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Abstract

This thesis is concerned with 4D AVA seismic inversion problems. By comparing two
seismic surveys done over the same area, but at different times, one hopes to discover
untapped pockets of oil or gas. Using the full likelihood to analyse 4D AVA seismic data
is impossible in practice due to memory and computational restrictions. The goal of the
thesis is to find a useful framework for parameter estimation and predictions for 4D AVA
seismic data, and the composite likelihood is introduced as a possible solution. The
composite likelihood method takes in pairs of data points and sums over them instead
of taking in all the data as is the case for the full likelihood. This makes calculations
fast while avoiding matrix operations on large matrices.

The composite likelihood method is tested on a data set from the Norne field for pa-
rameter estimations and predictions. Eight variations of the model are tested, the vari-
ations being the exponential or Matern correlation function, one or two data columns
used as a data point in the composite likelihood, and a simple or wavelet convoluted
noise term. The composite likelihood method is shown to perform well; it is fast and
the estimates found agree well with previous experience. Comparison of the different
models indicate that the choice of correlation function has little effect on the results,
that the noise term should be kept simple, and that it is sufficient to use one data
column.
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1 Introduction

The field of statistics has changed drastically with the availability of computational
power, which allows us to generate and store vast amounts of data. Examples arise in
navigation with GPS, weather measurements, seismic data and in many other fields.
Large data sets can easily be stored and used for calculations in ways thought to be
of only theoretical interest not many years ago. But the new possibilities introduced
by great computational power comes with new problems and restrictions as well. Data
sets of great size can now be used for calculations, but there are still limits to what
computers can accomplish.

This thesis will concern itself with seismic reflection, a field in which large data
sets are unavoidable. Seismic data are for instance used to determine whether there
are reservoirs of oil or gas by analysing the reflection of sound waves. In later years a
new technique called 4D seismic AVA inversion has been developed that is not used for
exploration, but rather for reservoir monitoring. AVA, or AVO which is basically the
same, refers to amplitude versus angle, or offset in the case of AVO. What it means is
that the strength of seismic waves measured in their amplitude is related to the angle
of the wave [4]. When the oil or gas is extracted from the reservoir it is often replaced
by water. Comparing two seismic surveys done in the same area, but at different times
makes it possible to ascertain whether this change has actually taken place. 4D seismic
AVA inversion is therefore a valuable tool when finding new places to drill in an existing
reservoir. The main references on 4D seismic AVA inversion include [4] and [10]

Using statistics in 4D seismic AVA inversion consists of creating a statistical model
based on prior knowledge of the reservoir, then finding the inversion results by some
statistical method using a physically based model for the likelihood of the data. Seismic
data will typically have dimensions 100 × 100 × 100 or larger leading to a covariance
matrix of size 106 × 106. Doing calculations involving such a large matrix is memory
demanding, computationally slow or even numerically impossible.

It is therefore of interest to find an alternative likelihood method that avoids compu-
tations involving the full covariance matrix. For this purpose the composite likelihood
method is introduced. The method uses the covariance for pairs of data entries and
sums over all pairs instead of using the full covariance matrix. When assuming that the
covariance depends on the distance between data points, not all pairs of data need to
be included in the calculation to obtain adequate results and the method becomes fast.
The main references used on the composite likelihood and similar likelihood methods
for large spatial data sets include [6], [14], [9] and [13].

The composite likelihood method will be tested on a 4D seismic data set from the
Norne field. This will be the main focus of the thesis, investigating the performance
of the composite likelihood method on real seismic data. Different variations of the
statistical model will be tested for parameter estimation and prediction.

This thesis is organised as follows: Section 2 starts with an introduction to 4D
seismic, why it is used and what challenges arise in connection with the method. Next
the physics behind seismic reflection is summarised and the statistical model for both 3D
and 4D seismic data is explained. In Section 3 the reader is introduced to the composite
likelihood method. Parameter estimation and asymptotic properties of the composite
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likelihood estimators are also discussed. Section 4 explains how to use the composite
likelihood method to do predictions and ways of assessing the results. In section 5 the
data set from Norne is introduced and the model for the data described. The different
model variations will also be described. In Section 6 results of the parameter estimation
and the results of the predictions are presented and discussed. Section 7 summarises
the results and what has been accomplished in this thesis. A discussion of possible
improvements and potential further work is also included.
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2 Seismic Model

2.1 Background

Seismic exploration is most commonly associated with discovering new reservoirs of oil
and gas beneath the sea floor. A seismic vessel emits sound waves that are reflected
and then read by sensors that trail the vessel. Rock layers containing oil or gas have
distinct elastic properties so analysis of the reflected waves can be used to determine
if there is oil or gas present. The waves are reflected in the subsurface rock layers and
will vary in amplitude and angle depending on the properties of the rock layers that
reflected them.

In recent years a new way of using seismic readings has been introduced, the 4D
seismic AVA inversion method. The 4D seismic AVA inversion method makes further
use of the original survey, called the base survey, by comparing it with a new seismic
survey, called the monitor survey, in the same area. The data in a seismic survey is
usually gathered over a three dimensional grid and the two different time values are the
fourth dimension thus explaining the name.

The approach is primarily used to investigate where there is remaining oil or gas
in a reservoir. When a reservoir is emptied water is usually injected to push the oil
or gas out. By repeated seismic surveying it is possible to compare the results for two
different time periods. The reflected seismic waves are different for water than for oil
or gas so the technique is able to tell if all the oil or gas in a reservoir has been replaced
by water or not.

4D seismic surveys have also helped improve existing 3D analysis methods. In several
instances unexplained anomalies that were categorised as noise have shown themselves
to appear again in 4D surveys and hence the anomalies could not be explained as
random noise. The same is true for the opposite case where events that were thought
to be significant could be dismissed as noise after performing a 4D survey. In this
respect the 4D seismic approach has contributed to improve analysis of 3D seismic data
[10].

The method has become a great success and is an important asset in prolonging a
field’s economic life. In 2001 there were 75 active projects worldwide with an annual
expenditure of $50-100 million US [10] and the amount of projects have risen steadily
since. Since the world’s oil reserves are steadily diminishing and new fields are harder
to come by techniques for extracting as much as possible from existing fields, like 4D
AVA, will become more important in the years to come.

2.2 Challenges

There are many challenges regarding the 4D seismic approach which makes understand-
ing and analysing the changes that arise difficult. It is impossible for the seismic vessel
to collect data from the exact same locations both times because of the heavy boat
traffic and new installations that have been built. When performing the monitor sur-
vey there will naturally have been built an installation in connection with the pocket of
oil that was discovered in the original survey. The difference in measurement locations
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and angles will naturally increase measurement noise and cause discrepancies between
the measurements that are not due to actual changes in the rock-layers.

The challenges with regard to collecting the data present new problems when it
comes to the processing of the data. By processing the data one aims to create individual
3D seismic images for the different surveys. It is important that the images are created
so they are fairly similar in areas where it is known to be no subsurface changes. Keeping
this in mind the goal of the data processing is to make the data sets comparable by
standardising the data with respect to amplitude, phase, spectral bandwidth etc. [10].
This is a time consuming and intricate process and is of great importance to the analysis.

In a 4D setting it is usually assumed that the geology of the area investigated is
time-invariant. This is usually the case and makes changes in saturation, pressure and
temperature easier to identify. But time-invariant geology is not always the case and
the assumption can then cause analysis of the data to give erroneous results. For more
information on 4D seismic and the challenges it presents the reader is referred to [10].

In spite of the many difficulties associated with 4D seismic it does a good job in
comparing data from measurements done at different times. By subtracting the data for
the baseline survey from the data for the monitor survey a data set with differences is
obtained. This new combined data set is analysed using a variety of different geophysical
and statistical methods. Some of these methods include Bayesian time-lapse inversion
[5], AVA inversion in the Fourier domain [3], block composite likelihood [6] and several
others found in [10]. This thesis will focus on the composite likelihood method and
explore it’s performance in connection with 4D seismic.
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2.3 Gaussian model for linear 3D seismic AVA inversion

In a seismic AVA setting it is natural to consider a Gaussian response variable Y
containing all reflected data in a two- or three dimensional grid. The response variable
depends on a set of elastic parameters. By using knowledge of the rock physics involved
it is possible to write out a model for the response variable. The grid for the data is
illustrated in Figure 1 and has dimensions n1 × n2 × n3 = n where n3 is the depth.

Figure 1: An example of the form of the data. In the figure n1, n2 and n3 are 10, 10
and 20 respectively, but they take on different values throughout this thesis

To create the Gaussian model for the data an understanding of the elastic parameters
is needed. For each point in the grid there are three elastic parameters of interest in
a seismic setting, p-wave velocity (α), s-wave velocity (β) and density (ρ). The p-
wave, or compressional wave, velocity is the speed of waves oscillating in the direction
of the waves energy. S-wave, or shear wave, velocity is the speed of waves oscillating
perpendicular to the waves direction. The density is the density of the rock layer from
which the wave is reflected.

The expressions for the p-wave velocity and the s-wave velocity and their relation
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to the density are

α =

√√√√Ksat + 4
3µsat

ρ
(1)

β =
√
µsat
ρ

(2)

as given in [11]. Ksat is the bulk modulus and µsat the shear modulus. Ksat and µsat
are determined using Gassmann’s equation and depend on the porosity and saturation
of the rock. Assuming homogeneous mineral modulus and saturation, the quasi-static
variant of Gassmann’s equation is given by

Ksat

K0 −Ksat

= Kdry

K0 −Kdry

+ Kfluid

ψ(K0 −Kfluid)
µsat = µdry

(3)

and can with the adequate knowledge be used to find the bulk modulus of fully saturated
rock [1]. In equation 3K0 is the bulk moduli of the mineral grain,Kdry the bulk modulus
of dry rock, Kfluid the bulk modulus of the pore-fluid and ψ the porosity. Often the dry
bulk modulus Kdry is not available, but the bulk modulus of a fully brine-saturated rock
is, usually obtained from a well log. Brine is basically water with a high concentration
of salt. Using the new bulk modulus equation 3 can be modified

Ksat1

K0 −Ksat1
− Kfluid1

ψ(K0 −Kfluid1) = Ksat

K0 −Ksat

− Kfluid

ψ(K0 −Kfluid)
µsat = µdry

(4)

where Ksat1 and Kfluid1 are the rock bulk modulus and pore fluid modulus respectively
for the fully brine-saturated rock. An expression for Kfluid, the pore fluid modulus for
the partially saturated rock, is given by

Kfluid(s) =
(

s

Kbrine

+ 1− s
Khc

)−1
(5)

where Kbrine and Khc are the bulk moduli of brine and the given hydrocarbon respec-
tively and s is the saturation. It is now possible to calculate Ksat using the expressions
from equations 4 and 5 together with prior knowledge of the rock layers. For more on
the rock physics behind seismic exploration the reader is referred to [1] and [11].

