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Problem Description

As computer simulations become more popular, construction of good design of computer
experiments is essential. The aim of this work is to evaluate different optimizing criteria
used to obtain good designs and to compare various designs, focusing on the multi-level
binary replacement (MBR) design.

This is to be carried out by conducting two comparison studies. The first should deal
with the evaluation of optimizing criteria. The second should be focused on comparing
various MBR designs based on different confounding patterns with other types of design
of computer experiments.

The designs to be constructed and compared in addition to the MBR designs are
based on latin hypercube sampling, orthogonal arrays and random sampling.
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Abstract

We have constructed four different types of designs for computer experiments. The
design types are based on latin hypercube sampling (LHS), orthogonal arrays (OA), ran-
dom sampling and the recently proposed multi-level binary replacement (MBR) design.
For each type of design we have attempted to find the best possible design out of a
certain number of constructed designs using three different optimizing criteria: the alias
sum of square criterion (ASSC), the L-criterion and a modified A-criterion. The chosen
design has then been tested by fitting an approximate model and calculating maximum
error (MAX) and root mean squared error (RMSE) values. We observed that out of the
three criteria applied the ASSC performed the best.

In addition to comparing criteria for optimizing the design choice, we have also
constructed non-optimized designs for comparing the different design types and the
different ways of constructing MBR designs. In this setting we observed that OA designs
performed well in general, whereas the MBR designs performed well when restricted to
a small number of factors.
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1 Introduction

When conducting experiments we want to make it less time-consuming and as cheap as
possible, but at the same time extract as much information as possible from it. In an ex-
periment we have different input variables or factors. These factors have different levels.
A factor can be either quantitative, where the levels are measured on a numeric scale,
for example ”time” or ”temperature”, or they can be qualitative, where we for example
can turn something on or off. Choosing the combinations of factors and levels to run
in order to maximize the information obtained for experiments with time or economical
restraints is the main topic for design of experiments (DoE). DoE are techniques for
choosing the input combinations in which to run.

There are different types of experiments. We often distinguish between physical
experiments and computer experiments. A physical experiment can be conducted in
for example a laboratory, an agricultural field or a factory. These physical experiments
contain random errors. Because of the random error we will not get the same result even
if we do exactly the same experiment with the same input combination several times.
A design for a physical experiment will often have the sample points placed along the
borders of the design space.

In computer experiments we will usually get the same output, result, when the same
input, combinations of factors and levels, is used in the experiment, thus we say that
computer experiments are deterministic. Deterministic computer experiments will not
have the random error we experience in physical experiments. Because of the lack of
error in deterministic computer experiments we wish to select the combination of factors
and levels differently than for physical experiments. The goal is often to minimize the
bias. Bias is the difference between the true and the estimated model. Designs for
computer experiments often seek to have their sample points uniformly spread on their
design space; they are so called space-filling designs.

Computer simulations, or computer experiments, are popularly used as an alterna-
tive to physical experiments. Designs for computer experiments are the main focus in
this thesis. We have especially focused on multi-level binary replacement (MBR) de-
sign recently presented in Martens, Måge, Tøndel, Isaeva, Høy & Sæbø (2010). Two
comparison studies have been conducted:

1. We tested the use of different optimizing criteria; criteria helping us choose the
best possible design out of a certain number of constructed designs. We have
tested and compared three different optimizing criteria: a modified A-criterion,
L-criterion and the alias sum of squares criterion (ASSC).

2. The MBR designs are constructed using fractional factorial designs. We used
different ways of constructing fractional factorial designs to see if there was one
giving better MBR designs than the others, and whether or not the best MBR
designs are favorable to other popular designs of computer experiments.

The designs used in the above mentioned comparison studies are based on latin hy-
percube sampling (LHS), orthogonal array (OA) sampling and the multi-level binary
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replacement design. In the optimizing criteria study we also constructed random de-
signs.

The thesis is organized in different sections, these are as follows:

2. Design of Experiments: A description of the different designs used in the compari-
son studies in sections 5 and 6. This section includes a short graphical description
of why the sample points in computer experiments are desired to be space-filling.

3. Metamodels: After finding a design and conducting the experiment, fitting an
approximated model may be desirable. For this purpose we use metamodels. There
are several popular metamodels used today. In this work we have focused on
polynomial models.

4. Comparison and Optimizing Criteria: In this section we present the optimizing
criteria tested in the first comparison study. Also the comparison criteria used in
both comparison studies are presented.

5. Comparison Study of Different Optimizing Criteria: In this section we present the
comparison study of the three different optimizing criteria tested in this paper.

6. Comparison Study of Confounding Patterns for the MBR Design: In this section
a comparison study of different confounding patterns for constructing fractional
factorial designs, used to find MBR designs, are tested. The MBR designs are also
compared to the results obtained using LHS and OA designs.

7. Discussion: A discussion of the results from the two comparison studies.
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2 Design of Experiments

Design of computer experiments are as mentioned different than traditional design of
experiments. In the classical designs the responses have a random error, which the
responses for computer experiments do not have. Also, computer simulations are deter-
ministic. Fang, Li & Sudjianto (2006) states a deterministic experiment as one where we
get the same output when using the same input. The true model is often unknown or
complex, and we seek to minimize the bias, the difference between the true model, f(x),
and the estimated model, g(x). For these two reasons space-filling designs are popularly
used for computer experiments, where all the sample points, n, are tried to be evenly
spread on the design space [0, 1]s, whereas the classical approach would be to place the
sample points on the border of the design space. This is graphically presented in figure
1.
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Figure 1: The plot to the left is a 3D plot of a classical Box Behnken design (BBD),
while the one to the right is a LHS design. We can see the sample points in the BBD
are placed in the center or on the border of the design space, while the LHS design has
its samples throughout the design space, thus it is space filling.

In Giunta, Wojtkiewicz Jr & Eldred (2003) a graphical explanation of why placing
the sample points on the border of the design space is advantageous for designs with a
random error is given, this is presented in figure 2.

A graphical presentation as to why the space-filling designs are preferable for com-
puter experiments is given in Nesbakken (2011), this is shown in figure 3.

There already exist some methods for finding space-filling designs, such as latin
hypercube sampling, orthogonal array sampling, random sampling, uniform designs and
sequence designs. Further descriptions of the designs can be found in for example Fang
et al. (2006) and Santner, Williams & Notz (2003). Designs used in the comparison
studies presented in sections 5 and 6 are described in the following, this include designs
based on latin hypercube sampling, orthogonal array sampling, random sampling and
multi-level binary replacement designs.
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(a) This figure shows how the effect
of the random error affects how well
the approximated model fits the true
model when the sample points are
close to each other.
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(b) The sample points are placed fur-
ther to the boundaries of the de-
sign space, the effect of the random
error gets smaller and the approxi-
mated model is a better fit to the
true model.

Figure 2: The true linear model is represented by the solid line, and the dotted line
represents the estimated linear model.
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(a) This is the modern placement of
the sample points, inside of the de-
sign space.
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x
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(b) This is the classical way of plac-
ing the sample points, on the border
of the design space.

Figure 3: The arched line is the estimated linear model, while the solid line is the true
linear model. We can see that the arched lined in the plot with sample points placed
inside the design space is a better fit to the true model.
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2.1 Pseudo-Monte Carlo Sampling

Pseudo-Monte Carlo sampling, or random sampling, is generated by using a pseudo
random number generator algorithm to choose the desired number of samples. An
advantage of the random designs is that they are easily implemented. However random
designs will often leave large areas empty, especially when unable to afford many samples,
since all the samples are randomly placed without any restrictions. More about pseudo-
Monte Carlo sampling can be found in Giunta et al. (2003). An example is given in
figure 4.
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Figure 4: A plot of a two-dimensional design constructed by pseudo-Monte Carlo sam-
pling, with n = 15 samples.

2.2 Fractional Factorial Design

Factorial designs have been widely used for experiments with several factors, where we
want to study the joint effect of the factors, often the main and interaction effects. The
factors are often assigned two levels, high and low. The levels can be represented by 1
and 0, + and −, or for factor A and B a, b and ab. By assigning each of the s factors two
levels, and with each combination of high and low occurring once, we get a 2s factorial
design, where 2s is the number of combinations. Having three factors, A, B and C we
get a 23 design, as illustrated in table 1.

When having many factors, 2s might combine to more runs than we wish to, or can
afford to, conduct. Then we might only use a fraction of the factorial design, giving us a
fractional factorial design. A fractional factorial design will in general be a (12)p fraction
of the full factorial design, giving 2s−p runs. When having a half-fractional design p = 1
and we will get 2s−1 runs. For a one-fourth of a factorial design p is set to 2 giving 2s−2

runs and so on.
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Run A B C Combination A B C
1 − − − (1) 0 0 0
2 + − − a 1 0 0
3 − + − b 0 1 0
4 − − + c 0 0 1
5 + + − ab 1 1 0
6 + − + ac 1 0 1
7 − + + bc 0 1 1
8 + + + abc 1 1 1

Table 1: A full factorial 23 design, presented in three different ways of denoting the high
and low levels.

When constructing and implementing a fractional factorial design we start by choos-
ing a set of design generators. This could for three factors, A, B and C, be C = AB.
This leads to the concept of a defining relation which in this case is I = ABC. Creating
a one-half fractional design with these three factors, we take the 23−1 = 22 full factorial
design, then add C by combining the two columns A and B. We can choose to use either
C = AB or C = −AB to get a fractional design. This is illustrated in table 2. Which full
factorial design we should start with depends on p. For example, if we want a one-fourth
fractional design, we set p = 2 and we start with the full factorial design 2s−p = 2s−2.

Run A B A B C = AB A B C = −AB
1 − − − − + − − −
2 + − + − − + − +
3 − + − + − − + +
4 + + + + + + + −

Table 2: The full 22 factorial design is shown in the first A and B columns. The 23−1

fractional design using C = AB is presented in the middle part. While the last A, B
and C = −AB is the 23−1 fractional design using the defining relation I = −ABC.

Traditionally the designs have been classified by a resolution and the design genera-
tors have been chosen to give the design the highest possible resolution. Resolution III,
IV and V are considered to be especially important, and defined as follows:

Resolution III: In these designs two-factor interactions can be aliased with main effects
or each other. But no main effects are aliased with other main effects.

Resolution IV: Two-factor interactions can be aliased with each other, but no main
effects are aliased with each other or two-factor interactions.

Resolution V: For these designs two-factor interactions are aliased with three-factor
interactions. While no main factor or two-factor interactions are aliased with
other main factors or two-factor interactions.
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In the comparison studies presented in sections 5 and 6 factorial or fractional factorial
designs are not used by themselves, but as a way of finding MBR designs. The MBR
designs are presented in section 2.5. The traditional way of creating fractional factorial
designs may not be optimal, this is further discussed in section 2.5. More on how
fractional factorial designs traditionally have been constructed and used can be found
in Myers & Montgomery (1995) and R.H. Myers & Walpole (2007).

