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Abstract

A competing risks situation arises when a unit can fail due to several distinct failure
types. In a competing risk situation, standard techniques from survival analysis may
lead to incorrect and biased results. In this thesis, the theory of competing risks is
used to identify possible risk factors for breast, uterine and ovarian cancer. This has
been done by regression on the cause specific hazard functions, the subdistribution
hazard functions and two approximate methods. Cox regression is used for a com-
plete analysis of the medical data.

By following 61457 women over approximately 50 years, it has been observed 3407
cases of breast cancer, 934 of uterine cancer and 843 of ovarian cancer. Summa-
rized, it has been found that several births decrease the risk of breast, uterine and
ovarian cancer. Obesity is associated with increasing risk of ovarian cancer for
postmenopausal women, but not premenopausal. A long reproductive period (early
menarche and/or late menopause) and high BMI increases the risk of breast and
uterine cancer. Late first and last birth decreases the risk of uterine cancer, while
it increases the risk of breast cancer. The data used in the analysis is selected from
a screening program organized by the Norwegian Cancer Society for early diagnosis
of breast cancer.
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Chapter 1

Introduction

A competing risks situation arises when the unit under study can experience any
one out of several distinct failure types, and the occurrence of one precludes the
occurrence of a competing event. Competing risks have many similarities with sur-
vival analysis, which involves modeling the time span from a given time origin until
the occurrence of one single type of event. However, the theory of competing risks
does not originate from survival analysis. The theory can be tracked back to 1760,
when David Bernoulli studied possible consequences of eradication of smallpox on
mortality rates.

The definition of competing risks can be illustrated by an example from the med-
ical field where it arises naturally. Death due to heart failure may be the cause
of interest, death due to other causes will then be competing events because they
prevent death due to heart-failure. The time and cause of death is observed, while
no information is obtained regarding the diseases that did not cause death. The
competing risks framework also includes settings where different possible events are
not mutually exclusive but the interest lies on the first occurring event, as for ex-
ample the risk of getting a certain cancer or failure of a component in a system in
industrial reliability testing.

A competing risks model can be expressed graphically with an initial state and
p different endpoints, see Figure 1.1.

Figure 1.1: Competing risks situation with p causes of failure.

1



2 CHAPTER 1. INTRODUCTION

In this thesis, the theory of competing risks is used to analyse data from a screening
program organized by the Norwegian Cancer Society for early diagnosis of breast
cancer. The selected competing events are breast cancer, uterine cancer and ovar-
ian cancer. These are cancers with assumed similar risk factors, and the data set
is therefore appropriate for this analysis. From 01.01.1961 to 15.02.2010, a period
of approximately 50 years, 3407 out of 61457 women were diagnosed with breast
cancer, 934 with uterine cancer and 843 with ovarian cancer.

To study the relationship between breast, uterine and ovarian cancer risk and se-
lected explanatory variables, regression on the cause specific hazard function and
regression on the subdistribution hazard function will be performed. Four methods
will be used, Cox regression, regression on the subdistribution hazard functions,
Approximate Cox regression and Approximate Fine and Grey regression. The latter
two methods are described in detail in the theory. Out of the four methods, the
most adequate are used for a comprehensive analysis of cancer risk in relation to
selected explanatory variables.

This thesis is divided into eight chapters. Chapter 2 contains general theory about
competing risks, where the main focus is on the bivariate random variable repre-
sentation of competing risks. The chapter also discusses two approximate methods,
Approximate Cox regression and Approximate Fine & Grey regression. Chapter
3 gives an introduction to the dataset analyzed in this thesis. A description of
the competing events is given in Chapter 4. Explanatory data analysis is found
in Chapter 5. Chapter 6 explains the mathematical model that best describes the
relationship between the competing events and the explanatory variables. Chapter
7 contains medical results. A conclusion is found in Chapter 8.



Chapter 2

Theory

2.1 Model specification and mathematical defini-

tion

There are two different mathematical definitions of competing risks, the first is
related to the joint distribution of time and cause of failure and the second relies on
p hypothetical failure times. The theory in this section is selected from Lindqvist
[24], Prentice et al. [30] and M.J. Crowder [7]. The first part of this chapter (Section
2.1 - 2.5) is an extension of the work done in the specialization project by Grude
[12].

2.1.1 Bivariate random variable representation

For each subject the pair (T,D) is observed, where T ≥ 0 is the time of failure and
D ∈ {1, 2, ..., p} is the failure cause. T is assumed to be a continuous and posi-
tive random variable while D belongs to exactly one of p different failure types. If
an event of type d occurs first, D = d, T is then the time at which this event occurred.

The joint distribution between T and D is completely specified by either the cumu-
lative incidence functions, Fd(t), or the cause specific hazard functions, λd(t).

The cumulative incidence functions, CIF, for a failure of type d is defined by

Fd(t) = P (T ≤ t, D = d), t > 0, d ∈ {1, 2, ..., p},
and corresponds to the sub-distribution function for the probability of failure from
cause d in the presence of the competing events. The cumulative incidence function
is also known as the marginal probability function and the crude incidence.

The marginal distribution function of T is the sum of the cumulative incidence
functions for all failure types, i.e. the probability of failure from any type of event

3



4 2. THEORY

at or before time t,

F (t) = P (T ≤ t) =
p
∑

d=1

Fd(t).

Equivalently, the marginal distribution function of T can be described by the overall
survival function, which is the probability of surviving from all failure types up to
time t,

F̄ (t) = 1− F (t) = P (T > t).

The sub-survival function for cause d represents the probability of not failing from
cause d before time t,

F̄d(t) = P (T > t,D = d), d ∈ {1, 2, ..., p}.

The sub-survival function is not a proper survivor function because

P (D = d) = Fd(∞) = F̄d(0) = pd, d ∈ {1, 2, ..., p},

which is strictly below 1 if there are at least two competing events. In the above
equation, pd is the marginal probability for cause D.

The cumulative incidence function and the sub-survival function are related by

Fd(t) + F̄d(t) = pd, d ∈ {1, 2, ..., p},

hence, the sub survivor function is the complementary of the probability of failing
from cause d, P (D = d).

The sub-density functions fd(t) from cause d, when they exists, are given by

fd(t) = lim
∆t→0

P (t ≤ T < t+ ∆t, D = d)

dt
=
d

dt
Fd(t), d ∈ {1, 2, ..., p}. (2.1)

The cause specific hazard function represents the instantaneous failure rate for cause
d and is given by

λd(t) = lim
∆t→0

P (t < T ≤ t+ ∆t, D = d|T > t)
∆t

= lim
∆t→0

P (t < T ≤ t+ ∆t, D = d)

∆tP (T > t)

=
fd(t)

F̄ (t)
, d ∈ {1, 2, ..., p}. (2.2)

The cause specific hazard functions can be seen as the fundamental concept in com-
peting risks and are also referred to as the sub-hazard functions or mode-specific
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hazard functions. Because the cumulative incidence function is a joint distribution,
the relationship between the various subfunctions is not as expected from standard
survival analysis with one single endpoint, i.e. λd(t) 6= fd(t)/F̄d(t) in general.

The hazard function of T is defined as the sum of the cause specific hazard functions
and can be interpreted as the instantaneous failure rate from any cause,

λ(t) =
p
∑

d=1

λd(t) = lim
∆t→0

P (t < T ≤ t+ ∆t|T > t)
∆t

. (2.3)

The relationship between the cumulative incidence functions and the cause specific
hazard rates follows from equation (2.1) and (2.2),

Fd(t) =
∫ t

0
fd(u)du =

∫ t

0
λd(u)F̄ (u)du, d ∈ {1, 2, ..., p}. (2.4)

By integrating the hazard function, the cumulative cause specific hazard function is
obtained,

Λd(t) =
∫ t

0
λd(u)du, d ∈ {1, 2, ..., p}.

From equation (2.3) it follows that the cumulative hazard function of T is Λ(t) =
∫ t

0 λ(u)du =
∑p
d=1 Λd(t), so the overall survival function is given as

F̄ (t) = e−Λ(t) = e−
∑p

d=1
Λd(t) =

p
∏

d=1

Ḡ∗d(t), where Ḡ∗d(t) = e−Λd(t). (2.5)

It is important to notice that although Ḡ∗d(t) is identifiable from the joint distribu-
tion of (T,D), it should not be interpreted as a survival function because it is not
in general the distribution of any observable random variable. With independent
latent failure times, Ḡ∗d(t) can be interpreted as a marginal distribution of the latent
failure times, Td (see section 2.1.2).

In 1988 Grey [11] desired (of reasons to be given in Section 2.5) a model on the

form Fd(t) = 1 − e−
∫ t

0
wd(u)du = 1 − e−Wd(u), and introduced the subdistribution
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hazard functions

wd(t) = lim
∆t→0

P (t < T ≤ t+ ∆t, D = d|T > t ∪ (T ≤ t ∩D 6= d))
∆t

= lim
∆t→0

P (t < T ≤ t+ ∆t, D = d ∪ [T > t ∪ (T ≤ t ∩D 6= d)])
∆tP (T > t ∪ (T ≤ t ∩D 6= d)

= lim
∆t→0

P (t < T ≤ t+ ∆t, D = d ∪ [T > t ∪ (T ≤ t ∩D 6= d)])
∆tP (T > t ∪D 6= d)

= lim
∆t→0

P (t < T ≤ t+ ∆t, D = d)

∆t(1− P (T ≤ t, D = d))

=
dFd(t)/dt

1− Fd(t)

=
fd(t)

F̄d(t)

=
−d(log(1− Fd(t))

dt
, d ∈ {1, 2, ..., p}. (2.6)

The subdistribution hazard function is the hazard corresponding to the cumula-
tive incidence function. The interpretation of the subdistribution hazard function
is unnatural. It is the instantaneous failure rate from cause d given that a subject
either has survived or has already failed due to a competing event. The subdistri-
bution hazard can be thought of as the hazard function for the improper random
variable T ∗ = I(D = d)×T +I(D 6= d)×∞, because P (T ∗ ≤ t) = P (T ≤ t, D = d).

The relationship between the cumulative incidence functions and the subdistribution
hazard functions follows from equation (2.6),

Fd(t) = 1− e−
∫ t

0
wd(u)du, d ∈ {1, 2, ..., p}. (2.7)

2.1.2 Latent failure time representation

The second definition of competing risks assumes that there is an associated non-
negative failure time, T1, T2, ..., Tp, to each competing risk. Among the p different
competing risks the failure time of the first event is observed and the other failure
times are latent. Once the system has failed, the remaining lifetimes are lost to
observation, i.e. we only observe the pair (T,D) where T = min {T1, ..., Tp} is the
time to the first failure and D = {d;Td ≤ Tp∀p} is the cause of the first failure. It
is assumed that ties cannot occur, P(Tp 6= Td) = 0 ∀p 6= d.

The joint survival function for the latent failure times, T1, ...Tp, is described by

K̄(t1, ..., tp) = P (T1 > t1, ..., Tp > tp).



2.1. MODEL SPECIFICATION AND MATHEMATICAL DEFINITION 7

It follows that the sub-density functions are

fd(t) = −
(∂K̄(t1, ..., tp)

∂td

)

t1=t2=...=tp=t
, d ∈ {1, 2, ..., p}.

The survival function of T is the probability of survival up to time t. This means
that all the potential failure times have to exceed t,

F̄ (t) = K̄(t, t, ..., t).

The cause specific hazard functions are given as

λd(t) = lim
∆t→0

P (t < Td ≤ t+ ∆t|T > t)
∆t

= −
(∂logK̄(t1, ..., tp)

∂td

)

t1=t2=...=tp=t
, d ∈ {1, 2, ..., p},

and the marginal distribution of Td as

Ḡd(t) = P (Td > t) = K̄(t1 = 0, t2 = 0, ..., td = t, ..., tp = 0), d ∈ {1, 2, ..., p},

with corresponding hazard rates,

hd(t) =
−Ḡ′d(t)
Ḡd(t)

= −
(∂logK̄(t1, ..., tp)

∂td

)

td=t,tp=0,p 6=d
, d ∈ {1, 2, ..., p}. (2.8)

Only quantities that can be expressed in terms of the cause specific hazard functions
are identifiable. This will be discussed further in Section 2.2. The marginal distri-
bution of the latent failure times cannot be expressed in terms of the cause specific
hazard functions without additional assumptions, they are therefore non-identifiable.

The identifiability problem addresses the difficulty of finding the joint and even
the marginal distribution of the latent failure times from observations of (T,D).
Tsiatis [34], among other, noted that there are several different joint distributions
of the latent failure times that gives the same distribution of (T,D). Further, there
exists a unique model with independent risks that gives the same cumulative inci-
dence function Fd(t) as the model with dependent risks would give. This model is
defined by

K̄(t1, ..., tp) =
p
∏

d=1

Ḡ∗d(t),

where Ḡ∗d(t) are given by equation (2.5). The model with independent risks and any
compatible model with dependent risks fit the data equally well, and it is therefore
not possible to know which model that is correct by observing (T,D).
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There are several ways to deal with the identifiability problem, one is to assume
independent risks. If the failure times Td are independent, the marginal distribution
of Td is identifiable, and the cause specific hazard functions, λd(t) given in (2.2), and
the hazard of the marginal distribution, hd(t) given in (2.8), are equal. However,
the hypothesis of independence cannot be tested from the data of the form (T,D).
Another way to deal with the identifiable problem is to assume a known copula for
the latent variables. Zheng and Klein [35] proved that the marginal distribution
are estimable from observations (T,D) when the dependence is given in the model,
by a known copula. Peterson [28] dealt with the identifiability problem by intro-
ducing bounds for the unknown marginal distribution. More information about the
identifiability problem can be found in Tsiatis [34].

