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Abstract— We extend recent results regarding disturbance
rejection control of n+m linear hyperbolic partial differential
equations (PDEs) in a number of ways: 1) We allow spatially
varying coefficients; 2) The disturbance is allowed to enter
in the interior of the domain, and; 3) Rejection is achieved
in minimum time. Additionally, we solve a tracking problem,
where the tracking objective is achieved in finite, minimum
time. We use a recently derived Fredholm transformation
technique in addition to infinite-dimensional backstepping in
our design.

I. INTRODUCTION

In this paper, we consider a class of n + m coupled first
order linear hyperbolic partial differential equations (PDEs),
where n PDEs convect in one direction and m PDEs convect
in the opposite direction. Systems of this type have lately
been subject to extensive research due to the vast amount
of physical systems that can be modeled this way, ranging
from heat exchangers [1] and oil wells [2] to predator-prey
systems [3].

Infinite-dimensional backstepping has in recent years
proved to be a very efficient method for design of controllers
and observers for PDEs. The key ingredient of this method is
the introduction of an invertible Volterra transformation that
maps the system of interest into a target system for which
analysis is easier. This method represents a major paradigm
shift for infinite dimensional controller design, since it on
the one hand requires no discretization before an eventual
implementation on a computer, and on the other hand handles
boundary actuation and sensing, which lead to unbounded
input respectively output operators, in a straight forward
manner.

The first use of infinite-dimensional backstepping on PDEs
was for the parabolic heat equation in [4]. The extension
to first order hyperbolic PDEs was done in [5], with an
expansion to 2 × 2 systems in [6] and n + 1 systems in
[7]. In such systems, n PDEs convect in one direction, and
one PDE convect in the opposite direction (2×2 systems are
two coupled PDEs, one convecting in each direction, which
is the case n = 1). The solution to general n+m systems,
which we consider in this paper, were presented in [8] and
[9] for the case of constant and spatially varying coefficients,
respectively. In such systems, an arbitrary number of PDEs
convect in each direction. The resulting controller in [8]
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required the solution to a set of coupled PDEs that are
usually solved numerically using successive approximations.
The control law from [8] achieved convergence in a finite
time given by the sum of all propagation delays from the
actuated to the unactuated boundary. This was later improved
in [10], where a solution was offered achieving convergence
in minimum time, as the convergence time only depended on
the slowest transport delay. The method in [10] required the
solution to an even more complicated set of PDEs that were
cascaded in structure, making the proof of well-posedness as
well as numerically solving them considerably harder. This
was later improved in [11] where a Fredholm transformation
was used in combination with the results from [9] to obtain a
minimum time controller in a much less complicated fashion.

A disturbance rejection problem was investigated for 2×2
systems in [12]. In that paper, the system had a distur-
bance entering at one boundary, with actuation limited to
the opposite boundary. The disturbance was modeled as
a linear autonomous ordinary differential equation (ODE)
particularly aimed at modeling biased periodic disturbances.
The disturbance entered, and its effect was rejected at the
unactuated boundary. In [13], the disturbance was allowed to
also enter in the interior domain, but the point of rejection
was still the unactuated boundary. In [14], the point of
rejection was allowed to be anywhere in the domain, a result
later strengthened in [15], where a method was proposed
using the solution to as set of so-called regulator equations,
which allowed for a much more general control objective
as well as allowing the disturbance to enter in the whole
domain. Extension of the method in [12] to n+1 systems was
given in [16], while the n+m case was solved in [17]. For the
latter of these, the solution had the same slow convergence
time as the controller in [8].