2.3 Latin Hypercube Sampling

Latin hypercube sampling (LHS) is based on Latin square sampling. A latin square is
defined as:

Definition 2.1. An n×n matrix with n symbols as its elements is called a Latin square
of order n if each symbol appears in each row as well as in each column once and only
once.

An example of a latin square is: 
1 2 3 4
4 1 2 3
3 4 1 2
2 3 4 1

 .
Latin hypercube sampling is a form of generalization of the latin square sampling to
s dimensions. A latin hypercube consists of a matrix, A = n × s, with n rows and s
columns, with n being the number of levels for each of the s factors. A design based on
latin hypercube sampling will divide each of its factors into n bins of equal probability,
and for each factor there will only be one sample, randomly placed, in each bin. The n
samples in a LHS design is chosen following these restrictions:

1. Within each bin the sample should be randomly placed.

2. There should only be one sample in each bin for every one dimensional projection.

Fang et al. (2006) gives these equations for finding a LHS(n, s):

xjk =
πj(k)− U jk

n
(2.1)

where k = 1, . . . , n, j = 1, . . . , s and

xk = (x1k, . . . , x
s
k)

πj(1), . . . , πj(n), is a permutation of the integers 1, . . . , n

U jk ∼ Unif(0, 1).

In which bin the sample, xk, should be placed is determined by πj(k), and U jk determines
where in the bin the sample should be placed.
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When wanting to generate a LHS(8, 2), a LHS with 2 factors and 8 levels, we start
by generating two permutations of {1, 2, · · · , 8}. Then we generate a 8 × 2 matrix of
random numbers. We could for example end up with these two matrices:

π =



8 2
6 8
1 5
7 6
5 4
3 3
2 7
4 1


, U =



0.4213 0.1180
0.1999 0.9688
0.2511 0.7912
0.9274 0.0448
0.1458 0.1037
0.0495 0.7447
0.5299 0.2753
0.7219 0.7936


.

Using these matrices and equation (2.1) we find the LHS design to be:

x =
π −U
n

=
1

8





8 2
6 8
1 5
7 6
5 4
3 3
2 7
4 1


−



0.4213 0.1180
0.1999 0.9688
0.2511 0.7912
0.9274 0.0448
0.1458 0.1037
0.0495 0.7447
0.5299 0.2753
0.7219 0.7936




=



0.9473 0.2353
0.7250 0.8789
0.0936 0.5261
0.7590 0.7444
0.6068 0.4870
0.3688 0.2819
0.1838 0.8406
0.4098 0.0258


.

The plot of the example LHS design is shown in figure 5.
This approach for finding designs can also provide us with designs having sample

points poorly spread on the design space. For example can we end up with a design
having all its samples along a diagonal, as shown in figure 6.
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Figure 5: Plot of the example LHS. When making a projection to one dimension we can
see that there is only one sample in each bin.
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Figure 6: A plot of a bad LHS design. One can see that there is still only one sample
in each bin, but they are all placed along the diagonal, leaving most of the design space
empty.

2.4 Orthogonal Array Designs

Orthogonal array designs are based on orthogonal arrays, which are in Hedayat, Sloane
& Stufken (1999) defined as:

Definition 2.2. An n× s array A with entries from S is said to be an orthogonal array
with p levels, strength t and index λ (for some t in the range 0 ≤ t ≤ s) if every n × t
subarray of A contains each t-tuple based on S exactly λ times as a row.

S is a set containing p symbols, or levels. With s columns and n rows, there is one
element per row-column pair and entries of S is a collection of ns elements of S in n
rows and s columns. A is a n× s matrix, with its elements being 1, · · · , p with p being
the number of levels for the orthogonal array. The strength t gives information about
the number of columns where all the combinations appear an equal number of times.
An OA with strength t = 1 can be used to find a latin hypercube design. The index
λ depends on the number of rows each of the n bins in the n × s matrix appears. The
number of samples possible to construct for the OAs is given by the relationship n = λpt.
An example OA with n = 4 and s = 2:

A =


1 2
1 1
2 1
2 2

 .
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Each combination of 1 and 2 appear only once, and gives index λ = 1. An orthogonal
design can be extended to a U-type design, an algorithm is given in Fang et al. (2006):

For each column we replace r = n
p ones by a permutation of (1, · · · , r), r twos by a

permutation of (r+ 1, · · · , 2r), and so on until r ps are replaced by a permutation
of ((p− 1)r + 1, · · · , pr), giving us a U-type design.

Using the orthogonal array given above:
Then r = n

p = 4
2 = 2, and we change r = 2 ones by a permutation of (1, · · · , r) = (1, 2)

and r = 2 twos by a permutation of (r + 1, · · · , 2r) = (3, 4). We get the new design
matrix:

A =


1 4
2 2
3 1
4 3

 .
The orthogonal array based designs perform good, but we can not use any combination
of t, n, s, p and λ as we might want to - they might not exist.

2.5 Multi-Level Binary Replacement Design

The multi-level binary replacement (MBR) design was proposed by Martens et al. (2010).
It uses two level fractional designs and binary coding for creating multi-level designs.
And in this way the MBR design enables us to reduce the number of runs for the
experiment.

If k = 1, · · · , s where s is the the number of factors, the number of levels, L(k) for a
variable, xk, must be set to a power of 2, such that L(k) = 2M(k). M(k) is given when
we choose the number of levels, but M(k) is also the number of binary digits required
for a binary representation of the L(k) levels. The number of binary digits required to
represent all the levels of all factors is Mtot =

∑s
k=1M(k).

Creating a MBR design requires three different matrices:

1. The n × s matrix D where the column, dk, containing values ranging from 0 to
(L(k)− 1) representing the levels of the kth factor, xk, of the s factors.

2. The n×Mtot matrix F containing zeros and ones which combine to be the binary
representation of the matrix D.

3. The n×Mtot matrix G where 1 and −1 represent the ones and zeros in F .

An example of a multi-level binary replacement design with s = 2, L(k) = 4 for all
k and n = 4, with the corresponding matrices given in figure 7:
The matrix D will contain digits ranging from 0 to L(k)− 1, that is 0− 3. With L(k) =
4 = 2M(k) = 22, we get M(k) = 2 and the matrices F and G will be n ×Mtot = 4 × 4,
where each factor is represented by M(k) = 2 columns.

In figure 7 we see that the first row in D contains the elements 0 and 2, these
elements are in F represented by (0, 0, 1, 0), where (0, 0) is the binary representation of
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0 and (1, 0) is the binary representation of 2. The first row in F is further represented
by (−1,−1, 1,−1) in the first row of the matrix G. In this example M(k) is the same
for every factor k, but the design may also be applied when the different factors have
a different number of levels, giving different M(k)s. When constructing a MBR design
we use fractional factorial designs, from section 2.2, to find the matrix G. An example
using a full factorial design is shown in figure 8.

D =


0 2
1 1
2 0
3 3


(a)

⇔ F =


0 0 1 0
0 1 0 1
1 0 0 0
1 1 1 1


(b)

⇔ G =


−1 −1 1 −1
−1 1 −1 1

1 −1 −1 −1
1 1 1 1


(c)

Figure 7: An example of how a D, F and G can be, for s = 2, n = 4 and L(k) = 4.

D =



0 0
0 1
2 0
2 1
0 2
0 3
2 2
2 3
1 0
1 1
3 0
3 1
1 2
1 3
3 2
3 3


(a)

⇔ F =



0 0 0 0
0 0 0 1
1 0 0 0
1 0 0 1
0 0 1 0
0 0 1 1
1 0 1 0
1 0 1 1
0 1 0 0
0 1 0 1
1 1 0 0
1 1 0 1
0 1 1 0
0 1 1 1
1 1 1 0
1 1 1 1


(b)

⇔ G =



−1 −1 −1 −1
−1 −1 −1 1

1 −1 −1 −1
1 −1 −1 1
−1 −1 1 −1
−1 −1 1 1

1 −1 1 −1
1 −1 1 1
−1 1 −1 −1
−1 1 −1 1

1 1 −1 −1
1 1 −1 1
−1 1 1 −1
−1 1 1 1

1 1 1 −1
1 1 1 1


(c)

Figure 8: An example of how a D, F and G can be, for s = 2, L(k) = 4 and n = 16.

When implementing a MBR design we start by choosing a set of design generators
for constructing a fractional factorial design, matrix G. We name the s = 4 columns in
G a1, a2, b1 and b2, and let them be the binary representations of d1 and d2. For our
example, in figure 9, we have used the design generator b2 = a1a2b1, giving us the highest
possible resolution, to construct the fractional factorial design in matrix G. Further we
change all the −1s in G to 0s, and we obtain F . We then combine columns a1 and a2
in F to obtain the first column in D, and likewise use b1 and b2 to obtain the second
column in D.
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Looking at figure 9 we see the third row of G, G3· = (−1, 1,−1,−1) is transformed
to F 3· = (0, 1, 0, 0). We then convert the binary representation in F 3· to D3· = (1, 0),
by taking the first two elements in F 3· (0, 1) to be the binary representation of 1 and the
last two elements (0, 0) to be the binary representation of 0. A plot of the MBR design
based on the half-fraction design is shown in figure 10.

One question when constructing multi-level binary replacement designs is which de-
sign generator to choose. Because we use fractional factorial designs as a way of finding
MBR designs the design generators giving the best possible resolution is not necessarily
the best to use. Therefore two other methods for finding confounding patterns are also
used. We start by constructing a 2s−p full factorial design, before we find confounding
patterns:

1. The confounding pattern is found by first combining all the s − p columns, then
combining s − p − 1 of the s − p columns, then s − p − 2 and so on. If s = 5
and p = 2, giving us a one-fourth fractional design, the 23 full factorial design
will provide us with 3 columns, say A, B and C. We then set column 5 to be a
combination of columns A, B and C, ABC. Column 4 will be a combination of
s− p− 1 = 5− 2− 1 = 2 of the first three columns, so either AB, AC or BC. This
will leave us with a fractional factorial design of resolution III.

2. The second way is similar to the first, but only combinations of a odd number of
the first s− p columns are being used. This will give us a resolution IV fractional
factorial designs.

We wish to use different confounding patterns for constructing fractional factorial de-
signs to see if there is one specific giving us better MBR designs than the others. We
have earlier suggested that using fractional factorial designs having the highest possible
resolution may not give the best MBR designs, so in order to compare we have also used
traditional highest resolution confounding patterns in section 5 and 6 for comparison.

G =



−1 −1 −1 1
−1 −1 1 −1
−1 1 −1 −1
−1 1 1 1

1 −1 −1 −1
1 −1 1 1
1 1 −1 1
1 1 1 −1


(a) The half-fraction design, G.

F =



0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0


(b) The half-fraction design, G,
changed back to F .

D =



0 1
0 2
1 0
1 3
2 0
2 3
3 1
3 2


(c) The final design matrix, D.

Figure 9: How a half-fraction design and the MBR design constructed from it look like
when using the design generator b2 = a1a2b2.
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Figure 10: Plot of the example MBR design in figure 9 using the confounding b2 = a1a2b1
to obtain the fractional factorial design G.

