m, σ)

16

4 return rk

Lemma 2 If (Ke,Enc,Dec) is an IND-CCA secure encryption scheme and (P, V, SIM) is a NIZK
proof system that satisfies simulation-soundness and zero-knowledge, then our scheme is anony-
mous.

Proof. This proof follows the proof of Lemma 5.1 of [3].

To prove this lemma we create four adversaries:AS attacking simulation soundness of (P, V, SIM),
A0 and A1 attacking IND-CCA of (K,Enc,Dec) and Adist attacking the zero knowledge of the proof
system. All these algorithms use an adversary B attacking the anonymity of the group signature
as a subroutine.

First the algorithm that will be used to attack the simulation soundness. We redefine Challenge
and Open, while using the default oracles for the rest.

AS(CRS, SIM(prove, state,))
1 CurrentUsers ← {}
2 CorruptUsers ← {}
3 usk ← {}
4 y ←⊥
5 cList ← {}
6 (pks, tik)← Ks(k)
7 (pke, ok)← Ke(k)
8 gpk ← (k,CRS , pks, pke)
9 B(gpk , tik ;Challenge,Open,Adduser ,CorruptUser ,Revoke)

10 return y

Challenge(rk0, rk1,m)
1 if rk0 /∈ CurrentUsersor rk1 /∈ CurrentUsers
2 then return 0
3 t← 0
4 τ ← Sig(tik , (rk0, t))
5 σ2 ← Sig(usk [rk0], (τ,m))
6 M ← 0|(τ,σ2,rk0)|

7 c← Enc(pke,M)
8 Add c to cList
9 x← (pke, pks, t,m, c)//Notice that x /∈ Lρ

10 π ← SIM(prove, state, x)//oracle query
11 σ ← (c, π)
12 return (σ, t)

Open(m,σ, t)
1 (c, π)← σ
2 x← (pke, pks, t,m, c)
3 if Vρ(x, π) = 1and c ∈ cList
4 then y ← (x, π)
5 (τ, σ2, rk)← Dec(ok, c)
6 return rk

Next is the two algorithms A0 and A1. They are symmetrical in design so we define both at
the same time. Let b ∈ {0, 1}.

Ab(pk;Che,Dec)
1 (pks, tik)← Ks(k)

17

2 CurrentUsers ← {}
3 CorruptUsers ← {}
4 usk ← {}
5 cList ← {}
6 d←⊥
7 (CRS , state)← SIM (gen, k)
8 gpk ← (k,CRS , pks, pk)
9 d′ ← B(gpk , tik ;Challengeb,Open,AddUser ,CorruptUser ,Revoke)

10 if d �=⊥
11 then return d
12 return d′

Challengeb(rk0, rk1,m)
1 if rk0 /∈ CurrentUsersor rk1 /∈ CurrentUsers
2 then return 0
3 t← 0
4 τ ← Sig(tik , (rkb, t))
5 σ2 ← Sig(usk [rkb], (τ,m))
6 Mb ← (τ, σ2, rkb)
7 Mb̄ ← 0|Mb|

8 c← Che(Mb,Mb̄)
9 x← (pk, pks, t,m, c)
10 π ← SIM (prove, state, x)
11 Add c to cList
12 σ ← (c, π)
13 return (σ, t)

Open(m,σ, t)
1 We assume that (m, σ) was not returned from Challengeb
2 (c, π)← σ
3 x← (pk, pks, t,m, c)
4 if Vρ(x, π) = 0
5 then return 0
6 if c ∈ cList
7 then d← b
8 return 0
9 (τ, σ2, rk)Dec(c)//oracle query
10 return rk

The last algorithm we need is a distinguisher for the zero knowledge experiment. This algorithm
has the task of distinguishing between real proof made in accordance to a random reference string
and simulated proofs made from a simulated reference string.

Adist(CRS ;Prove)
1 (pks, tik)← Ks(k)
2 (pke, ok)← Ke(k)
3 gpk ← (k,CRS , pks, pke)

4 b
r← {0, 1}

5 b′ ← B(gpk , tik ;Challengeb,Open,AddUser ,CorruptUser ,Revoke)
6 if b′ = b
7 then return 1
8 return 0

Challengeb(rk0, rk1,m)
1 if rk0 /∈ CurrentUsersor rk1 /∈ CurrentUsers

18

2 then return 0
3 t← 0
4 τ ← Sig(tik , (rkb, t))
5 σ2 ← Sig(usk [rkb], (τ,m))
6 c← Enc(pke, (τ, σ2, rkb))
7 x← (pke, pks, t,m, c)
8 π ← Prove(x)//oracle query
9 σ ← (c, π)

10 return (σ, t)

Open(m,σ, t)
1 (c, π)← σ
2 (τ, σ2, rk)← Dec(ok, c)
3 return rk

We first look at the algorithm Adist participating in the experiment Expzk1

Adist
(k). Notice that

in this case, Adist is given a real random string CRS and the prove-oracle uses the real prover P .
Thus if B wins, B actually beats anonymity. The exact computation follows

Pr[Expzk1

Adist
(k) = 1] (1)

= Pr[B = 1|b = 1] · Pr[b = 1] + Pr[B = 0|b = 0] · Pr[b = 0]

=
1

2
Pr[Expanon1

b (k) = 1] +
1

2
Pr[Expanon0

b (k) = 0]

=
1

2
Pr[Expanon1

b (k) = 1] +
1

2
(1− Pr[Expanon0

b (k) = 1])

=
1

2
+

1

2
Advanonymity

B (k)

We now look at A0 and A1, the adversaries against Ind-CCA. The oracle Challengeb responds
differently according to the underlying parameters. It either responds properly using the keys of
user rk0 or user rk1 or c is the encryption of an all zero string. We call these different environments
for 0, 1 and ε, and write B(0), B(1) and B(ε) respectively.

In some cases the Open oracle is unable to respond properly to B. This happens when (m,σ)
is a valid signature pair that has not been returned from Challengeb, but the ciphertext in σ has
been returned from Che. We call these events BBS 0, BBS 1 and BBS ε according to how Challengeb
behaves. The opposite events we call NBBS 0, NBBS 1 and NBBS ε.

We examine how the response of Ab corresponds to the sub algorithm B in the different settings.
The events defined above helps our notation. The easiest case is when b = 0. Then A0 only returns
1 if B returns 1 and NBBS happens.

Pr[ExpInd−CCA−0
A0

= 1] = Pr[B(0) = 1 ∧NBBS 0] (2)

≤ Pr[B(0) = 1]

Pr[ExpInd−CCA−1
A0

= 1] = Pr[B(ε) = 1 ∧NBBS ε] (3)

When b = 1 the algorithm A1 may return 1 also in the case when BBS happens.

Pr[ExpInd−CCA−0
A1

= 1] = Pr[B(ε) = 1 ∧NBBS ε] + Pr[BBS ε] (4)

Pr[ExpInd−CCA−1
A1

= 1] = Pr[B(1) = 1 ∧NBBS 1] + Pr[BBS 1] (5)

≥ Pr[B(1) = 1]

If we look at the algorithm AS we notice that it behaves the same way Ab does when the all
zero message is encrypted. AS succeeds exactly in those cases Ab is unable to open signatures. In

19

these cases AS creates a response y that breaks the simulation soundness. We get

Advsimulation−soundness
AS

= Pr[AS does not return ⊥] = Pr[BBS ε] (6)

We now combine this equation with 3 and 4 and we get

Advsimulation−soundness
AS

= Pr[ExpInd−CCA−0
A1

= 1]− Pr[ExpInd−CCA−1
A0

= 1] (7)

The last case is when Adist participates in Expzk0

Adist
(k). Here the prove oracle simulates the

proofs using a non-random reference string. We can thus compare the probabilities with A0 and
A1 in the Ind-CCA games. The computations follow, where we use the inequalities (2) and (5).

Pr[Expzk0

Adist
(k) = 1] = Pr[B(0) = 0] · Pr[b = 0] + Pr[B(1) = 1] · Pr[b = 1]

=
1

2
(1− Pr[B(0) = 1] + Pr[B(1) = 1])

≤ 1

2
(1− Pr[ExpInd−CCA−0

A0
(k) = 1] + Pr[ExpInd−CCA−1

A1
(k) = 1]

We then combine this with equation 7.

2Pr[Expzk−0
Adist

(k) = 1] ≤ 1 + AdvInd−CCA
A0

(k) + AdvInd−CCA
A1

(k) + AdvSimulation−Soundness
AS

(k)

At last we combine this inequality with equation (1).

Advanonymity
B ≤ 2AdvzkAdist

+AdvInd−CCA
A0

+AdvInd−CCA
A1

+AdvSimulation−soundness
AS

Since this holds for any adversary B, we have proven the lemma.

Lemma 3 If (KS ,Sign,Verify) is a signature scheme which is unforgeable against Chosen Message
Attacks and (P, V) is a proof system that satisfies the soundness property, then our scheme is
traceable.

Proof. Let B be any adversary against Exptraceability(k). We construct an adversary A against
Expunforge−CMA(k).

A(pk; Sig(sk, ·))
1 (pke, ok)← Ke(k)

2 CRS
r← {0, 1}c

3 CurrentUsers ← {}
4 AllUsers ← {}
5 CorruptUsers ← {}
6 gpk ← (k,CRS , pk, pke)
7 (m,σ, t)← B(gpk , ok;AddUser ,CorruptUser ,Revoke,TokenIssue
8 (c, π)← σ
9 (τ, σ2, rk)← Dec(ok, c)

10 return ((rk, t), τ)

We use the default oracles for AddUser, CorruptUser and Revoke, but change TokenIssue.

TokenIssue(rk, t)
1 if t is not a valid time or rk /∈ CurrentUsers
2 then return 0
3 τ ← Sig(sk, (rk, t)) //oracle query
4 return τ

We now look at how the success probability of the algorithms A and B relate. Assume that
B wins the traceability experiment and returns (m,σ) = (m, (t, c, π)). Let x = (pke, pks, t,m, c),

20

following previous notation. It follows that Vρ(x, π) = 1. Since we are assuming that (V, P) is a
sound proof system for the language Lρ, only with a negligible probability is x /∈ Lρ. We can
therefore assume that x ∈ Lρ, i.e. that ∃(rk, τ, σ2, r) such that

Ver(pks, (rk, t), τ) = 1

Ver(rk, (τ,m), σ2) = 1

Enc(pke, (τ, σ2, rk), r) = c.

Since rk /∈ AllUsers we can be sure that the signature τ made of the message (rk, t) was not
made by the signature-oracle. It follows that if B wins the traceability experiment and we ignore
the negligible probability that x /∈ Lρ, A succeeds in producing a forged signature.

Lemma 4 If (KS ,Sign,Verify) is a signature scheme which is unforgeable against Chosen Message
Attacks and (P, V) is a proof system that satisfies the soundness property, then our scheme is non-
frameable.

Proof. Let B be any adversary against Expnon−frame(k). We construct an adversary A against
Expunforge−CMA(k).

A(pk; Sig(sk, ·))
1 (gpk , ok, tik)← KeyGen(k)
2 CurrentUsers ← {}
3 CorruptUsers ← {}
4 usk ← {}
5 N ←MaxUsers(k)

6 v
r← {1, . . . , N}

7 counter ← 0
8 (m,σ, t)← B(gpk , ok, tik ;AddUser ,CorruptUser ,Revoke,Sign
9 (c, π)← σ

10 (τ, σ2, rk)← Dec(ok, c)
11 x← (pke, pks,m, c)
12 if rk = pkand Vρ(x, π) = 1
13 then return ((τ,m), σ2)
14 return 0

We need to modify the oracles AddUser(), CorruptUser(rk) and Sign(rk , τ,m, t). We can use the
default Revoke-oracle.

AddUser()
1 counter ← counter + 1
2 if counter = v
3 then Add pk to CurrentUsers
4 usk [pk]←⊥
5 return pk
6 else Use default AddUser -oracle

CorruptUser(rk)
1 if rk = pk
2 then return failure
3 else Use default CorruptUser -oracle

Sign(rk, τ,m, t)
1 if rk = pkand rk ∈ CurrentUser
2 then σ2 ← Sig(sk, (τ,m))//oracle-query

3 r
r← {0, 1}

4 c← Enc(pke, (τ, σ2, rk), r)

21

5 x← (pke, pks, t,m, c)
6 w ← (rk, τ, σ2, r)
7 π ← Pρ(x,w)
8 σ ← (c, π)
9 return σ

10 else Use default Sign-oracle

Assume that B wins non-frameability experiment and returns (m,σ). Using the notation from
algorithm A we have that rk ∈ CurrentUsers, rk /∈ CorruptUsers and m was not queried to the
Sign-oracle. We also notice that all the keys returned from AddUser are generated by Ks. It follows
that B can not distinguish pk from the normal keys, without asking for the corresponding signing
key. Thus the rk corresponding to the answer of B is equal to pk with a probability of at least
1/N . A may still fail in this case, if x is not a valid statement even if Vρ(x, π) = 1. However this
only happens with a negligible probability under the soundness assumption. We get the following
probabilities

Advnon−frameability
B (k) ≤ 2−k +N ·Advunforge−CMA

A (k)

and the lemma is proven.

Lemma 5 If (KS ,Sign,Verify) is a signature scheme which is unforgeable against Chosen Message
Attacks and (P, V) is a proof system that satisfies the soundness property, then our scheme satisfies
time-non-malleability.

Proof. Let B be any adversary against Exptime−non−mall
B (k). We construct an adversary A against

Expunforge−CMA
A (k).

A(pk; Sig(sk, ·))
1 (pke, ok)← Ke(k)

2 CRS
r← {0, 1}c

3 CurrentUsers ← {}
4 AllUsers ← {}
5 CorruptUsers ← {}
6 gpk ← (k,CRSpk, pke)
7 (m,σ, t)← B(gpk, ok;AddUser ,CorruptUser ,Revoke,TokenIssue
8 (c, π)← σ
9 (τ, σ2, rk)← Dec(ok, c)

10 return ((rk, t), τ)

We use the default oracles for AddUser , CorruptUser and Revoke, but change TokenIssue.

TokenIssue(rk, t)
1 if t is not a valid time or rk /∈ CurrentUsers
2 then return 0
3 τ ← Sig(sk, (rk, t)) //oracle query
4 return τ

We now look at how the success probability of the algorithms A and B relate. Assume that B
wins the time-non-malleability experiment and returns (m,σ, t) = (m, (c, π), t). Let x = (pke, pks, t,m, c),
following previous notation. It follows that Vρ(x, π) = 1. Since we are assuming that (V, P) is a
sound proof system for the language Lρ, only with a negligible probability is x /∈ Lρ. We can
therefore assume that x ∈ Lρ, i.e. that ∃(rk, τ, σ2, r) such that

Ver(pks, (rk, t), τ) = 1

Ver(rk, (τ,m), σ2) = 1

Enc(pke, (τ, σ2, rk), r) = c.

22

Since the TokenIssue-oracle did not issue the τ we now consider, we can be sure that the
signature τ made of the message (rk, t) was not made by the signature-oracle. It follows that if B
wins the experiment and we ignore the negligible probability that x /∈ Lρ, A succeeds in producing
a forged signature.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-resistant
group signature scheme. In CRYPTO, volume 1880 of Lecture Notes in Computer Science, pages 255–
270. Springer, 2000.

2. G. Ateniese, D. Xiaodong Song, and G. Tsudik. Quasi-efficient revocation in group signatures. In
Financial Cryptography, volume 2357 of Lecture Notes in Computer Science, pages 183–197. Springer,
2002.

3. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups. In
CT-RSA, volume 3376 of Lecture Notes in Computer Science, pages 136–153. Springer, 2005.

4. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO, volume 3152 of Lecture
Notes in Computer Science, pages 41–55. Springer, 2004.

5. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In ACM Conference on
Computer and Communications Security, pages 168–177. ACM, 2004.

6. X. Boyen and B. Waters. Compact group signatures without random oracles. IACR Cryptology ePrint
Archive, 2005:381, 2005.

7. X. Boyen and B. Waters. Full-domain subgroup hiding and constant-size group signatures. In Public
Key Cryptography, volume 4450 of Lecture Notes in Computer Science, pages 1–15. Springer, 2007.

8. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT, volume 547 of Lecture Notes in
Computer Science, pages 257–265. Springer, 1991.

9. C. Delerablée and D. Pointcheval. Dynamic fully anonymous short group signatures. In VIETCRYPT,
volume 4341 of Lecture Notes in Computer Science, pages 193–210. Springer, 2006.

10. J. Groth. Fully anonymous group signatures without random oracles. In ASIACRYPT, volume 4833
of Lecture Notes in Computer Science, pages 164–180. Springer, 2007.

11. B. Libert and D. Vergnaud. Group signatures with verifier-local revocation and backward unlinkability
in the standard model. In CANS, volume 5888 of Lecture Notes in Computer Science, pages 498–517.
Springer, 2009.

12. T. Nakanishi and N. Funabiki. A short verifier-local revocation group signature scheme with backward
unlinkability. IEICE Transactions, 90-A(9):1793–1802, 2007.

13. T. Nakanishi, F. Kubooka, N. Hamada, and N. Funabiki. Group signature schemes with membership
revocation for large groups. In ACISP, volume 3574 of Lecture Notes in Computer Science, pages
443–454. Springer, 2005.

23

24

Paper II

Formal Verification of Reductions in Cryptography
Kristian Gjøsteen, George Petrides, and Asgeir Steine

Published in NISK 2010

25

26

Formal Verification of Reductions in
Cryptography

Kristian Gjøsteen, George Petrides, and Asgeir Steine

Department of Mathematical Sciences, NTNU

Abstract. We propose a framework for black-box security reductions
suitable for computer verification. By describing protocols on the level
of interactive state machines, we come up with verifiable conditions suf-
ficient for black-box reductions. As an illustration, we rewrite the stan-
dard security proof for the ElGamal cryptosystem within our framework.

1 Introduction

As the design and analysis of cryptographic protocols develop, it is only natural
that security proofs become longer and more complicated, and thus error-prone
and harder to verify. As a countermeasure, we need to find new ways of presenting
proofs that minimize their verification effort. In particular, the cryptographic
community should aim for a “standard form” for security proofs that is (a)
general so that any reduction proof can be written in that form, (b) easily
verifiable so that even a computer program can verify it and (c) simple enough
so that authors will actually use it.

A large class of security notions in cryptography are phrased in terms of in-
distinguishability games. The most fundamental examples are perhaps Ind-CPA
and Ind-CCA, commonly used to define confidentiality properties for encryption
schemes. Furthermore, the notion of security in the Universal Composability
(UC) framework [3] is formulated in terms of the indistinguishability of the ac-
tual protocol and an ideal functionality composed with a simulator.

In this paper, we propose a framework for presenting black-box reductions
of such indistinguishability games using interactive state machines.

Related Work. The sequences of games method (see for example [12]) provides
a practical way of presenting security proofs, and is used by most authors in the
cryptographic community today. Our approach uses the same idea but is different
in that we represent the games as interactive state machines. In this way, we are
able to formulate conditions for indistinguishability reductions.

Recent work in the field includes the development of CSLR, a logic for poly-
nomial time computational indistinguishability by Zhang [15], and its use by
Nowak and Zhang [7] in the implementation of security protocols and game
indistinguishability proofs. Previously, Nowak [6] had developed a game indis-
tinguishability toolbox for the proof assistant Coq. In contrast to Nowak and

27

Zhang, we adopt the concrete security notion of Bellare et al. [2] and parametrize
the adversary’s resources. A computer implementation of our framework is on-
going work.

Our state machines are similar to the Probabilistic I/O Automata (PIOAs)
of Segala [11]. PIOAs are an alternative to Interactive Turing Machines (ITMs)
for modelling interactive computations. Their extension to Time Bounded Task-
PIOAs by Canetti et al. [4] is used in an effort to develop an analogue of the
UC-framework.

Our notions of interactive state machines and systems generalize those used
in [10] for studying signcryption in the UC-framework. In particular, we consider
probabilistic machines rather than just deterministic ones.

Backes et al. [1] and Sprenger et al. [13] have also been working on automatic
verification of cryptographic protocols.

Outline. The outline of the paper is as follows: In Section 2 we establish the
standard definitions and notation needed for the rest of the paper. In Section 3
we define state machines and systems and develop the necessary theory for their
usage in reductions. In Section 4 we demonstrate the theory by providing a
reduction for the ElGamal cryptosystem. We end the paper with our conclusions
in Section 5.

2 Preliminaries

Throughout the paper, G denotes a multiplicative cyclic group of order p with
generator g. Moreover, we will be frequently using the notions of interactive,
deterministic and probabilistic Turing machines as they appear in [8].

A triple (ga, gb, gc) ∈ G3 is called a DDH-triple if c = ab. Informally, the
Decisional Diffie Hellman (DDH) Assumption states that given a triple in G3, it
is computationally hard to decide whether it is a DDH-triple or not.

In Section 4 we consider ciphertext indistinguishability under chosen plaintext
attack, abbreviated to Ind-CPA security, as defined in [9] under the name of
polynomial security.

For a set of symbols I, a finite string of symbols from I is a sequence of
symbols w1w2 · · ·wn with wi ∈ I for 1 ≤ i ≤ n. We use the letter λ to denote
the empty string. The set of finite strings of symbols from I is denoted by I∗.
Given a string v = v1v2 · · · vn and w ∈ I we will use v||w to denote the appended
string v1v2 · · · vnw.

3 Interactive State Machines

3.1 State Machines

A state machine M is a tuple (S, I, f,W, si), where S is a set of states, I is a
set of inputs, f : S × I → S is a partial function called the transition function,
W ⊆ S is a set of wait states and si ∈ W is the initial state, that satisfies the
following conditions:

28

1. Each state s ∈ S is a tuple of the form (i, ds), where i is the index of the
state, denoted by #s, from some index set #S, and the state data ds ∈ I∗,
the set of finite strings of symbols from I. For example, si = (1, λ).

2. Each s ∈ S is either saving or non-saving to mean that if f(s′, w) = s then
ds = ds′ ||w if s is saving and ds = ds′ if s is non-saving.

3. If we let Si = {s ∈ S | #s = i} and for each w ∈ I let Sw = {s ∈ S | (s, w) ∈
Dom f} ⊆ S then,
(a) s ∈W ⇔ S#s ⊆W .
(b) s ∈ S is saving ⇔ all s′ ∈ S#s are saving.
(c) for any w ∈ I and s, s′ ∈ Sw, #s = #s′ ⇒ #f(s, w) = #f(s′, w).

By the last point, we can define a partial function f̃ : #S×I → #S by f̃(i1, w) =
i2, whenever i2 is the common index of f(s, w) for all states s ∈ Si1 ∩ Sw. For
our future convenience, we also let Alphabet f = {w ∈ I | Sw 6= ∅} and for each
s ∈ S let fs = {w ∈ I | (s, w) ∈ Dom f}.

A sequence of states s1, s2, . . . , sn+1 together with a sequence of inputs
w1, w2, . . . , wn such that f(si, wi) = si+1 for 1 ≤ i ≤ n, form a transition
sequence of length n. We will call a transition sequence of length 1 simply a
transition.

Definition 1. A transition sequence is called proper if it starts and ends in
wait states with only non-wait states in between.

Definition 2. A state machine M is called n-proper if:

P1. Every s ∈ S belongs in a finite transition sequence starting in si and ending
in a wait state,

P2. Any proper transition sequence has length at most n.

Operation. The following informal description gives some insight to the in-
tended operation of state machines.

When the machine is in a wait state s ∈ W , it stops and waits for external
input (that is input given by an external source such as a user or another ma-
chine) in order to proceed, whereas when in a non-wait state s′ 6∈W , it proceeds
to the next state using internal inputs (that is inputs that are not given nor
can be observed by an external source unless output). The final input before
reaching a wait state is given as output.

Diagram Representation. Following our definition, state machines can be
represented by diagrams using the symbols of Figure 1 (µ-interior states are
defined in Subsection 3.3). As an illustrative example, we consider the Coin
Flipping State Machine Mcf of Figure 2. Mcf models the game where a coin is
flipped and then the player is asked to guess whether it is heads or tails. The
machine outputs 1 if the guess is correct and 0 if not. The states and transition
function of Mcf are determined by the diagram.

