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Abstract

Flexible data regression is an important tool for capturing complicated trends in
data. One approach is penalized smoothing splines, where there are several main-
stream methods. A weakness is, however, the quantification of uncertainty. We
will in thesis present two mainstream smoothing spline methods, P-splines and
O’Sullivan splines, and the RW2 model; a Bayesian hierarchical model based on
a latent field. The Bayesian prior is specified by a stochastic Poisson equation,
and spline estimates are approximated along a finite element Galerkin approach.
We evaluate the three methods using integrated nested Laplace approximations
(INLA) for a full Bayesian analysis, supplying credible bands. The methods give
fairly similar results and we investigate the theoretical motivates behind the meth-
ods. As an extension of the Bayesian models, the smoothing parameter is incor-
porated in the latent field. This gives an adaptive smoothing method, which bet-
ter estimates jumps and quick curvature changes. Further, the close relationship
between O’Sullivan splines smoothing splines is discussed, revealing O’Sullivan
splines to be a finite element Petrov-Galerkin approximation of smoothing splines.
The main results are the possibility of credible bands, the extension to adaptive
smoothing and the finite element understanding of O’Sullivan splines.
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Chapter 1

Introduction

The core of modern science is perhaps the collection and analysis of data. Within
this analysis, one of the most important problems is to find relationships between
measurements, specifically, how a set of underlying variables influence a response.
Different questions arise: How does an increase in the oil prize affect consumer
buying power, does higher acidity in water samples result in fewer fish, and can
the height and girth of a tree be used to predict the final volume of timber?
All these questions ask for a relationship between variables, the classical problem
of regression. The mathematical model incorporates the idea of a relation f(·)
between x and y and a measurement error ε,

y = f(x) + ε,

where the assumption of random errors ε ∼ N(0, σ2) brings the whole problem
into the field of statistics. Historically, the development started with Carl Friedrich
Gauss’ least squares method1 for an assumed relationship or a parametric function,
where the simplest one is linear. The term regression was later introduced by
Galton around 1880 and a new turn was taken with the non-parametric approach
developed by Nadaraya and Watson in the 1960’s.

The typical parametric regression assume a specific function f(x) parametrized
in terms of a small set of parameters, such as α + βx or eαx. This is, however, a
restrictive assumption, which is not always appropriate. If we instead assume the
underlying function to be smooth and approximate f(x) by capturing the patterns
in the data, we arrive at the classical smoothing problem. This procedure stands in
contrast to parametric curve fitting and instead focuses on important information
and takes away noise and fine-scale changes. Many different smoothing methods

1Gauss is credited with developing the least squares in 1795 as a tool in astronomy, but
Legendre was the first to publish the method in 1805 , when the French government defined the
metre.

1
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Figure 1.1: A flexible drawing device; the spline.

based on different ideas have been developed, such as kernel smoothers, Kalman
filters, wavelets and smoothing splines. In this thesis, we will examine the use of
smoothing splines from several different perspectives.

1.1 Smoothing splines
The idea behind smoothing splines is to combine measures of the smoothness of
a function and how well it fits the data. For the goodness of fit for the function,
we use the residual sum of squares as a criterion. Non-smoothness, like noise
and rapid changes, can be suppress by minimizing the penalty

∫
f ′′(x)2dx, the

integrated second derivative. Together these two criteria formulate the smoothing
spline technique as minimization problem

Sλ(f) =
n∑
i=1

(
yi − f(xi)

)2
+ λ

∫
f ′′(x)2dx, (1.1)

where the estimated solution is f̂λ(x) = arg minSλ(f). It was shown by Schoenberg
(1964), that the minimizer of the expression (1.1) is a natural cubic spline with
knots at the data points. The origin of the term, spline, comes from a drawing
device seen in Figure 1.1, a flexible piece of wood or metal, used by shipbuilders
to draw smooth curves. Markers fixed the device at certain points and the flexible
material would bend to minimize the internal energy, outlining a smooth curve. A
spline is, therefore, a function minimizing an energy.
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}f(x)

Figure 1.2: A bending rod deviating from neutral position.

The fact that the penalty,
∫
f ′′(x)2dx, represents a bending energy is motivated

by linear elasticity theory. This is a field within structural mechanics concerned
with bending of materials. Jones (2006) derive the internal energy of a bending
rod by relating the deflection f(x) from neutral position, as in Figure 1.2, to the
bending moment M and strain energy U . The rotational energy, Erot = 1

2Mθ, will
relate to the deflection f(x) for a small part of the rod. The relationship between
the radius of rotation R and the moment M is M = c

R
, where c is determined by

the Young’s modulus and moment of inertia, the physical qualities of the beam.
With the relation Rdθ = ds, the energy is obtain

dE = 1
2Mdθ = c

2Rdθ = c

2
dθ

ds
dθ. (1.2)

The angle of the bending moment relates to the deflection, df(x)
dx

= tan θ and the
derivative for small angles, θ << 1, give the approximation

d2f(x)
dx2 = 1

cos2 θ

dθ

dx
≈ dθ

dx
. (1.3)

For small angles and deflections, we use the approximations ds ≈ dx and dθ
ds
≈ dθ

dx
,

which yield

dE ≈ c

2
dθ

dx
dθ = c

2

(
d2f(x)
dx2

)2

dx. (1.4)

The total bending energy of the rod is then proportional to

E(x) ∝
∫ (

d2f(x)
dx2

)2

dx. (1.5)

Under the idealized physical conditions used in linear elasticity theory, the bending
energy is proportional to the integrated square curvature. This underlines the fact
that the penalty in (1.1) is an energy. The true bending energy for the physical
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Figure 1.3: Examples of smoothing: a) Under-smoothing. b) Proper smoothing.
c)Over-smoothing.

device, however, will be non-linear, but we still derive our penalty from the physical
motivation.

The spline estimate is the trade-off between interpolating the data and mini-
mizing the bending energy of the function. A key point is the smoothing parameter
λ, which controls this trade-off between goodness-of-fit and roughness, as seen in
Figure 1.3. If the smoothing decreases, λ → 0, then noise is seen as patterns, as
seen in Figure 1.3a), and if λ→∞, then all structures are smoothed out, leaving
only a linear regression estimate, as seen in Figure 1.3c).

B-splines

The estimate f̂λ(x) is a cubic spline, meaning the function is a piecewise cubic
polynomial. It is divided into intervals associated with a knot sequence

a = τ0 ≤ τ1 ≤ · · · ≤ τk−1 ≤ τk = b. (1.6)

The spline can be represented in terms of a basis, which give the term B-spline.
The function S(x) is specified by a coefficient or weight vector w = [w1, . . . , wn]T
and the basis matrix B(x) = [B1,d(x), . . . , Bn,d(x)]T , where Bi,d(x) are i basis
functions. Figure 1.4 shows a set of uniform basis functions. The polynomial
spline is given by

S(x) =
n∑
j=1

Bj(x)wj. (1.7)

A B-spline on an interval [a, b] has order m = d + 1, where d is the degree of the
polynomials, and number of internal knots k. An augmented knot sequence τi is
defined by placing m equal boundary knots on the end points and such a knot
sequence can support a basis of order l up to l ≤ m

a = τ1 = · · · = τm < τm+1 < · · · < τk+m < τk+m+1 = · · · = τK+2m = b. (1.8)
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Figure 1.4: Uniform basis splines with degree one and three, in the upper and
lower panel, respectively.

Each duplication of the boundary knots results in the loss of one continuous deriva-
tive. The number of basis function Bi supported by the augmented sequence is
k + m. This can be shown by counting the parameters needed to be specified.
We will have k + 1 regions multiplied with m function parameters per region, but
we must subtract the parameters specified by the continuity constraints given by
k internal knots multiplied by m − 1 constraints on derivatives per knot. So the
number of parameters and basis functions are

(k + 1) ·m− k · (m− 1) = k +m. (1.9)

The basis is found by the Cox-de Boor recursion formula for i = 1, . . . , k+ 2m−1:

Bi,1(x) =
{

1 if τi ≤ x < τi+1
0 otherwise (1.10)

Bi,m(t) = x− τi
τi+m−1 − τi

Bi,m−1(x) + τi+m − x
τi+m − τi+1

Bi+1,m−1(x). (1.11)

If the knot sequence is uniform, the basis functions become shifted copies of an-
other.



6 1.2 Penalized splines: a Bayesian approach

1.2 Penalized splines: a Bayesian approach
In this section, we will introduce the main focus in this thesis, the Bayesian formu-
lation of smoothing splines. Mainstream spline methods use B-splines to represent
f(x) in (1.1) and approximate differently the smoothing penalty to achieve feasible
calculations. However, the problem can be formulated quite differently, as Wahba
(1978) showed. An equivalent smoothing spline formulation with a exact solution
involves a Bayesian hierarchical model with a Gaussian process prior, given as

f(x) = θ1 + θ2x+ b−
1
2F (x), (1.12)

yi = f(xi) + ε, (1.13)

where x ∈ [0, 1], i = 1, . . . , n and ε ∼ N (0, σ2). The coefficients θ1 and θ2 can be
fixed and unknown or random, b > 0 is a precision parameter and

F (x) =
∫ 1

0
(x− t)+dW (t), (1.14)

where (·)+ = max(0, ·). F (x) is an one-fold integrated Wiener process and the
solution of the stochastic differential equation (SDE)

d2f(x)
dx2 = dW (x)

dx
. (1.15)

The motivations behind this stochastic process is in fact Taylor’s theorem. If f(x)
is a function on [0, 1] with two continuous derivatives and f ′′(x) ∈ L2[0, 1], then

f(x) = {f(0) + f ′(0) · x}+
{∫ 1

0
(x− t)+f

′′(t)dt
}
. (1.16)

We see that the function f(x) can be decomposed in two parts, where the second
part represent all functions with the condition f(0) = f ′(0) = 0. Wahba (1990)
showed, with great mathematical rigor, that these functions span the same space
as all possible sample paths form the process F (x). When f(x) solves the SDE
(1.15), the second part of (1.16) is equivalent to the stochastic process F (x)∫ 1

0
(x− t)+

d2f(t)
dt2

dt =
∫ 1

0
(x− t)+

dW (t)
dt

dt (1.17)

=
∫ 1

0
(x− t)+dW (t), (1.18)

underlining that F (x) is a prior for f(x).
We define F̂ (x) as the minimum variance, unbiased linear estimate of F (x),

when given
F̂ (x) =

n∑
j=1

βj(x)yj (1.19)
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and it minimizes the variance E(F̂ (x) − F (x))2 with respect to θ, E(F̂ (x)|θ) =
E(F (x)|θ). Wahba (1978) showed, that if F̂ (x) is given by a set of responses yi,
and fλ(x) is the minimizer of

n∑
i=0

(yi − f(xi))2 + λ
∫ 1

0
(f ′′(u))2du, (1.20)

then
F̂ (x) = fλ(x), λ = σ2b. (1.21)

This means the smoothing spline solution can be found by solving a SDE and a
Bayesian model. It is not immediately obvious that this is a practical observation,
but it will show its usefulness in Section 2.3.