When making a projection of a multi-level binary replacement design the samples
are often arranged in a symmetrical pattern, as shown in figure 11; if we draw a line at
x1 = 0.5 we can see that the pattern is symmetrical about it.
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Figure 11: One of the two-dimensional projections of a five factor design with 8 levels,
scaled down to [0, 1]2.
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3 Metamodels

After constructing a design and performing the computer experiment on the chosen
sample points, we are often interested in finding an approximated model for the true
model that might be complex or unknown. This is often referred to as a metamodel.
In a deterministic experiment the relationship between the input and the output can be
given as:

output variables = f(input variables). (3.1)

In equation 3.1 f is the function we want to approximate by using a metamodel. A
graphical representation of the relationship between the approximated model, ŷ, and
the true model, y, is given in Fang et al. (2006) and shown figure 12.

x1

xs

y outputinput system y = f(x)

metamodel ŷ = g(x)

Figure 12: A graphical presentation of a metamodel in computer experiments.

The goal of a metamodel is often that the model should give insight into the rela-
tionship between the input and the output, it should be close to the real model, but
faster to run, and it should give information about the untried points.

In Praveen & Duvigneau (2007) metamodels are categorized as either global or local.
A global model uses all the available data, and are often used to replace the true model. A
local model will only use the small set of data surrounding the point to be approximated,
these models are often used as preconditioners to intensify the exploration of the area
being investigated.

There are several different metamodels one can use, for example polynomial models,
kriging models, splines methods and radial basis functions. In this comparison study we
have chosen to use polynomial models, which are presented below. Information about
other metamodels can be found in Fang et al. (2006) and Simpson, Peplinski, Koch &
Allen (2001).
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3.1 Polynomial Models

Response surface models, or polynomial models, have been popularly used for physical
experiments and are also popular in computer experiments. A second order polynomial
model:

g(x) = β0 +

s∑
i=1

βixi +

s∑
i=1

s∑
j=i

βijxixj . (3.2)

Where the βs often are estimated by using least squares regression. Three reasons for
the extensive use of polynomial models are given in Myers & Montgomery (1995):

1. The second order polynomial is flexible and can take on several different functional
forms. Because of this it will be a good approximation to the true response surface.

2. The β’s are easily estimated, the least squares method is often used for this esti-
mation.

3. There are several practical experiences indicating that the second-order models
work well in solving real response surface problems.

There are also drawbacks to using polynomial models in computer experiments. Fang
et al. (2006) states that situations with highly nonlinear or irregular models to be un-
fitting when using polynomial models. In this thesis a third order polynomial model is
chosen as the true model, while a second order polynomial model without squared terms
is fitted as the approximated model.
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4 Comparison and Optimizing Criteria

When consctructing designs, conducting experiments and fitting metamodels we need a
way of retrieving information to know whether or not the design we chose was good, and
if the metamodel we fitted was a good fit for the true model. Sometimes we might want
a criterion to help us choose which design to use, or to optimize designs. The criterion
may say something about the design with regards to one or several criteria defined by
the user. Or the criterion may be a measure of how uniformly spread, space-filling, the
sample points are.

4.1 Optimality Criteria

In classical design of experiments different optimality criteria have been popularly used.
In Fang et al. (2006) some are shortly explained. The relationship between the response
yk and the input factors xk = (xk1, · · · , xks) is expressed in a regression model:

yk =
m∑
j=1

βjgj(xk1, · · · , xks) + εk =
m∑
j=1

βjgj(xk) + εk, k = 1, · · · , n (4.1)

gj(xk) are prespecified or known functions and ε is the random error. If we let:

G =

 g1(x1) · · · gm(x1)
...

...
g1(xn) · · · gm(xn)

 , β =

 β1
...
βm

 .
the model in 4.1 can be written as:

y = Gβ + ε.

Where the matrix G is the design matrix and the matrix M = G′G is the information
matrix. The covariance matrix of the least squares estimator:

Cov(β̂) = σ2M−1.

Several optimality criteria have been suggested by different authors, some are:

1. D-optimality: maximize the determinant of M .

2. A-optimality: minimize the trace of M−1.

3. E-optimality: minimize the largest eigenvalue of M .

These criteria may favor classical designs with sample points on the border of the design
space.
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4.1.1 Modified A-criterion

In the comparison study in section 5.1 we use a modified A-criterion as an optimizing
criterion. The A-optimality criteria seeks to minimize the trace of the inverse of the
information matrix, (X ′X). The matrix X is constructed from the design , D, and the
columns of X are based on the approximated model. If the metamodel is:

y = β1x1 + β2x2 + β12x1x2.

Further, we use the LHS design constructed in section 2.3. The matrix X will then have
the columns x1 and x2 from D. The last column will be x1x2:

D =



0.9473 0.2353
0.7250 0.8789
0.0936 0.5261
0.7590 0.7444
0.6068 0.4870
0.3688 0.2819
0.1838 0.8406
0.4098 0.0258


X =



0.9473 0.2353 0.2229
0.7250 0.8789 0.6372
0.0936 0.5261 0.0492
0.7590 0.7444 0.5650
0.6068 0.4870 0.2955
0.3688 0.2819 0.1040
0.1838 0.8406 0.1545
0.4098 0.0258 0.0106


.

We find the eigenvalues, λi, of (X ′X)−1 and the modified A-criterion, Amod, is:(∑
i

1

λi

)
λmax.

This criterion gives us information about how many directions in the matrixX are badly
spanned. We wish for it to be as many directions as possible that are well spanned, and
therefore the criterion should be minimized.

4.1.2 L-criterion

Another criterion, with similar calculations as the modified A-criterion, was suggested
in Tøndel, Gjuvsland, Måge & Martens (2010). In this work it is referred to as the L-
criterion. We find the eigenvalues, λi, of the inverse of the information matrix, (X ′X)−1.
The formula for the L-criterion is then: ∑

i λi
λmax

.

This criterion should be maximized as it gives information about how many directions
in the matrix X that are well spanned. This is used as an optimizing criterion in section
5.2.
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4.2 Alias Sum of Squares Criterion

The Alias Sum of Squares Criterion (ASSC) was proposed by Bursztyn & Steinberg
(2004) as an alternative to already existing criteria, like the RMSE and the MAX. The
criterion is based on the alias matrix for a simple approximation model.

Firstly we fit a simple regression model:

yi = β0 +

p∑
j=1

βjxij = f(xi)
′β. (4.2)

Assuming that this model is not providing a good enough description of the output data,
we add extra terms to the model in 4.2, giving us:

yi = β0 +

p∑
j=1

βjxij +
∑
j=p+1

βjf2,j(xi) = f ′(xi)β + f ′2(xi)β2. (4.3)

Which can be written in matrix form:

y =

 f ′(x1)
...

f ′(xn)

β +

 f ′2(x1)
...

f ′2(xn)

β2 = Xβ +X2β2.

In this model the X2β2 represents the extra terms, which were not in the original model
in 4.2. The least-squares estimator for β is found from:

β̂ = (X ′X)−1X ′y = β + (X ′X)−1X ′X2β2 = β +Aβ2.

Here A is the alias matrix. The alias matrix gives us information about how the original
model, equation 4.2, is biased by the extra terms included in the full model, equation 4.3,
and by studying the alias matrix we can say something about the design’s effectiveness.
Further Bursztyn & Steinberg (2004) uses a method for turning the bias from terms
not included in the model into variance, enabling us to use design criteria based on
variance, such as A-optimality. Assuming that β2 is random and normally distributed,
with covariance σ2I and mean 0. Using the lack of error in computer experiments, we
now get:

Cov(β̂) = σ2βAA
′.

A is still the alias matrix, and AA′ measures the extent to which the design allows
higher order bias to affect the simple approximation. Using the A-optimality criterion
from Cov(β̂), we find the alias sum of squares criterion:

A = tr(Cov(β̂)) =
∑
i,j

a2i,j .

The alias sum of squares criterion is in section 5 used as both an optimizing and a
comparison criterion. In section 6 it is used as a comparison criterion.
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4.3 IMSE, RMSE and MAX criteria

Popular methods for comparing designs are the integrated mean square error (IMSE),
the root mean square error (RMSE) and the maximum error (MAX) criteria. These
criteria measures how well the estimated metamodel, ŷ(x) fits the true model, y(x), by
using additional validation points other than the sample data used for estimating the
metamodel. The IMSE is given in Bursztyn & Steinberg (2004) as:

IMSE =

∫
E{y(x)− ŷ(x)}2dx.

The RMSE and MAX criteria are easier to calculate and stated in Simpson, Lin & Chen
(2001):

MAX = max{|yi − ŷi|}i=1,··· ,nerror

RMSE =

√∑nerror
i=1 (yi − ŷi)2

nerror
.

We can use the same validation points, nerror, for both the MAX and the RMSE criteria,
enabling us to calculate them at the same time. The RMSE criterion measures an
average squared deviance, and therefore gives a good estimate for the ”global error” for
the chosen region. While the MAX criterion gives a good estimate for the maximum
”local error”, as it measures the largest difference between the estimated and the true
model.

The RMSE and MAX criteria have in sections 5 and 6 been used as criteria for
comparing different designs. In section 5 it has also been used for checking how well the
optimizing criteria, ASSC, L-and Amod-criteria, performs. The optimizing criteria have
been compared by checking how well they coincide with the RMSE and MAX criteria.
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5 Comparison Study of Different Optimizing Criteria

In this section a comparison of different designs, optimizing criteria and comparison
criteria has been conducted. The designs, comparison criteria and optimizing criteria
will be further presented after a short description on how the comparison has been
performed:

1. 100 designs have been constructed, either LHS, OA or MBR designs.

2. An optimizing criterion, either ASSC, Amod- or L-criterion, has been used for
finding the best, optimized, design out of the 100 designs constructed.

3. A second-order model without quadratic terms has been fitted using the design
chosen in step 2.

4. The comparison criteria have been calculated, to compare the different types of
designs and optimizing criteria.

5. Steps 1− 4 have been repeated 1000 times.

6. The maximum, minimum, mean and median of the comparison criteria have been
found and are presented in tables.

The designs constructed are LHS, OA, MBR and random designs. A short description
on the construction of the different designs, all having s = 5 factors, n = 32 samples and
are scaled to [0, 1]s:

The MBR designs have been constructed with L(k) = 8 levels and using three different
ways of finding confounding patterns, as explained in section 2.5:

1. all-confounding: The first confounding pattern explained in section 2.5, using
combinations of s−p, s−p−1, s−p−2 and so on. So if we need 2s−p = 25 = 32
samples, we would first use the combination of all 5 original factors, ABCDE,
then we would use a combinations of 4, for example ABCD or ACDE. When
there are no more combinations of 4 left we would use combinations of 3, for
example ABC or CDE. All combinations are used in a descending order
until we have constructed the desired number of columns.

2. odd-confounding: The second method presented in section 2.5, with only
combinations of a odd number of the first s−p columns. As above, if we need
25 = 32 samples we would start by combining all 5, ABCDE, but we would
then skip combinations of 4 and use combinations of 3 instead, for example
BCE.

