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Abstract

The effects of strain path change on the ductile failure process of textured aluminium alloys are investigated
through reversed loading experiments and finite element-based unit cell simulations. Three extruded alu-
minium alloys (AA6060, AA6082.25 and AA6082.50) are solution heat-treated and artificially aged to three
different conditions, namely temper O (annealed), temper T7 (overaged) and temper T6 (peak strength).
Compression-tension experiments on diabolo-shaped specimens are conducted including five different pre-
compression levels (0, 10, 20 30, 40%), i.e., the specimens are first compressed to a prescribed strain and then
reloaded to fracture in tension. The materials are modelled with an advanced plasticity model accounting
for plastic anisotropy, non-associated plastic flow, nonlinear isotropic and kinematic hardening, strength dif-
ferential effect, and transient and permanent effects of strain path change. Crystal plasticity finite element
analyses are performed to determine the plastic anisotropy of the materials and then used to calibrate the
anisotropic yield surfaces, whereas the work-hardening response is calibrated from the experimental data.
The effects of grain morphology and precipitate structure on the plastic anisotropy are neglected. Finite
element simulations of all the reversed loading tests are performed and the non-proportional loading history
from the centre of the specimen is extracted. These non-proportional loading histories are imposed to a
unit cell model with a central spherical particle to study the effect of pre-compression on the ductile failure
process, where the initial plastic anisotropy and the work-hardening behaviour after strain path change are
accounted for. The strain to coalescence of the three-dimensional unit cell is mapped back to the reversed
loading tests to determine the logarithmic strain to failure after the strain path change, and the numerical
results are compared with the experimental data. The unit cell model predicts an approximately constant
tensile ductility with pre-compression for the different materials. Variations are observed between the ma-
terials as the strength, work hardening and anisotropy are found to influence the response of the unit cell
differently and affect the tensile ductility after the pre-deformation. In the experiments, the tensile ductility
is largely constant or exhibits a small increase for the majority of the materials, but for some alloy-temper
combinations a larger increase is observed, which is not captured in the unit cell computations.
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1. Introduction

The different microstructural characteristics of metals, such as grain structure and crystallographic
texture, determine their plastic behaviour. Rolled plates and extruded profiles typically exhibit plastic
anisotropy, which should be modelled by an anisotropic yield criterion. Numerous anisotropic yield criteria
have been proposed in the literature. Hill (1948) proposed a quadratic yield function for orthotropic mate-5

rials, which gives reasonable predictions for traditional steels. For aluminium alloys, the Hill yield criterion
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has been found to provide less accurate estimates of the yield surface (Woodthorpe and Pearce, 1970; Stout
et al., 1983; Iadicola et al., 2008). Barlat et al. (1991) proposed a yield criterion for orthotropic materials,
using linear transformation of the stress tensor. This criterion was based on the non-quadratic yield func-
tion of Hershey (1954) and Hosford (1972), which gives good prediction of the yield surface for isotropic10

materials. Karafillis and Boyce (1993) further generalised the theory of linear transformations to describe a
more universal anisotropic yield function, as to also accommodate other material symmetries. Later, Bron
and Besson (2004) introduced an additional linear transformation in the yield criterion of Karafillis and
Boyce (1993) to increase the number of anisotropy coefficients and the degree of flexibility. Barlat et al.
(2005) proposed a new criterion based on the non-quadratic yield criterion of Barlat et al. (1991) using15

two linear transformations, consisting of 16 independent anisotropy coefficients (Van Den Boogaard et al.,
2016) for the most general formulation. More recently, anisotropic yield criteria including even more linear
transformations have been introduced (Aretz et al., 2010; Aretz and Barlat, 2013). Yield criteria based on
invariants of the stress tensor have also been extended to anisotropy by implementing linear transformations
of the stress tensor (e.g., Cazacu and Barlat, 2001; Yoshida et al., 2013; Lou and Yoon, 2018).20

The improved flexibility and accuracy of these yield functions come at the cost of more anisotropy coeffi-
cients that have to be determined. The calibration process then becomes challenging as more experimental
tests are required. It is therefore desirable to determine the material behaviour of complex materials with-
out performing extensive experimental testing, which is both expensive and time consuming. To reduce the
number of experimental tests needed to calibrate the yield surface of a material, virtual material testing25

based on crystal plasticity theory can be utilised. This can be done in two ways. The first approach is to use
virtual testing in combination with experiments to provide data for deformation modes that are difficult to
obtain experimentally (Barlat et al., 2005; Grytten et al., 2008; Zhang et al., 2015). In the second approach,
only virtual testing is used to determine the yield surface of a material (Saai et al., 2013; Zhang et al.,
2015; Zhang et al., 2016). The accuracy of such methods relies on the capability of the crystal plasticity30

theory to incorporate the important microstructural effects and also the flexibility of the phenomenological
yield function.

The full-constraint Taylor model (Taylor, 1938; Bishop and Hill, 1951a,b) is one of the most used repre-
sentations to describe the response of polycrystals. This approach is based on the assumption that all grains
in an aggregate experience the same deformation; thus, compatibility is fulfilled but stress equilibrium is vi-35

olated. Owing to this violation, several relaxed-constraint Taylor models have been proposed in an attempt
to develop a more realistic description of polycrystals, while keeping the simplicity of the full-constraint
Taylor model (Kocks and Chandra, 1982; Van Houtte, 1982, 1988; Van Houtte et al., 2002). Another way of
representing a polycrystalline aggregate is by so-called self-consistent models. In these models, each grain is
represented by an ellipsoidal inclusion surrounded by a homogeneous equivalent medium. The most popular40

version of the self-consistent models seems to be the visco-plastic self-consistent (VPSC) model (Hutchinson,
1976; Molinari et al., 1987; Lebensohn and Tomé, 1993, 1994). Unlike the Taylor model, the self-consistent
models satisfy both stress equilibrium and deformation compatibility. In contrast, the shape of grains, their
local interaction and inhomogeneities of the mechanical fields within grains are not accounted for (Lebensohn
et al., 2012; Zhang et al., 2016).45

More recently, full-field micromechanical approaches such as the combination of crystal plasticity with
the finite element method (CP-FEM) (Raabe and Roters, 2004; Kanjarla et al., 2010; Saai et al., 2013;
Zhang et al., 2015) or a spectral method using fast Fourier transformation (FFT) (Lebensohn et al., 2012;
Eisenlohr et al., 2013; Zhang et al., 2016) have become increasingly popular with the advances in computer
technology. These methods typically require more computational resources than the various Taylor and50

self-consistent models, but are capable of accounting for stress equilibrium and compatibility across grain
boundaries, local interaction and inhomogeneities of the mechanical fields within grains, and resolving the
complex grain morphology of polycrystalline materials. The FFT is more computational efficient in solving
the mechanical problem, but is limited to periodic boundary conditions (Zhang et al., 2016). In contrast,
CP-FEM requires more computational resources, but can be used to solve the mechanical response of a55

polycrystalline material with any geometry and boundary conditions. Currently, the CP-FEM framework
is restricted to the mesoscopic scale as numerical simulations of structural components and full structures
are too computationally demanding, and for such large-scale problems phenomenological plasticity models
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are still preferred.
By utilising hierarchical modelling schemes, it is possible to combine the accuracy of the polycrystal60

plasticity models with the computational efficiency of the phenomenological plasticity models. Barlat et al.
(2005) combined experimental data and results obtained with the VPSC model to calibrate the Yld2004-
18p yield surface for an aluminium sheet material. Grytten et al. (2008) determined the parameters of the
same yield function using (i) only experimental data, (ii) only virtual data obtained with the full-constraint
Taylor model, and (iii) a combination of these two methods. They found that the full-constraint Taylor65

model was not capable of reproducing the experimental results, and that the yield surface determined from
experimental data only was favourable. Saai et al. (2013) compared the full-constraint Taylor model to CP-
FEM simulations utilising the hierarchical modelling framework. They found that the yield surface calibrated
solely from CP-FEM predicted the experimental data quite accurately, while the full-constraint Taylor model
gave less accurate results. Zhang et al. (2015) compared five different homogenisation models, including full-70

constraint and relaxed-constraint Taylor models, the VPSC model and CP-FEM, and concluded that CP-
FEM was one of the methods that gave the best agreement with the experimental data. These identification
methods have also been used to calibrate different yield functions, or used with different crystal plasticity
models (Inal et al., 2010; An et al., 2011; Zhang et al., 2016).

One of the advantages of the crystal plasticity theory is its ability to predict the change of plastic75

anisotropy by evolving the crystallographic texture, and it can thus account for anisotropic hardening.
Anisotropic hardening has also been introduced in phenomenological yield criteria. The first attempts to
include this feature were made by introducing an interpolation method to determine the evolution of the
yield surface with plastic deformation (Plunkett et al., 2007; Aretz, 2008). Gawad et al. (2015) presented
a hierarchical multi-scale framework that accounts for evolution of the plastic anisotropy by systematically80

recalibrating the yield surface to data provided by the crystal plasticity virtual experiment framework. Kohar
et al. (2017) accounted for microstructure evolution by introducing the plastic spin into the phenomenological
plasticity framework, where the evolution of the plastic spin was calibrated based on crystal plasticity. Lee
et al. (2017) proposed a model describing the evolution of the yield surface by coupling quadratic and
non-quadratic yield functions with a non-associated flow rule.85

After a strain path change, materials typically experience a transient response. The Bauschinger effect
(Bauschinger, 1881) is often observed after reversed loading, where the re-yielding stress after the strain path
change is lower than the flow stress prior to unloading, and the subsequent work-hardening rate is, in general,
much higher than under monotonic loading. Another transient effect is work-hardening stagnation, which is
observed after the first transient phase. The work-hardening rate temporarily decreases, making a plateau90

in the flow stress curve, before it increases again with straining. These transient effects will commonly
vanish after a certain plastic strain, and the flow stress curve after the strain path change coalesces with the
flow stress curve for monotonic loading (Ha et al., 2013). In contrast, some materials experience permanent
softening after the strain path change. In this case, the flow stress curve after strain path change remains
lower than the monotonic flow stress curve, although the work-hardening rate may reach the same level as95

under monotonic loading (Li and Bate, 1991; Mánik et al., 2015).
Two main approaches exist for including the effects of strain path change in phenomenological plasticity

models. The first approach relies on combined isotropic and kinematic hardening, incorporating internal
variables with a fading memory of the strain path. The yield surface of the material translates, expands
and shrinks with plastic deformation, whereas its shape is invariant. This approach was first proposed by100

Teodosiu and Hu (1995), and their model applies second and fourth order tensors to describe the transient
response. More recently, Mánik et al. (2015) proposed a model including only second order tensors to
describe the behaviour after strain path change. This model, denoted the MHH model, is not only capable
of describing the transients, but also the permanent softening unlike the model of Teodosiu and Hu (1995).
In the second approach, the effects of strain path changes are accounted for by distortion of the yield105

surface. This yield surface distortion has been observed experimentally during both proportional and non-
proportional loading paths (Khan et al., 2009, 2010a,b; Pandey et al., 2013). François (2001) introduced a
”distorted stress” tensor into the yield function to describe an egg-shaped distortion of the yield surface.
Based on two-dimensional rheological ideas, Shutov et al. (2011), and Shutov and Ihlemann (2012) proposed
models that account for yield surface distortion. Freund et al. (2012) introduced a model based on one-110
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dimensional constitutive equations with only scalar variables to describe the distortion of the yield surface.
A general model, called the Homogeneous Anisotropic Hardening (HAH) model, capable of distorting any
homogeneous yield surface was proposed by Barlat et al. (2011). This model accounts for the Bauschinger
effect without the use of kinematic hardening. Later, several extensions and enhancements have been made
to this model to account for more complex effects of strain path changes (Barlat et al., 2013, 2014; Ha115

et al., 2013; Lee et al., 2015; Qin et al., 2017). An evaluation of the HAH and MHH models was recently
performed by Qin et al. (2017). They observed that for one of the materials investigated, the MHH model
gave better agreement with experimental data after a single strain path change for large pre-strains, while the
HAH model gave better agreement after a double strain path change. Recently, Qin et al. (2018) proposed a
distortional yield surface model that combines some of the features of the HAH model with the MHH model.120

Strain path change models have also been proposed and used within the crystal plasticity framework (e.g.,
Holmedal et al., 2008; Kitayama et al., 2013; Wen et al., 2015, 2016).