2.2 Likelihood function formulation

The theory in this section is selected from Prentice et al. [30] and Chapter 9 in the
book by Lawless [23].

Suppose there exist n independent observation units, (T,D) is observed for each
unit and right censoring is possible. If a unit is non-censored, the time of failure tj
and the cause of failure dj is observed. For a right censored observation it is known
that the unit survive at least up to time tj and this time is observed. What hap-
pens after tj is unknown. Let δj = I(Tj ≤ Cj), where Cj is the non-negative right
censoring time for unit j and I is the indicator function. Under the assumption of
independent censoring (see Chapter 2 [23]), the likelihood function can be written

L =
n
∏

j=1

fdj (tj)
δj F̄ (tj)

1−δj .

From equation (2.2) it follows that

L =
n
∏

j=1

λdj (tj)
δj F̄ (tj)

δj F̄ (tj)
1−δj =

n
∏

j=1

λdj (tj)
δj F̄ (tj).

Let δjd indicate if unit j fails due to cause d, δjd = I(Dj = d). If subject j is censored
or fails due to a competing event, δjd equals 0. It is not possible that each unit fails
due to more than one cause, hence δj =

∑p
d=1 δjd. By using equation (2.5) it follows
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that

L =
n
∏

j=1

λdj (tj)
∑p

d=1
δjdF̄ (tj)

=
n
∏

j=1

p
∏

d=1

λd(tj)
δjdḠ∗d(tj)

=
n
∏

j=1

p
∏

d=1

g∗d(tj)
δjd

Ḡ∗i (tj)
δjd
Ḡ∗d(tj)

=
p
∏

d=1

(

n
∏

j=1

g∗d(tj)
δjdḠ∗d(tj)

1−δjd
)

=
p
∏

d=1

Ld, (2.9)

where g∗d(t) = λd(t)Ḡ
∗
d(t). From equation (2.9) it is clear that the overall likelihood

can be written as a product of p likelihoods, one for each failure cause. The dth
likelihood is identical to the standard form of a likelihood with g∗d(t) as the sub-
density function and Ḡ∗d(t) as the survival function, although neither Ḡ∗d(t) or g∗d(t)
correspond to any observable random variable. The form of the likelihood function
is completely specified by the cause specific hazard functions (2.5) and only the
hazard functions or functions of them can be estimated directly from the data.
Other quantities are non-estimable. If the hazard functions do not depend on the
same parameters, the dth likelihood is identical to the likelihood one would obtain
by treating failures of other causes than d as censored on their failure time. It is
important to notice that no assumptions are required about the interrelation among
the failure causes.

2.3 Nonparametric estimation

The theory in this section is selected from Lawless, Chapter 9 [23]. As demonstrated
above for parametric estimation, non-parametric estimation of identifiable functions
can be done separately for each cause d by treating the other causes as censored.

Kaplan Meier estimate based on the data (tj, δdj) can be used to estimate Ḡ∗d(t).
This is usually not of interest since Ḡ∗d(t) is not an observable random variable.
However, the result from Kaplan Meier estimate of Ḡ∗d(t) can be used to estimate
the cumulative cause specific hazard function, Λd, see equation (2.5). Another op-
tion is to estimate the cumulative cause specific hazard function by a Nelson-Aalen
estimator, which takes the form

Λ̂d(t) =
∑

j:tj≤t

d̃jd
nj
, d ∈ {1, ..., p}, (2.10)
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where nj denote the number at risk just before time tj and d̃jd is the number of
failures of cause d by time tj.

The variance is typically estimated by

V̂ar[Λ̂d(t)] =
∑

j:tj≤t

d̃jd
n2
j

, d ∈ {1, ..., p}.

The overall survival function can be estimated by the Kaplan Meier estimate on the
data (tj, δj), where 0 < t1 < t2 < ... < tn are the ordered distinct failure times where
failure of any cause occur.

ˆ̄F (t) =
∏

j:tj≤t

(

1− d̃j
nj

)

, (2.11)

where d̃j =
∑p
d=1 d̃jd is the total number of failures from any cause by time tj. This

estimator is identical to the standard Kaplan-Meier estimator one would obtain
treating failures of other causes than d as censored observations.

It follows from equation (2.4), (2.10) and (2.11) that a non-parametric estimate
of the cumulative incidence functions is

F̂d(t) =
∫ t

0

ˆ̄F (u)λ̂d(u)du =
∑

j:tj≤t

d̃jd
nj

ˆ̄F (tj), d ∈ {1, ..., p}. (2.12)

In 1978 Aalen presented a method to find the variance of the estimate of the cumula-
tive incidence function. Details about the method can be found in Chapter 2 in [29].

Special techniques are required to compare the cumulative incidence functions. Grey,
among others, has derived methods to test a covariate in the presence of competing
risks. The k-sample test is a non-parametric test that compares weighted averages
of the hazard of the subdistribution for the failure of interest. More information can
be found in an article by Grey [11].

2.4 Regression models

2.4.1 Cause specific hazard functions

To investigate factors that may affect the risk of failure due to a specific cause in
the presence of the competing events, a model analogue to Cox proportional hazards
model is desirable.
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The result from Section 2.2 implies that standard methods from survival analy-
sis can be used for testing and estimating the cause specific hazard functions, with
the modification that failures from other causes than the cause of interest is treated
as censored observations. Hence, Cox proportional hazards model can be used to
model the effect of covariates on the cause specific hazards functions. With covari-
ates X = (x1, x2, ..., xm) the model takes the form

λd(t|X) = λd0(t)eβ
T
d

X, d ∈ {1, 2, ..., p}, (2.13)

where λd0(t) is the baseline hazard of cause d and βd is a vector of the coefficients.

Estimation of the regression parameters for cause d, βd, is based on the following
partial likelihood approach for ordered untied failure times, t1 < t2 < ... < tn,

L(βd) =
∏

j:djδj=d

eβ
T
d

Xj

∑

l∈R(vj) e
βT

d
Xl
. (2.14)

djδj indicates if subject j fails due to cause d, δj = I(Tj ≤ Cj), cj is the potential
censoring time and vj = min(tj, cj) is the terminal time. The risk set for each time
t is defined as R(t) = {j : uj ≤ t ≤ vj}, where uj is the left truncation variable
for subject j. Briefly, left truncation arises when subjects come under observation
only some known time after the natural time origin. More information about left
truncation can be found in Chapter 2 in the book by J.P. Lawless [23].

It is worth noting that the results should only be interpreted in terms of the cause
specific hazard rates, since the cumulative incidence function for the cause of interest
is not a simple function of the cause specific hazard rate for the cause of interest, but
also a function of the competing events. This will be described further in Section
2.5.

2.4.2 Cumulative incidence functions

In most cases it is more interesting to assess the effect of covariates on the cumu-
lative incidence function directly. For that reason Fine and Grey [9] introduced a
proportional hazard model to the subdistribution hazard function. Conditional on
the covariates X = (x1, x2, ..., xn) the model takes the form

wd(t|X) = wd0(t)eφ
T
d

X, d ∈ {1, 2, ..., p}, (2.15)

where wd0(t) is the baseline hazard of the subdistribution of cause d (2.6) and φd is
a vector of the coefficients.

Based on this model, the cumulative incidence functions can be written

Fd(t; X) = 1− e−
∫ t

0
wd0(u)e

φT
d

X
du = 1−

[

e−
∫ t

0
wd0(t)du

]e
φT

d
X

, d ∈ {1, 2, ..., p}.
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It follows that the covariate effect on the cumulative incidence function can be in-
terpreted directly.

Estimation of the model parameters depends on different censoring and trunca-
tion scenarios. For estimation, Fine and Grey [9] made a distinction between three
types of available data, two of which are not used in practice.

The first scenario is ”Complete Data” where all failure times and failure causes
are observed. It follows that censoring is absent. Without censoring the partial
likelihood function is identical to the partial likelihood in equation (2.14). However,
the risk set is augmented by individuals who fail prior to time t by a competing
event, with a failure time equal to infinity.

The second scenario is called ”Censoring Complete Data” and involves data where
censoring is only due to administrative loss-to-follow up. The characteristic of ”Cen-
soring Complete Data” data is that the censoring time is known, even for subjects
who fail prior to the administrative censoring time. As for the first scenario, the
partial likelihood method for the cause specific hazard can be applied with the ex-
tended risk set.

The third and ”used” scenario is called ”Incomplete Data”. Incomplete data is data
where usual right censoring is present. In Fine and Grey’s definition, (2.15), failures
of competing events prior to the relevant time stay in the risk set for infinity. For
general censoring at random, the time of failure for when a competing event remains
in the risk set is not known. For this reason, Fine and Grey [9] proposed weighting
by inverse probability of censoring (IPCW) techniques [32] to fit the subdistribution
hazard models.

Briefly described, rj(t) = I(Cj ≥ Tj ∧ t) denotes the vital status on individual
j at time t, ∧ denotes min. rj(t) takes the value 1 if it is known that subject j has
not been censored or failed prior to time t. rj(t) takes the value 0 if the status is
unknown, i.e. censoring has happened before both Tj and t. Based on this quantity
and the Kaplan Meier estimate of the survival distribution of the censoring random
variable Ĝ(t) = P (C ≥ t), time dependent weights w̃j are defined:

w̃j =
rj(t)Ĝ(t)

Ĝ(Vj ∧ t)
, (2.16)

where Vj is the minimum of the observed failure time, Tj, and observed censoring
time, Cj. The weight is equal to 1 for subjects that have neither failed nor been
censored until time t. Subjects that have failed from another cause at time Tj prior

to time t get a weight equal to Ĝ(t)

Ĝ(Tj)
. Thus, subjects that have failed due to a com-

peting event prior to time t do not participate fully in the partial likelihood. For
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more details see Fine and Gray [9].

Defining these weights gives the following partial likelihood

L(φd) =
∏

j:djδd=d

eφ
T
d

Xj

∑

i∈R∗
j
w̃jieφ

T
d Xi
, (2.17)

with an extended risk set, R∗j , that includes subjects that have failed by a competing
event by time t.

In 2010, Ronald B. Geskus [10] expanded the likelihood to include left truncation.
Geskus defined Ĥ(t) as the Kaplan Meier estimate of the truncated times by revers-
ing the role of the truncated times and the terminal times. Further, he used the
IPCW techniques to derived new weights

w̃∗j =















1 If at risk at t
Ĝ(t)Ĥ(t)

Ĝ(Vj∧t)Ĥ(Vj∧t)
If d had a competing event observed prior to t

0 Otherwise.

It is worth noting that these weights are identical to Fine and Grey’s definition
(2.16) when left truncation is absent, Ĥ(t) ≡ 1.

2.5 Effect of a covariate

Much of the work of analyzing the effect of a covariate in a competing risks situation
have been done by examining the effect of the covariate on the cause specific hazard
function, see equation (2.13). Gray [11] noted that a covariate may have different
effect on the cumulative incidence function and the cause specific hazard function.
The reason for this is that the cumulative incidence function for cause d dependes
on the overall survival function, and therefore on the competing events, see equation
(2.4).

As an example, assume two competing events and an explanatory variable cor-
responding to two groups, a and b. The cause specific hazard rates are set to be
constant and equal to

λ1a = λ2a = 3, λ1b = 2, λ2b = 1.

The first index corresponds to the failure cause and the second index to the group.

The cumulative incidence functions can be calculated directly by equation (2.5)
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and (2.4),

F1a(t) =
∫ t

0
λ1a(u)F̄a(u)du =

∫ t

0
λ1ae

−(λ1a+λ2a)udu =
∫ t

0
λ1ae

−(λ1a+λ2a)udu =
1− e−6t

2

F1b(t) =
∫ t

0
λ1b(u)F̄b(u)du =

∫ t

0
λ1be

−(λ1b+λ2b)udu =
∫ t

0
λ1be

−(λ1b+λ2b)udu =
2(1− e−3t)

3
,

and the subdistribution hazard functions by equation (2.6),

w1a(t) = −d(log(1− F1a(t))

dt
= −d(log(1

2
+ 1

2
e−6t)

dt
=

6

1 + e6t

w1b(t) = −d(log(1− F1b(t))

dt
= −d(log(1

3
+ 2

3
e−3t)

dt
=

6

2 + e3t
.

An illustration of the cumulative incidence function for the two groups, cause 1,
can be seen in Figure 2.1. The figure shows that the cumulative incidence functions
converges towards their marginal probability as t goes to infinity. It can also be seen
that the two curves cross after a certain time, F1b(t) > F1a(t) for t > 0.37.

Figure 2.1: Cumulative incidence function for group a and group b, cause 1.

The subdistribution hazard functions can be described entirely in terms of the cu-
mulative incidence functions. Figure 2.2 shows the subdistribution hazard function
for the two groups, cause 1. w1b(t) > w1a(t) for t > 0.16. The pattern is similar for
the cumulative incidence functions and the subdistribution hazard functions. The
function for group a is larger for small t while the function for group b is largest for
larger t. By comparison λ1a > λ1b for all t. In other words, the covariate has very
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Figure 2.2: Subdistribution hazard function for groups a and group b, cause 1.

different effects on the cause specific hazard function and the cumulative incidence
function, and hence the subdistribution hazard function.