3. Resolution IV: Classical resolution IV confounding. This is similar to the odd-
confounding, but it is the confounding pattern the statistical software Minitab
would recommend. The exact combinations can be found in Appendix A.



21

For the all- and odd-confounding we may have more combinations of the s − p
columns than needed, and which combinations to use have randomly been drawn
for each design constructed. For all of the confounding patterns we have mixed
up the columns in the fractional design, such that the combination of columns for
each MBR-factor will differ every time.

The LHS designs have been constructed as described in section 2.3.

The random designs have been constructed as described in section 2.1.

The OA designs have been constructed as described in section 2.4, using both p = 2
and p = 4.

Replicate observations at the same input values for a computer experiment provides us
with the same output. Therefore we try to avoid replicated samples. For all the designs
we have checked for replicated samples, and excluded designs having replicated sample
points in one or several of the two-dimensional projections.

For each simulation there have been constructed 100 designs of which one design has
been chosen by using either modified A-criterion, L-criterion or the alias sum of squares
criterion. A short description of the different optimizing criteria:

Modified A-criterion: The design D has been used, including all the interaction terms
in the approximated model, let us name this matrix X. We found (X ′X)−1 and

its eigenvalues, λi, then we calculated
∑

i

(
1
λi

)
λmax, this value was minimized. As

presented in section 4.1.1.

L-criterion: Also here the design D and all the interaction terms in the approximated

model have been used. We then found the design giving the highest value of
∑

i λi
λmax

,
where λi are the eigenvalues of the matrix X. As presented in section 4.1.2.

Alias sum of squares criterion: As explained in section 4.2. The criterion uses the true
and the approximated model for estimating the design’s skewness. This criterion
is also used as a comparison criterion when the Amod- or L-criterion are used as
optimizing criteria.

We then ran 1000 simulations for each combination of design and optimizing criteria.
We used a third-order model as the ”true” model, with βs chosen to be between 0 and
1:

y =
s∑
i=1

(βixi) +
s∑
i=1

(βiix
2
i ) +

s∑
i=1

s∑
j=i

(βijxixj) +
s∑
i=1

s∑
j=i

s∑
k=j

(βijkxixjxk).

The exact true model used can be found in appendix A. A second-order model without
quadratic terms is used as the approximated model:

ŷ = β0 +
s∑
i=1

(βixi) +
s∑
i=1

s∑
j=i+1

(βijxixj).
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After fitting a first-order model we calculated the MAX and RMSE criteria, when
using the Amod- or L-criterion the ASSC was also calculated. The MAX and the RMSE
criteria have been calculated using a grid of 10 samples per factor. Short descriptions of
the comparison criteria used are presented here, more thorough descriptions are given
in section 4:

The MAX criterion gives a number for the maximum deviation between the true and
the approximated model, giving a measure for the maximum ”local error”.

The RMSE criterion estimates an average squared deviance between the true and ap-
proximated model, and therefore gives a good measure for a ”global error”.

The ASSC only uses the true and the approximated model for estimating the design’s
skewness, this makes it computationally much cheaper than the other two criteria
used. The ASSC is also used as an optimizing criterion.

For each combination of design, optimizing criterion and comparison criteria, we
have found the maximum, minimum, mean and median value of the comparison criteria,
these are presented in tables. The values for the optimizing criterion used are given in
parentheses for the max and min values. The best and worst value for the min, max,
mean and median are shown in green and red.

The comparisons are presented in three sections, sections 5.1 to 5.3, with a short
section summary after.

5.1 Optimizing Using the Modified A-criterion

Here we have found the optimal, or best, design, from 100 designs constructed, using
the modified A-criterion, Amod. We found the eigenvalues for (X ′X)−1, with X being
the design including all the terms included in the metamodel. Then the design having
the smallest value for the Amod,

∑
i

1
λi
λmax, was used for fitting a model.

The tables 4, 5 and 6 contain the minimum, maximum, mean and median values of
the comparison criteria, ASSC, MAX and RMSE.

As we see in tables 4, 5 and 6, the designs getting the best, lowest, Amod value does
not necessarily score the best for the MAX, RMSE or ASSC criteria. For example, for the
RMSE comparison criterion, the MBRIV which gets the smallest RMSE minimum value,
0.4699974, has an Amod-criterion value 2197.984. While the MBRall design achieving the
smallest Amod-criterion value 1690.121, gets a RMSE score of 0.482867, which is only
the third lowest RMSE score even though its Amod-criterion value is the smallest.

We can also see this for several other designs. In the table showing the RMSE
scores, we see that for the OAp=4 design achieving the smallest maximum value, its
corresponding Amod-value, 3038.156, is only the fourth best. We also notice that this
Amod-value is better than the Amod-value for the its RMSEmin value.

When looking at the correlation between the Amod-criterion and the comparison
criteria in table 3 we see that the correlation coefficients for the Amod and the MAX and
RMSE criteria are small and no larger than 0.2, indicating little correlation. In table 59
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in Appendix A we see that the correlation coefficients for the OAp=4 designs are close
to zero, which corresponds to what we observed in table 5.

The observations we make when looking at tables 4, 5 and 6, with the comparison
criteria, and table 3, with the correlation coefficients, indicate that the Amod-criterion is
not suitable as an optimizing criterion.

MAX RMSE ASSC

minimum 0.066 0.024 −0.056
maximum 0.201 0.172 0.357

Table 3: The minimum, closest to 0, and maximum, the furthest from 0, correlation
coefficients for the Amod-criterion and the comparison criteria, MAX, RMSE and ASSC,
of the different designs constructed.

LHS OAp=2 OAp=4 Random MBRodd MBRall MBRIV

mean 4.131447 3.925025 3.432505 4.291686 3.635808 3.322843 3.765613

min 2.599731 2.652109 2.548500 2.729632 2.359470 2.314869 2.380221
(2970.177) (3006.951) (2814.682) (2929.735) (2392.775) (1700.983) (2455.939)

max 8.301431 7.236691 4.946750 7.276748 6.684528 5.139390 7.846681
(3659.466) (3173.540) (3060.359) (3126.222) (2931.731) (1634.082) (3213.368)

median 4.023349 3.828872 3.394110 4.187709 3.577639 3.247354 3.668319

Table 4: The MAX criterion values for designs with s = 5 factors and n = 32 samples,
using the Amod-criterion for finding optimized designs.

LHS OAp=2 OAp=4 Random MBRodd MBRall MBRIV

mean 0.658116 0.642581 0.581135 0.659015 0.653164 0.620423 0.667289

min 0.518703 0.530831 0.512237 0.490878 0.473262 0.482867 0.469974
(3314.246) (2612.550) (3279.480) (3619.886) (1879.357) (1690.121) (2197.984)

max 1.146706 0.966885 0.718995 1.072721 0.939626 0.783114 1.095732
(3659.466) (3173.540) (3038.156) (2992.410) (2946.776) (1657.097) (3213.368)

median 0.646132 0.635631 0.576556 0.645751 0.652748 0.616332 0.661194

Table 5: The RMSE criterion values for designs with s = 5 factors and n = 32 samples,
using the Amod-criterion for finding optimized designs.
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LHS OAp=2 OAp=4 Random MBRodd MBRall MBRIV

mean 57.341207 57.222591 63.478888 54.413684 73.163148 54.494722 73.511939

min 45.002839 48.248426 53.980540 40.481022 50.890384 46.720602 48.064196
(2903.790) (2479.789) (3158.195) (2290.126) (3214.947) (1872.645) (2769.008)

max 74.379342 72.780095 77.880264 78.736714 104.685654 65.335432 104.036678
(4128.429) (3094.317) (3155.248) (4080.463) (2411.498) (1685.445) (3190.872)

median 56.919332 56.956369 63.296201 54.096216 73.196542 54.225541 73.134565

Table 6: The alias sum of squares criterion values for designs with s = 5 factors and
n = 32 samples, using the Amod-criterion for finding optimized designs.

5.2 Optimizing Using the L-criterion

In this section we have optimized designs using the L-criterion, which is similar to the
modified A-criterion used in section 5.1. We found the eigenvalues of (X ′X)−1 and

maximized
∑

i λi
λmax

, the values should lie between 1 and the number of columns in matrix
X, it tells us something about how many directions of the matrix X that are well
spanned. The MAX, RMSE and ASSC scores are presented in tables 8, 9 and 10.

For the L-criterion we observe that the best, highest, L-criterion does not necessarily
give the best values for the comparison criteria, MAX, RMSE and ASSC. We see that also
here the OAp=4 designs achieve low maximum values for the RMSE and MAX criteria,
but the L-criterion score is best for the maximum values, and not for the minimum
values as we might expect.

When looking at the correlation coefficients for the L-criterion and the comparison
criteria in table 7 we see that the values are close to 0 which suggests that they are
not dependent on each other. The correlation coefficients for the L-criterion actually
indicates that it is slightly less correlated with the comparison criteria than what the
Amod-criterion is, and is therefore less suitable as an optimizing criterion.

MAX RMSE ASSC

minimum −0.043 −0.030 −0.008
maximum −0.174 −0.143 −0.263

Table 7: The minimum, closest to 0, and maximum, the furthest from 0, correlation
coefficients for the L-criterion and the comparison criteria, MAX, RMSE and ASSC, out
of all the different designs constructed.
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LHS OAp=2 OAp=4 Random MBRodd MBRall MBRIV

mean 4.275472 3.937303 3.497350 4.443785 3.768577 3.361846 3.843266

min 2.782363 2.616182 2.538301 2.394242 2.437575 2.219867 2.397051
(5.164) (4.771) (4.654) (4.011) (4.486) (4.774) (4.326)

max 8.596571 6.542996 4.969484 9.267712 7.885090 5.761226 6.189537
(4.167) (4.781) (4.982) (4.273) (3.557) (4.585) (3.825)

median 4.149602 3.827858 3.451766 4.312303 3.665046 3.278401 3.750165

Table 8: The MAX criterion values for designs with s = 5 factors and n = 32 samples,
using the L-criterion for finding optimized designs.

LHS OAp=2 OAp=4 Random MBRodd MBRall MBRIV

mean 0.681680 0.644157 0.587358 0.711792 0.662565 0.627841 0.667940

min 0.527069 0.525353 0.513642 0.509215 0.472632 0.488461 0.488824
(4.467) (4.962) (4.684) (4.529) (4.226) (4.519) (4.014)

max 1.187969 0.894430 0.767802 1.266943 1.066760 1.097359 1.005561
(4.167) (5.407) (4.805) (4.273) (3.557) (4.405) (3.696)

median 0.668025 0.633511 0.581310 0.696098 0.661441 0.624002 0.665869

Table 9: The RMSE criterion values for designs with s = 5 factors and n = 32 samples,
using the L-criterion for finding optimized designs.

LHS OAp=2 OAp=4 Random MBRodd MBRall MBRIV

mean 58.969301 58.184858 63.923020 60.194694 73.852831 55.382570 74.429249

min 47.055662 48.325657 54.700145 42.654354 51.901325 47.603427 50.658065
(4.611) (5.074) (4.899) (4.218) (4.573) (4.975) (4.331)

max 89.802471 74.746357 73.281151 98.029878 107.153832 72.781493 107.187589
(4.167) (4.937) (4.714) (4.345) (3.900) (4.622) (3.593)

median 58.260139 57.792906 63.829025 58.966887 73.305786 55.042384 74.105979

Table 10: The alias sum of squares criterion values for designs with s = 5 factors and
n = 32 samples, using the L-criterion for finding optimized designs.

