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INTRODUCTION

The topic of this thesis is linked to research within photonics, with special em-
phasis on photonic crystals and materials with negative refraction. The main focus
is on mathematical aspects of periodic photonic structures.

The usual way of constructing real photonic crystals is to carry out numerical
simulations of electromagnetic waves hitting and being scattered off a trial design.
The design is then changed by optimization or intuition until the structure has the
desired properties. As a supplement to the forward simulations and the trial and
error approach, we consider here the inverse problem where the structure is deter-
mined from observations of the scattered waves. The ultimate goal is being able to
reconstruct the structures from the observations and use this as a supplementary
tool for the design of structures with desired features.

The focus of the research is on the reconstruction of two-dimensional structures
using data collected from scattered waves. Waves are predominantly thought of
as electromagnetic waves and the structures as photonic crystals. However, the
mathematical formulation as such has larger applicability. It has turned out that
bringing this over from one-dimensional to two-dimensional structures meets con-
siderable challenges, and the research focuses on two different approaches. The first
approach is layer stripping, originally developed in geophysics, and the second is an
adaptive technique to solve coefficient inverse problems (CIPs). The adaptive finite
element method for solving CIPs has been developed by Dr. Larisa Beilina [6].
During the iteration process, the method applies a mesh adaptive finite element
(FE) formulation.

Moreover, the transfer matrix method applied in the layer stripping method has
also been used to study perfect lenses.

1. Photonic crystals

Photonic crystals are periodic dielectric structures designed to affect electromag-
netic waves in the visible light range [25, 49]. These structures may be viewed as
the electromagnetic analogy of semiconductors. In solid state physics, semicon-
ductors have been thoroughly studied. The periodic potential in a semiconductor
is well known to have allowed and forbidden electronic energy bands. In much
the same way, photonic crystal may have so-called photonic band gaps. There are
frequency gaps where light is restricted from propagating through the structure.
One distinguishes between one-, two- and three-dimensional structures, where the
dimensions refer to whether the dielectric constant varies in one, two or three direc-
tions. However, only two- and three-dimensional structures are considered photonic
crystals [52]. Since the basic physical phenomenon is diffraction, the periodicity of
the photonic crystal must be of the same length scale as the wavelength of the elec-
tromagnetic waves [49]. There may seem to be a close connection between photonic
crystals and X-ray crystal diffraction. However, there is a significant difference in
the refractive index variations of the crystals. Whereas this variation is very small
for X-rays, it is usually quite significant for photonic crystals [52]. Thus, a photonic
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2 INTRODUCTION

crystal is a two- or three-dimensional dielectric structure, with a significant contrast
in the refractive index.

1D 2D 3D

Figure 1. Simple examples of one- two- and three-dimensional
photonic structures, where the dielectric constant is periodic along
one, two or three axes.

One-dimensional structures have been studied since 1887. The pioneer work
was done by Lord Rayleigh who studied how the reflected color from a crystalline
mineral varies sharply with the angle [27,40]. He thus discovered that multi-layered
dielectric stacks have angle dependent band gaps. These one-dimensional structures
are used in thin-film optics, such as reflecting coatings on lenses and color changing
paints [49].

In 1987 Eli Yablonovich [51] and Sajeev John [26] published their first papers,
which are considered the starting point for the field of photonic crystals. The pa-
pers address the possibility of photonic band gaps in two- and three-dimensions.
Since then, the development of the field has grown quite fast. Due to fabrica-
tion challenges, the earliest studies were concerned with theory and structures in
the microwave regime [49]. The scale invariance of Maxwell’s equations makes it
possible to construct and study structures on a greater length scale. The first
three-dimensional band gap in the microwave regime was shown by Yablonovitch
in 1991 [53]. The structure was built up by layers with holes, forming an inverse
diamond structure. These structures are now known as Yablonovites. The first
two-dimensional photonic crystal was produced in 1996 by Thomas Krauss [30].

As mentioned above, photonic crystals may have photonic band gap. Another
possible advantage is that crystals can be used to trap and guide light. This is
achieved by introducing defects in the periodic structure. Thus, photonic crystals
can be used to guide light, and contrary to a fiber-optic cable, these structures may
also have sharp bends [25]. Two-dimensional photonic crystals are available in the
form of photonic crystal fibers. The three-dimensional counterparts, however, are
far from commercialization.

Photonic crystals are also found in nature. The best known example is probably
the opal stone. Other examples have been found in the wings of the M. rhetenor
butterfly [47] and in the scales of the Brazilian beetle [21].

As the fabrication challenges are overcome, the ultimate goal would be to design
photonic crystals with specific characteristics. Different methods for optimizing
photonic structures have been proposed [23, 28], and a nice review can be found
in [15].
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2. Metamaterials

Metamaterials are artificial materials designed to have properties that can not
be found in nature. Here we will focus on one type of metamaterials, namely those
with negative index of refraction.

Let us first take a look at what negative refraction means. The index of refraction
satisfies

(1) n2 = εµ.

Thus the propagation of electromagnetic waves is determined by the dielectric con-
stant ε and the magnetic permeability µ. If both the dielectric constant and the
magnetic permeability are negative, it turns out that the refractive index becomes
negative as well [45]. For a plane monochromatic wave all quantities in Maxwell’s
equations (Appendix A) are proportional to ei(kx−ωt), and the equations reduce to

k × E = ωµ0µH,

k × H = −ωε0εE.
(2)

Furthermore, in a medium where ε > 0 and µ > 0 the electric field E, the magnetic
field H and the wave vector k form a right-handed triplet of vectors. If, instead,
we have ε < 0 and µ < 0 the set of vectors will form a left-handed triplet. These
media are sometimes referred to as “left-handed media”. We also note that the
Poynting vector S = E × H will be in the opposite direction of the wave vector k
for left-handed media. Consider a material with boundary parallel to the xy-plane
and normal to the z-axis. The normal component of the Poynting vector must be
continuous since there is no accumulation of energy at the boundary. This implies
that the z-component of k2 in is negative. Moreover, from the boundary conditions
for Maxwell’s equations, stated in Appendix A, we know that the tangential compo-
nents of the electric and magnetic fields are continuous. Thus, we must have phase
match across the boundary. These two conditions mean that the incident wave
projected on the boundary must propagate in the same direction as the projection
from the refracted beam [43], and we find negative refraction, see Fig. 2.

k1

k2

ε < 0, µ < 0

x

z

ε = µ = 1

Figure 2. The figure shows the wave vectors and wavefronts as a
wave is propagating into a material with ε < 0 and µ < 0.
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The reflected and refractive rays are shown in Fig. 3.

Reflected
φφ

Incident

Refracted, n > 0Refracted, n < 0

θθ

Figure 3. An incident ray hits the boundary between two dif-
ferent media. The reflected ray is not affected by the sign of the
refractive index n. However, for the refracted ray, we see that the
z-component of the fields changes sign as the sign of n changes.

An interesting case occurs if medium 1 has ε1 > 0 and µ1 > 0, while medium
2 has ε2 = −ε1 and µ2 = −µ1. In this case there is no reflected ray. Pendry
used this fact to come up with the idea of a perfect lens [35]. A perfect lens is
a slab of material with n = −1, see Figure 4. The main advantage of perfect
lenses, compared to optical lenses, are their ability to focus light into an area that
is smaller than the square of the wavelength. For optical lenses, this is not possible.
The reason for this is that evanescent waves decay and thus are removed from the
image. If we choose the z-axis to be axis of the lens, then propagating waves are
limited by [35]

(3) k2x + k2y < ω2c−2.

The optical lens works by applying a phase correction to each of the Fourier com-
ponents of the wave. The evanescent waves decay in amplitude, not in phase. How-
ever, it can be proved that a perfect lens cancels the decay of evanescent waves [35].
Thus in a perfect lens, both propagating and evanescent waves contribute to the
resolution of the image.

Materials with negative refractive index are possible to fabricate, but the perfor-
mance is unfortunately strongly limited by losses. Loss will limit the amplification
of evanescent waves associated with large spatial frequencies, which will again limit
the resolution [32,39]. One possible solution is to introduce gain into the metama-
terials [17,20,29,34,37,38,41,42,46,55]. In this case, gain saturation is important,
and must be taken into account when the resolution is calculated.
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A B

l d d − l

Figure 4. A ray of light passing through a perfect lens. Notice
that it has two focus points, one inside the lens, and one at the
back.

3. Inverse problems

Inverse problems appear in many different fields of physics and engineering, as,
for example, medical imaging, seismology and geosciences. An inverse problem is
concerned with determining causes for a desired or an observed effect [18]. The
inverse problem is associated with a direct problem, which, as a rule, is simpler.
The direct problem is important in itself, but is also needed to solve the inverse
problem [15].

One huge research field of inverse problems is the field of inverse scattering. Prob-
lems arising in this field are concerned with the determination of the properties (as
parameters and placement) of some hidden objects. To do this in a nondestructive
way, one can measure the effect the unknown material has on an incident wave or
particle. Then the inverse scattering problem consists of reconstructing the prop-
erties from the measured data, see Fig. 5. One well-known example of this is
ultrasound.

Methods to solve inverse scattering problems are often based on asymptotic
behavior of the scattered field. One example is an incident plane wave hitting a
small object. In this case, the scattered wave will be approximately spherical far
enough away from the object, and is called the far-field solution. On the other hand,
the problems we have studied are concerned with near-field solutions. Consider a
dielectric material. If the permittivity is known, the forward problem consists
of computing the wave motion through the structure. Given instead scattering
data from a known wave scattered by the structure, the inverse problem is to
reconstruct the permittivity. Contrary to the far-field case mentioned above, here
the periodicity of the unknown material is of the same size as the wavelength of the
incident wave, and the data are measured close to structure. Those problems are
also referred to as parameter identification problems.

Related to inverse problems are inverse design problems. Let us use design
of photonic crystals as an example. It is, of course, preferable to know how the
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wave
scattered
wave

structureincident

Figure 5. A simplified illustration of inverse scattering. An inci-
dent plane wave is scattered by some unknown structure.

photonic crystal should look to have certain properties. One way to obtain this is
to change the structure by intuition or optimization, but it would be even better to
state the desired data and be able to compute a crystal that produces this result.
The inverse design problems may be treated as fictive inverse problems, where the
desired data act as the observed data. However, for an inverse design problem to be
solvable, one needs to start with a realizable response. The fictive response needs
e.g. to be causal. Thus, this must also be taken into consideration.

Inverse problems tend to be ill-posed. Hadamard defined a problem to be well-
posed if it fulfills the three following properties

(1) A solution exists
(2) The solution is unique
(3) The solution depends continuously on the data

For an inverse problem one, two or three of the properties may be violated. Being
able to solve these problems requires some reformulation. First, violation of the
second point is not always a problem. For inverse design, it is possibly even desirable
to have several solutions to chose from. Otherwise, the non-uniqueness may be
avoided by adding some extra requirements. Nonexistence of the solution may be
treated by relaxing the definition of a solution. The last point is the one that most
often fails to hold, and which also causes the most severe problems. Failure of this
point, implies that small changes in the data will cause arbitrarily large changes in
the solution. At last we note that even if a problem is well-posed, it may still be
ill-conditioned [50], i.e small errors in the data can result in arbitrarily large errors
in the result. To overcome this problem, the problem must be regularized.

The main idea of regularization is to replace the ill-posed problem by a reg-
ularized one that is well-posed. The regularized problem should be as close as
possible to the problem at hand, while still a stable one. Thus, regularization is a
compromise between accuracy and stability. Consider the equation

(4) Ax = y,
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where we want to find x, given the operator A and the data y. As discussed
above, we expect this inverse problem to be ill-posed, and the data y is usually
given with some noise. Let yδ be the “noisy data”. Then the problem is to find
a best-approximate solution x† = A†y, when only yδ is known. Here, A† is the
Moore-Penrose generalized inverse [18] and ‖yδ − y‖ ≤ δ. To solve this, the un-
bounded operator A† should be replaced by a parameter-dependent family {Rα} of
continuous operators, such that x† is approximated by xδ

α = Rαy
δ. The operator

must be chosen in such a way that xδ
α depends continuously on the data yδ, and so

that if δ tends to zero, and α is appropriately chosen, then xδ
α tends to x†. Note

that here we have presented regularization for a linear operator, while the actual
problems we have solved are non linear.

One commonly used type of regularization is the Tikhonov regularization, where
the original problem is extended by some penalty term. Then the problem described
above is solved by minimizing the functional

(5) J(x) = ‖Ax − y‖2 + ‖Lx‖2.
Minimizing Eq. (5) is thus a compromise between minimizing the residual norm,
and keeping the penalty term ‖Lx‖ small, which enforces stability [18]. A thorough
description of properties and solution of Coefficient Inverse Problems (CIPs) may
be found in Chapter 1 of [10].

4. Layer stripping

As discussed in Section 3, if we have data from an experiment where a plane wave
hits a photonic structure, the associated inverse problem consists of reconstructing
the unknown permittivity. To solve this problem, we have proposed two different
methods. The first method is layer stripping. As the name implies, the method
works by identifying the structure layer by layer. Layer stripping was first used
to solve inverse acoustic problems for seismic data; overviews can be found in
[14, 54]. Later, the method has also been applied to design and characterization of
one-dimensional photonic crystal structures such as fiber Bragg gratings [44] and
multimode structures [48].