For certain metallic materials, a strength differential effect, i.e., a higher flow stress in compression than
in tension, can be observed. Several studies have observed the strength differential effect in aluminium alloys
(e.g., Spitzig and Richmond, 1984; Bai and Wierzbicki, 2008; Luo and Rousselier, 2014; Holmen et al., 2017).125

Spitzig and Richmond (1984) suggested that the strength differential effect and the pressure sensitivity they
observed for aluminium were linked to the effect of hydrostatic pressure on dislocation motion. Bulatov et al.
(1999) performed atomistic simulations of aluminium, and examined the lattice resistance to dislocation
motion under pressure. The results support the conclusion by Spitzig and Richmond (1984) suggesting that
pressure-dependent slip in aluminium is caused by the interaction of a transient activation dilatancy of the130

moving dislocations with pressure. Along with pressure sensitivity, Bai and Wierzbicki (2008) explicitly
included the influence of the third deviatoric stress invariant in simulations of an AA2024-T351 aluminium
alloy. More recently, Luo and Rousselier (2014) accounted for the strength differential effect of an extruded
aluminium alloy by introducing initial backstresses on the slip system level utilising crystal plasticity. A
strength differential effect was observed along the transverse direction of the extruded profile, whereas the135

tensile and compressive yield stresses were identical along the extrusion direction. Holmen et al. (2017)
investigated four aluminium alloys in several different tempers exhibiting the strength differential effect.
Based on the work by Spitzig and Richmond (1984), a pressure dependent non-associative Drucker and
Prager (1952) plasticity model was calibrated, and good agreement was found between the numerical and
experimental data. For more elaborate discussions regarding the strength differential effect in aluminium140

alloys the reader is referred to, e.g., Luo and Rousselier (2014) and Holmen et al. (2017).
Research on ductile fracture has mainly addressed proportional loading conditions, whereas ductile failure

in real applications is typically preceded by a non-proportional loading path. Recently, the important
influence of non-proportional loading has been investigated both experimentally (Bao and Treitler, 2004;
Kristoffersen et al., 2013; Papasidero et al., 2015; Marcadet and Mohr, 2015; Basu and Benzerga, 2015; Frodal145

et al., 2017) and numerically using unit cells (Zhang and Skallerud, 2010; Benzerga et al., 2012; Kristoffersen
et al., 2016; Dæhli et al., 2016a). During non-proportional loading, the transient and permanent effects of
strain path change are essential to the description and prediction of ductile failure. Effects such as work-
hardening stagnation may lead to an earlier localisation of plastic deformation and can have a detrimental
effect on ductility.150

Reversed loading is an important type of non-proportional loading, and has been studied in more recent
years in the context of ductile failure (Bao and Treitler, 2004; Kristoffersen et al., 2013; Papasidero et al.,
2015; Marcadet and Mohr, 2015; Frodal et al., 2017). Kristoffersen et al. (2013) investigated the effect of pre-
compression on the ductility of an X65 steel used in offshore pipelines. They used diabolo-shaped specimens
and performed experimental tests with pre-compression of up to 100%. For a pre-compression of 10% the155

tensile ductility increased compared to monotonic tension, whereas for higher levels the ductility decreased
with pre-compression. Marcadet and Mohr (2015) evaluated the response of a dual phase steel sheet, using
reversed loading experiments and numerical simulations of the tests. In the finite element simulations, they
included the effects of transients such as the Bauschinger effect and work-hardening stagnation, and observed
that the local thickening of the sheet during compression delayed the formation of a neck and the consequent160

increase in stress triaxiality. The experiments performed on notched flat specimens using a floating anti-
buckling device showed that the strain to failure increased with pre-compression. For an aluminium alloy,

4



Bao and Treitler (2004) performed reversed loading experiments on diabolo-shaped specimens. They used
three different specimen geometries to account for different triaxiality levels during the reversed loading
tests, and found that the tensile ductility of the material decreased with pre-compression in all the tests.165

The reduced tensile ductility was attributed to particle fracture and an increased dislocation density after
the pre-loading, which accelerated the nucleation, growth and coalescence of voids in the succeeding tension
stage. Papasidero et al. (2015) performed experiments on tubular specimens involving torsion, compression
and tension tests in different combinations to study the effect of stress state and loading path on the onset of
ductile fracture in aluminium. The experiments with non-proportional loading paths showed a pronounced170

effect of the loading path on the strain to failure. Frodal et al. (2017) investigated the influence of pre-
compression on three extruded aluminium alloys with different microstructure and strength. Reversed
loading experiments conducted on diabolo-shaped specimens showed that pre-compression had a marked
influence on the ductility of the alloys, and the effect was significantly different between them.

Unit cell modelling is an important tool for studying ductile failure, either by proportional or non-175

proportional loading. Zhang and Skallerud (2010) investigated the effects of pre-strain on void coalescence
using axisymmetric unit cell analyses. They imposed non-proportional loading histories on the unit cell
consisting of a pre-strain stage in uniaxial tension, before a tensile stage with an elevated stress triaxiality
ratio was applied and compared with results for proportional loading paths. Benzerga et al. (2012) performed
analyses of an axisymmetric unit cell subjected to different proportional and non-proportional loading paths.180

Dæhli et al. (2016a) extracted the non-proportional loading paths from smooth axisymmetric tensile tests
and applied them in analyses using an axisymmetric unit cell. These simulations were compared with
analyses using proportional loading paths, given by the strain-average triaxiality to material failure. Results
from these studies clearly demonstrate the importance of non-proportional loading in the context of ductile
failure predictions. Kristoffersen et al. (2016) used axisymmetric unit cell analyses of reversed loading tests185

with diabolo-shaped specimens. A non-proportional loading path was created by two proportional loading
steps, one in compression and one in the subsequent tension stage.

The effect of plastic anisotropy on ductile failure has also been studied with unit cell calculations.
Benzerga and Besson (2001) were the first to account for anisotropy in terms of a Hill (1948) matrix
formulation under proportional loading. Chien et al. (2001) and Wang et al. (2004) carried out three-190

dimensional (3D) unit cell simulations with the same anisotropic yield criterion. Steglich et al. (2010)
assessed the ductile failure properties of an aluminium alloy using 3D unit cell calculations, where the
yield criterion of Bron and Besson (2004) was employed. The individual and coupled effects of void shape
and material anisotropy were studied by Keralavarma and Benzerga (2010) and Keralavarma et al. (2011)
using axisymmetric unit cells. Recently, Dæhli et al. (2017) performed 3D unit cell analyses for a wide195

range of stress states applying the yield criterion of Barlat et al. (2005) for the matrix material. The
full-constraint Taylor method was used to determine the yield surfaces representing typical crystallographic
textures for face centred cubic (FCC) metals. Legarth and Tvergaard (2018) studied the interaction between
plastic anisotropy, initial void shape and void spacing and their effect on void growth applying 3D unit cell
simulations.200

The aim of the present paper is to study the ductile failure process of textured aluminium alloys during
reversed loading by experimental tests and three-dimensional unit cell simulations. First, an experimental
programme is presented involving reversed loading tests of diabolo-shaped specimens on three aluminium
alloys (AA6060, AA6082.25 and AA6082.50) solution heat-treated and artificially aged to three conditions,
namely temper O (annealed), temper T7 (overaged) and temper T6 (peak strength). Second, finite element205

simulations of all the tests are conducted, using an advanced plasticity model to describe the material be-
haviour as outlined below. Third, unit cell simulations are carried out to study the ductile failure mechanisms
numerically, where the non-proportional loading history is obtained from the finite element simulations of
the tests. The results from the unit cell simulations are further mapped back to the reversed loading tests of
the diabolo-shaped specimen, and compared to the experimental results. In order to incorporate the plastic210

anisotropy of the materials, the anisotropic yield criterion Yld2004-18p (Barlat et al., 2005) is applied in
all simulations. CP-FEM calculations are used to determine the shape of the yield surface, incorporating
the effect of the work-hardening behaviour of each material. The strength differential effect observed in the
experimental tests is accounted for by using a pressure-dependent version of the Yld2004-18p yield criterion
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and a non-associated flow rule to retain isochoric plastic flow. The work hardening is described by combined215

isotropic and kinematic hardening, while additional internal variables are used to account for transient and
permanent effects of strain path change (Mánik et al., 2015). A two-step process is adopted to calibrate the
work-hardening rules based on experimental data from selected tests.

2. Materials

In this paper, the three aluminium alloys AA6060, AA6082.25 and AA6082.50 are investigated. The220

chemical composition of the alloys is given in Table 1. These alloys were provided by Hydro Aluminium as
extruded rectangular profiles with a thickness of 10 mm and a width of 83 mm. Prior to the solution heat-
treatment, diabolo-shaped specimens were machined from the extruded profiles (Frodal et al., 2017). The
specimens were then solution heat-treated and artificially aged to three different tempers, namely temper O
(annealed), temper T7 (overaged) and temper T6 (peak strength).

Table 1: Chemical compositions of the aluminium alloys in wt%.

Alloy Fe Si Mg Mn Cr Cu Zn Ti Al

AA6060 0.193 0.422 0.468 0.015 0.000 0.002 0.005 0.008 Bal.
AA6082.25 0.180 0.880 0.600 0.530 0.150 0.020 0.005 0.011 Bal.
AA6082.50 0.200 1.020 0.670 0.540 0.001 0.003 0.005 0.010 Bal.

225

The heat-treatment was performed in five stages. Stage 1-3 consisted of keeping the specimens in a salt
bath at 540 ◦C for 15 min, water quenching, and storage in room temperature for 15 min. In stage 4, the
specimens were kept in an oil bath at 185 ◦C for either five hours to achieve temper T6, or for one week
to achieve temper T7. To attain temper O, the specimens were kept in a salt bath at 350 ◦C for 24 hours.
Stage 5 consisted of air-cooling to room temperature.230

The three aluminium alloys have different grain structure and texture. The AA6060 alloy has a re-
crystallised grain structure comprising equi-axed grains, and exhibits a cube texture with a minor Goss
component. A typical fibrous, non-recrystallised grain structure is observed for the AA6082.25 alloy, which
has a cube texture with orientations along the β-fibre. The AA6082.50 alloy has recrystallised grain struc-
ture with large elongated grains and a rotated cube texture. For further details about the materials, the235

reader is referred to Khadyko et al. (2014) and Frodal et al. (2017).

3. Experiments

3.1. Experimental procedures

Reversed loading tests were performed to study the influence of pre-compression on the ductility of the
three alloys in different tempers. Diabolo-shaped specimens were used in the tests, with a minimum diameter240

of 6.4 mm and a notch radius of 3.6 mm. The specimens were machined from the extruded profiles, oriented
along the transverse direction (TD).

A displacement-controlled test machine with a constant cross-head velocity of 0.50 mm/min was used
to perform the tests. Using an in-house measuring system, the minimum diameters along the extrusion
direction (ED) and thickness direction (ND) of the specimens were continuously measured until fracture245

(Frodal et al., 2017).
The current area of the minimum cross-section can be estimated as an elliptical area by

A =
π

4
D1D3 (1)

where D1 and D3 are the measured diameters in ED and ND, respectively. The true stress over the minimum
cross-section area is then

σt =
F

A
(2)
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where F is the measured force. Assuming plastic incompressibility and negligible elastic strains, the loga-250

rithmic strain is given by

εl = ln

(
A0

A

)
(3)

where A0 is the initial cross-section area of the specimen. It is important to note that σt and εl represent
average values over the minimum cross-section area of the specimen. Note also that close to failure this strain
measure, based on the assumption of plastic incompressibility, becomes less accurate due to damage-induced
increase of the porosity.255

For each alloy and temper, the specimens were subjected to five different levels of pre-compression. The
specimens were first compressed to a predefined strain level of either 0, 10, 20, 30 or 40% pre-compression,
and then pulled to fracture in tension. Two or three tests were conducted for each pre-compression level.
Fracture surfaces of the failed specimens were investigated in a Zeiss Gemini Supra 55VP FESEM operated
at 20 kV.260

Note that the test results for the three alloys in temper T6 have previously been presented in Frodal
et al. (2017) and are included here for completeness. For further details about the experimental setup, the
reader is referred to Frodal et al. (2017).

3.2. Experimental results

3.2.1. Stress-strain curves265

Figure 1 presents the stress-strain curves from the reversed loading tests in terms of true stress and
logarithmic strain. The point of failure is indicated by a cross for each stress-strain curve. This is defined
as either the point where a marked drop in the load level occurs, or where a distinct change in the slope
of the stress-strain curve is observed. In the tests of the AA6060 alloy in temper O subjected to 40% pre-
compression, failure occured in the threaded section of the specimen due to severe work hardening in the270

notch during compression, and the results from these tests are omitted. Table 2 presents the yield stress at
0.2% plastic strain in tension and compression, in addition to the re-yielding stress after load reversal. Note
that the stress level is amplified by the triaxial stress field in the notched area of the specimen. For the
three alloys in temper T7 and T6, the re-yielding stresses are lower than the initial yield stress, whereas for
temper O the re-yielding stresses are higher than the initial yield stress. The re-yielding stress increases with275

increasing pre-compression for the AA6060 and AA6082.50 alloys in all tempers, as well as for the AA6082.25
alloy in temper O. In contrast, the AA6082.25 alloy in temper T7 and T6 has an almost constant re-yielding
stress with increasing pre-compression.

For all the materials, a strength differential effect is observed, i.e., the initial yield stress and the flow
stress at small plastic strains are markedly higher in compression than in tension, see Table 2. A more280

comprehensive investigation of the strength differential effect for the materials used in the present study can
be found in Holmen et al. (2017).

Table 2: Yield stresses at 0.2% plastic strain, σ0.2, and re-yielding stresses after pre-compression, with standard deviations.

