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Abstract

We show how to find quotients of path algebras isomorphic to the tensor product

Λ⊗k Γ,

the triangular matrix algebra (
Γ 0
M Λ

)
and the trivial extension

Λ nN,

where Λ and Γ are quotients of path algebras, M a Λ–Γ-bimodule, and N a Λ-
bimodule.

We also solve the following problem: Given a quotient of a path algebra

kQ/I,

where k is a field, Q a quiver and I ⊆ kQ an ideal satisfying

J tQ ⊆ I ⊆ JQ for some t ≥ 2

(where JQ denotes the ideal generated by the arrows in Q); find an isomorphic
quotient of a path algebra

kQ′/I ′

where the ideal I ′ satisfies

J t
′

Q′ ⊆ I ′ ⊆ J2
Q′ for some t′ ≥ 2.
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Notation
Notation Meaning Defined on page
General:
k a field
N the set of natural numbers: {1, 2, 3, . . .}
N0 the set of non-negative integers: {0, 1, 2, . . .}
In an algebra Λ, with a subset X ⊆ Λ:
〈X〉 the ideal in Λ generated by X
In a quotient algebra Λ/I:
[x] the equivalence class of x (for x ∈ Λ)
For a quiver Q:
Q0 the set of vertices in Q
Q1 the set of arrows in Q
Qn the set of paths of length n in Q 13
Q∗ the set of paths in Q 13
Q+ the set of non-trivial paths in Q 13
Q? the set of vertices and arrows in Q 13
JQ the ideal in kQ generated by the arrows 13
Q � (A,h,t) augmented quiver 68
Q � B augmented quiver 68
For a path q in a quiver:
h(q) the head of q 13
t(q) the tail of q 13
l(q) the length of q 13
For an element λ of a path algebra kQ:
terms(λ) set of terms in λ 13
termsX(λ) terms in λ contained in 〈X〉 (for X ⊆ kQ) 89
coefficient(q, λ) coefficient of q in λ (for a path q ∈ Q∗) 13
minlength(λ) minimal length of path occuring in λ 13
h(λ) the head of λ (only defined if λ is uniform) 14
t(λ) the tail of λ (only defined if λ is uniform) 14
For a set of relations ρ ⊆ kQ in a path algebra:
ρ∼ equivalence modulo ρ 14
For two quivers Q and R:
Q×R product quiver 24
Q ∪R union of quivers 20
R

(A,h,t)−−−−→ Q augmented union of quivers 62
R

B−→ Q augmented union of quivers 62
For a product quiver Q×R:
π1, π2 projection maps 25
incv1 inclusion map at a vertex v ∈ R0 25, 35
incu2 inclusion map at a vertex u ∈ Q0 25, 35
inc1(X) set of all inclusions of a subset X ⊆ kQ 36
inc2(Y ) set of all inclusions of a subset Y ⊆ kR 36
κ(Q,R) set of commutativity relations 29
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Notation Meaning Defined on page
For an augmented union of quivers R B−→ Q with B a uniform basis of a bimodule M :
µ(Q,R,B) relation set induced by module structure 63
−→m element of k(R B−→ Q) corresponding to m

(for m ∈M)
63

For an augmented quiver Q � B with B a uniform basis of a bimodule M :
ν(Q,B) relation set induced by module structure 70
ξ(Q,B) relation set for products of B-arrows 70
−→m element of k(Q � B) corresponding to m (for

m ∈M)
68

For a uniform element m of a bimodule:
h(m) the head of m 50
t(m) the tail of m 50
For an arrow α (or arrows α1, . . . , αn) and an element s (or elements s1, . . . , sn):
subst(α,s) substitution map 88
tr{(α1,s1),...,(αn,sn)} translation map 98

Name conventions
Name(s) Use
Λ, Γ k-algebras
λ, γ elements of k-algebras
Q, R, S quivers
u, v vertices of quivers
α, β arrows of quivers (in general)
α, β, γ,
δ, ε, ζ

}
arrows of quivers (in concrete examples)

q, r, p paths in quivers
r, s relations
ρ, σ, τ sets of relations
M module
m module element
b module basis element (in general)
a, b, c,
d, e, f

}
module basis elements (in concrete examples)

f function
φ, ψ k-algebra homomorphisms (or k-vector space homomorphisms)

When two quivers Q and R are involved, the conventions for names of vertices, arrows,
paths, relations and relation sets are as follows:

u ∈ Q0, α ∈ Q1, q ∈ Q∗, r ∈ ρ ⊆ kQ;
v ∈ R0, β ∈ R1, r ∈ R∗, s ∈ σ ⊆ kR.