The cause specific hazard function is the instantaneous failure rate for a given cause,
while the cumulative incidence function is the probability of failure by time t for a
given cause. When t goes to infinity a subject has to fail, thus the cumulative inci-
dence function is dependent on the marginal probability for the other failure causes.
The cause specific hazard function does not depend on the competing events.

A consequence of different effect from covariates on the cause specific hazard func-
tion and the cumulative incidence function is that the null-hypothesis, H0 : Fia(t) =
Fib(t) is not equivalent to H0 : λia(t) = λib(t) unless the survival functions for the
groups are equal, F̄a(t) = F̄b(t). Proof follows by equation (2.4) and (2.2),

Proof.

λia(t) = λib(t)⇒
fia(t)

F̄a(t)
=
fib(t)

F̄b(t)

If F̄a(t) = F̄b(t), then

fia(t) = fib(t)⇒ Fia(t) = Fib(t).

Fia(t) = Fib(t)⇒
∫ t

0
λia(u)F̄a(u)du =

∫ t

0
λib(u)F̄b(u)du

If F̄a(t) = F̄b(t), then

λia(t) = λib(t)

Hence, H0 : λia(t) = λib(t)⇔ Fia(t) = Fib(t) if F̄a(t) = F̄b(t)
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2.6 Approximate Cox regression

As mentioned in Section 2.4.1, Cox proportional hazard models can be used to model
the effect of covariates on the cause specific hazard functions. In the late 90’s, Cox
regression required large data capacity and were time consuming for large risk sets.
For that reason, Krogstad and Lindqvist [15] introduced ”Approximate Cox” regres-
sion. The Approximate Cox method turns out to be an intuitive method which gives
good approximations and is easy to program without ”Cox-software”. The method
also deals with potential time dependency in the regression parameters. For these
reasons, the Approximate Cox method will be investigated further on competing
risks data. The theory in this section is selected from a lecture by Bo Lindqvist [25].

To estimate the parameters βd in a proportional hazard model from the observed
data, the partial likelihood given in equation (2.14) needs to be maximized. Recall

L(βd) =
∏

j:djδj=d

eβdxj

∑

l∈R(vj) e
βdxl

=
r
∏

i=1

eβdxi

∑

l∈Ri e
βdxl
. (2.18)

In the rightmost equation, the risk set is assumed to be the same for each distinct
failure time. The ordered (increasing) failure times of cause d, vj, are renamed as i
= 1,2,...,r.

A good approximation for large risk sets is to replace

1

Ni

∑

l∈Ri

eβdxl ≈ E[eβdXi],

where Xi is a random variable which describes the distribution of the covariates, X,
for individuals in the risk set at time ti, Ri = {i : ui ≤ t ≤ vj}. Ni is the number
at risk by time ti. A reasonable approximation is to assume the distribution of Xi

as known when the risk set Ri is large. It is important not to confuse Xi with the
observed covariate value for the failures, xi.

Using the approach, the partial likelihood in equation (2.18) can be written

r
∏

i=1

eβdxi

NiE[eβdXi ]
,

and the log-(modified) likelihood

r
∑

i=1

βdxi −
r
∑

i=1

logNi −
r
∑

i=1

log E[eβdXi].

By differentiating the log-(modified) likelihood with respect to βd and setting it
equal to zero, the maximum likelihood equations are obtained,

r
∑

i=1

(

xi −
d

dβd

log E[eβdXi]

)

= 0. (2.19)
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This equation can be solved for βd when the distribution of the covariates is known
and the moment generating function exists. In relation to medical studies, there will
often be both categorical and continuous covariates. The normal distribution may
be used in the continuous case, while the multinomial distribution is appropriate
for categorical variables. As mentioned introductory, the approximate method can
reveal potential time dependency in the regression parameters by solving for each
parameter locally.

2.6.1 Normally distributed covariates

The covariates are now assumed to be normally distributed with mean µi and vari-
ance σi, Xi ∼ N(µi, σi), which is reasonable for variables like Body Mass Index or
height. It is also assumed that µi and σi can readily be estimated from the risk set
Ri. The moment generating function for the normal distribution is defined as

E[eβdXi] = e(µiβd+σ
2

i β
2

d
/2) ⇒ log(E[eβdXi]) = µiβd +

σ2
i β

2
d

2
. (2.20)

Inserting equation (2.20) into the maximizing equation, (2.19), and differentiating
with respect to βd gives

r
∑

i=1

(

xi − µi − σ2
i βd

)

= 0.

The maximum likelihood estimator, β̂d, is obtained by solving for βd,

β̂d =

∑r
i=1(xi − µi)
∑r
i=1 σ

2
i

=
x̄− µ̄
σ̄2
. (2.21)

Hence, β̂d compares the average covariate value for failures of cause d, x̄, with the
average covariate value for the population at risk, µ̄, adjusted by the average vari-
ance for the population at risk, σ̄2.

To make inference on βd, it is desirable with the distribution of β̂d. The follow-
ing variable is therefore defined for each individual

kdi =

{

1 If failure of cause d occurs at time i
0 Otherwise.
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It is still assumed that Xi is normally distributed, Xi ∼ N(µi, σi), and that the basic
assumption in Cox regression, P (kdi|x) ∝ exp(βdx), applies. It follows that

P (x|kdi) ∝ P (kdi|x)f(x)

∝ exp(βdx)
1√
2πσ

exp(−(x− µi)2

2σ2
i

)

∝ 1√
2πσ

exp(−x
2 − 2x(σ2

i βd + µi) + (µi + βdσ
2
i )

2

2σ2
i

) exp(µiβd + β2
dσ

2
i /2)

∝ 1√
2πσ

exp(−(x− (µi + βdσ
2
i ))

2

2σ2
i

)

∼ N(µi + βdσ
2
i , σ

2
i ),

which is the distribution of x for failures of cause d at time i.

Furthermore,

E[β̂d] = E[

∑r
i=1(xi − µi)
∑r
i=1 σ

2
i

] =

∑r
i=1(E[xi]− µi)
∑r
i=1 σ

2
i

=

∑r
i=1(µi + βdσ

2
i − µi)

∑r
i=1 σ

2
i

= βd,

and

Var[β̂d] = Var[

∑r
i=1(xi − µi)
∑r
i=1 σ

2
i

] =
1

(
∑r
i=1 σ

2
i )

2
Var[

r
∑

i=1

(xi−µi)] =

∑r
i=1 σ

2
i

(
∑r
i=1 σ

2
i )

2
=

1
∑r
i=1 σ

2
i

,

assuming independence among the cases. Hence,

β̂d ∼ N(βd, 1/
r
∑

i=1

σ2
i ).

It follows that

Z = β̂d

√

∑

i

σ2
i ∼ N(0, 1) under H0,

can be used to test the null-hypothesis H0 : βd = 0.

In the multivariate normal case, Xi ∼ Np(µi,Σi), βd can be estimated similarly
as

β̂d =

(

r
∑

i=1

Σi

)−1 r
∑

i=1

(xi − µi) = (Σ̄)−1(x̄− µ̄).

In the same manner as above we get

β̂d ∼ Np(βd, (1/r)(Σ̄)−1),

which can be used to make inference on βd.
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2.6.2 Gamma distributed covariates

Assume now that the covariates are gamma distributed, Xi ∼ gamma(bi, ai), where
bi and ai can easily be estimated from the risk set Ri. The moment generating
function is given by

E[eβdXi ] =

(

1

1− biβd

)ai

. (2.22)

Inserting the moment generating function, (2.22), into the maximizing equation,
(2.19), gives

r
∑

i=1

xi =
r
∑

i=1

d

dβd
log

(

1

1− biβd

)ai

= −
r
∑

i=1

ai
d

dβd
log(1− biβd)

=
r
∑

i=1

aibi
1− biβd

. (2.23)

Equation (2.23) must be solved numerically for βd. However, if biβd is small, the
approximation (1 + biβd)

−1 ≈ 1 − biβd may be used. In this case, the problem
simplifies to

r
∑

i=1

xi ≈
r
∑

i=1

aibi(1 + biβd)

⇓

β̂d =

∑r
i=1(xi − aibi)
∑r
i=1 aib

2
i

=

∑r
i=1(xi −E[xi])
∑r
i=1 Var[xi]

, (2.24)

which is a good illustration that equation (2.21) gives a usable result, although it is
exactly right only in the normal distribution case.

For small βd, a Taylor expansion of the moment generating function around βd = 0
gives the same result. This will be described further in Section 2.6.5. As for the nor-
mal distribution, βd will be a comparison of the observed covariate value for failure
of cause d, with the average covariate value for the population at risk. The expo-
nential and chi-squared distribution are simplifications of the gamma distribution,
hence βd can easily be estimated from simplifications of equation (2.23).

2.6.3 Binomially distributed covariates

It is now assumed that Xi is a categorical variable with 2 categories. It is assumed
within the population that

P (Xi = 1) = 1− P (Xi = 0) = pi,
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and the observed xi is either 0 or 1, i.e. success or not.

Using the moment generating function for the binomial distribution we get

E[exp(βdxi)] = pie
βd + 1− pi. (2.25)

Inserting equation (2.25) into equation (2.19) gives

r
∑

i=1

(

xi −
d

dβd
log

(

pie
βd + 1− pi

)

)

= 0

r
∑

i=1

xi =
r
∑

i=1

pie
βd

pieβd + 1− pi
,

which has to be solved numerically for βd.

With pi = p for all i, this simplifies to

r
∑

i=1

xi =
r
∑

i=1

peβd

peβd + 1− p

x̄ =
peβd

peβd + 1− p
⇓

βd = log

(

x̄(1− p)
p(1− x̄)

)

= log

(

x̄

1− x̄

)

− log

(

p

1− p

)

.

In general, a Taylor expansion of the moment generating function around βd = 0 for
small βd gives

βd ≈
∑r
i=1(xi − E[xi])
∑r
i=1 Var[xi]

=

∑r
i=1(xi − pi)

∑r
i=1 pi(1− pi)

, (2.26)

which is a comparison between the observed failure cases and the related risk set.
Further description is found in Section 2.6.5.

2.6.4 Multinomially distributed covariates

It is now assumed that Xi is a categorical variable with k possible outcomes, i.e.
an extension of the binomial distribution. Xi is a random variable that indicates
which outcome occurred, represented by X = (X1, X2, ..., Xk−1) where Xj = 1 and
Xs = 0 (j 6= s) for the j’th category (j = 1,2,..., k − 1). For the reference category,
k, Xs = 0∀s. Furthermore, P(xj = 1, xs = 0∀s 6= j) = pj , j = 1,2,...,k − 1 and
P(xj = 0∀j) = 1 -

∑k−1
j=1 pj . The maximizing problem, (2.19), changes to

r
∑

i=1

xi =
r
∑

i=1

d

dβdj
log E[e

∑k−1

j=1
βdjXij ], j = 1, ..., k − 1, d = 1, ..., p,
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which, by the use of the moment generating function gives

r
∑

i=1

xi =
r
∑

i=1

d

dβdj
log

(

k−1
∑

j=1

pje
βdj + pk

)

=
r
∑

i=1

pje
βdj

∑k−1
j=1 pje

βdj + pk

=
r
∑

i=1

pje
βdj

∑k−1
j=1 pje

βdj + 1−∑k−1
j=1 pj

j = 1, ..., k− 1, d = 1, ..., p. (2.27)

Equation (2.27) must be solved numerically for the estimated coefficients in each
distinct group, βdj, j = 1, ..., k − 1. βdk = 0 and corresponds to the reference
category.

2.6.5 General distribution for the covariates

In principle, equation (2.19) can be solved for all distributions where the moment
generating function exists.

The moment generating function of a random variable X is defined as

MX(t) := E
[

etX
]

, t ∈ R,

wherever this expectation exists. The logarithm of the moment generating function,
G(t) = log(MX(t)) = log(E[etX]), also known as the cumulant generating function,
have many useful properties. For example, the first moment is the mean, G′(0) =
E[X], and the second moment is the variance, G′′(0) = Var[X]. The third moment
indicates the skewness of the distribution, G′′′(0) = E[X - E[X]]3.

Taylor expansion around 0 of G(t) and using t = βd gives

log E[eβdX ] = G(βd) ≈ G(0) +G′(0)βd +
G′′(0)β2

d

2
+ o(β3

d)

= µβd + σ2β2
d/2 + o(β3

d).

This can be used directly in equation (2.19). For small βd it follows that

β̂d ≈
∑r
i=1(xi − µi)
∑r
i=1 σ

2
i

,

where µi and σ2
i are the mean and variance, respectively, of the distribution of Xi.

These can in practice be estimated unbiased from the risk sets by the mean and the
empirical variance. It is assumed that o(β3

d) is negligible, i.e. that the effect of skew-
ness can be ignored. Clearly, the Approximate Cox method for normal distributed
covariates seems to be valid regardless of the distribution of the covariates.
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2.6.6 Local estimation of βd

A local estimation of βd for each failure may suggest if the parameter is time de-
pendent. For a univariate normal distributed covariate, βd is a weighted average of
variables Ri,

Ri =
xi − µi
σ2
i

. (2.28)

If the model is correct, Ri is normally distributed, N(β, 1/σ2
i ), and should be fol-

lowing a straight horizontal line at height βd. If this is not the case, βd is time
dependent and should be modeled as a function of t.

2.7 Approximate Fine and Grey regression

As mentioned in Section 2.4.2, a proportional hazard model corresponding to the
subdistribution hazard can be used to model the effect of covariates on the cu-
mulative incidence functions. This section provides approximate analysis for the
subdistribution hazard functions. A discrete version of the subdistribution hazard
rate corresponding to equation (2.6) is

wd(t; x) = P (T = t, D = d|T ≥ t ∪ (T < t ∩D 6= d), X = x)

= wd0(t)eγdx.