Consider a two-dimensional structure, layered normal to the z-direction. The
refractive index is varying in the x-direction, as well as the z-direction, but is
constant with respect to y. The structure is probed by plane polarized harmonic
electromagnetic waves traveling in the z-direction, with the electric field vector
pointing in the y-direction. Given this structure, the forward problem consists of
obtaining reflectance data for a known structure, while the inverse problem is to
calculate the unknown properties, given the reflectance data.

The forward problem may be formulated in terms of transfer matrices. These
matrices depend on the permittivity and the layer thickness. Thus, when the prop-
erties of the structure are known, it is straight forward to compute the reflection
and transmission matrices for each layer as well as the whole structure.

The key step of the synthetic layer stripping algorithm is to combine reflectance
data for different frequencies so as to synthesize data from a short pulse at the time
the pulse hits the surface. The synthesized data may then be applied to reconstruct
the refractive index profile in the top layer by identifying the local, time-domain
Fresnel reflection at each point. Once the first layer is known, its transfer matrix
may be computed, and the impact of the layer on the reflectance data eliminated,
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(a) (b) (c)

Figure 6. (a) An incident plane wave. (b) The wave is reflected
by the structure, note that the first reflections are only influenced
by the first layer. (c) The first part of the reflections is used to
calculate the properties of the top layer, and its effect may be
removed.

see Figure 6. The same idea is then applied to the modified reflectance data, and
continuing in the same way we are, at least in principle, able to reconstruct the
whole structure.

The layer stripping method is presented in full details in Paper II, which also
includes several numerical examples. From the numerical results, we see that we
are in fact able to reconstruct different structures consisting of several layers.

5. An adaptive method

Here we will discuss the second method which we have used to solve the inverse
problem consisting of reconstructing an unknown permittivity. This method is an
adaptive method. As this section also includes the proof of the a posteriori error
estimate, which is the basis of the adaptivity, we include a full description of the
method.

The mesh-adaptive method, developed in [5–9], was originally applied to acoustic
and elastic inverse scattering problems. Our main objective has been to adapt
the method to inverse electromagnetic scattering problems connected to photonic
crystals, i.e. to reconstruct an unknown dielectric permittivity. The basic technique
is to expose the structure with a known, time limited wave, and record the scattered
waves at some parts of the boundary of the domain. The error estimate is used
to localize regions where the error in the solution is largest, thus guiding where to
refine the finite element grid.

The application of the method to photonic crystals has required derivation and
proof of a new a posteriori error estimate for the Lagrangian, together with a
new numerical implementation, which now includes absorbing and mirror boundary
conditions. The derivation of the a posteriori estimate follows the main approach to
adaptive error control in computational differential equations, as presented in [3,6],
and references therein.

Our computational set-up consists of a domain of interest, with variations in the
dielectric permittivity, surrounded by homogeneous material. This enables us to
solve the wave equation with the hybrid FE(finite element)/FD(finite difference)
method developed in [13]. The method applies finite differences in the homoge-
neous surroundings, whereas finite elements are used where the material is hetero-
geneous. The method was chosen since it already existed and satisfied our needs.
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The backscattering data are generated by a plane wave instead of a point source, as
is often the case for real-life applications. Approximating the point source with a
plane wave is reasonable when we assume that the point source is far from the do-
main where the dielectric function should be reconstructed. Based on this setting,
we split the computational domain into two domains. In the surrounding (outer)
domain we initialize the plane wave and assume that the value of the dielectric
function is known. A finite difference method is used in this domain. In the inner
domain, where the dielectric function should be reconstructed, we apply a finite
element method together with the adaptive algorithm.

5.1. The mathematical model and the forward problem. The propagation of
waves in an inhomogeneous and isotropic material is governed by the wave equation

(6) ∆u =
1

c(x)2
∂2u

∂t2
, (x, t) ∈ R3 × (0,∞) ,

where c(x) represents the wave speed. In the case of electromagnetic waves, the
wave equation can be derived from Maxwell’s equations, assuming that all functions
are independent of one of the variables. The derivations can be found in Appen-
dix B. Note that by assuming a nonmagnetic material, c(x) depends only on the
dielectric permittivity, ε, here scaled so that c(x)−2 = ε(x).

Let Ω ⊂ R2 be a bounded domain with a piecewise smooth boundary, ∂Ω =
∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3. Consider the forward problem given as

ε(x)
∂2u

∂t2
− ∆u = 0, (x, t) ∈ Ω × (0, T ),

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, x ∈ Ω,

∂nu
∣∣
∂Ω1

= f(t), on ∂Ω1 × (0, T1],

∂nu
∣∣
∂Ω1

= ut, on ∂Ω1 × (T1, T ),

∂nu
∣∣
∂Ω2

= ut, on ∂Ω2 × (0, T ),

∂nu
∣∣
∂Ω3

= 0, on ∂Ω3 × (0, T ).

(7)

Here 0 < T1 < T , T is the final time, and f(t) a plane wave. Thus, the plane wave
is initialized at the top boundary ∂Ω1 and propagates into Ω for t ∈ (0, T1]. First
order absorbing boundary conditions [19] are used on ∂Ω1×(T1, T ) and ∂Ω2×(0, T ),
and Neumann boundary conditions on both lateral boundaries, ∂Ω3, see Figure 7.
The mirror boundary conditions on the left and right lateral boundaries, allow us
to assume an infinite periodic space domain in the lateral direction.

The forward problem (Eq. (7)) is solved using the hybrid FE/FD method de-
scribed in [13]. For this method, the domain Ω is split into a finite element domain
ΩFEM surrounded by a domain ΩFDM with a structured mesh, Ω = ΩFDM ∪ΩFEM.
The space mesh in ΩFEM consists of triangles and in ΩFDM of squares, with mesh
size h̃ in the overlapping regions.

Let the finite element mesh Kh = {K} in ΩFEM consist of triangular elements K.
Let us associate with Kh a mesh function hK (x) = diam(K), ∀x ∈ K, representing
the diameter of the element K. For the time discretization, let Jk = {J} be a
partition of the time interval I = (0, T ) into time intervals J = (tk−1, tk] of uniform
length τ = tk − tk−1.
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Mirror

Absorbing

Mirror
boundary boundary

Emitting/absorbing

∂Ω3∂Ω3

∂Ω2

Ω

∂Ω1 ∂nu
∣∣
∂Ω1

= ∂tu, for (T1, T ]

∂nu
∣∣
∂Ω3

= 0 ∂nu
∣∣
∂Ω3

= 0

∂nu
∣∣
∂Ω2

= ∂tu

f (t)

ε(x)

∂nu
∣∣
∂Ω1

= f(t), for (0, T1]

Figure 7. Boundary conditions for the forward problem.

5.2. The inverse problem. The inverse problem for Eq. (7) is formulated as an
optimization problem. Given observations uobs at a finite set of points xobs, the
goal is to determine the coefficient ε(x) for x ∈ Ω, which minimizes the functional

(8) J(u, ε) =
1

2

∫

Ω

T∫

0

(u − uobs)
2δobs dtdx+

1

2
γ

∫

Ω

(ε − ε0)
2 dx.

Here δobs =
∑

δ(x − xobs) is a sum of delta-functions corresponding to the obser-
vation points. Moreover, γ is a regularization parameter, and ε0 is the initial guess
value for the unknown coefficient.

Denote

H2
u (Ω × (0, T )) = {f ∈ H2(Ω × (0, T )) : f(x, 0) = ft(x, 0) = 0},

H1
u(Ω × (0, T )) = {f ∈ H1(Ω × (0, T )) : f(x, 0) = 0},

H2
λ(Ω × (0, T )) = {f ∈ H2(Ω × (0, T )) : f(x, T ) = ft(x, T ) = 0},

H1
λ(Ω × (0, T )) = {f ∈ H1(Ω × (0, T )) : f(x, T ) = 0},

U = H2
u(Ω × (0, T ))× H2

λ(Ω × (0, T )) × C2(Ω̄),

Ū = H1
u(Ω × (0, T ))× H1

λ(Ω × (0, T )) × L2(Ω),

(9)

where all functions are real valued. Hence, U ⊂ Ū and U is dense in Ū .
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In order to incorporate the constraint imposed by Eq. (7), we introduce the
Lagrangian

(10) L(v) = J(u, ε) +

T∫

0

∫

Ω

λ (εutt − ∆u) dxdt,

where λ is the Lagrange multiplier and v = (u, λ, ε) ∈ U . Clearly, if u is a solution
of Eq. (7), then L(v) = J(u, ε). Integration by parts in (10) leads to

L(v) =J(u, ε) −
T∫

0

∫

Ω

εutλtdxdt+

T∫

0

∫

Ω

∇u∇λdxdt

−
T∫

T1

∫

∂Ω1

utλdσdt −
T∫

0

∫

∂Ω2

utλdσdt −
T1∫

0

∫

∂Ω1

f(t)λdσdt.

(11)

A stationary point of the functional L(v), satisfies

(12) L′(v)(v̄) = 0, ∀v̄ = (ū, λ̄, ε̄) ∈ Ū ,

where L′(v)(·) is the Fréchet derivative of L at v. Here we will use an heuristic
approach to find the Fréchet derivative. In this derivation we assume that the func-
tions u, λ, and ε can be varied independently. However, when the Fréchet derivative
is calculated, we assume that the solutions of the forward and adjoint problems de-
pend on ε. A rigorous derivation of the Fréchet derivative, stating appropriate
smoothness assumptions for the solutions of the state and adjoint problems, can be
found in [12] and is far from trivial.

To find the gradient, one considers L (v + v̄)−L (v) , ∀v̄ ∈ Ū , and single out the
linear part of this expression with respect to v̄. Hence, from (11) and (12),

L′(v)(v̄) =

T∫

0

∫

Ω

ū(u − uobs)δobsdxdt+ γ

∫

Ω

ε̄(ε − ε0)dx

−
T∫

0

∫

Ω

ε(utλ̄t + ūtλt)dxdt −
T∫

0

∫

Ω

ε̄utλtdxdt

+

T∫

0

∫

Ω

(∇u∇λ̄+ ∇ū∇λ)dxdt −
T∫

T1

∫

∂Ω1

(utλ̄+ ūtλ)dσdt

−
T∫

0

∫

∂Ω2

(utλ̄+ ūtλ)dσdt −
T1∫

0

∫

∂Ω1

f(t)λ̄dσdt.

(13)
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Integration by parts in (13) now brings out v̄,

L′(v)(v̄) =

T∫

0

∫

Ω

λ̄(εutt − ∆u)dxdt +

T∫

T1

∫

∂Ω1

λ̄(∂nu − ut)dσdt

+

T∫

0

∫

∂Ω2

λ̄(∂nu − ut)dσdt+

T1∫

0

∫

∂Ω1

λ̄(∂nu − f(t))dσdt

+

T∫

0

∫

Ω

ū((u − uobs)δobs + ελtt − ∆λ)dxdt

+

T∫

T1

∫

∂Ω1

ū(∂nλ − λt)dσdt+

T∫

0

∫

∂Ω2

ū(∂nλ − λt)dσdt

+

T1∫

0

∫

∂Ω1

ū∂nλdσdt +

T∫

0

∫

∂Ω3

ū∂nλdσdt

+

∫

Ω

ε̄


γ(ε − ε0) −

T∫

0

utλtdt


dx.

(14)

Hence, (12) and (13) imply that every integral term in Eq. (14) equals zero. Thus,
if (u, λ, ε) = v ∈ U is a minimizer of the Lagrangian L(v) in (11), then the terms
containing λ̄ correspond to the forward problem (7). Furthermore, the terms with
ū are the weak form of the adjoint state equation,

ελtt − ∆λ = −(uobs − u)δobs, (x, t) ∈ Ω × (0, T ),

∂nλ = 0 on ∂Ω1 × [0, T1),

∂nλ = λt on ∂Ω1 × [T1, T ),

∂nλ = λt on ∂Ω2 × (0, T ),

∂nλ = 0 on ∂Ω3 × [0, T ),

λ(x, T ) = λt(x, T ) = 0, x ∈ Ω.

(15)

At last, from the term involving ε̄, we get

(16) ε =
1

γ

T∫

0

utλtdt+ ε0, x ∈ Ω,

Thus, we can find ε from Eq. (16), where the functions u ∈ H1
u and λ ∈ H1

λ are
weak solutions of the problems (7) and (15), respectively.

The boundary value problem (15) is solved backwards in time. Uniqueness and
existence theorems for the initial/boundary value problems (7) and (15), including
weak solutions, can be found in Chapter 4 of [31]. The Lagrangian L(v) is minimized
iteratively by obtaining weak solutions of the boundary value problems (7) and (15)
on each step by a FEM formulation.
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5.3. A finite element method for the inverse problem. To formulate the
finite element method for (12), we introduce the finite element spaces Wu

h ⊂
H1

u (Ω × (0, T )) and Wλ
h ⊂ H1

λ (Ω × (0, T )) for u and λ, respectively. These spaces
consist of continuous piecewise linear functions in space and time satisfying the
initial conditions u (x, 0) = 0 for u ∈ Wu

h , and λ (x, T ) = 0 for λ ∈ Wλ
h . We also

introduce the finite element space Vh ⊂ L2 (Ω) consisting of piecewise constant
functions for the coefficient ε(x) and denote Wu

h ×Wλ
h ×Vh by Uh, Uh ⊂ Ū . Thus,

Uh is a discrete analogue of Ū .
The FEM for (12) now consists of finding vh ∈ Uh, so that

(17) L′ (vh)(v̄) = 0, ∀v ∈ Uh.