A tracking problem for 2 × 2 systems was solved in
[18]. In that paper, a reference trajectory was generated by
”inversely” using backstepping on a very simple reference
model, before a standard PI controller was used to drive the
measured output to the generated reference signal. A related
problem was solved for 2×2 systems in [15] simultaneously
with the above mention disturbance rejection problem. The
reference signal, however, was limited to one generated using
an autonomous linear system. In [8], a tracking problem was
solved for m heterodirectional, coupled PDEs with known,
constant coefficients, while in [19] a tracking problem for
n + m systems with known, spatially varying coefficients
was solved. However, this latter solution also required the
reference signal to be generated from an autonomous linear
system. The convergence time was faster than in [8], since



the control design was based on the minimum-time controller
derived in [10].

In this paper, we improve and extend the controller results
from [17] and [19]. Specifically, this paper has the following
contributions:

1) We extend the results in [17], and derive a disturbance
rejection controller for n+m coupled linear hyperbolic
PDEs with spatially varying coefficients that achieves
its objective in minimum time, and also allows for the
disturbance to enter in the interior domain.

2) We solve a tracking problem in minimum time where
the reference signal must be bounded, but can oth-
erwise be arbitrary. This is an extension of previous
results in [19], in the sense of allowing a general
reference signal, and also presenting a more compact
solution to the tracking problem than the solution
proposed in [19].

While the present paper was under review, [20] was
published, solving a similar problem as in the present paper.
In [20], the disturbance rejection and tracking controller from
[15], based on regulator equations, is extended to the same
type of systems considered in the present paper, which allows
for a more general control objective than in the present paper
in the sense that the output to be controlled can be defined at
a boundary, in-domain distributed or pointwise. The control
objective, however, is achieved in non-minimum time, and
the reference signal is in [20] still limited to those generated
using an autonomous linear system.

II. PROBLEM STATEMENT

We consider systems on the form

wt(x, t) + Λ(x)wx(x, t) = Σ(x)w(x, t) + C̄(x)X(t) (1a)
w(0, t) = Q̄w(0, t) + C̄0X(t) (1b)
w(1, t) = R̄w(1, t) + Ū(t)

+ C̄1X(t) (1c)

Ẋ(t) = AX(t) (1d)

defined for 0 ≤ x ≤ 1, t ≥ 0, where the system state

w(x, t) =

[
v(x, t)
u(x, t)

]
, (2)

is a n+m vector of variables, split into

u(x, t) =
[
u1(x, t) u2(x, t) . . . un(x, t)

]T
(3a)

v(x, t) =
[
v1(x, t) v2(x, t) . . . vm(x, t)

]T
. (3b)

The system parameters have the form

Λ(x) =

[
−Λ−(x) 0

0 Λ+(x)

]
, Q̄ =

[
I 0
Q 0

]
(4a)

Σ(x) = {σij(x)}1≤i,j≤n+m (4b)

Ū(t) =

[
U(t)

0

]
, C̄0 =

[
0
C0

]
, C̄1 =

[
C1

0

]
(4c)

C̄(x) =

[
C−(x)
C+(x)

]
, R̄ =

[
0 R
0 I

]
(4d)

with

σii(x) = 0, ∀x ∈ [0, 1], i = 1 . . . n+m (5)

and

Λ+(x) = diag {λ1(x), λ2(x), . . . , λn(x)} (6a)
Λ−(x) = diag {µ1(x), µ2(x), . . . , µm(x)} , (6b)

being the transport speeds, subject to the restriction

0 < µm(x) < µm−1(x) < · · · < µ1(x), ∀x ∈ [0, 1] (7a)
0 < λ1(x) < λ2(x) < · · · < λn(x), ∀x ∈ [0, 1]. (7b)

The boundary parameters are given as

R = {ρij}1≤i≤m,1≤j≤n (8a)
Q = {qij}1≤i≤n,1≤j≤m, (8b)

while Ū(t) =
[
UT (t) 01×n

]T
contains the actuation signal

U(t) =
[
U1(t) U2(t) . . . Um(t)

]T
(9)

to be derived. All system parameters are assumed to be
known. A disturbance, modeled by

X(t) =
[
X1(t) X2(t) . . . Xl(t)