By finding estimates of the elastic parameters, their mean, variance, etc. it is possible
to determine whether or not all oil or gas has been replaced by water in an assumed
empty oil pocket. In order to obtain information on these parameters a suitable model
is needed. The three elastic parameters of interest are placed in a vector

x =

ln(α)
ln(β)
ln(ρ)


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The elastic parameters α, β, and ρ are positive, but by taking logarithms the values
of x have no such restriction. Using vector x it is possible to determine the reflection
coefficient for a data point

zik(ωp) = aTωp
· (xik − xi,k−1) . (6)

Here i and k denote the position of a measurement where i is the index of the data
column and k the index of the depth. aωp is a vector of constants dependant only on
the angle ωp giving the linear relationship between the three parameters for a given
angle. This is based on the Aki Richards equations which are linearisations of the more
general Zoeppritz equations [12].

aα(ωp) = 1
2(1 + tan2 ωp)

aβ(ωp) = −4 β̄
2
k

ᾱ2
k

sin2 ωp

aρ(ωp) = 1
2(1− 4 β̄

2
k

ᾱ2
k

sin2 ωp)

The values for ᾱk and β̄k are held constant for a given depth and derived from a known
well log. Alternatively they can be held constant for all depths. The angle ωp is the
reflection angle of the seismic wave. p takes on the values from 1 to P , where P is the
number of angles from the seismic data gathering.

From equation 2.3 it is now possible to write out an expression for finding the
reflection coefficients for different angles

zi(ω1)
...

zi(ωP )

 =


Aαω1 Aβω1 Aρω1
... ... ...

AαωP
AβωP

AρωP


xαxβ
xρ

 (7)

where the reflection coefficients zi(ω) are built by using the expression from equation 6

zi(ωp) =



zi1(ωp)
zi2(ωp)

...

...
zin3(ωp)


and

xα =



xi1α
xi2α
...
...

xin3α

 xβ =



xi1β
xi2β
...
...

xin3β

 xρ =



xi1ρ
xi2ρ
...
...

xin3ρ

 .
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xikα is lnαik where i is the column index and k is the depth in that column as before.
The Aωpα, Aωpβ and Aωpρ from equation 7 are given by

Aωpα =



−aαφp aαωp 0 0 0
0 −aαωp aαωp . . . 0 0
0 0 −aαωp 0 0

... . . . ... ...
0 0 0 . . . −aαωp aαωp

aαωp 0 0 . . . 0 −aαωp



Aωpβ =



−aβωp aβωp 0 0 0
0 −aβωp aβωp . . . 0 0
0 0 −aβωp 0 0

... . . . ... ...
0 0 0 . . . −aβωp aβωp

aβωp 0 0 . . . 0 −aβωp



Aωpρ =



−aρωp aρωp 0 0 0
0 −aρωp aρωp . . . 0 0
0 0 −aρωp 0 0

... . . . ... ...
0 0 0 . . . −aρωp aρωp

aρωp 0 0 . . . 0 −aρωp



(8)

The amplitude of the seismic wave is modelled by a convolutional model given by

yik = Σb
j=−bwjωp · zi,k−j + εi, (9)

where wjωp is a wavelet function for the given angle ωp and εi is a noise term. b is a
number giving the length of the wavelet in each direction. The expression for an entire
data column now becomes

Y i =


yiω1...
yiωP

 =


W ω1 . . . 0
... . . . ...
0 . . . W ωP



Aαω1 Aβω1 Aρω1
... ... ...

AαωP
AβωP

AρωP


xiαxiβ
xiρ

+


εiω1
...
εiωP


whereW ωp is an n3× n3 matrix where the weights from the wavelet function is placed
on and around the diagonal and is zero elsewhere. The block diagonal matrix containing
Wωp , denoted W , is an n3 · P × n3 · P matrix. The A·,ωp matrices are the blocks from
equation 8 where each block is a n3 × n3 matrix. The whole matrix of A·,ωps, denoted
A, is an n3 · P × n3 · 3 matrix. εiωp is an n3 × 1 vector with noise terms for the given
angle ωp.
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The data vector Y i for a single data column is given by

Y i =



yiω11
yiω12
...

yiω1n3
...

yiωP 1
yiωP 2
...

yiωPn3



(10)

It is built up as a single vector with length n3 · P . The first n3 elements of the vector
will be the yik’s for i = 1 and k going from 1 → n3. Then the Y i for each angle is
appended to the vector and then the process is repeated for all i so that the complete
data vector Y is given by

Y =


Y 1
Y 2
...

Y n1n2


The X i vector is similarly built

X i =



xiα1
xiα2
...

xiαn3

xiβ1
xiβ2
...

xiβn3

xiρ1
xiρ2
...

xiρn3



(11)

It is a vector of length n3 · 3 where the first n3 elements are the ln(α) values for each
point in the grid followed by the n3 elements for ln(β) and lastly the n3 for ln(ρ). The
entire X vector is built the same way as Y by appending X i together for all i so that
the complete vector of elastic parameters X is given by

X =


X1
X2
...

Xn1n2


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Denoting G = WA it is now possible to write out the Gaussian model

Y =


G

. . .
G

X + ε. (12)

The noise vector ε is built the same way as Y and is assumed independent of X. The
noise parameter is assumed to be normally distributed with zero mean and covariance
matrix Σε.

In a 3D seismic setting the prior of X is usually selected as

X ∼ N(µX ,ΣX(θ)),

where µX is the expectation vector of X and ΣX(θ) is the covariance matrix. θ is a
vector of parameters that are involved in the parametrisation of ΣX . Using this prior
distribution the marginal distribution of Y becomes

Y ∼ N(µY ,ΣY (θ))

where

µY =


G

. . .
G

µX

ΣY (θ) =


G

. . .
G

ΣX(θ)


G

. . .
G


T

+ Σε

2.4 Gaussian Model in a 4D seismic setting
For the 4D seismic case the basics of the model stays the same. The model discussed
in the previous section holds for each of the surveys independently. The difference is
that now the response Y is the difference between to surveys

Y = Y Monitor − Y Base

The model for a 4D response is

Y Monitor − Y Base = GMonitorXMonitor + εMonitor −GBaseXBase − εBase

The prior ofXmonitor andXbase is assumed equal, so the prior ofX = Xmonitor−Xbase

becomes

X ∼ (0,ΣX)
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where ΣX is the covariance matrix of the differences between the two surveys. In this
thesis GMonitor and GBase are assumed equal for both surveys. The mean of the 4D data
then becomes

E(Y ) = E(G(XMonitor −XBase) + εMonitor − εBase)
= GE(XMonitor −XBase)
= G(µMonitor − µBase),

which assuming equal expected value for both surveys leads to µY = 0. The variance
of Y is now given by

var(Y ) = var(G(XMonitor −XBase)) + var(εMonitor − εBase)

Setting X = XMonitor −XBase and ε = εMonitor − εBase gives

var(Y ) = Gvar(X)GT + var(ε)
= GΣXG

T + Σε

which means that the variance of Y is the variance of changes in noise and the elastic
parameters. For more on the Gaussian 4D model is referred to [5]. For the remainder
of the thesis Y , X and ε will refer to differences in the data, elastic parameters and
noise respectively.



12 3 COMPOSITE LIKELIHOOD

3 Composite likelihood

3.1 Likelihood
One of the goals of this thesis is to obtain estimates for the parameter vector θ through
likelihood methods. The parameter vector is crucial for obtaining reliable inversion
results of elastic properties for seismic data. In the general case a normally distributed
response vector y has the likelihood function

L(y;θ) = (2π)−n/2|Σy(θ)|−1/2 exp(−1
2y

TΣy(θ)−1y)

where θ is the vector of parameters involved in the expression of the covariance of y.
Ignoring a scalar depending neither on θ or y the negative log-likelihood function is
given by

l(y;θ) = 1
2 ln |Σy(θ)|+ 1

2y
TΣy(θ)−1y. (13)

When n becomes large using the covariance matrix for calculations becomes time con-
suming and sometimes impossible due to the matrix operations on the covariance ma-
trix. Finding the inverse of a matrix for example when n becomes large enough is
numerically impossible and therefore alternatives to the full covariance matrix must be
found.

3.2 Composite likelihood
Composite likelihood is an alternative to ordinary likelihood described in [14] and [9].
The idea of the composite likelihood method is to break up the calculation of the
log-likelihood function into smaller pieces and then summing them. It especially be-
comes efficient when one assumes the data to be spatially correlated, meaning that the
corraltion between data points is dependent on the distance between them. Spatial
correlation is usually assumed for seismic data. It is then possible to consider only the
closest neighbourhood without much loss of accuracy.

For the general case the composite likelihood method sums up the likelihood function
for each pair of data points, instead of finding the likelihood function for the whole data
set at once. Assuming a response vector y with elements yi for i = 1→ N the composite
likelihood function becomes

CL(y;θ) =
∏
i

∏
j

f(yi, yj;θ) (14)

where f(yi, yj|θ) is the joint probability distribution for a data pair. The negative
log-composite-likelihood function becomes

cl(y;θ) =
∑
i

∑
j

(1
2 ln |Σyij(θ)|+ 1

2y
T
ijΣyij(θ)−1yij

)
,

where yij =
[
yi
yj

]
and Σp is the 2× 2 covariance matrix for yi and yj.
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1 2 3

n2 + 1 n2 + 2 n2 + 3

2n2 + 1 2n2 + 2 2n2 + 3

n2

2n2

3n2

n1(n2 − 1)
+1

n1(n2 − 1)
+2

n1(n2 − 1)
+3

n1n2

Figure 2: An illustration of the lateral view of the data. For each square in the figure
there is an n3 × 1 column.
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In this thesis each data point will be a column in the data, i.e. Yi ∈ R(n3×1). Figure
2 shows how the data are indexed. Considering the large dimensions of seismic data
composite likelihood greatly simplifies calculations because the covariance matrix which
is an (n1 · n2 · n3)× (n1 · n2 · n3), or n× n, matrix is replaced by many (2 · n3)× (2 · n3)
matrices. This also requires far less memory since only parts of the covariance matrix
needs to be included for each sum. The negative log-composite-likelihood function
becomes

cl(Y ;θ) =
∑
i

∑
j

(1
2 ln |ΣY ij(θ)|+ 1

2Y
T
ijΣY ij(θ)−1Y ij

)
(15)

where Y ij =
[
Y i

Y j

]
and Y i and Y j are the data vectors corresponding to the data

points i and j respectively. ΣY ij is the 2 · n3 × 2 · n3 covariance matrix for Y i and Y j.
As mentioned earlier the composite likelihood method is particularly useful when

the data are spatially correlated. When the data are spatially correlated the closest data
points will affect the covariance the most and one can use only the closest neighbours
when summing over all pairs for a given data column i. Defining a neighbourhood can
be done in different ways and depend on the grid selected for the data and the amount
of time available for calculations. The larger the selected neighbourhood is the more
time is needed for calculations since the the computation time is dependant on the
number of data pairs involved. In this thesis a neighbourhood will mean the square of
data columns surrounding data column i from a lateral view point. Looking at Figure
2 this means that the neighbourhood for column i = n2 + 2 is N = [1, 2, 3, n2 + 1, n2 +
3, 2n2 + 1, 2n2 + 2, 2n2].

3.3 Optimisation using the Gauss Newton method
It is of interest to find the maximum likelihood estimator, θ̂, for the model selected. In
order to find θ̂ an optimisation method is needed. The goal of the optimisation is to
find

arg min
θ
{l(Y ;θ)}

or in the case of composite likelihood

arg min
θ
{cl(Y ;θ)}

where l(Y ;θ) and cl(Y ;θ) are given by equation 13 and 15 respectively. The following
describes the method used in this thesis, the Gauss Newton method. First it will
be explained for the normal likelihood function and then for the composite likelihood
function.

The Gauss-Newton method is a Fisher-scoring method that solves non-linear least
squares problems [8], finding the minimum. The method uses the score vector defined
by

g = ∂l(Y )
∂θ
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and the Hessian matrix defined by

H = ∂2l(Y ;θ)
∂θ2 .