A variable name with a bar over denotes some helping variable related to the unbared
variable of the same name. For example, in order to define an algebra homomorphism φ

from a path algebra quotient kQ/〈ρ〉, we will often first define a homomorphism φ from
kQ.
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Introduction

Purpose and motivation
The purpose of this thesis is to describe concrete methods for finding the quivers and
relations of certain algebras. The algebras we consider are made by combining one
or more quotients of path algebras, and in some cases a bimodule over the algebras.
When bimodules are involved, we assume these to be given by representations over
quivers (Chapter 3 describes how to relate bimodule structure to representations).
Thus, all the ingredients for forming the new algebra are given in a concrete way.

In effect, we describe algorithms that take as input one or more quivers and sets
of relations, and possibly a representation over a quiver, and produces as output a
new quiver and a set of relations.

The motivation for doing this is a desire to make computer programs that can
find quivers and relations for given algebras. The intention is that the methods
presented in this thesis should be precise enough that a computer program can be
based quite directly on them, but they are not tied to any particular programming
language or computer algebra system. Thus, our descriptions are mostly given in
terms of simple operations which can be implemented in a straightforward way in
a computer program.

There is one notable exception to this: In Chapter 5, we assume that we are
able to check whether a given element of a path algebra lies in a given ideal (this
is needed in line 9 of Algorithm 1 on page 91), which is not a trivial operation. In
a computer program, this can be done using Gröbner bases.

It should also be noted that the relation sets we produce may be much larger
than necessary, as can be seen in examples 5.5 and 5.6. In practice it will therefore
be preferable to combine our methods with an algorithm for reducing a given
generating set of an ideal to one which is minimal.

During the writing of this thesis, the author has begun implementing the meth-
ods described herein in the package QPA (Quivers and Path Algebras)1 for the
computer algebra system GAP2. At the time of this writing, the method for ten-
sor products of algebras (Chapter 2) is implemented, and the method for turning
an algebra with “preadmissible” relation set into one with admissible relation set
(Chapter 5) is partially implemented.

1http://www.math.ntnu.no/˜oyvinso/QPA/
2http://www.gap-system.org/
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Overview of the thesis
Chapter 1 contains general definitions and results which will be used throughout
the thesis.

In Chapter 2, we consider the problem of finding a quotient of a path algebra
isomorphic to the tensor product

kQ/〈ρ〉 ⊗k kR/〈σ〉

of two quotients of path algebras. We show that the quiver for this algebra is the
product quiver Q×R given by

(Q×R)0 = Q0 ×R0,

(Q×R)1 = (Q0 ×R1) ∪ (Q1 ×R0);

and that its set of relations is

inc1(ρ) ∪ inc2(σ) ∪ κ(Q,R),

where inc1(ρ) and inc2(σ) consist of the relations in ρ and σ transferred into the
path algebra k(Q×R) over the product quiver, while κ(Q,R) consists of relations
making all squares of the form

t(α)× t(β)

α×t(β)
��

t(α)×β // t(α)× h(β)

α×h(β)
��

h(α)× t(β)
h(α)×β

// h(α)× h(β)

for arrows α ∈ Q1 and β ∈ R1

in the product quiver Q × R commute. The main result of this chapter can thus
be stated as

kQ/〈ρ〉 ⊗k kR/〈σ〉 ∼= k(Q×R)/〈inc1(ρ) ∪ inc2(σ) ∪ κ(Q,R)〉 .

In Chapter 3, we show how bimodules over quotients of path algebras can
be described by representations over quivers, using the result of Chapter 2. The
connection to tensor products is the fact that a Λ–Γ-bimodule M can be viewed
as a left Λ ⊗k Γop-module. Thus, a kQ/〈ρ〉–kR/〈σ〉-bimodule M can be described
by a representation over the product quiver Q×Rop respecting the relations

inc1(ρ) ∪ inc2(σop) ∪ κ(Q,Rop).

The first two sections of Chapter 3 give the necessary background for the use
of bimodules in the following chapter. The rest of the chapter contains some
additional results which are interesting in their own right, but will not be used
later.