Material

Re-yielding Re-yielding Re-yielding Re-yielding
Tension Compression after 10% after 20% after 30% after 40%
(MPa) (MPa) pre-compression pre-compression pre-compression pre-compression

(MPa) (MPa) (MPa) (MPa)

AA6060-O 42.5± 0.9 −44.2± 1.4 82.5± 1.9 89.2± 0.4 94.0± 0.5 -
AA6060-T7 162.7± 1.3 −169.8± 2.0 136.5± 0.2 144.9± 1.6 148.2± 1.8 148.3± 0.8
AA6060-T6 207.0± 4.7 −221.4± 5.8 184.7± 5.6 187.6± 9.2 195.4± 5.5 201.8± 4.3
AA6082.25-O 81.0± 0.1 −83.3± 0.7 107.3± 0.6 115.7± 0.8 117.5± 0.2 117.8± 0.8
AA6082.25-T7 216.0± 1.8 −217.7± 2.4 163.3± 1.5 166.2± 0.7 167.0± 2.0 169.7± 1.0
AA6082.25-T6 362.7± 10.2 −381.6± 7.0 272.9± 3.5 269.2± 6.4 269.6± 3.9 269.1± 6.1
AA6082.50-O 41.7± 1.4 −46.9± 1.4 86.0± 1.4 94.6± 2.0 101.3± 0.6 111.2± 6.9
AA6082.50-T7 248.7± 2.2 −262.3± 5.8 179.0± 0.5 183.2± 1.4 189.1± 4.0 189.2± 0.6
AA6082.50-T6 356.3± 13.5 −391.6± 8.9 283.7± 1.2 305.1± 2.8 315.1± 5.7 315.8± 8.1

7



−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0−300

−200

−100

0

100

200

300

Logarithmic strain, εl

Tr
ue

st
re

ss
,σ

t
(M

Pa
)

Monotonic tension
10% Pre-compression
20% Pre-compression
30% Pre-compression
40% Pre-compression

(a) AA6060-O

−0.4 −0.2 0.0 0.2 0.4 0.6−400

−300

−200

−100

0

100

200

300

400

Logarithmic strain, εl
Tr

ue
st

re
ss

,σ
t

(M
Pa

)

(b) AA6060-T7

−0.4 −0.2 0.0 0.2 0.4−400

−300

−200

−100

0

100

200

300

400

Logarithmic strain, εl

Tr
ue

st
re

ss
,σ

t
(M

Pa
)

(c) AA6060-T6

−0.4 −0.2 0.0 0.2 0.4 0.6−300

−200

−100

0

100

200

300

Logarithmic strain, εl

Tr
ue

st
re

ss
,σ

t
(M

Pa
)

(d) AA6082.25-O
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(e) AA6082.25-T7
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(f) AA6082.25-T6
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(g) AA6082.50-O
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(h) AA6082.50-T7

−0.4 −0.2 0.0 0.2−600

−400

−200

0

200

400

600

Logarithmic strain, εl

Tr
ue

st
re

ss
,σ

t
(M

Pa
)

(i) AA6082.50-T6

Figure 1: Stress-strain curves for the three alloys in different tempers. The point of failure is indicated with a cross.

After load reversal, the Bauschinger effect is observed, see Figure 1, and is seen to be largest in the tests
subjected to 10% pre-compression for all the materials. At larger pre-compression levels, the Bauschinger
effect decreases with increasing pre-compression. The materials also exhibit permanent softening after load285

reversal, as the magnitude of the flow stress is substantially reduced. Permanent softening is discussed in
further detail in Section 5.3. Work-hardening stagnation is observed after re-yielding for the three alloys
in temper O. The effect is greatest for the tests subjected to 10% pre-compression, and then it decreases
with increasing pre-compression and almost disappears after 40% pre-compression. The work-hardening
stagnation can be explained by the pile-up of dislocations around obstacles during plastic deformation,290

which experience less resistance when travelling in the opposite direction after load reversal (Hasegawa
et al., 1986). The reason why work-hardening stagnation is observed for the O temper and not for the
others is probably the large non-shearable precipitates present in this temper.
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The measured Lankford coefficients in tension, compression and in tension after load reversal are pre-
sented in Table 3. These coefficients give the ratio between the incremental strain in ED and ND, and thus295

the evolution of the cross-section of the specimen. The Lankford coefficients are different in tension and
compression as well as between the different alloys and tempers. For the AA6060 and AA6082.50 alloys,
the Lankford coefficients are greater in compression than in tension, while they are similar and closer to
unity for the AA6082.25 alloy. Small variations are observed between different tempers. In tension after
pre-compression, a small difference and evolution of the Lankford coefficients with pre-compression is ob-300

served. In general, the coefficients for the AA6060 and AA6082.25 alloys suggest that the materials become
more anisotropic with increasing pre-compression, although this effect is modest, while for the AA6082.50
alloy the evolution of the Lankford coefficient is more irregular.

Table 3: Measured Lankford coefficients in tension, compression and in tension after pre-compression, with standard deviations.

Material Tension Compression
In tension In tension In tension In tension
after 10% after 20% after 30% after 40%

pre-compression pre-compression pre-compression pre-compression

AA6060-O 1.24± 0.01 1.40± 0.06 1.35± 0.03 1.48± 0.01 1.63± 0.03 -
AA6060-T7 1.24± 0.01 1.27± 0.09 1.32± 0.01 1.35± 0.01 1.43± 0.02 1.47± 0.01
AA6060-T6 1.27± 0.01 1.36± 0.10 1.35± 0.01 1.37± 0.04 1.43± 0.05 1.50± 0.13
AA6082.25-O 0.82± 0.01 0.85± 0.03 0.82± 0.00 0.80± 0.01 0.78± 0.01 0.74± 0.01
AA6082.25-T7 0.85± 0.01 0.83± 0.02 0.84± 0.01 0.84± 0.01 0.83± 0.01 0.81± 0.01
AA6082.25-T6 0.97± 0.01 0.95± 0.02 0.96± 0.01 0.94± 0.01 0.93± 0.00 0.91± 0.01
AA6082.50-O 0.45± 0.05 0.51± 0.07 0.41± 0.05 0.33± 0.04 0.36± 0.02 0.26± 0.03
AA6082.50-T7 0.41± 0.06 0.59± 0.09 0.37± 0.05 0.46± 0.03 0.39± 0.01 0.43± 0.01
AA6082.50-T6 0.36± 0.05 0.55± 0.05 0.45± 0.04 0.45± 0.05 0.38± 0.05 0.42± 0.08

3.2.2. Effect of pre-compression on ductility

Figure 2 presents the failure strain, εf , and the relative failure strain, εr, versus pre-compression level,305

where the relative failure strain is defined as εr = εf − ε0 and ε0 is the strain at load reversal. The failure
strain εf is seen to decrease with increasing pre-compression for most of the materials. For the AA6060
alloy in temper T7 and T6, the point of failure occurred within a narrow range of strain values for different
levels of pre-compression, and the failure strain is approximately constant.

The tensile ductility is here defined as the deformation capability of the material subsequent to the pre-310

deformation, i.e., tensile ductility is defined in terms of the relative failure strain, εr. Figure 2 shows that
the AA6060 alloy in temper T7 and T6 and the AA6082.25 alloy in temper T7 exhibit a marked increase in
tensile ductility with increasing pre-compression level. The relative failure strain is almost doubled after 40%
pre-compression compared to monotonic tension for these materials. The AA6082.25 in temper O is also seen
to have a relatively large increase in tensile ductility with increasing pre-compression level. The remaining315

materials either display a small increase in the tensile ductility or a largely constant tensile ductility with
increasing pre-compression level.

It is apparent that the magnitude of the failure strain varies between the materials, and that the strength
of the material plays an important role. Figure 3 shows the failure strain in monotonic tension versus the
initial yield stress at 0.2% plastic strain, and it is evident that the failure strain decreases with increasing320

yield strength. In previous studies on various aluminium alloys, it has also been found that the failure strain
tends to decrease linearly with increasing strength for similar microstructures (e.g., Lloyd, 2003; Westermann
et al., 2014; Pedersen et al., 2015; Hannard et al., 2016).

3.2.3. Fracture surfaces

Figure 4 presents a selection of the most interesting fracture surfaces, namely the fracture surfaces of the325

AA6060 and AA6082.50 alloys in tempers O and T7 subjected to monotonic tension, whereas the fracture
surfaces of the three alloys in temper T6 can be found in Frodal et al. (2017). In general, the fracture
surfaces of specimens in tempers T7 and T6 for a given alloy are similar, while specimens in temper O
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(a) AA6060-O
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(b) AA6060-T7
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(c) AA6060-T6
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(d) AA6082.25-O
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(e) AA6082.25-T7

0 10 20 30 40−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Pre-compression (%)
Fa

ilu
re

st
ra

in

Series 1
Series 2
Series 3
Failure strain
Relative failure strain

(f) AA6082.25-T6
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(g) AA6082.50-O
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(h) AA6082.50-T7
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Figure 2: Failure strain, εf , and relative failure strain, εr, versus pre-compression level for the three alloys in different tempers.
The relative failure strain is the strain to failure measured with respect to the compressed configuration.

exhibit a different fracture surface. For all tempers, the specimens of the AA6060 alloy display diamond-
shaped cup-and-cone fracture surfaces. The diamond shape observed for tempers T7 and T6 is similar, but is330

sharper than for temper O. The specimens of the AA6082.25 alloy have typical circular cup-and-cone fracture
surfaces similar for all tempers. The specimens of the AA6082.50 alloy in temper O exhibit an elliptical
cup-and-cone fracture surface, while in tempers T7 and T6 a shear failure mode is found for this alloy.
Note that the area calculation in Equation (1) is based on an elliptical shape of the minimum cross-section
area, and thus errors will be introduced at large strains for the AA6060 alloy due to the diamond-shaped335

minimum cross-section area. A detailed discussion of this issue can be found in Frodal et al. (2017).
The general trend is that the same failure modes and fracture surface shapes are observed with increasing

pre-compression as for monotonic tension. The fracture areas become larger with increasing pre-compression
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Figure 3: Failure strain, εf , versus initial yield stress, σ0.2, for the three alloys in different tempers subjected to monotonic
tension. Lines represent a linear least-square fit to the experimental data.
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Figure 4: Fracture surfaces of the AA6060 and AA6082.50 alloys in temper O and T7, subjected to monotonic tension.
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in agreement with a lower failure strain. The only exception is the AA6060 alloy in temper T7 and T6. As
the pre-compression increases, the fracture surfaces for these materials become more elliptical than the clear340

diamond shape observed for monotonic tension, and the area of the fracture surface is almost unchanged.
For the AA6060 alloy in temper T6, Frodal et al. (2017) observed some areas of intercrystalline fracture,

and the amount was seen to decrease with increasing pre-compression. The same trend is also observed
for temper T7, but fewer areas are seen than for temper T6. In contrast, intercrystalline fracture is not
observed for temper O.345

4. Constitutive modelling

In the finite element simulations of the material tests and in the subsequent unit cell simulations, an
advanced plasticity model is applied. The anisotropic yield criterion of the plasticity model is calibrated
based on polycrystal plasticity calculations. In the following, the crystal plasticity model is described first
and then the phenomenological plasticity model is outlined.350

4.1. Crystal plasticity

4.1.1. Single crystal plasticity

A rate-dependent crystal plasticity formulation is adopted where plastic deformation is assumed to occur
by plastic slip on certain crystallographic slip systems, determined by the crystal structure. It is further
assumed that the elastic deformations are infinitesimal, while the plastic deformations and rotations may355

be finite. For details beyond this section on general theory of single crystal plasticity, the reader is referred
to the textbook of Khan and Huang (1995).

The velocity gradient L is additively decomposed into a symmetric and a skew-symmetric part

Lij = Dij +Wij (4)

where D is the symmetric rate of deformation tensor and W is the skew-symmetric spin tensor. These
tensors are additively decomposed into elastic and plastic parts360

Dij = De
ij +Dp

ij , Wij = W e
ij +W p

ij (5)

where De and Dp are the elastic and plastic rate of deformation tensors, respectively. The elastic spin tensor
We consists of an infinitesimal elastic contribution and rigid spin of the crystal lattice, whereas Wp is the
plastic spin tensor caused by plastic slip. Plastic slip occurs on certain crystallographic slip systems, and
the plastic parts of the rate of deformation and spin tensors are given by

Dp
ij =

1

2

N∑
α=1

γ̇(α)
(
S
(α)
ij + S

(α)
ji

)
(6)

365

W p
ij =

1

2

N∑
α=1

γ̇(α)
(
S
(α)
ij − S

(α)
ji

)
(7)

where N is the number of slip systems and γ̇(α) is the plastic slip rate on slip system α. Further, S(α) =
m(α) ⊗ n(α) is the Schmid tensor, where m(α) and n(α) are unit vectors defining the slip direction and slip
plane normal, respectively.