The cumulative incidence functions are related to the discrete subdistribution hazard
functions as follows

P (T ≤ t ∩D = d|X = x) = 1− P (T ≥ t+ 1 ∪D 6= d|X = x)

= 1− P ((T ≥ t+ 1 ∩ T ≥ t ∩ T ≥ t− 1 ∩ ... ∩ T ≥ 1) ∪D 6= d|X = x)

= 1−
t
∏

s=0

P (T ≥ s+ 1 ∪D 6= d|(T ≥ s ∪D 6= d) ∩X = x)

= 1−
t
∏

s=0

[1− P (T ≤ s ∩D = d|(T ≥ s ∪D 6= d) ∩X = x)]

= 1−
t
∏

s=0

[1− P (T = s ∩D = d|(T ≥ s ∪D 6= d) ∩X = x)]

= 1−
t
∏

s=0

[1− P (T = s ∩D = d|(T ≥ s ∪ (T < s ∩D 6= d)) ∩X = x)]

= 1−
t
∏

s=0

(1− wd(s; x)).

The form of these functions is similar to the continuous cumulative incidence func-
tions described in equation (2.7).
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In the Approximate Cox method, the densities f(x|T ≥ t) are considered known.
Due to different risk set, the approximate analysis of the subdistribution hazard
considers the densities f(x|T ≥ t ∪ (T < t ∩ D 6= d)) as known. By using the
following relation for disjoint events, A and B,

P (C|A ∪B) =
P (C ∩ (A ∪B))

P (A ∪ B)
=
P (C ∩ A) + P (C ∩B)

P (A ∪B)
=
P (C|A)P (A) + P (C|B)P (B)

P (A ∪B)
,

(which can easily be generalized to more than two disjoint events in the union) we
get

f(x|T ≥ t ∪ (T < t ∩D 6= d)) = f(x|(T ≥ t) ∪t−1
s=1 (T = s ∩D 6= d))

∝ f(x|T ≥ t)P (T ≥ t) +
t−1
∑

s=1

f(x|T = s ∩D 6= d)P (T = s ∩D 6= d).

In this case disjoint means that the event of surviving up to time t is disjoint from
the event of failing due to a competing event prior to time t, which is obviously true.

The probability of failing at time t of a competing event, P (T = s ∩ D 6= d), is
not directly estimable from our data. However, using the following extension it is
estimable

P (T = s ∩D 6= d) = P (T = s ∩ T ≥ s ∩D 6= d)
= P (T = s ∩D 6= d|T ≥ s)P (T ≥ s).

It follows that

f(x|T ≥ t ∪ (T < t ∩D 6= d)) ∝

f(x|T ≥ t)P (T ≥ t) +
t−1
∑

s=1

f(x|T = s ∩D 6= d)P (T = s ∩D 6= d|T ≥ s)P (t ≥ s)

∝ f(x|T ≥ t) +
t−1
∑

s=1

f(x|T = s ∩D 6= d)P (T = s ∩D 6= d|T ≥ s)P (T ≥ s)
P (T ≥ t)

∝ f(x|T ≥ t) +
t−1
∑

s=1

f(x|T = s ∩D 6= d) P (T = s ∩D 6= d|T ≥ s)
∏t−1
i=s(1− P (T = i|T ≥ i))

∝ f(x|T ≥ t) +
t−1
∑

s=1

f(x|T = s ∩D 6= d)ws, (2.29)
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where

ws =
P (T = s ∩D 6= d|T ≥ s)
∏t−1
i=s(1− P (T = i|T ≥ i)).

All the ingredients are now estimable from the data. The approximate subdistribu-
tion hazards can be computed by equation (2.19), with modified means and variances
as follows

∑Nt
i=1 g(xi) +

∑t−1
s=1

[

∑n
6=d
s

i=1 g(xis, D 6= d)NtNs
K(s)
K(t)

]

Nt +
∑t−1
i=s
Nt
Ns

K(s)
K(t)
n6=ds

. (2.30)

In equation 2.30, K(t) is the Kaplan Meier estimator of P(T ≥ t): K(t) =
∏r
i=1(1−

ni
Ni

), ni the number of failures by time i, Ni = #Ri the number at risk by time i

and n6=di the number of failures of other causes than d by time i. The mean and
variance is calculated by taking the appropriate formula for g(xi). The estimation
equation,2.30, is adjusted such that the probability density function sums to 1.

It is worth noting that Approximate Cox regression consider f(x|T ≥ t) as known
due to the size of the risk set. Now, the terms f(x|T = s∩D 6= d) are added. These
terms are not necessarily known with the same accuracy as f(x|T ≥ t), hence some
approximation error may occur.

An alternative formulation of the partial likelihood function for the subdistribu-
tion hazards event type d follows from equation (2.30)

∏

j:djδj=d

eγdxj
∑

l∈R(vj) e
γdxl +

∑

l:vl<vj ;djδj 6=d,0
N(vj)

N(vl)
K(vl)
K(vj)
eγdxl
.

Subjects that have not failed to any event or been censored prior to time t gets a
weight equal to 1. Subjects that have already failed due to a competing event prior
to time t are weighted

N(vj)

N(vl)
K(vl)
K(vj )

.

The estimation of f(x|T ≥ t) and f(x|T = s∩D 6= d) are done by using the available
data at time t and s, respectively. This means that there is an underlying assumption
that f(x|T ≥ t) = f(x|T ≥ t, L ≤ t ≤ C), where L,C are the left truncation and
censoring time, respectively. To have f(x|T ≥ t) = f(x|T ≥ t, L ≤ t ≤ C) it must
be assumed, for example, that T and (L,C) are conditionally independent given X,
and that (L,C) is independent of X. It is also needed that f(x|T = s ∩ D 6= d)
= f(x|T = s ∩ D 6= d ∩ L ≤ s ≤ C) which requires, for example, that (T,D) is
conditionally independent of (L,C) given X, and that (L,C) is independent of X.

More details and another (weaker) sufficient condition for f(x|T ≥ t) = f(x|T ≥
t, L ≤ t ≤ C) can be found in [25].



Chapter 3

Data description

This chapter contains information about the data set analyzed in this study and a
review of the various explanatory variables. The information is selected from the
doctoral thesis of Gunnar Kv̊ale [16].

3.1 Material

In 1955, The Norwegian Cancer Society [1] decided to conduct a screening program
for early diagnosis of breast cancer, henceforth HUNT0. All Norwegian women aged
20-69 years by the first of January 1956 in the counties of Vestfold, Vest-Agder,
Aust-Agder and Nord-Trøndelag were invited to participate.

In the years 1956 to 1959 the participants were interviewed according to a stan-
dard questionnaire concerning reproductive factors and demographic data. They
also had a clinical breasts examination carried out by a physician. The population
in Nord-Trøndelag was offered three screening examinations, Aust-Agder two and
Vestfold one. In the counties where multiple examinations were offered, missing and
updated information was added from the last examination(s).

The attendance in Vest-Agder was only 51.7 % and the screening program was
originally organized as a pilot project, it was therefore decided to exclude all partic-
ipants from this county. Due to incomplete data on reproductive factors, the survey
is confined to women older than 27 years by the first of January 1956.

In 1964 the official registration number was introduced in Norway. This number
was retrieved for 92573 women in the three relevant counties by the start of follow
up, first of January 1961. At this time 85063 women were still alive. Among them,
63090 filled out the questionnaire. This yields a response rate of 74.2 %. Women
who did not fill out the questionnaire are taken out of the analysis due to missing
information.

25



26 CHAPTER 3. DATA DESCRIPTION

By using the official personal registration number, cancer occurrences were linked to
the survey from the Cancer Registry of Norway. The data set was also linked to the
Central Bureau of Statistics for information regarding date of deaths or emigration.
Data on height and weight was assigned to the study from a study organized by the
National Mass Radiography Service in 1963-1975.

The latest cancer diagnosis was recorded in February 2010 and this is therefore
set to the end date for the follow-up period. This means that the follow-up period
extended from January 1 1961 to February 15 2010, a period of almost 50 years.
Breast, ovarian and uterine cancer are the selected competing events and only cancer
occurrences diagnosed in the follow-up period are considered. Thus, women with
cancer in the uterine, ovarian or breast before the start of follow up are removed
from the data set. Women with other types of cancer before 01.01.1961 are still in
the risk set.

Participants that reported a missing uterine or ovaries are eliminated from the anal-
ysis in order to get the same risk set for all competing risks. This leaves 61457
women for analysis.

Women reported dead or emigrated are right censored on the terminal date. Women
alive and without a breast, uterine or ovarian cancer diagnosis at the end of survey
are right censored on the end of follow-up. Overall, 56273 women are right censored,
this is approximately 92 percent of the participants.

The data set have been checked for inconsistent information by the use of cross
tabulation. If the inconsistent information was not obvious, the variable was re-
garded as missing.

3.2 Study variables

3.2.1 Age

Age by diagnosis
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Figure 3.1: Age of participants by the first
of january, 1961.

Age will be used as the time parameter
in this analysis because previous studies
have shown that the risk of cancer de-
pends on age. A histogram of age by the
first of January 1961 for women partici-
pating in the study can be seen in Figure
3.1. The youngest woman was 32 years
by the start of follow up, while the old-
est woman was 74 years. The average
age was 49 years.
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3.2.2 Reproductive variables

Age at first and last birth

Figure 3.2 and 3.3 shows histogram of age at first and last birth, respectively. The
average age of first birth is 26.27 years, while the average age of last birth is 32.45
years. For women with one child, age of first and last birth is identical, this applies
to 10326 women. It is reasonable to assume that a combination of age at first birth
and parity is correlated to age at last birth. There are 14632 missing values for both
age at last and first birth, this seems likely since 11063 women are registered as
childless. Age at last birth relates to the last child born before the woman attended
the screening program. For premenopausal women this will not necessarily coincide
with their actual last birth.

Age at first birth
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Figure 3.2: Histogram of age at first birth.

Age at last birth
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Figure 3.3: Histogram of age at last birth.

Table 3.1 shows that high parity is associated with early first birth and late last
birth. Low parity is associated with late first birth and early last birth. Obviously,
late age at first birth is associated with late age at last birth.

Age at first birth Mean parity (SD) Age at last birth Mean parity (SD)
< 20 yr 3.62 (2.04) < 20 yr 1.08 (0.28)
20-24 yr 3.09 (1.70) 20-24 yr 1.53 (0.71)
25-30 yr 2.47 (1.34) 25-30 yr 2.07 (0.99)
30-34 yr 2.08 (1.10) 30-34 yr 2.61 (1.27)
35-40 yr 1.62(0.85) 35-40 yr 3.25 (1.67)
40 + yr 1.20 (0.48) 40 + yr 4.09 (2.29)

Table 3.1: Brief overview of data by reproductive variables.
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Parity

Number of births

F
re

q
u
e
n
cy

0
5
0
0
0

1
0
0
0
0

2
0
0
0
0

0 5 10 15

Figure 3.4: Histogram of parity by the
first of january, 1961.

Parity refers to the number of times
a woman has given birth. A multiple
pregnancy counts the same as a preg-
nancy with one embryo. A nulliparous
woman is a woman who has never com-
pleted a pregnancy beyond 20 weeks,
while a multiparous woman is a woman
with more than one pregnancy com-
pleted. In this dataset, the average par-
ity is 2.25. A histogram of parity can be
seen in Figure 3.4. There are missing in-
formation about parity for 1272 women.

3.2.3 Demographic variables

Marital status

Marital status is divided into 10 different subgroups, never married, married, widow,
separated and various combinations of these variables. The number of observations
in each group are very unevenly distributed, it is for example 49734 observations in
one group while another has 8 observations. For this reason, convergence problems
occur and further grouping is needed. The new grouping of marital status will be;
never married, married and separated / widow. 264 women did not answer the
question about marital status.

Residence

Figure 3.5: Study areas.

Nord-Trøndelag, Vestfold and Vest-
Agder are three of 19 Norwegian coun-
ties. Figure 3.5 shows their loca-
tion. It is reasonable to assume
that there will be differences in dis-
ease prevalence for different counties
due to inheritance and kinship. Ta-
ble 3.2 shows a brief summary of
the variable county. The informa-
tion indicates that the risk of can-
cer is approximately the same in
each of the three relevant coun-
ties.
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Nord-Trøndelag Aust-Agder Vestfold
Participants 21142 13418 26897
Breast cancer 1201 715 1491
Uterine cancer 323 204 407
Ovarian cancer 266 198 379
Fraction cancer 8.5 % 8.3 % 8.5 %

Table 3.2: Brief overview of data by residence.

Residence is also recorded as either urban or rural place, 12956 with urban residence
and 48501 with rural. Neither Nord-Trøndelag, Vestfold nor Vest-Agder has any big
cities, it is therefore reasonable to assume that the differences between the popula-
tion in urban and rural residence is small.

Occupational socioeconomic status

Occupation is recorded as either own or husband’s occupation and divided into 7
different subgroups; professional/private enterprise, clerical work, fishing/ship offi-
cer/cress, farm & forestry work, industrial work, domestic & other work and not
specified work. There seems to be about as many women in each occupational group.

3.2.4 Height and weight

Information regarding height and weight were assigned to the study in the years
1963 - 1975 by a health survey organized by the Mass Radiography service. Many of
the women did not participate in this survey, hence there are a lot of missing values
when it comes to height and weight, more precisely 12481.