]T
, (10)

is characterized by the linear time invariant system (1d), and

A = {aij}1≤i≤l,1≤j≤l (11a)

C0 = {c0,ij}1≤i≤n,1≤j≤l (11b)

C1 = {c1,ij}1≤i≤m,1≤j≤l (11c)

C+(x) =
{
c+ij(x)

}
1≤i≤n,1≤j≤l (11d)

C−(x) =
{
c−ij(x)

}
1≤i≤m,1≤j≤l . (11e)

We assume the initial conditions ui(x, 0) = ui,0(x),
vj(x, 0) = vj,0(x), Xk(x, 0) = Xk,0, for i = 1 . . . n,
j = 1 . . .m, k = 1 . . . l, satisfy

ui,0, vj,0 ∈ L2([0, 1]), Xk,0 ∈ R. (12)

The goal is to design the control input U(t) so that the
following disturbance rejection and tracking goal is achieved

r(t) = R0u(0, t)− v(0, t) (13)

where R0 is a constant matrix with parameters

R0 = {rij}1≤i≤m,1≤j≤n (14)

and r(t) is a reference signal of choice, for which we
assume predictions are available. The tracking goal should be
achieved in a finite, minimum time tmin corresponding to the
slowest propagation time from the actuated to the unactuated
boundary. Moreover, the system states u(x, t) and v(x, t)
should be bounded by the disturbance model X(t) and the
reference signal r(t) for all x ∈ [0, 1], after an additional time
corresponding to the propagation time from the unactuated to
the actuated boundary. Hence, the tracking objective should
be achieved for t ≥ tmin, with tmin given by

tmin =

∫ 1

0

ds

µm(s)
(15)



while the states u and v should be pointwise bounded by
|X(t)| and |r(t)| for t ≥ tF given by

tF =

∫ 1

0

ds

µm(s)
+

∫ 1

0

ds

λ1(s)
= tmin +

∫ 1

0

ds

λ1(s)
. (16)

In achieving this, we will also use the following assump-
tions:

Assumption 1: The disturbance model X(t) and reference
r(t) are bounded for all t ≥ 0. Specifically, there exists
positive constants M1 and M2 so that

|X(t)| ≤M1 |r(t)| ≤M2 (17)

for all t ≥ 0.
Assumption 2: The matrix R0Q− I is nonsingular.
It was shown in [17] that the nonsingularity condition of

Assumption 2 is required for the rejection problem to be
feasible.

III. DECOUPLING BY BACKSTEPPING

Consider the target system

γt(x, t) + Λ(x)γx(x, t) = G(x)γ(0, t) + F (x)X(t) (18a)
γ(0, t) = Q̄γ(0, t) + C̄0X(t) (18b)
γ(1, t) = Bγ(1, t) + Ūa(t) (18c)

Ẋ(t) = AX(t) (18d)

for a new state vector

γ(x, t) =
[
βT (x, t) αT (x, t)

]T
, (19)

and some initial condition γ(x, 0) = γ0(x), where G, F and
B are matrices of appropriate sizes to be designed, with

G(x) =

[
G2(x) 0
G1(x) 0

]
, B =

[
0 0
0 I

]
, (20)

for some matrices G2 and G1, with G2 and hence
also G being strictly lower triangular. Also, Ūa(t) =[
UTa (t) 01×n

]T
, where Ua is a new control signal.