Let ei, (i = 1, 2, 3), denote the basis for the global coordinate system, and êi the basis for a co-rotated
coordinate system that rotates with the crystal lattice. The rotation of the lattice is given by the orthogonal370

rotation tensor R, that evolves according to the differential equations

Ṙij = W e
ikRkj (8)
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The unit vectors m(α) and n(α) are not affected by the crystallographic slip and are given by

m
(α)
i = Rijm̂

(α)
j , n

(α)
i = Rij n̂

(α)
j (9)

where the vector components m̂
(α)
i and n̂

(α)
i in the co-rotational coordinate system are constant and defined

by the crystal structure.
In the co-rotated coordinate system, the rate form of the generalized Hooke’s law can be expressed as375

˙̂σij = ĈijklD̂
e
kl (10)

where σ is the Cauchy stress tensor, and the fourth-order elasticity tensor C is assumed invariant of plastic
deformation and constant in the co-rotational lattice frame. The elasticity tensor accounts for the elastic
anisotropy of the crystal, and is defined by the three independent elastic constants ĉ11, ĉ12 and ĉ44. In this
case, Equation (10) can be written on matrix form as

˙̂σ11
˙̂σ22
˙̂σ33
˙̂σ12
˙̂σ23
˙̂σ31


=


ĉ11 ĉ12 ĉ12 0 0 0
ĉ12 ĉ11 ĉ12 0 0 0
ĉ12 ĉ12 ĉ11 0 0 0
0 0 0 ĉ44 0 0
0 0 0 0 ĉ44 0
0 0 0 0 0 ĉ44





D̂e
11

D̂e
22

D̂e
33

2D̂e
12

2D̂e
23

2D̂e
31


(11)

The plastic power per unit volume is defined as380

ẇp = σijD
p
ij = σ̂ijD̂

p
ij =

N∑
α=1

τ(α)γ̇(α) (12)

where the resolved shear stress τ(α) acting on slip system α is defined as power conjugate to the plastic slip
rate γ̇(α). The resolved shear stresses are here defined by

τ(α) = σijS
(α)
ij = σ̂ijŜ

(α)
ij (13)

In this work, the plastic flow is described by the rate-dependent constitutive relation (Hutchinson, 1976)

γ̇(α) = γ̇0

∣∣∣∣∣τ(α)τ
(α)
c

∣∣∣∣∣
1
m

sgn(τ(α)) (14)

where γ̇0 is the reference shearing rate, m is the instantaneous strain rate sensitivity, and τ
(α)
c is the critical385

resolved shear stress on slip system α. The critical resolved shear stresses, with initial value τ0, evolve
according to (Saai et al., 2013)

τ̇(α)c = θ(Γ)

N∑
β=1

qαβ

∣∣∣γ̇(β)∣∣∣ (15)

where qαβ is the latent hardening matrix, and θ(Γ) is the work-hardening rate; a function of the accumulated
plastic shear strain, Γ, defined as

Γ =

∫ t

0

N∑
α=1

|γ̇(α)|dt (16)

The work-hardening rate is given by (Saai et al., 2013)390

θ(Γ) =

Nτ∑
k=1

θτk exp

(
− θτk

τk
Γ

)
(17)

where Nτ is the number of hardening terms, and θτk and τk are the initial hardening rate and saturated
value of hardening term k, respectively.
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4.1.2. Polycrystal plasticity

In this work, the crystal plasticity finite element method (CP-FEM) is used to model the material
anisotropy. The material is represented by a representative volume element (RVE), see Section 5.1, where395

each grain is explicitly modelled and behaves according to the single crystal plasticity model, described in
Section 4.1.1. Thus, stress equilibrium and compatibility across grain boundaries are fulfilled. Every grain
is given an initial orientation based on the crystallographic texture of the aluminium alloys, see Frodal et al.
(2017) for the orientation distribution functions (ODFs).

The volume-average Cauchy stress tensor, σ̄, and the volume-average plastic power per unit volume, ˙̄wp,400

of the RVE are defined as

σ̄ =

Nint∑
k=1

vkσk, ˙̄wp =

Nint∑
k=1

vkẇ
p
k (18)

where vk is the volume fraction, σk is the Cauchy stress tensor, and ẇpk is the plastic power per unit volume
of integration point k. The total number of integration points is Nint. When the initial volume of each
integration point is equal, and under the assumption of infinitesimal elastic strains, the volume fraction of
every integration point can be approximated by vk = 1/Nint.405

4.2. Phenomenological plasticity

In this section, the constitutive relations of the phenomenological plasticity model are outlined. The
plasticity model consists of a pressure-sensitive version of the anisotropic yield criterion Yld2004-18p (Barlat
et al., 2005) to describe plastic anisotropy and the strength differential effect, a non-associated flow rule to
ensure isochoric plastic flow, nonlinear isotropic and kinematic work-hardening rules, and internal variables410

to account for the effects of strain path changes (Mánik et al., 2015).
Again a co-rotational formulation is used, analogous to Equation (8), but under the assumption of zero

plastic spin. The co-rotated Cauchy stress rate and the elastic rate of deformation tensors are related by the
generalised Hooke’s law, Equation (10). Elastic isotropy is assumed, and the fourth-order elasticity tensor
C contains only two independent parameters, i.e., Young’s modulus E and Poisson’s ratio ν.415

To describe the strength differential effect observed in the experimental tests, we formulate a pressure-
sensitive yield criterion valid for plastic anisotropy. To this end, the Drucker and Prager (1952) yield criterion
is adopted with the equivalent stress defined by the Yld2004-18p yield function (Barlat et al., 2005). Note
that the pressure sensitivity is assumed to be weak. Thus, the yield criterion is formulated as

Φ(η, p) ≡ φ(η)− σy(p) = 0 , φ(η) =
ϕ(η) + αη : I

1 + α
(19)

where η = σ−χ is the effective stress tensor, χ is the backstress tensor, I is the second-order identity tensor,420

σy(p) controls the size of the elastic domain, p is the accumulated plastic strain, ϕ(η) is the equivalent stress
with respect to the effective stress defined by the Yld2004-18p yield function, and α governs the pressure
sensitivity. For α = 0 the yield criterion reduces to the pressure independent Yld2004-18p yield criterion.

The equivalent stress of the anisotropic Yld2004-18p yield function is given by (Barlat et al., 2005)

ϕ(η) =

(
1

4

3∑
k=1

3∑
l=1

∣∣S′k − S′′l ∣∣a
) 1
a

(20)

where a is an exponent determining the curvature of the yield surface, and S′k and S′′l are the principal values425

of the tensors s′ and s′′, respectively. The tensors s′ and s′′ are determined by the linear transformations

ŝ′ij = Ĉ ′ijklŝkl, ŝ′′ij = Ĉ ′′ijklŝkl (21)

where the fourth order tensors C ′ and C ′′ contain coefficients describing the plastic anisotropy, and s is the
deviatoric part of the effective stress tensor given as

ŝij = η̂ij −
1

3
η̂kkδij (22)

14



where δij is the Kronecker delta. For an orthotropic material, Equation (21) can be written on matrix form
as430 

ŝ′11
ŝ′22
ŝ′33
ŝ′12
ŝ′23
ŝ′31

 =


0 −ĉ′12 −ĉ′13 0 0 0
−ĉ′21 0 −ĉ′23 0 0 0
−ĉ′31 −ĉ′32 0 0 0 0

0 0 0 ĉ′44 0 0
0 0 0 0 ĉ′55 0
0 0 0 0 0 ĉ′66




ŝ11
ŝ22
ŝ33
ŝ12
ŝ23
ŝ31

 (23)


ŝ′′11
ŝ′′22
ŝ′′33
ŝ′′12
ŝ′′23
ŝ′′31

 =


0 −ĉ′′12 −ĉ′′13 0 0 0
−ĉ′′21 0 −ĉ′′23 0 0 0
−ĉ′′31 −ĉ′′32 0 0 0 0

0 0 0 ĉ′′44 0 0
0 0 0 0 ĉ′′55 0
0 0 0 0 0 ĉ′′66




ŝ11
ŝ22
ŝ33
ŝ12
ŝ23
ŝ31

 (24)

where the 18 anisotropy parameters ĉ′ij and ĉ′′ij together with the exponent a determine the shape of the
yield surface in stress space. Recently, Van Den Boogaard et al. (2016) showed that the 18 anisotropy
parameters can be reduced to 16 independent ones. Thus, we will select ĉ′12 = ĉ′13 = 1. Any other choice
will give equivalent results, but for an isotropic material these selected values will result in that all ĉ′ij and435

ĉ′′ij become equal to one.
By studying the strength differential effect and pressure sensitivity in aluminium, Spitzig and Richmond

(1984) found that the plastic dilatancy described by the associated flow rule for a pressure sensitive yield cri-
terion greatly overestimated their experimental findings and that the plastic volume changes were negligible
in comparison. Following their work, the flow rule is assumed to be non-associated and given by440

D̂p
ij = λ̇

∂ϕ

∂η̂ij
(25)

where λ̇ is the plastic multiplier. The equivalent plastic strain rate is defined by the plastic power, where
ϕ(η) is taken to be power conjugate to ṗ, so that

ṗ ≡
η̂ijD̂

p
ij

ϕ(η)
= λ̇ (26)

To obtain the latter equality, it was used that ϕ(η) is a homogeneous function of order one with respect to
the effective stress.

The backstress tensor χ is defined as a sum of Nχ kinematic hardening terms, viz.445

χ̂ij =

Nχ∑
k=1

χ̂
(k)
ij (27)

Each partial hardening term χ(k) evolves according to (Armstrong and Frederick, 1966; Frederick and
Armstrong, 2007)

˙̂χ
(k)
ij = θχk

(
η̂ij
φ(η)

−
χ̂
(k)
ij

Qχk

)
ṗ (28)

where θχk and Qχk are parameters governing the kinematic hardening of the material.
The size of the elastic domain is given by

σy(p) = σ0 +R(p) +Rr(p) + Sr(p) (29)

where σ0 is the initial yield stress, R(p) is the isotropic hardening contribution for monotonic loading, Rr(p)450

accounts for permanent softening after load reversal, and Sr(p) represents the extra strength contribution
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due to the built-up microstructure anisotropy during straining before load reversal. The isotropic hardening
contribution for monotonic loading is given by the extended Voce hardening rule (Voce, 1948)

R(p) =

NV∑
k=1

QRk

(
1− exp

(
− θRk
QRk

p

))
(30)

where NV is the number of hardening terms, and QRk and θRk are parameters controlling the shape of the
isotropic hardening curve for monotonic loading. The evolution equations for the internal variables Rr and455

Sr are given by (Mánik et al., 2015)

Ṙr = kr min
(
P̂ijN̂ij , 0

)
ṗ (31)

Ṡr = −cr
[
Sr + qr

(
σ0 +R+Rr

)
min

(
P̂ijN̂ij , 0

)]
ṗ (32)

where kr is a parameter controlling the permanent softening, P is the ”delayed pointer”, N is the direction
of the plastic rate of deformation, and cr and qr are parameters controlling the extra strength contributions
represented by Sr. The ”delayed pointer” evolves according to460

˙̂
Pij = cp

(
N̂ij − P̂ij

)
ṗ , N̂ij =

D̂p
ij√

D̂p
klD̂

p
kl

(33)

where cp is a parameter controlling its evolution. The ”delayed pointer” is initially assumed to be equal to
the zero tensor, which is the case for well-annealed materials (Mánik et al., 2015). This is not necessarily
true for our materials, but since the pre-straining in the present study is quite large, the ”delayed pointer”
at load reversal is similar to its true quantity and thus this is an appropriate simplification. The strain
path change variables Rr and Sr are also assumed to be zero initially. It should be noted that the effect465

of orthogonal strain path changes, which is accounted for in the model by Mánik et al. (2015), has been
neglected in the above equations as we are only simulating load reversal tests.

Finally, the loading/unloading conditions of plasticity are given in Kuhn-Tucker form as

Φ ≤ 0, λ̇ ≥ 0, λ̇Φ = 0 (34)

whereas the consistency condition, used to determine the plastic multiplier λ̇ in the plastic domain, is
expressed by470

λ̇Φ̇ = 0 (35)

The reader is referred to Mánik et al. (2015) for a more detailed description and interpretation of the
constitutive relations accounting for the effects of strain path change.

5. Numerical simulations

5.1. Crystal plasticity and calibration of yield surfaces

In this section, the yield surface of the materials is calibrated using the crystal plasticity model described475

in Section 4.1. The parameters controlling the shape of the Yld2004-18p yield surface are typically deter-
mined from a large number of experimental tests (see, e.g., Fourmeau et al., 2011). It is, however, desirable
to determine the behaviour of complex materials without performing extensive experimental testing. The
anisotropy coefficients ĉ′ij and ĉ′′ij will therefore be determined from virtual testing using polycrystal plas-
ticity theory. In addition to the lower cost than experiments, virtual testing allows for performing tests in480

any direction and material plane, i.e., virtual testing is not restricted by experimental limitations.
Each material is represented by an RVE, see Figure 5, consisting of 10 × 10 × 10 elements, where each

element represents a grain. This results in a total of 1000 grains in the RVE of the polycrystalline material.
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x2

x3

x1

Figure 5: Representative volume element (RVE) of a polycrystal used in the calibration of the yield surfaces.