In many cases, we can obtain a compact representation of state machines
by grouping together all states with the same index and parametrizing the
transitions by the state data. For example, by letting S1 = {(1, λ)}, S2 =

29

initial state wait state non-wait state

µ-interior state single transition multiple transitions

Fig. 1. The symbols used in the diagram representation of state machines.

start

(1, λ)

0

1
(2, λ)

guess

(3, 0)

guess

(3, 1)

0

1

(4, 0)

1

0

(4, 1)

1

(5, 00)
0

(5, 01)
0

(5, 10)
1

(5, 11)

(6, 00)

(6, 01)

(6, 10)

(6, 11)

Fig. 2. The Coin Flipping State Machine Mcf .

{(2, λ)}, S3 = {(3, b) | b ∈ {0, 1}}, S4 = {(4, b) | b ∈ {0, 1}}, S5 = {(5, bb∗) |
b, b∗ ∈ {0, 1}}, and S6 = {(6, bb∗) | b, b∗ ∈ {0, 1}}, we can represent the coin
flipping machine as in Figure 3.

S1

start

S2

b ∈ {0, 1}

S3

guess

S4

b∗ ∈ {0, 1}

S5

1⊕ b⊕ b∗

S6

Fig. 3. Compact Representation of the Coin Flipping Machine Mcf .

To resolve non-determinism whenever there are multiple transitions out of a
non-wait state, we associate a probability measure with each state machine, as
seen in the next subsection.

3.2 Systems

A probability measure on a machine M = (S, I, f,W, si) is a function δM :
((S \ W) × I) ∩ Dom f → [0, 1] such that for any state s 6∈ W with fs 6=
∅, ∑

w∈fs δM (s, w) = 1. A pair ΣM = (M, δM) forms a system. A system is
deterministic if Im δM = {0, 1}.

30

Intuitively, δM (s, w) gives the probability that the internal input w is used
to proceed from state s to the next state.

Definition 3. Consider a system (M, δM). Given s 6∈W , we say we δM -sample
w from fs if for each x ∈ fs, Pr[w = x] = δM (s, x). We denote it by w ←δM fs.

Procedure 1 describes the behaviour of the system ΣM = (M, δM) that when in
a wait state is given input x. In words, if the next state is not a wait state, the
system will δM -sample inputs and use them to transition until it enters a wait
state.

Procedure 1: ΣM () (ΣM is in any state s ∈W)

input: x ∈ I
1. if (s, x) 6∈ Dom f then return ⊥
2. s← f(s, x)
3. while s 6∈W do

(a) x←δM fs
(b) s← f(s, x)

4. return x

The Coin Flipping Machine Mcf of Figure 3 can be made into a system by
defining a probability measure δMcf

. For example, if we want the coin to be fair,
this can be done by defining

δMcf
(s, w) =

1
2 if #s = 2 and w ∈ {0, 1}
1 if #s = 3 and w = guess

1 if s = (5, d1, d2) and w = 1 + d1 + d2 ∈ {0, 1}
.

3.3 Maps Between State Machines

Let M = (S, I, f,W, si) and N = (T, J, g, V, ti) be machines and let µ : S → T
be a function.

Definition 4. The µ-Interior of M is the set Sµ = {s ∈ S | µ(s) ∈ T \ V }.
We can now classify inputs according to the type of the transitions that contain
them as follows:
Ii = {w ∈ I | ∃ s ∈ Sw such that s, f(s, w) ∈ Sµ}, the inputs in µ-interior to
µ-interior transitions,
Io = {w ∈ I | ∃ s ∈ Sw such that s, f(s, w) 6∈ Sµ}, the inputs in non-µ-interior
to non-µ-interior transitions,
Ioi = {w ∈ I | ∃ s ∈ Sw such that s 6∈ Sµ, and f(s, w) ∈ Sµ}, the inputs in
non-µ-interior to µ-interior transitions, and
Iio = {w ∈ I | ∃ s ∈ Sw such that s ∈ Sµ, and f(s, w) 6∈ Sµ}, the inputs in
µ-interior to non-µ-interior transitions.

31

Definition 5. A transition sequence in M is µ-proper if its first and last states
are its only states from S \ Sµ.

Definition 6. A function µ : S → T such that µ(si) = ti and µ(W) ⊆ V is
called:

1. Alphabet-separating if Io, Ii, Iio and Ioi are pairwise disjoint.
2. Sequence-preserving if for any s ∈ S \ Sµ and w ∈ Io we have (s, w) ∈

Dom f ⇒ µ(s) = µ(f(s, w)),
3. A map between the machines M and N , denoted by µ : M → N , if it is onto,

alphabet separating and sequence preserving, Dom g = {(µ(s), w) | (s, w) ∈
Dom f and w 6∈ Io} and for all (s, w) ∈ Dom f ,

g(µ(s), w) =

{
µ(f(s, w)) if (s, w) ∈ Dom f and w ∈ Ioi ∪ Ii ∪ Iio
undefined otherwise

.

4. Normal if for every s ∈ Sµ, the index of the first state of all µ-proper transi-
tion sequences that contain a state s′ ∈ S#s is the same.

By alphabet-separation, we can define s|µ = (#s, ds|Ii), where for any d ∈
I∗, d|Ii denotes removing from d any symbols from Ii.

Let #Sµ = {#s | s ∈ Sµ} and #(S \ Sµ) = {#s | s ∈ S \ Sµ}. By normality
we can define a function ξ : #Sµ → #(S \ Sµ) by ξ(i1) = i2, where i2 is the
common index of the first states of all µ-proper transition sequences that contain
a state s ∈ Si1 .

Finally, when µ is a map between the machines M and N , we have by con-
structon that Alphabet g = Alphabet f \ Io.

Definition 7. A map µ : M → N is called a reduction map if it is normal and

R1. For any w ∈ Iio and s, s′ ∈ Sw, ξ(#s) = ξ(#s′)⇒ #f(s, w) = #f(s′, w),
R2. For any s, s′ ∈ S \ Sµ we have s|µ = s′|µ ⇔ fs = fs′ .

By Condition R1, the last states of all µ-proper transition sequences starting in
states with the same index and containing w ∈ Iio have the same index. Hence
we can define a partial function h : #(S \Sµ)×Iio → #(S \Sµ) by h(i1, w) = i2,
whenever i2 is the common index of the last states of all µ-proper transition
sequences starting in states with index i1 and containing w.

Definition 8. Two systems (M, δM) and (N, δN) are called µ-compatible if
there exists a reduction map µ : M → N and

C1. for all (s, w) ∈ Dom δM for which (µ(s), w) ∈ Dom δN we have δM (s, w) =
δN (µ(s), w),

C2. for any w ∈ Io∪Ioi and s, s′ ∈ Sw∩(S\W) we have s|µ = s′|µ ⇒ δM (s, w) =
δM (s′, w).

32

3.4 Reduced Systems

Let µ : M → N be a reduction map. We define map ω with domain S by

ω(s) =

{
((#s, 0), ds|µ) if s 6∈ Sµ
((ξ(#s), 1), ds|µ) if s ∈ Sµ

.

Let S̄ = ω(S), W̄ = ω(W)∪ω(Sµ) and s̄i = ω(si). We define the partial function
f̄ : S̄ × I → S̄ by

f̄(s̄, w) = f̄(((i, b), ds̄), w)

=

((f̃(i, w), 0), d∗s̄) if w ∈ Io and s̄ ∈ ω(Sw) (b = 0)

((i, 1), d∗s̄) if w ∈ Ioi and s̄ ∈ ω(Sw) (b = 0)

((h(i, w), 0), d∗s̄) if (i, w) ∈ Domh (w ∈ Iio and b = 1)

undefined otherwise

,

where d∗s̄ =

{
ds̄ if s̄ is not saving

ds̄||w if s̄ is saving
.

Note that by construction, Alphabet f̄ = (Alphabet f) \ Ii.
Proposition 1. The tuple Rµ = (S̄, I, f̄ , W̄ , s̄i) is a state machine.

Proof. It is easy to see that s̄i ∈ W̄ ⊆ S̄ and f̄ is a partial function as, since
both f̃ and h are partial functions, it has a unique image for each element in
its domain. Moreover, each state in S̄ is a tuple of the required form (#s̄, ds̄),
where #s̄ is a tuple itself from #S×{0, 1}. We next show that f̄ has co-domain
S̄.

In the first case, since b = 0 there exists s1 ∈ S \ Sµ such that ω(s1) = s̄,
that is #s1 = i and ds1 |Ii = ds̄. Since s̄ ∈ ω(Sw) there also exists s2 ∈ (S \ Sµ)

such that f(s1, w) = s2, implying that #s2 = f̃(i, w) and ds2 = d∗s1 . Since

w 6∈ Ii, d∗s1 |Ii = d∗s̄ and hence ω(s2) = ((f̃(i, w), 0), d∗s̄) ∈ S̄.
In the second case, since b = 0 there exists s1 ∈ S \ Sµ such that ω(s1) = s̄,

that is #s1 = i and ds1 |Ii = ds̄. Since s̄ ∈ ω(Sw) there also exists s2 ∈ Sµ such
that f(s1, w) = s2 implying that ξ(#s2) = i and ds2 = d∗s1 . As before, since
w 6∈ Ii we have d∗s1 |Ii = d∗s̄ and hence ω(s2) = ((i, 1), d∗s̄) ∈ S̄.

Finally, in the third case, since b = 1 there exists s1 ∈ Sµ such that ω(s1) = s̄,
that is ξ(#s1) = i and ds1 |Ii = ds̄. Next, (i, w) ∈ Domh implies that there exists
s2 ∈ S \ Sµ such that f(s1, w) = s2 with #s2 = h(i, w) and ds2 = d∗s1 . Once
more, since w 6∈ Ii we have d∗s1 |Ii = d∗s̄ and hence ω(s2) = ((h(i, w), 0), d∗s̄) ∈ S̄.

We call the state machine Rµ the µ-reduced machine of M and N .

Proposition 2. Let (M, δM) and (N, δN) be µ-compatible systems. Then
(Rµ, δRµ) is a system where δRµ : (S̄ \ W̄ × I) ∩Dom f̄ → [0, 1] is the following
probability measure induced by δM :

δRµ(s̄, w) = δM (s, w), where s ∈ S such that ω(s) = s̄. (1)

33

Proof. s̄ = ((i, b), ds̄) ∈ S̄ \ W̄ implies that b = 0 and (s̄, w) ∈ Dom f̄ further
implies that w ∈ Io ∪ Ioi and s̄ ∈ ω(Sw). Condition C2 guarantees that δRµ has
a unique image for each element in its domain, and consequently that it is a
function.

By Condition R2, for any s1, s2 ∈ Si such that ω(s1) = ω(s2) = s̄, we
have fs1 = fs2 . We also have that s̄ ∈ ω(Sw′) for all w′ ∈ fs1 which implies
(s̄, w′) ∈ Dom f̄ and hence fs1 = f̄s̄. Therefore, for every s ∈ S such that
ω(s) = s̄ we have

∑
w∈f̄s̄ δRµ(s̄, w) =

∑
w∈fs δM (s, w) = 1 , as required for

(Rµ, δRµ) to be a system.

We call (Rµ, δRµ) the µ-reduced system of (M, δM) and (N, δN).

3.5 Interleaving of Systems

Procedure 2 describes (ΣN +ΣRµ), the interleaving of systems ΣN and ΣRµ . As
we show in Proposition 3, this interleaving behaves in essentially the same way
as ΣM , a key result for the proof of our main result, Theorem 1.

Procedure 2: (ΣN + ΣRµ)() (ΣN is in any state t ∈ V and ΣRµ in any
state s̄ ∈ W̄)

input: x ∈ I
1. z ← ΣRµ(x)
2. if z 6=⊥ then

(a) y ← ΣN (x)
(b) if y 6=⊥ then z ← ΣRµ(y)
(c) while z ∈ Ioi do

i. y ← ΣN (z)
ii. z ← ΣRµ(y)

3. return z

Proposition 3. Let ΣM and ΣN be µ-compatible systems in states s ∈W and
µ(s) respectively. Let ΣRµ be their µ-reduced system in state ω(s). Then, for any
sequence of inputs x, y1, . . . , yn,

1. Pr[y1, . . . , yn is sampled when ΣM (x) is run] = Pr[y1, . . . , yn is sampled when
(ΣN +ΣRµ)(x) is run],

2. if (ΣN +ΣRµ)(x) = ΣM (x) and ΣM is in state s′ then ΣN and ΣRµ are in
states µ(s′) and ω(s′) respectively.

The proof of Proposition 3 is a case by case comparison of (ΣN +ΣRµ) and ΣM .

3.6 Simulation of Systems

Let ΣM = (M, δM) be a system, with M = (S, I, f,W, si). We say that a triple
XΣM = (Xw, Xs, Xt) of Turing machines TM-simulates ΣM if Xs is a probabilis-
tic machine and Xw and Xt are deterministic machines such that Xw recognises
wait states, Xt for given s and w models the transition function f(s, w) and Xs

assigns to each state s a random input w with probability δM (s, w).

34

Definition 9. A system ΣM is simulatable if there exists a triple XΣM that
TM-simulates it.

Let (Xs, Xt, Xw) TM-simulate ΣM and let Z be any interactive Turing ma-
chine (ITM). Let IXΣM be the ITM that runs internal copies of Xs, Xt and Xw

and during an interaction with Z, which it starts with s = si, follows Procedure 3
whenever Z outputs message x and gives control to IXΣM .

Procedure 3: The behaviour of IXΣM after Z outputs message x during
an interaction with IXΣM

1. if x ∈ {0, 1} then halt
2. if Xt(s, x) =⊥ then output ⊥ and return control to Z
3. s← Xt(s, x)
4. while Xw(s) 6= 1 do

(a) x← Xs(s)
(b) s← Xt(s, x)

5. output x and return control to Z

We call the interaction between IXΣM and Z an execution of Z and ΣM .
Procedure 3 is a Turing machine realization of Procedure 1.

Definition 10. A system ΣM is T∗-responsive if there exists a triple XΣM that
TM-simulates ΣM such that for any s ∈ W and w ∈ I, the time used by IXΣM
to run Procedure 3 from state s is bounded by T∗.

3.7 Indistinguishability of Systems

We define EΣM ,Z as the event ”during an execution with ΣM , Z outputs 1”.

Definition 11. Two simulatable systems ΣM,0 and ΣM,1 are (T0, k, ε)-indistinguish-
able if for any ITM Z bounded by running time T0 and at most k outputs in
total, it holds that

Adv(Z,ΣM,0, ΣM,1) = |Pr[EΣM,0,Z]− Pr[EΣM,1,Z]| ≤ ε . (2)

Furthermore, if Inequality (2) does not hold for a given Z, we will call it a
(T0, k, ε)-distinguisher.

Theorem 1. Let M be an n-proper state machine and ΣM,i = (M, δM,i) and
ΣN,i = (N, δN,i) be µ-compatible simulatable systems for i ∈ {0, 1}. If

1. the probability measures δRµ,i induced on Rµ by δM,i as in Equation (1) are
equal,

2. ΣRµ = (Rµ, δRµ) is T∗-responsive, where δRµ = δRµ,i,

35

then for any (T0, k, ε)-distinguisher Z for ΣM,0 and ΣM,1, there exist a (T0 +
nk(T∗ + c), nk, ε)-distinguisher for ΣN,0 and ΣN,1, where c is the time required
to determine the type of a given input w ∈ Io ∪ Ioi ∪ Iio.

Proof. Since ΣN,i and ΣRµ are all simulatable for i ∈ {0, 1}, there exist ITMs
CN,i+Rµ that model the behaviour of (ΣN,i + ΣRµ). Let Z be a (T0, k, ε)-
distinguisher for ΣM,0 and ΣM,1. By Proposition 3, an interaction of Z with
CN,i+Rµ as in Procedure 4 is identical to an execution of Z and ΣM,i for
i ∈ {0, 1}, and therefore the probability that Z outputs 1 is the same in both
cases. Therefore, if we let ΣN be one of ΣN,i, then Z interacting with CN+Rµ

as in Procedure 4 gives a distinguisher for (N, δN,i).

Procedure 4: Interaction of Z and CN+Rµ

1. Z outputs x
2. while x 6∈ {0, 1} do

(a) u← CN+Rµ(x)
(b) send u to Z and obtain new output x

3. return x

By definition of Z, CN+Rµ(x) is invoked at most k times, and each time,
ΣRµ(x) and ΣN (x) are run internally at most n times. Each run of ΣRµ(x) is
at simulation time cost T∗ and after each run, a type check of the output is
performed at time cost c. The total runtime of Z is bounded by T0. Summing
up, the new distinguisher is a (T0 + nk(T∗ + c), nk, ε)-distinguisher as required.

4 Application to the ElGamal Cryptosystem

In this section we use the state machine theory we have developed to prove that
the ElGamal cryptosystem described in [5] is Ind-CPA secure, a result already
established in [14]. The idea is to construct systems that model the underly-
ing hard problem of the ElGamal cryptosystem, namely the DDH assumption,
and the Ind-CPA game for ElGamal, and then apply Theorem 1 to obtain the
required indistinguishability result.

The two systemsΣNDDH ,i for i ∈ {0, 1} formed by pairing the machineNDDH
of Figure 5 with each of the probability measures δNDDH ,i of Table 3, model the
DDH assumption, which translates to saying that ΣNDDH ,0 and ΣNDDH ,1 are
(T0, 2, ε)-indistinguishable for some large value T0 and small value ε.

Next, consider the four systems ΣMElG,i1i2 for i1, i2 ∈ {0, 1} obtained by
pairing the machine MElG of Figure 4, which is 4-proper as by Definition 1,
with each of the probability measures δMElG,i1i2 of Table 1. For i1 = 0, the two
systems ΣMElG,0i2 model the Ind-CPA game for ElGamal. Moreover, it is a fact
that ΣMElG,10 and ΣMElG,11 are (T ′0, k

′, 0)-indistinguishable for any T ′0 and any
k′ as they model random encryption of messages.

We are now in a position to define a map µ between machines MElG and
NDDH , as shown in Figure 6. The alphabet subsets are Io = G, Ii = Zp, Iio = G
and Ioi = {start, bl}. Note that in the way machine MElG is described, µ will

36

not be alphabet separating since Io = Iio. This can be overcome by encoding
the group elements in two different ways. The seemingly redundant transition
arrows with input bl are used to separate inputs into the desired input subsets.

It is straightforward to check that µ satisfies all of the conditions for a re-
duction map and hence we can construct the µ-reduced machine Rµ, given in
Figure 7. Furthermore, by comparing Table 1 with Table 3, it is straightfor-
ward to verify that the systems ΣMElG,i1i2 and ΣNDDH ,i1 are µ-compatible for
i1, i2 ∈ {0, 1}. Let ΣRµ,i1i2 = (Rµ, δRµ,i1i2) be the corresponding four µ-reduced
systems, where δRµ,i1i2 is defined as in Equation (1) and given in Table 3. Since
these are independent of i1, we deduce that the two µ-reduced systems ΣRµ,i10

are the same, and so are ΣRµ,i11.
Note that all the systems we have defined are simulatable. Also, since the

most computationally expensive transition in ΣRµ,i1i2 is the multiplication of
two elements in G, these systems are T∗-responsive for some small constant T∗.

Now, suppose that there exists a (T0, k, 2ε)-distinguisher Z for the systems
ΣMElG,00 and ΣMElG,01. By the triangle inequality and the fact that
Adv(Z,ΣMElG,10, ΣMElG,11) = 0, we have 2ε ≤ Adv(Z,ΣMElG,00, ΣMElG,01) ≤
Adv(Z,ΣMElG,00, ΣMElG,10) + Adv(Z,ΣMElG,01, ΣMElG,11). Therefore, we must
have Adv(Z,ΣMElG,0i2 , ΣMElG,1i2) ≥ ε for at least one i2 ∈ {0, 1}. Thus, Z gives
rise to a (T0, k, ε)-distinguisher for at least one of the pairs (ΣMElG,0i2 , ΣMElG,1i2).

Since all the conditions of Theorem 1 are satisfied, we deduce that any
(T0, k, ε)-distinguisher Zi2 for the systems ΣMElG,0i2 and ΣMElG,1i2 , for i2 ∈
{0, 1}, gives rise to a (T0 + 4k(T∗ + c), 4k, ε)-distinguisher Z ′i2 for the systems
ΣNDDH ,0 and ΣNDDH ,1.

We have shown that any (T0, k, 2ε)-distinguisher for the systems ΣMElG,00

and ΣMElG,01 modelling the Ind-CPA security of the ElGamal cryptosystem
gives rise to a (T0 + 4k(T∗+ c), 4k, ε)-distinguisher for the systems ΣNDDH ,0 and
ΣNDDH ,1 modelling the DDH assumption.

S1

start

S2

a ∈ Zp

S3

x = ga

S4

m0 ∈ G

S5

m1 ∈ G

S6

bl

S7

r ∈ Zp

S8

y = gr

S9

bl

S10

c ∈ Zp

S11

z = gar

z = gc S12

zm0

zm1 S13

Fig. 4. The state machine MElG. Its state sets are given in Table 1.

T1

start

T2

a ∈ Zp

T3

x = ga

T4

bl

T5

r ∈ Zp

T6

y = gr

T7

bl

T8

c ∈ Zp

T9

z = gar

z = gc T10

Fig. 5. The state machine NDDH . Its state sets are given in Table 2.

37

S1

start

T1

start

S2

a

T2

a

S3

x = ga

T3

x = ga

S4

m0

T4

bl

S5

m1

S6

bl

S7

r

T5

r

S8

y = gr

T6

y = gr

S9

bl

T7

bl

S10

c

T8

c

S11

z = gar

z = gc

T9

z = gar

z = gc

S12

zm0

zm1

T10

S13

Fig. 6. The reduction map µ between MElG and NDDH .

S̄1

start

S̄2

x ∈ G

S̄3

m0 ∈ G

S̄4

m1 ∈ G

S̄5

bl

S̄6

y ∈ G

S̄7

bl

S̄8

z ∈ G

S̄9

zm0

zm1 S̄10

Fig. 7. The reduced state machine Rµ. Its state sets are given in Table 2.

MElG δMElG,i1i2((j, d1 . . . dn), w)

S1 = {(1, λ)}
S2 = {(2, λ)}
S3 = {(3, a) | a ∈ Zp}
S4 = {(4, a) | a ∈ Zp}
S5 = {(5, am0) | a ∈ Zp, m0 ∈ G}
S6 = {(6, am0m1) | a ∈ Zp, m0,m1 ∈ G}
S7 = {(7, am0m1) | a ∈ Zp, m0,m1 ∈ G}
S8 = {(8, am0m1r) | a, r ∈ Zp, m0,m1 ∈ G}
S9 = {(9, am0m1r) | a, r ∈ Zp, m0,m1 ∈ G}
S10 = {(10, am0m1r) | a, r,∈ Zp, m0,m1 ∈ G}
S11 = {(11, am0m1rc) | a, r, c ∈ Zp, m0,m1 ∈ G}
S12 = {(12, am0m1rcz) | a, r, c ∈ Zp, m0,m1, z ∈ G}
S13 = {(13, am0m1rcz) | a, r, c ∈ Zp, m0,m1, z ∈ G}

1
p

if j ∈ {2, 7, 10} and w ∈ Zp
1 if j = 6 and w = bl

1 if j ∈ {3, 8} and w = gdn

1 if j = 11, w = gd1·d3 and i1 = 0

1 if j = 11, w = gdn and i1 = 1

1 if j = 12, w = d2 · dn and i2 = 0

1 if j = 12, w = d3 · dn and i2 = 1

Table 1. The sets of states of machine MElG and the probability measures δMElG,i1i2

38

NDDH Rµ

T1 = {(1, λ)}
T2 = {(2, λ)}
T3 = {(3, a) | a ∈ Zp}
T4 = {(4, a) | a ∈ Zp}
T5 = {(5, a) | a ∈ Zp}
T6 = {(6, ar) | a, r ∈ Zp}
T7 = {(7, ar) | a, r ∈ Zp}
T8 = {(8, ar) | a, r,∈ Zp}
T9 = {(9, arc) | a, r, c ∈ Zp}
T10 = {(10, arc) | a, r, c ∈ Zp}

S̄1 = {((1, 0), λ)}
S̄2 = {((1, 1), λ)}
S̄3 = {((4, 0), λ)}
S̄4 = {((5, 0),m0) | m0 ∈ G}
S̄5 = {((6, 0),m0m1) | m0,m1 ∈ G}
S̄6 = {((6, 1),m0m1) | m0,m1 ∈ G}
S̄7 = {((9, 0),m0m1) | m0,m1 ∈ G}
S̄8 = {((9, 1),m0m1) | m0,m1 ∈ G}
S̄9 = {((12, 0),m0m1z) | m0,m1, z ∈ G}
S̄10 = {((13, 0),m0m1z) | m0,m1, z ∈ G}

Table 2. The sets of states of machines NDDH and Rµ

δNDDH ,i((j, d1 . . . dn), w) δRµ,i1i2((j, d1 . . . dn), w)
1
p

if j ∈ {2, 5, 8} and w ∈ Zp
1 if j ∈ {3, 6} and w = gdn

1 if j = 9, w = gd1·d3 and i = 0

1 if j = 9, w = gdn and i = 1

1 if j = 5 and w = bl

1 if j = 9, w = d1 · dn and i2 = 0

1 if j = 9, w = d2 · dn and i2 = 1

Table 3. The probability measures δNDDH ,i and δRµ,i1i2

5 Conclusions

In this paper we have developed a new framework for providing black-box reduc-
tions for cryptographic protocols. By representing security games and assump-
tions by state machines, providing a reduction is equivalent to providing a map
having certain properties between the state machines. The potential of these
properties for automated verification could allow for error-free reductions.