Many optimisation algorithms need to calculate the full Hessian matrix. For large data
sets this is impractical and time consuming. The Gauss Newton method eliminates
the need for calculating second derivatives and instead considers the expected value of
the Hessian matrix denoted H . Not only does this simplify calculations but it also
makes the optimisation method more stable. For more on the Gauss Newton method
the reader is referred to [8].

The method takes in an initial guess, θ0, and then updates the value of θ for each
step in the algorithm using the formula

θm+1 = θm − ψH−1
m gm, (16)

where gm is the score vector evaluated for θm andHm is the expected Hessian evaluated
for θm

H = E

(
∂2l(Y ;θm)

∂θ2
m

)
. (17)

ψ is called the pessimistic factor. It adjusts the step length of the iterative method in
an effort to prevent divergence. A shorter step length will mean slower convergence,
but is needed if the system diverges for ψ = 1.

To find arg minθ{l(Y ;θ)}, which is equivalent to finding the maximum of the pos-
itive log-likelihood function, the derivatives of l(Y ;θ) with respect to all θk’s must be
found. In the following Tr refers to the trace of a matrix, the sum of a matrix’s diagonal
elements. The score function becomes

gk = ∂l(Y ;θ)
∂θk

= 1
2
∂

∂θk

(
ln |ΣY (θ)|+ 1

2Y
T ∂

∂θk
ΣY (θ)−1Y

)
. (18)

Using the relations

∂

∂θk
ln |ΣY (θ)| = Tr

(
ΣY (θ)−1∂ΣY (θ)

∂θk

)
∂

∂θk
ΣY (θ)−1 = −Σ(θ)−1∂ΣY (θ)

∂θk
ΣY (θ)−1 (19)

found in [8], equation 18 can be written as

gk = 1
2Tr

(
ΣY (θ)−1∂ΣY (θ)

∂θk

)
− 1

2Y
TΣY (θ)−1∂ΣY (θ)

∂θk
ΣY (θ)−1Y (20)

yielding the score vector g.
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The Hessian is often impractical or computationally expensive to calculate and is
therefore estimated by the expected Hessian given in equation 17. Each element of the
matrix is given by

Hkl = E

(
∂2l(Y ;θ)
∂θk∂θl

)
. (21)

The expectation in equation 21 is calculated

Hkl = 1
2Tr

(
ΣY (θ)−1∂ΣY (θ)

∂θk
ΣY (θ)−1∂ΣY (θ)

∂θl

)
.

The final iteration step of the Gauss Newton algorithm then becomes as in equation
16.

The algorithm terminates when convergence is reached, when θm+1− θm < t where
t is some chosen tolerance. The algorithm for the Gauss Newton Method for the full
likelihood can be seen in Algorithm 1.

Algorithm 1 The Gauss Newton algorithm using the full covariance matrix.
Input:
data dimensions, n1, n2, n3
initial guess, θ0
Do:
decide on tolerance t
set m = 0
set H = 0
set g = 0
while θ̂m+1 − θ̂m > t do
calculate ΣY (θ̂m), ∂ΣY (θ̂m)

∂θk
, k = 1, ..., length(θ)

calculate gk = 1
2Tr

(
Σ−1
Y

∂ΣY

∂θk

)
− 1

2Y
TΣ−1

Y
∂ΣY

∂θk
Σ−1
Y Y k = 1, ..., length(θ)

calculate Hkl = 1
2Tr

(
Σ−1
Y

∂ΣY

∂θk
Σ−1
Y

∂ΣY

∂θl

)
, k, l = 1, ..., length(θ)

set θ̂m+1 = θ̂m −Σ−1
Y mgm

end while
Return:
θ̂

For the composite likelihood described in Section 3.1 the Gauss Newton method
is quite similar. The task is now to find arg minθ{cl(Y ;θ)} and so the score function
becomes

gk = ∂pl

∂θk
=
∑
i

∑
j

(
1
2Tr

(
ΣY ij(θ)−1∂ΣY ij(θ)

∂θk

)
− 1

2Y
T
ijΣY ij(θ)−1∂ΣY ij(θ)

∂θk
ΣY ij(θ)−1Y ij

)
,

(22)

where the relations from equation 19 are used. Similarly to the the regular likelihood
case equation 22 gives us g.
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The matrix H is found in a similar way as before and is given by

Hkl =
∑
i

∑
j

1
2Tr

(
ΣY ij(θ)−1∂ΣY ij(θ)

∂θk
ΣY ij(θ)−1∂ΣY ij(θ)

∂θl

)
. (23)

The iteration step is the same as in 16 and terminates when θm+1−θm < t as before. To
save computation time, it is advisable to calculate the ΣY ijs and Hs outside the loop
that goes through the data pairs. This can be done since only the closest neighbours are
used and the expressions for ΣY ij and H are only dependant on the distance between
the data columns and the vector of parameters θ. ΣY ij and H are therefore calculated
for all different distances that can occur. The number of different distances will depend
on the way the neighbourhood is chosen. The algorithm for the Gauss Newton method
using composite likelihood can be seen in Algorithm 2.

Algorithm 2 The Gauss Newton algorithm for the composite likelihood approach.
ΣY ij is the 2 · n3 × 2 · n3 composite covariance matrix for Y i and Y j where only
neighbouring pairs are included.

Input:
data dimensions, n1, n2, n3
initial guess, θ0
Do:
calculate ΣY ij for all data pair distances
decide on tolerance t
set m = 0
set H = 0
set g = 0
while θ̂m+1 − θ̂m > t do
calculate ΣY ij = cov(Y i,Y j) and ∂ΣY ij

∂θk
for all data pair distances and for all k

calculate Hkl = 1
2Tr

(
Σ−1
Y ij

∂ΣY ij

∂θk
Σ−1
Y ij

∂ΣY ij

∂θl

)
, k, l = 1, ..., length(θ) for all data pair

distances
for i in 1 : n1 · n2 do

for j in N do
calculate gk = gk + 1

2Tr
(
Σ−1
Y ij

∂ΣY ij

∂θk

)
− 1

2Y
T
ijΣ−1

Y ij
∂ΣY ij

∂θk
Σ−1
Y ijY ij, k =

1, ..., length(θ)
add Hkl with the appropriate data pair distance to the existing Hkl

end for
end for
set θ̂m+1 = θ̂m −H−1

m gm
end while
Return:
θ̂
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3.4 Properties
According to [9] the composite likelihood estimator is unbiased if the score vector has
expected value zero. Using equation 22 and taking the expectation yields

E(gk) = E

∑
i

∑
j

(
1
2Tr

(
ΣY ij(θ)−1∂ΣY ij(θ)

∂θk

)
− 1

2y
T
ijΣY ij(θ)−1∂ΣY ij(θ)

∂θk
ΣY ij(θ)−1yij

)
= 1

2
∑
i

∑
j

Tr

(
ΣY ij(θ)−1∂ΣY ij(θ)

∂θk

)
− 1

2
∑
i

∑
j

E

(
yTijΣY ij(θ)−1∂ΣY ij(θ)

∂θk
ΣY ij(θ)−1yij

)

= 1
2
∑
i

∑
j

Tr

(
ΣY ij(θ)−1∂ΣY ij(θ)

∂θk

)
− 1

2
∑
i

∑
j

Tr

(
ΣY ij(θ)−1∂ΣY ij(θ)

∂θk
ΣY ij(θ)−1ΣY ij(θ)

)
= 0.

Thus the composite likelihood estimator is an unbiased estimator.
The information matrix for the composite likelihood, called the Godambe informa-

tion, is given by
IG(θ) = H(θ)J(θ)−1H(θ) (24)

where H(θ) is the expected Hessian and J(θ) is given by J(θ) = Var(∂cl(θ,Y )
∂θ

). The
vector of parameters θ̂ is asymptotically distributed as θ̂ ∼ N(θ, I−1

G ). For more on
the Godambe information the reader is referred to [14] and [7]. In the previous section
an estimate for the Hessian was obtained through H from equation 23, so all that is
needed to calculate the Godambe information is J(θ), which is given by

J(θ) = Var
(
∂cl(Y ;θ)

∂θ

)

= Var
∑

i

∑
j

−1
2Y

T
ijΣ−1

Y ij

∂ΣY ij

∂θ
Σ−1
Y ijY ij

 (25)

where Y ij =
[
Y i

Y j

]
is the vector of length 2 · n3 of Y ’s that correspond to columns i

and j. Continuing from the expression in equation (25)

J(θ) =
∑
K
Tr

(
Σ−1
Y ij

∂ΣY ij

∂θ
Σ−1
Y ij

∂ΣY ij

∂θ

)

+
∑
K

∑
L
Tr

([
Σ−1
Y ij

∂ΣY ij

∂θ
Σ−1
Y ij 0

0 0

]
ΣKL

[
0 0
0 Σ−1

Y ij
∂ΣY ij

∂θ
Σ−1
Y ij

]
ΣKL

)
.

Here K is the set of all pairs in the desired neighbourhood, i.e. the set of all pairs (i, j),
i = 1, ..., n1 · n2 and j ∈ [neighbours of i]. L is the set of all pairs that contain one of
the values i or j for a given pair in K, or in other words, all neighbouring pairs of the
given pair in K. ΣKL is the 4 · n3× 4 · n3 covariance matrix between the two pairs in K
and L. It is now possible to calculate the Godambe information by equation (24).

For the full likelihood J(θ) = H(θ) and so IG(θ) = H(θ)J(θ)−1H(θ) = H(θ)
which demonstrates the difference in the asymptotic variance for the full likelihood
parameter estimates and the composite likelihood parameter estimates.
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4 Prediction

4.1 Full likelihood

In a seismic setting it is of interest to predict the variables X using the values of the
data Y . Being able to predict the values for α, β and ρ based on the values of the
seismic measurements makes finding changes in reservoirs much easier.

In statistical prediction the objective is to obtain values for an unknown entity using
the information that is available. Following this trail of thought the optimal predictor
for X i is then the conditional expectation E(X i|Y ).

In order to predict X i for a certain data column it is assumed that the distribution
of X i is known. This assumption makes it possible to write out the covariance matrix
for X i and all the data Y



X i

Y 1
Y 2
...