Periodic boundary conditions are applied to the nodes on the exterior boundaries to ensure periodicity.
A convergence study was performed, where the number of elements per grain and the number of grains485

were varied. The details of that study are omitted here for brevity. It was found that this RVE contains
a sufficiently large number of grains to predict the average stress state with adequate accuracy, and small
enough to provide reasonable computational times. All elements/grains are given an initial orientation such
that the ODF of the RVE is as close as possible to the ODF of the measured crystallographic texture for each
alloy. The crystal orientations of the RVE are generated in the open source software DREAM.3D (Groeber490

and Jackson, 2014) by a stochastic iterative procedure.
The crystal plasticity model is implemented into a user material subroutine (VUMAT) for

Abaqus/Explicit (Abaqus, 2014). An explicit integration scheme is utilized for time integration of the
rate constitutive equations of single crystal plasticity (Zhang et al., 2014), along with explicit integration of
the momentum equations. The grains are represented by linear eight-node elements with selective reduced495

integration (C3D8), i.e., reduced integration on the volumetric terms. The RVE is loaded with a strain rate
of 10−3 s−1 in all simulations, and mass scaling is used to reduce the computational time. Throughout the
simulations it is ensured that the response is quasi-static, i.e., that the kinetic energy is negligible.

Table 4: Crystal plasticity parameters governing elasticity, rate sensitivity and latent hardening.

ĉ11 (MPa) ĉ12 (MPa) ĉ44 (MPa) γ̇0 (s−1) m qαβ

106 430 60 350 28 210 0.010 0.005
1.0 if α = β
1.4 if α 6= β

Table 4 contains some of the crystal plasticity model parameters, which are common for a broad range of
aluminium alloys from the literature (Khadyko et al., 2014, 2016b). These parameters are assumed constant500

for the materials at hand, while the parameters governing initial slip resistance and work hardening are
dependent upon alloy and temper conditions. Note that a rather simple definition of the latent hardening
matrix is used, with a single non-diagonal parameter. This choice could impact the response at large plastic
deformations. In this paper, the crystal plasticity framework will only be used to determine the instance
of initial yielding, i.e., to calibrate the yield surfaces. Thus, the current latent hardening matrix is deemed505

sufficiently accurate. The reader is referred to Khadyko et al. (2016a) for further details on latent hardening
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and plastic anisotropy evolution.
We define a global Cartesian coordinate system (x1, x2, x3) aligned with the principal axes of anisotropy

of the extruded profile. The coordinate system is oriented so that ED is parallel to the x1 axis, TD is parallel
to the x2 axis, and ND is parallel to the x3 axis. In the following, all stress and strain quantities are related510

to this coordinate system.

Table 5: Crystal plasticity parameters governing initial slip resistance and work hardening.

Material τ0 (MPa) θτ1 (MPa) τ1 (MPa) θτ2 (MPa) τ2 (MPa)

AA6060-O 10.5 301.0 13.1 49.9 13.5
AA6060-T7 54.5 207.9 19.3 0.0 0.0
AA6060-T6 72.2 81.5 16.5 0.0 0.0
AA6082.25-O 20.4 236.9 13.5 25.7 15.7
AA6082.25-T7 58.3 190.1 18.7 0.0 0.0
AA6082.25-T6 107.1 30.4 200.0 5.5 200.0
AA6082.50-O 13.6 262.3 12.5 55.6 17.0
AA6082.50-T7 78.7 175.1 16.1 0.0 0.0
AA6082.50-T6 123.0 13.0 199.2 8.1 190.7

To include and study any effects of the strength and work hardening on the yield surfaces, the parameters
controlling the slip resistance are fitted based on the experimental tests on smooth cylindrical specimens
performed by Khadyko et al. (2014) and Khadyko (2018). The RVE is subjected to uniaxial tension along
the x2 axis (TD), i.e., the same direction as the experiments. The non-linear optimisation software LS-OPT515

(Stander et al., 2015) is used together with Abaqus to calibrate the parameters controlling the slip resistance
using experimental data up to diffuse necking. In the optimisation procedure, Abaqus supplies the stress-
strain curve from the RVE to LS-OPT which calculates the mean squared error between the numerical and
experimental stress-strain curves. Based on the optimisation algorithm the slip resistance parameters are
adjusted to minimise the mean squared error in the next iteration. Within each iteration, LS-OPT runs520

10 simulations simultaneously with Abaqus varying these parameters. In general, after 15-20 iterations the
mean squared error is reduced from 1-10 to approximately 10−5 and further iterations will not reduce the
error. One of these simulations with the RVE is completed in approximately 50-60 min utilising 4 threads
on an Intel Xeon X5690 CPU. Table 5 contains the optimised slip resistance parameters for the different
materials, valid up to diffuse necking. For further details regarding calibration of slip resistance parameters,525

the reader is referred to Khadyko et al. (2015).
With all the parameters of the crystal plasticity model identified, the RVE can be used to determine the

yield surfaces of the nine materials. Barlat et al. (2005) proposed a series of experimental and numerical
tests to be performed in order to determine the anisotropy coefficients ĉ′ij and ĉ′′ij . These tests consist of
uniaxial tension in seven different directions in the x1 − x2 plane, i.e., uniaxial tension in 15◦ increments530

from the x1 axis to the x2 axis, and balanced biaxial tension in the x1 − x2 plane. From these tests both
the initial yield stress and the Lankford coefficients are used to calibrate the yield surface. In addition, the
initial yield stress in simple shear in the x2 − x3 and x1 − x3 planes, and uniaxial tension tests oriented at
45◦ between the x2 and x3 axes, and between the x1 and x3 axes, are used. In order to perform tests at any
angle from the principal axes of anisotropy of the material, the initial orientation of the RVE is rotated by535

an equal amount.
During the calibration process, it became clear that for some of the materials more tests were needed to

get an accurate estimate of the yield surface. Particularly important were the plane-strain tension tests in
the x1 − x2 plane at 0◦ and 90◦ from the x1 axis. In addition, a plane-stress balanced biaxial strain test
in the x1 − x2 plane was included, i.e., where the strain rates in the two in-plane directions are equal and540

greater than zero, i.e., ε̇11/ε̇22 = 1. Note that this point coincides with that of balanced biaxial tension for
an isotropic material. Also, five tests with different (negative) ratio between the strain rate along the x1
and x2 axes were included. These tests have the following strain-rate ratios: ε̇11/ε̇22 = −2.00, −1.57, −1.00,
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Figure 6: Generated yield surfaces based on the CP-FEM, at a volume-average plastic work corresponding to 0.2% plastic
strain along the reference direction, depicted in the x1−x2 (ED-TD) plane. Contours of the normalised shear stress σ̄12/σ̄0 are
plotted in 0.1 increments from zero, and the maximum value of σ̄12/σ̄0 is shown in the centre. Arrows represent the projections
of the direction of plastic flow predicted by the CP-FEM.

−0.64 and −0.50.
For each test and for every material, the volume-average Cauchy stress tensor is extracted at a volume-545

average plastic work corresponding to 0.2% plastic strain for uniaxial tension along the x1 axis, i.e., the
reference direction. Further, the stress tensors for all the tests are normalised by the initial yield stress in
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uniaxial tension along the reference direction, and the Lankford coefficient is found by taking the average
value from 90% to 100% of the same value of plastic work.

The yield surface is calibrated as follows. The normalised volume-average Cauchy stress tensors and the550

Lankford coefficients are used in the evaluation of an error function, see Barlat et al. (2005). This error
function is a function of the equivalent stress, Equation (20), which depends on the anisotropy coefficients ĉ′ij
and ĉ′′ij and the yield surface exponent a. Note that the yield surface shape is assumed invariant of pressure,
thus φ = ϕ in Equation (19) during the calibration process. Further, the error function is minimised by
varying these parameters with the global minimisation algorithm basin-hopping of the Scipy Python package555

(Scipy, 2017). The error function typically has several local minima, and therefore a global minimisation
algorithm should be used. The generated yield surfaces for each material together with the predicted yield
stresses by CP-FEM are depicted as projections in the x1 − x2 plane in Figure 6.
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Figure 7: Normalised yield stress versus tensile direction in uniaxial tension, from the CP-FEM and the generated yield surfaces,
at a volume-average plastic work corresponding to 0.2% plastic strain along the reference direction.
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Figure 8: Lankford coefficients versus tensile direction for uniaxial tension, from the CP-FEM and the generated yield surfaces,
at a volume-average plastic work corresponding to 0.2% plastic strain along the reference direction.

Although most of the stress points on the yield surface used in the calibration are located in the x1− x2
plane, the yield surfaces are not biased with respect to this plane. As both the crystal plasticity model and560

the Yld2004-18p yield function depend only on the deviatoric stress state, these points are equivalent to
other points on the yield surface, e.g., uniaxial tension along the x1 axis is equivalent to balanced biaxial
tension/compression in the x2 − x3 plane. The strength differential effect is not accounted for by including
non-Schmid effects in the crystal plasticity model, and does not affect the calibration of the yield surfaces.

Figure 6 shows the differences between the yield surfaces and it is clear that while the yield surfaces565

are similar for the tempers of the same alloy, the difference between the alloys is considerable due to the
crystallographic texture. The largest difference between tempers for the same alloy is seen for the AA6082.50
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alloy as the contours of increasing normalised shear stress are different. This is also the alloy where the
difference in maximum shear stress is the greatest between tempers.

Table 6: Calibrated anisotropy coefficients and yield surface exponent for the Yld2004-18p yield criterion.

Material AA6060 AA6082.25 AA6082.50
Temper O T7 T6 O T7 T6 O T7 T6

a 9.2 11.4 11.8 18.9 13.6 13.5 17.0 14.5 12.5

ĉ′12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ĉ′13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ĉ′21 −0.7261 0.2604 −2.2769 0.6684 0.6898 0.6441 −0.3166 −3.3119 0.9218
ĉ′23 0.1009 0.4756 −0.4709 1.1443 1.0272 1.0412 2.5260 −1.0938 0.6785
ĉ′31 −0.1925 −2.2405 0.2555 0.5263 0.6059 0.6559 −0.5265 −3.6098 −0.5508
c′32 −0.0950 −0.1944 0.2118 0.8230 0.8885 0.8653 −0.5163 −1.0424 0.8985
c′44 −0.9592 0.1896 −0.1895 −1.0469 1.0120 0.9258 0.9885 1.0803 1.0859
c′55 −1.2663 −0.1630 −0.1674 −1.0803 1.1697 1.4981 0.7676 −0.8979 0.8500
ĉ′66 −0.9536 1.0997 −1.0957 0.8995 0.9321 0.9452 1.1178 −0.6982 −0.8305

ĉ′′12 −0.0641 0.8676 1.1498 1.0868 0.7564 0.6093 1.1378 1.8762 0.4348
ĉ′′13 −1.0887 2.2273 −0.2049 1.4677 1.1787 0.9544 2.6320 1.5935 −0.0688
ĉ′′21 −1.3105 −0.5072 −1.5280 0.7687 0.8525 0.8362 0.3832 −2.3255 −0.3157
ĉ′′23 −1.5205 1.7280 −1.7423 1.1013 1.0114 1.0750 1.2385 0.2799 1.0286
ĉ′′31 −1.2515 −1.2435 −0.7779 0.9502 1.1155 1.1397 −1.9285 −3.0594 1.1692
ĉ′′32 1.0219 0.6461 −0.6487 0.6869 0.9250 0.9613 −0.5312 −0.8772 1.2030
ĉ′′44 0.1129 0.8948 0.9069 1.1840 1.2775 1.3740 0.8826 0.7526 0.8661
ĉ′′55 0.0064 1.2337 1.2410 1.0164 1.0073 0.7300 −0.8001 −0.6629 −0.6963
ĉ′′66 −0.3154 −0.1672 −0.1838 1.1146 1.1609 1.2299 0.4342 0.8519 0.7349

Figure 7 and Figure 8 compare in turn the normalised yield stresses and Lankford coefficients as functions570

of the tensile direction, in the x1 − x2 plane, for the different materials. The differences between tempers
of the same alloy are seen more clearly in these figures, although the main trends are similar for the same
alloy. The corresponding Yld2004-18p yield surface parameters are given in Table 6.

The main source of anisotropy is assumed to be the crystallographic texture (Engler and Randle, 2009).
In the present study, effects of other microstructural features, such as the size and shape of grains and the575

precipitate structure, are thus neglected. We note that the calibrated yield surfaces are initial yield surfaces,
and during extensive plastic deformation the texture and the anisotropy of the materials will evolve. The
result is that the yield surface shape evolves accordingly and the initial yield surface deviates from the
current yield surface of the material.

5.2. Phenomenological plasticity and work-hardening behaviour580

The strength differential effect is described by the pressure-dependent yield criterion defined in Equa-
tion (19), where the pressure sensitivity is controlled by the parameter α. The values of α for the current
materials are obtained from the experimental data and results presented in Holmen et al. (2017). These
values are compiled in Table 7. The reader is referred to Holmen et al. (2017) for details on the parameter
identification.585

The remaining model parameters govern isotropic and kinematic hardening, work-hardening stagnation
and permanent softening, are calibrated in a two step procedure. It is useful to express the parameters of
the isotropic and kinematic hardening rules as

θRi = κiθi, θχi = (1− κi)θi (36)
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Table 7: Pressure sensitivity parameter. From Holmen et al. (2017).