Bayesian inference

With the latent field specified by Wahba (1978), the smoothing problem can be
reformulated a Bayesian way. The starting point of Bayesian statistics is the
desire to incorporate known information and therefore the parameters are assigned
densities π(θ). These distributions are dependent on some hyperparameters, which
are assumed to be known. A Bayesian hierarchical model introduces a latent
variable, in addition to the observations and hyperparameter,

Observations: y|f ∼ π(y|f), (1.22)
Latent variable: f |θ ∼ π(f |θ), (1.23)
Parameters: θ ∼ π(θ). (1.24)

The distribution of latent variable and parameters π(f |θ) and π(θ) represent f(x)
and θ before the observations are done, and they are therefore called priors. But
we want to find the distributions after observing y, the posterior distributions.
Therefore we use Bayes’ theorem

π(a|b) = π(b|a)π(a)
π(b) , (1.25)

where π(b) =
∫
π(b|a)π(a)da. Since π(b) is independent of a, we write

π(a|b) ∝ π(b|a)π(a), (1.26)

linking the posterior, π(a|b), to the prior distribution π(a).
The posterior distribution of f and θ is then given

π(f ,θ|y) ∝ π(y|f)π(f |θ)π(θ). (1.27)
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The observational distribution, π(y|f), is the probability density of the observed
y given f and for classical regression y = f(x) + ε, ε ∼ N (0, σ2) gives,

π(y|f) = N (f(x), σ2). (1.28)

We wish to have a prior distribution for the latent variable f(x). Therefore, we
involve the concept of stochastic processes, which makes it possible to describe
the statistical distribution of a function. A sample path of the process represent a
possible function.

The Wiener process

In order to compute Bayesian smoothing splines, we will use some basic results
from the theory of stochastic processes. A stochastic process {F (x)|x ∈ X} is a
family of random variables F (x) on the index set x ∈ X defined on the probability
space (Ω,F , P ). It is function, such that F (x0, ·) for a fixed x0 is a random variable
and F (·, ω0) for a fixed ω0 ∈ ω is a sample path. The Gaussian process is defined
in the following way:

Definition 1.2.1. (Lindgren, 2010) A stochastic process {F (x), x ∈ R} is a Gaus-
sian process if every linear combination S = ∑

k akF (xk) for real ak and xk ∈ R
has a Gaussian distribution.

It follows, if they exist, that the derivative and integral of a Gaussian process
are also Gaussian. The derivative is the limit of F (x+h)−F (x)

h
as h → 0.There are

several important Gaussian processes with different properties and characteristics,
such as the Wiener process, as seen in Figure 1.5.

Definition 1.2.2. (Lindgren, 2010) The Wiener process {W (x), 0 ≤ x} is a Gaus-
sian process with W (0) = 0 giving E(W (x)) = 0 and the variance of the increment
W (x+ h)−W (x) for h > 0 is proportional to h,

Var(W (x+ h)−W (x)) = hσ2. (1.29)

The Wiener process is characterized by the following properties:

• Independent increments: W (t)−W (s) is independent of {W (τ)}τ≤s for 0 ≤
s ≤ t.

• Stationarity: The distribution of W (t)−W (s) is independent of s.

• Continuity: W (t) is almost surely continuous seen as a function of t.

• W (t) is Gaussian, W (t) ∼ N (0, t), and the covariance is EW (t)W (s) =
min(s, t).
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Figure 1.5: Sample paths from a standard Wiener process.

Gaussian white noise

Another important concept is the ”derivative” of a Wiener process, Gaussian white
noise, as seen in Figure 1.6. The sample paths of a Wiener process are continuous
functions, but they are not differentiable. However, we can define the general-
ized derivative, W ′(x), using an integration-by-parts style formula with a smooth
function g(x)

g(x)W (x) =
∫ x

0
g(t)W ′(t)dt+

∫ x

0
g′(t)W (t)zdt. (1.30)

Since W (x) is a Gaussian process, the derivative W ′(x) will be Gaussian with
expectation and generalized covariance

EW ′(x) = 0, (1.31)
E(W ′(x)W ′(x′)) = δ(x− x′). (1.32)

The solution of the stochastic differential equation presented in this thesis is an
integrated Wiener process, defined by integrals of the form

Gi =
∫
gi(t)W ′(t)dt. (1.33)
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Figure 1.6: Gaussian white noise, the derivative of a Wiener process.

The process Gi will, by construction, have a Gaussian distribution with zero-mean
and covariance defined by

Cov (Gi, Gj) = E
(∫

gi(t)W ′(t)dt
∫
gj(t)W ′(t)dt

)
(1.34)

=
∫ ∫

gi(t)gj(t′)E(W ′(t)W ′(t′))dtdt′, (1.35)

=
∫
gi(t)gj(t)dt. (1.36)

The process Gi, defined by the function gi, has a Gaussian distribution with ex-
pectation and covariance

EGi(x) = 0 (1.37)

Cov(Gi, Gj) =
∫
gi(t)gj(t)dt. (1.38)

Discrete processes: The second order random walk

Random walk is an example of a discrete stochastic process, and it is equivalent
to the discrete observations of a Wiener process. A random walk is defined as

zt = zt−1 + εt, εi ∼ N (0, σ2), (1.39)

When z0 = 0, we find by recursion the following

zt =
t∑
i=1

εi, (1.40)
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Figure 1.7: Sample paths from a integrated Wiener process, a continuous second-
order random walk.

which give E zt = 0 and Var zt = tσ2, as the Wiener process. The error εi corre-
sponds to Gaussian white noise. In parallel, we introduce the process correspond-
ing to discrete observations of the latent field F (x), the integrated Wiener process,
given by

F (x) =
∫ 1

0
(x− t)+W

′(t)dt, (1.41)

as seen in Figure 1.7.
This discrete process is the second-order random walk and we construct the

model by independent, identically distributed second-order increments, following
the notation from Rue and Held (2005)

∆2ft ∼ N (0, σ2), t = 1, . . . , n− 2. (1.42)

This can be rewritten as

ft = 2ft−2 − ft−1 + εt, εi ∼ N (0, σ2). (1.43)

It is easy to show that this process is the cumulative sum of a random walk, just
as the random walk is cumulative sum of Gaussian variables,

ft =
t∑
i=1

zi =
t−1∑
i=1

zi + zt (1.44)

= ft−1 + zt−1 + εt = ft−1 + ft−1 − ft−2 + εt (1.45)
= 2ft−2 − ft−1 + εt. (1.46)
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The second order random walk ”integrates” a random walk, corresponding to it
being the discrete observations of a integrated Wiener process F (x). When we in
addition know that F (x) is the solution of

d2f(x)
dx2 = dW (x)

dx
, (1.47)

calling ft of second-order is quite natural.
Rue and Held (2005) define the second-order walk in connection to Gaussian

Markov random fields (GMRF), which make another aspect of the result (1.13)
become clear. They define the observational distribution density in a Bayesian
setting with increment precision τ = 1/σ2:

π(x|κ) ∝ κ(n−2)/2 exp
(
−κ2

n−2∑
i=1

(xi−2 − 2xi−1 + xi)
)
, (1.48)

= κ(n−2)/2 exp
(
−κ2

n−1∑
i=2

(∆2xi)
)
, (1.49)

= κ(n−2)/2 exp
(
−1

2xTQx
)
, (1.50)

where the precision matrix is given as

Q = κ



1 −2 1
−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 6 −4 1

1 −4 5 −2
1 −2 1


. (1.51)

The rank of Q is n− 2, which makes it improper with rank deficiency two and an
example of an intrinsic GRMF of second-order. This means the density is invariant
to the addition of any line α+βx to x, which is the property highlighted by Wahba
in (1.13) by θ1 + θ2x.

1.3 Integrated nested Laplace approximation (INLA)
Rue and Martino (2009) have developed the R computer package INLA for approx-
imate Bayesian inference using integrated nested Laplace approximations. This
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handles general Gaussian hierarchical models, such as the specified Bayesian for-
mulation of smoothing splines. INLA compute the credible bands from the poste-
rior densities, making it possible to quantify the uncertainty in the spline estimate.