In Chapter 4, we consider two closely related problems: Finding quotients of
path algebras isomorphic to the lower triangular matrix algebra(

kR/〈σ〉 0
M kQ/〈ρ〉

)
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and the trivial extension
kQ/〈ρ〉nN,

where M is a kQ/〈σ〉–kR/〈ρ〉-bimodule, and N is a kQ/〈ρ〉-bimodule. In both cases,
we use the very simple strategy of adding one arrow

−→
b

for each basis element b of the module to the original quiver(s). We then create
relations to make a path of the form

α
−→
b or −→

b β

be the same as the linear combination of arrows corresponding to the product αb
or bβ. The problem with this strategy is that the relation set we produce is usually
not admissible: If I is the ideal generated by the relations, we do not necessarily
have

J t ⊆ I ⊆ J2 for some t,

but only
J t ⊆ I ⊆ J for some t;

where J is the ideal generated by the arrows. This motivates the next chapter,
which gives a solution to this problem.

In Chapter 5, we consider algebras

kQ/〈ρ〉

where the relation set ρ is not admissible but only satisfies a weaker condition
which we call preadmissibility:

J t ⊆ 〈ρ〉 ⊆ J for some t.

We show how we can transform the quiver and relations of this algebra to get an
isomorphic algebra

kQ′/〈ρ′〉

where ρ′ is admissible.

Prerequisites
It is assumed that the reader has some knowledge of quivers and path algebras,
for example from the NTNU course MA3203 Ring theory. The reader should also
be familiar with tensor products; at NTNU, this is covered by the course MA3204
Homological algebra.





Chapter 1

Quivers and path algebras

In this chapter, we will establish the terminology to be used throughout the thesis,
recall some facts we need, and show a few basic results.

1.1 Definitions and conventions
We use k to denote some fixed field.

For a quiver Q, we have the sets Q0 and Q1 of vertices and arrows, respectively.
We define Qn for any n > 1 to be the set of all paths of length n. We further define
the sets

Q∗ =
⋃
n∈N0

Qn (all paths in Q),

Q+ =
⋃
n∈N

Qn (all non-trivial paths in Q),

Q? = Q0 ∪Q1 (vertices and arrows in Q).

We define JQ to be the ideal in kQ generated by the arrows; that is,

JQ = 〈Q1〉 .

We denote the endpoints of a path q by h(q) for the head end, and t(q) for the
tail. Thus, an arrow α : u→ v has h(α) = v and t(α) = u. The length of a path q
is denoted l(q).

Definition. Let λ ∈ kQ be an element of a path algebra. We define terms(λ) to
be the set of terms when λ is written as a linear combination of paths; that is,

terms
(∑
i∈I

xiqi

)
= { xiqi | i ∈ I },

where the xi are non-zero elements of k and the qi are distinct elements of Q∗.
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For a path q ∈ Q∗, we define coefficient(q, λ) to be the coefficient of q in λ. We
define minlength(λ) to be the minimal length of a path occuring in λ; that is,

minlength(λ) = min{ l(q) | q ∈ Q∗ with coefficient(q, λ) 6= 0 }. �

Definition. Let λ ∈ kQ be an element of a path algebra. Given vertices u and v
in Q, we say that λ is (u, v)-uniform if

uλv = λ.

The element λ is uniform if it is (u, v)-uniform for some pair of vertices (u, v).
Given an arrow α, we say that λ is α-uniform if it is (h(α), t(α))-uniform.

For a (u, v)-uniform element λ ∈ kQ, we define h(λ) = u and t(λ) = v. �

♪ Let Q be a quiver, and u and v vertices in Q. An element of the path algebra
kQ is (u, v)-uniform if and only if it is a linear combination of paths from v to u.�

The algebras we will be concerned with are quotients of path algebras – that
is, algebras of the form kQ/I for some quiver Q and (two-sided) ideal I ⊆ kQ.
When describing such an ideal, we will always use a finite generating set consisting
of uniform elements. We call such a set a set of relations (or relation set), and
each of its elements a relation.

Definition. For a path algebra kQ, a set ρ ⊆ kQ of relations is admissible if

J tQ ⊆ 〈ρ〉 ⊆ J2
Q

for some t ≥ 2, and preadmissible if

J tQ ⊆ 〈ρ〉 ⊆ JQ

for some t ≥ 2.
A number t such that

J tQ ⊆ 〈ρ〉

is called a path length bound for the quotient algebra kQ/〈ρ〉. �

Except in Chapter 4 (where we perform certain operations that destroy admis-
sibility) and Chapter 5 (where we repair the damage done in Chapter 4), all our
relation sets will be admissible, and we will just say “relation set” when we mean
“admissible relation set”.