We solve this using a quasi-Newton method, computing a sequence {εmh }m=1,... ⊂
Vh of approximations to ε defined by the iteration

(18) εm+1
h (x) = εmh (x) − αHmgm(x),m = 1, ...

Here α is the step length computed by the line-search algorithm in [36], gm(x) is
the gradient, and Hm an approximation to the inverse of the Hessian of L, updated
by the BFGS formula

Hm+1 = (I − dmsmymT )Hm(I − dmymsmT ) + ρsmsmT , m = 1, ...

where

(19) dm = 1/(ymT sm)

and
ym = gm+1 − gm.

The corrections sm in (19) are defined as sm = εm+1
h −εmh . In the computations,

we use a version of the BFGS update formula with limited storage for the Hessian
[33], where a finite number of corrections for the computed gradients and parameters
in (19) are stored. The nodal values of the gradient gm(x) follows from (16),

(20) gm(x) = γ(εmh − ε0) −
T∫

0

um
htλ

m
ht dt.

The FEM solutions um
h ∈ Wu

h and λm
h ∈ Wλ

h are obtained by solving the boundary
value problems (7) and (15) with ε := εmh .

5.4. An a posteriori error estimate for the Lagrangian. We shall now discuss
an a posteriori bound for the error of the finite element approximation of the
function ε in terms of the residual error obtained in the reconstruction process.
The residual error can be evaluated once the FEM solutions have been computed.

Let v ∈ U be a minimizer of the LagrangianL on the space Ū , and vh a minimizer
of this functional on Uh. That is, v is a solution of (12) and vh a solution of (17).

The basic goal of adaptive error control for the Lagrangian is to find a mesh with
as few nodes as possible such that |L(v)−L(vh)| ≤ tol for a given tolerance tol. In
this section we present and prove an estimate for the difference |L(v)−L(vh)|, and
discuss how the estimate is used in an adaptive algorithm.

Since adaptivity is a locally convergent numerical method, we may assume that
we work in a small neighborhood of the exact solution v∗ ∈ U of the full problem.
This means that if ε∗ is the exact solution of the inverse problem, then u∗ = u(ε∗)
is the exact solution of (7), and u∗−u∗

obs = 0. Moreover, the solution of the adjoint
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problem (15) is λ(ε∗) = 0. However, we can never get exact measurements u∗
obs

since they always suffer from a certain noise level. Thus, we assume that

(21) ‖v − v∗‖Ū ≤ σ,

where σ is sufficiently small. Here, v = (u(ε), λ(ε), ε), and we call ε the regularized
solution of the minimization problem (8).

Theorem 5.1. Let L(v) = L(u, λ, ε) be the Lagrangian as defined in (11), and let
L(vh) = L(uh, λh, εh) be the approximation of L(v). Then the following represen-
tation holds for the error e = L(v) − L(vh):

∣∣e
∣∣ ≤

T1∫

0

∫

∂Ω1

Ru1σλdσdt +

T∫

0

∫

Ω

Ru2σλdxdt+

T∫

0

∫

Ω

Ru3σλdxdt

+

T∫

T1

∫

∂Ω1

Ru4σλdσdt+

T∫

0

∫

∂Ω2

Ru5σλdσdt

+

T∫

0

∫

Ω

Rλ1σuδobsdxdt+

T∫

0

∫

Ω

Rλ2σudxdt+

T∫

0

∫

Ω

Rλ3σudxdt

+

T∫

0

∫

∂Ω1

Rλ4σudσdt+

T∫

0

∫

∂Ω2

Rλ5σudσdt

+

T∫

0

∫

Ω

Rε1σεdxdt+

∫

Ω

Rε2σεdx,

(22)

where the residuals are defined by

Ru1 = |f(t)|, Ru2 = max
S⊂∂K

h−1
K

∣∣[∂suh

]∣∣,

Ru3 = εhτ
−1

∣∣[uht

]∣∣, Ru4 = Ru5 = |uht|,
Rλ1 = |uh − uobs|, Rλ2 = max

S⊂∂K
h−1
K

∣∣[∂sλh

]∣∣,

Rλ3 = εhτ
−1

∣∣[λht

]∣∣, Rλ4 = Rλ5 = |λht|,
Rε1 = |λht| · |uht|, Rε2 = γ|εh − ε0|,

and the interpolation errors are

σλ = Cτ |[λht]| + ChK |[∂nλh]| ,
σu = Cτ |[uht]| + ChK |[∂nuh]| ,
σε = C

∣∣[εh]
∣∣.

Here, [v] denotes the maximum of the modulus of a jump of v across the face
of an element K (or the boundary node of a time interval J), ∂sv denotes the
normal derivative of v across a side of K, ∂nv denotes the derivative of v in the
outward normal of an element K, [vt] is the maximum modulus of the jump of the
time derivative of v across a boundary node of J , C is interpolation constants of
moderate size.
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Proof. Throughout the proof, let C denote different constants of a moderate size.
As in [2], we use the fundamental theorem of calculus to write

e = L(v) − L(vh)

=

∫ 1

0

d

ds
L(vh + s(v − vh))ds

=

∫ 1

0

L′(sv + (1 − s)vh)(v − vh)ds

= L′(vh)(v − vh) +R,

where R = O
(
σ2

)
. Since σ is small, we may ignore R in (24), see details in [1]

and [12] for similar results in the case of a general nonlinear operator equation.
Neglecting the term R, and using the Galerkin orthogonality (17) with the split-

ting

(23) v − vh = (v − vIh) + (vIh − vh),

where vIh ∈ Uh denotes an interpolant of v, leads to the following error representa-
tion:

(24) e ≈ L′(vh)(v − vIh) = I1 + I2 + I3.

Here

I1 = −
T∫

0

∫

Ω

εhuht(λt − λI
ht)dxdt +

T∫

0

∫

Ω

∇uh∇(λ − λI
h)dxdt

−
T1∫

0

∫

∂Ω1

f(t)(λ − λI
h)dσdt −

T∫

T1

∫

∂Ω1

uht(λ − λI
h)dσdt

−
T∫

0

∫

∂Ω2

uht(λ − λI
h)dσdt,

I2 =

T∫

0

∫

Ω

(uh − uobs)(u − uI
h)δobsdxdt

−
T∫

0

∫

Ω

εhλht(ut − uI
ht)dxdt +

T∫

0

∫

Ω

∇λh∇(u − uI
h)dxdt

+

T∫

0

∫

∂Ω1

λht(u − uI
h)dσdt+

T∫

0

∫

∂Ω2

λht(u − uI
h)dσdt,

I3 = −
T∫

0

∫

Ω

λhtuht(ε − εIh)dxdt + γ

∫

Ω

(εh − ε0)(ε − εIh)dx.
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To estimate I1, we integrate by parts in the first and second terms to obtain:

∣∣I1
∣∣ =

∣∣
T∫

0

∫

Ω

εhuhtt(λ − λI
h)dxdt −

T∫

0

∫

Ω

△uh(λ − λI
h)dxdt

−
T1∫

0

∫

∂Ω1

f(t)(λ − λI
h)dσdt −

T∫

T1

∫

∂Ω1

uht(λ − λI
h)dσdt

−
T∫

0

∫

∂Ω2

uht(λ − λI
h)dσdt

−
∑

k

∫

Ω

εh
[
uht(tk)

]
(λ − λI

h)(tk)dx

+
∑

K

T∫

0

∫

∂K

∂nuh(λ − λI
h) dσdt

∣∣.

(25)

Here,
[
uht(tk)

]
denotes the jump of the derivative of uh at time tk (see Figure 9),

and ∂nuh denote the derivative of uh in the outward normal direction n of the
boundary ∂K of element K.

Since uh is a piecewise linear function, the terms uhtt and △uh in (25) disappear,
and we get:

∣∣I1
∣∣ =

∣∣ −
T1∫

0

∫

∂Ω1

f(t)(λ − λI
h)dσdt −

T∫

T1

∫

∂Ω1

uht(λ − λI
h)dσdt

−
T∫

0

∫

∂Ω2

uht(λ − λI
h)dσdt

−
∑

k

∫

Ω

εh
[
uht(tk)

]
(λ − λI

h)(tk)dx

+
∑

K

T∫

0

∫

∂K

∂nuh(λ − λI
h)dσdt

∣∣.

(26)

In the last term of equation (26) we sum over the element boundaries, where each
interior side S ∈ Sh occurs twice, see Figure 8. Denoting by ∂n±uh the derivative of
uh in the outward normal direction n± to element K±, and by ∂suh the derivative
of a function uh in one of the normal directions, n− and n+, of each side S, we can
write

(27)
∑

K

∫

∂K

∂nuh(λ − λI
h) dσ =

∑

S

∫

S

[
∂suh

]
(λ − λI

h) dσ,

where the jump
[
∂suh

]
is defined as

[∂suh] = max
S∈∂K

{∂n+uh, ∂n−uh}.
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n−

∂K+

∂K−

S

K−

S

n+

K+

Figure 8. Two neighboring elements K+ and K−, their bound-
aries, ∂K+ and ∂K−, and the interior side S.

We distribute each jump equally to the two sharing elements and return to a
sum of the element edges ∂K :

(28)
∑

S

∫

S

[∂suh] (λ − λI
h) dσ =

∑

K

1

2

∫

∂K

[
∂suh

]
(λ − λI

h) dσ.

We multiply and divide by hK , formally set dx = hKdσ and replace the integrals
over the element boundaries ∂K by integrals over the elements K, to get:

∣∣∣∣∣
∑

K

1

2
h−1
K

∫

∂K

[
∂suh

]
(λ − λI

h) hK dσ

∣∣∣∣∣

≤ C

∫

Ω

max
S⊂∂K

h−1
K

∣∣[∂suh

]∣∣∣∣λ − λI
h

∣∣ dx,
(29)

where
[
∂suh

]∣∣
K

= maxS⊂∂K

[
∂suh

]∣∣
S
.

In a similar way we can estimate the jump in time in (26) by multiplying and
dividing by τ :

∣∣∣∣∣
∑

k

∫

Ω

εh [uht(tk)] (λ − λI
h)(tk) dx

∣∣∣∣∣

≤
∑

k

∫

Ω

εhτ
−1

∣∣ [uht(tk)]
∣∣∣∣(λ − λI

h)(tk)
∣∣ τdx

≤C
∑

k

∫

Jk

∫

Ω

εhτ
−1

∣∣[∂tkuh

]∣∣∣∣λ − λI
h

∣∣ dxdt

=C

T∫

0

∫

Ω

εhτ
−1

∣∣[uht

]∣∣∣∣(λ − λI
h)
∣∣dxdt.

(30)

Here, we have defined [∂tkuh] as the greatest of the two jumps on the interval
(tk, tk+1]: ,

[∂tkuh] = max
k

([uht(tk)] , [uht(tk+1)]) ,

[uht] = [∂tkuh] on Jk,
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where [uht(tk)] = u+
ht(tk) − u−

ht(tk). The time jumps are illustrated in Figure 9.

f−(tk)

ttk−1 tk+1
J− J+

tk

[
f(tk)

] [
f(tk+1)

]
[
f(tk−1)

]

f+(tk)

Figure 9. The jump of a function f on the time mesh.

We substitute the expressions (29) and (30) into (26), to get:

∣∣I1
∣∣ ≤

T1∫

0

∫

∂Ω1

∣∣f(t)
∣∣∣∣λ − λI

h

∣∣dσdt+
T∫

T1

∫

∂Ω1

∣∣uht

∣∣∣∣λ − λI
h

∣∣dσdt

+

T∫

0

∫

∂Ω2

∣∣uht

∣∣∣∣λ − λI
h

∣∣dσdt

+ C

T∫

0

∫

Ω

max
S⊂∂K

h−1
K

∣∣[∂suh

]∣∣∣∣λ − λI
h

∣∣ dxdt

+ C

T∫

0

∫

Ω

εhτ
−1

∣∣[uht

]∣∣∣∣λ − λI
h

∣∣ dxdt.

(31)

Next, we use the following standard interpolation estimate

(32) |λ − λI
h| ≤ C(τ2|λtt| + h2

K |λxx|),
where we approximate the second derivative in time as

λtt =
∂2λ

∂t2
=

∂(λt)

∂t
≈

(
λt

)+ −
(
λt

)−

τ
=

[
λht

]

τ
.

Here (·)+ and (·)− represent values on two neighboring intervals J+ and J−, see
Figure 9. In the same way we approximate the second derivative in space:

λxx ≈
[
∂nλh

]

h
.

Substituting both expressions above in (32), we obtain

(33)
∣∣λ − λI

h

∣∣ ≤ C
(
τ
∣∣[λht

]∣∣+ hK

∣∣[∂nλh

]∣∣)
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and the estimate for I1 reduces to

∣∣I1
∣∣ ≤ C

T1∫

0

∫

∂Ω1

∣∣f(t)
∣∣(τ

∣∣[λht

]∣∣+ hK

∣∣[∂nλh

]∣∣)dσdt

+ C

T∫

T1

∫

∂Ω1

∣∣uht

∣∣(τ
∣∣[λht

]∣∣+ hK

∣∣[∂nλh

]∣∣)dσdt

+ C

T∫

0

∫

∂Ω2

∣∣uht

∣∣(τ
∣∣[λht

]∣∣+ hK

∣∣[∂nλh

]∣∣)dσdt

+ C

T∫

0

∫

Ω

max
S⊂∂K

h−1
k

∣∣[∂suh

]∣∣(τ
∣∣[λht

]∣∣+ hK

∣∣[∂nλh

]∣∣)dxdt

+ C

T∫

0

∫

Ω

εhτ
−1

∣∣[uht

]∣∣(τ
∣∣[λht

]∣∣+ hK

∣∣[∂nλh

]∣∣)dxdt.