5.3 Optimizing Using the Alias Sum of Squares Criterion

In the last part of this section on optimizing criteria, we have used the alias sum of
squares criterion, presented in section 4.2, as the criterion for optimizing designs, thus
the ASSC has not been used as a comparison criterion in this section.

When looking at the results in tables 12 and 13, we see that the comparison criteria
and the optimizing criterion’s values coincide better for each design than the L-and
Amod-criteria did. All designs’ minimum comparison criteria values have a corresponding
ASSC value smaller than the ASSC value corresponding to the maximum value, except
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for the LHS design combined with the RMSE criterion. When studying the tables closer
we see that the designs with the best ASSC does not necessarily score the best for the
MAX or RMSE criterion value when compared to the other design types constructed.

Looking at the correlation values in table 11 we see that the ASSC correlates better
with both the RMSE and MAX criteria than the L-and Amod-criteria did. However,
also for the ASSC as an optimizing criterion we can see that the smallest correlation is
close to 0. In table 61 in Appendix A we see that the MBR designs optimized using the
alias sum of squares criterion, independent of which confounding pattern used, correlate
better with both the MAX and RMSE than the other four designs does, especially for
the RMSE criterion.

MAX RMSE

minimum 0.019 0.020
maximum 0.244 0.427

Table 11: The minimum, closest to 0, and maximum, the furthest from 0, correlation
coefficients for the ASSC and the comparison criteria, MAX and RMSE, out of all the
different designs constructed.

LHS OAp=2 OAp=4 Random MBRodd MBRall MBRIV

mean 4.035824 3.770230 3.416689 4.366887 3.580889 2.891271 3.764362

min 2.729728 2.599056 2.639426 2.796449 2.351988 2.088877 2.423959
(49.182) (49.735) (54.745) (48.173) (54.724) (49.466) (55.292)

max 6.527050 5.679290 5.201257 7.963170 5.455832 4.560252 5.575570
(52.555) (52.633) (59.724) (50.068) (64.537) (50.370) (59.907)

median 3.987381 3.726373 3.368958 4.259059 3.516050 2.855529 3.712280

Table 12: The MAX criterion values for designs with s = 5 factors and n = 32 samples,
using the ASSC for finding optimized designs.

LHS OAp=2 OAp=4 Random MBRodd MBRall MBRIV

mean 0.639345 0.611610 0.588885 0.667700 0.587158 0.533421 0.585866

min 0.518048 0.506519 0.508767 0.487658 0.468214 0.469541 0.466042
(52.932) (53.341) (55.840) (48.040) (53.172) (46.826) (62.328)

max 0.835455 0.768908 0.727545 1.185298 0.818280 0.708567 0.821757
(52.001) (53.525) (59.724) (50.068) (64.506) (50.370) (64.352)

median 0.631031 0.607548 0.585909 0.660929 0.575255 0.527599 0.573378

Table 13: The RMSE criterion values for designs with s = 5 factors and n = 32 samples,
using the ASSC for finding optimized designs.
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5.4 Section Summary

In this section we used three different criteria for optimizing designs. The criteria we
used were the L-criterion, a modified A-criterion and the alias sum of squares criterion.
We constructed 100 designs and found the criterion value for each design, before choosing
the design with the best criterion score. We approximated a model using the optimized
design, before computing the values for the comparison criteria. We then computed
and compared the minimum, maximum, mean and median values for the comparison
criteria and the corresponding optimizing criterion value, we also found their correlation
coefficients.

We found that neither the Amod- nor the L-criterion correlated well with the RMSE,
MAX or the ASSC. When using the ASSC as an optimizing criterion we found that it
corresponds better with the comparison criteria than the other two optimizing criteria.
Thus the ASSC is probably better to use, but its maximum correlation coefficient is
0.4273 which is still not as correlated as one might wish for it to be.

If we compare the worst maximum and best minimum values of the comparison
criteria for each of the ASSC, L- and Amod-criterion, we see that the designs optimized
using the ASSC score the smallest minimum values for both the MAX and RMSE criteria.
The L-criterion’s scores are worse than the A-criterion, and is therefore less suitable as
an optimizing criterion. These results were also indicated by the correlation coefficients.

In Bursztyn & Steinberg (2004) the correlations for the ASSC and IMSE-criterion
ranged from 0.60 to 0.88, which is substantially higher than our results. This might be
because we use different equations for the true and approximated models, or because we
choose out of 100 constructed designs, which they are not doing in Bursztyn & Steinberg
(2004).

The correlation coefficients were not consistent for the different types of design, which
may indicate that we need to choose the optimizing criterion dependent on which design
we want to use.
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6 Comparison Study of Confounding Patterns for the MBR
Design

In this section we have taken a closer look at non-optimized designs. Especially the
multi-level binary replacement designs have been studied. As in the previous section we
have used three different confounding patterns to construct fractional factorial designs
used for obtaining MBR designs. We now want to see if we can gain more knowledge
about which, or what kind of, confounding pattern provides us with the best MBR
design, and whether or not this design is favorable to the other two designs studied here,
LHS and OAp=4.

The procedure is similar to the one in section 5. We have constructed 1000 designs,
but without optimizing. We constructed LHS designs, OA designs with p = 4 and MBR
designs using the same three different confounding patterns as in the previous section.
We used the same true and fitted model as in section 5 when using s = 5 factors. We
have also constructed designs with 4, 3 and 2 factors. Where possible we have used a
third-order model as the ”true” model with βs between 0 and 1, see Appendix A for the
exact models. We found an approximated model using a second-order model without
quadratic terms. After fitting the model we found the values for the ASSC, MAX and
RMSE criteria.

6.1 Non-Optimized Designs with Two Factors

In this section all the designs have s = 2 factors and n = 32 samples. We have only
constructed LHS designs other than the MBR designs, as there was no OA design with
2 factors and 32 samples. We have also in this section used three different confounding
patterns, but they are slightly alterated. As we want 32 sample points, we need a
26−1 fractional factorial design. We only need one column which is constructed by a
combination of the first five. The 3 confounding patterns are:

MBRVI: We used a combination of the 5 original columns, so ABCDE, giving us a
resolution VI fractional design.

MBR4: We used a combination of 4 of the 5 original columns, so for example ABCD
or BCDE. Which combination to use was randomly chosen.

MBR3: Here we used 3 of the 5 original factors, so for example ABC or BDE. Which
combination to use was randomly chosen.

We still mixed up the columns before combining the binary numbers, and in that way
we got different MBR designs.

In tables 14, 15 and 16 we observe that the MBRVI scores the best for all comparison
criteria, only for the minimum value it only achieves the second or third best score. The
LHS designs score poorly for all criteria, except for the minimum value of the alias sum of
squares criterion. We see that the MBR4 got the smallest minimum value for the MAX
criterion, while the MBR3 achieved the best minimum value for the RMSE criterion.
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The confounding patterns used for the best or worst MBR designs are shown in tables
17 to 22. Some of their plots are presented in figures 13, 14 and 15. When looking at
figure 15, the two-dimensional plots of the MBR3 designs, we see that the plots scoring
well for the RMSE criterion is more space-filling than the design getting a bad score. The
two top plots have some areas undiscovered, but they cover the edges and the corners
fairly well. The bottom right plot, representing the MBR3, which got a bad RMSE score
has several areas without any sample points, and not all of the borders are well covered.

Looking at the confounding patterns we see that for the good MBR3 designs two
of the original columns used in the combination are used as binary bits in the opposite
factor of where the combination is a binary bit. So if the combination used is −CDE,
and −CDE is placed so that it will be a binary bit of factor 1 of the MBR design, then
only one of C, D or E can be one of the other binary bits and A has to be the last
binary bit. As we see in table 17. We can notice from table 22 that using two of C,D
or E as a binary bit in the same MBR-factor as −CDE leads to a bad MBR design.

We can see some of the same tendencies of how the factors for the MBR4 are con-
structed using the fractional design’s factors, but as the difference between its min and
max values are small it is hard to find a consistent pattern.

In figure 13 two of the MBR4 designs scoring well for the minimum value of the
MAX criterion is plotted. We can see that these plots are covering the design space well,
having symmetrical, circular patterns covering the design space and only leaving small
circles empty. It is similar to the MBRVI designs shown in figure 14, which only scored
marginally less.

When constructing MBR designs with s = 2 factors there were no designs having
overlapping sample points.

LHS MBR3 MBR4 MBRVI

mean 0.763061 0.573627 0.535747 0.533472
min 0.555948 0.502638 0.520685 0.533472
max 1.283950 0.742621 0.559047 0.533472

median 0.739337 0.546273 0.534787 0.533472

Table 14: The MAX criterion values for designs with s = 2 factors and n = 32 samples.

LHS MBR3 MBR4 MBRVI

mean 0.218349 0.199293 0.197104 0.197039
min 0.202990 0.197006 0.197039 0.197039
max 0.303534 0.237498 0.211366 0.197039

median 0.213232 0.197370 0.197056 0.197039

Table 15: The RMSE criterion values for designs with s = 2 factors and n = 32 samples.
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LHS MBR3 MBR4 MBRVI

mean 7.350143 7.103666 6.918175 6.911703
min 6.170827 6.807537 6.669325 6.911703
max 12.158061 8.567461 7.202436 6.911703

median 7.072390 6.916297 6.846576 6.911703

Table 16: The alias sum of squares criterion values for designs with s = 2 factors and
n = 32 samples.

(A, −CDE, E) (C, D, B)

Table 17: The confounding pattern used to construct the MBR3 design getting the best
value for the RMSE criterion’s minimum value, 0.197.

(C, D, B) (−BCE, A, E)

Table 18: The confounding pattern used to construct another MBR3 design getting the
best value for the RMSE criterion’s minimum value, 0.197.

(−ACD, D, E) (B, C, A)

Table 19: The confounding pattern used to construct another MBR3 design getting the
best value for the RMSE criterion’s minimum value, 0.197.

(C, E, D) (A, −ABDE, B)

Table 20: The confounding pattern used to construct MBR4 design getting the minimum
value for the RMSE criterion, 0.197.

(A, B, E) (C, D, BCDE)

Table 21: The confounding pattern used to construct a MBR4 design getting its best
minimum value for the MAX criterion, 0.521.

(B, E, D) (C, A, ABC)

Table 22: The confounding pattern used to construct the MBR3 design getting the
second largest maximum value for the RMSE criterion, 0.211.

(−BCDE, D, A) (B, E, C)

Table 23: The confounding pattern used to construct the MBR4 design getting the
second largest maximum value for the RMSE criterion, 0.559.
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Figure 13: Plots of two MBR4 designs scoring the best for the minimum value of the
MAX criterion. The top plot belongs to the confounding pattern in table 20, while the
design in the bottom plot is constructed using the confounding pattern in table 21.
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Figure 14: Plots of the MBRVI design, the designs achieving the best mean, median and
max values for all comparison criteria.