Plans for future work include application of the technique to more complex
protocols and investigating the possibility for the extension to non-black-box
reductions.

References

1. M. Backes and C. Jacobi: Cryptographically Sound and Machine-Assisted Verifica-
tion of Security Protocols, Proc. STACS 2003, LNCS 2607 (2003), 675–686, Springer.

2. M. Bellare, J. Kilian, P. Rogaway: The Security of Cipher Block Chaining, Proc.
CRYPTO 1994, LNCS 839 (1994), 341–358, Springer.

3. R. Canetti: Universally Composable Security: A New Paradigm for Cryptographic
Protocols, Report 2000/067, IACR ePrint Archive (2005).

4. R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira and R. Segala:
Analyzing Security Protocols Using Time-Bounded Task-PIOAs, Discrete Event
Dyn. Syst., Vol. 18, (2008), 111–159, Springer.

39

5. T. Elgamal: A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms, IEEE Trans. Inf. Theory, Vol. 31, (1985), 469–472.

6. D. Nowak: On Formal Verification of Arithmetic-Based Cryptographic Primitives,
Proc. ICISC 2008, LNCS 5461 (2009), 368–382, Springer.

7. D. Nowak and Y. Zhang: A Calculus for Game-based Security Proofs, Report
2010/230, IACR ePrint Archive (2010).

8. O. Goldreich: Foundations of Cryptography, Cambridge University press (2001).
9. S. Goldwasser and S. Micali: Probabilistic Encryption, Journal of Computer and

System Sciences, Vol. 28 (1984), 270–299.
10. L. Kr̊akmo: Privacy Preserving Protocols and Security Proof Techniques, PhD-

Thesis, NTNU (2009).
11. R. Segala: Modeling and Verification of Randomized Distributed Real-time Sys-

tems. PhD-Thesis, MIT (1995).
12. V. Shoup: Sequences of Games: A Tool for Taming Complexity in Security Proofs,

Report 2004/332, IACR ePrint Archive (2004).
13. C. Sprenger and D. Basin: A Monad-Based Modeling and Verification Toolbox

with Application to Security Protocols, Proc. TPHOLs 2007, LNCS 4732 (2007),
302–318, Springer.

14. Y. Tsiounis and M. Yung: On the Security of ElGamal Based Encryption, Proc.
PKC 1998, LNCS 1431 (1998), 117–134, Springer.

15. Y. Zhang: The Computational SLR: A Logic for Reasoning about Computational
Indistinuishabilty, Proc. TLCA 2009, LNCS 5608 (2009), 401–415, Springer.

40

Paper III

A Novel Framework for Protocol Analysis
Kristian Gjøsteen, George Petrides and Asgeir Steine

Published in JISIS vol. 1, issue 2/3 2011
(Extended abstract published in ProvSec 2011)

41

42

A Novel Framework for Protocol Analysis?

Kristian Gjøsteen, George Petrides, and Asgeir Steine

NTNU, Trondheim, Norway

Abstract. We describe a novel reformulation of Canetti’s Universal
Composability (UC) framework for the analysis of cryptographic proto-
cols. Our framework is different mainly in that it is (a) based on systems
of interactive Turing machines with a fixed communication graph and
(b) augmented with a global message queue that allows the sending of
multiple messages per activation. The first feature significantly simpli-
fies the proofs of some framework results, such as the UC theorem, while
the second can lead to more natural descriptions of protocols and ideal
functionalities. We illustrate how the theory can be used with several
examples.

Keywords: Protocol Security, Universal Composability.

1 Introduction

Protocol analysis is arguing whether a given protocol has desirable functional and
security properties or not. Canetti [2] introduced the Universal Composability
framework, which has since become the most common model for analysis of
cryptographic protocols (although there are other more or less equivalent models
[7]).

In Canetti’s framework, analysis begins by defining a so-called ideal function-
ality that encapsulates some desired functionality and security properties in the
form of a trusted third party. The idea is to compare a cryptographic protocol
with this ideal functionality. If the protocol is in a specific sense indistinguishable
from the functionality, we say that the protocol realises the functionality. If the
functionality has the desired functional and security properties, then so will the
protocol.

However, Canetti’s definitions have more powerful properties. The most inter-
esting property is that of composability, where any subprotocol can be replaced
by an ideal functionality that is realised by the subprotocol. This is interesting
from a practical point of view, since ideal functionalities are typically much eas-
ier to work with than cryptographic protocols. Replacing subprotocols by ideal
functionalities can therefore simplify analysis.

We note that ideal functionalities are also used to provide ideal models for
the facilities underlying protocols, such as communication networks, common
reference strings, random oracles, out-of-band key agreement, etc.

? An extended abstract of this paper has been published in LNCS 6890, Springer, pp.
340–347, 2011.

43

One interesting feature of Canetti’s approach is a strong preference for study-
ing the single-session case, since this significantly simplifies analysis. The multi-
session analysis follows from the single-session case by composing multiple in-
stances. For many protocols, this approach is quite simply not feasible (see [4]
for one example). In other cases, multi-session analysis may result in tighter
concrete results (the key agreement functionality in Sect. 5.3 is one example).

Some drawbacks of Canetti’s framework are more apparent in the setting of
anonymous communications. One such drawback is that all protocol machines
must agree on a unique session identifier before the execution. This is awkward
because the anonymity requirements explicitly forbid most obvious approaches
for agreeing on session identifiers.

Another drawback is the way the activation of interactive Turing machines
(ITMs) is handled. When an ITM wants to send a message to another ITM,
it has to write the message to the appropriate communication tape and stop
its execution. The message recipient is activated, but the sender cannot control
when itself will be reactivated.

Our contribution. Based on our ongoing work with practical protocols (among
others with anonymous communications and electronic elections), we have devel-
oped a reformulation of Canetti’s framework in terms of systems of ITMs where
communication is regulated by a fixed communication graph.

In this paper we formally describe this reformulation, for which we also de-
fine the notions of emulation and realisation, and prove the usual composition
theorem from [2]. Additionally, we provide several examples that demonstrate
various framework features.

There are two main differences between our formulation and that of Canetti:

– Canetti uses a very dynamic setting, where instances of ITMs come into
existence as needed. Instead, we consider a fixed system of ITMs with com-
munication regulated by a fixed communication graph.

– We augment Canetti’s system of activation with a message queue, where
ITMs can submit multiple messages into the queue for later delivery. More-
over, ITMs can send messages to themselves and, therefore, also self-reactivate
once all previously enqueued messages have been processed.

Since we use a fixed system of ITMs and a fixed communication graph, we
shall usually let our protocol machines handle multiple sessions. As we have
already argued, this is already necessary for some protocols, and may have other
advantages as well.

The main advantage of adding a message queue is to get simpler and more
natural protocol descriptions. In the field of anonymous communications, this
also gives us quite natural solutions to certain problems that seem difficult to
solve in Canetti’s framework.

A final advantage of our formulation is that it significantly simplifies proofs
of framework results. For instance, the proof of our composition theorem is
essentially contained in the drawing given in Fig. 2.

44

We follow the concrete security approach of [1], which we believe is essential
for practical applications. Canetti uses local resource bounds on the parts of
the system that imply global resource bounds for the entire system. Instead, we
consider systems that “usually terminate”, without exceeding global resource
bounds. In our experience, this simplifies many arguments significantly.

Overview. Section 2 provides the basic definitions for systems and partial sys-
tems of interactive Turing machines. Once we have a notion of executions of sys-
tems, in Sect. 3 we introduce the notion of indistinguishable systems and partial
systems, and prove some basic results about indistinguishability. Section 4 de-
fines the notion of emulation and proves our composition theorem. Finally, our
framework is illustrated via examples in Sect. 5, before our conclusions appear
in Sect. 6.

1.1 Definitions

An unordered pair is a set with one or two elements.
Our graphs will be undirected multigraphs with loops. A graph is a tuple

(V,E, λ), where V is a set of vertices, E is a set of edges and λ is a function that
assigns an unordered pair of vertices to every edge.

An interactive Turing machine (ITM) is a Turing machine with one read-
and-write working tape and five other tapes: random, input, incoming commu-
nication, output, and outgoing communication. The first three are read-only,
the latter two are write-only. The ITM may enter a special wait state, in which
processing temporarily stops, but may be resumed later from the same state.
We refer the reader to [5] for more information on ITMs.

2 Systems of Interactive Turing Machines

In this section we introduce the notion of a system, essentially an assignment
of ITMs to vertices in an undirected multigraph where the edges in the graph
decide which ITMs can communicate with each other. An execution of such a
system begins by activating the ITM instance attached to the initial vertex.
Each active instance may add any number of messages to the message queue.
When done, the active instance may choose to deliver a message immediately to
another instance, thereby activating it, or deliver the first message in the queue,
activating its recipient.

We also define partial systems, essentially systems with “loose edges” at-
tached to vertices in the system. Partial systems can be composed by composing
the communication graphs and replacing identical “loose edges” with real edges.

2.1 Definitions

A system Σ = (V,E, λ, v0,M) consists of the following:

– A communication graph (V,E, λ).

45

– A distinguished initial vertex v0 ∈ V .
– A function M that assigns an ITM to each v ∈ V . We denote this ITM by
Mv.

The communication graph can have parallel edges, and we shall assume that
every vertex has a loop.

A partial system Π = (W,F, λ′, N,X, κ) consists of a graph (W,F, λ′), a
function N that assigns an ITM to each v ∈ W , a set X of external edges
(disjoint from the internal edges F) and a function κ : X → W that assigns a
vertex to every external edge.

A partial system is initial if a vertex is designated as initial. Two partial
systems are interchangeable if they have identical external edges, and they are
either both initial or both not initial.

Two partial systemsΠ1 = (W1, F1, λ
′
1, N1, X1, κ1) andΠ2 = (W2, F2, λ

′
2, N2,

X2, κ2) are composable if they are not both initial and have disjoint vertex
and edge sets. Their composition, denoted by Π1 � Π2, is the partial system
Π3 = (W3, F3, λ

′
3, N3, X3, κ3), where:

– W3 = W1 ∪W2,

– F3 = F1 ∪ F2 ∪ (X1 ∩X2),

– λ′3(e) =

λ′1(e) if e ∈ F1,

λ′2(e) if e ∈ F2,

{κ1(e), κ2(e)} if e ∈ X1 ∩X2,

– N3,v =

{
N1,v if v ∈W1,

N2,v if v ∈W2,

– X3 = (X1 ∪X2) \ (X1 ∩X2), and

– κ3(e) =

{
κ1(e) if e ∈ X1,

κ2(e) if e ∈ X2.

If either Π1 or Π2 is initial, then so is Π1 � Π2. If Π1 � Π2 is initial and
has no external edges then it is a system and we say that Π1 completes Π2 (and
vice versa).

Remark 1. Given two interchangeable partial systems, a third partial system
may be composable with only one of them due to conflicts with vertices or inter-
nal edges in the other. For the same reason, several other natural and desirable
operations, such as the composition of a partial system with itself, are forbidden
by the above constructions.

The simple solution to this technical problem is to rename edges. We shall
assume that such renaming can be done without cost. Also, trivial renaming will
typically go unmentioned.

2.2 Execution Model

An execution of a system Σ = (V,E, λ, v0,M) works with the following state:

46

– For each vertex v ∈ V , one instance of the ITM Mv.
– A message queue Q containing tuples V × E × {0, 1}∗.

When the execution starts, any input to the system is written to the input tape
of the Mv0

instance, which is then activated. Whenever an instance of an ITM
Mv enters its wait state, the execution proceeds as follows:

– Queuing a message. If Mv has written a tuple (queue, e,m) to its communi-
cation tape and λ(e) = {v, v′} for some v′ ∈ V then add (v, e,m) to Q and
reactivate Mv.

– Handing over. If Mv has written (hand−over, e,m) to its communication
tape and λ(e) = {v, v′} then write (e,m) to the incoming communication
tape of Mv′ and activate Mv′ .

– Delivering a message. If Mv did not write to its communication tape and
(v′, e,m) is the first entry in Q with λ(e) = {v′, v′′} then remove the entry
from the queue, write (e,m) to the incoming communication tape of Mv′′

and activate Mv′′ .
– Default activation. If Mv did not write to its communication tape, v 6= v0

and Q is empty then activate Mv0 .
– Termination. If v = v0 and Mv has halted after writing a (possibly empty)

string x to its output tape then copy x to the system’s output tape and stop.

Remark 2. Note that queuing messages via loop edges allows for some degree of
controlled self-reactivation of ITMs.

Resource Bounds There is no requirement that an execution must terminate.
However, we shall mainly be interested in systems that with high probability
terminate, in which case it is interesting to consider the time required before
termination. We define the total execution time of a system to be the sum of
the execution time of all the ITMs plus the cost of managing activation and the
message queue.

We say that a system is (t, δ)-bounded if it terminates after time at most t,
except with probability at most δ.

Apart from execution time, there are other interesting resource measures in
protocol analysis, such as the number of sessions run or the number of corrupted
parties. In particular, the size of the ITM description is relevant in preventing
trading execution time for description size.

In general, for some tuple of resource bounds R = (r1, . . . , rn), we shall say
that a system is (R, δ)-bounded or (r1, . . . , rn, δ)-bounded if the probability that
the system terminates without exceeding any of the resource bounds in R is at
least 1− δ.

2.3 Protocols

The notion of a system of ITMs described above is very general. Our next aim
is to show how protocols fit into this general system. For this, we shall define
two notions, those of protocol machine and ideal functionality.

47

Protocol machines and ideal functionalities are ITMs that expect to be at-
tached to vertices in a communication graph with a loop and specific number of
incident non-loop edges. An ideal functionality will distinguish a special attacker
edge and consider the remaining edges as input/output (i/o) edges. A protocol
machine will distinguish up to three classes of edges: one or more i/o edges, zero
or more subprotocol edges and zero or one corruption edge.

Remark 3. The interpretation of this is as follows. A protocol machine is at-
tached to a vertex in a communication graph and receives instructions over its
i/o edges directing its operation. If the protocol produces output, this is sent
out via the i/o edges.

An attacker may be able to corrupt the protocol machine in various ways.
In this case, the attacker will send special messages to the protocol machine
over its corruption edge, and the protocol machine will respond according to its
programming.

The protocol machine may delegate work to subprotocols. If so, the protocol
machine controls the subprotocol by sending messages over its subprotocol edges
and possibly receiving subprotocol output via the same subprotocol edges.

An ideal functionality either models an ideal subprotocol or some idealisation
of some feature a protocol relies on, such as a physical communications network.
The i/o edges play the same role as for protocol machines.

Protocol machines and ideal functionalities are organised in a layered hierarchi-
cal fashion with protocol machines above their subprotocol machines and ideal
functionalities at the bottom. This is made formal by the notion of protocol
system, which is a non-initial partial system satisfying:

1. All the ITMs are either protocol machines or ideal functionalities.
2. Every corruption and attacker edge is external.
3. Any non-external edge is considered an i/o edge by one of its incident ITMs

and a subprotocol edge by the other.
4. If every edge in the graph is considered to be directed from the ITM that

considers it as a subprotocol edge to the ITM that considers it as an i/o
edge, then the communication graph has no cycles except for trivial cycles
made up of loop edges.

If no ITM considers an external edge to be a subprotocol edge, we say that
the protocol system is closed. Two protocol systems are composable if they are
composable as partial systems and the composition is again a protocol system.

Remark 4. It is possible to have a closed protocol system consisting of a single
ideal functionality. As we will see later (Sect. 5), this is an important class of
protocol systems.

Remark 5. Traditionally, the equivalent of a closed protocol system is assumed
to interact with a partial system composed of an environment and an attacker. In
our formulation, a closed protocol will be composed with an initial partial system
(the environment) so that it forms a system. Informally, we may consider part
of the environment to be the attacker.

48

Remark 6. It will be useful to assume that every protocol machine is given an
“identity”, and every ideal functionality associates an “identity” with each i/o
edge. These identities must be consistent, in the sense that subprotocol and
parent protocol machines have the same identities, and the identity the ideal
functionality associates to an i/o edge corresponds to the identity of any protocol
machine attached via that edge.

3 Indistinguishability

The notion of indistinguishability is central in cryptography, and we shall define
two notions of indistinguishability for systems and partial systems.

A distinguisher is an algorithm that provides input to an unknown system
and then tries to say something about the system based on its output. Formally,
a distinguisher D = (D1, D2) is a pair of algorithms such that D1 outputs a
string and a state, while D2 takes a string and a state as input and outputs 0
or 1. An execution of D with a system Σ proceeds as follows:

1. D1 is run and outputs x and a state.
2. The system Σ gets x as input to an execution and outputs y.
3. D2 is given y and the state as input and outputs 0 or 1.

Remark 7. Since systems are not guaranteed to terminate, the same holds for
distinguisher executions. However, if the system execution terminates, the dis-
tinguisher execution will also terminate.

We say that a distinguisher interacting with a system Σ is (R, δ)-bounded with
respect Σ if the above execution does not exceed the resource bounds in R
except with probability δ. Note that we consider the time used to be not just the
time used for the system execution, but also the time used by the distinguisher
algorithms.

3.1 Definition of Indistinguishability of Systems

Let Σ1 and Σ2 be two systems, D a distinguisher and R1 and R2 resource
bounds. Let Ei be the event that the execution of D with Σi outputs 1, and let
Gi be the event that the execution of D with Σi terminates without exceeding
the resource bound Ri. Note that D interacting with Σi is (Ri, δi)-bounded if
Pr[¬Gi] ≤ δi.

The distinguishing advantage of D with respect to the resource bounds R1

and R2 is defined to be

Adv(D,Σ1, Σ2;R1, R2) = |Pr[E1 ∧G1]− Pr[E2 ∧G2]| .

A system Σ1 is (R1, δ1, R2, δ2, ε)-indistinguishable from system Σ2 if for any
D the following holds:

1. If (D,Σ1) is (R1, δ1)-bounded then (D,Σ2) is (R2, δ2)-bounded (Pr[¬G1] ≤
δ1 ⇒ Pr[¬G2] ≤ δ2).

49

2. Adv(D,Σ1, Σ2;R1, R2) ≤ ε.
Remark 8. Note that this notion of indistinguishability need not be symmetric.

We have now defined a notion of bounded indistinguishability. Next, we define a
similar notion of unbounded indistinguishability. The unbounded distinguishing
advantage of D is defined to be

Adv(D,Σ1, Σ2) = |Pr[E1]− Pr[E2]| .

We say that Σ1 and Σ2 are ε-indistinguishable if any distinguisher D has un-
bounded distinguishing advantage at most ε.

Remark 9. If two systems are ε-indistinguishable, it is easy to show that for any
input distribution, the probability that the executions terminate may differ by
at most ε.

These notions of indistinguishability for systems carry over in a natural way to
partial systems. Let Π1 and Π2 be interchangeable partial systems. We say that
Π1 is (R1, δ1, R2, δ2, ε)-indistinguishable (respectively ε-indistinguishable) from
Π2 if for any partial system Π3 that completes Π1, we have that Π1 � Π3 is
(R1, δ1, R2, δ2, ε)-indistinguishable (respectively ε-indistinguishable) from Π2 �
Π3 as systems.

3.2 Basic Results

Transitivity We have a limited form of transitivity for indistinguishability.
This follows from the fact that if two systems are distinguishable then one or
both must be distinguishable from any third system.

Theorem 1. Suppose Π1, Π2 and Π3 are interchangeable partial systems such
that Π1 is (R1, δ1, R2, δ2, ε)-indistinguishable from Π2 and Π2 is (R2, δ2, R3, δ3, ε

′)-
indistinguishable from Π3. Then, Π1 is (R1, δ1, R3, δ3, ε + ε′)-indistinguishable
from Π3.

Proof. Let Π4 be any partial system that completes Π1 and D be a distinguisher.
We define Ei to be the event that the execution of D with Πi �Π4 outputs 1
and Gi the event that this execution terminates before exceeding the bound Ri,
1 ≤ i ≤ 3.

The first condition of (R1, δ1, R3, δ3, ε + ε′)-indistinguishability is given by
the first condition of the indistinguishability assumptions:

Pr[¬G1] ≤ δ1 ⇒ Pr[¬G2] ≤ δ2 ⇒ Pr[¬G3] ≤ δ3.

The second condition can be verified by the following computation using the
second condition of the indistinguishability assumptions:

|Pr[E1 ∧G1]− Pr[E3 ∧G3]| ≤
|Pr[E1 ∧G1]− Pr[E2 ∧G2]|+ |Pr[E2 ∧G2]− Pr[E3 ∧G3]| ≤ ε+ ε′ ,

which concludes the proof.

50

Composition It is clear that if we have two indistinguishable partial systems
and compose them with the same partial system, the resulting (partial) systems
are indistinguishable.

Theorem 2. Suppose Π1 and Π2 are interchangeable partial systems such that
Π1 is (R1, δ1, R2, δ2, ε)-indistinguishable from Π2. Then, for any partial system
Π3 composable with Π1 we have Π1 � Π3 is (R1, δ1, R2, δ2, ε)-indistinguishable
from Π2 �Π3.

Proof. This follows immediately from the definition of indistinguishability since
either Π3 completes Πi or for any partial system Π4 that completes Πi � Π3,
the partial system Π3 �Π4 completes Πi.

Adding Resource Bounds Suppose we have two ε-indistinguishable partial
systems. What happens if we impose resource bounds on them ? It is clear that
it depends on the resource bounds since a bounded distinguisher is considered
successful if, with high probability, it keeps the bound in the execution with
one of the partial systems but not with the other. Theorem 3 gives us a way to
convert unbounded indistinguishability to bounded indistinguishability.

Theorem 3. Let Π1 and Π2 be 0-indistinguishable partial systems, and let
(R1, δ1) and (R2, δ2) be resource bounds. Suppose that for any distinguisher D
and partial system Π3 that completes Π1, if (D,Π1 � Π3) is (R1, δ1)-bounded
then (D,Π2�Π3) is (R2, δ2)-bounded. Then, Π1 is (R1, δ1, R2, δ2,max{δ1, δ2})-
indistinguishable from Π2.

Proof. The first condition of indistinguishability is given by the assumption,
hence we only need to show that for any distinguisher D and partial system Π3

that completes Π1 we have Adv(D,Π1 �Π3, Π2 �Π3;R1, R2) ≤ max{δ1, δ2}.
For a distinguisher D and partial system Π3 as above, let Ei be the event

that an execution of D with Πi � Π3 outputs 1 and Gi the event that this
execution terminates without exceeding the bound Ri. Then, the distinguishing
advantage is |Pr[E1 ∧G1]− Pr[E2 ∧G2]|. First note that, trivially,

Pr[Ei ∧Gi] ≤ Pr[Ei] . (1)

Also, since

Pr[Ei] = Pr[Ei ∧Gi] + Pr[Ei ∧ ¬Gi] ≤ Pr[Ei ∧Gi] + Pr[¬Gi] ,

it follows that

Pr[Ei ∧Gi] ≥ Pr[Ei]− Pr[¬Gi] . (2)

We now need to show that the advantage is bounded by max{δ1, δ2}. There are
two cases to consider:

51

Case 1: If Pr[E1 ∧ G1] − Pr[E2 ∧ G2] > 0 then by inequalities (1) and (2),
and the definition of 0-indistinguishability we have

Pr[E1 ∧G1]− Pr[E2 ∧G2] ≤ Pr[E1]− (Pr[E2]− Pr[¬G2])

= (Pr[E1]− Pr[E2]) + Pr[¬G2]

≤ δ2.