(34)

We estimate I2 similarly as I1. First, we integrate by parts to obtain

∣∣I2
∣∣ ≤

∣∣
T∫

0

∫

Ω

uh − uobs(u − uI
h)δobsdxdt+

T∫

0

∫

Ω

εhλhtt(u − uI
h)dxdt

−
T∫

0

∫

Ω

△λh(u − uI
h)dxdt +

T∫

0

∫

∂Ω1

λht(u − uI
h)dσdt

+

T∫

0

∫

∂Ω2

λht(u − uI
h)dσdt

∣∣

+ C

T∫

0

∫

Ω

max
S⊂∂K

h−1
K

∣∣[∂sλh

]∣∣∣∣u − uI
h

∣∣dxdt

+ C

T∫

0

∫

Ω

εhτ
−1

∣∣[λht

]∣∣∣∣u − uI
h

∣∣dxdt.

(35)
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Since λh is piecewise linear, the terms with △λh and λhtt will disappear:

∣∣I2
∣∣ ≤

T∫

0

∫

Ω

∣∣uh − uobs

∣∣∣∣u − uI
h

∣∣δobsdxdt

+

T∫

0

∫

∂Ω1

∣∣λht

∣∣∣∣u − uI
h

∣∣dσdt

+

T∫

0

∫

∂Ω2

∣∣λht

∣∣∣∣u − uI
h

∣∣dσdt

+ C

T∫

0

∫

Ω

max
S⊂∂K

h−1
K

∣∣[∂sλh

]∣∣∣∣u − uI
h

∣∣dxdt

+ C

T∫

0

∫

Ω

εhτ
−1

∣∣[λht

]∣∣∣∣u − uI
h

∣∣dxdt.

(36)

Next, we use the same kind of interpolation estimate for |u − uI
h| as we found for

|λ − λI
h| in equation (33), to get:

∣∣I2
∣∣ ≤ C

T∫

0

∫

Ω

∣∣uh − uobs

∣∣(τ
∣∣ [uht]

∣∣+ hK

∣∣ [∂nuh]
∣∣)δobsdxdt

+ C

T∫

0

∫

∂Ω1

∣∣λht

∣∣(τ
∣∣ [uht]

∣∣+ hK

∣∣ [∂nuh]
∣∣)dσdt

+ C

T∫

0

∫

∂Ω2

∣∣λht

∣∣(τ
∣∣ [uht]

∣∣+ hK

∣∣ [∂nuh]
∣∣)dσdt

+ C

T∫

0

∫

Ω

max
S⊂∂K

h−1
K

∣∣[∂sλh

]∣∣(τ
∣∣ [uht]

∣∣+ hK

∣∣ [∂nuh]
∣∣)dxdt

+ C

T∫

0

∫

Ω

εhτ
−1

∣∣[λht

]∣∣(τ
∣∣ [uht]

∣∣+ hK

∣∣ [∂nuh]
∣∣)dxdt.

(37)

To estimate I3 we use the following approximation estimate for ε − εIh:

(38) |ε − εIh| ≤ ChK∂xε ≤ ChK

∣∣∣∣
[εh]

hK

∣∣∣∣ ≤ C|[εh]|,

and we end up with

∣∣I3
∣∣ ≤

T∫

0

∫

Ω

|λht| |uht|
∣∣[εh]

∣∣dxdt+ γ

∫

Ω

∣∣εh − ε0
∣∣ ·

∣∣[εh]
∣∣dx,

which completes the proof.
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�
Numerical experiments in paper III and IV, together with other publications

[8,12] show that the dominating contribution to the error in the Lagrangian occurs
in the residuals of the reconstruction of ε, which may be estimated from the above
by

(39) γmax
Ω

|εh − ε0| +max
Ω

∫ T

0

|uhtλht| dt.

While the integral terms in the a posteriori error for the Lagrangian were ig-
nored due to numerical observations in the publications cited above, this fact was
analytically explained in [11]. Thus, the error in the Lagrangian may be decreased
by refining the grid locally in the regions where the absolute value of the gradient
with respect to ε attains its maximum.

It was shown in [12] that the mesh refinement improves the accuracy of the reg-
ularized solution as long as the modulus of the gradient of the Tikhonov functional
is not too small. This was consistently observed in [4,5,8,9], and also in papers III
and IV.

5.5. The adaptive algorithm. Finally, we present an algorithm for the adaptive
method.

Step 0. Choose an initial mesh Kh in the domain Ω and a time partition Jτ of
the time interval (0, T ). Start with the initial approximation ε0h := ε0 and
compute the sequence of functions εmh in the steps described below.

Step 1. Compute FEM solutions uh (x, t, ε
m
h ) , λh (x, t, ε

m
h ) of the state and adjoint

problems (7), (15) on Kh, Jτ .
Step 2. Update the coefficient ε := εm+1

h on Kh using (18).
Step 3. Stop computing the functions εmh if either ‖gm‖L2(Ω) ≤ θ, or the norms

‖gm‖L2(Ω) abruptly grow, or the norms ‖gm‖L2(Ω) are stabilized, where
0 < θ < 1 is chosen by the user. Otherwise, set m := m+1 and go to Step
1.

Step 4. Compute the function A(x) = |gmh (x) |. Refine the mesh where

(40) A(x) ≥ βmax
Ω

A(x).

Here, the tolerance number β is chosen by the user.
Step 5. Construct a new mesh Kh and a new time partition Jτ of the time in-

terval (0, T ) . The new time step τ of Jτ should satisfy the CFL (Courant-
Friedrichs-Lewy) condition. Interpolate the initial approximation ε0h on the
new mesh. Return to Step 1 and perform all the steps above on the new
mesh.

Step 6. Stop the mesh refinements when the stopping criterion described in Step 3
is satisfied.
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6. Summary of the papers

6.1. Paper I.

Effect of gain saturation in a gain compensated perfect lens. In Paper I we develop
a method for calculating the transmission, reflection, and detailed field profile of
a gain compensated perfect lens. In particular, the impact of gain saturation is
included in the analysis, and a method for calculating the fields of such nonlinear
systems is developed. Gain saturation clearly improves the resolution of perfect
lenses. However, gain saturation also results in non ideal effects, e.g. limited
resolution and reflections. Moreover, the resolution associated with the lens is
strongly dependent on the saturation constant of the active medium.

Since gain saturation is a nonlinear effect, different waves traversing the lens at
the same time will interact through the material. Waves with a spatial frequency
close to the resolution limit will have the greatest impact. As a rule of thumb,
it is enough to know the sum of amplitudes of the waves at the source, and then
assume that the mode with the largest spatial frequency has this amplitude. If this
single wave is transmitted, in the sense of a transmission larger than 1/2, then so
will any superposition of waves with less spatial frequencies and the same sum of
amplitudes.

For a non-compensated lens and TM polarization, the maximum spatial fre-

quency resolved by the lens is approximately − 1
d ln

|1+ǫ|
2 [32, 39], where d is the

thickness of the lens. Thus, for a fixed d, an exponential decrease in the losses is
necessary to increase the resolution linearly. From our numerical results, a similar
relation is approximately valid for the saturation constant of a gain compensated
medium; to achieve a linear improvement in the resolution, the saturation constant
must increase exponentially. This clearly shows the difficulties of achieving very
high resolution.

Together with Johannes Skaar, I worked out the details in the two-dimensional
transfer matrix method. Based on the theory, and an old implementation of the
corresponding one-dimensional matrix method, I have implemented the numerical
method, and produced all results presented in the paper.

6.2. Paper II.

Inverse scattering of two-dimensional photonic structures by layer stripping. In Pa-
per II we present a layer stripping method for reconstructing 2d photonic structures.
Layer stripping is based on causality, where the earliest scattered light is used to
recover the structure layer by layer. Our setup is a 2D layered nonmagnetic struc-
ture probed by plane-polarized harmonic waves entering orthogonal to the layers.
It is assumed that the dielectric permittivity in each layer only varies orthogonal to
the polarization. Based on obtained reflectance data covering a suitable frequency
interval, time-localized pulse data are synthesized and applied to reconstruct the
refractive index profile in the leftmost layer by identifying the local, time-domain
Fresnel reflection at each point. Once the first layer is known, its impact on the
reflectance data is stripped off and the procedure is repeated for the next layer.
In principle, the reconstruction is exact, and we have shown through numerical
examples that we are able to reconstruct different structures consisting of several
layers. The impact of evanescent modes and limited bandwidth is discussed.
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There are essentially three fundamental mechanisms that limit the accuracy in
practice: The presence of evanescent modes, accumulated reflection, and limited
bandwidth. The fact that evanescent modes lead to inaccuracies means that ei-
ther the probing frequencies must be sufficiently high, or the spatial transversal
frequencies of the structure must be sufficiently small. The second limitation is a
result of the fact that if the transmission through the structure is too small, little
light reaches the back end. Then the back end has little influence on the reflection
spectrum, and cannot be reconstructed accurately. Finally, the bandwidth must be
sufficiently large such that the synthetic, incident pulse is shorter than the round-
trip time in all layers. Alternatively, for a fixed available bandwidth the structure
must vary sufficiently slowly in the longitudinal direction z.

The idea of using layer stripping to solve the inverse problem for photonic crystals
came from Johannes Skaar. Together with him and Harald E. Krogstad, I have
worked out the details in the layer stripping method. I carried out the numerical
implementation of the method, and produced all the numerical examples in the
paper.

6.3. Paper III.

Adaptive algorithms for an inverse electromagnetic scattering problem. In Paper
III we present two different adaptive algorithms for an inverse electromagnetic
scattering problem. The basis for the adaptive algorithms is an a posteriori error
estimate, which is presented in the paper.

The inverse problem is formulated as an optimal control problem, where we solve
equations expressing stationarity of an associated Lagrangian. The a posteriori
error estimate for the Lagrangian couples residuals of the computed solution to
weights of the reconstruction. We show that the weights can be obtained by solving
an associated linearized problem for the Hessian of the Lagrangian, which is used
in the second algorithm, while in the first algorithm we compute only the residuals.
The performance of the adaptive finite element method and the usefulness of the a
posteriori error estimate are illustrated in numerical examples.

For this paper I worked out the details in the proof of the a posteriori error
estimate. The proof is not included in the paper, but is given in full in Sec. 5.4. I
also did some numerical tests, although none of them are include in the paper.

6.4. Paper IV.

Reconstruction of dielectrics in a symmetric structure via adaptive algorithm with
backscattering data. In Paper IV we formulate an adaptive algorithm and present
numerical results for the adaptive reconstruction of the dielectric constant in a
symmetric structure, given backscattering data from a single measurement. In the
adaptive algorithm presented here we use an a posteriori error estimate for the
Lagrangian applied to the regularized solution of the Coefficient Inverse Problem
(CIP). To find the error in the Lagrangian we use its Fréchet derivative. We refine
the mesh in all subdomains of the computational domain where the Fréchet deriv-
ative of the Lagrangian attains its maximal values. Our main objective has been
to apply the adaptive finite element method to solve the electromagnetic CIP con-
nected to photonic crystals, i.e. to reconstruct an unknown dielectric permittivity
from backscattering data. The basic technique is to expose the structure with a
known, time limited wave, and then record the backscattering waves. To solve the
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CIP we use the hybrid FE/FD method developed in [13]. The numerical tests have
consistently demonstrated accurate reconstruction of the locations and contrasts of
the dielectric permittivity in the symmetric structure from the backscattering data
using the adaptive algorithm outlined in the paper. In a second example we show
that a locally convergent quasi-Newton works well when a good approximation to
the exact solution is available, but performs poorly when a good initial guess is
unavailable.

As for Paper III, the adaptivity in Paper IV is based on the a posteriori error
estimate presented in Sec. 5.4. I also did the numerical tests presented in Example
1, Test 1.
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Appendix

Appendix A. Maxwell’s equations

The work presented in this thesis is related to photonic crystals and materials
with negative refraction. These topics are concerned with electromagnetic waves
propagating in some dielectric material. All macroscopic electromagnetism, includ-
ing the propagation of electromagnetic waves, are governed by Maxwell’s equations

∇ × E(x, t) +
∂B(x, t)

∂t
= 0,(41)

∇ × H(x, t) − ∂D(x, t)

∂t
= j,(42)

∇ · D(x, t) = ρ,(43)

∇ · B(x, t) = 0,(44)

in space, x = (x, y, z), and time, t. Here, E and H are the electric and magnetic
fields, whereas D and B are the electric and magnetic flux densities, ρ is the free
charges and j free currents.