6.1 Non-Optimized Designs with Two Factors 33

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

V1

V
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

V1

V
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

V1

V
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

V1

V
2

Figure 15: The MBR3 designs from tables 17, 18, 19 and 22. The top two plots and
bottom left corresponds with the designs having minimum RMSE values. While the last
plot, bottom right, belongs to the design obtaining the maximum RSME score, table 22.
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6.2 Non-Optimized Designs with Three Factors

In this section we have constructed designs with s = 3 factors and n = 32 samples.
The confounding patterns used are the same as in section 5, but without using the
optimizing criteria, ASSC, L- or Amod-criteria. The max, min, mean and median values
for the comparison criteria, MAX, RMSE and ASSC, can be found in tables 26, 27 and
28.

Looking at the maximum and minimum values for the MAX and RMSE criteria we
see that the MBR designs score well, for both criteria MBR scores better than both LHS
and OAp=4 designs. While for the ASSC the MBR designs score worse. The MBRodd

scores similarly to the MBRall and MBRIV for the minimum values of the RMSE and
MAX criteria, but for the max, mean and median values it scores worse. MBRodd has a
bigger difference between its max and min values, which could make it more risky to use
when we are not optimizing. All three MBR designs have a bigger difference between
max and min than OAp=4 for the ASSC and RMSE criterion.

As for designs with two factors LHS scores badly for all criteria. It achieves the best
minimum value for the ASSC, but all other values are poor.

In tables 25 to 34 some of the confounding patterns for the best and worst MBR
designs are presented. The corresponding two-dimensional plots are shown in figures 16
and 17. We can easily see from the two-dimensional plots in figure 16 that the designs
scoring good for the comparison criteria are covering the design space well. While the
MBR designs in figure 17 have larger areas, corners or edges of the design space poorly
covered, and therefore achieves higher values for the MAX and RMSE criteria.

When comparing the confounding patterns in tables 25 to 34 we see that using only
the original factors, A, B, C, D and E, as the binary bits for one of the MBR-factors
results in a bad design. We can also notice that three out of the four MBR designs
scoring well for the comparison criteria have used negative negative defining relations.

In table 24 we see that to construct MBR designs having three factors we need to
construct more designs than we desire to avoid replicated sample points. Especially
when using all-combinations confounding we need to construct extra designs.

Design Extra designs constructed

MBRodd 342
MBRall 835
MBRIV 187

Table 24: This table shows how many designs were constructed, but discarded because
of overlapping samples. For non-optimized designs.

(−ABDE, −ABCE, C) (−ABCDE, B, A) (−BCDE, E, D)

Table 25: The confounding pattern used to obtain the MBRall design getting the lowest
minimum value for the MAX criterion, 0.920.
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LHS OAp=4 MBRodd MBRall MBRIV

mean 1.839613 1.499082 1.384439 1.211289 1.247989
min 1.154111 1.134832 1.007812 0.919663 1.014340
max 3.307980 2.084974 2.278844 1.695228 1.763329

median 1.778546 1.484776 1.355244 1.183678 1.206884

Table 26: The MAX criterion for designs with s = 3 factors and n = 32 samples.

LHS OAp=4 MBRodd MBRall MBRIV

mean 0.387092 0.347532 0.338767 0.334495 0.330060
min 0.328498 0.331202 0.314296 0.315021 0.314549
max 0.582960 0.395890 0.435993 0.393443 0.389337

median 0.376896 0.345602 0.334254 0.329926 0.326387

Table 27: The RMSE criterion for designs with s = 3 factors and n = 32 samples.

LHS OAp=4 MBRodd MBRall MBRIV

mean 19.729832 18.767350 18.867087 18.178308 18.114551
min 16.174935 16.368278 16.802530 16.493380 16.291267
max 33.492133 22.175260 27.585828 23.722000 23.323185

median 19.214386 18.629220 18.440369 17.927701 17.900909

Table 28: The ASSC for designs with s = 3 factors and n = 32 samples.

(C, −ACDE, D) (E, −ABCDE, −BCDE) (−ABCE, B, A)

Table 29: The confounding pattern used to construct the MBRall design getting mini-
mum value for the RMSE criterion, 0.315.

(ABCDE, B, ABC) (ACD, A, E) (D, C, ABD)

Table 30: The confounding pattern used to achieve the MBRodd design getting the
minimum value for the MAX criterion, 1.001.

(−ABE, E, −BCD) (D, −ACE, B) (A, C, −ABCDE)

Table 31: The confounding pattern used to construct the MBRodd design getting the
lowest minimum value for the RMSE criterion, 0.314.

(−ABCE, C, −ABDE) (−ACDE, −ABCDE, E) (D, B, A)

Table 32: The confounding pattern used to construct the MBRall design getting the
lowest maximum value for the MAX criterion, 1.695.

(ABCD, E, ABCE) (BCDE, D, B) (A, ABCDE, C)

Table 33: The confounding pattern used to construct the MBRall design getting maxi-
mum value for the RMSE criterion, 0.393.
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(A, E, C) (−CDE, −ACD, −ABE) (B, −ABCDE, D)

Table 34: The confounding pattern used to find the MBRodd design achieving its maxi-
mum value for both MAX and RMSE criteria.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

● ●

●● ● ●

●●

●●

● ● ●●

● ●

●●

● ●●●

● ●

● ●

●●● ●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x3

●●

● ●● ●

●●

● ●

●● ●●

● ●

● ●

●● ●●

● ●

●●

● ●● ●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

x3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

x3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x2

x3

Figure 16: Two-dimensional plots of the MBR designs achieving the minimum values
of the comparison criteria. With the top plots belonging to the design in table 25, the
middle plot corresponds to the design in table 29 and the bottom is the two-dimensional
plot of the design in table 31.
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Figure 17: Two-dimensional plots of the MBR designs obtaining the largest values for
the comparison criteria. With the top plots belonging to the design in table 33, the
middle plot corresponds to the design in table 32 and the bottom is the two-dimensional
plot of the design in table 34.
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6.3 Non-Optimized Designs with Four Factors

In this section we have constructed MBR, OA and LHS designs with s = 4 factors and
n = 32 sample points. The confounding patterns used for constructing MBR designs are
the same as we used for three factors and in section 5.

The maximum, minimum, mean and median values of the comparison criteria, ASSC,
MAX and RMSE, are presented in tables 36, 37 and 38. We see that the MBRIV having
three factors scored better compared to the other designs than it does when having
four factors. The OAp=4 scores better compared to the MBR designs with four factors,
especially for the ASSC. The difference between maximum and minimum values are also
for MBR designs having four factors larger than for the OAp=4. The LHS scores badly.

When comparing the different MBR designs we see that the MBRall scores well,
especially for the MAX criterion. For the RMSE criterion the MBRall design has the
smallest mean and median values, its difference between the maximum and minimum
values is small compared to the other two MBR design types.

The odd-combination and all-combination confounding patterns for the MBR designs
used when achieving their maximum or minimum values for the RMSE and MAX criteria
are shown in tables 39 to 46. The two-dimensional plots for the MBRall design achieving
the best minimum value for the MAX criterion is shown in figure 18. We see that some
of its two dimensional plots cover the design space badly. Especially the one in the top
right corner is less space-filling as it leaves two of its corners and much of its borders
undiscovered. This plot has all of its sample points in three areas.

We can see the same for the MBRodd, some of the two dimensional plots cover the
design space more poorly than what we wish for it to in order to be space-filling. When
looking at figure 20, the MBRodd design scoring a high maximum value for the RMSE
criterion, we see that all of its two-dimensional plots are covering the design space badly.
The plots in figure 20 look less space-filling than the ones in figure 18, as we expect since
the MAX and RMSE values for the design in figure 18 are better than for the design in
figure 20.

Both designs in figure 18 and 20 are covering their design spaces badly when compared
to the two-dimensional plots of the design achieving the best minimum value of the
RMSE criterion, figure 19.

In table 35 we see the number of extra designs constructed, but discarded because
of overlapping sample points, This table presents a big drawback to the MBR designs,
and especially to the MBRall design. We have constructed 1669 extra designs using
all-combination confounding, compared to a little more than 900 when using the other
two confounding patterns. For LHS and OA designs no extra designs were constructed.



6.3 Non-Optimized Designs with Four Factors 39

Design Extra designs constructed

MBRodd 991
MBRall 1669
MBRIV 954

Table 35: This table shows how many designs were constructed and discarded because
of overlapping sample points. For non optimized designs with s = 4 factors and n = 32
sample points.

LHS OAp=4 MBRodd MBRall MBRIV

mean 2.914421 2.263318 2.332529 1.931600 2.272945
min 1.599464 1.736542 1.467653 1.329916 1.466754
max 6.280772 3.551684 4.403467 3.136148 4.654013

median 2.782094 2.239603 2.259380 1.894507 2.207479

Table 36: The MAX criterion for designs with s = 4 factors and n = 32 samples.

LHS OAp=4 MBRodd MBRall MBRIV

mean 0.513357 0.437391 0.453569 0.431730 0.452287
min 0.402553 0.394253 0.369865 0.375783 0.371413
max 0.907655 0.555617 0.760158 0.563563 0.735282

median 0.498110 0.433297 0.445851 0.428123 0.446304

Table 37: The RMSE criterion for designs with s = 4 factors and n = 32 samples.

LHS OAp=4 MBRodd MBRall MBRIV

mean 34.936746 30.660230 35.944555 31.454301 35.680102
min 25.801940 26.872616 26.856439 25.737101 26.841935
max 63.425420 35.634771 66.949584 47.800687 67.779881

median 33.855296 30.531093 35.395885 30.827943 34.947704

Table 38: The alias sum of squares criterion for designs with with s = 4 factors and
n = 32 samples.

(−ACDE, A, −ABD) (−ABCE, E, C) (B, −ABCD, D) (−ABDE, −ABCDE, −BCDE)

Table 39: The confounding pattern and the combinations of binary bits to construct the
MBRall design getting its minimum value for the RMSE criterion, 0.376.

(−ABCDE, D, −ACDE) (B, A, −ACD) (−ABCE, C, E) (−BCDE, −ABDE, −ABCD)

Table 40: The confounding pattern and the combinations of binary bits to construct the
MBRall design achieving the lowest minimum value for the MAX criterion, 1.330.
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(−BDE, −BCE, D) (E, −ABCDE, −ADE) (−ABC, −BCD, B) (A, −ACE, C)

Table 41: The confounding pattern and the combinations of binary bits to construct the
MBRodd design achieving the lowest minimum value for the RMSE criterion, 0.370.

(A, E, −ACE) (−ABCE, −BCE, −ABCDE) (−CDE, B, D) (C, −BDE, −ADE)

Table 42: The confounding pattern and the combinations of binary bits to construct the
MBRodd design scoring its minimum value for the MAX criterion, 1.468.