Case 2: Similarly, if Pr[E1 ∧G1]− Pr[E2 ∧G2] < 0 we have

Pr[E2 ∧G2]− Pr[E1 ∧G1] ≤ Pr[E2]− (Pr[E1]− Pr[¬G1])

= (Pr[E2]− Pr[E1]) + Pr[¬G1]

≤ δ1.

In either case the distinguishing advantage is bounded by max{δ1, δ2} as re-
quired.

The same arguments can be extended to ε-indistinguishable partial systems
which with added resource bound gives (R1, δ1, R2, δ2, ε+max{δ1, δ2})-indistinguishability.

Subsystem Simulator Any partial system can be simulated by a single “sim-
ulator” vertex. The “simulator” simply runs the partial system as described in
the execution model. However, the simulating machine will most usually need
some extra time for accounting. It is possible to prove the following theorem.

Theorem 4. For any partial system Π there is an interchangeable single-vertex
partial system ΠS that is 0-indistinguishable from Π.

3.3 Techniques

How do we prove that two partial systems are indistinguishable? One approach is
to build on the existing work for indistinguishable probability spaces. Essentially,
two probability spaces are indistinguishable if it is hard to say from which space
an element was sampled. Such indistinguishable spaces can be used to build
indistinguishable partial systems.

Another approach for constructing indistinguishable partial systems is to
identify an “exceptional” event, prove that as long as that event does not occur
the partial systems are indistinguishable, and finally bound the probability of
that event occurring. This bound will also bound the distinguishing advantage.

Indistinguishable Probability Spaces Let Z1 and Z2 be two probability
spaces and assume that sampling from Z1 and Z2 requires identical time. A t-
distinguisher for Z1 and Z2 is an algorithm that on input z sampled either from
Z1 or Z2 requires time at most t (including sampling time) before outputting
either 0 or 1.

52

We say that Z1 and Z2 are (t, ε)-indistinguishable if for any t-distinguisher
it holds that

|Pr[E1]− Pr[E2]| ≤ ε ,
where Ei is the event that the t-distinguisher outputs 1 on input sampled from
Zi.

Define two partial systems Π1 and Π2 having one vertex and one external
edge as follows: The first time it receives (sample) via the external edge, the
machine attached to the corresponding vertex samples z from Zi and sends
(sampled, z) over its external edge, and nothing else happens.

Theorem 5. Let Z1 and Z2 be (t, ε)-indistinguishable probability spaces, Π1 and
Π2 be as above, and (R, δ) be any resource bound that has t as its time bound.
Then Π1 is (R, δ,R, δ + ε, ε)-indistinguishable from Π2.

The proof proceeds in two steps. First, Lemma 1 proves the resource bound.
Then Lemma 2 bounds the distinguishing advantage.

Algorithm A with input z:

1. Let D interact with the system
Π1 �Π3 with the exception that the
message Π1 sends over its external
edge is substituted by (sampled, z).

2. If D stops without reaching the
resource bound R, output 0.

3. If D reaches the resource bound R,
stop the interaction and output 1.

Algorithm B with input z:

1. Let D interact with the system
Π1 �Π3 with the exception that the
message Π1 sends over its external
edge is substituted by (sampled, z).

2. If D outputs b without reaching the
resource bound R, output b.

3. If D reaches the resource bound R,
stop the interaction and output 0.

Fig. 1. Algorithms for the proofs of Lemma 1 and Lemma 2.

Lemma 1. Let Z1, Z2, Π1 and Π2 be as above, Π3 be any partial system that
completes Π1 and Π2, and D be a distinguisher such that D interacting with
Π1�Π3 is (R, δ)-bounded. Then D interacting with Π2�Π3 is (R, δ+ε)-bounded.

Proof. Let δi be the probability that D interacting with Πi � Π3 exceeds the
resource bound R. Note that δ1 ≤ δ.

The algorithm A given in Fig. 1 is a t-distinguisher for Z1 and Z2. We see
that if its input has been sampled from Zi, it simulates the system Πi � Π3

perfectly until cut-off, and the probability that it outputs 1 is δi.
Therefore, A is a (t, |δ1 − δ2|)-distinguisher for Z1 and Z2. This means that

|δ1 − δ2| ≤ ε, by assumption, which implies that δ2 ≤ δ1 + ε ≤ δ + ε.
Hence, the probability that D interacting with Π2�Π3 exceeds the resource

bound R is at most δ + ε.

Lemma 2. Let Π3 be a partial system that completes Π1 and D a distinguisher
such that D interacting with Π1�Π3 is (R, δ)-bounded. Then the distinguishing
advantage of D is at most ε.

53

Proof. The algorithm B given in Fig. 1 is a t-distinguisher for Z1 and Z2. For a
distinguisher D we define the events Ei that D interacting with Πi�Π3 outputs
1 and Gi that the interaction is time bounded by R. We see that if B’s input has
been sampled from Zi, it simulates the system Πi �Π3 perfectly until cut-off,
and the probability that it outputs 1 equals Pr[Ei ∧Gi].

The distinguishing advantage of B is therefore equal to |Pr[E1∧G1]−Pr[E2∧
G2]|, which, by assumption, must be at most ε.

This completes the proof of Theorem 5.

Exceptional Events The technique of exceptional events [8] is central in mod-
ern cryptography. The idea is to isolate the conditions under which two systems
can deviate, and then somehow bound the probability of this exceptional event
occurring. This bound then becomes a bound on how often the systems can
deviate, and therefore be distinguished.

Theorem 6. Let Π1 and Π2 be interchangeable partial systems, and let F1, F2

be (“exceptional”) events for the respective partial systems. For some resource
bound R, any partial system Π3 that completes Π1 and any distinguisher D
such that (D,Π1 �Π3) is (R, δ)-bounded, we have that Π1 is (R, δ,R, δ + ε, ε)-
indistinguishable from Π2 if the following hold:

1. The probability of F1 and F2 occurring is ε.
2. If F1 and F2 do not occur then the probabilities that

(i) the resource bound R is exceeded, and
(ii) the distinguisher outputs 1 without exceeding the resource bound R,

are each identical for the two systems.

Proof. For a distinguisher D and a partial system Π3 that completes Π1 and Π2

we define the events Ei that D outputs 1 when interacting with Πi�Π3 and Gi

that the interaction does not exceed the resource bound R. The conditions for
the theorem are then:

1. Pr[F1] = Pr[F2] = ε ,
2. Pr[¬G1|¬F1] = Pr[¬G2|¬F2] ,
3. Pr[E1 ∧G1|¬F1] = Pr[E2 ∧G2|¬F2] .

We first assume that Pr[¬G1] ≤ δ and prove that it implies Pr[¬G2] ≤ ε + δ.
Using Conditions 1 and 2 above, we have that

Pr[¬G2] = Pr[¬G2 ∧ F2] + Pr[¬G2 ∧ ¬F2]

≤ Pr[F2] + Pr[¬G2|¬F2]Pr[¬F2]

≤ Pr[F2] + Pr[¬G1 ∧ ¬F1]

≤ Pr[F2] + Pr[¬G1]

≤ ε+ δ .

54

Next we need to show that |Pr[E1 ∧G1]−Pr[E2 ∧G2]| ≤ ε. Firstly, notice that

Pr[Ei ∧Gi] = Pr[Ei ∧Gi ∧ Fi] + Pr[Ei ∧Gi ∧ ¬Fi] .

Secondly, by Conditions 1 and 3 above, we have that

Pr[E1 ∧G1 ∧ ¬F1]− Pr[E2 ∧G2 ∧ ¬F2] = Pr[E1 ∧G1|¬F1]Pr[¬F1]− Pr[E2 ∧G2|¬F2]Pr[¬F2]

= (1− ε)(Pr[E1 ∧G1|¬F1]− Pr[E2 ∧G2|¬F2])

= 0 .

It follows that

|Pr[E1 ∧G1]− Pr[E2 ∧G2]| = |Pr[E1 ∧G1 ∧ F1]− Pr[E2 ∧G2 ∧ F2] + 0|
≤ max{Pr[F1], P r[F2]}
= ε ,

which concludes the proof.

4 Composition Theorem

One very useful notion is that of composability. A protocol is said to be secure
if it is in some sense indistinguishable from an appropriate ideal functionality.
When this secure protocol is used as a subprotocol, the following theorem proves
that analysis of the parent protocol can be done using the ideal functionality
abstraction, possibly a major simplification.

Let Π1 and Π2 be protocol systems with the same external i/o edges. We say
that Π1 (R1, δ1, R2, δ2, ε)-emulates Π2 if there exists a partial system S such that
Π1 and Π2�S are interchangeable, and Π1 is (R1, δ1, R2, δ2, ε)-indistinguishable
from Π2 � S. In such case, we call S a simulator.

If the partial system Π2 consists of a single ideal functionality F , we say that
Π1 (R1, δ1, R2, δ2, ε)-realises Π2 and, informally, that it is F-secure.

Theorem 7 (Composition). Let Π1, Π2 and Π4 be closed protocol systems
and let Π3 be a protocol system composable with Π1 and Π2. If Π1 (R1, δ1, R2, δ2, ε)-
emulates Π2 and Π2�Π3 (R2, δ2, R3, δ3, ε

′)-emulates Π4 then Π1�Π3 (R1, δ1, R3, δ3, ε+
ε′)-emulates Π4.

Proof. Let S1 and S2 be simulators such that the partial systemΠ1 is (R1, δ1, R2, δ2, ε)-
indistinguishable fromΠ2�S1 andΠ2�Π3 is (R2, δ2, R3, δ3, ε

′)-indistinguishable
from Π4 � S2.

Firstly, by Theorem 2, the systemΠ1�Π3 is (R1, δ1, R2, δ2, ε)-indistinguishable
from S1�Π2�Π3, and S1�Π2�Π3 is (R2, δ2, R3, δ3, ε

′)-indistinguishable from
S1 � S2 �Π4.

Secondly, by Theorem 1, Π1 �Π3 is (R1, δ1, R3, δ3, ε + ε′)-indistinguishable
from S1 � S2 �Π4.

Finally, by letting S3 = S1�S2, it follows thatΠ1�Π3 is (R1, δ1, R3, δ3, ε+ε
′)-

indistinguishable from S3 �Π4, as required.

55

Note that the technicalities encountered in the corresponding proof of [2] are
avoided due to our use of a fixed communication graph and global resource
bounds. A visual version of the proof is given in Fig. 2.

Π1 Π2

S1

Π3 Π3 Π3

Π2

Π4

S2

S1 S1

(R1,δ1,R2,δ2,ε)∼

(R2,δ2,R3,δ3,ε
′)∼

=

Fig. 2. Proof of Theorem 7. The bold parts of the diagram contain the indistinguisha-
bility assumptions. Theorem 2 says that adding the faded parts does not affect indis-
tinguishability. The result follows from transitivity and taking the subsystem enclosed
by the dashed lines as the required simulator.

5 Examples

We shall provide three examples of protocol analysis in our framework. The
first is the now standard proof that secure digital signature schemes realise a
natural signature functionality. The second example shows how a protocol can
be used to simulate multiple, independent communication networks, even if only
one physical network is available. Similar techniques are very useful in protocol
design. The final example shows how we can prove that Diffie-Hellman is a secure
key agreement protocol against passive attackers.

5.1 Signatures

A signature scheme Υ consists of a probabilistic key generation algorithm K that
outputs descriptions of two algorithms, a signing algorithm s and a deterministic
verification algorithm v. The signing algorithm takes a message from some mes-
sage space as input, and outputs a signature. The verification algorithm takes a
message and a signature as input, and outputs 0 or 1. We require that for any
signature σ output by the signature algorithm for message m, v(m,σ) = 1.

We say that the signature scheme Υ is (t, n, ε)-secure if for any pair (s, v)
generated by K and any algorithm A that (i) is given v as input, (ii) is allowed
to get signatures on at most n messages and (iii) requires at most time t before
producing some output (m,σ), the probability that v(m,σ) = 1 for a σ that was
not given to A as a signature on m is at most ε.

We get a “protocol” from the signature scheme Υ as described in Fig. 3. It
realises the functionality given in Fig. 4 under static corruptions.

56

On input (keygen):

1. Stop if s has been recorded.
2. (s, v)← K.
3. Record s. Output (key, v).

On input (sign,m):

1. σ ← s(m).
2. Output (signature, σ).

On input (verify,m, σ, v′):

1. Output (verify, v′(m,σ)).

Fig. 3. Signature protocol from signature scheme Υ .

On (keygen) from player P :

1. Stop if (P) has been recorded.
2. Record (P).
3. Hand over (keygen, P) to A.
4. Wait for (keygen, P, s, v) from A.
5. Record (P, s, v).
6. Send (key, v) to player P .

On (sign,m) from player P :

1. Stop if (P, s, v) is not recorded.
2. Compute σ ← s(m).
3. Record (m,σ, v).
4. Send (signature, σ) to P .

On (verify,m, σ, v) from player P :

1. If (m,σ, v) is recorded, send
(verify, 1) to P and stop.

2. If (P ′, s, v) is recorded for some s
and honest P ′, send (verify, 0) to P
and stop.

3. If v(m,σ) = 1, record (m,σ, v).
4. Send (verify, v(m,σ)) to P .

Fig. 4. Signature functionality. The adversary-supplied s and v are descriptions of
algorithms, where s is probabilistic and v deterministic. We require that for any allowed
m, if σ ← s(m) then v(m,σ) = 1.

The proof proceeds as follows. First, we apply Theorem 4 to gather all honest
protocol machines into a single ITM.

Next, we reorganise the functionality and add bookkeeping work (that is,
recording public keys and generated signatures, and looking up keys and mes-
sage/signature pairs), as well as outsource key generation to a new ITM, namely
the simulator given in Fig. 5, so that the new system is identical to the ideal
functionality composed with the simulator except that all valid signatures are
accepted.

On (keygen, P) from the functionality:

1. (s, v)← K.
2. Output (keygen, P, s, v).

Fig. 5. Simulator for the proof of Theorem 8.

It is a tedious exercise to verify that the resulting system is 0-indistinguishable
from the first system. We need extra resources for bookkeeping and sending mes-
sages to the simulator, and the amount of work depends on the exact implemen-
tation of the bookkeeping, as well as the number N of players, the number n of

57

requests for signing and verification, and the total length l of those requests. Let
us fix some resource bound R1 and δ and increase the resource bound R1 to R2

by adding sufficient resources for the bookkeeping work. Now R2 depends on R1,
N , n and l. Increasing the resource bound to (R2, δ) and applying Theorem 3
costs us a distinguishing advantage of δ.

Next, we begin rejecting as invalid any technically valid signatures that have
not been recorded as honestly generated. Unless a forgery is generated within
the time bound, the system is indistinguishable.

Assume that the time bound implied by the resource bound R2 is t. To bound
the probability of the exceptional event, namely the generation of a forgery
within time bound t, we construct an attacker against the signature scheme as
follows: It chooses one honest user at random from the N honest users. For
that user, it uses the verification key it gets as an attacker against the signature
scheme. Instead of signing messages, it queries its signing oracle. When the
forgery is detected, it is a forgery for the chosen user with probability 1/N ,
which means that if our time bound is t and the signature is (t, n, ε)-secure, then
the probability of the exceptional event is upper-bounded by Nε. Application of
Theorem 6 concludes the proof sketch of the following theorem:

Theorem 8. Let Υ be a (t, n, ε)-secure signature scheme. Let R1 and R2 be
the resource bounds discussed above. Then the protocol in Fig. 3 (R1, δ, R2, δ +
Nε, 2δ +Nε)-realises the functionality in Fig. 4.

5.2 Radio Link

Sometimes, it is easier to construct complex protocols if we can assume multi-
ple independent communication networks, one for each subprotocol. In the real
world, we usually make do with one network, and instead attach some prefix to
messages identifying which subprotocol it belongs to.

As an example, we shall describe a functionality for modelling a certain
form of radio communication between a set of users and a collection of network
operators. Each network consists of many base stations connected by a secure
network. Radio communication always happens between users and base stations.
Users may communicate with multiple base stations at any one time. Which base
stations they communicate with may change over time.

Each network base station is assigned a position. Once a user has entered the
vicinity, he will receive messages broadcast by the network and he will be able to
send messages to the network. The adversary may choose to listen to a certain
position, in which case we model the adversary as unrealistically powerful and
let the radio link around this base station degenerate into a normal adversary-
controlled network. The functionality is described in Fig. 6.

Now we shall describe a multiplexing protocol that essentially pretends to
provide n independent radio networks while only using one network. The protocol
machine has n input edges, and communicates with one radio link functionality.
Every user and network player runs one copy of the protocol machine. The
protocol is described in Fig. 7.

58

On (enter, pos) from U :

1. Record (U, pos).

On (leave, pos) from U :

1. Erase any record (U, pos).

On (listen, pos) from A:

1. Record (listen, pos), then hand over
(listen−ok) to A.

On (send, pos, sid ,m,N) from U :

1. Stop if (U, pos) is not recorded.
2. If (listen, pos) is recorded, hand over

(send, pos, sid ,m,N) to A.
3. Else send (recv, pos, sid ,m) to N .

On (send, pos, sid ,m) from N :

1. If (listen, pos) is recorded, hand over
(send, pos, sid ,m,N) to A.

2. Else, for any (U, pos) recorded, send
(recv, pos, sid ,m,N) to U .

On (send, pos, sid ,m,N) from A:

1. Stop if (listen, pos) is not recorded.
2. Send (recv, pos, sid ,m) to N .

On (send, pos, sid ,m) from A:

1. Stop if (listen, pos) is not recorded.
2. For any (U, pos) recorded, send

(recv, pos, sid ,m) to U .

Fig. 6. The radio link functionality. User players are denoted by U , network players
by N .

Note that the command (Leave, pos) has to be treated with a bit of care. Any
message enqueued from FRL to φn before (Leave, pos) is received by φn has to
be treated as if (Leave, pos) was never received. This makes the protocol a bit
non-intuitive.

If the protocol φn is properly composed with FRL, it realises n copies of FRL

composed in parallel. Verifying that φn composed with FRL and n copies of FRL

composed with the simulator given in Fig. 8 are 0-indistinguishable is as usual
a tedious affair.

All that is left is to realise that resource bounds may change, which calls for
an application of Theorem 3. We fix a resource bound R1 and increase R1 to
R2 by adding the potential extra cost of running FRL1 � . . .�FRLn instead of
φn �FRL and arrive at the following theorem.

Theorem 9. The protocol φn�FRL (R1, δ, R2, δ, δ)-realises FRL1� . . .�FRLn.

5.3 Key Agreement

In this section we illustrate how passive security of the Diffie-Hellman key agree-
ment can be proven within our framework. The section also serves as an example
where multi-session analysis gives a tighter security reduction than basic appli-
cation of the UC-theorem. For this section we shall assume that G = 〈g〉 is a
cyclic group of prime order p for which the distribution of random triples of
the form (ga, gb, gab) and the distribution of completely random triples from G
are (t, ε)-indistinguishable. For simplicity we assume that the protocol players
communicate through an authenticated eavesdropping channel modeled as the
functionality FN .

Figure 11 gives a protocol description of the standard Diffie-Hellman key
agreement (ΠKA) and Fig. 10 describes the functionality that captures its secu-
rity properties (FKA).

59

Part 1: User

On (enter, pos) from input i:

1. Record (pos, i, 0) and hand over
(enter, pos) to FRL.

On (leave, pos) from input i:

1. Stop if (pos, i, 0) is not recorded.
2. Change the record to (pos, i, 1) and

send (leave, pos, i) to self.
3. If no record (pos, j, 0) is left then

hand over (leave, pos) to FRL.

On (leave, pos, i) from self:

1. Remove the record (pos, i, 1).

On (send, pos, sid ,m,N) from input i:

1. Stop if (pos, i, 0) is not recorded.
2. Hand over (send, pos, i||sid ,m,N) to
FRL.

On (recv, pos, i||sid ,m,N) from FRL:

1. Stop if (pos, i, b) is not recorded.
2. Hand over (recv, pos, sid ,m,N) on

input i.

Part 2: Network

On (send, pos, sid ,m) from input i:

1. Hand over (send, pos, i||sid ,m) to
FRL.

On (recv, pos, i||sid ,m) from FRL:

1. Hand over (recv, pos, sid ,m) on
input i.

Fig. 7. The multiplexing protocol φn. Each instance has n input/output edges, and
one connection to an FRL functionality. Its behaviour depends on whether it is acting
for a user player or for a network player.

On (listen, pos) from A:

1. For i from 1 to n, do: hand over
(listen, pos) to FRLi, then wait for
(listen−ok) from FRLi.

On (listen−ok) from FRLn:

1. Hand over (Listen−ok) to A.

On (send, pos, sid ||i,m,N) from A:

1. Hand over (send, pos, sid ,m,N) to
FRLi.

On (send, pos, sid ||i,m) from A:

1. Hand over (send, pos, sid ,m) to
FRLi.

On (send, pos, sid ,m) from FRLi:
1. Hand over (send, pos, sid ||i,m) to A.

On (send, pos, sid ,m,N) from FRLi:
1. Hand over (send, pos, sid ||i,m,N) to
A.

Fig. 8. The simulator from the proof of Theorem 9.

60

We prove that the protocol ΠKA realises FKA by a sequence of steps where
we gradually alter the protocol system ΠKA. As the first step we gather all
protocol parties into one simulating machine M1 using Theorem 4. Next we
facilitate the use of random self reducibility [6] by altering M1 to a machine M2

and introducing a new machine MDDH . At the beginning of the execution, M2

queries MDDH to receive a random DDH-triple (g1, g2, gk). After this, every
hi from an honest session is generated by raising gi to a random power and
multiplying with a random power of g, i = 0, 1:

hi ← grii g
si .

The ri and si are recorded so that the key can be generated as

k ← gr1r2k gr1s21 gr2s12 gs1s2 .

Apart from this M2 behaves exactly as M1.

By a bit of calculation, it can be verified that the new system is
0-indistinguishable from the previous one as the triples (h1, h2, k) are random
DDH-triples. Adding resource bounds by Theorem 3 we get that ΠKA is (R1, δ,
R2, δ, δ)-indistinguishable fromM2�MDDH , where R1 is a bound for interactions
withΠKA andR2 is obtained fromR1 by adding the resources needed to generate
DDH-triples less efficiently, and simulate the protocol in one vertex.

We can now replace the machine MDDH by a machine MRAND that gen-
erates a random triple instead of a DDH-triple. By Theorem 5 the previous
partial system is (R2, δ, R2, δ + ε, ε)-indistinguishable from the new one if the
time component of R2 is t or less. At this point each key k (with honest players)
is a random group element completely independent of the corresponding h1 and
h2. It follows that this partial system is 0-indistinguishable from a partial system
FKA�SKA where FKA handles key generation and a machine SKA handles the
simulation of the messages with h1 and h2 and every corrupted key agreement
session. Adding the potential extra resources needed for running FKA � SKA

instead of M2 �MRAND and applying Theorem 3 one final time we get that
M2 �MRAND is (R2, δ + ε, R3, δ + ε, δ + ε)-indistinguishable from FKA � SKA.
By the transitivity of Theorem 1 we get the following theorem.

Theorem 10. The partial system ΠKA (R1, δ, R3, δ + ε, 2δ + 2ε)-realises FKA

under the assumptions above.

On (m,V) from a party U :

1. Send (m,U) to V and hand over (m,U,V) to A.

Fig. 9. The authenticated insecure network functionality FN .

61

On (Establish, V) from a party U :

1. Generate a new random identifier id
and a random key k ∈ G.

2. Record (U, V, id, k) and (V,U, id, k).
3. Send (Establish, U, V, id) to A.

On (Output, U, k̃, id) from A:

1. Stop if (U, V, id, k) is not recorded
for any value of V and k.

2. If V is corrupted then send
(Key, k̃, V) to U .

3. Else send (Key, k, V) to U .
4. In either case, remove the record

(U, V, id, k).