Now we will focus on propagation in dielectric medium with no free particles or
currents, ρ = and j = 0. Thus, light can propagate in the structure, but there are no
sources of light. Furthermore, we assume the material to be linear, lossless, isotropic
and time invariant, with no dispersion or spacial dispersion, in which case we have
D = ε0εE and B = µ0µH [24]. Here ε0 and µ0 are the vacuum permittivity and
permeability, while ε and µ are the relative permittivity and permeability. Given
these assumptions, Maxwell’s equations reduce to

∇ × E(x, t) + µ0µ(x)
∂H(x, t)

∂t
= 0,(45)

∇ × H(x, t) − ε0ε(x)
∂E(x, t)

∂t
= 0,(46)

∇ · [ε(x)E(x, t)] = 0,(47)

∇ · [µ(x)H(x, t)] = 0.(48)

Across the material boundaries the following conditions need to be fulfilled [22]:

ε1E
⊥
1 = ε2E

⊥
2 ,(49)

µ1H
⊥
1 = µ2H

⊥
2 ,(50)

E
‖
1 = E

‖
2,(51)

H
‖
1 = H

‖
2.(52)

Here ⊥ denotes the component normal to, and ‖ the component parallel to the
boundary. Regarding photonic crystals, most interesting materials have relative
magnetic permeability close to unity, thus B = µ0H. With this extra assumption,
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Maxwell’s equations are further reduced to

∇ × E(x, t) + µ0
∂H(x, t)

∂t
= 0(53)

∇ × H(x, t) − ε0ε(x)
∂E(x, t)

∂t
= 0(54)

∇ · [ε(x)E(x, t)] = 0(55)

∇ · H(x, t) = 0.(56)

Appendix B. Derivation of the wave equation

Consider the propagation of an electromagnetic field in R3. Let E(x, t) =
(E1, E2, E3) and H(x, t) = (H1, H2, H3), x ∈ Ω, t > 0, be vectors of the elec-
tric and magnetic fields, respectively. We assume that the dielectric permittivity,
ε(x), is scalar and that the material is non-magnetic, so that µ(x) = 1. The current
density, j, and the charge density, ρ, are both assumed to be zero. Consider the
system of Maxwell’s equations,

∇ × H = ε
∂E

∂t
,(57)

∇ × E = −∂H

∂t
,(58)

and assume that all functions in (57)–(58) are independent of z, see [16]. Then
(57)–(58) are equivalent to

i
∂H3

∂y
− j

∂H3

∂x
+ k(

∂H2

∂x
− ∂H1

∂y
) = ε(i

∂E1

∂t
+ j

∂E2

∂t
+ k

∂E3

∂t
),(59)

i
∂E3

∂y
− j

∂E3

∂x
+ k(

∂E2

∂x
− ∂E1

∂y
) = −i

∂H1

∂t
− j

∂H2

∂t
− k

∂H3

∂t
,(60)

and, in particular,

ε
∂E3

∂t
=

∂H2

∂x
− ∂H1

∂y
,(61)

∂H2

∂t
=

∂E3

∂x
,(62)

∂H1

∂t
= −∂E3

∂y
.(63)

Differentiating (61) with respect to t, and inserting (62) and (63), we obtain

(64) ε
∂2E3

∂t2
= ∆E3.

Equations (61)–(63) contain the variables H1, H2 and E3 and are called the
transverse electric (TE) polarization [16].
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1. INTRODUCTION
Metamaterials have large potential in electromagnetics
and optics due to their possibility of tailoring the permit-
tivity and permeability. This enables the construction of,
for example, media with negative refractive indices n [1],
perfect lenses [2], invisibility cloaks [3,4], and other excit-
ing components transforming the electromagnetic field
[5]. Unfortunately, the performance of such devices is
strongly limited by losses. Although causality and passiv-
ity do not prohibit negative index materials with arbi-
trary low losses [6], in practice it is difficult to fabricate
materials with high figure of merit �FOM�=−Re n / Im n,
especially at optical frequencies [7–10]. For perfect lenses,
losses limit the amplification of evanescent waves associ-
ated with large spatial frequencies, and therefore the res-
olution [11,12]. It has therefore been suggested to intro-
duce gain into the metamaterials [7,13–21]. This could be
a promising approach provided the intrinsic losses can be
made relatively small so that compensation by a realistic
amount of gain is possible.

Both permittivity � and permeability � may involve
losses; thus, in general, gain may be needed to reduce
both Im � and Im �. For a perfect lens it is generally not
sufficient, e.g., to reduce Im � below zero such that the re-
fractive index n=��� becomes real. However, as long as
the object to be imaged is one-dimensional, only one po-
larization [transverse electric or transverse magnetic
(TM)] of the electromagnetic field is required. Then, pro-
vided the lens is sufficiently thin, only one of the param-
eters � and � is relevant for the transmission of evanes-
cent waves [2,12]. Choosing TM polarization, only �
matters, enabling gain compensation with dielectric ac-
tive media.

Introducing the necessary active material into a

metamaterial leads to a change not only in the imaginary
part but also in the real part of the permittivity, and
should therefore be kept in mind while designing the
metamaterial structure. Other critical considerations in-
clude matching of the negative refractive index frequency
band to that of the gain line shape function, the level of
loss possible to overcome in the absence of saturation, and
the saturation constant of the active medium.

There have been several attempts to create a perfect
lens in the near infrared (IR) spectrum for the last years
[7–9,22]. The FOM currently reported is of the order of 3
for the frequency where Re n�−1 [8,9]. With these val-
ues, traditional optical amplifiers such as erbium-doped
silica or gas laser amplifiers will not be able to reduce the
intrinsic losses significantly. Theoretical studies have
shown that it may be possible to raise the FOM at near IR
frequencies to as much as 20, while keeping Re n�−1
[23]. It has also been reported that laser dyes, or dye-Ag
aggregate mixtures, may reach amplifications of up to
Im n�−0.06 at near IR frequencies [14,24]. Taking into
account these reports, this article will not speculate fur-
ther on the choice and design of the metamaterial, but
merely assume that an appropriate material is physically
feasible.

The main purpose of our work is to consider the trans-
mission of evanescent waves in a practical gain compen-
sated perfect lens. Clearly, gain saturation is highly rel-
evant in this context, and we demonstrate how this effect
leads to limited amplification of evanescent fields, and
therefore limited resolution. We calculate the resolution
as a function of the saturation constant of the active me-
dium, and also the detailed field profile and reflections
from the lens. It will become clear that gain saturation is
a critical effect which may lead to severe limitations.
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2. NONLINEAR GAIN SATURATION AND
FIELD CALCULATIONS
The relative permittivity of the active metamaterial is
given by

���� = 1 + �p��� + �a���, �1�

where �p��� denotes the susceptibility of the passive
structure and �a��� denotes the contribution from the ac-
tive part. The contribution to the susceptibility for travel-
ing and evanescent fields in active media can be modeled
using semiclassical theory [25]. If there is spherical sym-
metry, allowing for coupling to several degenerate states
with different values of the quantum number m, one can
show using the Wigner–Eckart theorem and the general
properties of the Clebsch–Gordan coefficients that the
system can effectively be treated as a two-level system.
Assuming two-level atoms and using the dipole approxi-
mation, we find the following expression for the active
susceptibility:

�a��� =

A����� − �0

�
− i�

1 +
�E�2

Es���2

. �2�

Here �0 is the transition frequency, � is the frequency of
the incident light, � is a phenomenological decay rate due
to spontaneous emission and elastic collisions, E is the
complex electric field, and Es��� is the saturation constant
of the active medium. The saturation constant depends on
the selected gain material and pumping level. For dye
amplifiers a normal value is Es��0��107 V/m [24,26], cor-
responding to intensities in the kW/cm2 regime for propa-
gating waves. The numerator in Eq. (2) describes the sus-
ceptibility in the limit �E� /Es→0. The numerator contains
the line shape function and several material parameters;
factors that are irrelevant for the analysis below are ab-
sorbed into the function A���. For �=�0 and �E� /Es→0,
A��� is simply −Im �a���. Both functions A��� and Es���
are real-valued. Note that the material parameters de-
scribing the active medium are effective parameters, de-
pending on the geometry of the metamaterial structure,
and are not necessarily equal to the bulk parameters of
the gain material [18,19].

Throughout this paper, we will consider the frequency
�=�0. Equation (2) now reduces to

�a��0� =
− iA��0�

1 +
�E�2

Es��0�2

. �3�

Equation (3) describes how the imaginary part of the total
permittivity relates to the pumping and local field ampli-
tude. The real part of the total permittivity is indepen-
dent of the pumping and the local field.

Note that there is a fundamental difference between
the nonlinearity due to gain saturation and conventional
second- and third-order nonlinearities. First, the nonlin-
earity due to the denominator in Eq. (2) is so large that a
Taylor expansion up to third order is generally not valid.
Second, the nonlinearity of a gain medium is expressed in

terms of the slowly varying field envelope �E�, while the
second- and third-order nonlinearities usually are ex-
pressed in terms of the rapidly varying time-dependent
electric field. Since the nonlinearity in our case can be
characterized using �E�, the medium will not generate
new frequencies for monochromatic input [27]. Neverthe-
less, if several modes (or frequencies) are present, the
modes interact in the sense that the complex refractive
index seen by one mode is dependent on the presence and
strength of all modes.

We consider a perfect lens slab which extends to infin-
ity in the xy-plane and has thickness d in the z-direction
(see Fig. 1). The source is located a distance a (with a
�d) from the input end of the lens. The incident field
from the source will be taken to be a superposition of
plane TM waves, with the magnetic field in the
y-direction. Provided �0d /c�1 and ����1, the specific
value of � is not critical for the operation of the lens for
evanescent waves [2,12]. Here c is the vacuum light ve-
locity. The permittivity is given by Eqs. (1) and (3), and
Re �p��0�=−2. The remaining losses after gain compensa-
tion (in the absence of saturation) is described by the pa-
rameter

�� = Im �p��0� − A��0�. �4�

To find the steady state solution to Maxwell’s equations
for our nonlinear medium, an iterative approach can be
used. In the zeroth iteration, the electric field is simply
set to zero everywhere. (Alternatively, the initial field
could be set to infinity. This does not give any significant
difference in the performance, in terms of the required
number of iterations.) In the next iteration, Eqs. (1) and
(3) are used to find an approximation of the permittivity
of the lens. Taking the incident magnetic field to be unity
(normalized), we can compute the magnetic and electric
fields everywhere. Now we may repeat the iteration; cal-
culate a new approximation of the permittivity from the
field, compute the resulting field from this new structure,
etc. The iteration procedure has an inherent stability, as
growing fields lead to less gain in the medium, and vice
versa.

a bd

z

x

Vacuum Lens

1 2 3 . . . N−1 N

Fig. 1. (Color online) Perfect lens in vacuum. The parameter d
is the thickness of the lens, and a and b are the distances from
the source to the lens, and from the lens to the image plane, re-
spectively. The parameters are governed by the equation d=a
+b. The numbers 1 through N indicate the different slices. The
lens is considered to be infinite in the xy-plane.
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Nevertheless, inaccuracies and even divergence may
arise if the number of slices is too low so that the field no
longer can be treated as a constant in each slice. In the
case ��=0 the convergence seems to be particularly sen-
sitive to the number of slices. An alternative to increasing
the number of slices to a very high number is to regular-
ize the iterative approach as follows: Rather than setting
the permittivity to that resulting from the field in the pre-
vious iteration, it can be set to a weighted mean of the
permittivities as resulting from the last two iterations. In
our computations, the permittivity in the iteration i (for
i	2) was set to 0.5 times the permittivity calculated by
the field from iteration i−1, plus 0.5 times that resulting
from iteration i−2. For i=1 the permittivity was calcu-
lated using the field from iteration 0. This resulted in con-
vergence after �20–35 iterations. The weight factor of
0.5 is somewhat arbitrary; other choices are possible but
may require a larger N or number of iterations to obtain
convergence.

If the root mean square deviation of three successive it-
erations is within a specified limit (10−12 for the relative
permittivity in our computations), and strictly decreas-
ing, the results are deemed converged. Note that when
the fields of subsequent iterations coincide, we have a
valid solution to Maxwell’s equations with constitute re-
lation as implied by Eqs. (1) and (3).

In general, the fields in one iteration, and therefore the
permittivity in the next iteration, will be dependent on x
and z. Thus the computation of the fields in the next it-
eration requires the solution to Maxwell’s equations in an
inhomogeneous structure. Note that, in each iteration,
the structure is linear; the nonlinearity of the structure
enters through the iteration. For the linear calculation,
we employ a transfer matrix technique, considering the
different plane waves in the structure. The lens is divided
into N slices in the xy-plane as seen in Fig. 1. These slices
must be sufficiently thin, such that the permittivity in-
side each slice is approximately uniform in the
z-direction. For this condition to be valid for the next it-
eration as well, the resulting field from the present itera-
tion must also be approximately constant. This means
that kxd /N
1 for the transverse wavenumbers kx that
contribute significantly to the fields.

The electric field can be found using the Ampere–
Maxwell’s law,

E�x,z� =
1

− i���x,z��0
� � H�x,z�. �5�

With periodic boundary conditions in the x-direction, the
magnetic field and the permittivity can be expanded in
discrete Fourier series,

H�x,z� = H�x,z�ŷ = 	
m

hm�z�exp�ikxmx�ŷ, �6�

��x,z� = 	
m

em�z�exp�ikxmx�, �7�

for some Fourier coefficients hm�z� and em�z�. Here kxm
=2�m /L, L is the computational domain, and ŷ is the
unit vector in the y-direction.

From Maxwell’s equations, we find that the magnetic
field satisfies

�2H + ��k2H −
1

�

��

�x

�H

�x
= 0, �8�

where k=�0 /c. We express 1/� and �1/���� /�x as Fourier
series as follows:

1

��x�
= 	

m
Qm exp�ikxmx�, �9�

1

��x�

���x�

�x
= 	

m
Fm exp�ikxmx�. �10�

The Fourier coefficients Fm are now given as

Fm = 	
m�

Qm−m�ikxm�em�, �11�

or as a matrix product

F = iQkxe, �12�

where F= 
Fm�m, kx=diag�kxm�, e= 
em�m, and Q is a
Toeplitz matrix with elements Qi,j=Qi−j.