Material β (◦) α = 1
3 tanβ

AA6060-O 0.7 0.004
AA6060-T7 1.7 0.010
AA6060-T6 2.2 0.013
AA6082.25-O 1.2 0.007
AA6082.25-T7 2.2 0.013
AA6082.25-T6 3.5 0.020
AA6082.50-O 0.9 0.005
AA6082.50-T7 2.5 0.015
AA6082.50-T6 3.6 0.021

QRi = κiQi, Qχi = (1− κi)Qi (37)

where there is no sum on i and it is assumed that the number of isotropic and kinematic hardening terms is590

the same, i.e., NV = Nχ. A three-term hardening rule is adopted so that NV = Nχ = 3. The parameters Qi
and θi define the work hardening of the material under monotonic loading, whereas κi define the partitioning
into isotropic and kinematic hardening of the different hardening terms. This partitioning is possible because
the isotropic and kinematic hardening rules give identical results in monotonic uniaxial tension.

In the first step, it is assumed that the work hardening is fully isotropic, i.e., all κi are equal to unity,595

and the parameters Qi and θi are identified using the stress-strain curves from monotonic tensile tests on
smooth cylindrical specimens performed by Khadyko et al. (2014) and Khadyko (2018). In the second
step, the stress-strain curves from the reversed loading tests subjected to 10% and 40% pre-compression
(10% and 30% for the AA6060 alloy in temper O) are used to partition the work hardening into isotropic
and kinematic contributions and to determine the parameters controlling work-hardening stagnation and600

permanent softening.

x2

x3

x1

Figure 9: Finite element mesh of the smooth cylindrical tensile specimen, with tensile axis along the x2 axis (TD).

To determine the parameters Qi and θi, the smooth cylindrical tensile specimen used by Khadyko et al.
(2014) is modelled in Abaqus/Standard. The phenomenological plasticity model described in Section 4.2
is implemented into a user material subroutine (UMAT) for Abaqus/Standard. A semi-implicit backward-
Euler integration scheme is used to update the stress state for plastic loading steps. To ensure sufficient605

accuracy of the integration point values, substepping is employed (Dæhli et al., 2017). Isotropic elasticity is
assumed with Young’s modulus of E = 70000 MPa and Poisson’s ratio of ν = 0.3. The plasticity model is
used in simulations with the calibrated pressure-sensitive anisotropic yield surface and isotropic hardening.
The finite element mesh of the smooth tensile specimen is shown in Figure 9, with its tensile axis along the
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x2 axis (TD). Due to the orthotropic symmetry, only one-eighth of the specimen is modelled to reduce the610

computation time. Linear eight-node elements with selective reduced integration (C3D8) are used, where
the dimension of the centre-most element is 0.15×0.15×0.15 mm3. Extensive testing with different element
sizes showed that the selected mesh is appropriate for determining the hardening behaviour of the materials.
The FE model in Abaqus is coupled to the non-linear optimisation software LS-OPT in the calibration
procedure. The initial yield stress σ0 is found from the crystal plasticity model for uniaxial tension along615

the reference direction, i.e., the x1 axis (ED). The parameters Qi and θi, (i = 1, 2, 3), are calibrated by
minimising the mean squared error between the stress-strain curves to failure from the FE simulation and
the experimental tests. The resulting initial yield stress and hardening parameters are given in Table 8.
Note that the presence of voids is not accounted for during the calibration of the phenomenological plasticity
model, and thus the work hardening of the materials is probably underestimated at large strains.

Table 8: Initial yield stress and parameters of the three-term hardening rule.

Material σ0 (MPa) θ1 (MPa) Q1 (MPa) θ2 (MPa) Q2 (MPa) θ3 (MPa) Q3 (MPa)

AA6060-O 27.6 1844.8 34.7 400.5 28.8 83.5 91.5
AA6060-T7 124.6 1182.8 27.7 1094.8 28.1 39.6 726.9
AA6060-T6 170.8 549.2 19.9 476.3 17.8 70.0 124.9
AA6082.25-O 57.6 2661.3 44.6 382.2 32.6 120.8 91.0
AA6082.25-T7 163.6 1300.1 28.9 1301.2 40.7 52.3 232.9
AA6082.25-T6 299.5 470.5 28.5 485.0 29.8 50.0 279.4
AA6082.50-O 37.1 2009.9 39.3 233.6 30.9 208.2 69.5
AA6082.50-T7 189.9 1000.0 20.0 1366.5 41.1 29.3 153.5
AA6082.50-T6 284.1 8231.8 20.7 320.4 32.5 300.9 33.6

620
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Figure 10: Finite element mesh of the diabolo-shaped specimen, with tensile axis along the x2 axis (TD).

To determine the partitioning into isotropic and kinematic hardening and the parameters controlling
work-hardening stagnation and permanent softening, the reversed loading tests subjected to 10% and 40%
pre-compression are simulated. Figure 10 shows the FE mesh of the diabolo-shaped specimen, and again
only one-eighth of the specimen is modelled to reduce computational time. Symmetry boundary conditions
are applied, and at the end of the specimen, boundary conditions to replicate conditions at the threaded625

section are enforced. Linear eight-node elements with selective-reduced integration (C3D8) are used in
Abaqus/Standard, where the dimension of the centre-most element is 0.12 × 0.12 × 0.12 mm3. As before,
the FE model is coupled to LS-OPT in the calibration procedure, and the mean squared error between the
stress-strain curves of the FE simulation and the experimental tests is minimised by varying the relevant
parameters: κ1, κ2, κ3, cp, kr, cr and qr. The resulting parameters are given in Table 9 and Table 10.630
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Table 9: Parameters controlling the partitioning into isotropic and kinematic hardening.

Material κ1 κ2 κ3

AA6060-O 1.0000 0.4368 1.0000
AA6060-T7 0.3589 0.5986 1.0000
AA6060-T6 0.4751 0.8193 1.0000
AA6082.25-O 0.9304 0.2284 1.0000
AA6082.25-T7 0.6430 0.0000 1.0000
AA6082.25-T6 0.0000 0.0000 1.0000
AA6082.50-O 0.9418 0.0000 1.0000
AA6082.50-T7 0.4847 0.0000 1.0000
AA6082.50-T6 0.0000 0.3269 1.0000

Table 10: Parameters governing work-hardening stagnation and permanent softening.

Material cp kr (MPa) cr qr

AA6060-O 26.1 2164.8 12.3 2.82
AA6060-T7 13.9 1953.8 0.0 0.00
AA6060-T6 10.5 1441.5 0.0 0.00
AA6082.25-O 11.6 1127.3 32.4 0.27
AA6082.25-T7 7.1 1025.2 28.8 0.02
AA6082.25-T6 19.2 2688.1 6.9 2.90
AA6082.50-O 13.7 1262.1 24.9 0.72
AA6082.50-T7 7.2 1500.7 0.0 0.00
AA6082.50-T6 13.2 1414.1 0.0 0.00

5.3. Loading histories from the reversed loading tests

The FE model of the diabolo-shaped specimen in Figure 10 is now subjected to the same load histories
as applied in the reversed loading tests, using the phenomenological plasticity model with the calibrated
parameter set. As before, the simulations are performed in Abaqus/Standard. Figure 11 presents the stress-
strain curves from the finite element simulations together with the experiments. Generally good agreement635

is observed between the experimental and numerical curves, and especially good agreement is found for the
AA6082.25 alloy. For the two other alloys, small discrepancies are observed as the stress level in compression
and in monotonic tension is slightly higher in magnitude in the simulations than in the experiments, except
for the AA6060 alloy in temper O.

The deviations may come from inaccuracies in the calibrated yield surfaces, or the fact that the phe-640

nomenological model does not account for the evolution of the yield surface. During plastic deformation
the crystallographic texture of the materials will evolve and affect the yield surface of the material and
the plastic response of the specimen. From Figure 4, it was observed that the AA6060 alloy developed
a diamond-shaped fracture surface, which the phenomenological model is not fully able to recreate. This
will yield inaccuracies, since the logarithmic strain measure is based on an elliptical cross-section area, as645

explained in Section 3.1. A discussion of this source of error is provided in Frodal et al. (2017). In addition,
the strain path change model is not fully able to recreate the work-hardening stagnation observed for the
alloys in temper O, as the experimental curves show that this transient appears to decrease for larger pre-
compression levels. Also after the transient phase the resumed work-hardening rate deviates from that of
the experiments for the alloys in temper O. This may be caused by the incorrectly described work-hardening650

stagnation behaviour as it would lead to an earlier localisation of deformation in the centre of the notch
area. For the AA6082.50 alloy in temper T7, the permanent softening is overestimated for 10, 20 and 30%
pre-compression, whereas it is well predicted for the 40% pre-compression curves used in the calibration
process.
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Figure 11: Stress-strain curves for the three alloys in different tempers, from experiments (black curves) and finite element
simulations (blue curves), until failure in the experiment.

Figure 12 shows the stress-strain curves for the AA6082.25 alloy in T7 temper, including finite element655

simulations with different hardening models. Here the importance of the strain path change model is
revealed. It is seen that the simulations with either isotropic hardening or combined isotropic and kinematic
hardening do not capture the permanently reduced stress level in tension after load reversal. In contrast,
the full model, involving all the parameters calibrated above, represents the stress level and the response of
the specimen accurately, which is important when investigating failure.660

The Lankford coefficients calculated from the finite element simulations are compiled in Table 11. Com-
paring the coefficients with the experimental values in Table 3, it is found that the coefficients for all
tempers of the AA6082.25 alloy are in good agreement with the experimental values. For the two other
alloys, the simulated Lankford coefficients typically overestimate the plastic anisotropy, with the exception
of the AA6060 alloy in temper O and the AA6082.50 alloy in temper T6. Further, the numerical model665
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Figure 12: Stress-strain curves for the AA6082.25 alloy in T7 temper, from experiments and finite element simulations with
different hardening models. Note that the experimental (black) curves lie under the (blue) curves for the full model.

does not capture the evolution of the Lankford coefficients, with increasing pre-compression as seen in the
experiments. This indicates that the yield surface evolves with plastic deformation, affecting the response
of the specimen.

Table 11: Calculated Lankford coefficients in tension, compression and in tension after pre-compression from the finite element
model of the reversed loading tests.

Material Tension Compression
In tension In tension In tension In tension
after 10% after 20% after 30% after 40%

pre-compression pre-compression pre-compression pre-compression

AA6060-O 1.04 0.96 0.93 0.92 0.90 0.94
AA6060-T7 1.67 1.59 1.52 1.48 1.50 1.54
AA6060-T6 1.62 1.59 1.49 1.43 1.43 1.43
AA6082.25-O 0.78 0.76 0.81 0.82 0.81 0.81
AA6082.25-T7 0.91 0.89 0.92 0.93 0.94 0.94
AA6082.25-T6 1.00 1.00 0.99 1.00 1.00 0.99
AA6082.50-O 0.25 0.26 0.30 0.33 0.35 0.38
AA6082.50-T7 0.30 0.29 0.35 0.41 0.44 0.44
AA6082.50-T6 0.52 0.49 0.55 0.57 0.61 0.62

The loading and deformation histories are then extracted from the critical element in the full model,
i.e., the element where fracture is assumed to initiate. The critical element is assumed to be located in the670

centre of the specimen where the stress triaxiality is the highest at material failure. Due to the orthotropic
material symmetry, the stress state of this element is already in the principal stress space. Following Dæhli
et al. (2017), we can write the normal stress components on vector form asΣ11

Σ22

Σ33

 = Σvmeq

 2
3

 cos θL
cos(θL − 2π

3 )
cos(θL + 2π

3 )

+ T

1
1
1

 (38)

where Σvmeq is the equivalent von Mises stress, θL is the deviatoric angle, and T is the stress triaxiality defined
as675

T =
Σkk

3Σvmeq
(39)
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Note that capital letters are now used for stress related quantities to emphasise that they are the macroscopic
quantities of the unit cell model in Section 5.4.

The ratios between the principal stress components are uniquely defined by the stress triaxiality ratio and
the deviatoric angle. Thus, the non-proportional loading path that will be enforced on the unit cell model
is uniquely defined by the stress triaxiality ratio and the deviatoric angle as functions of the accumulated680

von Mises strain, which is given by

Evmacc =

∫ t

0

√
2

3
D′ijD

′
ijdt (40)

where D′ij is the deviatoric part of the rate of deformation tensor.
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Figure 13: Stress triaxiality ratio versus accumulated von Mises strain in the centre element from the reversed loading tests.
The point corresponding to failure in the experiments is indicated with a cross.