Y n1n2

 ∼ N


[
µXi

= 0
µY = 0

]
,



ΣXii ΣXi,�G
T

GΣXi,� ΣY




(26)

ΣY is the n1 · n2 · n3 × n1 · n2 · n3 covariance matrix of all the data columns Y . ΣXii

is the covariance matrix for the covariate column X i. By using the distribution from
equation 26 it is now possible to write out the full likelihood for Y and X i

l(Y ,X i;θ) = −1
2

[
X i

Y

]T


ΣXii ΣXi,�G
T

GΣXi,� ΣY



−1

[
X i

Y

]

The matrix GΣXi,· is a n3×n1 ·n2 ·n3 block matrix where each block is the covariance
matrix for X i and Y j for all values of j. Each block is given by

cov(X i,Y j) = cov(X i,GXj + ε) = G cov(X i,Xj) = GΣXij

where ΣXij is the covariance matrix between X i and Xj. Finding the predicted value
ofX i is achieved by finding the derivative of the likelihood function with respect toX i

and setting it equal to zero yields the well known result

X̂ i = ΣXi,�G
T ·Σ−1

Y Y

Solving this equation for the full likelihood is not possible when n1 · n2 · n3 becomes
large, and it again becomes necessary to use composite likelihood.
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4.2 Composite likelihood

The composite likelihood function for the distribution of
[
X i

Y

]
given in equation 26 is

given by

cl(Y ,X i;θ) = Σj∈N −
1
2

X i

Y i

Y j


T  ΣXii ΣXiiG

T ΣXijG
T

GΣXii ΣY ii ΣY ij

GΣXij ΣY ij ΣY jj


−1 X i

Y i

Y j


where GΣXij is the n3 × n3 covariance matrix for X i and Y j

cov(X i,Y j) = cov(X i,GXj + εj) = G cov(X i,Xj) = GΣij

By first denoting  ΣXii ΣXiiG
T ΣXijG

T

GΣXii ΣY ii ΣY ij

GΣXij ΣY ij ΣY jj


−1

= Qji

it is now possible to find the derivative with respect to X i

∂cl(Y ,X i;θ)
∂X i

= Σj∈N
(
Qji(0)X i +Qji(0, 1)Y i +Qji(0, 2)Y j

)
(27)

By setting the expression in equation 27 equal to zero and solving for X i an expression
for X̂ i is obtained

X̂ i = −
[
Σj∈NQji(0)

]−1
Σj∈N(Qji(0, 1)Y i +Qji(0, 2)Y j) (28)

where Qji(0), Qji(0, 1) and Qji(0, 2) are the values in the given area of Qji given by
the following pattern

Qji =

 Qji(0) Qji(0, 1) Qji(0, 2)
Qji(1, 0) Qji(1) Qji(1, 2)
Qji(2, 0) Qji(2, 1) Qji(2)

 .
X̂ i can now be predicted for any data column i. The algorithm for performing the
prediction is given in Algorithm 3

4.3 Leave one out prediction
It is also possible to predict X i when Y i is taken out of the dataset. This approach is
tested to see how well the predictions perform for unknown data. Removing Y i from
the dataset alters the composite likelihood function

cl(Y −i,X i;θ) = Σj∈N −
1
2

[
X i

Y j

]T [ ΣXii ΣXijG
T

GΣXij ΣY jj

]−1 [
X i

Y j

]
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Algorithm 3 The algorithm used for predicting X̂ i and for finding the Godambe
information

Input:
data dimensions, n1, n2, n3
estimated parameters θ̂
Do:
calculate ΣXii, ΣXY ij and ΣY ij for all data pair distances
calculate Qij(0), Qij(0, 1) and Qij(0, 2) for all data pair distances
set m = 0
set H = 0
set g = 0
set Qij(0) = 0
set Qij(0, 1) = 0
set QY ij = 0
for i in 1 : n1 · n2 do

for j in N do
calculate Qij(0) = Qij(0) +Qij(0)
calculate Qij(0, 1) = Qij(0, 1) +Qij(0, 1)
calculate QY ij = QY ij +Qij(0, 1) · Y i +Qij(0, 2) · Y j

end for
set H = Qij(0)
set Bij = [Qij(0),Qij(0, 1)]
calculate J = BijΣXY iiB

T
ij

for j in N do
calculate J = J +Bij[ΣXY ij,ΣY ij]QT

ij(0, 2)
for j′ in N do
calculate J = J +Qij(0, 2)ΣY jj′QT

ij(0, 2)
end for

end for
set X̂ i = −Q−1

ij (0) ·QY ij

set IGi = HJ−1H
end for
Return:
X̂
IG
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where N is the set of desired neighbours for column i. Similar to the previous section
the inverse covariance matrix is denoted

[
ΣXii ΣXijG

T

GΣXij ΣY jj

]−1

= Qji

As before the derivative of cl(Y ,X i;θ) is found

∂cl(Y ,X i;θ)
∂X i

= Σj∈N
(
Qji(0)X i −Qji(0, 1)Y j

)
(29)

A predicted value for X i can now be found by setting the derivative equal to zero and
solving for X i

X̂ i = −
[
Σj∈NQji(0)

]−1
Σj∈NQji(0, 1)Y j (30)

Qji(0) and Qji(0, 1) are the values in the given area of Qji given by the following
pattern

Qji =
[
Qji(0) Qji(0, 1)
Qji(1, 0) Qji(1)

]
.

X̂ i can now be predicted for any data column i.

4.4 Sandwich estimation of prediction variance

The sandwich estimate, or the Godambe information, as described in Section 3.4 can
be used to estimate the variance of the prediction result. As mentioned the Godambe
information is given by

IG = HJ−1H . (31)

To find G expressions for H and J are needed. These are given by

H = E

(
∂2cl(Y ,X i;θ)

∂X2
i

)

J = Var
(
∂cl(Y ,X i;θ)

∂X i

)

The expressions for H and J will be slightly different depending on which prediction
technique is chosen, but the procedure for finding them is the same. To find H it is
necessary to find the the second derivative of the composite likelihood function and
then taking the expectation. This is achieved by finding the derivative of the composite
likelihood function, given in equation 27 or 29 depending on the prediction technique,
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with respect to X i. For equation 29 H is given by

H = E

(
∂2cl(Y ,X i;θ)

∂X2
i

)

= E

∂
(
∂cl(Y ,Xi;θ)

∂Xi

)
∂X i


= E

(
∂

∂X i

Σj∈N
(
Qji(0)X i −Qji(0, 1)Y j

))
= Σj∈NQji(0)

The result is exactly the same for equation 27 since the only difference between the two
expressions are terms not related to X i.

To find J the variance of the derivative of the composite likelihood function with
respect to X i, given in equation 27 or 29 depending on the prediction technique, needs
to be found. For equation 29 J is given by

J =var
(
∂cl
∂X i

)
=var

(
Σj∈NQji(2)X i −Qji(2, 1)Y j

)
=Qij(0)var(X i)Qij(0)T

+Σj∈NQij(0)cov(X i,Y j)Qij(0, 1)T

+Σj∈NΣj′∈NQij(0, 1)cov(Y j,Y j′)Qij′(0, 1)T

where Qij(0) = Σj∈NQij(0).
For equation 27 the expression is quite similar, but some elements are altered. Qij(0)

is replaced with the matrix Bij =
[
Qij(0),Qij(0, 1)

]
where Qij(0, 1) = Σj∈NQij(0, 1).

X i is replaced by
[
X i

Y i

]
resulting in the following expression for J

J =Bijvar
([
X i

Y i

])
BT
ij

+Σj∈NBijcov
([
X i

Y i

]
,Y j

)
Qij(0, 2)T

+Σj∈NΣj′∈NQij(0, 2)cov(Y j,Y j′)Qij′(0, 2)T

The resulting Godambe information IG = HJ−1H is, when the inverse is taken, the
asymptotic covariance matrix of the predicted X̂ i as discussed in section 3.4.

4.5 Prediction residuals
In order to assess the results of the predictions it is interesting to look at the residuals

r̂i = Y i −GiX̂ i. (32)
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The residuals should not exceed the estimated noise term ε̂ and should represent random
noise.

As described in subsection 4.4 it is possible to calculate the Godambe information
for the predictions. Using the Godambe information it is possible to create prediction
intervals for the residuals. The interval for a given data column is found using

−abs
(

1.96
√
diag(GI−1

GiG
T + ε)

)
≤ r̂i ≤ abs

(
1.96

√
diag(GI−1

GiG
T + ε)

)
(33)

where abs means taking the absolute value and diag means the diagonal of the given
matrix. Approximately 95% of the residuals r̂i should lie within this interval.
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5 Data Set from Norne

The data set is gathered from the Norne field, located in the North Sea off the coast of
Norway. See Figure 3 for a map showing the location. The base survey was performed

Figure 3: A map showing the location of the Norne Field

in 2001 and the monitor survey in 2003. For each survey data is gathered for different
angles, which are placed into three categories, near, mid and far. Approximate values
for each angle category is needed to calculate the expressions in equation 2.3, and are
set to 5◦, 15◦ and 30◦ for near, mid and far respectively. A plot of the data for the three
angles from the 2001 survey can be seen in Figure 4. A similar plot for the 2003 survey
can be seen in Figure 5. In this data set only the depth and the inline directions are
included, thus making this a 2D data set with two measurement times. The response
variable Y is the difference between the 2003 and 2001 survey as discussed in Section
2.4. A plot of the difference between the two surveys can be seen in Figure 6. The
dimensions of the data are 150× 100 where 150 is the dimension of the depth and 100
is the dimension in the inline direction, meaning that n1 = 100, n2 = 1 and n3 = 150.
The reservoir is located at approximately depth 90-110 and can be seen best for the far
angle in Figure 6. The noise at depth 60 is not related to the reservoir, but is rather
noise the processing was not able to remove and is referred to as processing artefacts.

Histograms for the three different angles are made to see if the assumption of nor-
mally distributed data seems reasonable and are shown in Figure 7. It is clear from the
histograms that a normal distribution for the data is an acceptable choice. The model
selected for the data is based on the more general model described in Section 2.4. The
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Figure 4: Plot of the seismic data from the survey performed in 2001.

model for each data column is given by

Y i = GX i + εi. (34)

The prior of X i is

X i ∼ N(0,ΣX). (35)

and the marginal distribution of Y i is then given by

Y i ∼ N(0,GΣXG
T + Σεi)

G = WA is the design matrix based on the behaviour of seismic waves described in
section 2.3. W is based on well logs from the Norne field, where the estimated wavelet
function is equal for all three angles and can be seen in Figure 8. The covariance
matrix ΣX is assumed to be spatially correlated and also needs to reflect the covariance
between the elastic parameters. In order to match the build of the X i vector described
in equation 11 the covariance matrix of X i needs to be of the form

ΣX = Σ0 ⊗Cii (36)

where Σ0 is the covariance matrix of the elastic parameters and Cii is the correlation
matrix for X i. The ⊗ operator in equation 36 refers to the Kronecker product which
works by multiplying the last matrix in the Kronecker product in every value of the
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Figure 5: Plot of the seismic data from the survey performed in 2003

first matrix. The Kronecker product is illustrated in the small example below

A =
[
a11 a12
a21 a22

]
B =

[
b11 b12
b21 b22

]

A⊗B =


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b11 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


The derivative of a Kronecker product is given by

(A⊗B)′ = A′ ⊗B +A⊗B′ (37)

Σ0 is the covariance matrix of the elastic parameters given by

Σ0 =

 σ
2
α σαβ σαρ

σαβ σ2
β σβρ

σαρ σβρ σ2
ρ


In order to estimate the entries in Σ0 a parametrisation of the covariance matrix of α,
β and ρ is needed and is chosen to be

Σ̂0 =

 σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ1σ2 σ2
2 ρ23σ2σ3

ρ13σ1σ3 ρ23σ2σ3 σ2
3

 (38)

C is a distance dependant correlation matrix, meaning that the correlation between
data points is determined by the distance between the data points through a correlation
function. This will be discussed in the following.
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Figure 6: Plot of the difference between the 2003 survey and the 2001 survey

By trying different variations of the model described above it can be seen which
one gives the best estimates of parameters and the best predictions. There are three
aspects of the model that will vary.

5.1 Correlation functions
The correlation matrix of the elastic parameters C is assumed to be dependent on the
distance between the data, i.e. for each pair of data points p and q the correlation
between them is dependant on the distance between them. There are many correlation
functions dependent on distance. One of the most common is the exponential correlation
function given by

c(p, q;φ) = exp
(
−3|p− q|

φ

)
(39)

Another well known correlation function is the Matern correlation function

c(p, q;φ) = 1
Γ(ν)2ν−1

(
2
√
ν
|p− q|
φ

)ν
Kν

(
2
√
ν
|p− q|
φ

)

where ν is a smoothing parameter, Γ(ν) the gamma function andKν is a modified Bessel
function as described in [2]. A special case is when ν = 3

2 and the Matern covariance
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Figure 7: Histograms of the data for each angle. Apart from heavy tails for the near
angle, the assumption of normally distributed data seems reasonable.

function becomes

c(p, q;φ, ν = 3
2) = (1 + |p− q|3

φ
) exp

(
−3|p− q|

φ

)
(40)

For both correlation functions φ is parameter giving the range of the correlation. For
more on distance dependent correlation functions and additional examples the reader
is referred to [2]. In the model variations the correlation function will vary between the
exponential correlation function from equation 39 and the Matern correlation function
with ν = 3

2 from equation 40. Figure 9 shows how the two correlation functions behave
as a function of distance when φ = 3 for the exponential correlation function and φ = 2
for the Matern correlation function.