Inserting the Fourier series into Eq. (8), we obtain

d2hm�z�

dz2 − kxm
2 hm�z� + k2�	

m�

m−m��z�hm��z�

− 	
m�

iFm−m�kxm�hm� = 0, �13�

for each m. Let h= 
hm�m�Z and use kzm
2 =k2−kxm

2 . We can
write Eq. (13) as a matrix equation,

d2h�z�

dz2 + �kz
2 + Vh�z� = 0, �14�

where kz=diag�kzm�, and V is the operator defined as

V = − k2I + k2�G − F. �15�

Here G and F are infinite dimensional Toeplitz matrices
with elements Gi,j=ei−j and Fi,j= iFi−jkxj.

Equation (14) may be decomposed into a first-order sys-
tem by writing h=h++h−, where h+= 
hm

+ �m�Z and h−

= 
hm
− �m�Z. In fact, the equations

dh+

dz
= ikzh+ + i�2kz�−1V�h+ + h−�, �16a�

dh−

dz
= − ikzh− − i�2kz�−1V�h+ + h−�, �16b�

are seen to be equivalent to Eq. (14) after differentiation
and summation. This decomposition is particularly conve-
nient since outside the lens V=0, and Eqs. (16) have the
simple solution hm

± �z�=const·exp�±ikzmz�. In other words,
outside the lens, hm

+ and hm
− are the forward and back-

ward propagating waves, respectively.
By adding Eqs. (16a) and (16b), we obtain
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dh

dz
= ikz�h+ − h−�, �17�

which is needed for ��H. By writing

� = �h+

h−�, C = �ikz + i�2kz�−1V i�2kz�−1V

− i�2kz�−1V − ikz − i�2kz�−1V� ,

�18�

Eqs. (16) may be brought into matrix form,

d�

dz
= C�. �19�

Since the permittivity is assumed to be independent of
z within a slice of the lens, the matrix C will be constant
for each slice. Thus, Eq. (19) can be integrated to obtain

��zb� = exp
�zb − za�C���za�, �20�

for za and zb inside the same slice. Let zj be at the left
hand side of slice j, �j be the thickness of the slice, and Cj
be the C-matrix for layer j. From the field at zj, we find
the field at the right hand side of the slice as

��zj + �j� = exp
�jCj���zj�. �21�

Note that j=0 corresponds to the region between the
source and the lens, j=1, . . . ,N are the slices inside the
lens, and j=N+1 represents the region from the lens to
the image plane. The thicknesses are �0=a, �j=d /N, for
j=1, . . . ,N, and �N+1=b. Let us define

Mj = exp
�jCj�. �22�

Equation (22) propagates the field from the start of a slice
to the end. Next, connecting the fields of adjacent slices
with the electromagnetic boundary conditions, we find for
the boundary between slice j and j+1 that

�Hj+1�zj+1�

�z
=

�j+1

�j

�Hj�zj+1�

�z
. �23�

Inserting the Fourier series from Eqs. (6) and (7), we ob-
tain a convolution on the right hand side corresponding to
the multiplication of a Toeplitz matrix and the vector con-
taining the components dhm�z� /dz. The Toeplitz matrix is
defined by the Fourier components of �j+1/�j and will be
called P. Then

dhj

dz
�zj+1� = Pj�zj+1�

dhj+1

dz
�zj+1�, �24�

where Pj corresponds to the transition between layers j
and j+1.

Equation (24) together with the fact that h is continu-
ous across the layer boundary gives us the following
transfer matrix:

�hj+1
+

hj+1
− � =

1

2�I + kz
−1Pjkz I − kz

−1Pjkz

I − kz
−1Pjkz I + kz

−1Pjkz
��hj

+

hj
−� . �25�

Let us call the transfer matrix in Eq. (25) Pj.
By the successive application of Eqs. (22) and (25), we

find

�T

0� = MN+1�
j=N

0

�PjMj�� I

R� . �26�

Here, each column i of I corresponds to an experiment
where the incident field amplitude is 1 for one of the Fou-
rier components and zero for the others. The ith column of
R is the reflection at the source plane of experiment i, and
the ith column of T is the corresponding transmission at
the image plane. To get the reflection in the case of two or
more waves, the corresponding columns of R are added;
the new transmission is found by adding columns of T.
Once the total matrix in Eq. (26) has been found, it is
straightforward to calculate the unknowns T and R, and
therefore the field amplitudes in all slices.

3. NUMERICAL RESULTS
The thickness d of the lens was chosen such that �0d /c
=2� /10. The resolution clearly improves with decreasing
distance b from the lens to the image, since then the re-
quired evanescent fields at the end of the lens are re-
duced. However there may be practical reasons that make
it impossible to reduce the distances a and b below a cer-
tain value. In our simulations we have taken a=b=d /2.
For simplicity we normalized �0=�0=�0=1. The perme-
ability was set to �=−1; however, since the lens was rela-
tively thin, the specific value of � did not matter signifi-
cantly for evanescent TM waves. The number of slices
was taken to be N=20. The computation domain L was
chosen in the range (15,50) depending on the specific
problem, and the number of Fourier components (m val-
ues) was of the order of 100.

First, a single mode source H=exp�ikxx+ ikzz�ŷ was
considered. The reflection and transmission coefficients,
and the fields in the lens, were computed using the itera-
tive method above. The transmission coefficient is shown
in Fig. 2. It is easy to see improvements as a result of gain
compensation, dependent on the saturation constant Es.
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Fig. 2. (Color online) The absolute value of the transmission co-
efficient when �0 /c=1 (normalized), �0d /c=2� /10, a=b=d /2,
Im �p��0�=0.05, and N=20: (a) Noncompensated lens; (b) Es=10,
��=0; (c) Es=4, ��=0; (d) Es=10, ��=0.015; (e) Es=10, ��=0, two
waves, kx and −kx, both having amplitude of 1/2.
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(Here it is useful to recall that for a normalized magnetic
field H=exp�ikxx+ ikzz�ŷ, the electric field is E= ��kz /
�0��0x̂− �kx /�0��0ẑ�exp�ikxx+ ikzz�. Thus, for our nor-
malization, we see that �E��kx, to be compared to Es.)
Nevertheless, for a fixed amplitude of the incident field,
Fig. 3 indicates that an exponential increase in the satu-
ration constant is needed for a linear increase in the res-
olution. This is an important result as it shows the diffi-
culty of getting large resolution: The required large
evanescent fields associated with large spatial frequen-
cies saturate the gain at the output of the lens.

The reflection coefficient is plotted in Fig. 4. We note
that significant reflections arise even for the spatial fre-
quencies where the transmission is relatively large. As
can be seen in Fig. 5, the field distributions of the two eva-
nescent components in the lens increase roughly exponen-
tially with +z or −z, respectively. For small spatial fre-
quencies, where the lens is essentially perfect, the one
increasing in the +z-direction dominates. For higher spa-
tial frequencies the two components have a similar ampli-
tude, such that the total field and therefore the imaginary
part of the permittivity start to look like a U-shaped val-
ley.

In general, different plane wave components of the
source will couple to each other through Eq. (3). To simu-
late the gain compensated lens under more real-world
conditions, it was therefore tested with several waves tra-
versing the lens simultaneously. The transmission of one
wave as a function of kx, in the presence of another wave
−kx, is shown in Fig. 2. The amplitudes of both waves
were set to 1/2 to keep the total field at the source equal to
the case with a single wave. Moreover, from a number of
simulations with several waves, a useful rule of thumb
was discovered: As a worst-case estimate, one can judge
whether the lens operates as required by assuming that
the mode with largest kx has amplitude equal to the sum
of the amplitudes at the source. More precisely, suppose
that a single mode kx with an amplitude of 1 experiences
a transmission greater than 1/2. For any superposition of

modes with transversal wavenumbers less than kx and
sum of amplitudes equal to unity, each mode will experi-
ence a transmission greater than 1/2.

For conventional lenses, the Rayleigh criterion is usu-
ally applied to quantify the distance between two point
sources (or, in the one-dimensional case, line sources) in
order to resolve their images. Since our lens is nonlinear,
the image of two line sources cannot be determined as a
superposition of the fields associated with the two sources
separately or as a superposition of the fields associated
with their Fourier components. Therefore, as in previous
literature on perfect lenses, we have chosen to consider a
single Fourier component source and defined the spatial
resolution as 2� /kx, where kx is the half-maximum wave-
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Fig. 3. (Color online) The resolution of the lens as a function of
the saturation constant. The resolution is defined as the kx-value
where the transmission equals 1/2. Parameters: �0 /c=1, �0d /c
=2� /10, Im �p��0�=0.05, ��=0, a=b=d /2, and N=20.
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Fig. 4. (Color online) The absolute value of the reflection coeffi-
cient at the source plane after convergence, for the same cases as
those in Fig. 2.
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Fig. 5. (Color online) The distribution of the two components of
the evanescent field in the lens, for one wave with kx=5.1408.
The distance is normalized with respect to lens thickness d. Pa-
rameters: �0 /c=1, �0d /c=2� /10, Im �p��0�=0.05, ��=0, Es=10,
a=b=d /2, and N=20. The solid line shows the absolute value of
the nonzero component of h+, and the dotted line shows the ab-
solute value of the nonzero component of h−.
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number (Fig. 3). Note that the behavior of the lens for
more complex sources can be determined from the rule of
thumb described above.

Figure 6 shows the absolute value of the transmitted
magnetic field at the image plane, �H�x ,2d��, resulting
from a source consisting of two slits. The image of the slits
are clearly better resolved with an increased saturation
constant Es.

4. CONCLUSION
We have developed a method for calculating the transmis-
sion, reflection, and detailed field profile of a gain compen-
sated perfect lens, taking into account gain saturation.
The gain compensation clearly improves the resolution
limit of perfect lenses. However, due to gain saturation, a
number of nonideal effects arise, including limited reso-
lution and reflections. The nonideal effects depend
heavily on the saturation constant and/or the field
strength of the source.

If there are different waves traversing the lens at the
same time, they will interact through the material. Waves
with a spatial frequency close to the resolution limit will
have the greatest impact. As a rule of thumb, it is enough
to know the sum of amplitudes of the waves at the source,
and then assume that the mode with the largest spatial
frequency has this amplitude. If this single wave is trans-
mitted, in the sense of a transmission larger than 1/2,
then so will any superposition of waves with less spatial
frequencies and the same sum of amplitudes.

The calculations in this work were performed for TM
polarization and a one-dimensional source. For a two-
dimensional source with both polarizations, both dielec-
tric and magnetic losses should be compensated, that is,
Im � and Im � must be reduced. Although the theory in
this paper can trivially be extended to this situation,
there may be serious practical problems associated with
the fabrication of such active media for optical frequen-
cies.

For a noncompensated lens, the maximum spatial fre-
quency resolved by the lens is approximately −�1/d�ln��1
+�� /2� [11,12]. Thus, for a fixed d, an exponential decrease
in the losses is necessary to increase the resolution lin-
early. From our numerical results, a similar relation is
approximately valid for the saturation constant of a gain
compensated medium; to achieve a linear improvement in
the resolution, the saturation constant must increase ex-
ponentially. This clearly shows the difficulties of achiev-
ing very high resolutions.
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Design and reconstruction of two-dimensional (2D) and three-dimensional photonic structures are usually carried
out by forward simulations combined with optimization or intuition. Reconstruction by means of layer stripping
has been applied in seismic processing as well as in design and characterization of one-dimensional photonic
structures such as fiber Bragg gratings. Layer stripping is based on causality, where the earliest scattered light
is used to recover the structure layer by layer. Our setup is a 2D layered nonmagnetic structure probed by
plane-polarized harmonic waves entering normal to the layers. It is assumed that the dielectric permittivity in
each layer only varies orthogonal to the polarization. Based on obtained reflectance data covering a suitable fre-
quency interval, time-localized pulse data are synthesized and applied to reconstruct the refractive index profile in
the leftmost layer by identifying the local, time-domain Fresnel reflection at each point. Once the first layer is
known, its impact on the reflectance data is stripped off and the procedure repeated for the next layer. Through
numerical simulations it will be demonstrated that it is possible to reconstruct structures consisting of several
layers. The impact of evanescent modes and limited bandwidth is discussed. © 2011 Optical Society of America

OCIS codes: 050.5298, 290.3200.

1. INTRODUCTION
Photonic crystals have been an exciting field of research since
Yablonovitch and John published their papers in 1987 [1,2].
Photonic crystals are periodic structures designed to affect
the propagation of electromagnetic waves [3]. The usual
way of constructing such optical components is to carry
out numerical simulations of electromagnetic waves hitting
and being scattered off a trial design. The design is then chan-
ged by optimization or intuition until the structure has the
desired properties. In this paper we use a layer-stripping pro-
cedure to show that it is possible to reconstruct a photonic
structure from a set of reflectance data based on harmonic
waves. In other words, we will look at how the inverse pro-
blem can be solved. The ultimate goal is to be able to recon-
struct the structures from the observations and use this as a
supplementary tool for the design of structures with desired
features.