The stress triaxiality ratio and the deviatoric angle as functions of the accumulated von Mises strain
from the critical element are shown in Figure 13 and Figure 14, respectively. The point corresponding to
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Figure 14: Deviatoric angle versus accumulated von Mises strain in the centre element from the reversed loading tests. The
point corresponding to failure in the experiments is indicated with a cross.

failure in the experiments is indicated with a cross. The plastic anisotropy, strength and work hardening of685

the materials are seen to have a great impact on the evolution of the triaxiality and the deviatoric angle,
and are thus assumed also to affect the ductile failure. Also, the evolution after pre-compression is distinct
from monotonic tension for a given material. The curves are different for each pre-compression level, caused
by the change in specimen geometry and work hardening of the material. The reader should note here that
a deviatoric angle of 300◦ and 120◦, corresponds to a Lode parameter of +1 and −1, respectively.690

5.4. Unit cell modelling

To investigate possible fracture mechanisms involved during the reversed loading tests, unit cell simula-
tions are conducted. The non-proportional loading paths extracted from the critical element in Section 5.3
are enforced on the unit cell. The unit cell is modelled with a rigid particle in the centre and a matrix
material governed by the phenomenological plasticity model given in Section 4.2.695
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The material region defined by the critical element in Section 5.3 is now represented by the unit cell
model, see Figure 15a. Due to the orthotropic symmetry of the material and the stress and strain state
of the material region, i.e., the orthotropic symmetry axes coincide with the principal directions of stress
and strain, only one-eighth of the unit cell is modelled to reduce computational time. Figure 15b shows
the FE mesh of the unit cell model used for the AA6082.50 alloy in temper O, with approximately 15 000700

elements. The particle is modelled as an analytical rigid part in Abaqus/Standard, and is excluded from
the figure since it has no mesh. The FE model consists of 5000 to 18 000 linear eight-node elements with
selective-reduced integration (C3D8), where the number of elements used depends on the plastic anisotropy
and ductility of the material at hand. A thorough mesh convergence study was conducted for each material,
but these details are omitted here for brevity.

2L

2L

2L

x2

x3

x1

(a) (b)

Figure 15: (a) The unit cell model with dimensions 2L× 2L× 2L, and (b) the finite element mesh of the one-eighth model, for
the AA6082.50 alloy in temper O.

705

The dimensions of the unit cell are taken to be equal along the orthotropic symmetry axes, i.e., L1 =
L2 = L3 = 2L, where L is the length of the one-eighth model, Figure 15b. The rigid particle in the centre
is spherical, i.e., R1 = R2 = R3 = R, with no cohesion to the matrix material. Hence, the unit cell model
represents a uniform distribution of equally spaced, pre-nucleated voids with equally sized spherical particles
inside, where we neglect any effects of initial void/particle shape, spatial distribution and debonding.710

Periodicity is ensured by enforcing the exterior boundaries of the unit cell model to remain straight
during deformation. A friction-less surface to surface contact formulation is used for the contact between
the void surface and the analytical rigid particle. To impose the non-proportional loading history to the
unit cell, non-linear kinematic constraints are used. Following Dæhli et al. (2016b, 2017), based on the work
of Faleskog et al. (1998) and Kim et al. (2004) who introduced a technique for proportional loading of the715

unit cell, the principal stress ratios are introduced as

ψ1 =
Σ11

Σmax
, ψ2 =

Σ22

Σmax
, ψ3 =

Σ33

Σmax
(41)

where Σmax = max(Σ11,Σ22,Σ33). Hence, by Equation (38), the principal stress ratios are uniquely defined
by the stress triaxiality ratio and the deviatoric angle as functions of the accumulated von Mises strain, see
Figure 13 and Figure 14.

The multi-point constraint (MPC) subroutine in Abaqus/Standard is used to impose the non-linear720

kinematic constraints to the unit cell model. The MPC subroutine is supplied with the principal stress
ratios that are updated incrementally with the accumulated von Mises strain to enforce the non-proportional
loading path to the unit cell model. For further details regarding the non-linear kinematic constraints, the
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reader is referred to Faleskog et al. (1998); Kim et al. (2004); Barsoum and Faleskog (2007); Cheng and Guo
(2007); Vadillo and Fernández-Sáez (2009); Wong and Guo (2015); Liu et al. (2016) and Dæhli et al. (2017).725

The initial void/particle volume fraction of the unit cell model is given by

f0 =
Vv,0
Vuc,0

=
πR3

6L3
(42)

where Vv,0 and Vuc,0 are the initial volume of the void/particle and the unit cell model, respectively. For
each material f0 is calibrated to the monotonic tension test on the diabolo-shaped specimen. Thus, f0 is
adjusted such that the point of coalescence in the unit cell model corresponds to the point of failure in
the experimental tests under monotonic tension. This is achieved by making sure that the accumulated730

von Mises strains in the unit cell model at coalescence and the critical element at failure are equal. In the
current work, we define coalescence as the point where the deformation mode of the unit cell model becomes
uniaxial (Koplik and Needleman, 1988).

The calibrated value of f0 will here be bounded from above by the measured particle fractions of the
materials. The measured fractions of primary particles are fp = 0.0093, fp = 0.0120 and fp = 0.0139 for735

the AA6060, AA6082.25 and AA6082.50 alloys, respectively (Frodal et al., 2017). The calibrated values of
f0 are given in Table 12.

Table 12: Initial void/particle volume fractions.

Material f0

AA6060-O 0.0015
AA6060-T7 0.0006
AA6060-T6 0.0022
AA6082.25-O 0.0025
AA6082.25-T7 0.0075
AA6082.25-T6 0.0120
AA6082.50-O 0.0078
AA6082.50-T7 0.0139
AA6082.50-T6 0.0139

For the AA6082.25 in T6 temper and the AA6082.50 alloy in T7 and T6 temper, f0 is restricted by the
measured particle fraction. In order for these materials to have coalescence of the unit cell corresponding to
failure in the experiments subjected to monotonic tension, the calibrated values of f0 were 0.0320, 0.0265 and740

0.1000 for the AA6082.25 alloy in T6 temper and the AA6082.50 alloy in T7 and T6 tempers, respectively.
These high values of f0 indicate that other failure mechanisms and effects than those included in the unit
cell model are present, e.g., effects of the large grain size for the AA6082.50 alloy, which reduce the material
ductility (Frodal et al., 2017). Thus, for these materials the point of coalescence in the unit cell model will
not coincide with failure in the experiments subjected to monotonic tension.745

For the other materials, a lower value of f0 than the measured particle fraction was found from the
calibration, indicating that only a portion of the particles nucleate voids. By examining Table 8 and
Table 12 it is apparent that f0 varies with the strength of the material, i.e., a higher strength typically
yields a higher value of f0. It is reasonable to assume that this is linked to a higher void nucleation rate
when the stress level is increased. For the AA6060 alloy, the calibrated value of f0 is greater for temper O750

than for temper T7 even though the latter has the higher strength. This is likely related to the significant
differences observed in the stress triaxiality level, Figure 13, the deviatoric angle, Figure 14, and the work
hardening of the different tempers for this alloy. Note that care should be taken when interpreting the
results and microstructural input of the unit cell model, as this model represents complex materials in an
idealised way.755
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5.5. Unit cell results

The unit cell model is now subjected to all the non-proportional loading paths given in Figure 13 and
Figure 14, i.e., all pre-deformation levels for all the materials. Figure 16 shows the response of the unit cell
model in terms of the normalised von Mises stress versus the accumulated von Mises strain. The stress-strain
curves obtained with the unit cell model are markedly different for the various alloy-temper combinations.760

However, the stress-strain curves for the three materials in O temper are similar. These materials have the
greatest hardening and exhibit work-hardening stagnation after pre-compression.
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Figure 16: Macroscopic stress-strain curves in terms of normalized von Mises stress and accumulated von Mises strain for the
unit cell model. The point corresponding to coalescence is indicated with a cross.

For some of the materials, the stress level after pre-compression is lower than for monotonic tension, as
clearly seen for the AA6060 alloy in T7 temper, due to the permanent softening of the material after load
reversal. A softening effect is also observed in compression after approximately 20% pre-deformation for the765

AA6082.50 alloy in temper T7 and T6. This is caused by the low work hardening in combination with the
shape of the yield surface for these materials, as the von Mises stress curves from the critical element of the
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diabolo-shaped specimen also exhibit the same trend. Thus, this is an effect of the metal plasticity as the
stress state moves in stress space along the yield surface of the material.

Figure 17 shows plots of the initial configuration and the configuration at the onset of void coalescence770

for the AA6082.25 alloy in temper O. Comparing the deformed configuration at the onset of coalescence
after monotonic tension and after 40% pre-compression, it is apparent that the local matrix accumulated
plastic strains are higher after pre-compression. Also the shape and size of the void are different after 40%
pre-compression compared to monotonic tension.
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Figure 17: Initial and deformed configuration plots of the unit cell model with fringes of matrix accumulated plastic strain for
the AA6082.25 alloy in temper O, depicted in the x1−x2 (ED-TD) plane. (a) Initial configuration, (b) deformed configuration
at onset of void coalescence after monotonic tension and (c) deformed configuration at the onset of void coalescence after 40%
pre-compression. In the centre a (white) particle is shown.

Figure 18 depicts the void growth in terms of the normalised void volume fraction versus the accumulated775

von Mises strain for the unit cell model, where the current void volume fraction is defined as

f =
Vuc − Vm
Vuc

(43)

Here, Vuc is the current volume of the unit cell and Vm is the current volume of the matrix material, i.e.,
the sum of all integration point volumes. The void growth is distinct and evolves differently after pre-
compression for the different materials. After pre-compression the growth rate tends to be higher than
for monotonic tension. This is the case for all the materials except the AA6082.25 alloy in T6 temper,780

where the void growth rate appears to decrease with increasing pre-compression after load reversal. For
the AA6060 alloy in temper T7 and T6, the initial growth rate after load reversal is lower for the unit
cell subjected to 40% pre-compression than monotonic tension, but after some straining the growth rate
increases beyond that observed for monotonic tension. The critical void volume fraction, i.e., the void
volume fraction at coalescence, is seen to increase with increasing pre-compression for all the materials. The785

point corresponding to coalescence is indicated with a cross in the figures.
The evolution of the void and particularly the void aspect ratios R1/R2 and R3/R2 can be seen in

Figure 19. The void is prolate/oblate in the x1-x2 plane if the ratio R1/R2 is less/greater than unity.
Similarly, a value of R3/R2 less/greater than unity implies a prolate/oblate void in the x2-x3 plane. The
void aspect ratios have initial values equal to unity, i.e., a spherical void in the unit cell. The shape of790

the void for the unit cell subjected to monotonic tension evolves in the beginning of the deformation into a
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Figure 18: Normalized void volume fraction versus the accumulated von Mises strain for the unit cell model. The point
corresponding to coalescence is indicated with a cross.

prolate spheroid for all the materials. As deformation continues and close to coalescence, the void becomes
prolate along one of the material directions and oblate in the other for some of the materials. This is typical
for the AA6060 and AA6082.50 alloys in T7 and T6 temper, while the other materials preserve the prolate
void shape until coalescence.795

During compression the void is seen to separate from the particle for some of the materials in one of
the directions normal to the compression axis (TD). This is observed for nearly all the materials except
the AA6082.25 alloy in T7 and T6 temper. The amount of separation and when separation occurs are
dependent upon the material. In particular, the AA6060 and AA6082.50 alloys in O temper are seen to
exhibit separation from the beginning of the compression phase, as the void aspect ratio is greater than unity.800
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Figure 19: Void aspect ratios versus the accumulated von Mises strain for the unit cell model. The point corresponding to
coalescence is indicated with a cross.

In contrast, the AA6082.50 alloy in T7 and T6 temper only shows sign of separation after approximately
30% compression. After load reversal, the response is also different between alloys and from the response
in monotonic tension. The materials exhibiting a prolate void shape along one material axis and an oblate
void shape along the other axis for monotonic tension also exhibit this response after load reversal. This
transition from a purely prolate shape to a combination of a prolate and oblate shape appears to occur after805

less deformation in tension after load reversal than for monotonic tension. The AA6060 and AA6082.50
alloys in temper T7 and T6 display a similar evolution of the void aspect ratio. The largest difference being
that the oblate shape evolves along the x3 axis (ND) for the AA6060 alloy, while it evolves along the x1 axis
(ED) for the AA6082.50 alloy. This is related to the anisotropy of these alloys, as the texture components
of the Goss and the rotated cube texture for the AA6060 and AA6082.50 alloy, respectively, are related by810

a 90◦ rotation about the x2 axis (TD).
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We can now relate the accumulated von Mises strain at coalescence in the unit cell to that of the
critical element of the diabolo-shaped specimen. Thus, we can find the logarithmic strain at coalescence,
as calculated from the cross-section area of the specimen. Fracture initiation in the specimen predicted by
the unit cell can then be compared to the experimental results. Figure 20 shows the failure strain and the815

relative failure strain versus pre-compression level for the experiments and the finite element analyses based
on the unit cell simulations.