Fig. 10. The key agreement functionality FKA.

On input (Establish, V):

1. Generate a random x ∈ Zp and set
h1 ← gx.

2. Record (V, x, h1).
3. Send ((Establish, h1), V) to FN .

On ((Establish, h1), V) from FN :

1. Generate a random y ∈ Zp and set
h2 ← gy.

2. Send ((Respond, h1, h2), V) to FN .
3. Output (Key, hy1 , V).

On ((Respond, h1, h2), V) from FN
1. Stop if (V, x, h1) is not recorded.
2. Output (Key, hx2 , V).
3. Remove record (V, x, h1).

Fig. 11. The key agreement protocol ΠKA for party U .

6 Concluding Remarks

We have defined a novel framework for doing protocol analysis. The framework
is based on the ideas embodied in Canetti’s Universal Composability [2] and
Pfitzmann–Waidner’s reactive simulatability [7], but the exact formalisation is
novel.

The new framework is based on our ongoing work of analysing practical
protocols (for anonymous communication and electronic voting to name a few).
It is our opinion that our framework is highly suitable for analysing practical
protocols.

We have provided three simple examples of theorems proven in our frame-
work. The first example is the now standard proof that a natural digital signature
functionality can be realised using secure digital signatures. The second example
is less standard, but shows how our framework naturally encapsulates the ideas
concerning joint state composability [3]. The last example shows how passive
security of the Diffie-Hellman key agreement can be proven in our framework.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Security Treatment
of Symmetric Encryption. In Proc. FOCS 1997, pp. 394–403, 1997.

62

2. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Report 2000/067, IACR ePrint Archive, 2005.

3. R. Canetti and T. Rabin. Universal Composition with Joint State. In CRYPTO,
volume 2729 of LNCS, pp. 265–281, 2003.

4. K. Gjøsteen and L. Kr̊akmo. Universally Composable Signcryption. In EuroPKI,
volume 4582 of LNCS, pp. 346–353, 2007.

5. O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.
6. M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-

Random Functions. J. ACM, 51(2) pp. 231–262, 2004.
7. B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems and

its Application to Secure Message Transmission. In IEEE Symposium on Security
and Privacy, pp. 184–200, 2001.

8. V. Shoup. Sequences of Games: A Tool for Taming Complexity in Security Proofs.
Report 2004/332, IACR ePrint Archive, 2004.

63

64

Paper IV

Towards Privacy Preserving Mobile Communications
Kristian Gjøsteen, George Petrides, and Asgeir Steine

Preprint

65

66

Towards Privacy Preserving Mobile
Communications?

Kristian Gjøsteen, George Petrides, and Asgeir Steine

NTNU, Trondheim, Norway.

Abstract. In today’s mobile communications, the privacy concerns of
mobile phone users are not dealt with. For example, mobile network op-
erators need to know the location of each device at any given time in
order to provide seamless services. In this paper we develop a universally
composable anonymous internet access protocol and sketch how this can
be the basis for privacy preserving mobile communications. As a side con-
tribution, to simplify protocol analysis we describe, ideal functionalities
for all the related notions.

1 Introduction

In today’s mobile communications, it is a functional requirement that users of
mobile phones give frequent updates of their location to the mobile network
operator (MNO) they are connected to in order to be continuously able to re-
ceive calls and enjoy seamless communication. This updating is done by initially
sending the International Mobile Subscriber Identity (IMSI) that is embedded
on their smart card and uniquely identifies them, and subsequently a Temporary
Mobile Subscriber Identity (TMSI) generated by the MNO, to the MNO [1].

Despite the fact that IMSIs are transmitted as rarely as possible and TM-
SIs are changed frequently by the MNO in order to prevent user tracing by
eavesdroppers on the radio link, some privacy concerns are raised by the MNO’s
ability to learn each user’s location at any given time.

Our contribution. In this article we show that the above concerns can be ad-
dressed in a setting where MNOs own and maintain the network infrastructure
but do not have direct relationship with customers. Instead, distinct middle
agents, the service providers (SPs), deal with user subscriptions for network
access. Our preference for this over the current setting will be discussed later on.

Assuming such a setting, we demonstrate that it is possible for users to
(i) anonymously establish encrypted communication channels with MNOs with
indirect authentication via their subscribed SP every time they change their lo-
cation, and consequently to (ii) anonymously access the internet using ephemeral
pseudonyms provided by MNOs. In this way, MNOs are prevented from following
specific users as they move around network locations, while at the same time im-
portant features like user and network authentication and radio link encryption
are maintained.

? Funded by the Norwegian Research Council’s VERDIKT programme project 183195.

67

Although anonymous internet access does not directly imply privacy pre-
serving seamless communications, it can be used as a foundation. We illustrate
this through a protocol that allows users to make and receive seamless calls
over the internet that are, unlike today, anonymous and private with respect to
MNOs, SPs and telephony providers (TPs). Similar constructions can be used
for different kinds of mobile services.

A sequence of ideal functionalities captures the desired properties we men-
tioned. More precisely, anonymous and secure communication channel is cap-
tured by FAKE and FSARL of Sect. 3 and anonymous internet access by FAIA of
Sect. 4 . These functionalities are contributions of this work on their own, and
the corresponding protocols that we present in each section UC-realise them (see
Sect. 2 for an informal definition).

Using such a modular approach helps to better understand and more easily
analyse the various protocols. Furthermore, each subsequent protocol is built us-
ing the functionality realised by the preceding protocol, instead of the protocol
itself, again to simplify analysis. All protocols and functionalities are described
in the model of [7], summarised in Sect. 2, as the traditional sequential schedul-
ing model of the universal composability framework [3] would lead to a rather
unnatural flow of communication.

At a first glance, the solutions we have proposed might seem not to comply
with the laws of several countries, such as the European Union’s Data Retention
Directive [6], which require that records of information related to the activity of
users, like network entry point location for instance, are kept for some specified
amount of time. However, as will be seen in Sect. 3, anonymity and location
hiding are made possible by replacing TMSIs by temporary user generated ses-
sion identifiers (SIDs) shared between MNOs and SPs. Therefore, if MNOs keep
records of the locations of SIDs, and SPs records of users’ identities associ-
ated with SIDs, a judicially invoked MNO-SP collaboration can disclose all the
required information about specific users. Similarly, MNOs, SPs and TPs can to-
gether reveal all information regarding internet telephony since pseudonyms are
associated with SIDs. Moreover, dividing the stored information into parts that
on their own leak almost none of the private data of users, might have the effect
of making such controversial laws be better received by the public. Discussing
this further, including the exact details, is beyond the scope of this work.

Another issue that needs to be addressed is that of billing, even though precise
details are not in the scope of the present article. Possible solutions that do not
violate any of the anonymity requirements include fixed term contracts between
users and SPs and SPs and MNOs, or having MNOs charge SPs according to the
number of their (anonymous) subscribers that connect to the network, without
revealing any location information. TPs can also charge a fixed fee, or, since
their sole function is that of an online directory and we do not require that they
should be distinct from SPs, offer free services.

Finally, we point out that the kind of setting we consider is not unrealistic as
it is similar to what is realised today with virtual mobile network operators in the

68

role of SPs. This is an indication that, even though it is not a common setting,
given appropriate incentives, like those stated above, it can become widespread.

Related work. Anonymity has been considered in many fields of cryptography.
Modern anonymising networks, which are based on the mix networks of [5] and
onion routers (most notably the TOR Project [10]), enhance user privacy by mix-
ing up the network traffic of different users to make tracing and traffic analysis
more difficult. Although they are interesting tools for obtaining unlinkability, in
the mobile devices case they can only be used once the device has established
connection to an MNO, a connection we require to be anonymous.

It is theoretically possible to fulfill the privacy requirements we have set even
without the distinction of MNOs and SPs, by using anonymous authentication
schemes (for example [8, 9]) or the more general anonymous credential schemes
of [2]. Modern mobile devices often have adequate computing power to handle
asymmetric cryptography. Nevertheless, we do not consider it to be a practical
solution for user authentication purposes since, in our case, it opens up for denial
of service attacks against SPs (see Sect. 3) by anonymous attackers. Preferably,
we would like to reserve a player’s ability to mount denial of service attacks until
after that player has been authenticated and could thus be identified.

Other work on anonymity in mobile communications concerns a user’s privacy
with respect to various content service providers and eavesdroppers, whereas the
MNO is assumed to know both its identity and location (e.g. [11, 12]).

Outline. Section 2 contains all preliminary results, notation and definitions
needed for the remaining sections. In Sects. 3 and 4 we describe the function-
alities that respectively achieve secure and anonymous network connection and
anonymous internet access, together with the protocols that UC-realise them. In
section 5 we sketch how these functionalities can be used as a basis for anony-
mous telephony services. We end the paper with our conclusions in Sect. 6.

2 Preliminaries

2.1 The Universal Composability Framework

In [3], Canneti proposed universally composable (UC) security that allows preser-
vation of protocol security when several protocols are composed into larger ones.
Briefly, the UC model can be described as follows:

A protocol π is executed in an environment Z which provides the input to
each honest party P participating in π through a unique communication channel,
which we denote by P̃ . When an honest party P completes its part of π, it sends
its output to Z, also through P̃ . An adversary A attacking π interacts with Z
and entirely controls the behaviour of all corrupted parties participating in π.

An ideal functionality F is an ideal process for carrying out a given cryp-
tographic task. If a protocol π is replaced by an ideal functionality F which
interacts with Z through P̃ for each honest player P in π, and there exists (an

69

efficient) simulator S such that no Z can distinguish the effect of an adversary
A attacking π from that of S attacking F , we say that π UC-realises F .

Finally, the universal composition theorem asserts that if we replace a sub-
protocol πs of a protocol π by the functionality Fs UC-realised by πs, the security
of π is not affected - it only becomes easier to analyse. In general, a protocol
that contains calls to an ideal functionality F is called an F-hybrid protocol.

Remark 1. As proofs of indistinguishability are usually lengthy and full of tech-
nicalities and no tools are currently available to make their verification easier,
due to page restrictions we will only argue that a successful simulator can ex-
ist. There are three key points to such a simulator, which we label for future
reference:

(S1) It can simulate the cryptographic primitives from the information provided.

(S2) It must be able to keep account of the different sessions so that it knows

(i) what kind of information leakage to A to simulate and

(ii) how messages from A would translate to ideal world influence by A.

(S3) It must allow A to have the same influence in F as the one it has in π.

Helpful as it may be, the UC-framework has some limitations when it comes to
specific applications. In particular, the inability of participants in UC protocols
to send more than one message per activation (as messages are immediately
delivered, senders become inactive and recipients are thereby activated) would
distort the natural flow of communication in multi-party protocols such as ours.
For example, after a party outputs, Z has to activate the next outputting party
by sending it an otherwise redundant message. The problem worsens when such
protocols are used as subprotocols. To solve this, we choose to use the scheduling
model described in a reformulation of Canetti’s work [7], summarised below:

The active party can send several messages to other parties by enqueuing
them in a global message queue so that they get delivered once all earlier mes-
sages have been delivered. The active party can either deactivate itself, thus
initiating delivery of messages from the queue, or hand over a single message
to another party to mean that the message is immediately delivered, just as in
Canetti’s work. Recipients of delivered messages become the protocol’s active
party. If all parties are inactive and the queue is empty (as in the beginning and
end of a protocol execution), the environment Z is considered the active party.

Remark 2. A side effect of using a messages queue as in [7] is that some ex-
tra work is needed to prove indistinguishability, namely to show that proper
scheduling order is preserved. To avoid littering the functionalities presented
in Sects. 3 and 4 with scheduling order related messages, we assume that each
time the functionality receives a message m through P̃ , before processing it,
it creates a scheduling identifier scid and hands over a dummy message (e.g.
(Scheduling, scid)) to A. When it receives the same message as a reply the mes-
sage is processed. Similarly when it is about to send a message to P̃ .

70

2.2 Notation, Definitions and Corruption Model

In our protocols, U , N , S and T denote user, MNO, SP and TP players, and pos
denotes a location in the network. To be able to simulate symmetric encryption
we need to restrict to static corruption of protocol players. However, we allow
network locations to be adaptively corrupted by the adversary. Note that a
corrupted user or MNO implies that the corresponding position is corrupted.

By Signk, Verk, Enck, Deck and MACk we denote signing, signature verifi-
cation, encryption, decryption and MAC algorithms keyed with k, by vkP the
signature verification key of player P and by H a hash function. For simplicity,
we model the hash function as a random oracle instead of using randomness
extraction. Moreover, a|b denotes the concatenation of strings a and b.

We let G denote a multiplicative cyclic group of prime order p with generator
g and let Zp denote the ring of integers modulo p. A triple (ga, gb, gc) ∈ G3 is
called a DDH-triple if c ≡ ab mod p. The Decisional Diffie–Hellman (DDH)
assumption holds in G if, stated informally, given a triple in G3 it is computa-
tionally hard to decide whether it is a DDH-triple or not.

2.3 Radio Link, Secure Channel and Internet Access

Users and MNOs communicate over a radio link which we model by the ideal
functionality FRL of Fig. 1. Users enter and leave network positions (correspond-
ing to today’s base stations) and once they have entered, they receive all messages
sent to that position. In order to identify messages intended for them, they need
to prepend every message they send to an MNO with a session identifier sid (like
the IMSI in the present-day setting), with which the MNO will also prepend the
reply.

An eavesdropper may choose to listen to the radio link at certain positions.
In this case we make the adversary unrealistically powerful by giving him full
control over the radio link (i.e. the ability to intercept and inject messages) at
any position where he listens.

On (Listen, pos) from A:

– Record pos as corrupted and hand over
(Listening, pos) to A.

On (Enter, pos) from Ũ :

– Record U as present at pos.

On (Leave, pos) from Ũ :

– Remove the record of U ’s presence at pos.

On (Send, sid,m, pos,N) from Ũ :

– If U is present at pos then if pos is honest,

send (Recv, sid,m, pos) to Ñ , else hand over
(Send, sid,m, pos,N) to A.

On (Send, sid,m, pos) from Ñ :

– If pos is corrupted hand over (Send,sid,m,N,
pos) to A, otherwise send (Recv, sid,m, pos) to

Ũ , for each honest user U present at pos.

On (Send,sid,m,pos,N) or (Send,sid,m,pos) from A:

– If pos is corrupted send (Recv,sid,m,pos) to Ñ

or to Ũ for each honest user U present at pos.

Fig. 1. The radio link functionality FRL.

We also assume the existence of a secure communication channel between all
MNOs and SPs, which we model by the ideal functionality FSEC of Fig. 2.

71

On (Send, sid,m,Ps,Pr) from A:

– If Pr is honest and Ps is corrupted then send
(Recv, sid,m,Ps) to P̃r.

On (Send, sid,m,Pr) from P̃s:

– If Pr is honest then send (Recv, sid,m,Ps) to

P̃r, else hand over (Send, sid,m,Ps,Pr) to A.

Fig. 2. The secure channel functionality FSEC. Ps and Pr denote MNO or SP players.

Finally, we model access to the internet for the MNOs, where the adversary
is assumed to be in full control, by the ideal functionality FIA of Fig. 3.

On (Send,Pr,m) from P̃s:

– Hand over (Send,Ps,Pr,m) to A.

On (Send,Ps,Pr,m) from A:

– If Pr is honest then send (Recv,Ps,m) to P̃r.

Fig. 3. The internet access functionality FIA. Ps and Pr denote non-user players.

3 Secure and Anonymous Network Connection

In this section we describe how a user can achieve secure and anonymous con-
nection to an MNO by first anonymously establishing session keys with it and
then using them to encrypt the radio link communication.

3.1 Anonymous Key Establishment

The kind of key establishment suitable for the privacy issues we are trying to
address is authenticated with one-sided anonymity, in the sense that only one
of the parties (the user) is anonymous with respect to the other (the MNO).
To achieve such anonymous authentication, a third party (the SP) needs to
vouch that the user is a subscriber without disclosing the user’s identity and, as
mentioned before, without learning the user’s location.

In Fig. 4 we summarise one such FRL/FSEC–hybrid protocol, πAKE. Its main
point is that instead of having a unique IMSI and a subscriber key (both shared
with the MNO) embedded on their smart cards, users have a subscriber key
shared with their subscribed SP, and an identity token created by the SP. As
a result, instead of identifying themselves directly to the MNO using the IMSI,
they can do so to the SP using the token which is indecipherable to the MNO. The
SP can then confirm to the MNO that users are subscribers, without disclosing
their identity. Moreover, users and MNOs can establish authenticated keys for
encrypting radio link communication and a temporary session identifier using
essentially a Diffie–Hellman key exchange. The full details are provided in Fig. 5.

Adversarial goals: The aim of a corrupted user is to get authenticated without
subscription. That of an MNO to learn the user’s identity and that of an SP to
learn the user’s location. The only sensible collusion is an MNO–SP one.

72

U: k MNO SP: k

sid,Token, gx, S sid,Token, n1

sid, Enck(sid,n1,n2,Token,Token
′,N) sid, Enck(sid,n1,n2,Token,Token

′,N)

sid, n1

sid, gy, signature

sid, n2,MACH(00|gxy) sid, n2

sid, ok

Fig. 4. Summary of the anonymous key establishment protocol πAKE. Communication
between users and MNOs is via FRL and between MNOs and SPs via FSEC.

Authentication: First note that the user will never run two instances of the
protocol in parallel. If the ciphertext is decipherable, it knows it came from its
SP, and if it contains the identifier sid it is not a replayed message. If it contains
the original token sent, it means no one is trying to link this session to a previous
one. When it successfully verifies the MNO’s signature, it is convinced about the
MNO’s identity and hence the origin of the Diffie–Hellman partial key.

When the MNO receives its nonce n1 from the user, it concludes that the user
is a subscriber of SP since it was able to decrypt the ciphertext. On receiving the
MAC from the user, the MNO is convinced that the user accepted the signature
and agrees on all previous messages. At this point there are two possibilities for
the origin of the Diffie–Hellman partial key: either an honest subscriber of the SP
or a corrupted SP eavesdropping the radio link at this position, masquerading
as a user. The latter case, though possible, is improbable as it lacks motivation.

Finally, when the SP receives back its nonce n2, it is convinced of the user’s
identity and acknowledges this with the final ok message to the MNO.

Anonymity and location privacy: The SP constructs tokens as independent en-
cryptions of the user’s identity and since no other part of the protocol contains
information about the user’s identity, users remain anonymous to anyone else.

The SP, unless listening from beforehand at the particular position and sees
the token, learns nothing about the user’s location.

Linkability issues: To avoid linkability, fresh keys should be established using
distinct tokens every time a user enters a new location. For this reason, tokens are
independent encryptions of a user’s identity and fresh tokens are sent encrypted
during a protocol run. However, in case the protocol fails before a user receives
a new token, reuse of the old token can make linking the new session with
previous ones possible both for the MNO and any eavesdroppers. Nevertheless,
we prefer using tokens for the user’s identification to the SP rather than public
key cryptography which could prevent linkability. The reasons are that (i) in
such case, linkability leads to tracing an anonymous user as opposed to tracing

73

User:

Stored: S, Token, k, g, {(N, vkN)}.
On (Enter, pos,N) from Z:

– If nothing is recorded then generate random
exponent x ∈ Zp and session identifier sid,
record (pos,N,Token,sid,x) and send (Enter,pos)
and (Send, sid, (Token, gx, S), pos,N) to FRL.

On (Leave, pos) from Z:

– Send (Leave, pos) to FRL.
– If a record with pos exists remove it and

output (Est. failed unlinkable) if Token was
updated or (Est. failed linkable) otherwise.

On (Recv, sid,m, pos) from FRL:

– If Deck(m)=(sid, n1, n2,T,T1,N) and
(pos,N,T, sid, x) is recorded, replace it by
(pos,N,T,sid,n1,n2,x,m), update Token←T1 and
send (Send, sid, (n1), pos,N) to FRL.

– Else if m=(h, σ), h ∈ G, (pos,N,T,sid,n1,n2,x,c)
is recorded and VervkN ((sid,n1,g

x,h,T,c,pos,S),

σ)=True set µ←MACH(00|hx)(sid,n1,n2,g
x,h,T,c,

σ, pos, S,N), send (Send, sid, (µ, n2), pos,N) to
FRL, output (Est.,H(01|hx),H(10|hx),H(11|hx),
pos,N) and remove the record.

– Else do as second point of (Leave, pos) above.

MNO:

Stored: sk, g.
On (Recv, sid,m, pos) from FRL:

– If m=(T, h, S) and sid is not on any record
generate random nonce n1, record (sid,T,h,n1,
pos,S) and send (Send,sid,(T,n1,S) to FSEC.

– Else if m=(n1) and (sid,T, h, n1, pos, S, c) is
recorded, generate random exponent y ∈ Zp

and σ=Signsk(sid, n1, h, g
y,T, c, pos, S), send

(Send, sid, (gy, σ), pos) to FRL and replace the
record by (sid,T, h, y, n1, pos, S, c, σ).

– Else if m=(µ,n2), (sid,T,h,y,n1,pos,S,c,σ) is
recorded and µ=MACH(00|hy)(sid,n1,n2,h,g

y,
T,c,σ,pos,S,N), send (Send, sid, (n2), S) to FSEC

and replace the record by (sid, h, y, pos, S).

On (Recv, sid,m, S) from FSEC:

– If m=(c) and (sid,T,h,n1,pos,S) is recorded re-
place it by (sid,T,h,n1,pos,S,c) and send
(Send,sid,m,pos) to FRL.

– Else if m=(ok) and (sid, h, y, pos, S) is
recorded then remove it and output
(Est.,H(01|hy),H(10|hy),H(11|hy), pos, S).

SP:

Stored: kT, {(U, kU)}.
On (Recv, sid,m,N) from FSEC:

– If m=(T, n1), sid is not on any record and
DeckT (T)=U, generate random nonce n2 and

token T1=EnckT (U), record (sid, n2,U,N) and

send (Send,sid,(EnckU (sid,n1,n2,T,T1,N)),N) to
FSEC.

– Else if m=(n2) and (sid, n2,U,N) is recorded
then remove it, send (Send, sid,(ok),N) to
FSEC and output (Est.,U,N).

Fig. 5. The anonymous key establishment protocol πAKE.

identified users that is possible today (by forcing transmission of IMSIs instead
of TMSIs1) and (ii) token verification uses symmetric encryption which allows
for fast and inexpensive ciphertext validity checks by the SP, whereas if using
public key methods this could lead to troublesome denial of service attacks. For
example, since it is much easier to create a fake ciphertext than to validate one,
a malicious user can anonymously send large amounts of fake ciphertexts to the
SP, thus forcing it to exhaust its resources in trying to check their validity.

πAKE UC-realises the ideal functionality FAKE we describe in Fig. 6 under
the DDH assumption. This is the first functionality to model an anonymous
key establishment between a user, subscribed to an SP, and an MNO, and is
somewhat complicated, at least compared to the usual key establishment func-
tionalities. The main reason is that we are attempting to realise it under realis-
tic assumptions on available infrastructure and attacker power while minimising
computational costs and communication overhead. This means that what can be
achieved is less than perfect, and the functionality reflects that, in that describing
the imperfections is quite complex.

1 Such an attack is possible since an MNO can request IMSI transmission from the
user before it authenticates itself [1].

74

On (Enter, pos,N) from Ũ :

– If no record (id, pos,U,N, S) exists, where S is U ’s SP, then create one (if no record (U, id)
exists, generate random identifier id) and hand over (Enter, leak(id, pos,U,N, S)) to A, where
leak(id, pos,U,N, S) contains U and N if S is corrupted, pos,N and S if pos is corrupted, and id.

On (Leave, pos) from Ũ :

– If (id, pos,U,N, S) is recorded then hand over (Leave, id) to A.

On (Deny linkable, id) or (Deny unlinkable, id) from A:

– If (id, pos,U,N, S) is recorded then remove it and send (Est. failed linkable) or (Est. failed unlinkable)

to Ũ . Additionally, if S is honest record (U, id) or remove any such record.

On (Listen, pos) from A:

– Record pos as corrupted, collect leak(id, pos,U,N, S) from all records containing the appropriate
input data, and hand over the collection to A.