At the examination, height was measured in the nearest centimeter and weight
was measured to the nearest kilogram. 1693 women are registered with some sort
of ”disabilities” such as lame, pregnant, bent neck, back or knees. These disabilities
are natural biases in a population and will not be classified as errors, the women
will therefore not be removed from the analysis. It is also reasonable to assume that
the weight will vary during a longer period of time, and one may therefore get some
faults in the analysis.

Body Mass Index (BMI) is used to estimate a healthy body weight relative to a
person’s height. It is defined as weight in kilograms divided by the square value of
height in meters (kg/m2) and is commonly used to classify under-weight, overweight
and obesity in adults.

The World Health organization [3], classifies BMI into under-weight (< 18.5 kg/m2),
normal range (18.5 kg/m2 - 24.99 kg/m2), overweight(≥ 25 kg/m2) and obese (≥ 30
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kg/m2). This classification will partly be used in the analysis, with the exception
that under-weight and normal range are further grouped into lean (< 25 kg/m2).

BMI
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Figure 3.6: Histogram of BMI.

A histogram of BMI for the partici-
pants is given in Figure 3.6. The av-
erage BMI for the participants is 26.47
kg/m2. Table 3.3 summarize parts of
the information available on BMI. It is
clear from the table that high body mass
index is related to early menarche, late
menopause and high parity. Compar-
ing fraction of obese women with frac-
tion of women with ovarian cancer indi-
cates that ovarian cancer is associated
with low BMI. By the same comparison
it seems like the risk of uterine cancer is associated with obesity.

BMI Lean Overweight Obese
Occurrence 19812 19906 9258
Fraction, % 40.5 40.6 18.9
Mean BMI, kg/m2 (SD) 22.15(1.68) 26.74(1.37) 32.71 (2.97)
Given breast cancer, % 38.2 41 20.8
Given uterine cancer, % 32.4 40.2 27.4
Given ovarian cancer, % 44.2 40.1 14.8
Mean number of births (SD) 1.95 (1.55) 2.30 (1.76) 2.64 (1.99)
Mean age menarche, yr (SD) 14.34(1.40) 14.17 (1.39) 13.98 (1.40)
Mean age menopause, yr (SD) 47.96 (4.37) 48.31 (4.21) 48.34 (4.30)

Table 3.3: Summary of available information on BMI.

3.2.5 Reproductive period

The reproductive period is the period between menarche and menopause. In HUNT0,
there exist information about the age of menarche for most of the women, except
1678. The average age for menarche was 14.22 years. Figure 3.7 shows a histogram
of age at menarche. Many of the women are too young to have been through
menopause by the examination date, it follows many missing values, more precisely
40398. Consequently, information on some of the reproductive variables may be
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incomplete, as for example age at last birth and number of births. The average age
at menopause in this cohort is 48.26 years. A histogram of age at menopause can
be seen in Figure 3.8.
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Figure 3.7: Histogram of age at menarche

Age at menopause
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Figure 3.8: Histogram of age at
menopause.

There exist information on ”duration from menarche to first birth” and ”duration
from last birth to menopause”, these variables are however found to be strongly
correlated to ”age at first birth” and ”age at menopause”, respectively. Hence, they
will not be studied further in this analysis.

3.2.6 Lactation

Lactation is collected as the length of lactation (in months) for the first, second
and third child. The mean duration of lactation is also collected. 4160 women have
not breast-fed, this is approximately 9.5 % of parous women. The average length
of lactation is 5.85 months. There is no information regarding lactation for 16654
women, this can be explained by the fact that 11063 women are childless.

3.2.7 Abortion

HUNT0 contains information of number of abortions. The explanatory variable
Abortion is divided into 10 subgroups, 0 to 9 abortions. It is not distinguished
between spontaneous abortion or induced abortion. In order to avoid convergence
problems, Abortion will be regrouped into ”abortion” or ”no abortion”. 11846 women
have carried out an abortion, while 47268 have not. There is missing information
about abortion for 2343 women.
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Chapter 4

Competing risks

HUNT0 provides ideal material for competing risks analysis because of thorough
follow-up of cancer occurrences by the Cancer Registry of Norway [1], and almost
85 percent registered deaths. Considering every cancer cause as a competing event
will be complicated and meaningless due to lack of observations is each group. Three
competing risks with similar risk factors are chosen for this analysis, they will be pre-
sented in the following. Information regarding cancer occurrences, incidence rates
and prevalence in Norway is selected from the Cancer Registry of Norway [1].

4.1 Breast cancer

4.1.1 General information about breast cancer

The World Health Organization, WHO [3] states that breast cancer is the most
common cancer in women worldwide and it comprises 16 % of all female cancers.
In Norway, there were 2763 new cases in 2008, which is approximately 23 % of all
female cancer diagnosis in 2008. This makes it the most common female cancer in
Norway. The cumulative risk of developing cancer by age 75 in Norway is 8.1 %.
Men can also get breast cancer, though it is a rare case. 21 Norwegian men got a
breast cancer diagnosis in 2008.

Figure 4.1 shows the average number of new breast cancer cases and the average
age specific incidence rate per 100 000 person years in Norway from 2004 to 2008.
The data is divided into age groups of five years. The incidence rate is defined as
the number of new cases of a disease in a population within a defined time period,
it indicates the risk of the disease. As the figure shows, the risk increases with age
and approximately 80 % of women affected are over 50 years. The risk is highest in
the age group 65-69 years. The risk is very low for women younger than 30 years,
it comprises only 0.4 % of registered breast cancer cases. Most breast cancers cases
occur in the years around menopause, 50-65 years.

33



34 CHAPTER 4. COMPETING RISKS

0
10

0
20

0
30

0

Age at diagnosis

Nu
m

be
r o

f n
ew

 ca
se

s/I
nc

ide
nc

e 
ra

te

20
−2

4

25
−2

9

30
−3

4

35
−3

9

40
−4

4

45
−4

9

50
−5

4

55
−5

9

60
−6

4

65
−6

9

70
−7

4

75
−7

9

80
−8

4

85
+

New cases

Incidence rates

Figure 4.1: Average number of new breast cancer cases and age specific incidence
rate per 100 000 person years in Norway from 2004 to 2008.

Figure 4.2 shows the incidence rates of breast cancer per 100 000 person years
from 1954 to 2008, divided into 5 year periods. It is obvious from the figure that
the number of breast cancer cases in Norway has increased rapidly the recent years.
The incidence rate have doubled (from 36.6 to 74.7), and the number of cases have
tripled from a average of 868 new cases in 1954-1958 to an average of 2753 new cases
in 2004-2008.
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Figure 4.2: Average incidence rate per 100 000 person years, breast cancer, 1954 to
2008.
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The probability of surviving breast cancer has also changed in recent years. The
probability of surviving breast cancer in the period 1969 to 1973 was 65.2 % in aver-
age, while it was 87.8 % in the period 2004 to 2008. A large part of the increase may
be due to the introduction of mammography screening in the early 2000’s. Earlier
diagnosis gives better prognosis.

Prevalence data relates to the number of people in a defined population alive at
a specific time with a specific diagnosis. In Norway, 34890 women with a breast
cancer diagnosis were alive on the 31.12.2008. Out of these women, 13674 had lived
with the diagnosis for more than 10 years.

4.1.2 Current knowledge

Despite an enormous research effort, the epidemiology of breast cancer is only par-
tially understood. There is however some well known risk factors to be aware of.

The risk of breast cancer is strongly related to age. It is a doubling in risk for
every 10th year until the menopause, thereafter the rate of increase slows dramati-
cally, [27].

The incidence of breast cancer differs strongly among countries. The incidence rate
may be up to five times higher in developed countries compared to less developed
countries. It has been recorded increased occurrence of breast cancer for people
who move from an area of low incidence to areas with high incidence, hence the
environmental factors are of greater importance than the genetic factors, [27].

Much research attention is focused on reproductive factors and many researchers
have found that the risk of breast cancer decreases among multiparous women com-
pared to nulliparous women, [20, 31]. Age at first birth has long been considered the
major reproductive risk factor in breast cancer, with increasing risk for increasing
age at first birth, [27, 31]. Kv̊ale and Heuch [17] observed that there is no initial
significant association between risk of breast cancer and age at last birth. There is
however a significant reduced risk if adjusted for parity, the relationship is described
as very complex.

A number of studies have concluded that early menarche and late menopause (long
reproductive period) increase the risk of breast cancer, [19, 4].

It has been proven that there is accumulation of breast cancer in some families
and that up to 10 % of breast cancer cases in Western countries are related to inher-
itance. A family history of breast cancer in a first degree relative (mother, sister or
daughter) before the age of 50 has been associated with approximately a doubling
of risk, [27].
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Several studies have shown that obesity is associated with increasing risk of breast
cancer in postmenopausal women, and decreasing risk for premenopausal women,
[27, 4].

Some studies have found that there is a slight reduction in risk of breast cancer
for breast-feeding women, [4]. Kv̊ale and Heuch [18] reached the same result, but
their overall impression, based on data, was that breast feeding is not strongly re-
lated to the risks of breast cancer.

Other risk factors have also received attention among researchers, as for example
alcohol intake, healthy diet, oral contraceptive use, hormone replacement therapy,
birth weight, previous benign breast disease, radiation and lack of exercise. These
factors not are studied further in this analysis.

4.1.3 Breast cancer in HUNT0

During 48 years of follow up, approximately 5.55 % of the population (3407 women)
was diagnosed with breast cancer. A histogram of number of breast cancer cases for
each age is shown in Figure 4.3. Compared to the age distribution in Figure 4.1, it
is obvious that the average age of breast cancer is displaced.

The Cancer Registry of Norway [1] states that the average age at breast cancer
diagnosis in Norway in 2008 was 61.5 years. The average age in HUNT0 is 69.5
years. The difference can be explained by several factors. Information from the
Cancer Registry comes from an open population, i.e. the entire population with the
”flow” of people who are born and die. HUNT0 is a closed population, it is limited
to women born between 1886 and 1928 who were alive in 1960. This means that
all women who developed breast cancer before 1960 or died of the disease before
1960 are not included. This will, because of the age distribution, almost exclude all
women with a diagnosis before the age of 70 years, which will affect the average age
considerably.

Another factor that might affect the average age is the introduction of breast screen-
ing with mammography of women aged 50-69 years in Norway in the early 2000’s.
The women in HUNT0 have not been screened because they are too old. Screen-
ing leads to earlier detection of tumors, which also lower the average age at diagnosis.

Hormone supplements during menopause increase the risk of breast cancer and the
growth rate of tumors. During the last 20-30 years, hormone supplement has be-
come more common in Norway. Tumors that grow faster are detected earlier and a
lower average age follows.
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Figure 4.3: Histogram of age by breast
cancer diagnosis in HUNT0.
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Figure 4.4: Incidence rate of breast cancer
per 100 000 person year.

Figure 4.4 shows the incidence rates of breast cancer for different ages, the shape is
approximately similar to the incidence curve in Figure 4.1, with the exception that
the peak point is shifted, as explained above. The plot is smoothed by taking the
average of the two nearest ages on both sides.

4.2 Cancer of the Uterus

4.2.1 General information about uterine cancer

Cancer of the corpus uteri is the fourth most common cancer in women in Norway
with 716 new cases diagnosed in 2008, accounting for approximately 6% of all female
cancers. The cumulative risk of developing uterine cancer by age 75 for Norwegian
women is 2.1 %. Cancer research UK [4] states that uterine cancer is primarily a
cancer of the developed world with incidence rates double those of the less developed
countries.

Figure 4.5 shows the average number of new uterine cancer cases and the average
age specific incidence rates in Norway from 2004 to 2008 divided into age groups of
five years. From the figure it can be seen that the risk of uterine cancer increases
with increasing age. The majority of cases are diagnosed in women older than 50
years (92.5 % of the cases). Women younger than 50 years are relatively rarely
affected by the disease. The incidence rate decreases after the age of 70-74 years.
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Figure 4.5: Average number of new breast cancer cases and age specific incidence
rates in Norway from 2004 to 2008.

The risk of developing uterine cancer has increased steadily the last 50 years, from
an average of 159 new cases in 1954-1958 to an average of 677 new cases in 2004-
2008. The incidence rate has doubled in the same period, see Figure 4.6.
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Figure 4.6: Average incidence rate per 100 000 person years, uterine cancer, 1954 to
2008.

Uterine cancer is the most common gynecologic cancer in Norway, with 716 out
of 1565 new cases (approximately 46 %) in 2008. In many patients the disease is
detected at an early stage, this provides good opportunities of healing. By the end
of 2008, 8414 Norwegians had a uterine cancer diagnosis, approximately 45 % had
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lived with the disease for more than 10 years. The probability of surviving uterine
cancer in the period 2004 to 2008 was 83.2 %.

4.2.2 Current knowledge

With current knowledge one cannot directly point out the cause of uterine cancer.
There exists knowledge about factors that may increase or decrease the risk of uter-
ine cancer.

Kv̊ale, Heuch and Ursin [22] among other [26, 8] have studied the relationship be-
tween uterine cancer and reproductive factors. The risk of uterine cancer decreases
with increasing parity and with increasing age at first and last birth. They also
found a significant association with age at menarche and menopause, with the high-
est risk for women with long reproductive period, i.e. late menopause and/or early
menarche.

A follow up of 1 million Norwegian women [6] showed that overweight/obesity is
associated with increasing risk of uterine cancer, with a relative risk of 2.51 (95 %
CI: 2.38 - 2.66) for obese women compared to lean women.