Consider the backstepping transformation

γ(x, t) = w(x, t)−
∫ x

0

K(x, ξ)w(ξ, t)dξ, (21)

for a kernel function

K(x, ξ) = {kij(x, ξ)}1≤i,j≤n+m

=

[
Kvv(x, ξ) Kvu(x, ξ)
Kuv(x, ξ) Kuu(x, ξ)

]
(22)

defined over T given as

T = {(x, ξ) | 0 ≤ ξ ≤ x ≤ 1} , (23)

and satisfying the PDEs

0 = Λ(x)Kx(x, ξ) +Kξ(x, ξ)Λ(ξ)

+K(x, ξ)Λ′(ξ) +K(x, ξ)Σ(ξ) (24a)
0 = Λ(x)K(x, x)−K(x, x)Λ(x)− Σ(x) (24b)

G(x) = −K(x, 0)Λ(0)Q. (24c)

The equations (24) are under-determined, and additional
boundary conditions are imposed to ensure well-posedness.
These were in [9] chosen as

kij(1, ξ) = k1ij(ξ),

1 ≤ j < i ≤ m ∪m+ 1 ≤ i < j ≤ n (25a)

kij(x, 0) = k2ij(x), m+ 1 ≤ j ≤ i ≤ n (25b)

for some C∞([0, 1]) functions k1ij(x), k2ij(x), chosen to
satisfy the C1 compatibility condition at the point (x, ξ) =
(1, 1):

kij(1) = fij(1) (26a)

k̇ij(1)

=
λi(1)fij(x) +

∑n
k=1(σkj(1) + δkjλ

′
j(1))fik(1)

λi(1)− λj(1)
(26b)

where δij equals one for i = j and zero otherwise, and

fij(x) =
σij(x)

λi(x)− λj(x)
. (27)

Equations (24) with the additional boundary conditions (25)
were proved in [9] to have a unique solution. Consider also
the control law

U(t) = −R1u(1, t)− C1X(t) +

∫ 1

0

Kvu(1, ξ)u(ξ, t)dξ

+

∫ 1

0

Kvv(1, ξ)v(ξ, t)dξ + Ua(t) (28)

where Ua(t) will be determined later.
Lemma 3: The backstepping transformation (21) and con-

trol law (28) map system (1) into the target system (18) with
F given by

F (x) = C̄(x)−
∫ x

0

K(x, ξ)C̄(ξ)dξ

−K(x, 0)Λ(0)C̄0 (29)

and G given from (24c). Moreover, the control objective (13)
becomes

r(t) = (R0Q− I)β(0, t) +R0C0X(t). (30)
Proof: By differentiating (21) with respect to time,

inserting the dynamics (1a), integration by parts and inserting
the boundary condition (1b), we find

wt(x, t) = γt(x, t)−K(x, x)Λ(x)w(x, t)

+K(x, 0)Λ(0)Q̄w(0, t) +K(x, 0)Λ(0)C̄0X(t)

+

∫ x

0

[
Kξ(x, ξ)Λ(ξ) +K(x, ξ)Λ′(ξ)

+K(x, ξ)Σ(ξ)

]
w(ξ, t)dξ

+

∫ x

0

K(x, ξ)C̄(ξ)dξX(t). (31)

Similarly, differentiating with respect to space yields

wx(x, t) = γx(x, t) +K(x, x)w(x, t)

+

∫ x

0

Kx(x, ξ)w(ξ, t)dξ (32)



Inserting (31) and (32) into (1a), gives

γt(x, t) + Λ(x)γx(x, t)

+ [Λ(x)K(x, x)−K(x, x)Λ(x)− Σ(x)]w(x, t)

+K(x, 0)Λ(0)Qw(0, t) +K(x, 0)Λ(0)C̄0X(t)

+

∫ x

0

[
Λ(x)Kx(x, ξ) +Kξ(x, ξ)Λ(ξ)

+K(x, ξ)Λ′(ξ) +K(x, ξ)Σ(ξ)

]
w(ξ, t)dξ

+

∫ x

0

K(x, ξ)C̄(ξ)dξX(t)− C̄(x)X(t) = 0. (33)

Using the equations (24), we obtain the dynamics (18a)
with F given in (29). The boundary condition (18b) follows
immediately from the boundary condition (1b) and the fact
that γ(0, t) = w(0, t). Lastly, we have from (21)

w(1, t) = γ(1, t) +

∫ 1

0

K(1, ξ)w(ξ, t)dξ (34)

and inserting this into (1c)