The general Gaussian hierarchical model have a hyperparameter θ with prior
π(θ), a latent variable f with density π(f |θ) and an observed response y with
likelihood π(y|f). The posterior is then given

π(f , θ|y) ∝ π(θ)π(f |θ)π(y|f), (1.52)

and we want to find the posterior marginals π(fi|y) and π(θi|y). This can by
done by using INLA, which compute the approximated marginals directly without
using MCMC-methods. The classical Laplace approximation of an integral uses
the Taylor expansion of ln f(x) = g(x) around x0,

ln f(x) = g(x0) + g′(x0) · (x− x0) + 1
2g
′′(x0) · (x− x0)2 + . . . (1.53)

If x0 is taken to be the mode of ln f(x), where f(x) is a unimodal density function,
the first derivative must be zero, ∂ ln f(x)

∂x

∣∣∣
x=x0

= 0. Then the approximation is a
Gaussian density. The posterior marginal of interest can be written as

π(fi|y) =
∫
π(fi|θ,y)π(θ|y)dθ, (1.54)

π(θi|y) =
∫
π(θ|y)dθ, (1.55)

and the approximations done by INLA construct nested approximation with π̃ as
an approximated density

π̃(fi|y) =
∫
π̃(fi|θ,y)π̃(θ|y)dθ, (1.56)

π̃(θi|y) =
∫
π̃(θ|y)dθ. (1.57)

An approximation of π(fi|y) is computed by approximating π(fi|θ,y) and π(θ|y)
and using numerical integration to integrate out the parameter θ. This nested
approach make the Laplace approximations very accurate. The π̃(θi|y) is approx-
imated by

π̃(θi|y) ∝ π(f , θ,y)
πG(f |θ,y)

∣∣∣∣∣
f=f∗(θ)

, (1.58)

where πG(f |θ,y) is the Gaussian approximation and f∗(θ) is the mode.
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The Munich rental guide

INLA is implemented in R and we illustrate with a classical example, the Munich
rental guide. According to German law, flat owners can increase the rent based
on the average of comparable flats. Therefore, the public provides a rental guide
with the average rent per square meter given by several housing variable, such as
the flat size and building year. The data provided come from two thousand flats
in Munich and we estimate a smooth trend, using the following R code with the
rw2 option:

library(INLA)
data(Munich)
x <- Munich$year; y <- Munich$rent;
data <- data.frame(y=y,x=x)
formula <- y~f(x,model="rw2",prior="loggamma",param=c(1,0.01))
result <- inla(formula,data=data,family="gaussian")

The prior on the smoothing parameter is Gamma(α, β), where α = 1 and β = 10−2,
as specified in (2.10). The plotted results in Figure 1.8 display the smooth trend
between the variables, giving flat owners the opportunity to set rent based on the
estimated curve. The dashed lines show the 95 % credible bands, expressing how
precise the estimate is considered to be.

1920 1940 1960 1980 2000
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(a)

50 100 150
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20

(b)

Figure 1.8: The Munich rent guide: a) Building year against rent per square meter.
b) Floor size against rent per square meter. The dashed line show the 95% credible
bands.
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1.4 Outline of thesis
In Chapter 1, we have introduced the concept of smoothing splines as an en-
ergy minimizer and the Bayesian formulation in terms of a SDE. Chapter 2 will
explore three different approximative smoothing splines, two frequentist meth-
ods, P-splines and O’Sullivan splines and a Bayesian approach, the RW2 model.
Graphical examples made using INLA, will showcase the comparison between the
methods and differences and advantages are discussed. Chapter 3 investigate the
relationship between O’Sullivan splines and the RW2 model, and shows that the
O’Sullivan splines are a finite element approximation to smoothing splines. The
extension of to Bayesian adaptive smoothing, is explored in Chapter 4 and in
Chapter 5 the different results are discussed.



Chapter 2

Stochastic models for splines

In this chapter, we will present two different penalized spline methods used in
regression, given as

y = f(x) + ε, ε ∼ N(0, σ2). (2.1)
These two mainstream methods give computationally feasible versions of the smooth-
ing splines, formulated as

Sλ(f) =
n∑
i=1

(
yi − f(xi)

)2
+ λ

∫
f ′′(x)2dx, (2.2)

where the function f(x) and the penalty are approximated in different ways. Both
methods, P-splines and O’Sullivan splines, use a basis spline representation with
the knot sequence of τi with k internal knots, order m and l = m+ k, for f(x)

f̂(x) =
l∑

j=1
wjBj(x), (2.3)

where wj is the coefficient of the jth basis function Bj(x). The mainstream meth-
ods are frequentist and formulate spline smoothing as a minimization problem of
a specified objective function, where one part represent the goodness-of-fit and
the other quantify the roughness of the estimate. The function is parametrized
in terms of a set of basis functions, reducing the problem to finding the weights
w. The penalty, essentially on w, must be approximated, making the problem a
system of linear equations, where the minimization is done along the lines of the
ordinary normal equations. The objective function is given in matrix notation

Sλ(w) = (y−Bw)T (y−Bw) + λ wTΩ w, (2.4)
where ŵλ = arg minw S(w) and Ω is a matrix representing the approximation of
the penalty. P-splines approximate the penalty by higher-order differences on the
coefficients w, while the O’Sullivan splines use an approximation along the lines
of a finite element method.

16
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The Bayesian approach

The second half of this chapter will be use to explore a method based on the
results of Wahba (1978). Mainstream penalized splines methods focus on the
minimization of an objective function, which can be reinterpreted as a Bayesian
model. A field prior, described by a stochastic differential equation, specify the
statistical distribution of w and f(x). This gives a hierarchical Bayesian model and
we reformulate the two frequentist methods to evaluate them within the Bayesian
framework.

The Bayesian hierarchical model has the following distributions:
y|w ∼ π(y|w) = N

(
Bw, σ2I

)
(2.5)

w|b ∼ π(w|b) = N
(
0, (bΩ)−1

)
(2.6)

b ∼ π(b) = Gamma(α, β), (2.7)
giving the posterior distribution

π(w, λ|y) ∝ π(y|w)π(w|b)π(b)

∝ π(b)|Ω|1/2 exp
{
− 1

2σ2 (y−Bw)T (y−Bw)− b

2 wTΩ w
}
. (2.8)

The solution of ŵ is found to be the maximum a posteriori probability (MAP)
estimate. This shows equivalence between the Bayesian model and the objective
function, when λ = σ2b and we fix b to be constant,

ŵλ = arg min
w

{
(y−Bw)T (y−Bw) + λwTΩ w

}
,

= arg max
w

{
−1

2(y−Bw)T (y−Bw)− σ2b

2 wTΩ w
}
,

= arg max
w

{
e−

1
2σ2 (y−Bw)T (y−Bw)− b2 wTΩ w

}
,

= ŵMAP . (2.9)
The MAP estimates and the posterior means can be found by using the integrated
nested Laplace approximations (INLA) package in R. One important aspect is the
choice of smoothing parameter. The usual frequentist approach is to use a general
cross-validation scheme, based on the removal of a single data point and optimizing
for the prediction power.

All calculations carried out in INLA use a Gamma(α, β) prior on the smoothing
parameter b

π(b) = βα

Γ(α)b
α−1e−βb, (2.10)
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with mean α
β
, variance α

β2 and mode α−1
β

. The internal structure of INLA reparametrize
b is as θ = log b, therefore the option is specified by prior=loggamma, for further
details see (Rue and Martino, 2009). For simplicity, we will only look at examples
where the data points xi are placed on knots τi with irregular and regular data.
Additionally, we place one knot between each data point, resulting in twice as
many knots as data.

2.1 Difference penalty

In the papers Flexible smoothing with B-splines and penalties (Eilers and Marx,
1996) and Spline, knots and penalties (Eilers and Marx, 2005) present P-splines,
which use B-splines with uniform knots and difference penalties. Eilers and Marx
(2005) compare the method with the use of truncated power functions with knots
based on quantiles of the data and a ridge penalty, presented in (Ruppert et al.,
2003) and conclude that uniform B-splines are to be preferred. Their goal is
to highlight the differences between penalized B-splines and penalized truncated
power functions and to make a plea for equidistant knots.

P-splines are constructed on a basis of quadratic or cubic splines using equally-
spaced knots with coefficients w and basis matrix B computed on x,

yi =
l∑

j=1
Bj(xi)wj = Bw. (2.11)

The penalty matrix Ω from (2.4) is the kth differences of the B-spline coefficients
corresponding to minimizing of the objective function

S(w) =
n∑
i=1

(yi −B(xi)w)2 + λ
l∑

j=k+1
(∆kwj)2 (2.12)

= (y−Bw)T (y−Bw) + λ wT (DT
kDk)w (2.13)

where ∆k is the kth difference. The first and second difference is

∆wi = wi − wi−1, (2.14)
∆2wi = wi − 2wi−1 + wi−2. (2.15)

The vector of differences ∆k is denoted by the matrix Dk, giving the penalty
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matrix Ω = DT
kDk. For k = 2 the penalty becomes

Ω =



1 −2 1
−2 5 −4 1
1 −4 6 −4 1

1 −4 6 −4 1
. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 6 −4 1

1 −4 5 −2
1 −2 1


. (2.16)

The minimizer of the objective function ŵ is given by

(BTB + λDT
kDk)ŵ = BTy, (2.17)

and the resulting estimate becomes

f̂(x) =
l∑

j=1
ŵBj(x) (2.18)

= B(BTB + λDT
kDk)−1BTy. (2.19)

The parameter λ tunes the smoothness and λ → 0 the reduce the system to
a linear regression on the basis functions Bj(x). When the smoothing increases,
λ → ∞, the data is fitted to a linear (k = 2) or quadratic (k = 3) curve. The
penalty λ insures that the matrix BTB + λDTD is not singular in (2.17), but is
also understood as the precision of the prior distribution of the coefficients π(w|b).