0 10 20 30 400.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

Pre-compression (%)

Fa
ilu

re
st

ra
in

Failure strain
Relative failure strain
Experiment
Unit cell

(a) AA6060-O

0 10 20 30 400
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pre-compression (%)

Fa
ilu

re
st

ra
in

(b) AA6060-T7

0 10 20 30 400
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pre-compression (%)

Fa
ilu

re
st

ra
in

(c) AA6060-T6

0 10 20 30 400
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pre-compression (%)

Fa
ilu

re
st

ra
in

(d) AA6082.25-O

0 10 20 30 40−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Pre-compression (%)

Fa
ilu

re
st

ra
in

(e) AA6082.25-T7

0 10 20 30 40−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

Pre-compression (%)

Fa
ilu

re
st

ra
in

(f) AA6082.25-T6

0 10 20 30 400
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pre-compression (%)

Fa
ilu

re
st

ra
in

(g) AA6082.50-O

0 10 20 30 40−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

Pre-compression (%)

Fa
ilu

re
st

ra
in

(h) AA6082.50-T7

0 10 20 30 40−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

Pre-compression (%)

Fa
ilu

re
st

ra
in

(i) AA6082.50-T6

Figure 20: Failure strain, εf , and relative failure strain, εr, versus pre-compression level from experiments and finite element
analyses of unit cells. The relative failure strain is the strain to failure measured with respect to the compressed configuration.

Studying the results for the AA6060 alloy in Figure 20, it is observed that the predicted relative failure
strain decreases from 0 to 10% pre-compression for all the tempers, unlike in the experiments. Then, the
predicted relative failure strain increases for further pre-compression for the AA6060 alloy in temper O,820

whereas it decreases until 20% pre-compression before it increases again for the AA6060 alloy in temper
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T7 and T6. It is clear that the applied unit cell model is incapable of predicting the large increase in the
relative failure strain with increasing pre-compression as observed in the experiments. For the AA6060
alloy in temper O, the predictions are closer to the experimental results. This indicates that there are
also other mechanisms involved in the fracture process than those included in the unit cell model that are825

particularly important for the T7 and T6 tempers of this alloy, see Section 6. Considering the results for
the AA6082.25 alloy in Figure 20, it is seen that the simulations predict an almost constant or a small
increase in the relative failure strain with increasing pre-compression for all the tempers. A small increase
is observed for the AA6082.25 alloy in temper T7 and T6, and the evolution predicted for the T6 temper is
approximately equal to that observed in the experiments. The failure strain is higher in monotonic tension830

in the simulations than in the experiments for this material. This is because the initial void/particle fraction
of the unit cell was restricted by the measured particle fraction for the AA6082.25 alloy in T6 temper and
the AA6082.50 alloy in T7 and T6 tempers. Again this indicates that there are also other mechanisms
involved in the fracture process, as will be discussed in Section 6. For the AA6082.50 alloy in Figure 20,
it is observed that the predicted relative failure strain is approximately constant for all the tempers with835

increasing pre-compression. This is in agreement with the experiments.

6. Discussion

From the experimental results presented in Figure 2, significant differences are observed in the tensile
ductility between the alloys and between the tempers within the same alloy. While the grain structure
and anisotropy differ between the alloys, they are similar for the different tempers of the same alloy. In840

contrast, the strength and work-hardening behaviour depends markedly on the tempering and it transpires
that these characteristics are important for the tensile ductility of an alloy. Figure 3 clearly suggests that
the ductility of the materials in monotonic tension depends upon their yield strength. Previous studies
indicate that the failure strain decreases linearly with increasing yield strength for aluminium alloys with
similar microstructures (Lloyd, 2003; Westermann et al., 2014; Pedersen et al., 2015; Hannard et al., 2016).845

In Figure 2, pre-compression is found to either increase the tensile ductility compared to monotonic tension
or to leave it approximately constant. In contrast, Bao and Treitler (2004) observed a decrease in the tensile
ductility for an AA2024-T351 aluminium alloy with increasing pre-compression, and attributed the reduction
in tensile ductility to particle fracture and an increased dislocation density after pre-compression. For an
X65 steel, a decrease in tensile ductility has been observed after pre-compression as the failure mechanism850

may change from ductile to brittle (Kristoffersen et al., 2013).
For the AA6060 alloy in T7 and T6 temper, areas of intercrystalline fracture were observed on the

fracture surface (Frodal et al., 2017). After pre-compression, the amount of intercrystalline fracture was
found to decrease with increasing pre-compression, leading to an increase in the tensile ductility for these
materials. On the other hand, intercrystalline fracture was not observed for the AA6060 alloy in temper855

O, and the amount of intercrystalline fracture for the AA6082.25 alloy was not seen to change after pre-
compression. The precipitation free zones (PFZs) located adjacent to the grain boundaries are assumed to
be the cause of intercrystalline fracture in these alloys (Lohne and Naess, 1979). In these weaker zones,
the plastic deformation can localise, and crack initiation and growth may occur more easily (Dowling and
Martin, 1976; Morgeneyer et al., 2008; Khadyko et al., 2016b). A possible reason for the reduced amount860

of intercrystalline fracture in the AA6060 alloy in temper T7 and T6 after pre-compression is strengthening
of the PFZs during compression (Christiansen et al., 2018).

When using polycrystal plasticity calculations to predict the yield surface of a material, the crystal
plasticity model and the calibrated yield surface are in most cases not capable of precisely capturing all
experimental observations, although good agreement has been obtained when more refined representations865

of the polycrystal aggregate are used (Zhang et al., 2015; Zhang et al., 2016). In the present study, the
yield surfaces calibrated from crystal plasticity finite element simulations are deemed sufficiently accurate.
The plastic anisotropy is generally overestimated for the AA6060 and AA6082.50 alloys, while the response
of the AA6082.25 alloy is captured accurately, as seen by comparing Table 3 and Table 11. However, this
comparison gives only an indication on the performance of the calibrated yield surfaces, as more experimental870

tests are needed for a complete assessment. Although the main source of anisotropy is the crystallographic
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texture of a material (Engler and Randle, 2009), the grain morphology may have a noticeable effect (Delannay
et al., 2009). The AA6060 alloy investigated here has a recrystallised, equi-axed grain structure and the RVE
used in the crystal plasticity finite element simulations represents this morphology with reasonable accuracy.
In contrast, the RVE gives a less accurate description of the fibrous grain structure for the AA6082.25875

alloy, while the calibrated yield surfaces for this alloy appear to be more accurate based on the limited
experimental validation. Using a higher resolution mesh could have resolved the inter-grain gradients and
given a more accurate description of the underlying microstructure, but at the cost of significantly increasing
the computational time.

During plastic deformation the crystallographic texture in the deformed area of the specimens will evolve880

and affect the shape of the yield surface. Preliminary crystal plasticity finite element calculations of the
materials suggest that during compression the cube texture component of the AA6060 and AA6082.25 alloys
weakens. In contrast, the rotated cube texture of the AA6082.50 alloy strengthens during compression. In the
subsequent tension stage, the trends are reversed and the texture of the AA6060 and AA6082.25 strengthens,
whereas it weakens for the AA6082.50 alloy. Thus, when the strain is back to zero, the texture is similar to885

the initial texture of the alloy.
The strain path change model proposed by Mánik et al. (2015) captures the main effects of the strain

reversal with reasonable accuracy, cf. Figure 11. However, the model is incapable of describing the evolution
of the work-hardening stagnation with increasing pre-compression observed for the alloys in temper O. It is
seen in Figure 12 that accurate modelling of the strain reversal effects is particularly important for the stress890

level after load-reversal and close to failure, which would otherwise be highly overestimated. An accurate
description of the loading history and the void growth rate depends critically on the hardening behaviour
(Lecarme et al., 2011).

In Figure 13 and Figure 14, differences in the loading histories are observed between the alloys and
between the different tempers of the same alloy. This is clearly observed for the AA6060 alloy, as the stress895

triaxiality is significantly lower in magnitude for the O temper than for the two other tempers. The triaxiality
level is also lower for the other alloys in temper O, where the work hardening of the materials is the largest.
Thus, the high work hardening of the O tempers reduces the triaxiality level and leads to an increased
failure strain in monotonic tension. After pre-compression, the work-hardening stagnation observed for the
alloys in temper O leads to plastic localisation and increased triaxiality. In addition, the compression of the900

specimen leads to a lower curvature of the neck, thus reducing the triaxiality after re-yielding in tension.
It is reasonable to expect that the work-hardening stagnation reduces the failure strain, while the lower
curvature of the neck after pre-compression has the opposite effect.

The loading history is also affected by the plastic anisotropy. For the stress triaxiality ratio, the effect
of anisotropy seems to be as large as the effect of strength and work hardening. In contrast, the effect of905

anisotropy on the deviatoric angle appears to be even larger than that of the strength and work hardening.
Thus, the anisotropy affects the location of yielding in stress space, as observed in the deviatoric plane. The
anisotropy also affects the void aspect ratio, see Figure 19, and for the materials with the highest strength
and lowest work hardening the influence is seen to be the largest.

From the results of the unit cell simulations, see Figure 20, it is found that the unit cell model predicts an910

almost constant tensile ductility after pre-compression. Albeit the strength, work hardening and anisotropy
vary between the different materials, the failure mechanism described by the unit cell model is the same,
namely growth and coalescence of a uniform distribution of pre-nucleated voids with equally sized particles
inside. The prediction of an almost constant tensile ductility matches the experimental observations for
some of the materials. In addition, other physical mechanisms will play an important role in the ductile915

failure process. The large grains observed for the AA6082.50 alloy will have an effect on the strain to failure
and are critical in the ductile failure process, as the large grains increase the likelihood of intercrystalline
fracture and reduce the ductility of the alloy (Frodal et al., 2017).

The unit cell adopted in the present study represents materials consisting of a matrix and pre-nucleated
voids with particles inside. In the actual materials, a combination of initial voids, with and without particles920

inside, and differently shaped particles, with and without cohesion to the matrix material, is observed (Frodal
et al., 2017). During the extrusion process, primary particles have been observed to crack and debond from
the matrix, leading to a diversity of pre-nucleated voids in the vicinity of particles. When the material is
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deformed in compression, voids without particles inside, voids in the vicinity of smaller particles and voids
between cracked particles may shrink and close any gaps between the matrix and particle and between925

cracked particles. This delays the void growth in the subsequent tension stage and leads to increased tensile
ductility.

Another effect not accounted for in the unit cell model is the influence of nucleation and debonding of
the particle from the matrix material. During compression, the cohesion between the particle and matrix
may increase or decrease depending on the underlying physical mechanisms present at the interface. The930

void growth rate in the unit cell model after load reversal was observed to be initially lower than that for
monotonic tension for the AA6060 alloy in temper T7 and T6, see Figure 18. If nucleation was accounted for,
e.g., by including a cohesive zone between the matrix and particle, this would possibly reduce the nucleation
rate after pre-compression and lead to an increase in the tensile ductility. In contrast, particles can crack
during the compression phase and create new free surfaces where voids may grow during the tension stage935

(Bao and Treitler, 2004). This mechanism is more probable for the alloys with the highest strength, and
the result is lower tensile ductility. A combination of all the above-mentioned mechanisms is probably in
operation during the ductile failure process, and the importance of a certain mechanism will be different
depending on the alloy and temper combination.

7. Concluding remarks940

The influence of reversed loading on ductile failure for three aluminium alloys heat-treated to three differ-
ent tempers was studied by conducting reversed loading experiments and finite element unit cell simulations.
Diabolo-shaped specimens machined from extruded profiles were subjected to five different pre-compression
levels and pulled to fracture in tension. The three aluminium alloys used herein, i.e., AA6060, AA6082.25
and AA6082.50, had different grain structure, grain size and crystallographic texture, and the strength and945

work hardening varied between the alloys and with the heat treatment. The strain to failure in monotonic
tension was seen to decrease with increasing initial yield strength. After pre-compression, the tensile ductil-
ity is largely constant or exhibits a small increase for the majority of the materials, but for some materials
a larger increase is observed with increasing pre-compression level. Here, tensile ductility is defined as the
deformation capacity of a material after the pre-deformation.950

The yield surfaces determined by crystal plasticity finite element simulations give a fair representation of
the plastic anisotropy. For some of the materials the anisotropy is overestimated, but the adopted hierarchical
modelling framework is nonetheless promising. The importance of a plasticity model accounting for transient
and permanent effects after a strain reversal is demonstrated, as isotropic hardening or combined isotropic
and kinematic hardening is not sufficient to describe the stress-strain curves observed experimentally after955

the strain reversal.
In general, the unit cell simulations predict a largely constant tensile ductility with pre-compression, and

the strength, work hardening and anisotropy of the materials are found to have only a minor influence on the
effect of pre-compression, i.e., only a minor effect is observed on the evolution of the relative failure strain
with pre-compression. In contrast, the strength, work hardening and anisotropy have a larger influence on960

the deformation of the unit cell, and on the ductility in monotonic tension. Depending on the alloy and
temper, other physical mechanisms that are not accounted for in the unit cell model can have a significant
influence on the ductile failure process, e.g., inter-crystalline fracture induced by precipitate free zones
along the grain boundaries. Inter-crystalline fracture is difficult to account for in the current unit cell
framework and a localisation approach using imperfection analyses could be more appropriate to study this965

failure mechanism. Thus, further work will focus on simulations of the reversed loading experiments by
imperfection analysis.
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