γ(1, t) =

∫ 1

0

(R̄K(1, ξ)−K(1, ξ))w(ξ, t)dξ

+ R̄γ(1, t) + Ū(t) + C̄1X(t). (35)

Choosing

Ū(t) =

∫ 1

0

(K(1, ξ)− R̄K(1, ξ))w(ξ, t)dξ

+ (B − R̄)γ(1, t)− C̄1X(t) + Ūa(t) (36)

which is equivalent to (28), we obtain boundary condition
(18c). Lastly, from inserting the boundary condition (1b) into
the control objective (13), we find

r(t) = (R0Q− I)v(0, t) +R0C0X(t). (37)

The result (30) now follows from the fact that β(0, t) =
v(0, t).

IV. OBJECTIVE SHIFT

Written out in the variables α and β, the target system
(18) reads

αt(x, t) + Λ+(x)αx(x, t) = G1(x)β(0, t)

+ F1(x)X(t) (38a)
βt(x, t)− Λ−(x)βx(x, t) = G2(x)β(0, t)

+ F2(x)X(t) (38b)
α(0, t) = Qβ(0, t) + C0X(t) (38c)
β(1, t) = Ua(t). (38d)

Consider now a change of variables

ζ(x, t) = β(x, t) +M(x)X(t) (39)

and the control law

Ua(t) = −M(1)X(t) + Ub(t) (40)

where Ub(t) will be designed later and M satisfies the
equations

Λ−(x)M ′(x) = M(x)A+ F2(x)

−G2(x)(R0Q− I)−1R0C0 (41a)

M(0) = (R0Q− I)−1R0C0. (41b)

Equation (41) is a standard initial value problem that can
straightforwardly be solved explicitly. Consider also the
target system

αt(x, t) + Λ+(x)αx(x, t) = G1(x)ζ(0, t) + F1(x)X(t)

−G1(x)M(0)X(t) (42a)
ζt(x, t)− Λ−(x)ζx(x, t) = G2(x)ζ(0, t) (42b)

α(0, t) = Qζ(0, t) + C0X(t)

−QM(0)X(t) (42c)
ζ(1, t) = Ub(t) (42d)

Lemma 4: The transformation (39) maps system (38) into
the target system (42). Moreover, control objective (13)
becomes

yc(t) = (R0Q− I)ζ(0, t). (43)
Proof: By differentiating (39) with respect to time and

space, respectively, we find

βt(x, t) = ζt(x, t)−M(x)AX(t) (44)

and

βx(x, t) = ζx(x, t)−M ′(x)X(t). (45)

Substituting (39), (44) and (45) into (38b), yields

ζt(x, t)− Λ−(x)ζx(x, t)−G2(x)ζ(0, t)

+
[
Λ−(x)M ′(x)−M(x)A− F2(x) +G2(x)M(0)

]
X(t)

= 0. (46)

Inserting (41) gives the dynamics (42b). Evaluating (39) at
x = 1, we find

ζ(1, t) = U1(t) +M(1)X(t). (47)

The control law (40) then gives (42d). The dynamics (42a)
and boundary condition (42c) follow trivially from inserting

ζ(0, t) = β(0, t) +M(0)X(t) (48)

into (38a) and (38c).
From the objective function (30) and the relationship (39),

we have

r(t) = (R0Q− I)ζ(0, t)− (R0Q− I)M(0)X(t)

+R0C0X(t). (49)

From the boundary condition (41b)

r(t) = (R0Q− I)ζ(0, t)

− (R0Q− I)(R0Q− I)−1R0C0X(t)

+R0C0X(t) (50)

which gives (43).