Definition. Let Q be a quiver and ρ ∈ kQ a set of relations. We define the
equivalence relation ρ∼ on kQ by

λ1
ρ∼ λ2 ⇐⇒ λ1 − λ2 ∈ 〈ρ〉 .

We say that λ1 and λ2 are equivalent modulo ρ if λ1
ρ∼ λ2. �
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1.2 Modules and representations
When discussing modules over a path algebra quotient kQ/〈ρ〉, we will use repre-
sentations over the quiver Q respecting the relations ρ to describe the modules. We
have the following correspondence between modules and representations (see [1],
pages 56–57):

For a kQ/〈ρ〉-module M , the corresponding representation over Q is (V, f),
where the vector space Vu at a vertex u ∈ Q0 is defined by

Vu = uM, (1.1)

and the linear map
fα : Vt(α) → Vh(α)

for an arrow α ∈ Q1 is defined by

fα(m) = αm for m ∈ Vt(α). (1.2)

For a representation (V, f) over Q respecting ρ, the corresponding kQ/〈ρ〉-
module M is

M =
⊕
u∈Q0

Vu (1.3)

as k-vector space. For an element m ∈M and a vertex u ∈ Q0, denote by mu the
component of m belonging to the vector space Vu. Then the scalar multiplication
of M is induced by the following rules for vertices and arrows: Let m ∈ M be a
module element, u ∈ Q0 a vertex and α ∈ Q1 an arrow. The products um and αm
are given componentwise by

(um)v =
{
mv if v = u,
0 otherwise; (1.4)

(αm)v =
{
fα(mt(α)) if v = h(α),
0 otherwise; (1.5)

for each vertex v ∈ Q0.
This correspondence is an equivalence between the category of finite dimen-

sional kQ/〈ρ〉-modules and the category of representations over Q respecting ρ ([1],
Proposition 1.7). We will view this correspondence as an identification; thus, for
us, a module and the corresponding representation is the same thing.

When dealing with a module over a quotient of a path algebra, we will often
need a k-basis for the module. Furthermore, we do not want an arbitrary basis,
but one that behaves nicely with respect to multiplication with paths. In terms of
representations, we want each basis element to be contained in one of the vector
spaces of the representation. We will call such elements left uniform, by analogy
with the concept of uniform elements of a path algebra.
Definition. Let kQ/〈ρ〉 be a quotient of a path algebra, M a kQ/〈ρ〉-module and
m an element of M . For a vertex u ∈ Q0, we say that m is left u-uniform if

um = m.

The element m is left uniform if it is left u-uniform for some vertex u. �



16 CHAPTER 1. QUIVERS AND PATH ALGEBRAS

Definition. Let kQ/〈ρ〉 be a quotient of a path algebra, M a kQ/〈ρ〉-module and
B a k-basis for M . Then B is a left uniform basis if every element of B is left
uniform. �

The following example shows a left uniform basis, and additionally introduces a
notation we will use to name the elements of such a basis for a given representation.

Example 1.1. Let Q be the quiver

Q : u1
α // u2

β // u3

Let (V, f) the following representation over Q:

(V, f) : k

(
1
1

)
// k2

(
1 0
0 1

)
// k2

Let M be the kQ-module corresponding to (V, f). We can view M as the direct
sum

M = Vu1 ⊕ Vu2 ⊕ Vu3 = k ⊕ k2 ⊕ k2.

Choose a basis
B = {a,b, c,d, e}

for M , where

a = (1, 0, 0)

b =
(

0,
(

1
0

)
, 0
)

d =
(

0, 0,
(

1
0

))
c =

(
0,
(

0
1

)
, 0
)

e =
(

0, 0,
(

0
1

))
Then B is a left uniform basis for M . The basis element a is left u1-uniform, the
elements b and c are left u2-uniform, and the elements d and e are left u3-uniform.
We also see that {a} is a basis for Vu1 , {b, c} is a basis for Vu2 , and {d, e} is a basis
for Vu3 . In other words, the set of u-uniform elements in B is a basis for Vu, for
any vertex u ∈ Q0.