5.2 The noise term ε

The second aspect of the model that varies is related to the noise term. There are many
ways to model noise, but this thesis will focus on two models for the noise term

ε̂1 ∼ N(0, τ 2
1 ⊗ I) (41)

ε̂2 ∼ N(0, τ 2
2 ⊗ I +W (τ 2

3 ⊗ I)W T ) (42)

where τ 2
1, τ 2

2 and τ 2
3 are 3 × 3 diagonal matrices and W is the matrix described in

Section 2.3. The reason they are 3 × 3 matrices is because the noise is estimated



30 5 DATA SET FROM NORNE

Figure 8: The wavelet function used in W

separately for the three different angles. The first model is simple and uses a single
noise term equal for all the data points for a given angle. The second model expands
on the first by adding correlation in the noise depending on the wavelet matrix W .

The values of the diagonal elements in τ 2
1 are not found using the Gauss Newton

iteration technique, but rather estimated using the data themselves. This is done by
assuming that there has been little or no change in the top layers of the data, usually
referred to as the overburden, and that the changes found here can be attributed to
noise. For this data set the number of layers used for this estimation is 40. Using this
assumption the τ1 parameter for each of the angles can be estimated by finding the
empirical variance of the top levels from the data. The resulting τ̂ is then a 3 × 3
matrix with the variance for each angle on the diagonal and zero elsewhere.

When finding τ 2
2 and τ 2

3 a simple linear regression problem is solved. The elements
of the two matrices are found for each of the three angles separately. First the empirical
covariance matrix for the overburden is found for the first angle and then placed in a
vector, c. This is done by taking out the first row of the matrix and then appending
each of the following rows of the covariance matrix. The same is done for the W ·W T

product for the first 40 rows. This is now set equal to the corresponding term containing
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Figure 9: The exponential and Matern correlation functions with φ = 3 and φ = 2
respectively

τ 2
2θp

and τ 2
3θp

given by the following equation

c =



c1,1
c1,2
...

c1,40
c2,1
c2,2
...

c2,40
c40,1
c40,2
...

c40,40



=



1 w1,1
0 w1,2
... ...
0 w1,40
0 w2,1
1 w2,2
... ...
0 w2,40
0 w40,1
0 w40,2
... ...
1 w40,40



[
τ 2

2ωj

τ 2
3ωj

]

The first column of the matrix with ones and zeros ensures that τ 2
2ωp

is included for all
the variance terms. The system can now be solved using the least squares method to
obtain estimates for τ1ωp and τ2ωp and this is repeated for all three angles.

For the data set from Norne the values for τ 2
1, τ 2

2 and τ 2
3 are

τ 2
1 = 104

6.079 0 0
0 1.884 0
0 0 2.955

 (43)
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τ 2
2 = 104

2.299 0 0
0 1.206 0
0 0 1.002

 (44)

τ 2
3 = 10−5

0.805 0 0
0 0.253 0
0 0 0.405

 (45)

The values agree well with prior experience in seismic reflection that the noise is highest
for the near angle. This is mostly due to disturbances from the sensors and also from
waves being reflected twice. When the seismic waves reach the sensor, some of that
wave will be reflected back to the subsurface and back again, much weaker, but still
strong enough to create noise in the measurements.

5.3 Number of data columns used for each i

The last aspect of the model to vary concerns the data column Y i. In Section 2.3 Y i

is given as a single data column as shown in equation 10. An alternative is to select Y i

as multiple data columns, i.e. each Y i is a small neighbourhood of columns, primarily
2 × 2 columns in the 3D case. For the 2D case studied here this means Y i consists
of two data columns. Both alternatives are shown for the 2D case in Figure 10. The
resulting Y i, from now on denoted Y 2

i , is

Y 2
i =



yiω11
yiω12
...

yiω1n3
...

yiωP 1
yiωP 2
...

yiωPn3

yi+1ω11
yi+1ω12

...
yi+1ω1n3

...
yi+1ωP 1
yi+1ωP 2

...
yi+1ωPn3



(46)

This results in the number of Y 2
i ’s being cut in half compared to the Y is, but the dimen-

sions of the covariance matrix for each Y 2
i will double in both directions in comparison
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Y i

Y 2
i

Figure 10: An illustration of the data columns and the effect of having a model with
Y or Y 2

thus increasing computation time. The covariance matrix of Y 2
i is[

G(Σ0 ⊗Cii)GT + Σε G(Σ0 ⊗Ci,i+1)GT + Σε

G(Σ0 ⊗Ci,i+1)GT + Σε G(Σ0 ⊗Ci+1,i+1)GT + Σε

]

It is worth noting that the size of covariance matrix of Y 2
i is four times larger than the

covariance matrix of Y i and will therefore cause computation time to increase.
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6 Parameter estimation and prediction results

6.1 Parameter estimation

The three varying aspects of the model all have two variations, meaning all combinations
of variations yield 23 = 8 different models. For easier representation of the results in
this section each model is given a name that reflects the different variations it contains.
The eight models are

M(Y ; τ 2
1; exp)

M(Y ; τ 2
2, τ

2
3; exp)

M(Y ; τ 2
1;Matern)

M(Y ; τ 2
2, τ

2
3;Matern)

M(Y 2; τ 2
1; exp)

M(Y 2; τ 2
2, τ

2
3; exp)

M(Y 2; τ 2
1;Matern)

M(Y 2; τ 2
2, τ

2
3;Matern)

For each of the models M the chosen alternative for the three variations is described
in the parenthesis. Y or Y 2 refers to whether Y i consists of one or two data columns
respectively. τ 2

1 means that the noise term is only the diagonal matrix from equation
41, while τ 2

2, τ
2
3 means the noise term also includes a wavelet convoluted term as in

equation 42. Exp or Matern gives the correlation function used in the model.
Having defined the eight different models it is desirable to estimate the vector of

parameters θ using the Gauss Newton method. The parameter vector θ contains seven
parameters regardless of which model is being used and is given by

θ =



φ
σ2

1
σ2

2
σ2

3
ρ12
ρ13
ρ23


φ is the range parameter from the correlation function used and is described in section
5.1. The σ2

i and the ρij make up the covariance matrix of the underlying parameters as
shown in equation 38. The covariance matrices of Y , ΣY ij for Y i and Y j and Σ2

Y ij for
Y 2

i and Y 2
j need to be found. Σ2

Y ij refers to the covariance matrix of two Y 2
i s. These

covariance matrices are given by

ΣY ij =
[
G(Σ0 ⊗Cii)GT + Σε G(Σ0 ⊗Cij)GT + Σε

G(Σ0 ⊗Cij)GT + Σε G(Σ0 ⊗Cjj)GT + Σε

]
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and

Σ2
Y ij =


GΣXiiG

T + Σε G(ΣXi,i+1)GT + Σε G(ΣXi,j)GT + Σε G(ΣXi+1,j+1)GT + Σε

G(ΣXi,i+1)GT + Σε G(ΣXi+1,i+1)GT + Σε G(ΣXi+1,j)GT + Σε G(ΣXi+1,j+1)GT + Σε

G(ΣXi,j)GT + Σε G(ΣXi+1,j)GT + Σε G(ΣXjj)GT + Σε G(ΣXj,j+1)GT + Σε

G(ΣXi,j+1)GT + Σε G(ΣXi+1,j+1)GT + Σε G(ΣXj,j+1)GT + Σε G(ΣXj+1,j+1)GT + Σε



When implementing the Gauss Newton method derivatives of these matrices with
respect to all parameters in θ are needed. In order to find these derivatives the ex-
pression G(Σ0 ⊗ Cij)GT + Σε needs to be differentiated with respect to each of the
seven parameters. The noise terms will always become zero since they are independent
of all the parameters. The G matrix is also independent of all the parameters and
will therefore remain constant during differentiation. The task is therefore restricted to
finding the derivative of Σ0 ⊗ Cij with respect to all the parameters. From equation
37 the derivative of Σ0 ⊗ Cij is ∂Σ0

∂θk
⊗ Cij + Σ0 ⊗ Cij

∂θk
. That means that in order to

use the Gauss Newton method expressions for ∂C
∂θk

and ∂Σ0
∂θk

. Cij are only dependent on
φ so all that is needed is finding ∂Cij

∂φ
. Instead of using φ when running the algorithm

φ′ = 3/φ is used for simplicity and stability. Using this substitution the derivative of
the correlation functions become

∂

∂φ′
exp (−|p− q|φ′) = −|p− q| exp (|p− q|φ′)

∂

∂φ′
(1 + |p− q|φ′) exp (−|p− q|φ′) = |p− q|2φ′ exp (−|p− q|φ′)

(47)

and from these ∂C
∂φ′ can easily be found. From equation 38 it is easy to find the expres-

sions for ∂Σ0
∂θk

∂Σ̂0

∂σ2
1

=

 1 ρ12σ2
2σ1

ρ13σ3
2σ1

ρ12σ2
2σ1

0 0
ρ13σ3
2σ1

0 0

 ∂Σ̂0

∂ρ12
=

 0 σ1σ2 0
σ1σ2 0 0

0 0 0



∂Σ̂0

∂σ2
2

=

 0 ρ12σ1
2σ2

0
ρ12σ1
2σ2

1 ρ23σ3
2σ2

0 ρ23σ3
2σ2

0

 ∂Σ̂0

∂ρ13
=

 0 0 σ1σ3
0 0 0

σ1σ3 0 0



∂Σ̂0

∂σ2
3

=

 0 0 ρ13σ1
2σ3

0 0 ρ23σ2
2σ3

ρ13σ1
2σ3

ρ23σ2
2σ3

1

 ∂Σ̂0

∂ρ23
=

0 0 0
0 0 σ2σ3
0 σ2σ3 0



(48)

Using the definition of the derivative of a Kronecker product given in equation 37 the
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Table 1: Table of the estimated θ̂ for the four models with one data column

M(Y ; τ 2
1; exp) M(Y ; τ 2

1;Matern) M(Y ; τ 2
2, τ

2
3; exp) M(Y ; τ 2

2, τ
2
3;Matern)

φ 3.4562 1.5981 2.2876 1.2898
σ2

1 9.2866 · 10−4 9.0358 · 10−4 1.0860 · 10−3 1.0269 · 10−3

σ2
2 7.6670 · 10−4 7.8589 · 10−4 9.9114 · 10−4 9.4554 · 10−4

σ2
3 1.1760 · 10−3 1.1300 · 10−3 1.2779 · 10−3 1.2063 · 10−3

ρ12 0.9338 0.9365 0.9584 0.9587
ρ13 -0.9909 -0.9910 -0.9910 -0.9910
ρ23 -0.9097 -0.9114 -0.9286 -0.9291

Table 2: Table of the estimated θ̂ for the four models with two data columns

M(Y 2; τ 2
1; exp) M(Y 2; τ 2

1;Matern) M(Y 2; τ 2
2, τ

2
3; exp) M(Y 2; τ 2

2, τ
2
3;Matern)