The differencing penalty of the weights w is difficult to interpret, but can be
seen as an discrete approximation of dth derivative with equidistant knots. We
can see this for a special case, applying the Cox-de Boor formula for derivatives of
B-splines as done in (Eilers and Marx, 1996), yielding

∑
i

wiB
′
i(x;m) = −1

h

∑
i

∆wi+1Bi(x;m− 1). (2.20)
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With cubic B-splines, the penalty becomes

h2
∫ b

a
f ′′(x)2dx = h2

∫ b

a

{∑
i

wiB
′
i(x, 3)

}2

dx =
∫ b

a

{∑
i

∆2wiBi(x, 1)
}2

dx

=
∫ b

a

∑
i

∑
j

∆2wi∆2wjBi(x, 1)Bj(x, 1)

 dx
=
∫ b

a

[∑
i

(∆2wiBi(x, 1))2 + 2
∑
i

∆2wi∆2wi−1Bi(x, 1)Bi−1(x, 1)
]
dx

= c1
∑
i

(∆2wi)2 + c2
∑
i

∆2wi∆2wi−1, (2.21)

where c1 and c2 for equidistant knots are constant

c1 =
∫ b

a
Bi(x, 1)2dx, c2 =

∫ b

a
Bj(x, 1)Bj−1(x, 1)dx. (2.22)

The first term of (2.21) is equivalent to the difference penalty with d = 2, meaning
it approximates the integrated penalty without cross products, the effect from over-
lapping, neighboring basis functions. Eilers and Marx (2005) shows that B-splines
with equally spaced knots can be constructed using truncated power functions
fj,d(x) = (x− tj)d+

Bj,d(x) = (−1)d+1∆d+1fj,d(x)
hdd! , (2.23)

where h is the distance between knots. This is a simplification of the Cox-de
Boor algorithm due to the equal spacing. They claim that quantile-bases knots
“underestimates the power of the penalty” (Eilers and Marx, 2005). If the model
make sense continuously, it should be independent, within reason, of the knot
sequence. There is also a problem with the waste of calculation power. Uniform
knots will place structure, where there is possibly no need for it.

P-splines are based on equidistant knots and a discrete difference penalty, which
falls easily within the common framework of statistics. The greatest advantages
of the method is that it is easily programmed. To obtain the penalty matrix, we
need no calculations or any knowledge of the basis functions. The free choice of
the differencing order, Dd, also gives the possibility of a higher order smoothing
penalty and increased flexibility. The choice d = 2 is however the most natural,
being the equivalent of the second derivative.

2.2 O’Sullivan penalty
The paper On semiparametric regression with O’Sullivan penalized splines (Wand
and Ormerod, 2008) introduce penalized splines using quantile-based, non-uniform
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Fossil data: B−spline basis, quantile knots. 

Figure 2.1: Example of 16 basis functions for fossil data with 12 quantile-based
knots, indicated by circle.

knots. The penalty is based on the integral of B-spline basis functions, as intro-
duced by O’Sullivan, and the spline estimate satisfies natural boundary conditions.
The cubic B-spline basis functions B1, . . . , BK+4 are defined by a knot sequence
given as (1.8). The knots κi are chosen to be the i

K+1th sample quantile of the
unique data points xi, where

K =


n n < 50

100 n = 200
140 n = 800

200 + (n− 3200)1/5 n > 3200.

(2.24)

Figure 2.1 shows the basis functions with 16 knots for a dataset of fossil shells,
presented in Section 2.5. The design matrix B has entries Bij = Bi(xj) and the
(K + 4)× (K + 4) penalty matrix Ω is defined by

Ωij =
∫ b

a
B′′i (x)B′′j (x)dx. (2.25)

The estimate f̂(x;λ) is the minimizer of

S(w) = (y−Bw)T (y−Bw) + λ wTΩ w, (2.26)

giving
f̂(x;λ) = Bŵ, where ŵ = (BTB + λΩ)−1BTy, (2.27)

where B = [B1, . . . , BK+4] and λ > 0 is the smoothing parameter.
Wand and Ormerod (2008) comment that the cubic smoothing spline arises in

the special case k = n and τi+4 = xi for 1 ≤ k ≤ n, provided that the xi are distinct.
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The estimate f̂(x;λ) satisfies the natural boundary condition, a constraint on the
derivatives, meaning that

f̂ ′′(a;λ) = f̂ ′′(b;λ) = f̂ ′′′(a;λ) = f̂ ′′′(b;λ) = 0, (2.28)

which implies that f̂(x;λ) is approximately linear over the intervals [a, κ5] and
[κK+4, b]. The linearity is exact if κ5 = min(xi) and κK+4 = max(xi).

The penalty matrix Ω can be computed in R by the second derivative design
matrix B′′ and is given for a cubic basis

Ω = (B̃′′)T diag(c)B̃′′, (2.29)

where B̃′′ is the 3(K + 7) × (K + 1) matrix with entries B′′j (x̃i), x̃i is from the
vector

x̃ =
(
κ1,

κ1 + κ2

2 , κ2, κ2,
κ2 + κ2

2 , . . . , κK+7,
κK+7 + κK+8

2 , κK+8

)
(2.30)

and c is the 3(K + 7)× 1 vector

c =
(1

6∆κ1,
4
6∆κ1,

1
6∆κ1, . . . ,

1
6∆κK+7,

4
6∆κK+7,

1
6∆κK+7

)
, (2.31)

where ∆κi = κi+1−κi. This result is given by applying Simpson’s rule over each of
the inter-knot difference using the second derivative design matrix to calculate the
integrals defining Ωij. Since each function B′′i B′′j is piecewise-quadratic, Simpson’s
rule will calculate the integral exactly.

The O’Sullivan splines use quantile-based knots and the differences between this
and equidistant knots will be minor in most situations. The O’Sullivan splines are
compared to P-splines by using equally spaced knots, evaluating only the penalty
matrices. The differences are relatively small, but give noticeable different results
at the boundaries. An empirical study on 18 homoscedastic regression settings
with 200 samples estimated the closeness between the estimate and the smoothing
spline. In all 72 cases the O’Sullivan-splines were closer to the smoothing splines
than P-splines (Wand and Ormerod, 2008). The difference in the two methods
is clear at the boundaries, where P-splines deviates from the natural boundary
conditions of the smoothing splines. This comes from the discrete penalty ap-
proximation near the boundary. The greatest advantages with O’Sullivan splines
is the direct use of the B-spline basis functions to calculate the penalty matrix,
giving a better approximation to the smoothing spline penalty. The function f(x)
is approximated by a weighted set of basis functions, as a parallel to finite element
methods.

The calculations are slightly more complicated than for the P-spline difference
penalty, but still easily done. The method has added flexibility due to the use of
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quantile-based knots, that assign more basis functions to areas with higher density
of data. This insures that computer power is not wasted on areas with little
data and high uncertainty. Strategically placed knots, can reduced the number of
basis functions. Another important feature of O’Sullivan splines are the natural
boundary property shared with the smoothing spline. This gives a better behaviour
than P-splines near the boundaries.

2.3 Second-order random walk model
After examining the mainstream, frequentist methods based on minimization, we
introduce the method based on a Bayesian latent field. Wahba (1978) showed that
the following Bayesian prior, gives the same exact solution as smoothing splines:

f(x) = θ1 + θ2x+ b−
1
2F (x), x ∈ [0, 1], (2.32)

yi = f(xi) + ε, ε ∼ N (0, σ2), (2.33)

where θi can be fixed or random and F (x) is the following stochastic process

F (x) =
∫ 1

0
(x− t)+ dW (t). (2.34)

Lindgren and Rue (2008) introduced the second-order random walk (RW2) model
with irregular location, using a Galerkin approximation to F (x), as the solution
of

d2f(x)
dx2 = dW (x)

dx
. (2.35)

With a sequence of fixed, irregular locations s1 < s2 < · · · < sn and the observa-
tions at these locations yi, we set the model as the discrete observations of F (x).
The process is an integrated Wiener process and hence Gaussian. We want to find
the statistical properties, the expectation and precision matrix of this stochastic
field, which describe the prior of f(x).

For this, we use a Galerkin approach, which is discussed in detail in Chapter 3,
to solve the stochastic differential diffusion equation in (2.35). The weak solution
of the SDE, denoted in terms of the inner-product 〈f, g〉 =

∫
f(t)g(t)dt, is defined

by the identity
〈φ(x), y′′(x)〉 = 〈φ(x),W ′(x)〉 , (2.36)

which must hold for all appropriate test functions φ(x). The approximation f̃(x)
to the SDE is constructed as a linear combinations of a set of basis function
{ψi(x)}, i = 1, . . . , n for some subset of all possible solutions,

f̃(x) =
n∑
i=1

ψi(x)wi, (2.37)
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Figure 2.2: A standard piecewise linear Galerkin basis function.

such that the joint distribution of the approximation equals the joint distribution
of the true solution 〈

ψi(x), f̃ ′′(x)
〉

d= 〈ψi(x), f ′′(x)〉 , (2.38)

where the right-hand side is described in terms of the Gaussian white noise 〈ψi(x),W ′(x)〉.
The problem is reduced to finding the distribution of the weights w = [w1, . . . , wn]T .