The Norwegian Cancer Society [5] mention hypertension, family history, prolonged
exposure of estrogen and diabetes as other risk factors, they are not studied further
in this analysis.

4.2.3 Uterine cancer in HUNT0

Approximately 1.5 % (934 women) of the participants was diagnosed with uterine
cancer during follow-up. The average age at diagnosis was 67.7 years. The high
average age can be explained by the fact that HUNT0 is a closed population, see
Section 4.1.3.

Figure 4.7 shows a histogram of age by diagnosis. The plot seems to have a similar
shape as Figure 4.5 which shows the age distribution for uterine cancer occurrences
in Norway in 2004-2008. The incidence rate for each age can be seen in Figure 4.8.
The figure shows a similar, but shifted, pattern compared to the incidence rate curve
in Figure 4.5. The plot is smoothed by taking the average of the two closest ages
on both sides.
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Figure 4.7: Histogram of age by uterine
cancer diagnosis in HUNT0.
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Figure 4.8: Incidence rate of uterine can-
cer per 100 000 person year.

4.3 Ovarian cancer

4.3.1 General information about ovarian cancer

Cancer Research UK [4], states that there were more than 225,000 new cases of
ovarian cancer diagnosed worldwide in 2008. This is approximately 4% of all can-
cers diagnosed in women. In Norway, there were 457 new cases of ovarian cancer
in 2008. This makes it the sixth most common cancer in Norwegian women, with
approximately 3.8 % of all cancer cases. The cumulative risk of developing cancer
by age 75 in Norway in 2008 was 1.3 %.

Figure 4.9 shows the average number of new ovarian cancer cases and average age
specific incidence rates per 100 000 person years in Norway from 2004 to 2008 di-
vided into age groups of five years. The figure shows that ovarian cancer is mainly
a disease of older, postmenopausal women. The highest incidence rates are found
among women aged 75-84. Over 85 % of all cases are diagnosed in women over 50
years.

In the recent years, the number of new ovarian cancer cases in Norway has stabi-
lized with approximately 650-700 new cases each year. The incidence rate of ovarian
cancer had a peak around year 1984-1993 and has since then decreased, (see Figure
4.10).

The symptoms of ovarian cancer are vague and the disease is therefore difficult to
detect. For many patients the cancer has already spread when the cancer is di-
agnosed. This makes the treatment more difficult and the prognosis worse. The
survival percent has been stable around 40 % since 1969. By the end of 2008, 4095
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Figure 4.9: Average number of new ovarian cancer cases and age specific incidence
rate per 100 000 person years in Norway from 2004 to 2008.
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Figure 4.10: Average incidence rate per 100 000 person years, ovarian cancer, 1954
to 2008

women in Norway were alive with an ovarian cancer diagnosis, 2028 had lived with
the cancer for more than 10 years.

4.3.2 Current knowledge

With current knowledge, it is incomprehensible why the normal cells in an ovary
develop into cancer. There are, however, some known risk factors to be aware of.
The risk of getting ovarian cancer increase with age as ovarian cancer often develops
after menopause.
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Reproductive factors and the risk of ovarian cancer has been a major area of re-
search and most researchers agree that high parity is associated with a decreased
risk of ovarian cancer, [13, 33, 21]. Previous reports of age at birth and ovarian can-
cer risk have been inconsistent. Kv̊ale, Heuch and Beral [21] states that age at first
or last birth is not associated with ovarian cancer risk. Titus-Ernstoff [33] states
the opposite, that age at first and last birth is associated with (reduced) ovarian
cancer risk. The scientists are however consistent when it comes to age at menarche
or menopause, it is not associated significantly with ovarian cancer risk.

The risk of getting ovarian cancer is found to be lower for women who have breast
fed relative to those who have not, but the average duration of breast feeding is not
found to be associated with ovarian cancer risk, [33].

Other known risk factors are tobacco use, oral contraceptives use, a previous cancer
diagnosis, inherited gene mutation and hormone replacement therapy for menopause.
These factors are not studied further in this analysis.

4.3.3 Ovarian cancer in HUNT0

During almost 50 years of follow up, approximately 1.4 % (843 women) of the cohort
were diagnosed with ovarian cancer. The average age at diagnosis is approximately
68 years. Figure 4.11 and 4.12 shows histogram of number of ovarian cancer cases
and incidence rate for each age, respectively. The figures show the same trend as
the rest of Norway in 2004-2008, see Figure 4.9. The incidence rate plot is smoothed
by taking the average of the relative age and the two nearest ages on both sides.
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Figure 4.11: Histogram of age by ovarian
cancer diagnosis.
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Chapter 5

Explanatory data analysis

This chapter provides an insight into how each risk factor seems to influence the
selected forms of cancer. A comparison of four different regression methods will also
be performed. A more comprehensive analysis follows in Chapter 6 and 7.

5.1 Parity

As mentioned in Section 4.1.2, low parity is associated with increasing risk of breast,
uterine and ovarian cancer. Figure 5.1 shows the average parity for each age, divided
into four graphs; the risk set (Cox) and the cancer occurrences of breast, uterine
and ovarian cancer. The graphs of the cancer cases are smoothed by taking the
average of the relevant age and the four nearest ages. This applies to all similar
plots in the rest of this chapter. In the plot it can be seen that the average parity
for women diagnosed with cancer is evidently lower than the average of the risk set.
The graphs of the cancer cases are not adjusted for the number of persons at risk
at each age, hence the figure may give distorted impressions.
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Figure 5.1: Average parity for the population and the cancer occurrences.
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Local estimation of the coefficients in Approximate Cox regression for each compet-
ing event can be seen in Figure 5.2, with accompanying smoothing. The estimated
coefficients are calculated by equation (2.28). The thick, black unbroken line indi-
cates the zero-line. The plot shows that the coefficients, βd, corresponding to breast
and uterine cancer are approximately constant and equal to -0.1. Ovarian cancer
seems to have a increasing βd coefficient, a time dependent covariate or a division
of the data set is therefore desirable, see Figure 5.2(c). However, there are appar-
ently few ovarian cancer cases in the younger part of the cohort and the smooth
parameter weights each point equivalently, the trend may therefore be ignored.
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Figure 5.2: Local estimation of coefficients in Approximate Cox regression, parity.
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Figure 5.3: Average parity for four differ-
ent risk sets.

The risk set in Fine and Grey’s propor-
tional subdistribution hazard, (2.15),
is extended with failures of competing
events prior to the relevant time. Figure
5.3 shows the average parity for four risk
sets; the risk set in Cox regression and
the risk set for each of the three compet-
ing events in the proportional subdistri-
bution hazard. Low parity increases the
risk of breast, uterine and ovarian can-
cer. Hence, the average value of par-
ity is reduced when the previous can-
cer occurrences of competing events are
included in the risk set, as the figure
shows. There are 3407 cases of breast
cancer, 934 of uterine cancer and 843 of
ovarian cancer. Clearly, the risk set for
uterine and ovarian cancer will be more extended then the risk set of breast cancer,
see figure 5.3. This may lead to a larger difference between the estimated coefficients
in Cox proportional hazard and the proportional subdistribution hazard for uterine
and ovarian cancer compared to breast cancer.

Table 5.1 summarize the estimated coefficients in Cox proportional hazard model
and the proportional subdistribution hazard model, with a corresponding standard
deviation and p-value for parity. The estimates are not adjusted for any other co-
variates except age. The parameters are estimated by four methods; Cox regression,
regression on the subdistribution hazard functions (see Section 2.4.2), Approximate
Cox regression for general distribution of the covariates (see Section 2.6.5) and Ap-
proximate Fine and Grey regression. Each method seems to give approximately the
same result, hence they are tantamount.

Overall, parity seems to affect the risk of breast, uterine and ovarian cancer. It
is therefore recommended to include parity as a covariate in the model that de-
scribes the effect of covariates on the selected cancer types.

5.2 BMI

Figure 5.4 shows the average BMI for the cancer occurrences and the risk set (Cox)
for each age. The figure indicates that the average BMI for women diagnosed with
uterine cancer is considerably higher than the average BMI for the population at
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Parity

Method Coef Exp(coef) S.D.(coef) P-value

Breast cancer

Cox -0.106 0.899 0.011 <2e-16
App. Cox -0.097 0.908 0.010 < 2e-16
Fine & Grey -0.102 0.903 0.011 < 2e-16
App. F & G -0.097 0.908 0.010 < 2e-16

Uterine cancer

Cox -0.104 0.901 0.021 7.43e-07
App. Cox -0.095 0.909 0.020 6.46e-07
Fine & Grey -0.097 0.908 0.021 4.15e-06
App. F & G -0.095 0.910 0.019 8.30e-07

Ovarian cancer

Cox -0.171 0.843 0.023 2.72e-13
App. Cox -0.148 0.862 0.020 2.65e-13
Fine & Grey -0.165 0.848 0.023 1.98e-12
App. F & G -0.148 0.863 0.020 3.50e-13

Table 5.1: Estimated coefficients of parity with corresponding standard deviation
and p-value computed by four methods.

risk. Low BMI in premenopausal women seems to be associated with increasing risk
of breast cancer. The opposite result applies for postmenopausal women, where high
BMI seems to increase the risk of breast cancer. The figure indicates that ovarian
cancer risk is unrelated to BMI. However, the graphs of the cancer occurrences are
not weighted for the number of women at risk at each age, the figure may therefore
give misleading indications.
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Figure 5.4: Average BMI for the population and cancer occurrences.



5.2. BMI 47

Local estimation of the regression parameters, βd, in Approximate Cox regression
(2.28) suggests that a time dependent covariate or separate analysis for pre and
postmenopausal women is desirable when breast cancer is the cause of interest, see
Figure 5.5(a). For uterine and ovarian cancer, a time independent covariate is suf-
ficient as the smoothing lines seems constant, see Figure 5.5(b) and 5.5(c).
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Figure 5.5: Local estimation of coefficients in Approximate Cox regression, BMI.
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Figure 5.6: Average BMI for four different
risk sets.

Figure 5.6 shows the average BMI of the
population at risk and the risk set in
Fine and Grey’s method, (2.15). The
figure shows that the four risk sets are
almost equal. This can be explained
by the fact that BMI has the oppo-
site effect on ovarian and breast can-
cer risk compared to uterine cancer
risk.

Table 5.2 shows the estimated coef-
ficients of BMI with standard devia-
tion and p-value for each competing
event, computed by the four methods
described earlier. The estimates are not
adjusted for any of the other explana-
tory variables except age. Regression on
the cause specific hazard functions and the subdistribution hazard functions gives
approximately the same result.

Overall, the risk of cancer seems to be related to BMI, it is therefore recommended
to include BMI as a covariate in the optimal model. Separate analysis for pre and
postmenopausal women is also recommended.

BMI

Method Coef Exp(coef) S.D.(coef) P-value

Breast cancer

Cox 0.019 1.019 0.004 2.62e-05
App. Cox 0.019 1.020 0.005 2.53e-05
Fine & Grey 0.018 1.019 0.004 3.64e-05
App. F & G 0.019 1.019 0.005 2.92e-05

Uterine cancer

Cox 0.064 1.066 0.008 <2e-16
App. Cox 0.073 1.076 0.009 <2e-16
Fine & Grey 0.065 1.067 0.008 <2e-16
App. F & G 0.073 1.076 0.009 <2e-16

Ovarian cancer

Cox -0.016 0.985 0.010 0.112
App. Cox -0.015 0.985 0.010 0.113
Fine & Grey -0.015 0.985 0.010 0.116
App. F & G -0.015 0.985 0.010 0.109

Table 5.2: Estimated coefficients of BMI with corresponding standard deviation and
p-value computed by four methods.
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5.3 Age at first birth

The average age at first birth for the population at risk and the cancer occurrences
can be seen in Figure 5.7. Women with a breast cancer diagnosis seem to have a
higher average age at first birth than the population. The opposite effect applies
to uterine cancer, where the average age at first birth is lower than the population.
Ovarian cancer risk seems to be unrelated to age at first birth.
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Figure 5.7: Average age at first birth for the population and the cancer occurrences.

Plots of the local βd parameters in Approximate Cox regression indicate that age
at first birth is a time-independent covariate for all the competing events, the plots
are not included here.

Table 5.4 shows the estimated coefficients in Cox proportional hazard and propor-
tional subdistribution hazard with standard deviation and p-value for age at first
birth, computed by the four methods described earlier. The estimates are not ad-
justed for any explanatory variables except age. The table suggests that the four
estimation methods gives approximately the same result and also coincide with the
trends mentioned above.

5.4 Age at last birth

By comparing the average age at last birth for the the population at risk with the
average age at last birth for women diagnosed with cancer, (see Figure 5.8), it seems
likely that early age at last birth increases the risk of uterine and ovarian cancer,
but is unrelated to breast cancer risk.
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Age at first birth

Method Coef Exp(coef) S.D.(coef) P-value

Breast cancer

Cox 0.024 1.024 0.004 1.44e-09
App. Cox 0.024 1.025 0.004 4.10e-10
Fine & Grey 0.025 1.025 0.004 7.71e-10
App. F & G 0.024 1.025 0.004 4.81e-09

Uterine cancer

Cox -0.028 0.972 0.008 0.0006
App. Cox -0.028 0.973 0.008 0.0005
Fine & Grey -0.029 0.972 0.008 0.0005
App. F & G -0.028 0.973 0.008 0.0004

Ovarian cancer

Cox 0.016 1.016 0.008 0.06
App. Cox 0.016 1.016 0.008 0.05
Fine & Grey 0.016 1.016 0.008 0.05
App. F & G 0.016 1.016 0.008 0.07

Table 5.3: Estimated coefficients of age at first birth with corresponding standard
deviation and p-value computed by four methods.
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Figure 5.8: Average age at last birth for the population and the cancer occurrences.