When we have a representation and want to give names to left uniform basis
elements of the module in this manner, we will use notation like the following as
shorthand for the above:

B : a //
(

b
c

)
//
(

d
e

)
�
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1.3 Describing algebra homomorphisms
We will often need to construct algebra homomorphisms. We usually prefer to
describe the homomorphisms by what they do on some smaller set than the whole
domain, such as a basis or a generating set (for path algebras, the set Q? of vertices
and arrows is a fine generating set). The following two lemmata give criteria for
when such descriptions induce algebra homomorphisms.

Lemma 1.1. Let Λ and Γ be k-algebras, and let B be a basis for Λ. If

φ : Λ→ Γ

is a k-module homomorphism satisfying

1. φ(1Λ) = 1Γ, and

2. φ(b1b2) = φ(b1) · φ(b2) for any b1 and b2 in B,

then φ is a k-algebra homomorphism.

Proof. The only thing that needs to be checked is that φ preserves multiplication
on any elements, not just basis elements. Let∑

i

xibi and
∑
j

yjbj

be two elements of Λ, written as k-linear combinations of basis elements (the xi
and yj are elements of k, the bi and bj elements of B). Then we have

φ
(∑

i

xibi

)
· φ
(∑

j

yjbj

)
=
(∑

i

xi · φ(bi)
)
·
(∑

j

yj · φ(bj)
)

=
∑
i

∑
j

xiyj · φ(bi)φ(bj)

!=
∑
i

∑
j

xiyj · φ(bibj)

= φ
(∑

i

∑
j

xiyjbibj

)
= φ

((∑
i

xibi

)
·
(∑

j

yjbj

))
,

where the marked equality follows from criterion 2 of the Lemma, and the other
equalities follow from k-linearity of φ or reorganization of sums. �

Lemma 1.2. Let Q be a quiver and Γ a k-algebra. Let

f : Q? → Γ

be a function defined on the vertices and arrows of Q. Assume that f satisfies the
following conditions:
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1.
∑
u∈Q0

f(u) = 1Γ;

2. qr = 0 implies f(q) · f(r) = 0 for q and r in Q?;

3. f(u) = f(u)2 for u ∈ Q0;

4. f(h(α)) · f(α) = f(α) = f(α) · f(t(α)) for α ∈ Q1.

Then f extends uniquely to a k-algebra homomorphism

φ : kQ→ Γ.

Proof. We first define φ as a vector space homomorphism, by defining its actions
on basis elements (that is, paths):

φ(u) = f(u) for a vertex u ∈ Q0,
φ(α1 · · ·αn) = f(α1) · · · f(αn) for a path α1 · · ·αn ∈ Q+.

Now we can use Lemma 1.1 to show that φ in fact is an algebra homomorphism. The
first condition of Lemma 1.1 (identity is preserved) follows directly from condition
1 of this lemma:

φ(1kQ) = φ
( ∑
u∈Q0

u
)

=
∑
u∈Q0

f(u) = 1Γ.

For the second condition (preservation of multiplication on basis elements), consider
two paths q and r. The case qr = 0 is taken care of by condition 2, so we may
assume qr 6= 0. Now we have several possibilities:

• Both q and r are vertices: Then q = r, and we have

φ(qr) = φ(q) = f(q) (3)= f(q)2 = φ(q)2 = φ(q) · φ(r)

by condition 3.

• The path q is a vertex, and r is a non-trivial path of length n > 0: Then
r = α1 · · ·αn for some arrows αi with q = h(α1), and we have

φ(qr) = φ(α1 · · ·αn) = f(α1) · · · f(αn) (4)= f(q) · (f(α1) · · · f(αn))
= φ(q) · φ(α1 · · ·αn) = φ(q) · φ(r)

by condition 4. The opposite case where q is a non-trivial path and r a vertex
is completely analogous.

• Both q and r are non-trivial paths: Then q = α1 · · ·αn and r = β1 · · ·βm for
some arrows αi and βi, and we have

φ(qr) = φ(α1 · · ·αn · β1 · · ·βm) = f(α1) · · · f(αn) · f(β1) · · · f(βm)
= φ(α1 · · ·αn) · φ(β1 · · ·βm) = φ(q) · φ(r). �
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1.4 Some algebra constructions
The main theme of this thesis is to investigate certain constructions that take one
or two algebras as arguments and produce a new algebra. For each construction we
consider, it turns out that if the original algebras are quotients of path algebras,
then the new algebra is isomorphic to some quotient of a path algebra. Our goal is
to show how the quiver and a set of relations for the new algebra can be computed
based on the quivers and relations of the original ones.