If s1 < s2 < · · · < sn is the location sequence and di = si+1 − si for i =
1, . . . , n − 1, the standard set of basis functions is piecewise linear, as seen in
Figure 2.2,

ψi(t) =


0, x < si−1,
x−si−1
di−1

, si−1 ≤ x < si,

1− x−si
di
, si ≤ x < si+1,

0, si+1 ≤ x

. (2.39)

Now, the Galerkin approximation is expanded in terms of the basis, resulting in

[〈
ψi(x), f̃ ′′(x)

〉]
i=1,...,n

=
∑

j

wj 〈ψi(x), ψ′′(x)〉

i=1,...,n

= Hw, (2.40)

The integral giving the elements of matrix H can be simplified by integration-by-
parts, using the natural boundary condition f ′(a) = f ′(b) = 0, to yield

Hij =
∫ b

a
ψi(x)ψ′′(x)dx = −

∫ b

a
ψ′i(x)ψ′(x)dx. (2.41)
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Therefore, H, is given as a tridiagonal matrix with elements

Hi,i−1 = 1
di−1

, Hi,i = −
(

1
di−1

+ 1
di

)
, Hi,i+1 = 1

di
, 2 ≤ i ≤ n− 1. (2.42)

The first and last row in H are zero.
Now the right-hand side of (2.38) is given by the statistical properties of Gaus-

sian white noise W ′(x) defined in (1.38). Therefore 〈ψi, dW (t)
dt
〉 i = 1, . . . , n will

have a Gaussian distribution with expectation 0 and covariance matrix Bij =
[〈ψi, ψj〉], which give

Bi,i−1 = di−1

6 , Bi,i = di−1 + di
3 , Bi,i+1 = di

6 (2.43)

with modification at the boundaries. The requirement that
[〈
ψi(x), f̃ ′′(x)

〉]
i=1,...,n

should have the same distribution as [〈ψi(x), f ′′(x)〉]i=1,...,n is fulfilled by the ran-
dom vector w with the dense precision matrix

Q = HTB−1H. (2.44)
This makes the Galerkin model computationally expensive, but it is possible to
approximate B with a diagonal matrix A to obtain a sparse precision matrix.
The matrix A is constructed by approximating the integrated functions of B with
constants, giving the non-zero elements

Ai,i = di−1 + di
2 , A11 = d1

2 , Ann = dn
2 . (2.45)

This effect can be interpreted as uncorrelated noise and numerical evaluations
(Lindgren and Rue, 2008) have shown that this approximation does not change
the solution. Together,this gives a two-banded diagonal precision matrix Q

Qi,i−2 = 2
di−2di−1(di−2 + di−1) (2.46)

Qi,i−1 = − 2
d2
i−1

(
1
di−2

+ 1
di

)
(2.47)

Qi,i = 2
d2
i−1(di−2 + di−1) + 2

di−1di

(
1
di−1

+ 1
di

)
+ 2
d2
i (di + di+1) (2.48)

At the end points d−1 = d0 = dn = dn+1 =∞ resulting in some alterations in the
corners [

Q11 Q12
Q21 Q22

]
=
 2
d2

1(d1+d2)
−2
d2

1d2
−2
d2

1d2
2

d1d2

(
1
d1

+ 1
d2

)
+ 2

d2
2(d2+d3)

 . (2.49)

It can be verified that the matrix Q has rank n− 2. In the special case of equally
space points si, the di = 1 for all i and the Q-matrix reduces to the precision
matrix for the second-order random walk in (1.51).
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2.4 Comparisons

We now apply the methods on two different problems, a synthetic, regular spaced
example and a irregular fossil shell dataset. The analysis use the INLA package
in R and we will place the data points xi on a knots τi, due to the structure
of the generic0-function in INLA. Between two data points we place one knot,
giving twice as many knots as data points. When the data is regularly spaced,
the penalty matrix for the P-splines and RW2-model will be the same, supply the
same weights ŵ. The estimated function f̂ will however be different, since RW2
use linear basis functions to display the solution and P-splines use cubic B-splines.
For irregular data P-splines can not be use, since the knots are place on data points
and P-splines require uniform knots.

Figure 2.3 shows the synthetic data, which is regular spaced based on the curve
f(x) = sin πx with normally distributed errors ε ∼ N (0, 0.12). We see that the
three estimates, the red, yellow and blue curve, are very similar and the true
function, the black line, is always within the credible bands. The blue curve is the
O’Sullivan spline, the red curve the RW2 model and the yellow curve P-splines. All
three methods give good approximations to the true function, the black curve. The
prior on the smoothing parameter used in INLA is Gamma(10, 10) and estimated
smoothing is λ = 0.337 for O’Sullivan splines and λ = 0.323 for the RW2 model
and P-splines.

For the irregular spaced data we use a data set, first use by Chaudhuri and
Marron (1999) provided by Bralower et al. (1997). The data contains the ratios of
strontium isotopes and age, dated by biostratigraphic methods, from 106 samples
of fossil shells. The two estimated curves are very similar and the credible bands
narrows and widen depending on the density of data. For around 95 to 98 million
year of age there is no data, making the curves deviate slightly from each other due
to a small difference in the smoothing parameter. For the O’Sullivan penalty the
smoothing becomes 28.15, while the RW2 model use 29.12. The prior used in both
cases is Gamma (z1, 10−4). For both the regular and irregular data, the estimates
seem to give good results and the credible bands quantify the uncertainty in a
good way.

Figure 2.5 show a sine function sin(πx), x ∈ [0, 2] with missing data between
0.8 and 1.2. The blue curve is the O’Sullivan spline, the red curve the RW2 model
and the yellow curve P-splines. The true function is the black curve. We see that
the uncertainty increase, where there is no data, but because of the smoothing,
the credible bands give a good impression of the underlying function.
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Figure 2.3: Regular spaced synthetic data, where the black curve is the true func-
tion sin(πx), the blue curve is the O’Sullivan spline, the red curve the RW2 model
and the yellow curve P-splines.The prior on λ is Gamma(10, 10) and the esti-
mated values are λO = 0.337 and λP,RW2 = 0.323. The dashed lines are 95%
credible bands.

2.5 Conclusion
There are several advantages with the RW2-model over the ordinary spline meth-
ods previously described. The most important is the formulation in terms of a
Bayesian field adding great flexibility and extendability, in terms of other latent
fields and increased dimensions. One possibility is adaptive smoothing, where the
smoothing is a variable λ(x) incorporated in the field, which should better adapt
to jumps and rapid curvature changes.

The Bayesian formulation and framework give a more natural explanation for
the smoothing parameter. In this the case the smoothing is equivalent to the
precision of Gaussian prior, a direct result of available information. In the fre-
quentist view the the minimization of the penalty is somewhat unfounded, but in
the Bayesian case it is a natural consequence of specified model. The a high level
of smoothing means directly a precision for the prior, meaning the prior should
be less effected by the observation. Very low smoothing, indicating low precision,
makes the observation highly influential on the estimate. In terms of methodology,
there is also a well established Bayesian framework for credible bands and predic-
tion, which is very useful in quantifying uncertainty in the data and utilizing the
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Figure 2.4: Data from 106 fossil shells. The red curve is estimated with a
O’Sullivan penalty and the blue curve with a RW2 penalty. The dashed lines
are 95% credible bands.

smoothing analysis.
Since we in addition specify a prior distribution for the hyperparameter λ, the

analysis is less dependent of initial parameter choice. The prior allows the data
in certain degree to seek out the proper smoothing. The specifications needed on
the prior is enough precision to avoid instabilities in the numerical methods and
at the same time have variation for the optimal smoothing level to be found.

In this section we have presented two mainstream smoothing methods and
reformulated them as a Bayesian hierarchical model. In comparison we presented
an approach based on a stochastic differential equation prior as given by (Wahba,
1978). Both the mainstream and SDE methods are evaluated within the INLA
framework giving easy access to credible bands and estimates. With the Gaussian
hierarchical model an exact solution can be found by a numerical optimization
routine. Graphical evaluation showed that the methods are very similar and yield
the same results, even though the theoretical motivations are different. This leads
to a discussion of practicality against theoretical foundation. There are different
advantages and problems, which will be discussed later.
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Figure 2.5: Sine functions sin πx on [0, 2], with missing data between 0.8 and 1.2.
The smoothing prior is Gamma(α, β)with α = 101, β = 102. The blue curve is the
O’Sullivan spline, the red curve the RW2 model and the yellow curve P-splines.



Chapter 3

O’Sullivan splines and Galerkin
methods

In Chapter 2, we have presented different methods for approximating exact smooth-
ing splines. One method involved Galerkin approximations to solve a stochastic
differential equation, while another used the smoothing penalty introduced by
O’Sullivan (1986). Wand and Ormerod (2008) noted that the O’Sullivan spline
estimate behaves almost identically to the exact smoothing splines solution found
by solving (1.1). This is in stark contrast to the P-splines, which behave incor-
rectly at the boundaries. The comparison in Wand (2000) found that in all cases
O’Sullivan splines were closer to smoothing splines than P-splines. Especially,
the comparison showed O’Sullivan splines to closely mimic the natural boundary
behavior of smoothing splines.

The question becomes: Why do O’Sullivan splines behave like smoothing
splines? In this chapter, we will investigate this correspondence in light of the
SDE model, which converges to exact smoothing splines as the number of ba-
sis functions increases. Our aim is to bridge the gap between O’Sullivan splines
and the SDE model, and there is, in fact, a close connection between these two
approaches.

3.1 Galerkin method
Finite element Galerkin methods are the most widely use approximation method
for ordinary and partial differential equations. The key idea behind the Galerkin
method is to solve the PDE exactly for a finite-dimensional space, replacing the
infinite solution and test space. This stands in contrast to finite difference methods,
which approximates the equation on a set of discrete locations. The Galerkin
method is named after the Soviet mathematician and engineer Boris Galerkin,
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who published it in 1915. He also made several contributions within industrial
construction and helped build dams and hydroelectric plants in the Soviet Union.

The Bayesian formulation of smoothing splines uses the field prior specified by
the stochastic differential equation on the domain [a, b]{

f ′′(x) = W ′(x),
f ′(a) = f ′(b) = 0, (3.1)

whereW (x) is the Wiener process. This equation is the same as a one-dimensional
Poisson equation with a stochastic source term.

To find a solution, we start by looking at all possible test functions ψ(x),
which will span the test space V . A suitable test space could be all piecewise
linear functions on an interval. Now we multiply both sides of equation (3.1) with
the test functions and integrate, giving∫

f ′′(x)ψ(x)dx =
∫
W ′(x)ψ(x)dx, ∀ψ ∈ V. (3.2)

We find the solution of f(x), which satisfies this identity and this is called the weak
solution. This solves (3.1) only with respect to a test function and it is therefore
not required to hold absolutely.The weak formulation is the same as equating the
inner products, 〈f, g〉 =

∫
f(x)g(x)dx, of the right and left-hand side with a test

function
〈f ′′(x), ψ(x)〉 = 〈W ′(x), ψ(x)〉 . (3.3)

Unfortunately, we cannot test (3.2) for infinitely many set of test functions,
so, in order to construct a practical solution method, we restrict ourself to a finite
dimensional test space Vh ⊂ V . The usual choice of basis is the piecewise linear
functions (2.39) given by a location sequence s1, s2, . . . , sn. The h refers to the mesh
size, which the basis functions depend on. For ψi(x) the hi will be the difference
between two si, hi = si − si−1. This is a measure of how the finite number basis
functions covers the original space. It is important that Vh approximates V well
and when the mesh size decreases, the span of the approximated space should
increases. The limit, h → 0, should be that Vh spans the whole of V , satisfying
the approximability property.