(ABCDE, ABC, E) (C, ABCD, B) (BCDE, ACDE, ABCE) (ABDE, D, A)

Table 43: The confounding pattern and the combinations of binary bits to construct the
MBRall design getting the maximum value for the RMSE criterion, 0.564.

(ACD, BCDE, ABCDE) (D, ACDE, C) (ABCE, A, B) (ABDE, E, ACDE)

Table 44: The confounding pattern and the combinations of binary bits to construct the
MBRall design getting its maximum value for the MAX criterion, 3.136.

(ACE, CDE, E) (D, C, ABCDE) (ABE, B, ABD) (ADE, BCD, A)

Table 45: The confounding pattern and the combinations of binary bits to construct the
MBRodd design getting the maximum value for the RMSE criterion, 0.760.

(−BCD, C, A) (−BCE, D, E) (−ABD, B, −CDE) (−ABCDE, −BDE, −ADE)

Table 46: The confounding pattern and the combinations of binary bits to construct the
MBRodd design getting the maximum value for the MAX criterion, 4.403.
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Figure 18: The MBRall design scoring the best for the MAX criterion’s minimum value
shown in table 40.
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Figure 19: The MBRodd design scoring the best for the RMSE criterion’s minimum
value, the confounding pattern used is shown in table 41.
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Figure 20: The MBRodd design with the design type’s highest maximum value for the
RMSE criterion, the confounding pattern is shown in table 45.
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6.4 Non-Optimized Designs with Five Factors

In this section we have constructed designs having s = 5 factors and n = 32 samples.
This is the part of this section which is most similar to what we did in section 5, but
without using the optimizing criteria, ASSC, Amod- or L-criterion. The comparison
criteria’s values, MAX, RMSE and ASSC, are presented in tables 48, 49 and 50.

Looking at the results presented in the tables we see that OAp=4 performs well,
for all three comparison criteria it achieved the smallest maximum value, its mean and
median values are also good compared to the other designs. However, the smallest
minimum values for the three criteria are all achieved by the MBR design, with either
odd-combination or all-combination confounding. The MBRall design scores well for the
mean and median value of all three criteria, but its max values are a little high. The
MBRodd design has the largest maximum value for all three criteria, also its mean and
median values are quite high compared to the other designs.

We see that the LHS design performs poorly for both the RMSE and MAX criteria,
but it performs average for the ASSC.

If we look at the different confounding patterns for the MBR design, we see that the
designs constructed using all-combination and odd-combination confounding scores the
best for the MAX and RMSE minimum values. We see that both MBRodd and MBRIV

has high maximum values for all three criteria, they also have similar minimum, mean
and median values, which we might expect as they both are constructed using resolution
IV fractional factorial designs. Tables 51 to 58 show how the factors of some of the MBR
designs are constructed.

The MBRodd design scoring the best for the RMSE criterion’s minimum value is
plotted in figure 21. We see that the two-dimensional plots cover the design space well.
The two-dimensional projection which covers its design space worst is the middle plot to
the right, x2 and x4, which covers the center and the corners badly. This less space-filling
two-dimensional projection is also included in the two-dimensional plots of the MBRall,
shown in figure 22, which scores the best for the RMSE minimum value for designs
using all-combinations confounding. Most of the two-dimensional plots in figure 21 and
22 cover the design space well, some are leaving circular areas empty. When comparing
these two figures to figure 23, the MBRodd design scoring the worst maximum value for
the RMSE criterion, we see that the good designs have a much better coverage of the
design space, they are more space-filling than the bad design.

We saw for three and four factors that we discarded MBR designs having overlapping
sample points, table 47 shows that for five factors this is an even bigger problem, and we
might assume that the problem will increase as we need more factors. This is a drawback
to the MBR design.
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Design Extra designs constructed

MBRodd 1689
MBRall 9066
MBRIV 1695

Table 47: This table shows how many designs were constructed and discarded because
of overlapping samples. For non-optimized designs with s = 5 factors and n = 32 sample
points.

LHS OAp=4 MBRodd MBRall MBRIV

mean 4.931089 3.581583 4.592674 3.514203 4.693552
min 2.935927 2.623204 2.191684 2.296659 2.710690
max 12.105273 5.239734 14.786403 7.043198 12.336697

median 4.741866 3.524037 4.260931 3.426173 4.421390

Table 48: The MAX criterion for designs with s = 5 factors and n = 32 samples.

LHS OAp=4 MBRodd MBRall MBRIV

mean 0.742696 0.603179 0.773210 0.635904 0.754106
min 0.529672 0.514487 0.474715 0.483289 0.489318
max 1.550762 0.771001 2.807374 1.040195 2.260235

median 0.718268 0.596468 0.725096 0.624814 0.702931

Table 49: The RMSE criterion for designs with s = 5 factors and n = 32 samples.

LHS OAp=4 MBRodd MBRall MBRIV

mean 68.740075 65.898310 92.325573 61.441368 91.995095
min 47.518958 55.060520 57.672853 44.954157 54.291716
max 138.130082 77.989154 387.950475 119.171823 343.70959

median 66.487986 65.686747 84.173782 60.016666 84.249792

Table 50: The alias sum of squares criterion for designs with s = 5 factors and n = 32
samples.

(−CDE, −ACDE, −BCE)(C, −ABCE, −BCDE)(B, −ABCDE, −ABDE)
(E, D, −ABD) (A, −ABCD, −BDE)

Table 51: The confounding pattern and binary bit combinations used to construct the
MBRall design getting the minimum value for the MAX criterion, 2.297.
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(A, −ABD, C) (D, −ACD, −ACDE) (−ABDE, −BCDE, −ABCDE)
(−BCE, E, −ABCDE) (B, −ABE, −ABCD)

Table 52: The confounding pattern and binary bit combinations used to construct the
MBRall design getting the minimum value for the RMSE criterion, 0.483.

(C, A, ABE) (BCD, BCE, B) (D, E, ABD)
(ADE, BDE, ABCDE) (BCE, ABC, ACD)

Table 53: The confounding pattern and binary bit combinations used to construct the
MBRodd design getting the best value for the MAX criterion’s minimum value, 2.192.

(A, −CDE, −ABCDE) (D, −BCE, C) (−BCD, −ACE, E)
(−ACD, −ABE, −ADE) (−BDE, B, −ABD)

Table 54: The confounding pattern and binary bit combinations used to construct the
MBRodd design getting the smallest minimum value for the RMSE criterion , 0.475.

(C, D, E) (ABD, B, ABCDE) (ADE, A, BCD)
(ACDE, ABCE, ABDE) (ABCD, ACE, BCDE)

Table 55: The confounding pattern and binary bit combinations used to construct the
MBRall design getting the largest maximum value for the MAX criterion’s minimum
value, 7.043.

(ABC, B, D) (BCDE, ABE, ABCD) (ABDE, ABCE, ABD)
(C, A, E) (ABCDE, ABE, BDE)

Table 56: The confounding pattern and binary bit combinations used to construct the
MBRall design getting the designs largest maximum value for the RMSE criterion, 1.040.

(A, BCD, BDE) (C, ABC, ABD) (ADE, ACE, CDE)
(ABCDE, ABE, ACD) (B, D, E)

Table 57: The confounding pattern and binary bit combinations used to construct the
MBRodd design getting the worst value for the MAX criterion’s maximum value, 14.786.

(−ABCDE, E, −CDE) (−BCE, −ABD, B) (−BCD, A, D)
(−ABC, −ACD, −ACE) (−ABE, C, −BDE)

Table 58: The confounding pattern and binary bit combinations used to construct the
MBRodd design getting largest maximum value for the RMSE criterion, 2.807.
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Figure 21: The MBRodd design which got the best minimum value for the RMSE cri-
terion. Its confounding pattern and how it combined the binary bits to construct the
MBR design is shown in table 54.
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Figure 22: The MBRall design which got the best minimum value for the RMSE criterion.
Its confounding pattern and how it combined the binary bits to construct the MBR
design is shown in table 52.
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Figure 23: The MBRodd design which got the worst maximum value for the RMSE
criterion. Its confounding pattern is shown in table 58.
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6.5 Section Summary

In this section we have constructed LHS, OA and MBR designs with n = 32 sample
points and s = 2, 3, 4 and 5 factors. We constructed 1000 designs of each combination
of design type, number of factors and 32 sample points, without optimizing.

For all number of factors there were some tendencies. We saw that the LHS designs
performed poorly compared to the other design types for all number of factors. But as
we constructed designs with an increasing number of factors the LHS design performed
better. The MBRodd and MBRall designs performed good for the RMSE and the MAX
criterion. For two factors the MBR design did especially good, but as we needed more
factors the OAp=4 did better.

The MBR designs have a large and increasing difference between the minimum and
maximum values for the comparison criteria. The OA designs also have an increasing
difference, but not as much. The OAp=4 has a smaller difference between the designs’
maximum and minimum values for the comparison criteria and may be less risky to use.

When comparing the different ways of constructing fractional factorial designs for
the MBR designs, we see that the MBRall scores well for the MAX criterion while the
MBRodd scores well for the RMSE criterion. The MBRIV scores much like the MBRodd,
but without the extremes for the minimum and maximum values. This we could have
expected since the two ways of finding confounding patterns are similar.

A problem which increased with a higher number of factors was the construction of
MBR designs having replicated sample points. For two factors this was not a problem,
but for five factors we had to construct 10 times as many MBRall designs as we desired.
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7 Discussion

In this paper two comparison studies have been conducted:

1. We constructed and optimized designs using three different optimizing criteria,
the ASSC, L- and Amod-criteria. We compared the optimizing criteria by checking
how correlated they were with the comparison criteria, MAX and RMSE. The
comparison was carried out on designs based on OA, LHS and MBR using different
confounding patterns, and in addition random designs. All designs had five factors
and 32 sample points.

2. We constructed and compared different designs with two, three, four and five
factors all having 32 sample points, to see which designs were best we compared
them by using the comparison criteria, MAX, RMSE and ASSC. We constructed
LHS, OA and MBR designs using different confounding patterns.

The L- and Amod-optimizing criteria were not well correlated with the MAX and
RMSE criteria. The Amod-criterion was a little better than the L-criterion, but neither
of them were well correlated with the comparison criteria, indicating that they are not
suited to use for optimizing.

The alias sum of squares criterion was also used as an optimizing criterion. The
ASSC was more correlated with the MAX and RMSE comparison criteria than the L-and
Amod-optimizing criteria. Especially for the MBR designs the ASSC was more correlated
with the comparison criteria than the other two optimizing criteria. The difference in
correlation values for the different designs may indicate that we should consider the type
of design we wish to construct when choosing which optimizing criterion to use.

The correlation coefficients for the alias sum of squares criterion and the compari-
son criteria, MAX and RMSE, in section 5.3 were smaller than the values Bursztyn &
Steinberg (2004) obtained, which scored between 0.6 and 0.88. If we look at the corre-
lation coefficients for the non-optimized designs, the correlation between the ASSC and
the RMSE criterion ranges from 0.175 to 0.675, where the OA design has the minimum
score, the second lowest correlation coefficient was 0.413. Also for the MAX criterion the
correlation coefficients were substantially higher when we used non-optimized designs.
The OA had the smallest correlation, 0.186, the second lowest was 0.390 and the highest
was 0.579. These values are closer to the results in Bursztyn & Steinberg (2004) and
may suggest that we got different values because we chose from 100 designs and used
different true and estimated models. We used different methods for constructing designs
than Bursztyn & Steinberg (2004) did. All our design types had varying correlation
coefficients, this may also be part of the reason for us to obtain different values.