V. FREDHOLM TRANSFORMATION

The subsystem consisting of (42b) and (42d) has the form
for which a tracking problem was solved in [8]. However,
their solution achieved the tracking goal for t ≥ t0, where

t0 =

m∑
i=1

∫ 1

0

ds

µi(s)
. (51)

We will now introduce a Fredholm transformation bringing
the subsystem consisting of (42b) and (42d) to a form
facilitating the design of a controller achieving the track-
ing goal (13) in minimum time. We define the Fredholm
transformation

ζ(x, t) = z(x, t)−
∫ 1

0

P (x, ξ)z(ξ, t)dξ (52)

from a new variable z to ζ, where P has the same form as
G2, i.e. it is a strictly lower triangular matrix on the form

P (x, ξ) =

{
pij(x, ξ) for 1 ≤ j < i ≤ m
0 otherwise,

(53)

and additionally satisfies the PDE

0 = Λ−(x)Px(x, ξ) + Pξ(x, ξ)Λ
−(ξ)

+ P (x, ξ)Λ−x (ξ) (54a)

0 = P (x, 0)−G2(x)(Λ−)−1(0) (54b)
0 = P (0, ξ). (54c)

It was proved in [11] that Equation (54) has a unique solution
P .

Fredholm transformations are, contrary to Volterra trans-
formations, not always invertible. However, the particular
transformation (52) turns out to be invertible. This is ad-
dressed in the following Lemma, which was proven in [11].

Lemma 5 ([11]): Transformation (52) with P on the form
(53) is invertible, with inverse

z(x, t) = ζ(x, t)−
∫ 1

0

Θ(x, ξ)ζ(ξ, t)dξ (55)

for a strictly lower triangular matrix Θ, given by the Fred-
holm integral equation

Θ(x, ξ) = −P (x, ξ) +

∫ 1

0

P (x, s)Θ(s, ξ)ds. (56)

Consider now the control law

Ub(t) =

∫ 1

0

Θ(1, ξ)ζ(ξ, t)dξ + Uc(t) (57)

where Θ is given from (56), Uc(t) will be designed later,
and the target system

zt(x, t)− Λ−(x)zx(x, t) = H(x)Uc(t) (58a)
z(1, t) = Uc(t) (58b)

for a strictly lower triangular matrix H .
Lemma 6: The transformation (52) and control law (57)

map the target system (58) with H given by

H(x) = P (x, 1)Λ−(1) +

∫ 1

0

P (x, ξ)H(ξ)dξ (59)

into the ζ-subsystem in (42). Moreover, the objective (13)
becomes

r(t) = (R0Q− I)z(0, t). (60)
Proof: Differentiating (52) with respect to time, insert-

ing the dynamics (58a), integration by parts and inserting the
boundary condition (58b) and the transformation (52) we find

zt(x, t) = ζt(x, t) + P (x, 1)Λ−(1)Uc(t)

− P (x, 0)Λ−(0)ζ(0, t)

−
∫ 1

0

[
P (x, 0)Λ−(0)P (0, ξ) + Pξ(x, ξ)Λ

−(ξ)

+ P (x, ξ)Λ−x (ξ)
]
z(ξ, t)dξ

+

∫ 1

0

P (x, ξ)H(ξ)dξUc(t). (61)

Similarly, differentiating (52) with respect to space gives

zx(x, t) = ζx(x, t) +

∫ 1

0

Px(x, ξ)z(ξ, t)dξ. (62)

Inserting (61) and (62) into (42b) yields

ζt(x, t)− Λ−(x)ζx(x, t)−G2(x)ζ(0, t)

−
[
P (x, 0)Λ−(0)−G2(x)

]
ζ(0, t)

−
[
H(x)−

∫ 1

0

P (x, ξ)H(ξ)dξ − P (x, 1)Λ−(1)

]
Uc(t)

−
∫ 1

0

[
Λ−(x)Px(x, ξ) + P (x, 0)Λ−(0)P (0, ξ)

+ Pξ(x, ξ)Λ
−(ξ) + P (x, ξ)Λ−x (ξ)

]
z(ξ, t)dξ = 0. (63)

Using the equations (54) and (59), we obtain the dynamics
(42b). Note that the equation (59) is a cascade in H , since
both H and P are strictly lower triangular. Equation (59)
therefore has a solution H .