The collection of all possible function f(x), we call the solution space W . But
to be able to find an approximation to f(x), we must choose a finite number of
basis function for the solution space as well,

f̃(x) =
n∑
j=1

wjφj(x). (3.4)

This reduces (3.2) to finding the weight vector, w = [w1, . . . , wn]T . In this way,
we search for functions in the finite-dimensional space Wh.
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If we choose the test functions to be equal to the solution basis functions,

φi(x) = ψi(x), i = 1, . . . , n, (3.5)

we obtain the standard Galerkin method. Here the approximated spaces Vh and
Wh are the same. If, on the other hand, we choose different bases for the two
spaces, we obtain a Petrov-Galerkin method. Ern and Guermond (2004) show
further definitions and conditions for all the important mathematical properties
like conformity, consistency, orthogonality and well-posedness. They also comment
that the approximability property may seem unnecessary to verify and practition-
ers generally do not bother to check it, but there are a number of situations, where
seemingly sensible methods fail.

With the standard Galerkin method, φi = ψi, the approximated function be-
comes

f̃(x) =
n∑
j=1

wjψj(x), (3.6)

meaning the second derivative does not exist, since the basis functions are piecewise
linear functions. To get around this, we modify the left-hand side using integration-
by-parts, the Neumann boundary conditions f̃ ′(a) = f̃ ′(b) = 0 and the symmetry,
W ′(x) = −W ′(x) of the Wiener process, obtaining

∫
[a,b]

f̃ ′(x)ψ′i(x)dx =
∫

[a,b]
W ′(x)ψidx i = 1, . . . , n. (3.7)

Since this is a stochastic differential equation, it is the distribution of both sides
that must be equal for each collection of test functions {ψi(x)}i=1,...,n. We start
with the left-hand side of 3.7 by inserting, f̃ ′(x) = ∑

j wjψ
′
j(x),

∫ ∑
j

wjψ
′
j(x)ψ′i(x)dx


i=1,...,n

=
∑

j

wj

∫
ψ′j(x)ψ′i(x)dx


i=1,...,n

= Hw, (3.8)

giving the elements Hij =
∫
ψ′j(x)ψ′i(x)dx. The right-hand side of 3.7 is Gaussian

distributed with zero-mean and covariance matrix B with

Bij =
∫
ψi(x)ψj(x)dx. (3.9)

In (Lindgren and Rue, 2008) it is shown that
∫

[a,b] f̃
′(x)ψ′i(x)dx has the same dis-

tribution as
∫
[a,b] f(x)ψi(x)dx for a Gaussian distributed w with zero-mean and

dense precision matrix Q = HTB−1H.
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3.2 Petrov-Galerkin approach
As mentioned earlier, we can also choose different bases for the test and solution
space and this is called a Petrov-Galerkin method. We start with same approxi-
mation

f̃(x) =
n∑
j=1

wjφj(x), (3.10)

and weak formulation of the SDE∫
f ′′(x)ψ(x)dx =

∫
W ′(x)ψ(x)dx, ∀φi ∈ V. (3.11)

Following the general method, we obtain the elements of H and B

Hij =
∫
φ′′i (x)ψj(x)dx, Bij =

∫
ψi(x)ψj(x)dx. (3.12)

The idea is to make a clever choice for φi(x) and ψi(x). Firstly, the solution basis
functions can be chosen to be cubic B-splines φj(x) = Bj(x) as in the earlier cases

f̃(x) =
n∑
j=1

wjBj(x) (3.13)

The Galerkin basis functions (2.39) are Bj,1(x), B-splines basis functions with
degree one. If we make the clever choice of test functions to be the second derivative
of cubic B-splines,

ψi(x) = B′′i (x), (3.14)
which are piecewise linear, we achieve the following

Hij =
∫
B′′i,d(x)B′′j,d(x)dx, Bij =

∫
B′′i,d(x)B′′j,d(x)dx. (3.15)

The matrices are equal! This reduces the precision matrix
Q = HTB−1H = H, (3.16)

since H also is symmetric, and gives

Qij =
∫
B′′i (x)B′′j (x)dx = Ωij, (3.17)

which is exactly the precision matrix obtain with the O’Sullivan penalty approach.
This means that O’Sullivan spline smoothing can be interpreted as a Petrov-
Galerkin method with solution space basis function, φi(x) = Bi(x), and the sec-
ond derivative as test functions, ψ(x)i = B′′i (x). The solution space consists of
quadratic B-splines and the test space is spanned by piecewise linear functions, as
for a standard Galerkin method, which makes it possible to interpret O’Sullivan
splines in terms of smoothing splines. Furthermore, the methods used in (Lindgren
et al., 2011) can be used to show O’Sullivan splines converge to the true smoothing
spline solution as the number of basis functions approach infinity.
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3.3 Conclusion
Smoothing splines has a Bayesian formulation in terms of a stochastic differential
equation and a finite element approximation of the SDE model will converge to
the exact solution. We have, in this chapter, shown that a specific Petrov-Galerkin
method leads to a O’Sullivan penalty and this realization bridges the gap between
O’Sullivan splines and smoothing splines. O’Sullivan splines are a non-standard
finite element approximation to smoothing splines. The Petrov-Galerkin method
is constructed with a solution space spanned by cubic B-splines and test functions
as the second derivative of these B-splines.

This makes a very good argument for the O’Sullivan spline and establishes a
proper mathematical interpretation for the method. The O’Sullivan solution will
converge to smoothing splines, when the number of basis functions increases. This
explains the similar behavior of O’Sullivan splines and smoothing splines, noted
by Wand and Ormerod (2008). The shared properties, as the natural boundary
condition, has a clear explanation.

When the O’Sullivan splines can be seen as finite element solution of smooth-
ing splines, the interpretation of the penalty in (1.1), raises some questions. The
penalty is given by the integrated square second derivative, but for the standard
Galerkin methods the solution is given by linear functions with no second deriva-
tives. The frequentist penalty, therefore, can not be evaluated for the Bayesian
RW2 model, but for the Petrov-Galerkin solution, the second derivatives exist,
giving the penalty. This suggests the O’Sullivan splines are well motivated from a
theoretical point of view. But why is this not done as the standard method, when
considering finite element methods? The answer lies in what happens in higher
dimensions. When the finite element approach is extended to two dimensions,
the task of finding proper basis functions becomes difficult. If the basis functions
were to have higher-order derivatives, the degrees of freedom would just be too
large, yielding massive calculations with quite dense matrices (Brenner and Scott,
2008). The only feasible approach in two or more dimensions is to use piecewise
linear tent functions, which, in the frequentist case, were explored by Roberts and
Hegland (2004).

The main result is, however, the strong relationship between smoothing splines
and the O’Sullivan spline, through the Petrov-Galerkin approximation. The O’Sullivan
solution will converges to the exact smoothing spline as the number of basis func-
tions approaches infinity. Wand and Ormerod (2008) calls O’Sullivan splines a
direct generalization of smoothing splines, but it is better understood as a optimal
approximation, in the sense that it is the best approximation over a mathemati-
cally consistent subspace.



Chapter 4

Adaptive smoothing

A natural extension of spline smoothing is a varying smoothing parameter λ(x).
The motivations lies in that ordinary methods can perform badly, when trying to
estimate functions with jumps, peaks or quickly changing curvatures. We will look
at two difficult examples of this sort, a simple step function and a sine function with
increasing frequency. Adaptive smoothing can been done in many different ways.
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Figure 4.1: Examples of difficult functions, a) Step function, I{x>0.5}(x) b) Increas-
ing frequency sine, sin(4πx3).

For instance, Abramovich and Steinberg (1996) introduced a reproducing kernel
Hilbert space representation following Wahba’s approach, with a variable smooth-
ing based on a roughness function ψ(x)2 proportional to the derivative. Pintore
et al. (2006) proposed a piecewise constant model for the smoothing. Ruppert and
Carroll (2000) used the P-splines of Eilers and Marx (1996) with varying smooth-
ing on the difference penalties of the weights. Other methods are based on wavelet
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shrinkage, multiple hyperparameter interpolation (Mackay and Takeuchi, 1998)
or regression splines with adaptive knot selection and non-stationary Gaussian
process regression models (Paciorek and Schervish, 2006).

4.1 Method
Our approach is to specify an extended Bayesian hierarchical model and let the
smoothing parameter be incorporated into the latent field, in the following way

Observations: yi = f(xi) + εi, x ∈ [0, 1] (4.1)

Latent field: d2

dx2

(
b(x) 1

2f(x)
)

= W ′(x), λ(x) > . (4.2)

The prior on b(x) is either a secondary field or a parametric form with hyperparam-
eters. The function b(x) can be seen as a instantaneous variance or local scaling,
which compress and stretch the function. A small b(x) compresses the scale giving
quick oscillations, while a high value stretch f(x), decreasing the roughness. The
smoothing parameter must be positive to make sense, so the natural reformulation
is b(x) = e2ν(x), where ν(x) ∈ R. This connects b(x) directly to the precision b
from (1.13), which derive from ∫ [

b
1
2f ′′(x)

]2
dx. (4.3)

The smoothing is given λ(x) = σ2b(x). This is further extendable to the field

d

dx

(
a(x) d

dx
(b(x)f(x))

)
= W ′(x), a(x), b(x) > 0, (4.4)

where a(x) and b(x) are function that stabilize the variance and range and both
(4.4) and (4.2) are non-stationary models.