When we for the non-optimized designs compare the different design types we see
that for a small number of factors the MBR designs perform well. For two factors
the MBR design constructed using a fractional factorial design of the highest possible
resolution, VI, scores well, its minimum values are just marginally higher than for the
best designs. The MBRVI design’s only variation comes from the use of the fractional
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factorial design factors as binary bits in the MBR-factors. In the end we only have two
different MBR designs which both score the same for the comparison criteria.

For designs having 3, 4 and 5 factors the OAp=4 did better as the number of factors
increased. The MBRodd and MBRIV designs performed similarly, as we might expect
since they are both resolution IV designs. The MBRall performed well for the MAX
criterion, while the MBRodd performed good for the RMSE criterion. For the ASSC the
OA designs performed over-all the best.

The difference between a design type’s minimum and maximum value for the com-
parison criteria was substantially higher for the MBR designs than for the OA and LHS
designs. Especially the MBRodd designs have a high difference between a comparison
criterion’s min and max values. This could make the use of the design risky, especially
when an optimizing criterion is not used.

When we compare the tables in section 5 and the tables in section 6.4, in both sections
the designs have 5 factors, we see that the maximum values in section 6.4 are for most
designs and comparison criteria substantially higher than for the optimized designs in
section 5. This implies that even though the optimizing and comparison criteria used in
this study do not comply well, the use of an optimizing criterion is favorable. The design
having the smallest difference between the maximum values for the comparison criteria
when using and not using an optimizing criterion is the OAp=4 design. This combined
with the small difference between the minimum and maximum values for OAp=4 designs’
comparison criteria indicates that OA designs are for most part equally space-filling.

A problem that occurred when constructing MBR designs having an increasing num-
ber of factors was replicated sample points. As we needed more factors a higher number
of designs were constructed with, and needed to be discarded because of, replicated sam-
ple points in one or several of the designs’ two-dimensional projections. This occurred
especially often for the MBRall designs, and can be seen as a drawback to the multi-level
binary replacement designs.

When constructing MBR designs we have restrictions to the number of levels possible
to use, they need to be a power of 2. Also the OA design has restrictions, the number
of possible sample points is given by the relationship n = λpt and the OA having the
desired number of levels and strength may not exist. These restrictions are drawbacks,
especially when compared to the random or LHS designs.

In the two-dimensional plots for the MBR designs in section 6 all have symmetrical
patterns. We see that this can sometimes leave large areas empty, which is not desirable.
The MBR designs need to be constructed with a well chosen confounding pattern or using
an optimizing criterion. Since the different confounding patterns do well for different
criteria they may be suitable for different types of true and approximated models.
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A.1 True and Approximated Models Used in Sections 5 and 6

A.1.1 Five Factors

The true model used for designs constructed having s = 5 factors and n = 32 sample
points.

y = 0.59345729x1 + 0.60503367x2 + 0.96858356x3 + 0.92468047x4 + 0.38682111x5

+ 0.83248335x21 + 0.26167091x22 + 0.37436778x23 + 0.22220435x24 + 0.39863743x25

+ 0.67992135x1x2 + 0.42341648x1x3 + 0.04550819x1x4 + 0.28722105x1x5

+ 0.75918545x2x3 + 0.42294244x2x4 + 0.36999552x2x5 + 0.71543520x3x4

+ 0.45206398x3x5 + 0.79786643x4x5 + 0.06391047x31 + 0.82238476x21x2

+ 0.98251443x21x3 + 0.43446233x21x4 + 0.77772362x21x5 + 0.16910887x1x
2
2

+ 0.63712073x1x2x3 + 0.68123379x1x2x4 + 0.81245634x1x2x5 + 0.06325685x1x
2
3

+ 0.02288149x1x3x4 + 0.96875223x1x3x5 + 0.11234526x1x
2
4 + 0.57285054x1x4x5

+ 0.58808068x1x
2
5 + 0.89780525x32 + 0.45962887x22x3 + 0.44138936x22x4

+ 0.84764645x22x5 + 0.82670836x2x
2
3 + 0.88098623x2x3x4 + 0.52923310x2x3x5

+ 0.02009340x2x
2
4 + 0.98971092x2x4x5 + 0.18697230x2x

2
5 + 0.8908394x23x3

+ 0.5352430x23x4 + 0.3060528x3x4x5 + 0.7620614x3x
2
4 + 0.3004369x3x4x5

+ 0.9446652x3x
2
5 + 0.2745175x34 + 0.1682710x24x5 + 0.1726328x4x

2
5 + 0.2723786x35

The approximated model used for designs constructed having s = 5 factors and n = 32
sample points:

ŷ = β0 + β1x1 + β2x2 + β3c+ β4x4 + β5x4 + β12x1x2 + β13x1x3 + β14x1x4

+ β15x1x5 + β23x2x3 + β24x2x4 + β25x2x5 + β34x3x4 + β35x3x5 + β45x4x5

A.1.2 Four Factors

The true model used for designs constructed with s = 4 factors and n = 32 sample
points.



A.1 True and Approximated Models Used in Sections 5 and 6 55

y = 0.59345729x1 + 0.60503367x2 + 0.96858356x3 + 0.92468047x4 + 0.83248335x21

+ 0.26167091x22 + 0.37436778x23 + 0.22220435x24 + 0.67992135x1x2 + 0.42341648x1x3

+ 0.04550819x1x4 + 0.75918545x2x3 + 0.42294244x2x4 + 0.71543520x3x4

+ 0.06391047x31 + 0.82238476x21x2 + 0.98251443x1x1x3 + 0.43446233x21x4

+ 0.16910887x1x
2
2 + 0.63712073x1x2x3 + 0.68123379x1x2x4 + 0.06325685x1x

2
3

+ 0.02288149x1x3x4 + 0.11234526x1x
2
4 + 0.89780525x22 + 0.45962887x22x3

+ 0.44138936x22x4 + 0.82670836x2x
2
3 + 0.88098623x2x3x4 + 0.02009340x2x

2
4

+ 0.8908394x33 + 0.5352430x23x4 + 0.7620614x3x
2
4 + 0.2745175x34

The approximated model used for designs constructed having s = 4 factors and
n = 32 sample points:

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β12x1x2 + β13x1x3 + β14x1x4

+ β23x2x3 + β24x2x4 + β34x3x4

A.1.3 Three Factors

The true model used for designs constructed with s = 3 factors and n = 32 sample
points.

y =0.59345729x1 + 0.60503367x2 + 0.96858356x3 + 0.92468047x4 + 0.83248335a2

+ 0.26167091x22 + 0.37436778x23 + 0.22220435x24 + 0.67992135x1x2

+ 0.42341648x1x3 + 0.04550819x1x4 + 0.75918545x2x3 + 0.42294244x2x4

+ 0.71543520x3x4 + 0.06391047x31 + 0.82238476x21x2 + 0.98251443x21x3

+ 0.43446233x21x4 + 0.16910887x1x
2
2 + 0.63712073x1x2x3 + 0.68123379x1x2x4

+ 0.06325685x1x
2
3 + 0.02288149x1x3x4 + 0.11234526x1x

2
4 + 0.89780525x22

+ 0.45962887x22x3 + 0.44138936x22x4 + 0.82670836x2x
2
3 + 0.88098623x2x3x4

+ 0.02009340x2x
2
4 + 0.8908394x33 + 0.5352430x23x4 + 0.7620614x3x

2
4 + 0.2745175x34

The approximated model used for designs constructed having s = 3 factors and
n = 32 sample points:

ŷ = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3
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A.1.4 Two Factors

The true model used for designs constructed with s = 2 factors and n = 32 sample
points.

y =0.59345729x1 + 0.60503367b+ 0.83248335x21 + 0.26167091x22 + 0.67992135x1x2

+ 0.06391047x31 + 0.82238476x21x2 + 0.16910887x1x
2
2 + 0.89780525x32

The approximated model used for designs constructed having s = 2 factors and
n = 32 sample points:

ŷ = β0 + β1x1 + β2x2 + β12x1x2

A.2 The Confounding Patterns Chosen by Minitab

In sections 5 and 6 we used resolution IV confounding patterns to construct MBR designs
with 3, 4 and 5 factors, these were found by using Minitab. These confounding patterns
are as follows:
For MBR designs having five factors and resolution IV:

F = ABC G = ABD

H = ABE J = ACD

K = ACE L = ADE

M = BCD N = BCE

O = BDE P = CDE

For MBR designs having four factors and resolution IV:

F = ACE G = ACD

H = ABD J = ABE

K = CDE L = ABCDE

M = ADE

For MBR designs having three factors and resolution IV:

F = BCDE G = ACDE

H = ABDE J = ABCE

Lastly the confounding patterns used for contructing MBR designs having two factors
and resolution VI:

F = ABCDE
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A.3 Correlation Coefficients from Sections 5 and 6

A.3.1 The Correlations Coefficients for the Optimizing and Comparison
criteria

LHS OAp=2 OAp=4 Random MBRJT MBRH MBRIV

MAX 0.0904 0.1026 0.0665 0.1005 0.1560 0.1772 0.2009
RMSE 0.0837 0.1335 0.0802 0.1717 0.0242 0.1311 0.0843
ASSC 0.2606 0.1335 0.1184 0.3574 −0.0556 0.2674 −0.0986

Table 59: The correlation coefficients for the Amod-criterion values and the comparison
criteria values.

LHS OAp=2 OAp=4 Random MBRJT MBRH MBRIV

MAX −0.1665 −0.0539 −0.0427 −0.1537 −0.1563 −0.1182 −0.1741
RMSE −0.1426 −0.0300 −0.0865 −0.1329 −0.0887 −0.1346 −0.0390
ASSC −0.2283 −0.1430 −0.0962 −0.1633 −0.0105 −0.2631 0.0077

Table 60: The correlation coefficients for the L-criterion values and the comparison
criteria values.

LHS OAp=2 OAp=4 Random MBRJT MBRH MBRIV

MAX 0.1071 0.1132 0.0727 0.0186 0.2438 0.1051 0.1944
RMSE 0.1763 0.1406 0.0197 0.0876 0.4273 0.3773 0.4210

Table 61: The correlation coefficients for the alias sum of squares criterion values and
the comparison criteria values.

A.3.2 The Correlation Coefficients for the ASSC and the Comparison Cri-
teria for Non-Optimized Designs

LHS OAp=4 MBRJT MBRH MBRIV

MAX 0.5186 0.1859 0.5792 0.3975 0.5789
RMSE 0.4769 0.1754 0.6716 0.4786 0.5976

Table 62: The correlation coefficients for the alias sum of squares criterion values and
the comparison criteria values when constructing designs without optimizing.
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