Evaluating the transformation (55), which from Lemma 5
is the inverse of (52), at x = 1, we find

z(1, t) = ζ(1, t)−
∫ 1

0

Θ(1, ξ)ζ(ξ, t)dξ. (64)

The boundary condition (42d) and the control law (57) then
gives (58b).

The objective (60) follows immediately from (43) and
noting that z(0, t) = ζ(0, t), since P (0, ξ) = 0 due to (54c).

VI. MAIN THEOREM

We now state the main result of the paper. Consider the
control law

U(t) = −R1u(1, t)− (C1 +M(1))X(t)

+

∫ 1

0

Kvu(1, ξ)u(ξ, t)dξ +

∫ 1

0

Kvv(1, ξ)v(ξ, t)dξ

+

∫ 1

0

Θ(1, ξ)ζ(ξ, t)dξ + ω(t) (65)

where Kvu, Kvv are given from the solution to the PDEs
consisting of (24) and (25), M is given from the IVP (41),
the state ζ is given from the system states u, v through (39)



and (21), while Θ is given as the solution to the Fredholm
integral (56) with P satisfying (54), and

ω(t) =
[
ω1(t) ω2(t) ω3(t) . . . ωm(t)

]T
(66)

is given recursively as

ωi(t) = νi(t+ φi(1))

−
i−1∑
k=1

∫ 1

0

hik(τ)

µi(τ)
ωk(t+ φi(1)− φi(τ))dτ (67)

for i = 1 . . .m, where

ν(t) =
[
ν1(t) ν2(t) ν3(t) . . . νm(t)

]T
(68)

is generated from r as

ν(t) = (R0Q− I)−1r(t), (69)

hij is the components of H

H(x) = {hij(x)}1≤i,j≤m (70)

with hij ≡ 0 for 1 ≤ i ≤ j ≤ m and

φi(x) =

∫ x

0

dγ

µi(γ)
. (71)

Theorem 7: Consider system (1). Subject to Assumptions
1 and 2, the control law (65) guarantees that (13) holds for
t ≥ tmin with tmin defined in (15). Moreover, there exist
constants ς1, ς2 > 0 so that

|u(x, t)| ≤ ς1M1 + ς2M2, ∀x ∈ [0, 1] (72a)
|v(x, t)| ≤ ς1M1 + ς2M2, ∀x ∈ [0, 1] (72b)

for t ≥ tF with tF defined in (16).
Proof: The target system (58), in component form,

reads

∂tzi(x, t)− µi(x)∂xzi(x, t) =

i−1∑
k=1

hik(x)Uc,k(t) (73a)

zi(1, t) = Uc,i(t) (73b)

for i = 1 . . .m, where

z(x, t) =
[
z1(x, t) z2(x, t) . . . zm(x, t)

]T
(74a)

Uc(t) =
[
Uc,1(t) Uc,2(t) . . . Uc,m(t)

]T
(74b)

H(x) = {hij(x)}1≤i,j≤m (74c)

The equations (73) can be solved explicitly using the method
of characteristics. Note that φi defined in (71) are strictly
increasing functions and hence invertible. Along the charac-
teristic lines

x1(x, s) = φ−1i (φi(x) + s), t1(t, s) = t− s (75)

we have
d

ds
zi(x1(x, s), t1(t, s))

= −
i−1∑
k=1

hik(x1(x, s))Uc,k(t1(t, s)). (76)

Integrating from s = 0 to s = φi(1)− φi(x), we obtain

zi(x, t) = zi(1, t− φi(1) + φi(x))

+

i−1∑
k=1

∫ φi(1)−φi(x)