We explore the model with a(x) = 1 and b(x) = e2ν(x), such that the function
space of possible f(x) has a distribution specified by the field d2

dx2

(
eν(x)f(x)

)
=

W ′(x). The smoothing function ν(t) is represented as a weighted sum of basis
functions, ξi(x) , giving the following general hierarchical model:

1.) Observations: yi = f(xi) + εi, εi ∼ N(0, σ2
ε ) (4.5)

2.) Prior field: d2

dx2

(
eν(x)f(x)

)
= W ′(x), λ > 0, (4.6)

ν(x,β) =
∑
i

βiξi(x) (4.7)

3.) Hyperparameter β ∼ N(0,Σβ). (4.8)
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To find the resulting precision matrix given by the field, we use the Galerkin
approach. For all test functions ψ it must hold[〈

ψi,
d2

dx2

(
eν(x)f(x)

)〉]
i=1,...,n

= [〈ψi,W ′(x)〉]i=1,...,n . (4.9)

Then, for the left-hand side, the Galerkin approximation is given[〈
ψi,

d2

dx2

(
eν(x)f̃(x)

)〉]
i=1,...,n

=
∑

j

wj

〈
ψi,

d2

dx2

(
eν(x)ψj

)〉
i=1,...,n

= Hw.

(4.10)
Each element in the matrix H is given by the integral over two basis function,

Hij =
〈
ψi(x), d

2

dx2

(
eν(x)ψj(x)

)〉
= −

〈
dψi
dx

,
d

dx

(
eν(x)ψj(x)

)〉
, (4.11)

which is simplified with integration-by-parts, giving

Hij = −
∫

Ω

dψi
dx

d

dx
(b(x)ψj(x)) dx, b(x) = eν(x), (4.12)

where
dψi
dx

=


1

di−1
, si−1 ≤ x < si

− 1
di
, si ≤ x < si+1

0 otherwise
(4.13)

For di = si+1 − si, the tri-banded matrix H is given and

Hi,i = −b(si)
(

1
di−1

+ 1
di

)
(4.14)

Hi,i+1 = b(si+1) 1
di

(4.15)

Hi,i−1 = b(si−1) 1
di−1

, (4.16)

since ψi only overlap for neighboring basis functions. This is very similar to the
RW2 model, the only difference being the function b(x) depended on β.

As stated by Lindgren and Rue (2008), the precision matrix for the speci-
fied field, with an approximated matrix A for the covariance of the white noise,
is Q(β) = H(β)TA−1H(β), a five-banded symmetric sparse matrix. Then the
hierarchical model becomes

y ∼ N (Bw, σ2
ε I) (4.17)

w ∼ N
(
0,Q(β)−1

)
, (4.18)

β ∼ N (0,Σβ). (4.19)
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The Bayesian formulation is given

π(w,β|y) ∝ π(β) · π(w|β) · π(y|w) (4.20)

∝ exp
{
− 1

2σ2
ε

(y−Bw)T (y−Bw)− 1
2wTQ(β)w− 1

2βTΣββ

}
. (4.21)

We find a solution of w,β by a maximum a posteriori probability (MAP) estimate,
which is the mode of the posterior distribution. The estimated is computed via
a numerical optimization routine. This way we find the estimate f̂(x|w) = Bŵ,
where ŵ is the minimizer of the following expression

(ŵ, β̂) = arg min
[

1
2σ2

ε

(y−Bw)T (y−Bw) + 1
2wTQ(β)w + 1

2βTΣββ

]
(4.22)
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Figure 4.2: Step function with a three part piecewise smoothing parameter, β1 =
2.7 · 10−2, β2 = 1.4 · 10−7, β3 = 4.1 · 10−2.

4.2 Results
With the general method described, the key step is the parametrization of the
smoothing function ν(x). The simplest choice is a piecewise linear function, seen
in Figure 4.2 with three different intervals as

ν(x) =


β1, x ∈ [0, 1/3)
β2, x ∈ [1/3, 2/3)
β3, x ∈ [2/3, 1).

(4.23)
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The smoothing parameter is given by λ(x) = σ2
ε e

2ν(x) with three different smooth-
ing levels.

In Figure 4.2, we can clearly see where the smoothing parameter changes, which
is an undesired property. Nevertheless, the jump is very nicely estimated and we
achieve two straight lines in the outer regions, which corresponds exactly to the
step function. The estimate can be improved by increasing the number of intervals,
as done in (Pintore et al., 2006) or have intervals of unequal size.
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Figure 4.3: Example of Fourier representation, ν(x), with l = 10, β ∼ N (0, I).

Fourier parametrization

To achieve a smooth function ν(x), we can use smooth basis functions instead of
discontinuous piecewise constants. One possibility is to parametrize along a Fourier
series expansion, using a cosine basis bi(x) = cos πix and random amplitudes, given
as

ν(x) =
l∑

i=1
βi cos(πix), β ∼ N (0,Σ), (4.24)

where Σ is a covariance matrix. Figure 4.3 shows a realization of (4.24) with βi
being independent normally distributed, β ∼ N (0, I). With the Fourier represen-
tation the smoothing function becomes smooth, making gradually adjustments, un-
reasonable jumps. By choosing, l = 20, we allow for high frequency cosines,which
makes it possible to achieve quite rapid changes. Figure 4.4 shows a step function
with the spline estimate f̂(x) as a red curve. The fit to the true function, the
black curve is particularly good. The smoothing ν(x) is fairly symmetric and high
at the boundaries and drops substantially at the jump.
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Figure 4.4: An estimated step function based on 1000 data points and 60 Galerkin
basis functions. Smoothing function ν(x) in the top tile has a Fourier representa-
tion with 20 basis functions and the amplitude prior is β ∼ N (0, 102I)

Field prior on β

In Figure 4.4, β is iid distributed β ∼ N (0, σ2
βI), which does not have a any

practical interpretation. It is instead possible to have a prior distribution modeled
by an underlying field, adding a new level to the hierarchical model. We look
at two situations with an O’Sullivan-type penalty, mimicking the behavior of a
first and second order random walk. The βs are the weights of the cosine basis
functions bi(x) = cos πix and the penalties are given

Ω1,ij =
∫

Ω
b′i(x)b′j(x)dx, (4.25)

Ω2,ij =
∫

Ω
b′′i (x)b′′j (x)dx. (4.26)

Since both sin(πix) and cos(πix) build, in this case, orthogonal systems, the
penalty matrices Ω1 and Ω2 will be diagonal with the following elements

Ω1,ii =
∫ 1

0
((cosπix)′)2dx = (πi)2

∫ 1

0
(sin πix)2dx = 1

2(πi)2 (4.27)

Ω2,ii =
∫ 1

0
((cosπix)′′)2dx = (πi)4

∫ 1

0
(cosπix)2dx = 1

2(πi)4 (4.28)

This gives a diagonal penalty matrix for both Ω1 = π
2 diag{12, 22, . . . , l2} and

Ω2 = π
2 diag{14, 24, . . . , l4}. These penalties are the resulting precision matrices
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from the following two underlying fields

(1) dν(x)
dx

= dW (x)
dx

, (4.29)

(2) d2ν(x)
dx2 = dW (x)

dx
, (4.30)

The diagonal precision matrix corresponds to independent βs with increasing pre-
cision for increasing frequency. This means the amplitude β is suppressed for high
frequency basis functions, since the mean is zero. The estimated function, ν(x),
will therefore be smoother, than in the iid case. Since the precision increases with
i4 for Ω2, the parameter function will be even smoother for this penalty.
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Figure 4.5: Sine function with prior β ∼ N (0, σ2
βI) where σ = 1, based on 1000

data points and 60 Galerkin basis function.

In Figure 4.8 and 4.9, we see the step function with the introduced precision
matrices Ω1 and Ω2. The result are slowly changing, smoother functions without
unreasonable fluctuations. The smoothing function with a second-order penalty
changes slowly and looses the wanted flexibility, when estimating the discontinuity.

The other important example is the sine function sin(4πx3) with increasing
frequency. There are no discontinuities, but the second derivative changes rapidly
and there are several inflection points. Figure 4.5, 4.6 and 4.7 display the sine
function with different penalty matrices Σ−1 = Ω. In Figure 4.5, we use identically
distributed βs, β ∼ N (0, σ2I) where σ = 0.3. The result is a rapidly changing
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Figure 4.6: Sine function with prior penalty Ω1 = π
2 diag{12, 22, . . . , l2} with l = 20

giving β ∼ N (0, σ2
βΩ−1

1 ) where σβ = 1.5. The estimate is based on 1000 data points
and 60 Galerkin basis function.

function, where 15 cosine basis functions allow the rapid changes. The smoothing
is fairly high close to zero with a quick dip at the first inflection point, which
change the direction of the estimated straight line. Then the smoothing changes
from a high value 103 at the inflection points to 10−6 at the minima and maxima.
This gives a very flexible fit, alternating between data interpolation and straight
lines.

The next example uses a penalty matrix corresponding to a continuous random
walk, as (4.29). With this specific precision matrix, the high frequency basis
functions of ν(x) will be suppressed, giving less rapid changes. This is clear in
Figure 4.6. The smoothing follows the same pattern as earlier with low smoothing
at stationary points and higher smoothing at inflection points. The difference
between high and low smoothing is smaller, due to the smoother function.

In Figure 4.7 we use the penalty matrix based on a continuous second order
random walk. The general pattern is the same, but the changes are much slower.
After the first maximum the smoothing stabilizes at a low level and does not
exhibit any of the fluctuations seen in Figure 4.5. The overall fit to the underlying
function is however fairly good.
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Figure 4.7: Sine function with prior based on penalty Ω2 = π
2 diag{14, 24, . . . , l4}

with l = 20 giving β ∼ N (0, σ2
βΩ−1

2 ) where σβ = 3. The estimate is based on 1000
data points and 60 Galerkin basis functions.