On (Est. User, k1, k2, k3, id) from A:

– If (id, pos,U,N, S) is recorded and N is honest then generate random keys k′1, k
′
2 and k′3, replace

the record by (id, pos,U,N, S, k′1, k
′
2, k

′
3) and send (Est., k′1, k

′
2, k

′
3, pos,N) to Ũ .

– Else if (id, pos,U,N, S) is recorded and N is corrupted, send (Est., k1, k2, k3, pos,N) to Ũ and either
replace the record by (id,U,N, S) if S is honest or remove it otherwise.

On (Est. SP, id) from A:

– If (id,U,N, S) or (id, pos,U,N, S, k1, k2, k3) is recorded then send (Est.,U,N) to S̃ and either remove
the record or replace it by (id, pos,N, S, k1, k2, k3).

On (Est. SP, id,U,N, S) from A:

– If S is honest SP of corrupted U , send (Est.,U,N) to S̃. In addition, if N is honest record (id, S,N).

On (Est. MNO, k1, k2, k3, id) from A:

– If (id, pos,N, S, k′1, k
′
2, k

′
3) is recorded then remove it and send (Est., k′1, k

′
2, k

′
3, pos, S) to Ñ .

On (Est. MNO, k1, k2, k3, id, pos) or (Est. MNO, k1, k2, k3, pos, S,N) from A:

– If (id, S,N) is recorded or pos and S are corrupted then send (Est., k1, k2, k3, pos, S) to Ñ and in
the first case remove the record.

Fig. 6. The anonymous key establishment functionality FAKE.

Remark 3. One can always decide to modify πAKE to use the public key cryptog-
raphy alternative we mentioned. Doing so will simplify FAKE and will not affect
any of our other functionalities or protocols, apart from removing the linkability
possibilities inherited from the current version of FAKE.

On the successful completion of a session, the user and the MNO will share
three secrets and the SP will know that the user has established connection to
the MNO, but not from where. A session is initiated when the user instructs the
functionality that he wants to establish a key with an MNO at a certain position.
The adversary A is notified about the attempt and controls when and how the
key establishment completes. He can either allow it to (partially) complete, or
he can interfere. The amount of information revealed about the attempt depends
on which parties are corrupt, whether the adversary listens (or begins to listen)
at the position, and how the user’s previous key establishment attempt ended.

Simulation: As mentioned in Remark 1, we will simply argue that a successful
simulator SAKE satisfying the three points (S1) to (S3) can exist.

It is fairly straight forward to satisfy (S1): Using standard definitions for UC-
secure signatures and symmetric encryption [3, 4], SAKE need not worry about
forged signatures or maliciously created ciphertexts. Encrypted messages can be
replaced by random ciphertexts of the same length and a secure MAC algorithm
can be modeled as a pseudorandom function. By the DDH-assumption on G,

75

each DDH-triple can be replaced by a random triple. Finally we disregard the
negligible event that independent nonces coincide.

For (S2) there are many technicalities to work out: By going through the
leakage of FRL and FAKE in the various corruption scenarios one can check that
after the cryptographic changes have been made, the leakage from FAKE (that is
the output of the leak function) only depends on the information that would also
leak from FRL. In other words, by replacing unknown values by fake ones and
running the real world protocol internally, SAKE can simulate the leakage from
FRL in the real world. When the adversary starts to listen to a new position, FAKE

leaks a list with additional information needed to “upgrade” the sessions to the
new corruption scenario. By linking the identifiers id to the current simulated
sessions, SAKE can replace any fake value by the newfound information.

Finally, for (S3) we must verify that FAKE allows sufficient influence: When-
ever one of the parties of the key-agreement (the user or MNO) is corrupted,
SAKE is given the power to choose the keys. This is a standard simplification for
key-agreements to ensure that any malicious attempt to influence the distribu-
tion of the keys in the real world can be reproduced by the simulator in the ideal
world. If both participants are honest then the MAC and signature ensure that
any successful output will have correctly distributed keys. Apart from the above,
the only kind of influence A can make in the real world is to make sessions fail
and to affect the order in which players output. In the ideal world, SAKE can
make any session fail by sending (Deny linkable, id) or (Deny unlinkable, id) to
FAKE. If the user is honest, the session will remain traceable until the simulated
user receives a new token from its SP. It is now just a case by case verification
that every order of output that is possible in the real world is also possible in
the ideal world, including the improbable case we mentioned of a corrupted SP
fooling the MNO into outputting without any user participation.

3.2 Secure and Anonymous Radio Link

A user and an MNO that establish three secrets using FAKE can use two of them
to encrypt their communication over the radio link and one as a temporary
session identifier using the FAKE/FRL–hybrid protocol πSARL of Fig. 7.

Informally, most of the security properties of πSARL follow from those of FAKE

and of symmetric encryption. If the secret keys are authenticated and uncorre-
lated, then so are the communication channels. The use of different keys for
upstream and downstream communication is a standard tool. We assume that
ciphertexts are authenticated so that the adversary cannot create valid cipher-
texts, only replay observed ones.

πSARL realises the the ideal functionality FSARL of Fig. 8, which captures the
desired security properties of authenticated and encrypted channels. FSARL is an
extension, in some sense, of FAKE and must therefore contain its imperfections.

Simulation: The existence of a successful simulator SSARL is more straight for-
ward to argue for than SAKE. Firstly, for (S1) we do the standard cryptographic

76

User:

On (Enter, pos,N) from Z:

– Send (Enter, pos,N) to FAKE.

On (Leave, pos) from Z:

– If a record with pos exists then remove it and
send (Leave, pos) to FRL, else send it to FAKE.

On m from FAKE:

– If m = (Est., sid, ke, kd, pos,N) then record
(sid,ke,kd,pos,N) and send (Enter, pos) to FRL,

else output m.

On (Send, sid,m) from Z:

– If (sid, ke, kd, pos,N) is recorded then send
(Send, sid, (Encke (m)),N) to FRL.

On (Recv, sid, c) from FRL:

– If (sid, ke, kd, pos,N) is recorded then output
(Received, sid,Deckd (c)) and, if it is the first

message received, also (Est., sid, pos,N).

MNO:

On (Est., sid, kd, ke, pos, S) from FAKE:

– Record (sid, ke, kd, pos, S), output
(Est., sid, pos, S) and send
(Send, sid, (Encke (ok), pos) to FRL.

On (Send, sid,m) from Z:

– If (sid, ke, kd, pos, S) is recorded then send
(Send, sid, (Encke (m), pos) to FRL.

On (Recv, sid, c, pos) from FRL:

– If (sid, ke, kd, pos, S) is recorded then output
(Received, sid,Deckd (c)).

Fig. 7. The secure and anonymous radio link protocol πSARL.

On (Enter, pos,N) from Ũ and (Listen, pos) and (Deny linkable/unlinkable, id) from A:

– Do as FAKE.

On (Leave, pos) from Ũ :

– Replace U by ⊥ in any record (mid, sid,m,U, pos) and (sid, pos,U,X), X ∈ {A,N}, and do as FAKE.

On (Est. MNO, sid′, id) from A:

– If (id, pos,U,N, S) is recorded and N is honest then generate random secure session identifier sid,

replace the record by (id, pos,U,N, sid) and send (Est., sid, pos, S) to Ñ .

On (Est. MNO, sid, pos, S,N,U) or (Est. MNO, sid, pos, S,N) from A:

– If U is corrupted and S is U ’s SP or pos and S are corrupted then send (Est., sid, pos, S) to Ñ
and record (sid, pos,A,N).

On (Est. User, sid′, id) from A:

– If (id, pos,U,N, S) with corrupted N or (id, pos,U,N, sid) is recorded then replace the record by

(sid′, pos,U,A) or (sid, pos,U,N) and send (Est., sid′, pos,N) or (Est., sid, pos,N) to Ũ .

On (Send, sid,m) from Ũ or Ñ :

– If (sid, pos,U,N) is recorded and pos is honest then send (Received, sid,m) to Ñ or Ũ .
– Else if (sid, pos,X,N) is recorded, pos is corrupted and X = U or X ∈ {U,⊥}, generate ran-

dom message identifier mid, record (mid, sid,m,N, pos) or (mid, sid,m,X, pos) and hand over
(mid, sid, |m|, pos,N) or (mid, sid, |m|,N, pos) to A, where |m| is the length of m.

– Else if (sid,pos,U,A) or (sid,pos,A,N) is recorded, hand over (sid,m, pos,N) or (sid,m,N, pos) to A.

On (Deliver,mid) from A:

– If (mid, sid,m,X, pos) is recorded and X ∈ {U,N} then send (Received, sid,m) to X̃.

On (Send, sid,m, pos) or (Send, sid,m, pos,N) from A:

– If (sid, pos,U,A) or (sid, pos,A,N) is recorded then send (Received, sid,m) to Ũ or to Ñ .

Fig. 8. The secure radio link functionality FSARL.

77

changes to the πSARL protocol. UC-secure ciphertexts are replaced by random
encryptions and ciphertexts created and injected by A are considered invalid.

Once this is done, one can check that the leakage from FRL and FAKE in the
protocol only depends on values that would also leak from FSARL. Like SAKE,
SSARL can replace unknown values with fake ones and run the πSARL protocol
internally. This takes care of (S2).

Lastly, we consider (S3). The adversary can influence the establishment of
secure sessions in πSARL by influencing FAKE. SSARL is therefore given the same
power to influence FSARL. Apart from this, the only way the adversary can in-
fluence the output of the user or the MNO is by delaying, deleting or replaying
messages from honest players or sending messages from corrupted players (all
over FRL), something SSARL can also do with FSARL.

4 Anonymous Internet Access

A user having a secure and anonymous connection to an MNO can anonymously
access the internet (modelled by FIA of Fig. 3) using ephemeral pseudonyms
securely obtained from the MNO via the FSARL/FIA-hybrid protocol πAIA (Fig. 9).

User:

On (Enter, pos,N) from Z:

– Send (Enter, pos,N) to FSARL.

On m=(Est. failed linkable/unlinkable) from FSARL:

– Output m.

On (Est., sid, pos,N) from FSARL:

– Record (sid, pos) and output (Est., sid, pos,N).

On (Leave, pos) from Z:

– Remove any record containing pos and send
(Leave, pos) to FSARL.

On (Req. Pseud., l, pos) from Z:

– If (sid,pos) is recorded then generate random

nonce n, record (sid, pos, n, l) and send
(Send, sid, (Req. Pseud., n, l)) to FSARL.

On (Received, sid,m) from FSARL:

– If m=(Pseud., n, ps1, . . . , psl) and (sid, pos, n, l)
is recorded then remove the record,
record each (psi, sid, pos) and output
(Pseud., pos, ps1, . . . , psl).

– Else if m=(Recv,Ps, ps,m
′) and (ps, sid, pos) is

recorded then output (Received,Ps, ps,m
′).

On (Send, ps,Pr,m) from Z:

– If (ps, sid, pos) is recorded then send
(Send, sid, (Send,Pr, (ps,m))) to FSARL.

MNO:

On (Est., sid, pos, S) from FSARL:

– Output (Est., sid, pos, S).

On (Received, sid,m) from FSARL:

– If m=(Req. Pseud., n, l), generate l random
pseudonyms ps1, . . . , psl, record each (psi, sid)
and send

(Send, sid, (Pseud., n, ps1, . . . , psl)) to FSARL.
– Else if m=(Send,Pr, (ps,m

′)) and (ps, sid) is
recorded then send m to FIA.

On (Recv,Ps, (ps,m)) from FIA:

– If (ps, sid) is recorded then send
(Send, sid, (Recv,Ps, ps,m

′)) to FSARL.

Non-user player P :

On (Send,Pr,m) from Z:

– Send (Send,Pr,m) to FIA.

On (Recv,Ps,m) from FIA:

– Output (Received,Ps,m).

Fig. 9. The anonymous internet access protocol πAIA. Ps and Pr denote non-user player.

The ideal functionality FAIA we describe in Fig. 10 is UC-realised by πAIA and
captures the security properties we want from such a scheme. This functionality
is an extension of FSARL and incorporates the internet access functionality FIA.

78

On (Enter, pos,N) from Ũ , (Send, sid,m) from Ũ and Ñ , and (Deny linkable/unlinkable, id), (Deliver,mid),
(Est. User, sid, id) and (Est. MNO, sid,X) from A:

– Do as FSARL.

On (Leave, pos) from Ũ :

– Remove any record (ps, sid, pos,U,N), and do as FSARL.

On (Req. Pseud., l, pos) from Ũ :

– If (sid, pos,U,N) is recorded, generate random pseudonym request identifier prid, record
(prid, l, sid, pos,U,N) and hand over (Req. Pseud., leak(prid, l, sid, pos,U,N)) to A, where
leak(prid, l, sid, pos,U,N) contains l, sid, pos and N if pos is corrupted, and prid.

On (Pseud., prid, ps′1, . . . , ps
′
l′) from A:

– If (prid, l, sid, pos,U,N) is recorded and either N is honest or l′ = l, generate l random N-
pseudonyms ps1, . . . , psl or set psi ← ps′i for 1 ≤ i ≤ l. Then record each (psi, sid, pos,U,N),

remove the record (prid, l, sid, pos,U,N) and send (Pseud., pos, ps1, . . . , psl) to Ũ .

On (Send, ps,Pr,m) from Ũ :

– If (ps, sid, pos,U,N) is recorded then hand over (Send,Pr, (ps,m), leak(ps, sid, pos,U,N)) to A, where
leak(ps, sid, pos,U,N) contains sid and pos if pos is corrupted, and N.

On (Send,Pr,m) from P̃s:

– If Ps is a non-user player then hand over (Send,Ps,Pr,m) to A.

On (Send,Ps,Pr,m) from A:

– If Pr is a non-user player then send (Received,Ps,m) to P̃r. Otherwise, if (Pr, sid, pos,U,N) is

recorded then send (Received,Ps,Pr,m) to Ũ .

On (Listen, pos) from A:

– Collect leak(prid, l, sid, pos,N,U) from all records and do as FSARL.

Fig. 10. The anonymous internet access functionality FAIA.

Simulation: First notice that the part about establishing a secure session in
FAIA is essentially identical to that of FSARL. We therefore focus on the sending of
messages and handling of pseudonyms. The simulator can distinguish pseudonym
request messages from sent messages using the leakage from FAIA.

As usual we can disregard the negligible event that independent nonces co-
incide. This means that the adversary can never replay pseudonyms from an
honest MNO to an honest user. Thus the only influence the adversary can have
in pseudonym requests is to delay or delete them, which the simulator can also do
via FAIA. For messages sent over the internet, the simulator has full control and
can inject or delete messages freely. Also, all relevant data leaks through FAIA,
except from the user’s identity and the sender’s position, unless corrupted. The
view of the adversary in the πAIA protocol is also independent of these values.
Finally, when a new position is corrupted, the simulator learns additional infor-
mation and it needs to update the leakage about pending pseudonym requests
and sent messages.

5 Seamless Internet Telephony Services

Another of today’s mobile communication related privacy issues is that when a
mobile phone user wants make a call, it has to inform its MNO of the callee’s
identity in order for a connection to be made. In addition, the contents of a
telephone conversation are available to the MNO of both the caller and the
callee.

79

In this section we sketch how seamless, private and anonymous telephony
services can be achieved from the FAIA functionality by means of public key
cryptography and a new protocol player called the telephony provider (TP). The
idea is that every time a user U enters a new position it registers a pseudonym
with its subscribed TP through the registration protocol of Fig. 11. Different
users can now call U by requesting U ’s pseudonym via TP. Once U accepts a
call, further communication with the caller will be independent of the TP by
means of direct exchange of pseudonyms and symmetric encryption keys. By
renewing pseudonyms on the go, U can stay connected as it moves around the
network or attempts to protect itself from traffic analysis.

UA TPB :k UB :k

EncekT
(EncekB

(UA, k
′, signature), k′′, ps2, UB)

ps1

Enck(cid, EncekB
(UA, k

′, signature))

ps3

Enck(cid, Enck′ (ps4))

ps3

Enck′ (ps4)

ps2

Enck′ (m)

ps5 ps4

1. User A calls user B via B’s TP.

UA TPA

EncekT
(U, k, ps2)

ps1

Enck(nonce)

ps1

Enck(signature)

ps1

2. User registration to TP.

UA:k TP:k

Enck(Renew, ps1, ps2)

ps1

Enck(Renewed, ps1, ps2)

ps2

3. User’s pseudonym
update to a TP.

UA:k UB :k

Enck′ (Renew, ps1, ps2)

ps1 ps3

Enck′ (Renewed, ps1, ps2)

ps2 ps3

4. User A’s pseudonym
update to user UB .

Fig. 11. The calling, pseudonym registration and pseudonym update protocols. All
communication is through FAIA.

In the first communication between a user and a TP, public key encryption
is used which would allow for denial of service attack. Our protocol could be
extended by letting the TPs share symmetric keys with MNOs so that the MNOs
can authenticate registered pseudonyms. In that case denial of service attacks
can be traced back to the owner of the pseudonym launching the attack.

Authentication: A caller authenticates to the callee via the signature. The callee
is authenticated by using the key sent encrypted by the caller, as he is the
sole owner of his decryption key. Similarly, a user authenticates to a TP during
registration using a signature that includes the fresh nonce sent by the TP. The
TP is authenticated by using the key sent by the user, as he is the sole owner of

80

his decryption key. Use of the shared symmetric key authenticates any further
communication between any two parties.

6 Conclusions

In this paper we have proposed a sequence of universally composable proto-
cols and ideal functionalities for mobile devices that in turn achieve secure and
anonymous network connection and anonymous internet access. We have also
sketched how the anonymous internet access functionality can be used as a basis
for internet telephony services. This is a privacy-preserving alternative to the
current state of affairs where users have to inform mobile network operators
both of their location and identity as they move around the network, and where
network operators have full overview of a user’s telephone conversations.

References

1. 3GPP TS 33.102: Security Architecture, Ver. 11.1.0 (2011). Available at
http://www.3gpp.org/ftp/Specs/html-info/33102.htm

2. Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anony-
mous Credentials With Optional Anonymity Revocation. In: Pfitzmann, B. (ed.)
Eurocrypt 2001. LNCS, vol. 2045, pp. 93–118, Springer (2001)

3. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols, Report 2000/067, IACR ePrint Archive (2005)

4. Canetti, R.: Universally Composable Signature, Certification, and Authentication.
In: CSFW 2004, pp. 219–233. IEEE press, (2004)

5. Chaum, D: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Commun. ACM, Vol. 24, Iss. 2, pp. 84–88. ACM press (1981)

6. The European Parliament and Council: Directive 2006/24/EC. L 105, pp. 54–63
(2006)

7. Gjøsteen, K., Petrides, G., Steine, A.: A Novel Framework for Protocol Analysis. In:
Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6890, pp. 340–347, Springer
(2011)

8. Lindell, Y.: Anonymous Authentication. Journal of Privacy and Confidentiality,
Vol. 2, Iss. 2, pp. 35–63 (2010)

9. Nguyen, L., Safavi-Naini, R.: Dynamic k-times Anonymous Authentication. In: Ioan-
nidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 318–333,
Springer (2005)

10. The Tor project. Available at https://www.torproject.org/index.html.en
11. Wachsmann, C., Chen, L., Dietrich, K., Löhr, H., Sadeghi, A.-R., Winter, J.:

Lightweight Anonymous Authentication with TLS and DAA for Embedded Mo-
bile Devices. In: Burmester, M., Tsudik, J., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 84–98, Springer (2011)

12. Xu, J., Zhu, W.-T., Feng, D.-G.: An Efficient Mutual Authentication and Key
Agreement Protocol Preserving User Anonymity in Mobile Networks. Computer
Communications, Vol. 34, pp. 319–325, Elsevier (2011)

81

82

Paper V

Weak Blind Signatures and Mobile Payment
Asgeir Steine

Preprint

83

84

Weak Blind Signatures and Mobile Payment ?

Asgeir Steine

NTNU, Trondheim, Norway.

Abstract. In this paper we introduce a protocol for an online mobile
payment service using blind signatures. Security is defined and analysed
in a variant of the universal composability framework under standard
cryptographic assumptions. We assume fairly technical communication
channels that help us to address the privacy issues related to such a
service. Previous definitions of universally composable blind signature
functionalities have always been dependent on the channels in use. As
a result the functionalities would have to be redefined every time they
are used together with a new channel. As a side contribution we define
our functionality independently of the channels. This definition is more
in line with the way functionalities for standard crypto schemes such as
encryption and signature schemes are modelled.

1 Introduction

During the last twenty years or so electronic payment services have become
more and more common. In many countries the traditional cash system with
bills and coins is now obsolete. In the credit/debit cards systems of today’s
electronic payment services each merchant has a persistent connection with the
bank. Another emerging technology for electronic payments is based on near field
communications, allowing a payment device to communicate with the merchants
terminal via short range radio and with the bank via the internet or mobile
network. One example of this type is the Google Wallet system.

One problem with traditional credit card systems is that the bank learns to
much about its users. The bank has full overview of where and when a transaction
takes place, and the size of the transaction. One can argue that this practice is
not desirable from a privacy perspective.

We build an alternative near field communications based payment scheme
using the privacy preserving mobile networks of [9].

1.1 Related Work

To our knowledge the first cryptographic paper to address the issue of privacy
for electronic payment was [3] from 1982. The notion of blind signatures was also
introduced in that paper as a tool for achieving secure payments with enhanced
user privacy. Following in its path many papers introduced examples of blind

? Funded by the Norwegian Research Council’s VERDIKT programme project 183195.

85

signature schemes as well as improvements and adjustments to the approach of
[3]. One notable adaption allowing users and merchants to conduct transactions
without a persistent connection to the bank can be found in [4]. The merchant
can then later contact the bank to cash in on its successful transactions. Another
well known payment system can be found in [1].

The universal composability framework for analysing protocols was intro-
duced in [2]. The paper [5] and one of the papers in [8] are devoted to modelling
blind signatures within that framework. Security games for analysing blind sig-
natures was originally defined in [7].

1.2 Our Contribution

We build a payment protocol from blind signatures in the standard way by hav-
ing the bank blindly sign challenges from the merchants. The main novelty is the
communication devices we use in our model. By modelling communication func-
tionalities for mobile phones as in [9] our mobile payment functionality gives a
detailed overview of security properties that can be achieved in different corrup-
tion scenarios. The protocol is analysed in the modified universal composability
framework of [6].

As a side contribution we define and use a weak notion of blind signature
schemes and prove its security properties in the same universal composability
framework. The notion of blind signatures in this paper differs from the signa-
tures of [5] and [8] as it is made independent of communication networks used
between the signer and the player that blinds/unblinds the signature.

1.3 Assumptions

The universal composability framework comes in many flavors depending on the
setup assumptions for the system and corruption capabilities of the adversary.
We only consider static corruptions. That means that the adversary gets full
control of the corrupted players, however he can only corrupt players before the
actual run of the protocol starts. In the mobile payment protocol where we model
physical networks by FAIA and FNFC we allow the adversary to corrupt positions
in the networks adaptively during execution, as specified by the functionalities.

We assume honestly generated preshared public keys for our blind signature
protocol. In practise it means that every protocol player has access to the key
generation functionality of Fig. 1. In the mobile payment protocol of Fig. 11 we
give the players access to a standard key registration functionality for public key
encryption and traditional signatures. In that protocol the keys for the blind
signature scheme have been abstracted away to the functionality FBS.

Note that when the communication functionality FAIA was realised in [9]
preshared symmetric keys between the each user and its service provider, and
signature key pairs for each network provider was also assumed.

86

On (Key, Q) from a Player P :

– If (Key pair, pk, sk,Q) is not stored, generate (pk, sk)← Gen and store
(Key pair, pk, sk,Q).

– In either case hand over (Pubic key, pk,Q) to P .

On (Keys) from a player P :

– If (Key pair, pk, sk, P) is not stored, generate (pk, sk)← Gen and store
(Key pair, pk, sk, P).

– In either case and hand over (Key pair, pk, sk) to P .

On (Keys, Q) from A:

– If (Key pair, pk, sk,Q) is not stored, generate (pk, sk)← Gen and store
(Key pair, pk, sk,Q).

– In either case hand over (Public key, pk,Q) to A if Q is honest and
(Key pair, pk, sk,Q) if he is corrupted.

Fig. 1. Key generation functionality FKG for a public-key crypto system with key gen-
eration algorithm Gen.