φ 3.8342 1.6579 3.0513 1.4438
σ2

1 1.0657 · 10−3 9.9404 · 10−4 9.7163 · 10−4 9.6120 · 10−4

σ2
2 9.5925 · 10−4 9.2527 · 10−4 8.2247 · 10−4 8.5664 · 10−4

σ2
3 1.3155 · 10−3 1.2189 · 10−3 1.1678 · 10−3 1.1405 · 10−3

ρ12 0.9379 0.9396 0.9550 0.9573
ρ13 -0.9908 -0.9909 -0.9904 -0.9908
ρ23 -0.9100 -0.9120 -0.9257 -0.9282

final expressions for the derivatives are given by

∂Σ̂Y ij

∂φ′
= G(Σ0 ⊗

∂Cij
∂φ′

)GT

∂Σ̂Y ij

∂σ2
1

= G(∂Σ0

∂σ2
1
⊗Cij)GT

∂Σ̂Y ij

∂σ2
2

= G(∂Σ0

∂σ2
2
⊗Cij)GT

∂Σ̂Y ij

∂σ2
3

= G(∂Σ0

∂σ2
3
⊗Cij)GT

∂Σ̂Y ij

∂ρ12
= G(∂Σ0

∂ρ2
12
⊗Cij)GT

∂Σ̂Y ij

∂ρ13
= G(∂Σ0

∂ρ2
13
⊗Cij)GT

∂Σ̂Y ij

∂ρ23
= G(∂Σ0

∂ρ2
23
⊗Cij)GT

where the expressions from 47 and 48 are used.
The optimisation is run using ψ = 0.4 and over 40 steps to ensure convergence. After

40 steps the changes in the parameters are of the order 10−5, and even lower for the σij,
for all eight models. The results of the Gauss Newton runs done for the eight models



6.2 Asymptotic variance of parameter estimations 37

can be seen in Table 1 and Table 2. The tables show that the different models return
fairly similar parameters and especially the correlation coefficients are very similar.
This means the p-wave speed and the s-wave speed are positively correlated and the
density is negatively correlated with both the p-wave speed and the s-wave speed.
The correlation is very high in absolute value for all three parameters, especially the
correlation between s-wave velocity and the density. Explaining the correlation between
the three elastic parameters is complicated with many factors involved. There are still
certain things that can be looked at to help explain the results. In section 2.3 the
relationships between α, β and ρ are given as

α =

√√√√K + 4
3µ

ρ

β =
√
µ

ρ

and looking at these expressions it seems only reasonable that the correlation coefficients
gain the values they do. Both α and β are both function of the inverse of the square
root of ρ.

From the results it appears that the choice of correlation function has little impact on
the estimates. Apart from the value of φ which naturally changes due to the differences
in the expressions for the correlation, the other parameters have more or less the same
value.

Comparing the models with Y i to the models with Y 2
i it is clear that having Y i

results in greater correlation range for all the models, especially for the models with
exponential correlation function. With regard to the variance estimates they appear
to increase when using the simple noise term, but decrease when when the convoluted
noise term is used.

6.2 Asymptotic variance of parameter estimations
The Godambe information described in section 3.4 is together with the parameter esti-
mations themselves calculated for each of the models. Using the Godambe information
matrix as described in section 3.4 and its asymptotic properties gives an estimate of
the variance in the parameter estimation. By finding the inverse of the Godambe in-
formation matrix an estimate for the covariance matrix of the parameters are found
and it is then possible to construct confidence intervals for the parameters. To find the
95% confidence intervals for each parameter 1.96 times the estimated standard devi-
ation estimated by the Godambe information matrix is added and subtracted to give
the interval. The results can be seen in Tables 3 to 6 with 95% confidence interval for
each of the parameters in each of the eight models.
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Table 3: Table of the 95% confidence intervals of θ̂ for M(Y ; τ 2
1; exp) and

M(Y ; τ 2
1;Matern)

M(Y ; τ 2
1; exp) M(Y ; τ 2

1;Matern)
3.2492 ≤ φ ≤ 3.6914 1.5330 ≤ φ ≤ 1.6690

6.512 · 10−4 ≤ σ2
1 ≤ 1.206 · 10−3 6.471 · 10−4 ≤ σ2

1 ≤ 1.160 · 10−3

3.639 · 10−4 ≤ σ2
2 ≤ 1.169 · 10−3 4.132 · 10−4 ≤ σ2

2 ≤ 1.159 · 10−3

8.970 · 10−4 ≤ σ2
3 ≤ 1.455 · 10−3 8.720 · 10−4 ≤ σ2

3 ≤ 1.388 · 10−3

0.9158 ≤ ρ12 ≤ 0.9518 0.9190 ≤ ρ12 ≤ 0.9540
−0.9926 ≤ ρ13 ≤ −0.9892 −0.9926 ≤ ρ13 ≤ −0.9894
−0.9296 ≤ ρ23 ≤ −0.8898 −0.9306 ≤ ρ23 ≤ −0.8922

Table 4: Table of the 95% confidence intervals of θ̂ for M(Y ; τ 2
2, τ

2
3; exp) and

M(Y ; τ 2
2, τ

2
3;Matern)

M(Y ; τ 2
2, τ

2
3; exp) M(Y ; τ 2

2, τ
2
3;Matern)

2.1035 ≤ φ ≤ 2.5070 1.2149 ≤ φ ≤ 1.3745
7.800 · 10−4 ≤ σ2

1 ≤ 1.392 · 10−3 7.380 · 10−4 ≤ σ2
1 ≤ 1.316 · 10−3

5.535 · 10−4 ≤ σ2
2 ≤ 1.429 · 10−3 5.324 · 10−4 ≤ σ2

2 ≤ 1.359 · 10−3

9.711 · 10−4 ≤ σ2
3 ≤ 1.585 · 10−3 9.166 · 10−4 ≤ σ2

3 ≤ 1.496 · 10−3

0.9468 ≤ ρ12 ≤ 0.9700 0.9471 ≤ ρ12 ≤ 0.9703
−0.9928 ≤ ρ13 ≤ −0.9891 −0.9929 ≤ ρ13 ≤ −0.9892
−0.9458 ≤ ρ23 ≤ −0.9115 −0.9462 ≤ ρ23 ≤ −0.9120

Table 5: Table of the 95% confidence intervals of θ̂ for M(Y 2; τ 2
1; exp) and

M(Y 2; τ 2
1;Matern)

M(Y 2; τ 2
1; exp) M(Y 2; τ 2

1;Matern)
3.5287 ≤ φ ≤ 4.1976 1.5751 ≤ φ ≤ 1.7499

6.510 · 10−4 ≤ σ2
1 ≤ 1.480 · 10−3 6.172 · 10−4 ≤ σ2

1 ≤ 1.371 · 10−3

3.576 · 10−4 ≤ σ2
2 ≤ 1.561 · 10−3 3.774 · 10−4 ≤ σ2

2 ≤ 1.473 · 10−3

8.983 · 10−4 ≤ σ2
3 ≤ 1.733 · 10−3 8.399 · 10−4 ≤ σ2

3 ≤ 1.598 · 10−3

0.9134 ≤ ρ12 ≤ 0.9624 0.9156 ≤ ρ12 ≤ 0.9636
−0.9931 ≤ ρ13 ≤ −0.9885 −0.9932 ≤ ρ13 ≤ −0.9886
−0.9381 ≤ ρ23 ≤ −0.8820 −0.9395 ≤ ρ23 ≤ −0.8844
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Table 6: Table of the 95% confidence intervals of θ̂ for M(Y 2; τ 2
2, τ

2
3; exp) and

M(Y 2; τ 2
2, τ

2
3;Matern)

M(Y 2; τ 2
2, τ

2
3; exp) M(Y 2; τ 2

2, τ
2
3;Matern)

2.7500 ≤ φ ≤ 3.4267 1.3443 ≤ φ ≤ 1.5593
5.297 · 10−4 ≤ σ2

1 ≤ 1.414 · 10−3 5.505 · 10−4 ≤ σ2
1 ≤ 1.372 · 10−3

1.896 · 10−4 ≤ σ2
2 ≤ 1.455 · 10−3 2.686 · 10−4 ≤ σ2

2 ≤ 1.445 · 10−3

7.247 · 10−4 ≤ σ2
3 ≤ 1.611 · 10−3 7.287 · 10−4 ≤ σ2

3 ≤ 1.552 · 10−3

0.9368 ≤ ρ12 ≤ 0.9731 0.9400 ≤ ρ12 ≤ 0.9747
−0.9934 ≤ ρ13 ≤ −0.9875 −0.9936 ≤ ρ13 ≤ −0.9880
−0.9527 ≤ ρ23 ≤ −0.8988 −0.9536 ≤ ρ23 ≤ −0.9028

6.3 Composite prediction
Using the approach described in Section 4 predictions for the elastic parametersX i are
found and are denoted X̂ i. The parameters found in the previous section are used in
their respective prediction models. To visualise the results four plots are made for each
model. First a plot of the predicted X̂ i for all i is shown. The second plot is a plot of
the residuals, Y i−GX̂ i for all i. The last two plots show the lower and upper bounds
of the predicted X̂ i. The bounds are given by

X̂ i ± 1.96
√
diag(I−1

G ).

Apart from the columns at each end of the data set, the prediction variance is the same
for all the data columns. It varies slightly with the depth, so for each model the mean
of the prediction variance is found for α, β and ρ. The prediction variance varies little
for each elastic parameter and the mean gives a good and easy presentable indication
of the magnitude of the uncertainty for the prediction results together with the plots.

First the plots and prediction variances for each of the eight models are presented.
This is followed by analysis and discussion, focusing on the performance of the composite
likelihood method and comparison of the different models.
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(a) The predicted X̂i for all i (b) The residuals for all i

(c) The 95% prediction interval lower bound as
given by the Godambe information

(d) The 95% prediction interval upper bound as
given by the Godambe information

Figure 11: Prediction plots for the model M(Y ; τ 2
1; exp)

The plots in Figure 11 show the predicted X̂ i, the residuals, and the upper and
lower bound of the predictions for all i. The model used is M(Y ; τ 2

1; exp) which means
the model uses single data columns for each i, the noise is not wavelet convoluted and
the correlation function used is the exponential correlation function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.569 · 10−3, var(X̂β)mean = 0.542 · 10−3 and var(X̂ρ)mean = 0.774 · 10−3.
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(a) The predicted X̂i for all i (b) The residuals for all i

(c) The 95% prediction interval lower bound as
given by the Godambe information

(d) The 95% prediction interval upper bound as
given by the Godambe information

Figure 12: Prediction plots for the model M(Y ; τ 2
2, τ

2
3; exp)

The plots in Figure 12 show the predicted X̂ i, the residuals, and the upper and
lower bound of the predictions for all i. The model used is M(Y ; τ 2

2, τ
2
3; exp) which

means the model uses single data columns for each i, the noise is wavelet convoluted
and the correlation function used is the exponential correlation function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.892 · 10−3, var(X̂β)mean = 0.870 · 10−3 and var(X̂ρ)mean = 1.057 · 10−3.