4.3 Summary
Introducing an adaptive smoothing parameter is an easy task with the underly-
ing field framework used in (Lindgren and Rue, 2008). We utilize the presented
method and integrated the parameter as a function in the field. The important
model adaption is the parametrization of the smoothing function ν(x). We have
seen examples of a piecewise constant and a Fourier cosine basis formulation,
where the Fourier expansion type functions yielded the best results. It seems that
a smooth function is the best solution. Apart from choosing a good formulation
for the function, the proper prior for the hyperparameters are an important point
of discussion. We have seen the use of three different precision matrices for the
Gaussian prior of β giving different behavior for the resulting function. A preci-
sion matrix based on an O’Sullivan type penalty of the first derivate gave good
results. This eliminated unreasonable fluctuations, but kept the ability to have
rapid changes, giving a flexible overall fit.
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Figure 4.8: An estimated step function based on 600 data points and 100 Galerkin
basis functions. The smoothing function use a Fourier representation with a first-
order penalty on the amplitudes, β ∼ N (0,Ω−1

1 ).
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Figure 4.9: An estimated step function based on 600 data points and 100 Galerkin
basis functions. The smoothing function use a Fourier representation with a
second-order penalty on the amplitudes, β ∼ N (0, 102Ω−1

2 ).



Chapter 5

Conclusion

In this thesis, we have presented three different approaches to spline smooth-
ing, two frequentist methods involving a penalty approximation and one Bayesian
method approximating a latent field in form of a stochastic differential equation.
P-splines and O’Sullivan splines approximate the square integrated second deriva-
tive by different penalty matrices, Ω, as a quadratic form, wTΩw. P-splines use
a higher-order difference penalty on the spline coefficients, while the O’Sullivan
splines base the penalty on the integrated second derivative of the basis functions.

P-splines can only work with uniform basis functions, a quite restrictive re-
quirement, and the penalty itself has no natural interpretation. For cubic splines
with a second-order difference, the penalty can be interpreted as an approxima-
tion to the integrated second derivative, where the effect from neighboring basis
functions is left out, as seen in (2.21). On the other hand, the method allows for
higher-order penalties, which result, when over-smoothing, in quadratic and cubic
fits.

The penalty used in O’Sullivan splines has a very natural interpretation, along
the lines of a finite element approach. The function, f(x), is approximated in terms
of a weighted set of basis functions, which is inserted in the penalty integral to
obtain the penalty. This allows for non-uniform basis functions, usually quantiles-
based knots, which better utilize calculation power. The basis functions will be
placed, where there is high density of data, making it possible to capture more
fine-scaled structures.

The RW2 method is a Bayesian approach to smoothing splines. The prior for
the Bayesian hierarchical model is a latent field specified as a stochastic differential
equation. An approximate solution of the SDE is found with a standard finite ele-
ment Galerkin method. This supplies a precision matrix describing the statistical
properties of the latent field. Each sample path of the stochastic process represents
a possible prior function. The basis functions used in the Galerkin approximation
are specified by a possibly, irregular location and observation sequence. The most
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important feature of the RW2 model is the continuous interpretation, as an exact
solution to the Bayesian formulation of smoothing splines. When we increase the
number of basis functions, we get closer to the exact solution. For P-splines, this
is not true, since the method eliminate the effect of overlapping, neighboring basis
functions.

One important aspect of regression, is the degree of uncertainty. The ran-
dom nature of the data, makes quantification of the uncertainty crucial to prop-
erly assessing the estimates. However, for frequentist minimization formulation of
smoothing splines, there are no straightforward way to achieve this. The Bayesian
formulation, however, can be very useful in this respect.

If a full Bayesian analysis is carried out, we obtain the posterior densities and
can calculate the 95% credible bands for the spline weights. This will quantify how
certain we are in our estimates in a proper way. Closely observed data decrease
the uncertainty between the observations and, from (2.48), we see they give high
values for the precision matrix, resulting in narrow posterior densities and cred-
ible bands. This highlights the usefulness of INLA, which performs a complete
Bayesian analysis and supply the wanted posterior densities and credible bands.
INLA utilizes integrated nested Laplace approximation to preform an approximate
Bayesian analysis and is based on a general, Gaussian hiearchical model, making
it easy to specify to the smoothing methods.

From graphical results, we have seen that all the methods give fairly similar es-
timates both for regular and irregular data. The pointwise credible bands for each
spline coefficient are plotted to display the uncertainty of the estimated function,
even though a credible band for the function as a whole, would be slightly more
restrictive.

A main focus has been, that the frequentist methods can be reformulated as
Bayesian hierarchical models. This reformulation is very useful, both in terms of
interpretation and flexibility. With a Bayesian model the important concept of the
smoothing parameter can be understood as the precision of a prior distribution.
The precision expresses the proportion of the continuous second-order random walk
in the prior, as seen in (2.33). Since the smoothing parameter λ is proportional
to the prior precision b, λ = σ2b, smoothing becomes directly connected to the
strength of the prior. The smoothing must balance the observations against the
assumed stochastic process and this interpretation is gain through the Bayesian
formulation.

The introduction of a latent field gives great flexibility, for instance, in terms of
an adaptive smoothing parameter. Adaptive smoothing will decrease in areas with
rapid fluctuations, capturing more of the fine scale structure. When estimating
a step functions, the smoothing would drop significantly at the jump to capture
the real behavior of the function. In terms of the field, the smoothing can be seen
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as an instantaneous variance, which stretch and compress the scale of the prior
function. Two examples in form of a step function and an increasing frequency sine
have be explored and we got good results in both cases. We also specified priors
for the smoothing function, as latent fields given by Gaussian white noise, Wiener
process and an integrated Wiener process, giving different degrees of smoothness.
A first order penalty, seem to yield the best results.

The SDE approach is connected to both the P-splines and O’Sullivan splines.
We have seen that the RW2 method will for uniform basis functions, have the same
penalty matrix, as second-order P-splines, which means the methods will supply
the same weights ŵ. The estimated function f̂ will, however, be different, since
RW2 use linear basis functions to display the solution and P-splines use quadratic
or cubic B-splines. The RW2 model has a clear continuous interpretation, which
is not true for P-splines.

In Chapter 3, we saw that the construction of a Petrov-Galerkin method with
different the test and solution space, bridged a gap between the O’Sullivan splines
and the SDE method. When the solution space is spanned by cubic B-splines, we
can make a clever choice for the construction of the test space. If the test functions
are the second derivative of the B-splines spanning the solution space, the penalty
matrix for the SDE approach becomes exactly that of the O’Sullivan splines. This
makes the O’Sullivan penalty particularly well founded mathematically. It explains
the good qualities of O’Sullivan splines and the similarity with original smoothing
splines. Further, it underlines the strength of a SDE formulation, as there is great
flexibility in choice of test and solution space. This flexibility is expressed, when
the SDE approach and O’Sullivan splines coincide for a specific choice of basis
functions.

With all the methods presented in this thesis, there are specific choices, which
are difficult to evaluate. The analysis will always depend on the choice of prior
distributions of hyperparameters and choice of basis functions and knots. The
issue concerning proper choice of priors is difficult to assess. In connection with
the spline smoothing in INLA, it is important to have a prior on the smoothing
parameter, that is neither too specific or general. One possible approach is to find
a proper smoothing value with a general cross-validation routine and construct the
prior to have this value as expectation in combination with a reasonable variance.
This issue is can be discussed in great lengths, but the pragmatic approach is in
many ways to use a prior that works.

With the choice of knot sequence for the mainstream spline methods, several
considerations should be made. The placement of knots is done uniformly for P-
splines and based on data quantiles for O’Sullivan splines. Of these two approaches,
the quantile-based seems most appropriate, when we consider the possible waste
of computational power. It is unlikely that important fine-scaled structures are
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uniformly distributed in your data, making a plea for strategic placement of basis
functions. With P-splines, we will do unnecessary large computation, but the
quantile-based approach can be improved by taking into account the changes in
the response, as well. A good example is the step function with uniform data,
where the placement based on quantiles will be uniform. Nevertheless, we want a
higher density of basis functions around the jump, than by the edges. By basing
the placement on the first derivative, this can be avoided. The derivative could
be estimated directly from the data, as a finite difference, or by first finding an
estimate for the function and use the derivative of this. Generally, the placement
of basis functions, deserve a detailed consideration.

In terms of future work, latent fields can be extended to higher dimensions and
include cyclic priors, oscillating, anisotropic and non-stationary fields. In Chapter
4, we explore one extension, a non-stationary field with the following model

d2

dx2

(
b(x) 1

2f(x)
)

= W ′(x), λ(x) > 0, (5.1)

resulting in an adaptive smoothing approach with good results for functions with
jumps and quick curvature changes.

Another extension as a non-stationary field introduces a variable coefficient
a(x), requiring a numerical integration and derivation scheme, in calculating the
precision matrix elements. Due to the approximation error, it could, however,
be sufficient with some sort of discretization at knot points. The coefficient a(x)
will together with b(x) control the scale and range of the function, for which the
analysis could benefit.

d

dx

(
a(x) d

dx
(b(x)f(x))

)
= W ′(x), a(x), b(x) > 0, (5.2)

Another important work for the future, would be to incorporate adaptive smooth-
ing in INLA, to get a full Bayesian analysis and the possibility of credible bands.
In the Chapter 4, we only use a simple numerical optimization routine to find
the estimates, which does not supply credible bands. With INLA, we can achieve
the credible bands by incorporating another level in hierarchical model, being
dependent on a second latent field. It would also be practical to have different pa-
rameterizations of b(x), in terms of cosine, piecewise linear or other basis functions.
A Bayesian analysis providing the posterior densities of the coefficients, makes it
possible to calculate the pointwise credible bands for the estimated function.

In conclusion, the Bayesian formulation of smoothing splines give a substantial
contribution in terms of interpretation and flexibility. The possibility of calcu-
lating posterior densities using INLA is the greatest advantage, because credible
bands will quantify the uncertainty associated with the estimate. The flexibility is
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expressed with a non-stationary field extension, allowing for adaptive smoothing,
a better method for estimating jumps and quick curvature changes. In addition,
it provides an explanation of the O’Sullivan penalty in terms of a finite element,
Petrov-Galerkin approximation.
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