0

hik(x1(x, s))Uc,k(t1(t, s))ds (77)

valid for t ≥ φi(1) − φi(x). Using the substitution τ =
φ−1i (φi(x) + s) in the integral, (77) can be written

zi(x, t) = zi(1, t− φi(1) + φi(x))

+

i−1∑
k=1

∫ 1

x

hik(τ)

µi(τ)
Uc,k(t+ φi(x)− φi(τ))dτ, (78)

valid for t ≥ φi(1) − φi(x), from which we specifically
obtain

zi(0, t) = Uc,i(t− φi(1))

+

i−1∑
k=1

∫ 1

0

hik(τ)

µi(τ)
Uc,k(t− φi(τ))dτ (79)

valid for t ≥ φi(1). Hence, choosing the control laws Uc,i
recursively as

Uc,i(t) = νi(t+ φi(1))

−
i−1∑
k=1

∫ 1

0

hik(τ)

µi(τ)
Uc,k(t+ φi(1)− φi(τ))dτ (80)

which is equivalent to choosing

Uc(t) = ω(t) (81)

with ω defined in (66) and (67), we obtain zi(0, t) = νi(t)
for t ≥ φi(1), and

z(0, t) = ν(t) (82)

for t ≥ maxi(φi(1)) = φm(1) = tmin.
From inserting (82) into the right hand side of (60)

and using the definition (69), it is verified that the control
objective (60), which is equivalent with (13), holds for
t ≥ tmin.

From the target system (58) with Uc(t) = ω(t), it is clear
that z is bounded by r and hence there exists a constant
k1 > 0 so that

|z(x, t)| ≤ k1M2 (83)

for t ≥ tmin, and from (52), we then also have

|ζ(x, t)| ≤ k2M2 (84)

for some constant k2 > 0, for t ≥ tmin. From the
relationship (39), a bound

|β(x, t)| ≤ k3M1 + k4M2 (85)

follows for some constants k3, k4 > 0. It is noted from
the dynamics of α in (42) that α is a transport equation
with ζ(0, t) and X(t) as inputs, and hence, since ζ(0, t)
is bounded by M2 for t ≥ tmin, and X(t) is bounded by
Assumption 1, there exist constants k5, k6 > 0 so that

|α(x, t)| ≤ k5M1 + k6M2 (86)



for t ≥
∫ 1

0
ds

λ1(s)
+ tmin = tF . Due to the invertibility of the

backstepping transformation (21), the bounds (72) follow for
some positive constants ς1, ς2.

Combining (81), (57), (40) and (28) gives (65).

VII. CONCLUSIONS AND FURTHER WORK

We have extended recent results regarding disturbance
rejection control of n + m linear hyperbolic systems to the
case of having spatially varying coefficients and disturbance
entering in the interior domain, and achieve rejection in
finite, minimum time. We used a recently derived Fred-
holm transformation from [11] in addition to the infinite-
dimensional backstepping transformation from [9] to prove
the result. Additionally, we improved the minimum time
tracking controller from [19] by presenting a more compact
solution and, more importantly, allowing a general reference
signal to be tracked, as apposed to the rather limited class
of reference signals allowed in [19].

A natural direction for further work is the derivation of
observers converging in finite, minimum time. An observer
using sensing anti-collocated with the actuation was offered
in [8], while an observer using sensing collocated with
the actuation was given in [17]. However, none of these
achieved convergence in minimum time. A minimum time
observer for n + m systems was first presented in [10],
where an observer using sensing anti-collocated with the
actuation was offered. However, as with their controller
design, the resulting injection gains required the solution
to a fairly complicated set of cascaded kernel equations.
Applying the Fredholm transformation-based method from
[11] to derive minimum-time observers for n + m systems
should be possible, but is yet an unsolved problem. It is
clear, however, that if the state of the disturbance model is
not measured, minimum-time convergence of state estimates
is not possible.
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