Local estimation of the βd coefficients in Approximate Cox regression show constant
negative parameters when uterine and ovarian cancer are the cause of interest. Age
at last birth seems to be unrelated to breast cancer risk, with an estimated coeffi-
cient approximately equal to 0. The plots are not included here.

Table 5.4 support the conclusions drawn from Figure 5.8, that early age at last
birth increases the risk of uterine and ovarian cancer, but is unrelated to breast
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cancer risk. Each of the four estimation methods seems to give approximately the
same result.

Age at last birth

Method Coef Exp(coef) S.D.(coef) P-value

Breast cancer

Cox 0.001 1.001 0.004 0.863
App. Cox -0.0005 0.999 0.004 0.843
Fine & Grey 0.002 1.002 0.004 0.602
App. F & G 0 1 0.004 0.939

Uterine cancer

Cox -0.048 0.953 0.007 1.81e-11
App. Cox -0.048 0.953 0.007 7.03e-12
Fine & Grey -0.046 0.955 0.007 9.97e-11
App. F & G -0.048 0.953 0.007 8.06e-12

Ovarian cancer

Cox -0.018 0.982 0.008 0.019
App. Cox -0.018 0.982 0.008 0.014
Fine & Grey -0.016 0.984 0.008 0.038
App. F & G -0.018 0.982 0.008 0.015

Table 5.4: Estimated coefficients of age at last birth with corresponding standard
deviation and p-value computed by four methods.

5.5 Age at menarche

The average age at menarche for women diagnosed with cancer seems to be lower
than the average age at menarche for the population, see Figure 5.9.
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Figure 5.9: Average age at menarche for the population and the cancer occurrences.
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Plots of the local βd parameters in Approximate Cox regression appear to be con-
stant for all competing events, hence a time dependent covariate is not necessary.
The plots are not included here.

Table 5.5 shows the estimated coefficients with standard deviation and p-value com-
puted by the four methods mentioned earlier. The result given in the table coincide
with Figure 5.9, early age at menarche decreases the risk of cancer. The estimates
are not adjusted for any explanatory variables, except age.

Age at menarche

Method Coef Exp(coef) S.D.(coef) P-value

Breast cancer

Cox -0.051 0.951 0.013 5.46e-05
App. Cox -0.052 0.950 0.012 3.42e-05
Fine & Grey -0.047 0.954 0.013 0.0002
App. F & G -0.051 0.950 0.012 3.99e-05

Uterine cancer

Cox -0.126 0.882 0.024 2.34e-07
App. Cox -0.123 0.884 0.024 1.89e-07
Fine & Grey -0.121 0.887 0.024 6.85e-07
App. F & G -0.123 0.885 0.024 2.16e-07

Ovarian cancer

Cox -0.042 0.959 0.025 0.100
App. Cox -0.042 0.959 0.025 0.150
Fine & Grey -0.036 0.965 0.025 0.155
App. F & G -0.041 0.960 0.025 0.099

Table 5.5: Estimated coefficients of age at menarche with corresponding standard
deviation and p-value computed by four methods.

5.6 Age at menopause

Figure 5.10 indicates that late age at menopause increases the risk of breast and
uterine cancer, but not ovarian cancer.

Plots of local βd parameters in Approximate Cox regression (2.28) show a constant
trend for age at menopause, this applies to all the competing events. Hence, a time
dependent covariate is not necessary. The plots are not included here.

Table 5.6 shows the estimated coefficients in proportional cause specific hazard and
proportional subdistribution hazard with standard deviation and p-value calculated
by the four methods mentioned earlier. The table supports the findings from Figure
5.10, that late age at menopause increases the risk of breast and uterine cancer.
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Figure 5.10: Average age at menopause for the population and the cancer occur-
rences.

Age at menopause

Method Coef Exp(coef) S.D.(coef) P-value

Breast cancer

Cox 0.032 1.033 0.009 0.0002
App. Cox 0.030 1.030 0.008 0.0002
Fine & Grey 0.032 1.033 0.009 0.0002
App. F & G 0.031 1.031 0.008 0.0001

Uterine cancer

Cox 0.059 1.061 0.022 0.007
App. Cox 0.052 1.053 0.019 0.006
Fine & Grey 0.060 1.061 0.022 0.007
App. F & G 0.054 1.055 0.019 0.006

Ovarian cancer

Cox -0.004 0.996 0.016 0.802
App. Cox -0.004 0.996 0.016 0.798
Fine & Grey -0.004 0.996 0.016 0.790
App. F & G -0.002 0.998 0.016 0.886

Table 5.6: Estimated coefficients of age at menopause with corresponding standard
deviation and p-value computed by four different methods.

5.7 Other

Variables like lactation, abortion, marital status, occupation and residence have
also been investigated. These variables show no clear trend and are therefore not
commented any further in this chapter.
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Chapter 6

Regression on the cause specific

hazard functions

The aim this chapter is to find a common model that best describes the relationship
between the various explanatory variables and the risk of breast, ovarian or uterine
cancer in the presence of the competing events. A thorough analysis of each cancer
type is given in Chapter 7.

6.1 Model description

The dataset was originally designed to investigate the circumstances surrounding
breast cancer in women. It will be well suited for analysis of cancer in the genital
organs because of similar risk factors. The material is unique due to many explana-
tory variables and observations.

The explanatory data analysis revealed that Cox regression, Approximate Cox re-
gression, ”Fine and Grey regression” (see Section 2.4.2) and Approximate Fine and
Grey regression gives approximately the same result. Cox proportional hazards
model will therefore be used to analyse the relationship between the explanatory
variables and the risk of breast, ovarian or uterine cancer risk in the presence of the
competing events.

It is important to notice that this is not always the case. If there were more
breast, uterine or ovarian cancer cases, the risk set in Fine and Grey’s method
would be larger, and a (possible) increased difference between the estimated co-
efficients in Cox proportional hazard, (2.13), and the proportional subdistribution
hazard, (2.15), would follow.

A large data set is not only an advantage, many of the explanatory variables have
a large number of missing values. Women with missing values are not taken out
of the analysis, but ignored by the statistical software R [2] in analyses where the
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values are missing. In HUNT0, information regarding reproductive factors will be
incomplete for premenopausal women, and a large number of missing values arise.
For instance, age at first or last birth and parity lack information on approximately
1/5th of the participants. A comparison of different models will therefore be difficult
since the data sets differ.

From the explanatory data analysis and current knowledge in Chapter 4, it is known
that reproductive factors, BMI and reproductive period are associated with increas-
ing or decreasing risk of breast, ovarian or uterine cancer. These factors will be
emphasized in a final model in spite of many missing values.

A brief analysis shows that parity + age at first birth and age at last birth are
highly correlated, and that age at first birth is non-significant as an explanatory
variable when age at last birth and parity are included in the model. This applies
to all competing events. Age at first and last birth have the same missing values.
This means that including just one of them will not change the dataset. Age at first
birth will therefore not be included in the selected model to describe the diseases in
spite of the clear trend observed in the explanatory data analysis. Due to the large
amount of missing values (4/5th of the participants), age at menopause will not be
included in the final model but rather described in detail in the next chapter.

From the explanatory data analysis it is known that demographic data, occupa-
tion and marital status are non-significant as explanatory variables for any of the
competing events. These covariates will therefore not be included in the investigated
model.

The selected variables in the optimal model are parity, age at last full term preg-
nancy, BMI and age at menarche. All of them are treated as continuous covariates.
Some of the variables will probably be unnecessary or non-significant in describing
the risk of breast, ovarian or uterine cancer. However, all of them are included be-
cause they are important for at least one of the three competing events. Interaction
terms between the covariates have been tested out, these are found to be highly
non-significant and are therefore not included in the model.

The cause specific hazard functions from equation (2.13) are the fitted models. As
mentioned in Section 3.2.1, age is chosen as the relevant time parameter. Alterna-
tively, time after 1961 could have been used with age included as an explanatory
variable. Since the women enter the survey at different ages, left truncation is nec-
essary. The ”follow up” time, t, is calculated as the time from 01.01.1961 until date
of death, cancer diagnosis, emigration or termination date, whichever comes first.

Some women received a cancer diagnosis or died in 1961. Statistical analysis in
R [2] requires a positive difference between entry date and termination date. Hence,
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all women that died or got a breast, uterine or ovarian cancer diagnosis in 1961
are registered with their age in 1962 as ”out-age”. This applies to 27 out of 5184
women, and the error may therefore be neglected. Alternatively, a continuous time
parameter could have been used. A discrete time parameter is more appropriate
and therefore desirable.

With covariates, the model can be written

λd(t; X) = λd0(t)exp
(

βd1parity + βd2agelast+ βd3bmi+ βd4menarche
)

; d = 1, 2, 3.

(6.1)

Table 6.1 shows the estimated coefficients, relative risk, 95 % confidence interval for
relative risk and P-value from Cox regression on model (6.1), with breast, uterine
or ovarian cancer as endpoint. The function coxph from the library survival in the
statistical software R [2] is used to obtain the results.

Parameter estimates

Explanatory variable Coef RR 95 % CI for RR P-value

Breast cancer

Parity β11 -0.141 0.869 (0.838, 0.901) 5.7e-14
Age at last birth β12 0.013 1.013 (1.004, 1.022) 0.004
BMI β13 0.020 1.020 (1.010, 1.031) 0.0002
Age at menarche β14 -0.059 0.942 (0.913, 0.974) 0.0003

Uterine cancer

Parity β21 -0.055 0.946 (0.882, 1.015) 0.12
Age at last birth β22 -0.050 0.951 (0.935, 0.968) 5.71e-08
BMI β23 0.068 1.071 (1.052, 1.090) 3.49e-14
Age at menarche β24 -0.094 0.910 (0.856, 0.969) 0.003

Ovarian cancer

Parity β31 -0.152 0.859 (0.791, 0.932) 0.0003
Age at last birth β32 -0.008 0.992 (0.973, 1.011) 0.41
BMI β33 0 1 (0.977, 1.023) 0.99
Age at menarche β34 -0.035 0.966 (0.902, 1.034) 0.32

Table 6.1: Estimated coefficients, relative risk, 95% confidence interval for relative
risk and p-value for the covariates in model (6.1).

The relative risk, RR, for a continuous covariate is the effect of one unit increase
while all other parameters are kept constant. A relative risk approximately equal to
one implies a non-significant term.

In Cox proportional hazards model it is a necessity that the cause specific haz-
ard functions are proportional. A Schoenfeld residual plot can be used to check for
lack of fit over time for continuous covariates. The residuals should not indicate any
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pattern and should have a local mean around 0. Figure 6.1 shows Schoenfeld residu-
als when breast cancer is the cause of interest. Similar plots for uterine and ovarian
cancer shows no evident trend, and are therefore omitted. The model assumptions
are fulfilled and model (6.1) is the final model.
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Figure 6.1: Schoenfeld residuals for the four covariates in model (6.1), breast cancer.



Chapter 7

Medical results

7.1 Breast cancer

3407 out of 61457 participants were diagnosed with breast cancer during follow-up.

Analysis of HUNT0 data shows that the risk of breast cancer decreases with in-
creasing parity, with a relative risk of 0.90 (p-value: < 2e-16). This means that each
additional birth reduces the risk of breast cancer with 10 %. If parity is treated as a
categorical covariate, with states 0-5 births (group 5 is 5 births or more), the relative
risk for a woman with 5 or more births compared to a nulliparous woman is 0.52 (p-
value: 2.11e-15). Figure 7.1 shows the cumulative incidence curves for breast cancer
divided into the 6 ”birth-groups”. The function etmCIF in the package etm used
by the statistical software R [2] is used to estimate the non-parametric cumulative
incidence functions from competing risks data in the presence of left truncation and
right censoring. Clearly, many births decreases the risk of breast cancer compared
to few births. Previous studies show similar results, see Section 4.1.2.
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Figure 7.1: Cumulative incidence functions for breast cancer divided into six parity
groups. 59
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Age at first birth is found strongly significant as an explanatory variable with a
relative risk of 1.025 (p-value: 1.44e-09). This means that each year increase in
age at first birth increases the risk of breast cancer with 2.5 %. The relative risk
of breast cancer for women with the first birth later than the age of 30 compared
to first birth before the age of 20 is 1.45 (p-value: 8.91e-06). Obviously early age
at first birth appear protective against breast cancer compared to late age at first
birth. Figure 7.2 shows the cumulative incidence functions for breast cancer divided
into four first birth categories. The figure emphasizes the result mentioned above.
Previous studies show similar results, see Section 4.1.2.
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Figure 7.2: Cumulative incidence functions for breast cancer divided into four age
at first birth groups.

Separate analysis for pre and postmenopausal women shows that age at first birth
is non-significant as an explanatory variable for postmenopausal women. For pre-
menopausal women, the risk of getting breast cancer increases with approximately
3 % for each additional year in age at first birth (p-value: 1.27e-08).

As mentioned in Section 4.1.2, the relationship between age at first birth, age at
last birth and parity is very complex and the variables are strongly correlated. The
significant association between age at first birth and breast cancer risk is weakened
when adjusted for parity. Further adjustment for age at last birth makes age at first
birth non-significant as an explanatory variable.