42 6 PARAMETER ESTIMATION AND PREDICTION RESULTS

(a) The predicted X̂i for all i (b) The residuals for all i

(c) The 95% prediction interval lower bound as
given by the Godambe information

(d) The 95% prediction interval upper bound as
given by the Godambe information

Figure 13: Prediction plots for the model M(Y ; τ 2
1;Matern)

The plots in Figure 13 show the predicted X̂ i, the residuals, and the upper and
lower bound of the predictions for all i. The model used is M(Y ; τ 2

1;Matern) which
means the model uses single data columns for each i, the noise is not wavelet convoluted
and the correlation function used is the Matern correlation function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.547 · 10−3, var(X̂β)mean = 0.545 · 10−3 and var(X̂ρ)mean = 0.723 · 10−3.
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(a) The predicted X̂i for all i (b) The residuals for all i

(c) The 95% prediction interval lower bound as
given by the Godambe information

(d) The 95% prediction interval upper bound as
given by the Godambe information

Figure 14: Prediction plots for the model M(Y ; τ 2
2, τ

2
3;Matern)

The plots in Figure 14 show the predicted X̂ i, the residuals, and the upper and
lower bound of the predictions for all i. The model used is M(Y ; τ 2

2, τ
2
3;Matern) which

means the model uses single data columns for each i, the noise is wavelet convoluted
and the correlation function used is the Matern correlation function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.822 · 10−3, var(X̂β)mean = 0.815 · 10−3 and var(X̂ρ)mean = 0.977 · 10−3.
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(a) The predicted X̂i for all i (b) The residuals for all i

(c) The 95% prediction interval lower bound as
given by the Godambe information

(d) The 95% prediction interval upper bound as
given by the Godambe information

Figure 15: Prediction plots for the model M(Y 2; τ 2
1; exp)

The plots in Figure 15 show the predicted X̂ i, the residuals, and the upper and lower
bound of the predictions for all i. The model used is M(Y 2; τ 2

1; exp) which means the
model uses two data columns for each i as discussed in Section 5.3 the noise is not
wavelet convoluted and the correlation function used is the exponential correlation
function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.954 · 10−3, var(X̂β)mean = 0.902 · 10−3 and var(X̂ρ)mean = 1.153 · 10−3.
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(a) The predicted X̂i for all i (b) The residuals for all i

(c) The 95% prediction interval lower bound as
given by the Godambe information

(d) The 95% prediction interval upper bound as
given by the Godambe information

Figure 16: Prediction plots for the model M(Y 2; τ 2
2, τ

2
3; exp)

The plots in Figure 16 show the predicted X̂ i, the residuals, and the upper and
lower bound of the predictions for all i. The model used is M(Y 2; τ 2

2, τ
2
3; exp) which

means the model uses two data columns for each i as discussed in Section 5.3 the noise
is wavelet convoluted and the correlation function used is the exponential correlation
function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.897 · 10−3, var(X̂β)mean = 0.783 · 10−3 and var(X̂ρ)mean = 1.067 · 10−3.
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(a) The predicted X̂i for all i (b) The residuals for all i

(c) The 95% prediction interval lower bound as
given by the Godambe information

(d) The 95% prediction interval upper bound as
given by the Godambe information

Figure 17: Prediction plots for the model M(Y 2; τ 2
1;Matern)

The plots in Figure 17 show the predicted X̂ i, the residuals, and the upper and
lower bound of the predictions for all i. The model used is M(Y 2; τ 2

1;Matern) which
means the model uses two data columns for each i as discussed in Section 5.3 the noise is
not wavelet convoluted and the correlation function used is the exponential correlation
function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.882 · 10−3, var(X̂β)mean = 0.865 · 10−3 and var(X̂ρ)mean = 1.058 · 10−3.
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(a) The predicted X̂i for all i (b) The residuals for all i

(c) The 95% prediction interval lower bound as
given by the Godambe information

(d) The 95% prediction interval upper bound as
given by the Godambe information

Figure 18: Prediction plots for the model M(Y 2; τ 2
2, τ

2
3;Matern)

The plots in Figure 18 show the predicted X̂ i, the residuals, and the upper and
lower bound of the predictions for all i. The model used is M(Y 2; τ 2

2, τ
2
3; exp) which

means the model uses two data columns for each i as discussed in Section 5.3 the noise
is wavelet convoluted and the correlation function used is the exponential correlation
function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.886 · 10−3, var(X̂β)mean = 0.814 · 10−3 and var(X̂ρ)mean = 1.039 · 10−3.
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Comparing the different models it seems evident that the convoluted sound term
is a poor choice. The prediction variance is much larger when comparing to the same
models with the simple noise term without any clear improvements in the predictions
themselves. The processing artefacts in the data are a possible explanation for this.
The wavelet convoluted noise term is not designed to model the processing artefacts
and this causes the convoluted noise term to be ineffective at modelling the data.

Using Y 2
i instead of Y i appears to contribute little to the improvement of the

predictions which is unexpected. Remembering that it also entails added computation
time, using Y 2 is not recommended. It suggests that that the added column that
needs predicting evens out the advantages of using more data columns in the prediction
process. A better approach for improvement might therefore be to consider single data
columns Y i, but include a larger neighbourhood. The range of the correlation functions
is however quite small, so the effect of a larger neighbourhood might be limited. Another
way of improving the predictions would be to include a non-stationary model. By
letting the mean or the variance of the elastic parameters be dependant on the depth in
accordance with prior knowledge of the data the irregularities in the data could possibly
be captured better. With regard to choice of correlation function, it appears that both
perform quite equally. There are no noticeable differences in the predictions themselves
and the prediction variances are more or less the same.

As mentioned in the beginning of this section, the prediction variance for each model
is not an exact value, but rather an indicator of the magnitude. One may therefore
argue that it is not advisable to put too much emphasis on their values and that the
values for the models presented here are more or less the same. This is important
to keep mind, but this does not alter any of the suggestions with regard to choice of
model. In both the case of noise term and number of data columns the easiest and
computationally fastest model is chosen due to lack of any evident improvement of the
results, not because the results are thought to be better for the model suggested.

When doing composite prediction it is possible to compare the results using the
Fourier transform inversion method [3]. The method has become somewhat of a bench-
mark in seismic inversion problems, but the method is only viable under certain as-
sumptions. The mean and variance must be stationary and with seismic data that is
often not the case. Since stationarity is assumed in this thesis however, the Fourier
transform inversion method can help evaluate the results of the composite predictions.

Stationary AVA inversion problems can be solved exactly using the Fourier trans-
form inversion method. The idea is find the posterior distribution of X from a prior
distribution and a likelihood model. In order to obtain the posterior distribution the
calculations are done in the Fourier domain, allowing for fast calculations. A short
summary of the method is given, but the reader is referred to [3] for a detailed and
thorough explanation of the method.

First a prior distribution for X must be found together with a suitable likelihood
model. The prior of X and the marginal distribution of Y from section 2.4 are used
for this purpose. The next step is to transform all the elements of the model to the
Fourier domain. µX = 0 for 4D data so the Fourier transform of µX , denoted µ̃X , is
also 0. For the method to work the two covariance matrices ΣX and Σε first need to
be made into circular matrices [3]. The circular matrices can now be transformed to



6.3 Composite prediction 49

the Fourier domain, yielding Σ̃X and Σ̃ε. The design matrix G is also transformed to
the Fourier domain. This is achieved by only transforming the wavelet function in W
and multiplying this by the corresponding elements in A. Now in the Fourier domain
it is possible to calculate the posterior mean and covariance matrix

µ̃X|Y = µ̃X + (G̃Σ̃X)∗Σ̃−1
Y (Ỹ )− µ̃Y

Σ̃X|Y = Σ̃X − (G̃Σ̃X)∗Σ̃−1
Y G̃Σ̃X

where the ∗ operator denotes the Hermitian or the conjugate transpose of the matrix.
In a 4D model both µ̃X and µ̃Y will be 0 vectors. By inverse Fourier transformation it
is now possible to find µX|Y and ΣX|Y which give us the predictions and the variance
of the predictions.

(a) The predicted X̂i for all i for M(Y ; τ 2
1; exp) (b) The predicted XF i for all i for M(Y ; τ 2

1; exp)

(c) The predicted X̂i for all i for M(Y 2; τ 2
1; exp) (d) The predictedXF i for all i for M(Y 2; τ 2

1; exp)

Figure 19: Plots comparing X̂ i andXFi for all i for the two modelsM(Y ; τ 2
1; exp) and

M(Y 2; τ 2
1; exp)

Figure 19 shows the predictions using composite prediction and using the Fourier
inversion method. The two different prediction techniques yield similar plots with the
same distinct patterns and it appears that the composite likelihood method does a good
job of predicting.
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6.4 Leave one out prediction results
For the leave on out predictions the parameters found in the Section 6.1 are used in
their respective prediction models. As discussed in section 4.5 it is interesting to look
at the residuals when evaluating leave one out predictions. In order to visualise the
results three different plots for each model are shown. First the estimation of the
elastic parameters X i themselves for all i are plotted. Next the residuals r̂i as given
by equation 32 are plotted. The last plot aims to visualise whether or not the residuals
lie within the prediction intervals derived from the Godambe information as given in
equation 33. The plot shows where the true values of Y i are covered by the prediction
intervals by having different colours for the two alternatives. As in the previous section
the prediction variance derived from the Godambe information described in Section 4.4
is calculated for each of the elastic parameters for each of the models.

The mean square error (MSE) is calculated for each angle so it can be compared
to the estimated noise estimated in Section 5.2. For the models with the simple noise
term given in equation 41 it is sufficient to compare the MSE for each angle with each
diagonal element in τ 2

1. When the model uses the noise term given in equation 42 the
entire matrix is first calculated. Then the mean of the diagonal for each angle is used
for comparison. The values can be seen in Table 7.

Table 7: Table of the estimated noise for the two noise terms for each of the three
angles.

Near Mid Far
Simple noise 6.079 · 104 1.884 · 104 2.955 · 104

Convoluted noise 6.130 · 104 1.874 · 104 2.932 · 104

Similar to the previous section plots and results will be presented for each model
first, then they will be discussed and analysed.
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(a) The values of X̂i for all i (b) Residuals for M(Y ; τ 2
1; exp)

(c) Plot of whether the residuals lie within the con-
fidence interval defined by the Godambe informa-
tion. White means yes, black no.

Figure 20: Prediction plots for the model M(Y ; τ 2
1; exp)

The plots in Figure 20 show the predicted X̂ i for all i, the residuals r̂i for all i and
a plot of whether the residuals lie within a 95% prediction interval. The model used is
M(Y ; τ 2

1; exp) which means the model uses single data columns for each i, the noise is
not wavelet convoluted and the correlation function used is the exponential correlation
function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.950 · 10−3, var(X̂β)mean = 0.778 · 10−3 and var(X̂ρ)mean = 1.221 · 10−3.
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(a) The values of X̂i for all i (b) Residuals for M(Y ; τ 2
2, τ 2

3; exp)

(c) Plot of whether the residuals lie within the con-
fidence interval defined by the Godambe informa-
tion. White means yes, black no.

Figure 21: Prediction plots for the model M(Y ; τ 2
2, τ

2
3; exp)

The plots in Figure 21 show the predicted X̂ i for all i, the residuals r̂i for all i and
a plot of whether the residuals lie within a 95% prediction interval. The model used is
M(Y ; τ 2

2, τ
2
3; exp) which means the model uses single data columns for each i, the noise

is wavelet convoluted and the correlation function used is the exponential correlation
function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
1.088 · 10−3, var(X̂β)mean = 0.994 · 10−3 and var(X̂ρ)mean = 1.281 · 10−3.
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(a) The values of X̂i for all i (b) Residuals for M(Y ; τ 2
1;Matern)

(c) Plot of whether the residuals lie within the con-
fidence interval defined by the Godambe informa-
tion. White means yes, black no.