2 Weak Blind Signatures

A blind signature scheme consists of the following.

– A probabilistic key generation algorithm Gen that produces key pairs (pk, sk).
– Three probabilistic algorithms Request, Issue and Unblind such that: 1) Request

on input (pk,m) outputs (ρ, s) where ρ is a request token and s is some state
information. 2) Issue on input (sk, ρ) outputs a blinded signature σ̃ or ⊥. 3)
Unblind on input (s, σ̃) outputs a signature σ or ⊥.

– An algorithm Verify that on some input (pk,m, σ) outputs either 0 or 1.

It is required that for any message m and any key pair (pk, sk) ← Gen the
signature σ obtained by the steps (ρ, s) ← Request(pk,m), σ̃ ← Issue(sk, ρ),
σ ← Unblind(s, σ̃), satisfies Verify(pk,m, σ) = 1 (completeness).

2.1 Game Based Blind Signatures

Game based security definitions for blind signatures are usually made via a
blindness game and an unforgeability game. Each game describes how input to
an attacker is generated and how the outcome of the game is decided from the
attackers output. The security games we propose are quite close to the games
described in [7]. We will consider a weak kind of blindness which as described
in Def. 1 essentially says that an adversary given an honestly generated signa-
ture/verification key-pair and acting as the signer of two sessions cannot recog-
nise whether or not the request tokens have been swapped between the sessions.
Note that it could also be sensible to consider a stronger notion where the ad-
versary is allowed to generate the keys maliciously and keep the private key
secret.

The unforgeability requirement is described in Def. 2. Again for our purposes
it is enough to consider a weak kind of unforgeability. The definition essentially

87

says that the adversary given an honestly generated verification key and access to
an issuing oracle, cannot obtain n+1 valid signatures on distinct messages while
querying the oracle only n times. This definition of unforgeability is weak in the
sense that the adversary might obtain many signatures on the same message,
and that we do not require that messages can be extracted from their request
tokens as some approaches towards UC-secure blind signatures do.

ExpWB :

– (sk, pk)← Gen.
– (m0,m1, st)← A1(pk, sk).
– b← {0, 1}.
– (ρ0, s0)← Request(pk,m0).
– (ρ1, s1)← Request(pk,m1).
– (σ̃b, σ̃1−b, s̃t)← A2(st, ρb, ρ1−b).
– σ0 ← Unblind(s0, σ̃0).
– σ1 ← Unblind(s1, σ̃1).
– If Verify(pk,m0, σ0) = 1 and Verify(pk,m1, σ1) = 1, then b′ ← A3(s̃t, σ0, σ1).

Otherwise b′ ← A3(s̃t,⊥,⊥).

Fig. 2. The weak blindness experiment.

Definition 1 (Weak Blindness). We define Ei to be the event that b⊕b′ = i in
the experiment ExpWB of Fig. 2. The advantage of an attacker A = (A1,A2,A3)
is defined to be

AdvWB
A = |Pr[E0]− Pr[E1]|.

If for any adversary A bounded by time t we have AdvWB
A ≤ ε we say that the

blind signature scheme is (t, ε)-secure with respect to weak blindness.

ExpWUF :

– (sk, pk)← Gen.
– ((m1, σ1), . . . , (mk, σk))← AIssuesk (pk).

Issuesk (ρ):

– Return Issue(sk, ρ).

Fig. 3. The weak unforgeability experiment

Definition 2 (Weak unforgeability). For an attacker A of the experiment
ExpWUF of Fig. 3 the event E is that for some k ∈ Z+ the attacker outputs

88

valid signatures on k + 1 distinct messages after at most k queries to Issuesk .
The success probability of the attacker is defined as

SuccWUF
A = Pr[E].

If for any adversary A bounded by time t and n queries we have SuccWUF
A ≤ ε,

we say that the blind signature scheme is (t, n, ε)-secure with respect to weak
unforgeability.

2.2 Request Integrity

To realise universally composable blind signatures independent of channel we
need an extra security condition. The request integrity requirement described in
Def. 3 ensures that it is infeasible for an attacker to alter an observed request
token to obtain a blinded signature that unblinds with the same state information
as the original request token without ever making an issue request for that
particular request token. This requirement is non-standard in the theory of blind
signatures, however as stated in Thm. 1 any blind signature scheme can be made
into a blind signature scheme that satisfies request integrity requirements by
using an IND-CCA secure public key encryption scheme to encrypt all request
tokens.

Definition 3. Define the success probability SuccRIA of an attacker A = (A1,A2)
to be the probability that b = 1 after the interaction in the experiment ExpRI of
Fig.4.

We say that the blind signature scheme is (t, n, ε)-secure with respect to re-
quest integrity if for any attacker bounded by time t and n queries to Issuesk we
have SuccRIA ≤ ε.

Definition 4. Let Ei be the event that b ⊕ b′ = i and c is not stored in Decdk
in the experiment ExpCCA of Fig. 5. We define the advantage of an attacker
A = (A1,A2) against the experiment to be

AdvCCAA = |Pr[E0]− Pr[E1]|.

If for any adversary A bounded by time t and n queries to Decdk we have
AdvCCAA ≤ ε we say that the blind signature scheme is (t, n, ε)-secure with respect
to IND-CCA.

Theorem 1. Let (GenSign,Request, Issue,Unblind) be a blind signature scheme
and (GenEnc,Enc,Dec) a public key encryption scheme that is (t, n, ε)-secure with
respect to IND-CCA. Then there exists a λ and a small constant t0 such that
(Gen′,Request′, Issue′,Unblind′) of Fig. 6 is (t− t0n, n, 2ε)-secure with respect to
request integrity.

89

ExpRI :

– (pk, sk)← Gen.
– (m, st)← A

Issuesk
1 (pk).

– (ρ, s)← Request(pk,m).
– σ̃ ← A

Issuesk
2 (ρ, st).

– σ ← Unblind(s, σ̃).
– If ρ is not stored in Issuesk ,
b← Verify(pk,m, σ), otherwise
b← 0.

Issuesk (ρ′):

– σ̃ ← Issue(sk, ρ′)
– Store ρ′.
– Return σ̃.

Fig. 4. The request integrity experiment

ExpCCA:

– (ek, dk)← Gen.
– (m0,m1, st)← A

Decdk
1 (ek).

– b← {0, 1}.
– c← Enc(ek,mb).
– b′ ← A

Decdk
2 (c, st).

Decdk (c′):

– m′ ← Dec(dk,m′)
– Store c′.
– Return m′.

Fig. 5. The IND-CCA experiment

Gen’:

– (vk, sk)← GenSign.
– (ek, dk)← GenEnc.
– vk′ ← (vk, ek).
– sk′ ← (sk, dk).
– Return (vk′, sk′).

Issue’((sk, dk), ρ′):

– (ρ, k̃)← Dec(dk, ρ′).
– σ̃ ← Issue(sk, ρ).
– σ̃′ ← (σ̃, k̃).
– Return σ̃′.

Request’((vk, ek),m):

– (ρ, s)← Request(vk,m).
– k ← {0, 1}λ.
– ρ′ ← Enc(ek, (ρ, k)).
– s′ ← (s, k).
– Return (ρ′, s′).

Unblind’((s, k), (σ̃, k̃)):

– If k = k̃, return Unblind(s, σ̃).
– Otherwise return ⊥.

Fig. 6. Request integrity construction for a security parameter λ.

90

Proof. We can use any λ that satisfies 2−λ ≤ ε. Let us assume that ARI is an
attacker of the request integrity experiment. We build an attacker ACCA against
the IND-CCA experiment as follows. Upon receiving ek from the IND-CCA
experiment ACCA generates blind signature keys (vk, sk) with GenSign and sends
vk′ = (vk, ek) to ARI . Issue requests from ARI are handled as Issue′ in Fig. 6
with the exception that the decryption oracle of the IND-CCA experiment is
used instead of dk. When ARI provides it’s target message m, ACCA generates
a request token (ρ, s)← Request(vk,m) and two (different) random λ-bit strings
(k0, k1) for m and outputs ((ρ, k0), (ρ, k1)) as a message pair to the IND-CCA
experiment. Next ACCA receives an encryption ρ′ of one of the messages, this is
the target request token for ARI . When ARI finally outputs a blinded signature
σ̃′ = (σ̃, k̃), ACCA outputs 0 if k̃ = k0, 1 if k̃ = k1 and guesses a random bit
otherwise.

Let us now analyse the advantage of ACCA. Suppose ARI has a success
probabilty greater than 2ε. that means that Pr[k̃ = kb] > 2ε. On the other hand
since the view of ARI is information theoretically independent of k1−b we must
have Pr[k̃ = k1−b] ≤ 2−λ ≤ ε. Considering the following identities we obtain the
desired result.

Pr[b⊕ b′ = 0] = Pr[k̃ = kb] +
1

2
· Pr[k̃ 6∈ {k0, k1}].

P r[b⊕ b′ = 1] = Pr[k̃ = k1−b] +
1

2
· Pr[k̃ 6∈ {k0, k1}].

AdvCCA ≥ Pr[b⊕ b′ = 0]− Pr[b⊕ b′ = 1] = Pr[k̃ = kb]− Pr[k̃ = k1−b] > ε.

In other words, any attacker with success probability greater than 2ε against
the request integrity experiment gives an attacker with advantage greater than
ε against the IND-CCA experiment. The overhead running time of ACCA can
always be bounded by t0n for some small constant t0 since it corresponds to the
sending of one decryption query for each Issue query from ARI . ut

2.3 Universally Composable Blind Signatures

The following theorem shows that the games defined in the previous section guar-
antee the security notion defined by the functionality of Fig. 8. The reductions
for Thm. 2 are generic and might in practice be tighter for concrete solutions.

To analyse the security with concrete security parameters we consider two
resource bounds R and R′ that both bound the number of requested tokens for
each player to the same constant n and the number of players to k. R bounds the
total time usage to t and R′ to some t′ > t. We will assume that t′ is sufficiently
large so that it covers the extra time consumption related to accounting and
extra computation for unblind queries in FMP.

Theorem 2. Let R and R′ be as above, and BS = (Gen,Request, Issue,Unblind,Verify)
a blind signature scheme that is (t′, ε)-secure w.r.t. weak blindness, and (t′, n, ε)-
secure w.r.t. weak unforgeability and request integrity. Then for any fixed message

91

On (Request,m,Q) from Z:

– Send (Key, Q) to FKG and obtain (Public key, pk).
– Generate (ρ, s)← Request(pk,m), store (RequestState, pk, ρ, s,m) and output

(Request, ρ).

On (Issue, ρ) from Z:

– Send (Keys) to FKG and obtain (Key pair, pk, sk).
– Generate σ̃ ← Issue(sk, ρ) and output (Issue, σ̃).

On (Unblind, ρ, σ̃) from Z:

– Send (Key, Q) to FKG and obtain (Public key, pk).
– If (RequestState, pk, ρ, s,m) is recorded, then σ ← Unblind(s, σ̃) and delete the

request state, otherwise output (Fail) and stop.
– If Verify(pk,m, σ) = 1 output (Signature, σ) otherwise output (Fail).

On (Verify,m, σ,Q) from Z:

– Send (Key, Q) to FKG and obtain (Public key, pk).
– Run Verify(pk,m, σ) to obtain an outcome bit b and output (Verify, b).

Fig. 7. The blind signature FKG-hybrid protocol for an honest player P .

m∗ the protocol for blind signatures (R, δ,R′, δ+(2n+1)εk, δ+(2n+1)εk)-realises
the weak blind signature functionality.

Proof. To prove the theorem we proceed by a sequence of games starting with
the interaction between an environment Z and the protocol of Fig. 7 and ending
with the interaction between Z and the functionality of Fig. 8 composed with a
simulator that specifies the blind signature scheme.

Game 0: This is the interaction between Z and the protocol of Fig.7.

Game 1: In this game we gather up the protocol in one machine M1 that
1) identically simulates the execution of Game 0, 2) keeps records and does the
checks of the weak blind signature functionality of Fig. 8, and 3) on (Unblind, ρ, σ̃)
leaves a sufficient time gap so that the unblind procedure can later be swapped
by the procedure of the functionality without additional time consumption.

It is clear that the final output by Z is identically distributed to the previous
game which means that the two games are (R, δ,R′, δ, δ)-indistinguishable.

Game 2: In this game the machineM1 is replaced byM2 that instead of unblind-
ing every (Unblind, ρ, σ̃) query according to protocol, it (like the blind signature
functionality) outputs (Fail) if the issuing player Q is honest and (Issue, ρ) has
not previously been received by Q in M2. By Lemma 1 the request integrity
property makes this game (R′, δ, R′, δ+nεk, nεk)-indistingushable from the pre-
vious game.

Game 3: In this game the machine M2 is replaced by M3 that instead of
requesting, issuing and unblinding as the protocol of Fig. 7 follows the func-
tionality of Fig. 8. By Lemma 2 the weak blindness property makes this game

92

Setup Phase:
On any input m not from X 6= A:

– Store (Premature input,m,X) and hand over (Setup) to A.

On input a blind singature scheme (Gen,Request, Issue,Unblind) from A:

– Move to execution phase and process every entry (Premature input,m,X) as if m
was received from X in that phase.

Execution phase:
On (Request,m,Q) or (Verify,m, σ,Q) from P , (Issue, ρ) from Q or (Keys, Q) from A:

– If (Key pair, pk, sk,Q) is not stored, generate (pk, sk)← Gen and store
(Key pair, pk, sk,Q). In either case follow the instructions below.

On (Request,m,Q) from P :

– Generate a request token (ρ, s)← Request(pk,m∗), record
(Request, pk, ρ, s,m, P,Q) and (Good request, ρ,Q) and send (Request, ρ) to P .

On (Issue, ρ) from P :

– Generate a blinded signature σ̃ ← Issue(sk, ρ).
– If (Good request, ρ,Q) is recorded, store (Good issue, ρ,Q). Otherwise store

(Bad issue, ρ,Q). In either case send (Issue, σ̃) to P .

On (Unblind, ρ, σ̃) from P :

– If (Request, pk, ρ, s,m, P,Q) is recorded then generate σ∗ ← Unblind(s, σ̃) and
delete (Request, pk, ρ, s,m, P,Q). Otherwise send (Fail) to P and stop.

– If Verify(pk,m∗, σ∗) = 1 and either (Good issue, ρ,Q) is recorded or Q is corrupt,
construct new values (ρ̂, ŝ)← Request(pk,m), σ̂ ← Issue(sk, ρ̂) and
σ ← Unblind(ŝ, σ̂), store (Signature,m,Q) and send (Signature, σ) to P . Otherwise
send (Fail) to P .

On (Verify,m, σ,Q) from P :

– If (Signature,m,Q) is stored or Q is corrupted, run b← Verify(pk,m, σ) and send
(Verify, b) to P .

– Otherwise if Verify(pk,m, σ) = 1 and there is a message (BadIssue, ρ,Q) recorded
for some ρ, remove one such record entry, store (Signature,m,Q) and send
(Verify, 1) to P .

– Otherwise send (Verify, 0) to P .

On (Keys, Q) from A:

– Hand over (Public key, pk,Q) to A if Q is honest and (Key pair, pk, sk,Q) if he is
corrupted.

Fig. 8. The blind signature functionality FBS for a honest player P and a fixed message
m∗.

93

(R′, δ + nεk,R′, δ + 2nεk, nεk)-indistinguishable from the previous game.

Game 4: In this game the machine M3 is replaced by M4 that verifies signa-
tures as the functionality of Fig. 8. By Lemma 3 the weak unforgeability property
makes this game (R′, δ+ 2nεk,R′, δ+ (2n+ 1)εk, εk)-indistinguishable from the
previous game.

Using the transitivity of indistinguishability we get that Game 0 is (R, δ,R′, δ+
(2n+ 1)εk, δ + (2n+ 1)εk)-indistinguishable from Game 4. ut

Lemma 1. Under the conditions of Thm. 2 the machines M1 and M2 are
(R′, δ, R′, δ + nεk, nεk) indistinguishable, where k is the bound on the number
of players and n the bound on the number of requests for each player.

Proof. We start by defining an exceptional event for the execution of M1 and
M2. Let Ei be the event that during an execution with Mi the following occurs
for some (not necessarily distinct) honest players P and Q:

– P has received (Request,m,Q) and produced ρ with state information s.
– P has received (Unblind, ρ, σ̃) without Q first receiving (Issue, ρ).
– σ ← Unblind(σ̃, s) is a valid signature on m.

As long as the events Ei do not occur the two games proceed identically.
Next we must bound the probability of the events Ei occuring. Suppose some

adversary A can make the events Ei occur within time t with probability greater
than nεk, where k is the bound on the number of players and n is the bound
on the number of requests for each player. We can then create an attacker ARI

on the request integrity experiment as follows. Upon receiving pk from ExpRI ,
ARI samples random numbers i← {1, . . . , k} and j ← {1, . . . , n}. ARI proceeds
by executing the interaction between M2 and A with the exception that for the
i’th player, pk and Issuesk are used instead of the registered key pair. If some
player receives a j’th request (Request,m,Q) where Q is the i’th player, then
ARI outputs m to the experiment and obtains a request token ρ. ARI then uses
this request token instead of generating a new request token and answers the
i’th request query. If Ei happens for that particular request token ARI outputs
the σ̃ received by Q and wins the request integrity experiment. The probability
of this happening is greater than ε making a contradiction to the assumption of
Thm.2. ut

Lemma 2. Under the conditions of Thm. 2 the machines M2 and M3 are
(R′, δ, R′, δ + εnk, εnk)-indistinguishable, where k is the bound on the number
of registered keys pairs and n is the bound on the number of request tokens for
each key pair.

Proof. First of all notice that M2 and M3 can only differ when the request
token have been generated by a honest player. We make a sequence of machines
M ′0, · · ·M ′kn as follows. Initially we define M ′0 to be M2. For i ∈ [0, k−1] and j ∈
[1, n], let M ′in+j be the machine that acts like M3 on the sessions corresponding

94

to the i first blind signature key pairs and on the j first honestly generated
request tokens corresponding to the (i + 1)’th key pair and acts like M2 for all
the other request tokens. It is clear that M ′0 = M2 and M ′kn = M3.

If every pair (Mr−1,Mr) are (R′, δ + (r − 1)ε, R′, δ + rε, ε)-indistinguishable
then we are done by transitivity of indistinguishability. Let us suppose that there
is an r = in+ j such that Mr−1 and Mr are distinguishable. For a distinguisher
D we define the events Er that D interacting with M ′r outputs 1 and Gr that
the run is bounded by the resource bound R′. There are two ways that Mr−1
and Mr can fail to be (R′, δ + (r − 1)ε, R′, δ + rε, ε)-indistinguishable:

Case 1: There exist a D such that |Pr[Er−1 ∧Gr−1]− Pr[Er ∧Gr]| > ε.

Case 2: There exist a D such that Pr[¬Gr−1] ≤ δ+(r−1)ε but Pr[¬Gr] > δ+rε.

In both cases this can be used to create a (R′, δ + (r − 1)ε, R′, δ + rε, ε′)-
distinguisher between M ′r−1 and M ′r with ε′ > ε. We now define an attacker
A = (A1, A2, A3) for the weak blindness game. A1 receives a blind signature
key pair (pk, sk) from the game, then interacts with D by running M ′r = M ′in+j
with the only exception that the (i+ 1)’th key pair is the one obtained from the
game. When D asks to generate the j’th request token under the (i+ 1)’th key
pair with message m, A1 outputs (m,m∗, st) where st is the current state of the
simulation of M ′in+j .

When A2 receives (st, ρb, ρ1−b) he continues to simulate M ′in+j with the
exception that instead of creating a new j’th request token he uses the re-
quest token ρb and if the unblind query (Unblind, ρb, σ̃) is made he generates
σ̃′ ← Issue(sk, ρ1−b) and outputs (σ̃, σ̃′, s̃t) where s̃t is the new simulation state.
If A3 receives (s̃t,⊥,⊥) he knows that σ̃ was not a valid blinded signature and
doesn’t need to come up with any corresponding unblinded signature to proceed
with the simulation. If A3 receives (s̃t, σ0, σ1) he continues the simulation using
the σ0 value for the ongoing unblind query. Finally when the simulation stops
and D outputs a bit b′, A3 forwards this bit to the game.

Notice that if b is 1 in the game then A perfectly simulates M ′r and if b is 0
it simulates M ′r−1.

We thus have an attacker with advantage in guessing b within time t′ greater
than ε. By modifying our attacker to never exceed t′ we get a (t′, ε′)-distinguisher
for the weak blindness game. Which contradicts the hypothesis of Thm. 2.

ut

Lemma 3. Under the conditions of Thm. 2 the machines M2 and M3 are
(R′, δ, R′, δ + εk, εk)-indistinguishable, where k is the bound on the number of
registered key pairs in R.

Proof. The machinesM2 andM3 act identically unless the exceptional event that
at some point during the execution for some (honest) key pair the adversary
has created valid blind signatures for more messages than he has queried for
issues. We can make a weak unforgeability attacker AWUF by choosing a random

95

number i uniformly from {1, . . . , k} and running M2 with the exception that the
i’th key pair is replaced by the public key and oracle of the weak unforgeability
experiment. If the probability of the exceptional event is larger than εk, then
AWUF has success probability larger than ε. By assumption the probability of
the exceptional event occurring for an adversary bounded by time t is therefore
bounded by εk. By the theorem for exceptional events in [6] the lemma follows.

ut

2.4 Partially Blind Signatures

The notion of blind signatures defined above allows us to generate “coins” of
a fixed value. By creating multiple key pairs corresponding to various values
one can make payments more efficient, however multiple transactions for each
payment can still be considered suboptimal. An extension of blind signatures
called partially blind signatures allows the signer to see a public part of the
message to be signed while still being blind to the private part. This enables
the user to specify the value of the coins to be signed and thus streamlines the
payment systems.

For the security of partially blind signatures the blindness requirement only
makes sense for signature requests with the same public part. Integrity of the
public part is important to ensure that the value of a “coin” is fixed when the
coin is issued.

3 Anonymous Mobile Payment

In this section we present our proposal for a mobile payment scheme and its
corresponding ideal functionality. We sketch how the protocol can be simulated
in a static corruption model assuming honestly generated preshared keys. Before
we describe the protocol formally we must introduce the communication devices
that the players use.

3.1 Near Field Communication

We model the communication between merchants and users by the functionality
of Fig. 9. We will assume that physical restrictions prevent the adversary from
active attacks on the near field communications, but the adversary can eavesdrop
on the channel. This is modeled by a (Hack,M) message from the adversary.

3.2 Anonymous Internet Access

The functionality FAIA of Fig. 10 is a fairly technical functionality modelling a
pseudonymous connection between users and their banks. It is a modification of
the anonymous internet access functionality of [9] made to suit our application.

The functionality models a global adversarially controlled network (internet),
and a more local mobile network. The users can send “enter” and “leave” mes-
sages to the functionality to symbolise movement between base stations in the

96

On (Enter,M) from P :

– If there is already an entry with M
recorded, send
(Merchant unavailable,M) to P and
stop.

– If P is an honest user U or the
adversary A record (P,M) and send
(Entered,M) to P .

– If (Hack,M) is recorded hand over
(Entered,M) to A.

On (Leave,M) from P :

– If there is a record (P,M), delete it
and send (Left) to M , otherwise stop.

– If (Hack,M) is recorded hand over
(Left,M) to A.

On (Send,M,m) from P :

– If (P,M) is recorded send (m) to M .
– If (Hack,M) is recorded then hand

over (Send,m,M) to A.

On (Send,m) from M :

– If (P,M) is recorded send (m) to P .
– If (Hack,M) is recorded then hand

over (Send,m,M) to A.

On (Hack,M) from A:

– Record (Hack,M).

Fig. 9. The near field communication functionality FNFC.

local network. The “Deny” messages model denial of service attacks performed
on the network to block the initial communication between a user and the base
station. The way that FAIA was constructed in [9] allows the adversary to trace
a user as he moves through the network by continuously denying service to that
user. The user is however able to distinguish the traceable type of failure from
the untraceable type.

Once a user has successfully entered a position he receives a pseudonym
from his network provider. Hidden behind this pseudonym the user can send
and receive messages on the global network.