Age at last birth showed initially no association with breast cancer risk and is
not significant as an explanatory variable. After additional adjustment for parity, a
significant association emerges with a relative risk of 1.02 for each additional year
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in age at last birth (p-value: 3.98e-05). The relative risk of breast cancer for women
with the last birth after the age of 40 compared to younger than 20 years is 1.30
(p-value: 0.009). Early last birth is protective against breast cancer compared to
late last birth. Further adjustment for BMI emphasizes the result.

A significant increase in breast cancer risk is observed with increasing age at menopause,
with a relative risk of 1.03 (p-value: 0.0002). This corresponds to an increasing risk
of breast cancer by 3 % for each additional year in age at menopause. Adjustments
for parity and age at last birth does not influence this estimate considerably.

A significant association between breast cancer risk and age at menarche is ob-
served with a relative risk of 0.95 (p-value: 0.0005). This estimate corresponds to
an average decrease in breast cancer risk with 5 % for each year increase in age at
menarche. The effect of age at menarche on breast cancer risk is still obtained in
the analysis after additional adjustment for parity, age at last birth and BMI.

The risk of getting breast cancer increases with increasing BMI, with a relative
risk of 1.02 (p-value: 2.62e-05) for each unit increase in BMI. Obese women have a
relative risk of 1.25 (p-value: 1.44e-05) compared to lean women. Figure 7.3 shows
the cumulative incidence functions for breast cancer. The graph is divided into lean,
overweight and obese women. The figure shows that obese women have the lowest
risk of breast cancer before menopause, and the highest risk after menopause.
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Figure 7.3: Cumulative incidence functions for breast cancer, divided into normal,
overweight and obese women.

The explanatory data analysis suggests that high BMI have different effect on breast
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cancer risk for pre and postmenopausal women. Separate analysis for women that
have undergone menopause (or passed 55 years) is therefore desirable. The risk of
getting breast cancer for postmenopausal women increases with increasing BMI (RR
per unit increase in BMI = 1.03, p-value: 0.0005). Compared to postmenopausal
women with normal BMI, overweight and obese women have a relative risk of 1.19
(p-value: 0.06) and 1.38 (p-value: 0.002), respectively. Adjustments for parity en-
hance the result. Further adjustment for age at menarche and age at last birth
makes BMI non-significant as an explanatory variable and the trend vanish. In
spite of the indications in the explanatory data analysis, BMI have the same effect
on pre and postmenopausal women. In premenopausal women, the relative risk for
each unit increase in BMI is 1.02 (p-value: 0.0005). The trend seems to be weaker
for premenopausal women compared to postmenopausal women. The relative risk
for obese premenopausal women compared to lean premenopausal women is 1.27
(p-value: 9.76e-5). No evident association is found for overweight women.

In Section 4.1.2 lactation was mentioned as a possible risk factor for breast can-
cer. In this study, lactation is not found to influence the risk of breast cancer.

Women that have undergone an abortion have a decreased risk of getting breast
cancer compared to women that have not (RR = 0.91, p-value = 0.04). Adjustment
for parity makes the association to vanish.

7.2 Uterine cancer

Among the 61457 women who attended the screening program, 934 cases of uterine
cancer were diagnosed.

The risk of uterine cancer decreases with increasing parity, with a relative risk of 0.9
for each additional birth (p-value: 7.43e-07). The association is strengthened when
adjusting for age at first birth. A woman with five or more births have a relative risk
of 0.52 (p-value: 3.06e-05) compared to a nulliparous woman. Figure 7.4 shows the
cumulative incidence functions for uterine cancer divided into six groups, 0-4 births
and 5 or more births. The figure shows how multiparous women have a decreased
risk of getting uterine cancer. Current knowledge on uterine cancer risk show similar
trends, see Section 4.2.2.

From the explanatory data analysis and Section 4.2.2 it is known that the risk of
uterine cancer decreases with increasing age at first birth. The relative risk for each
year increase in age at first birth is 0.97 (p-value: 0.0006). Women with their first
birth after the age of 30 years have approximately 41 % reduced risk of developing
uterine cancer compared to women that gives the first birth before the age of 20
(p-value: 0.0005). Adjusting for parity strengthen the result.



7.2. UTERINE CANCER 63

40 50 60 70 80 90 100

0.
00

0.
01

0.
02

0.
03

0.
04

Age by diagnosis

C
IF

0 births

1 birth

2 births

3 births

4 births

>= 5 births

Figure 7.4: Cumulative incidence functions for uterine cancer divided into six parity
groups.

Late age at last birth decreases the risk of uterine cancer with approximately 5
% for each additional year (p-value: 1.81e-11). The relative risk of uterine cancer
for women with their last birth after the age of 40 compared to the last birth before
the age of 25 is 0.39 (p-value: 1.20e-06).

As mentioned earlier, the relationship between age at first and last birth is very
complex. Both age at first birth and parity are significant as an explanatory variable
alone, however, adjusting for age at last birth makes both of them non-significant.

The risk of getting uterine cancer increases with approximately 7 % for each ad-
ditional unit increase in BMI (p-value: < 2e-16). Compared to lean women, over-
weight and obese women have a relative risk of 1.25 (p-value: 0.008) and 1.95
(p-value: 1.40e-12), respectively. The association is strengthened by adjusting for
parity. Figure 7.5 show cumulative incidence functions when uterine cancer is the
cause of interest. The figure shows that obese women have about twice the risk of
getting uterine cancer compared to lean women. The same trend has been found in
previous studies, see Section 4.2.2.

High age at menopause is found to increase the risk of uterine cancer, with a relative
risk of 1.06 (p-value: 0.007) for each additional year. This means that each extra
year increases the risk of uterine cancer with approximately 6 % compared to the
year before. The association is weakened when adjusting for BMI or parity, and
strengthened when adjusting for age at last birth. Previous studies have reached
similar results, see Section 4.2.2. Figure 7.6 show the cumulative incidence functions
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Figure 7.5: Cumulative incidence functions for uterine cancer divided into normal,
overweight and obese women.

for uterine cancer divided into groups of age at menopause. The graph emphasizes
the result mentioned above.

40 50 60 70 80 90 100

0.
00

0.
01

0.
02

0.
03

0.
04

Age by diagnosis

C
IF

Age at menopause < 50 years

Age at menopause 50−54 year

Age at menopause > 54 year

Figure 7.6: Cumulative incidence functions for uterine cancer divided into groups
of age at menopause.

Each year increase in age at menarche is found to decrease the risk of uterine can-
cer with approximately 12 % (p-value: 2.34e-07). The result is unchanged when
adjusting for parity and age at last birth. A short reproductive period seems to be
protective against uterine cancer.
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Analyses of marital status show a decreasing risk of uterine cancer for married
women compared to non-married women. This trend vanish when adjusting for
parity, as it is reasonable to assume that single women are childless. Lactating
women have a decreased risk of uterine cancer compared to non-lactating women.
This trend is not significant and vanish when adjusting for other covariates. Neither
occupation, residence, county nor abortion show any specific trends.

7.3 Ovarian cancer

Among 61457 women, 843 cases of ovarian cancer were diagnosed during follow up.

Analysis of HUNT0 data shows that the risk of ovarian cancer decreases with increas-
ing parity, with a relative risk of 0.84 for each additional birth (p-value: 2.72e-13).
This means that each extra birth reduces the risk of getting ovarian cancer by 16
%. The risk of developing ovarian cancer for a woman with five or more births
compared to a nulliparous woman is 0.41 (p-value: 1.54e-07). Adjusting for BMI,
age at last birth and age at menarche does not affect the result noticeably. Figure
7.7 shows the cumulative incidence functions when ovarian cancer is the cause of
interest. The graph is separated into six different groups, 0-4 births and 5 or more
births. The graph emphasizes the result mentioned above. The result is similar to
current knowledge on ovarian cancer risk, see Section 4.3.2. The explanatory data
analysis suggests separate analyses for pre and postmenopausal women. Further
analysis shows that this is not necessary, as the estimated coefficients seem constant
for all ages.
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Initially, BMI was found to be a non-significant explanatory variable for uterine
cancer risk, see Section 5.2. However, when BMI is treated as a categorical variable
(see Section 3.2.4), a significant association between obesity and ovarian cancer risk
emerge with a relative risk of 0.77 for obese women compared to lean women (p-
value: 0.03). The same decreasing trend can be seen for overweight women, with a
relative risk of 0.93, this trend is not significant. Figure 7.8 shows the cumulative
incidence functions for ovarian cancer divided into normal, overweight and obese
women. The figure shows a reduced risk of getting ovarian cancer for obese women
compared to overweight and lean women.
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Figure 7.8: Cumulative incidence functions for ovarian cancer divided into normal,
overweigh and obese women.

Further analysis of BMI shows that for postmenopausal women, high BMI decreases
the risk of getting ovarian cancer with approximately 6 % for each unit increase in
BMI (p-value: 0.003). Adjustment for parity does not alter this result. The relative
risk of getting ovarian cancer for obese postmenopausal women compared to lean
women is 0.42 (p-value: 0.002). The same trend can be seen for overweight women,
however, the trend is not significant. BMI does not show the same trend and is
not significant as an explanatory variable for premenopausal women (p-value: 0.85).
Hence, overweight seems to be protective against ovarian cancer for postmenopausal
women, but not premenopausal.

Each additional year in age at last birth decreases the risk of ovarian cancer with ap-
proximately 2 % (p-value: 0.02). The association vanish when adjusting for parity.
Separate analyses for pre and postmenopausal women shows that postmenopausal
women with late last birth have a decreased risk of getting ovarian cancer (RR:
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0.97 for each unit increase, p-value: 0.02). No trend is observed for premenopausal
women.

Age at first birth showed initially a nearly significant association to ovarian cancer
risk with a relative risk of 1.02 for each year increase in age at first birth (p-value:
0.06). The trend vanish when adjusting for parity.

Early age at menarche is associated with a decreasing risk of ovarian cancer (RR:
0.96 for each unit increase, p-value: 0.1), however, the trend is not significant when
adjusting for parity. Age at menopause and demographic variables have no associ-
ation to ovarian cancer risk in this study. The same conclusion is drawn in other
studies, see Section 4.3.2.

Overall, adjusting for parity makes all the other explanatory variables unnecessary
in describing ovarian cancer risk. The only exception is BMI and postmenopausal
women.
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Chapter 8

Concluding remarks

The theory of competing risks is needed to obtain realistic results when a unit can
fail due to several failure causes. In this thesis, it has been shown how the theory
of competing risks can be used in a medical study with breast, uterine and ovarian
cancer as the competing events.

Both regression on the cause specific hazard functions and the subdistribution haz-
ard functions have been used to identify possible risk factors for the competing
events. Regression on the cause specific hazard has been implemented by Cox re-
gression and Approximate Cox regression, while regression on the subdistribution
hazard has been obtained by Fine & Grey’s method and Approximate Fine & Grey
regression. Due to few cancer occurrences in relation to persons at risk, regression
on the cause specific hazard and the subdistribution hazard gives approximately the
same result. Hence, regression on the cause specific hazard is used as a reference
method for a complete medical analysis.

There are many weaknesses with this analysis, such as for example incomplete data.
Participants with missing values are taken out of the analysis when the explanatory
variable is included in the model, this makes the analysis less reliable compared to
analysis with complete data. The problem of missing data also makes it difficult
to find an optimal model to describe the risk of breast, uterine and ovarian cancer
in the presence of the competing events. It is natural to believe that the risk of
cancer is heritable, factors such as family relationships are not taken into account in
this analysis. It is also important to mention that the covariate values most likely
vary throughout the 50 year study. Many women will gain or lose weight with time,
this model does not consider any such circumstances. However, data on height and
weight was assigned to the study some years after the start of follow up, the error
of misclassified weight is therefore assumed to be less than it would have been with
initial weight, as it is closer to the terminal date for most participants.

For a further analysis, it is possible to cover some of the shortcomings, such as
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missing values. It is also possible to include more competing events, as for example
other cancer types.

Within a certain framework, when there are explanatory variables in the model,
identification of the underlying dependence structure between the individual com-
ponent in latent failure time representation is possible, see Heckman and Honore
[14]. For a further analysis, it would have been interesting to investigate this further.

Briefly, the main medical findings of this thesis are:

• Several births affect the risk of getting breast, uterine or ovarian cancer:
Each additional birth decreases the risk of getting breast, uterine or ovarian cancer
by 10 %, 10 % and 16%, respectively.

• Age at first birth affect the risk of getting breast or uterine cancer:
Women with their first birth after the age of 30 years have approximately 41 %
reduced risk of getting uterine cancer compared to women who gives the first birth
before the age of 20. The opposite effect can be seen for breast cancer risk, with
45% increased risk of breast cancer for women with the first birth after the age of
30 compared to first birth before the age of 20.

• Age at last birth affect the risk of uterine and breast cancer:
Early last birth is protective against breast cancer compared to late last birth. The
opposite result applies to uterine cancer, where a late last birth seems protective.

• Age at menarche affects the risk of getting uterine and breast cancer:
Each year increase in age at menarche decreases the risk of uterine and breast cancer
with approximately 12% and 5%, respectively. Ovarian cancer risk is not affected
by age at menarche.

• Age at menopause affects the risk of getting breast and uterine cancer:
High age at menopause increases the risk of breast and uterine cancer, with approx-
imately 3% and 6 % for each additional year, respectively.

• Obesity affects the risk of getting breast, uterine and ovarian cancer:
Obesity is associated with increased risk of ovarian cancer for postmenopausal
women. The risk of getting uterine and breast cancer increases with approximately
7% and 2% for each additional unit increase in BMI, respectively.
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