Figure 22: Prediction plots for the model M(Y ; τ 2
1;Matern)

The plots in Figure 22 show the predicted X̂ i for all i, the residuals r̂i for all i and
a plot of whether the residuals lie within a 95% prediction interval. The model used is
M(Y ; τ 2

1;Matern) which means the model uses single data columns for each i, the noise
is not wavelet convoluted and the correlation function used is the Matern correlation
function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.903 · 10−3, var(X̂β)mean = 0.787 · 10−3 and var(X̂ρ)mean = 1.155 · 10−3.
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(a) The values of X̂i for all i (b) Residuals for M(Y ; τ 2
2, τ 2

3;Matern)

(c) Plot of whether the residuals lie within the con-
fidence interval defined by the Godambe informa-
tion. White means yes, black no.

Figure 23: Prediction plots for the model M(Y ; τ 2
2, τ

2
3;Matern)

The plots in Figure 23 show the predicted X̂ i for all i, the residuals r̂i for all i and
a plot of whether the residuals lie within a 95% prediction interval. The model used is
M(Y ; τ 2

2, τ
2
3;Matern) which means the model uses single data columns for each i, the

noise is wavelet convoluted and the correlation function used is the Matern correlation
function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
1.026 · 10−3, var(X̂β)mean = 0.947 · 10−3 and var(X̂ρ)mean = 1.205 · 10−3.
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(a) The values of X̂i for all i (b) Residuals for M(Y 2; τ 2
1; exp)

(c) Plot of whether the residuals lie within the con-
fidence interval defined by the Godambe informa-
tion. White means yes, black no.

Figure 24: Prediction plots for the model M(Y 2; τ 2
1; exp)

The plots in Figure 24 show the predicted X̂2
i for all i, the residuals r̂2

i for all i
and a plot of whether the residuals lie within a 95% prediction interval. The model
used is M(Y 2; τ 2

1;Matern) which means the model uses two data columns for each i as
discussed in Section 5.3, the noise is not wavelet convoluted and the correlation function
used is the exponential correlation function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
1.100 · 10−3, var(X̂β)mean = 0.977 · 10−3 and var(X̂ρ)mean = 1.361 · 10−3.
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(a) The values of X̂i for all i (b) Residuals for M(Y 2; τ 2
2, τ 2

3; exp)

(c) Plot of whether the residuals lie within the con-
fidence interval defined by the Godambe informa-
tion. White means yes, black no.

Figure 25: Prediction plots for the model M(Y 2; τ 2
2, τ

2
3; exp)

The plots in Figure 25 show the predicted X̂2
i for all i, the residuals r̂2

i for all i and
a plot of whether the residuals lie within a 95% prediction interval. The model used
is M(Y 2; τ 2

2, τ
2
3;Matern) which means the model uses two data columns for each i as

discussed in Section 5.3, the noise is wavelet convoluted and the correlation function
used is the exponential correlation function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.985 · 10−3, var(X̂β)mean = 0.829 · 10−3 and var(X̂ρ)mean = 1.185 · 10−3.
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(a) The values of X̂i for all i (b) Residuals for M(Y 2; τ 2
1;Matern)

(c) Plot of whether the residuals lie within the con-
fidence interval defined by the Godambe informa-
tion. White means yes, black no.

Figure 26: Prediction plots for the model M(Y 2; τ 2
1;Matern)

The plots in Figure 26 show the predicted X̂2
i for all i, the residuals r̂2

i for all i
and a plot of whether the residuals lie within a 95% prediction interval. The model
used is M(Y 2; τ 2

1;Matern) which means the model uses two data columns for each i as
discussed in Section 5.3, the noise is not wavelet convoluted and the correlation function
used is the Matern correlation function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
1.015 · 10−3, var(X̂β)mean = 0.937 · 10−3 and var(X̂ρ)mean = 1.249 · 10−3.
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(a) The values of X̂i for all i (b) Residuals for M(Y 2; τ 2
2, τ 2

3;Matern)

(c) Plot of whether the residuals lie within the con-
fidence interval defined by the Godambe informa-
tion. White means yes, black no.

Figure 27: Prediction plots for the model M(Y 2; τ 2
2, τ

2
3;Matern)

The plots in Figure 27 show the predicted X̂2
i for all i, the residuals r̂2

i for all i and
a plot of whether the residuals lie within a 95% prediction interval. The model used
is M(Y 2; τ 2

2, τ
2
3;Matern) which means the model uses two data columns for each i as

discussed in Section 5.3, the noise is wavelet convoluted and the correlation function
used is the Matern correlation function.

The mean of the prediction variance using the Godambe information is var(X̂α)mean =
0.972 · 10−3, var(X̂β)mean = 0.863 · 10−3 and var(X̂ρ)mean = 1.155 · 10−3.
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Table 8: Table of the MSE values for each of the three angles for all eight models.00

Near Mid Far
M(Y ; τ 2

1; exp) 5.813 · 104 2.104 · 104 2.765 · 104

M(Y ; τ 2
2, τ

2
3; exp) 5.994 · 104 2.255 · 104 3.022 · 104

M(Y ; τ 2
1;Matern) 5.825 · 104 2.118 · 104 2.791 · 104

M(Y ; τ 2
2, τ

2
3;Matern) 5.977 · 104 2.244 · 104 3.007 · 104

M(Y 2; τ 2
1; exp) 6.166 · 104 2.378 · 104 3.134 · 104

M(Y 2; τ 2
2, τ

2
3; exp) 6.178 · 104 2.392 · 104 3.179 · 104

M(Y 2; τ 2
1;Matern) 6.195 · 104 2.395 · 104 3.183 · 104

M(Y 2; τ 2
2, τ

2
3;Matern) 6.193 · 104 2.402 · 104 3.205 · 104

The MSE for each model can be seen in Table 8 and are very close to the estimated
noise from the overburden seen in Table 7. This is encouraging and implies that all the
models do a fairly good job of predicting. The values of the MSE appear to vary less
for each angle than the estimated noise.

As in the previous section the choice of using two data columns for each i does little
to improve the model, but increases computation time. The prediction variances are
more or less the same, the MSEs are actually a little higher and the coverage of the
prediction intervals about the same. Much of the same arguments apply for the leave-
one-out prediction technique as in the previous section as to why this is so. It appears
that the difficulty of predicting two data columns at once negates the advantages of
using more data columns in the prediction process. Again it is advisable to instead
attempt to predict just one data column at a time, while using a larger neighbourhood
in order to improve on the model.

For the leave one out predictions it would also be interesting to look at a non-
stationary model. Since the model used in this thesis is stationary, some areas of the
data are not modelled well. By letting the mean or the variance of the elastic parameters
be dependant on the depth in accordance with prior knowledge of the data these effects
could possibly be captured better. This is especially true around the processing artefacts
and the reservoir, and this could have been incorporated in a non-stationary model.

The results of the choice of noise term appear to be dependant on the number of
data columns included in the model when considering the prediction variance. The
differences are not great and considering that the simple noise term performs slightly
better than the convoluted in the model with Y , the simple noise term is the preferred
term. The choice of correlation function appears to have little effect on the results and
there is no evidence that one is better than the other.



60 6 PARAMETER ESTIMATION AND PREDICTION RESULTS

Table 9: Coverage of the 95% prediction intervals

Coverage
M(Y ; τ 2

1; exp) 0.9788
M(Y ; τ 2

2, τ
2
3; exp) 0.9673

M(Y ; τ 2
1;Matern) 0.9782

M(Y ; τ 2
2, τ

2
3;Matern) 0.9674

M(Y 2; τ 2
1; exp) 0.9670

M(Y 2; τ 2
2, τ

2
3; exp) 0.9647

M(Y 2; τ 2
1;Matern) 0.9670

M(Y 2; τ 2
2, τ

2
3;Matern) 0.9640

The coverage of the prediction intervals, seen in Table 9, are surprisingly high for
all eight models, all above 95%. This is most likely due to the processing artefacts
discussed in Section 5. The variance in this area is very high and causes the estimates
of the prediction variance to become higher. It is clear when looking at the plots that
the coverage is poor in the area where the processing artefacts and the reservoir are
located, but otherwise quite good. The prediction variance is estimated equally for all
data columns, so the processing artefacts will influence the prediction intervals for all
the data columns and thereby cause the intervals to be too large for most of the data.
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7 Conclusion

This thesis has concerned itself with the performance of the composite likelihood method
used in connection with 4D seismic data sets with regards to prediction and parame-
ter estimation. The method enables the use of likelihood methods by estimating the
covariance matrix through a close neighbourhood, assuming spatial correlation. This
allows for quite fast calculations on data sets that would normally be impossible to
use because of their high dimension. There are other useful methods for seismic data
inversion problems, but the composite likelihood method could provide a very general
framework that imposes few restrictions and yet yield satisfying results.

First in this thesis 4D seismic reflection is explained. It allows to locate untapped
pockets of oil or gas and also serves a diagnostics tool for regular 3D seismic reflection.
A Gaussian model for 4D seismic data is created, while attempting to explain some of
the physics that dictates the form of the model. The composite likelihood method and
its asymptotic properties are explained together with techniques for doing parameter
estimation and prediction.

The method is then tested on a real data set from the oil field Norne where seismic
data was collected in 2001 and again in 2003. The method is tested for eight different
models, all variations of the general Gaussian model introduced earlier. Variations are
made in the form of the noise estimate, the correlation function used and the number
of data columns used as one data vector. Parameter estimations and predictions for
both prediction techniques are carried out for all eight models.

The results from the parameter estimation and the predictions are encouraging.
Most importantly the performance of the composite likelihood method appears to be
satisfactory. The parameter estimations coincide well with previous experience and the
asymptotic variance of the estimates is quite small. Also the predictions yield good
results, for both techniques. The composite predictions are compared to predictions
done using the Fourier Domain AVA inversion technique, regarded as a benchmark
method in stationary seismic inversion problems and the predictions from each of the
two methods appear to coincide well. There are still differences between the methods,
but they appear to give similar results. The results from comparing the eight models
are not as expected. By looking at the results of the predictions and the parameter
estimations for the eight different models it seems that none of the alternatives that
were meant to improve on the model do any improvement. Both the convoluted noise
and the inclusion of more data columns do little to improve on the results and the only
reasonable conclusion is to use the simplest model. The convoluted noise term is most
likely affected by the artefacts in the data and should be tested more before a definite
conclusion about it is reached. The reason the inclusion of more data columns has little
effect is partly because of the short range of the correlation. In other models with high
correlation range the approach might yield better results.

The results are nonetheless encouraging in the sense that the composite likelihood
method performs quite well. It is a method that should arouse interest in spatial statis-
tics due to its simple implementation and fast computation time. In the field of seismic
reflection it is certainly an interesting method and further investigations should be
made.
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In this thesis the model investigated has been a stationary model. For instance it
would be interesting to use the composite likelihood method with a non-stationary
model. Using knowledge of the data this could help improve the model fit, especially in
areas with anomalies and in and around the reservoir itself. It would also be interesting
to look at a full 4D data set, meaning the data in each survey is 3D. The method has
no problem with 3D data sets, and it would be interesting to try a full scale data set.

It is possible to estimate the noise parameter using the Gauss Newton method
instead of using the overburden. It might also be interesting to use a noise term that is
dependent on position as the noise in the data seems to vary for different areas in the
Norne data set. These artefacts in the Norne data set affect many of the results found
in this thesis. It would therefore be interesting to find the results for a different data
set without any artefacts.

Another possible improvement on the method might be to include a larger neigh-
bourhood. This would increase computation time, but it might affect the results for
real data, especially if considering a data set with greater correlation range than the
Norne data set.
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