Two new player entities are introduced in the functionality, the mobile service
provider Sp and the network provider Np. These players do not play an essential
role in the payment protocol of Fig. 11, but by keeping them in the model we also
keep track of lower layer attacks. For example: If a session involves a corrupt Sp,
then the users identity U leaks to the adversary. If Np is corrupt the pseudonyms
are chosen by the adversary and the mobile position leaks.

3.3 Merchant - Bank Communication

We assume that each merchant and each bank can communicate through an in-
secure unauthenticated channel. There is no reason to assume a stronger channel
in this setting as even with full power to replace, delete and inject messages the
adversary cannot do any harm except denial of service.

3.4 Mobile Payment Protocol

Using the blind signature functionality FBS and the communication devices
above we build a mobile payment protocol ΠMP as described in Fig. 11. For
brevity we will write “send (m, ps) to B” instead of “send (Send, ps,B,m) to
FAIA” and “send m to ps” instead of “send (Send, ps,m) to FAIA”. Similarly for

97

On (Enter, pos,Np) from U :

– Stop if a record (id, pos, U,Np, Sp)
exists. Else, if no record (U, id) exists,
generate random identifier id, in either
case record (id, pos, U,Np, Sp), where
Sp is U ’s Sp, and handover
(Enter, id, leak) to A. leak contains
pos, Sp and Np if pos is corrupted
and U if Sp is corrupted.

On (Leave, pos) from U :

– Remove any records
(ps, sid, pos, U,Np), (U, ps, sid, pos),
(prid, l, sid, pos, U,Np) and
(sid, pos, U,Np).

– Stop if (id, pos, U,Np, Sp) is not
recorded, otherwise hand over
(Leave, id) to A.

On (Deny linkable, id) or (Deny unlinkable,
id) from A:

– Stop if (id, pos, U,Np, Sp) is not
recorded, otherwise remove it and
send (Est. failed linkable) or
(Est. failed unlinkable) to U .
Additionally, if Sp is honest then
record (U, id) or remove any such
record.

On (Entered, ps, id) from A:

– Stop if (id, pos, U,Np, Sp) is not
recorded, otherwise:

• If U and Np are honest then
generate random pseudonym ps′,
replace the record by
(ps′, pos, U,Np) and send
(Entered, ps′, pos,Np) to U .

• Else, replace record by
(ps, pos, U,Np) and send
(Entered, ps, pos,Np) to U .

On (Send, ps, B,m) from U :

– If (ps, pos, U,Np) is not recorded,
stop. Otherwise, if pos is corrupted,
hand over (Send, B, (ps,m), pos,Np)
to A. If pos is uncorrupted, hand over
(Send, B, (ps,m), Np) to A.

On (Send, ps,m) from B:

– Hand over (Send, B, ps,m) to A.

On (Deliver, ps, B,m) from A:

– If (ps, pos, U,Np) is recorded send
(m, ps) to B.

On (Deliver, B, ps,m) from A:

– If (ps, pos, U,Np) is recorded then
send (m,B, ps) to U .

On (Listen, pos) from A:

– Collect

• (id,Np, Sp) from every entry
(id, pos, U,Np, Sp),

• (ps,Np) from every entry
(ps, pos, U,Np),

in a list L and hand over
(Listen, pos, L) to A.

Fig. 10. The anonymous internet access functionality FAIA.

98

(Recv.,m, ps), (Recv.,m,B, ps) and communication through FNFC. We will be
operating with signature keys (vkU , skU) for any user U and encryption keys
(ekB , dkB) for any bank B.

User Protocol:

On (Enter, pos,Np) from Z:

– Send (Enter, pos,Np) to FAIA.

On (Leave, pos) from A:

– If there is an entry
(Request, tr,M,B, ps, pos, ρ, k) output
(Transaction lost, tr) and remove the
entry.

– Send (Leave, pos) to FAIA.

On m ∈ {(Est. failed linkable), (Est. failed
unlinkable)} from FAIA:

– Send m to Z.

On (Entered, ps, pos,Np) from FAIA:

– Store (Pseudonym, pos, ps) and output
(Entered, pos,Np).

On (Pay, tr,M,B, pos) from Z:

– If (Pseudonym, pos, ps) is stored and
no entries (Pay, tr′,M ′, B′, ps′, pos′) or
(Request, tr′,M ′, B′, ps′, pos′, ρ′, k′)
are stored, then replace the entry
(Pseudonym, pos, ps) by
(Pay, tr,M,B, ps, pos) and send
(Enter,M) to FNFC.

On (Entered,M) from FNFC:

– If (Pay, tr,M,B, ps, pos) is stored,
send (Pay, tr, B) to M .

On (Merchant unavailable,M) from FNFC:

– If (Pay, tr,M,B, ps, pos) is stored,
remove it and output
(Merchant unavailable,M).

On (Challenge, c, tr, B) from a merchant
M :

– If there is an entry
(Pay, tr,M,B, ps, pos) in record
continue, otherwise stop.

– hand over (Request, (c,M), B) to FBS

to obtain ρ. Generate a signature
σU ← Sign(skU , (B, k, ρ)) and
encryption e← Enc(ekB , (U, k, ρ, σU))
and send (Req, e, ps) to B. Replace the
record entry by
(Request, tr,M,B, ps, pos, ρ, k).

On (Leave,M) from Z:

– If (Pay, tr,M,B, ps, pos) is stored,
remove it. If
(Request, tr,M,B, ps, pos, ρ, k) is
stored, output (Transaction lost, tr)
and remove it. In either case send
(Leave,M) to FNFC.

On (BlSig, e, ps) from B:

– Stop if there is no entry
(Request, tr,M,B, ps, pos, ρ, k).

– If Dec(k, e) = Reject, remove the entry
(Request, tr,M,B, ps, pos, ρ, k) and
output (Payment rejected, tr).

– If Dec(k, e) = σ̃ then hand over
(Unblind, ρ, σ̃) to FBS to obtain σ.

– If Verify(B, (c,M), σ) = 1 then send
(Sign, tr, σ,B) to M , remove the
record entry
(Request, tr,M,B, ps, pos, ρ, k) and
output (Payment complete, tr).

Fig. 11. Mobile payment protocol part I

3.5 Mobile Payment Functionality

The mobile payment functionality FMP of Fig. 13 captures the security properies
of the protocol of the payment protocol ΠMP. Unfortunately to be able to realise

99

Merchant Protocol:

On (Pay, tr, B) from FNFC:

– Store the message (Entered, tr, B) and
output it.

On (Left) from FNFC:

– If there is an entry (Challenge, c, tr, B)
remove it and send
(Transaction lost, tr, B) to Z.

– If there is an entry (Entered, tr, B)
stored, remove it.

On (Charge) from Z:

– If (Entered, tr, B) is stored, generate a
random challenge c, replace the record
by (Challenge, c, tr, B) and send it
through FNFC.

On (Sign, tr, σ,B) from FNFC:

– If there is an entry (Challenge, c, tr)
and Verify(B, (c,M), σ) = 1 then
replace (Challenge, c, tr) by
(Payment, c, B, σ) and output
(Payment Complete, B, tr).

On (Claim) from Z:

– For every entry (Payment, c, B, σ)
stored send (Claim, c, σ) to B and
remove the entry.

Bank Protocol:

On (Req, e) from ps:

– If Dec(dkB , e) is of the form
(U, k, ρ, σU), (Requested, ρ) is not
stored and Ver(vkU , (B, k, ρ)) = 1 then
record (Pending, ρ, k, ps) and
(Requested, ρ), and output
(Request, U).

On (Accept, U) or (Reject, U) from Z:

– If (Pending, ρ, k, ps) is recorded,
continue, otherwise stop.

– If accepted hand over (Issue, ρ) to FBS

to obtain a blinded signature σ̃, make
encryption e← Enc(k, σ̃) and send
(BlSig, e) to ps.

– If rejected, make encryption
e← Enc(k,Reject) and send (BlSig, e)
to ps.

On (Claim, c, σ) from M :

– If Verify(B, (M, c), σ) = 1 and
(Claimed, c) is not stored, then store
(Claimed, c) and output
(Valid claim,M).

Fig. 11. Mobile payment protocol part II

100

it from the functionalities FAIA and FNFC we must keep some of the quirks of
those functionalities, which makes FMP quite large and difficult to read. Each
transaction is maintained by a session entry (Session, trid, U,M,B, tr, ps, pos)
where trid is a string that identifies the particular session. The progression of
the transaction is to a degree scheduled by the adversary and the functionality
keeps track by means of state entries for the three involved players U ,M and B.
To accurately schedule when near field areas and mobile positions are entered
or left, we additionally store the entries (Leaving, pos, trid), (Leaving,M, trid),
(Left, trid) and (Entered,M, trid).

Leakage

To simplify the description of the functionality FMP we parametrise it by a leak-
age variable that specifies the leakage from the functionality in the different
corruption scenarios. Each column in the table of Fig. 12 tells us what informa-

Leak. \ Corr. pos Nf U B M Np Sp All honest

Bank x x x x x x x x

Merchant x x x

Mobile network provider x x x x x x x x

Mobile position x x x

Mobile service provider x x x

Transaction data x x x

User identity x x x

Fig. 12. Table for leakage of FMP. If for a session the top entry of a collumn is corrupted,
then for each entry with an x in that column, the value of the leftmost entry in the
same row is contained in leak.

tion leaks if the top entry is corrupted. For instance in a session where the bank
B and the near field Nf are corrupted the user identity U would leak since B
is corrupt likewise for the banks identity B and the network provider identity.
Since Nf is corrupted the bank identity, transaction data, merchant identity and
mobile network provider leaks. So in this example leak = (U,B,Np, tr,M).

Scheduling and Delayed Output

The scheduling queue of [6] makes it somewhat difficult to ensure that the order
of messages is the same for the protocol and a simulated execution with the ideal
functionality. To keep the functionality general but still ensure that scheduling
can be made correct for any appropriate protocol we must give the ideal attacker
a lot of power to influence the scheduling of events in the execution.

All messages from the environment Z to FMP are on the form (tag, content)
where tag is a short string that describes the type of message (for example Enter

101

or Leave). For any such message the functionality FMP creates a scheduling
identity scid, stores the message and hands over (tag, scid) to the adversary A.
Upon receiving scid from A the functionality processes the message. This allows
the simulator to determine how much delay there should be on input to FMP

based on the type of message it receives. For presentational purposes we omit
describing this in the functionality of Fig. 13.

Blank Values and Corrupt Switch

In the cases where the user is corrupt the adversary can split sessions into two
indepentent interactions. One interaction between the merchant and the user,
and one interaction between the user and the bank. The way we have modelled
blind signatures makes it impossible to link a corrupt interaction with a merchant
to a particular corrupt interaction with a bank in the protocol. We must therefore
allow the adversary to combine a successful bank interaction of one corrupt
session with a successful merchant interaction of another session in FMP. The
way we do this is by the corrupt switch messages.

Another issue is that when receiving values from the adversary in corrupt
enter or corrupt state messages it is unreasonable to require that the adversary
reveals all the session data. For example since we assume that users are anony-
mous when interacting with the merchant, it is unreasonable that the adversary
must reveal the identity of a corrupt user in such an interaction. We therefore
allow the adversary to input also empty values ’⊥’ on its corrupt pay messages.
Of course if the adversary wants to interact with a particular honest merchant
M (or a particular bank B) in a session he must send a corrupt pay message
using M (or B) and not an empty value ’⊥’.

4 Properties

Some desirable properties are apparent from the definition of FMP.

– Bank security: The number of valid claims done by merchants to a honest
bank can never exceed the number of accepted requests issued by that bank.

– Merchant security: Successful payments can only be used to create valid
claims for the merchant involved. Additionally unless the communication
between the bank and the merchant is broken, any successful transaction
leads to a valid claim.

– User security: After a successful interaction with a bank, only the user
himself (and the bank) can use this to complete a transaction. Moreover
unless the communication between the bank and the user or between the
user and the merchant is broken, any request from the user accepted by the
bank leads to a successful payment.

– Privacy preservation: Privacy properties are inherited from the FAIA func-
tionality. The user identity does not leak unless Sp or B is corrupted. A user
can be traced through the mobile network by means of a denial of service

102

On m = (Enter, pos,Np) from U or
m ∈ {(Deny
linkable, id), (Deny unlinkable, id), (Entered,
ps, id)} from A:

– Do as FAIA.

On (Entered, ps, id) from A:

– Stop if (id, pos, U,Np, Sp) is not
recorded, otherwise:

• Send (Entered, pos,Np) to U .
• If U and Np are honest then

generate random pseudonym ps′

and replace the record by
(ps′, pos, U,Np).

• Else, replace the record by
(ps, pos, U,Np).

On (Leave, pos) from U :

– If there is an entry
(Session, trid, U,M,B, tr, ps, pos)
stored, remove any user state with
trid and store (Leaving, trid, pos). If
the user state was
(User state,Request, trid), send
(Transaction lost, tr) to U .

– Hand over (Leaving position, trid) to
A.

On (Leave,M) from U :

– If there is no session entry
(Session, trid, U,M,B, tr, ps, pos),
stop.

– Remove any user state with trid and
store (Leaving, trid,M). If the user
state was (User state,Request, trid)
send (Transaction lost, tr) to U .

– Hand over (Leaving Merchant, trid) to
A.

On (Left, trid) from A:

– Continue if there is a session
(Session, trid, U,M,B, tr, ps, pos) and
either U is corrupt or there is an entry
(Leaving, trid,X), where X = pos or
X = M . Otherwise stop.

– Remove (Leaving, trid,X) if it exists.
– If X = pos, do as FAIA on (Leave, pos).
– If X = M , remove any entry

(Entered,M, trid), store (Left, trid)
and return control to A.

On (Merchant exit, trid) from A:

– If (Left, trid) is stored for a session
(Session, trid, U,M,B, tr, ps, pos),
remove (Left, trid) and any merchant
state with trid.

– If the merchant state was
(Merchant state,Challenge, trid), send
(Transaction lost, tr) to M and return
control to A.

On (Pay, tr,M,B, pos) from U :

– If there is no user state corresponding
to a session with U , but there is an
entry (ps, pos, U,Np) stored, remove it
and continue, otherwise stop.

– Generate a transaction identifier trid
and store the session
(Session, trid, U,M,B, tr, ps, pos).
Store (User state, entering, trid),
generate leakage according to the
table of Fig. 12 and hand over
(User entering, trid, leak) to A.

On (Entered, trid) from A:

– If there are entries
(Session, trid, U,M,B, tr, ps, pos) and
(User state,Entering, trid) stored,
continue, otherwise stop.

– If there is an entry (Entered,M, trid′)
already stored, replace the user state
by (User state,Unavailable, trid) and
hand over (Merchant unavailable, trid)
to A.

– Otherwise store (Entered,M, trid),
replace the user state by
(User state,Entered, trid) and store
(Merchant state,Entering, trid). Hand
over (Enter successful, trid) to A.

Fig. 13. Mobile payment functionality FMP part I

103

On (Conclude enter, trid) from A:

– Stop if there is no entry
(Session, trid, U,M,B, tr, ps, pos)
stored.

– If (User state,Unavailable, trid) is
stored, remove every entry containing
trid and send
(Merchant unavailable,M) to U .

– If (Merchant state,Entering, trid) is
stored, replace it by
(Merchant state,Entered, trid) and
send (Entered, tr, B) to M .

– Return control to A.

On (Charge, tr) from M :

– If (Session, trid, U,M,B, tr, ps, pos)
and (Merchant state,Entered, trid) is
stored, replace the merchant state by
(Merchant state,Challenge, trid) and
hand it over to A.

On (Challenge, trid) from A:

– If (User state,Entered, trid) and
(Mechant state,Challenge, trid) are
stored, then replace the user state by
(User state,Request, trid) and return
control to A.

On (Withdraw, trid) from A:

– If (Session, trid, U,M,B, tr, ps, pos)
and (User state,Request, trid) are
stored and there are no bank states
containing trid, store
(Bank state,Pending, trid), send
(Request, U) to B and return control
to A.

On m ∈ {(Accept, U), (Reject, U)} from
B:

– If session entry
(Session, trid, U,M,B, tr, ps, pos) and
bank state entry
(Bank state,Pending, trid) are stored
then replace the bank state entry by
(Bank state,Accept, trid) or
(Bank state,Reject, trid) and hand it
over to A.

On (Output user, trid) from A:

– If (Session, trid, U,M,B, tr, ps, pos),
(User state,Request, trid) are stored
continue, otherwise return control to
A.

– If (Bank state,Accept, trid) is stored,
replace the user state by
(User state,Accept, trid), send
(Payment complete, tr) to U and
return control to A.

– Else if (Bank state,Reject, trid) is
stored, replace the user state by
(User state,Reject, trid) and send
(Payment rejected, tr) to U and return
control to A.

On (Output merchant, trid) from A:

– If (Session, trid, U,M,B, tr, ps, pos),
(User state,Accept, trid),(Merchant state,
Challenge, trid) and
(Bank state,Accept, trid) are stored,
replace the merchant state by
(Merchant state,Done, trid), store
(Claim,M,B), send
(Payment complete, B, tr) to M and
return control to A.

On (Claim, B) from M :

– Replace any entry (Claim,M,B) by an
entry (Claimed,M,B) and hand over
(Claim,M, n) to A, where n is the
number of such entries.

On (Claim,M,B) from A:

– If there is an entry (Claimed,M,B)
stored, remove one such entry, send
(Valid claim,M) to B and return
control to A.

On (Corrupt Pay, trid, U,M,B, tr, ps, pos)
from A:

– If U is a honest user or trid is already
in use, stop. Otherwise store the
session
(Session, trid, U,M,B, tr, ps, pos) and
return control to A.

Fig. 13. Mobile payment functionality FMP part II

104

On (Corrupt switch, trid, trid′) from A:

– Stop if there are no entries
(Session, trid, U,M,B, tr, ps, pos) and
(Session, trid′, U ′,M ′, B, tr′, ps′, pos′)
stored.

– If U and U ′ are corrupt or ⊥, and
(Merchant state,Challenge, trid) and
(Bank state,Accept, trid′) are stored
then delete every entry with trid,
replace the session entry
corresponding to trid′ by
(Session, trid′, U ′,M,B, tr, ps′, pos′)
and the merchant state by
(Merchant state,Done, trid′), store
(Claim,M,B) and, send
(Payment complete, B, tr) to M and
return control to A.

On (Listen, pos) from A:

– Make a leak list as FAIA except that
the list additionally contains the

leakage as in the table of Fig. 12 for
every entry
(Session, trid, U,M,B, tr, ps, pos).

On (Hack,M) from A:

– Record (Hack,M) and for every entry
(Session, trid, U,M,B, tr, ps, pos)
generate leak as in the table of Fig. 12
and hand over (Hack,M, {leak}) to A.

On (Corrupt state, P,X, trid) from A:

– Stop if P is not a corrupt player or
there is no entry
(Session, trid, U,M,B, tr, ps, pos)
stored.

– If P = User replace the user state by
(User state, X, trid),

– If P = Merchant replace the merchant
state by (Merchant state, X, trid),

– If P = Bank replace the bank state by
(Bank state, X, trid).

– In either case return control to A.

Fig. 13. Mobile payment functionality FMP part III

105

attack in corrupted positions, but as this is a very noticeable attack it is
not a serious breach to the privacy. Lastly transaction data only leaks when
M or Nf is corrupted appart from the data that can be obtained by traffic
analysis of the communication channels.

5 Simulation

In this section we sketch for the different corruption scenarios how the protocol
can be simulated from the functionality.

Setup:

In the setup phase before the actual protocol runs the simulator generates sig-
nature and encryption keys for all the honest players and registers them. This
especially means that the simulator can read messages encrypted to honest banks
and simulate perfectly signatures and ciphertexts from honest players.

Honest users:

In the sessions where the user is honest the simulation is mostly straight forward.
The simulator runs the protocol using fake values when they are unknown to
him and keeping the functionality FMP updated on the progression by sending
messages like (Challenge, trid), (Withdraw, trid) etc. If the bank or merchant is
corrupted the simulator can force the session to proceed without waiting for
input from the environment by using “Corrupted state” messages. Note that any
player identity, pseudonym, position or transaction identifier that would have
leaked in the protocol also leaks to the simulator from the functionality and
that the outcome of a session never depends on the unknown values.

If the near field or the mobile position gets corrupted during one session the
simulator must replace fake values by the newly obtained ones before leaking
them to the adversary.

By using UC-secure encryption and signatures we ensure that only the honest
user can make requests on its own behalf and since only fresh request tokens are
accepted by honest banks there can be no injection, replay or modification of
messages between honest players.

Dishonest user:

In the case when the user is dishonest the protocol session may split into two
parts. The dishonest user can interact with his bank (with or without a mer-
chants involvement) or he can interact with his merchant. Since the request
tokens of our blind signature functionality do not commit the user to a fixed
message at the time of requesting, the simulator has no hope to match a bank
interaction with a specific merchant interaction. In fact for the merchant inter-
actions the corrupted user remains anonymous to the simulator. We can however

106

guarantee that a successful payment corresponds to some blinded signature is-
sued by the bank to some dishonest user.

When a corrupt user U interacts with a bank B, the simulator receives an
encrypted message of the data (U, k, ρ, σU) from ps at pos to B. If σU is fresh and
Ver(vkU , (B, k, ρ)) = 1, the environment expects B to output (Request, U, ps).
The simulator can achieve this by sending the messages (Corrupt pay, trid, U,⊥
, B,⊥, ps, pos), (Corrupt state,User,Request, trid) and finally (Withdraw, trid) to
FMP. If the simulator later receives (Bank state,Accept) or (Bank state,Reject)
from FMP the simulator follows the protocol and sends encryptions of σ̃ or
(Reject) to U . For any successful interaction with B the simulator stores the
trid as a corrupted bank interaction for later use.

In an interaction between a corrupt user and a honest merchant M the
user is anonymous and unknown to the simulator. Such an interaction would
be initiated by the adversary sending a message (Enter,M) to the simulated
FNFC functionality followed by a message (Pay, tr, B) to M through FNFC. When
this occurs the simulator can hand over (Corrupt pay, trid,⊥,M,B, tr,⊥,⊥),
(Corrupt state,User,Entering, trid) and (Entered, trid). If later in the session the
merchant receives the message (Sign, tr, σ,B) and Ver(bvkB , σ, (c,M)) = 1 where
c is the simulated challenge, the simulator picks any stored trid′ from a successful
corrupted interaction with B and sends (Corrupt switch, trid, trid′) to FMP. By
the definition of the blind signature functionality the adversary can only gener-
ate a valid signature if the simulator has such a stored trid′ and the interaction
with M is completed only if the adversary generates a valid blind signature.

6 Conclusions

In this paper we have defined a weaker notion of blind signatures that differs
from previous UC-secure blind signatures in that the communication channel is
abstracted away. We have defined a mobile payment protocol using the blind
signatures and analysed it in the modified UC framework of [6].

References

1. S. Brands. Untraceable off-line cash in wallets with observers (extended abstract).
In CRYPTO, volume 773 of Lecture Notes in Computer Science, pages 302–318.
Springer, 1993.

2. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

3. D. Chaum. Blind signatures for untraceable payments. In CRYPTO, pages 199–203.
Plenum Press, New York, 1982.

4. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO, volume
403 of Lecture Notes in Computer Science, pages 319–327. Springer, 1988.

5. M. Fischlin. Round-optimal composable blind signatures in the common reference
string model. In CRYPTO, volume 4117 of Lecture Notes in Computer Science,
pages 60–77. Springer, 2006.

107

6. K. Gjøsteen, G. Petrides, and A. Steine. A novel framework for protocol analysis.
In ProvSec, volume 6980 of Lecture Notes in Computer Science, pages 340–347.
Springer, 2011.

7. A. Juels, M. Luby, and R. Ostrovsky. Security of blind digital signatures (ex-
tended abstract). In IN CRYPTO ’97: PROCEEDINGS OF THE 17TH ANNUAL
INTERNATIONAL CRYPTOLOGY CONFERENCE ON ADVANCES IN CRYP-
TOLOGY, pages 150–164. Springer-Verlag, 1997.

8. L. Kr̊akmo. Privacy Preserving Protocols and Security Proof Techniques. PhD
thesis, NTNU, 2009.

9. G. Petrides, K. Gjøsteen, and A. Steine. Towards privacy preserving mobile com-
munications. Ph.D. Thesis.

108