The idea of layer stripping is to reconstruct the properties
of a medium from scattered data originating from an emitted
wave pulse on the boundary of the domain. Layer stripping is
based on causality, where the earliest scattered wave from
each depth layer is used to recover the structure layer by
layer. The method was first used in solving inverse acoustic
scattering problems for seismic data; overviews can be found
in [4,5]. Later, the method has also been applied to the design
and characterization of one-dimensional photonic crystal
structures such as fiber Bragg gratings [6] and multimode
structures [7].

In the present simulation study, we are considering a two-
dimensional (2D) structure, layered normal to the z direction,
with periodically varying refractive index in the x direction

while being constant in the y direction. The structure is
probed by plane-polarized harmonic electromagnetic waves
traveling in the z direction, with the electric field vector
pointing in the y direction, thus representing a 2D wave
propagation problem.

The forward problem, consisting of obtaining reflectance
data for a known structure, may be formulated in terms of
transfer matrices, providing reflection and transmission ma-
trices for each layer as well as the whole structure. The cor-
responding inverse problem, consisting of recovering the
properties of the unknown structure from the reflectance
data, requires data for several wavenumbers and a range of
frequencies.

The key step of the synthetic layer-stripping algorithm is to
combine reflectance data for different frequencies so as to
synthesize data from a short pulse at the time the pulse hits
the surface. The data may then be applied to reconstruct
the refractive index profile in the leftmost layer by identifying
the local, time-domain Fresnel reflection at each point. Once
the first layer is known, its transfer matrix may be computed
and the impact of the layer on the reflectance data eliminated.
The same idea is then applied to the modified reflectance data,
and continuing in the same way, we are, at least in principle,
able to reconstruct the whole structure.

2. FORWARD PROBLEM
We are considering photonic crystals consisting of homoge-
neous, dielectric, and nonmagnetic (μ ¼ μ0) materials, where
the dielectric permittivity, ϵðx; zÞ, is varying in the x and z
directions and constant in the y direction. The structure con-
sists of layers orthogonal to the z axis, with ϵ constant with
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respect to z (and y) in each layer. We assume that the struc-
ture contains N layers of finite thickness occupying the space
from z0 ¼ 0 to zN . Layer i spans zi−1 ≤ z ≤ zi, with a thickness
Δi ¼ zi − zi−1, and permittivity ϵiðxÞ. Outside the structure we
assume that it is vacuum. By inserting the Fourier transform in
time of the electric and magnetic fields, e.g.,

Eðx; tÞ ¼ 1
2π

Z
∞

−∞

eðx; z;ωÞe−iωtdω; ð1Þ

and similarly for H into Maxwell’s equations, we obtain

∇ × eðx; z;ωÞ − iωμ0hðx; z;ωÞ ¼ 0; ð2Þ

∇ × hðx; z;ωÞ þ iωϵ0ϵðx; zÞeðx; z;ωÞ ¼ 0; ð3Þ

∇ · ðϵðx; zÞeðx; z;ωÞÞ ¼ 0; ð4Þ

∇ · hðx; z;ωÞ ¼ 0: ð5Þ
In addition, from the standard continuity conditions for

E and H, parallel (‖) and orthogonal (⊥) to the layer bound-
aries, the following conditions have to apply:

ϵ1e⊥1 ¼ ϵ2e⊥2 ; ð6Þ

e∥1 ¼ e∥2; ð7Þ

h1 ¼ h2: ð8Þ
Omitting the dependence of ω, direct substitution shows

that the Fourier transformed Maxwell’s equations in the
present case admit solutions of the form

eðx; zÞ ¼ eðx; zÞŷ; ð9Þ

hðx; zÞ ¼ 1
iωμ0

�
−
∂eðx; zÞ

∂z
x̂þ ∂eðx; zÞ

∂x
ẑ
�
; ð10Þ

provided eðx; zÞ satisfies the scalar Helmholtz equation,

∂2e

∂x2
þ ∂2e

∂z2
þ ϵðx; zÞk2e ¼ 0; ð11Þ

where k ¼ ω=c0, c20 ¼ 1=μ0ϵ0, and e as well as its partial
derivatives are continuous across the layer boundaries.

The structure will be probed using the plane-polarized
waves in Eqs. (9) and (10), and all transmitted and reflected
waves will have the same polarization.

The direct problem consists in solving Eq. (11) with appro-
priate boundary conditions. These will be plane waves enter-
ing from the half-space z ≤ 0 (thus, having positive z
component wavenumbers), whereas no waves are supposed
to enter the structure from the region z > zN .

3. SOLUTION BY TRANSFER MATRICES
Let L be the extension of the computational domain in the x
direction. By imposing L-periodic boundary conditions, we
may expand the electric field and the permittivity into the
Fourier series

eðx; zÞ ¼ eðx; zÞŷ ¼
X
m

EðmÞðzÞ expðikðmÞ
x xÞŷ; ð12Þ

ϵðx; zÞ ¼
X
m

ϵðmÞðzÞ expðikðmÞ
x xÞ; ð13Þ

where kðmÞ
x ¼ 2πm=L. The Fourier components are given as

ϵðmÞðzÞ ¼ 1
L

Z
L

0
ϵðx; zÞ expð−ikðmÞ

x xÞdx: ð14Þ

By inserting the Fourier series into the Helmholtz equation,
we obtain

d2EðmÞðzÞ
dz2

− ðkðmÞ
x Þ2EðmÞðzÞ þ k2

X
m0

ϵðm−m0ÞðzÞEðm0ÞðzÞ ¼ 0;

ð15Þ

for eachm. Let E ¼ fEðmÞgm∈Z and use k2 ¼ ðkðmÞ
x Þ2 þ ðkðmÞ

z Þ2.
We may then write Eq. (15) as the matrix equation

d2EðzÞ
dz2

þ ðk2z þ VðzÞÞEðzÞ ¼ 0; ð16Þ

where kz ¼ diagðkðmÞ
z Þ, and VðzÞ is the infinite dimensional

Toeplitz matrix operator defined as

VðzÞ ¼ −k2Iþ k2

2
666664

. .
. ..

.

� � � ϵð0Þ ϵð−1Þ ϵð−2Þ
ϵð1Þ ϵð0Þ ϵð−1Þ
ϵð2Þ ϵð1Þ ϵð0Þ � � �

..

. . .
.

3
777775
: ð17Þ

Equation (16) may be decomposed into a first-order system
by writing EðzÞ ¼ EþðzÞ þ E−ðzÞ and requiring

dEþðzÞ
dz

¼ ikzEþðzÞ þ ið2kzÞ−1VðzÞðEþðzÞ þ E−ðzÞÞ; ð18aÞ

dE−ðzÞ
dz

¼ −ikzE−ðzÞ − ið2kzÞ−1VðzÞðEþðzÞ þ E−ðzÞÞ: ð18bÞ

Equation (16) follows easily from Eqs. (18a) and (18b) after
summation and differentiation. Note that, outside the struc-
ture, V equals zero, and the solutions to Eq. (18) are forward-
and backward-going waves.

By writing

ΨðzÞ ¼
2
4EþðzÞ
E−ðzÞ

3
5;

CðzÞ ¼
2
4 ikz þ ið2kzÞ−1VðzÞ ið2kzÞ−1VðzÞ

−ið2kzÞ−1VðzÞ −ikz − ið2kzÞ−1VðzÞ

3
5; ð19Þ

Equation (18) can be brought into the compact matrix form

dΨðzÞ
dz

¼ CðzÞΨðzÞ: ð20Þ

Since the permittivity is independent of zwithin a layer, the
matrix C will be constant for each layer. Thus, Eq. (20) can be
integrated to
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ΨðzbÞ ¼ exp½ðzb − zaÞC�ΨðzaÞ ð21Þ

for za and zb inside the same layer. Let Ci be the C matrix for
layer i. By defining

Mi ¼ expðΔiCiÞ; ð22Þ
we obtain

ΨðziÞ ¼ MiΨðzi−1Þ: ð23Þ
Since e and ∂e=∂z are continuous across the layer bound-

aries, Eþ and E− also must be continuous here. By successive
applications of Eq. (23), we are able to propagate through the
structure from z0 to zN ,

ΨðzNÞ ¼
Y0
i¼N

MiΨðz0Þ ¼ MΨðz0Þ: ð24Þ

The boundary conditions at z ¼ z0 ¼ 0 are contained in

Ψðz0Þ ¼
�
Eþðz0Þ
E−ðz0Þ

�
; ð25Þ

where Eþðz0Þ is given by the probing waves, and E−ðz0Þ is
unknown. At the other end of the structure,

ΨðzNÞ ¼
�
EþðzNÞ

0

�
; ð26Þ

where EþðzNÞ has to be determined. If we partition the matrix
M according to the definition of Ψ,

M ¼
�
M11 M12

M21 M22

�
; ð27Þ

and consider the matrix equation
�
EþðzNÞ

0

�
¼

�
M11 M12

M21 M22

��
Eþðz0Þ
E−ðz0Þ

�
; ð28Þ

the formal solution is easily seen to be

E−ðz0Þ ¼ REþðz0Þ; ð29Þ

EþðzNÞ ¼ TEþðz0Þ; ð30Þ
where R and T are the so-called reflection and transmission
matrices for the structure

R ¼ −M−1
22M21; ð31Þ

T ¼ M11 −M12M−1
22M21: ð32Þ

The reflection and transmission matrices provide E−ðz0Þ
and EþðzNÞ for all possible input Eþðz0Þ.

To solve the inverse problem, we need reflectance data for
all possible incident wavenumbers. Such a set of excitation–
response pairs can be described by the following equation:

�
T
0

�
¼ M

�
I
R

�
: ð33Þ

Here each column i of I corresponds to an experiment
where the incident field amplitude is 1 for one of the Fourier
components and 0 for the others. The ith column of R is the

reflection at z0, and the ith column of T is the corresponding
transmission at zN .

4. INVERSE PROBLEM
The inverse problem is solved by combining reflectance data
for a range of frequencies, ½ω1;ω2�, so as to synthesize data
from a short pulse at the time the pulse hits the surface.
The permittivity of the layer may then be recovered as de-
scribed below if the pulse width in time, Oð2πðω2 − ω1Þ−1Þ, is
shorter than the round-trip travel time in the layer, 2Δi=c. In
this study we shall, for simplicity, assume that the layer thick-
nesses, Δi, are known. It is, in principle, possible to do the
layer stripping without knowledge of the layer thickness. This
will be briefly discussed in Section 6. From the permittivity
and the thickness it is now possible to compute the transfer
matrix for the layer and remove the impact of the layer from
the reflection data. Thus, we obtain reflectance data for the
same structure, but without the leftmost layer, and may then
repeat the steps above until the entire structure has been
reconstructed.

A. Computing the Permittivity
Let us assume that we have reflectance data from an experi-
ment where the incident wave is a plane wave pulse,
Fðt − z=c0Þ; see Fig. 1. The incident wave enters from z < 0
and first hits the leftmost layer of the structure. The wave
speed in the first layer is c1ðxÞ.

Let us consider a small neighborhood around the point x
and assume that the permittivity in the leftmost layer is vary-
ing slowly enough so that we may take it to be constant and
equal to ϵ1ðxÞ inside the area we consider. Furthermore, we
restrict our calculation to a small time interval so that the re-
flected and transmitted waves are only affected by the
first layer.

At the left side of the boundary, the electric field will be a
sum of the incoming and the reflected wave, and at the right
side, the field consists of the transmitted wave. Thus, continu-
ity of the transverse electromagnetic fields gives us

Fig. 1. (Color online) (a) A plane wave pulse is incident to a layered
2D structure. For the structure, different colors indicate different re-
fractive indices. (b) Immediately after t ¼ 0, the field has only been
affected by the first layer; thus, we may identify the first layer from
the first part of the reflected field in the time domain.

Hatlo Andresen et al. Vol. 28, No. 4 / April 2011 / J. Opt. Soc. Am. B 691



F
�
t −

z
c0

�
þ R1ðxÞF

�
tþ z

c0

�
¼ T1ðxÞF

�
t −

z
c1ðxÞ

�
; ð34Þ

−
1
c0

F 0
�
t −

z
c0

�
þ R1ðxÞ

c0
F 0
�
tþ z

c0

�
¼ −

T1ðxÞ
c1ðxÞ

F 0
�
t −

z
c1ðxÞ

�
;

ð35Þ
for some reflection coefficient R1ðxÞ. Obviously, the incident
wave pulse F needs to be short for Eqs. (34) and (35) to
hold. For z ¼ 0 and 0 ≤ t ≪ Δ1=c0, we thus have from Eqs. (34)
and (35)

1þ R1ðxÞ ¼ T1ðxÞ; ð36Þ

−1þ R1ðxÞ ¼ −T1ðxÞ
c0

c1ðxÞ
; ð37Þ

leading to the following expression for the permittivity in the
leftmost layer:

ϵ1ðxÞ ¼ ϵ0
�
1 − R1ðxÞ
1þ R1ðxÞ

�
2
: ð38Þ

Equation (38) can be interpreted as a local Fresnel equation; it
connects the local reflection coefficient R1ðxÞ and the local
permittivity ϵ1ðxÞ.

B. Layer Stripping
For the layer stripping we shall assume that the layer thick-
ness is known. Once we have computed ϵ1ðxÞ, we obtain
the transfer matrix M1 from Eq. (22). As in Eq. (23), the for-
ward- and backward-going waves just before the second layer
can be computed as�

Eþðz1Þ
E−ðz1Þ

�
¼ M1

�
Eþðz0Þ
E−ðz0Þ

�
¼ M1

�
I
R

�
: ð39Þ

Note that here Eþ and E− are matrices as in Eq. (33). Similar
to the solution for the full structure, Eqs. (29) and (30), we
may define

EþðzNÞ ¼ ~TEþðz1Þ; ð40Þ

E−ðz1Þ ¼ ~REþðz1Þ; ð41Þ
and thus the new reflection matrix can be found as

~R ¼ E−ðz1ÞEþðz1Þ−1: ð42Þ

5. ALGORITHM
For the numerical experiments, which we will discuss in
Section 6, we first solve the forward problem to obtain valid
reflectance data Rðkðm0Þ

x ; kðmÞ
x ;ωÞ for each of Nω frequencies in

the span ½ω1;ω2�. Here kðm
0Þ

x denote the incident wavenumbers,
and kðmÞ

x the reflected wavenumbers.
For the inverse problem, the first step is to synthesize a

time-localized pulse in space and time to be applied in
Eq. (38). Only data for incident waves normal to the structure
are used in the identification of the layers. We start with a
transformation from kðmÞ

x to x,

rðx;ωÞ ¼
X
m

Rðkðm0Þ
x ¼ 0; kðmÞ

x ;ωÞeikðmÞ
x x; ð43Þ

where

kðmÞ
x ¼ 2πm

L
; m ∈ Z; and ω ∈ ½ω1;ω2�: ð44Þ

Ideally, one would now carry out an inverse Fourier trans-
form in order to obtain the reflected field in the space and time
domains resulting from an incident delta pulse,

Rðx; tÞ ¼ 1
2π

Z
∞

−∞

rðx;ωÞe−iωtdω: ð45Þ

However, since we only know rðx;ωÞ in the frequency in-
terval ½ω1;ω2�, we need to choose a window function WðωÞ
with support in that interval. The corresponding pulse in time
is denoted wðtÞ, and the experience with some standard
window functions are discussed in Section 6. The synthetic
response will then be

Rwðx; tÞ ¼
1
2π

Z ω2

ω1

rðx;ωÞWðωÞe−iωtdω: ð46Þ

For z ¼ 0 and 0 ≤ t ≪ Δ1, we see from Eq. (34) that
Rwðx; tÞ ¼ R1ðxÞwðtÞ. Hence, for t ¼ 0, we may write

R1ðxÞ ¼
Rwðx; 0Þ
wð0Þ ¼

R ω2ω1
rðx;ωÞWðωÞdωR

WðωÞdω : ð47Þ

The permittivity ϵðxÞ is then obtained from Eq. (38). The
layer stripping has been discussed in Section 4.B.

The numerical method may now be summarized in a
pseudo code, as follows.

Input to the algorithm: reflection matrices Rðkðm0Þ
x ¼

0; kðmÞ
x ;ωÞ, for ω ∈ ½ω1;ω2�.

1. Transform reflection matrices to the space/frequency
domain using Eq. (43). Next, determine the reflection coeffi-
cient at t ¼ 0 using Eq. (47). The permittivity now follows
from Eq. (38).

2. Use ϵðxÞ and Eq. (14) to find the Fourier components.
Then the transfer matrix can be computed from Eqs. (17),
(19), and (22).

3. Knowing the transfer matrix, the forward- and back-
ward-going waves before the next layer can be computed from
Eq. (39).

4. Compute the new reflection matrix, using Eq. (42).
5. Return to step 1 to compute the permittivity in the next

layer until all layers have been found.

6. NUMERICAL EXPERIMENTS
For simplicity, we scale ϵ0 and μ0 (in free space) to 1, and
hence c0 ¼ 1. Now the dispersion relation in free space re-
duces to k ¼ ω and the wavelengths will be λ ¼ 2π=ω. The
length of the synthesized pulse will depend on the frequency
interval ½ω1;ω2� and be of order 2πðω2 − ω1Þ−1. One must re-
quire that the pulse length is shorter than the round-trip travel
time in the first layer, i.e.,

2π
ω2 − ω1

⪅
2Δ1

c1
: ð48Þ

Thus, to be able to reconstruct the structure, we need to
make sure that the frequency band is wide enough. Through
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simulations we have seen that, for smaller frequency bands,
the error fluctuates as the bandwidth grows. However, as
soon as the frequency span is wide enough, the calculations
are stable.

As mentioned in Section 5, we use Eq. (33) to compute re-
flection matrices for the forward problem. To compute the re-
flection matrix and solve the inverse problem, the number of
Fourier components,M , the computational domain, L, and the
Nω frequencies in the interval ½ω1;ω2� must be chosen. Now
the reflection and transmission matrices will have dimension
M ×M , and the propagation matrix M dimension 2M × 2M .
Note that, given the resolution in the x direction,

Δx ¼ L
M

; ð49Þ

the maximum Nyquist wavenumber is given as

max kx ¼ πM
L

: ð50Þ

Since

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2x

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2x

q
; ð51Þ

evanescent modes in vacuum occur when max kx > ω.
As we see in Eq. (42), the updated reflection matrix is a

product of the backward-traveling waves and the inverse of
the forward-traveling waves. In a homogeneous medium,
the forward- and backward-traveling waves have the z depen-
dence expðikzzÞ and expð−ikzzÞ, respectively. Thus, when we
have evanescent modes with kz ¼ iK for some K > 0, we ex-
pect a noise amplification factor of the order of expð2KΔÞ
when one layer is stripped off. Because of this, we restrict
our frequency band to avoid a too large K .

Note that, if the variations in the x direction are fast, we will
need a finer resolution in x. To obtain this, we must either
makeM larger or L smaller, which again implies that the max-
imum wavenumber, max kx, increases. The result is that we
need higher frequencies to avoid evanescent modes. Thus,
it is convenient to restrict the attention to structures that vary
slowly with respect to x. We will, however, in Example 2 (see
Section 6.B), see that we are also able to reconstruct a struc-
ture with fast variations.

There are three effects that mainly contribute to the limita-
tions in this method. The first one is the effect of evanescent
modes, which was discussed in this section. The second is re-
lated to the contrast between the minimum and maximum re-
fractive indices, n1 and n2. As the contrast grows higher, more
of the light is reflected by the first layers. This will in turn
make the calculations less accurate [8,9]. The last effect is also
related to the bandwidth. As discussed in the beginning of this
section, we need the pulse length to be smaller than the layer
round-trip travel time, thus imposing a lower limit to the band-
width. Conversely, if the bandwidth is fixed, the layer thick-
nesses have to be large enough.

As discussed in Section 5, it is necessary to shape the re-
flection data using some window function. Numerical experi-
ments applying three different window functions on the
interval ½ω1;ω2� are presented in Section 6.A. As expected,
the experiments favor smoother windows over the simple rec-
tangular window. Consequently, a Hanning window has been
applied for the rest of the computations.

In all simulations we have assumed that we know the layer
thickness. It would, at least in principle, be possible to recon-
struct the layer thickness. To do this, one needs to use a fic-
titious layer thickness, Δz, which must be small compared to
the expected layer thickness. Then this Δz can be used in the
computations, to reconstruct each layer piece by piece.

All the calculations where done using MATLAB on an Intel
Core 2 Quad 2:83GHz computer. For a typical calculation, the
runtime was approximately 260 s. About 180 s was used on
calculating the forward problem, i.e., the reflection matrices
Rðkðm0Þ

x ; kðmÞ
x ;ωÞ, the calculation of the permittivity is neglect-

able, and the calculation and removal of the leftmost layer
took about 80 s.

A. Example 1
In this example we have chosen a structure where the permit-
tivity within the layers is given as

ϵðxÞ ¼ η� γ cos
�
x
2

�
; ð52Þ

and where the two different layers are obtained by alternating
betweenþ and −. The layer thickness has been set to π=2, and

Fig. 2. (Color online) Reconstruction of the second layer for differ-
ent window functions, in (a) n2

2 ¼ 1:2 and in (b) n2
2 ¼ 2:0. Other para-

meters: M ¼ 300, L ¼ 100, Nω ¼ 100, ω ∈ ½9; 19�, Δz ¼ π=2, n2
1 ¼ 1:0.

Note that only parts of the computational domain L are shown in the
plots.
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the parameters η and γ are chosen so that

min ϵ ¼ n2
1 ¼ 1:0; ð53Þ

max ϵ ¼ n2
2; ð54Þ

i.e., n1 is kept constant, while n2
2 is varied. For all the experi-

ments presented here, M ¼ 300 and L ¼ 100, giving a resolu-
tion in x of 1=3 and a maximum kx of 3π. The choice of
frequency band depends on whether we want to include eva-
nescent modes in the computations, how large K we can tol-
erate, and the layer thickness.

We first consider the choice of frequency window func-
tions, Eq. (46), by testing three different functions: a simple
rectangular window, the Hanning window, and the Tukey (ta-
pered cosine) window. The comparisons were carried out for
two different values of n2: n2

2 ¼ 1:2 for the first test, and n2
2 ¼

2:0 for the second. The real difference in the choice of window
functions can only be seen in the reconstruction of the second
layer. Therefore, the results, displayed in Fig. 2, are shown for
only this layer. The rectangular window give poor results al-
ready for the lowest refractive index, whereas the two other
choices give a nice reconstruction. For the higher index, we
see that the Tukey window is also beginning to give less ac-

curate results, while for the Hanning window there is almost
no visible difference from the exact curve. For the rest of the
numerical examples, we have therefore chosen to use the
Hanning window.

Let us now turn to the effect of including evanescent
modes. In these experiments, the permittivity was first chosen
such that n2

1 ¼ 1:0 and n2
2 ¼ 1:05, and secondly, we had n2

1 ¼
1:0 and n2

2 ¼ 2:0. The frequency bandwidth was set constant
to 10, but the lower and upper frequencies were changed to
include none, or some evanescent modes. Again, the first layer
is nicely reconstructed, so we only show results for the
second layer in Fig. 3. Including some evanescent modes im-
proves the results, but if K gets too large, there are fluctua-
tions in the reconstruction. Note that, as n2 gets higher, a
larger K is acceptable. This can be explained by the fact that
the field now is locally nonevanescent, since a local kz in the
medium would be kz ¼ ðn2ω2 − k2xÞ1=2.

Bigger contrasts in the refractive index may be simulated
by keeping the lower index constant at n2

1 ¼ 1:0 while the
upper index is changed. The results are shown in Fig. 4,
and we see that the first layer is well reconstructed for all
choices of n2

2, while some fluctuations in the second layer
are visible when n2

2 > 2.

Fig. 3. (Color online) Reconstruction of the second layer for differ-
ent ω1 and ω2, but with constant bandwidth. In (a) n2

2 ¼ 1:05, and in
(b) n2

2 ¼ 2:0. Other parameters: M ¼ 300, L ¼ 100, Nω ¼ 100,
Δz ¼ π=2, n2

1 ¼ 1:0.

Fig. 4. (Color online) Reconstruction of (a) the first layer, and
(b) the second layer, for different choices of n2. Other parameters:
M ¼ 300, L ¼ 100, ω ∈ ½9; 19�, Nω ¼ 100, Δz ¼ π=2, n2

1 ¼ 1:0. The so-
lid black lines represent the exact permittivity.
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Finally, we demonstrate that it is possible to reconstruct
more than two layers. Figure 5 shows the error, given as
jϵcomp − ϵj, for each layer in a structure consisting of four

layers. The permittivity was chosen between n2
1 ¼ 1:0

and n2
2 ¼ 1:05.

B. Example 2: A Square Function
In this example we have chosen the permittivity to be a square
function with period 2π in each layer. To get two different
layers and a permittivity between n1 and n2, we let

ϵ1ðxÞ ¼
�
n2
2; 0 ≤ x < π

n2
1; π ≤ x < 2π ; ð55Þ

ϵ2ðxÞ ¼
�
n2
1; 0 ≤ x < π

n2
2; π ≤ x < 2π : ð56Þ

This example has been chosen to show that we are able to
reconstruct a less smooth function. The fact that the permit-
tivity changes fast seems to be in conflict with the discussion
in Section 6, but, as we see from Fig. 6, we actually manage to
reconstruct two layers of this structure as well. The reason it
works is that we only use the low-frequency components of
the square. The results can be seen in Fig. 6.

7. CONCLUSION
In this paper we have presented a method for reconstructing
2D photonic structures layer by layer. In principle, the recon-
struction is exact, and we have shown through numerical ex-
amples that we are able to reconstruct different structures
consisting of several layers.

There are essentially three fundamental mechanisms that
limit the accuracy in practice: the presence of evanescent
modes, accumulated reflection, and limited bandwidth. The
fact that evanescent modes lead to inaccuracies means that
either the probing frequencies must be sufficiently high or
the spatial transversal frequencies of the structuremust be suf-
ficiently small. The second limitation is a result of the fact that,
if the transmission through the structure is too small, little light
reaches the back end. Then the back end has little influence on
the reflection data and cannot be reconstructed accurately.
Finally, the bandwidth must be sufficiently large such that
the synthetic incident pulse is shorter than the round-trip time
in all layers. Alternatively, for a fixed, available bandwidth, the
structuremust vary sufficiently slowly in the longitudinal direc-
tionz. In thenumerical examples, for a centerwavelength1 μm,
the normalized frequency interval ½9; 19� corresponds to the
wavelength interval ½0:74; 1:56� μm. The layer thicknesses in
the example become 3:5 μm. If the available bandwidth is re-
duced to 100nm, the layers must be 5–10 times thicker to
achieve the same accuracy.
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