In this section, we consider two algebra constructions where it is very easy
to find the quiver and relations for the new algebra: the opposite algebra of an
algebra and the direct product of two algebras. This should give a taste of the
kind of problems we are going to solve in the following chapters. Additionally, the
definitions and results of this section will be useful to us many times throughout
the thesis.

First consider the opposite algebra of a path algebra. To turn the order of
multiplications around, what we need to do to the quiver is simply to reverse
the direction of every arrow (the vertices stay the same). We therefore make the
following definition.

Definition. Let Q be a quiver. We define the opposite quiver of Q, denoted
Qop, by

Qop
0 = Q0,

Qop
1 = { αop : h(α)→ t(α) | α ∈ Q1 }.

For any path q ∈ Q∗, we define the opposite path qop ∈ Qop
∗ by

qop = q if q is a vertex,
qop = αop

n · · ·α
op
1 if q = α1 · · ·αn for arrows α1, . . . , αn. �

We observe that the path algebra over the opposite quiver Qop is isomorphic to
the opposite algebra of the path algebra over Q:

k(Qop) ∼= (kQ)op. (1.6)

We view this isomorphism as an identification, and write just kQop without paren-
theses for this algebra. We extend the map

op : Q∗ → Qop
∗

by linearity to a vector space homomorphism

op : kQ→ kQop.

Applying this map to an element λ ∈ kQ gives the element in k(Qop) which corre-
sponds (under the isomorphism of Equation (1.6)) to the opposite element of λ in
(kQ)op.
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For a path algebra quotient kQ/〈ρ〉, we get the opposite algebra by taking the
opposite quiver and the opposite of each relation:

(kQ/〈ρ〉)op ∼= kQop/〈ρop〉 .

We view this isomorphism, too, as an identification.
Now consider the direct product

kQ× kR

of two path algebras kQ and kR. This algebra contains everything from kQ and
everything from kR, so it seems reasonable that its quiver should contain everything
from Q and everything from R. The following definition defines a name and a
notation for such a quiver.

Definition. Let Q and R be quivers. We define the union Q ∪ R of Q and R to
be the quiver obtained by taking the unions of the vertex and arrow sets of Q and
R:

(Q ∪R)0 = Q0 ∪R0

(Q ∪R)1 = Q1 ∪R1. �

When saying that taking the union Q ∪ R of the quivers should produce a
proper quiver for the product kQ× kR of path algebras, we silently assumed that
the quivers Q and R did not have any vertices or arrows in common. If they
did, those vertices or arrows would appear only once in the union Q ∪ R, making
the path algebra k(Q ∪ R) smaller than the product algebra kQ × kR. To make
such assumptions (which we will use several times) precise, we give the following
definition.

Definition. We say that the quivers Q and R are disjoint if their vertex sets are
disjoint; that is, if

Q0 ∩R0 = ∅. �

So far, we have guessed that the product kQ × kR is isomorphic to the path
algebra over the union of the quivers:

kQ× kR ∼= k(Q ∪R).

If there are relations involved – that is, if we have an algebra of the form kQ/〈ρ〉×
kR/〈σ〉 – we could guess that what we need to do is to take the union of these as
well:

kQ/〈ρ〉 × kR/〈σ〉 ∼= k(Q ∪R)/〈ρ ∪ σ〉 .
We will now show that these guesses are true.

Proposition 1.3. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path algebras (where Q
and R are disjoint quivers, and ρ and σ are sets of relations). Then

kQ/〈ρ〉 × kR/〈σ〉 ∼= k(Q ∪R)/〈ρ ∪ σ〉
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as k-algebras, with isomorphisms induced by the correspondences

([q], 0)↔ [q] for a path q ∈ Q∗
(0, [r])↔ [r] for a path r ∈ R∗.

Proof. Define the algebra homomorphism

φ : k(Q ∪R)→ kQ/〈ρ〉 × kR/〈σ〉

by the actions

φ(q) = ([q], 0) for q ∈ Q?,
φ(r) = (0, [r]) for r ∈ R?

on vertices and arrows (the conditions of Lemma 1.2 are satisfied, so this induces
an algebra homomorphism).

We see that 〈ρ ∪ σ〉 ⊆ kerφ, since

φ(r) = ([r], 0) = (0, 0) for r ∈ ρ,
φ(s) = (0, [s]) = (0, 0) for s ∈ σ.

We want to show that kerφ ⊆ 〈ρ ∪ σ〉 as well. Let λ ∈ k(Q ∪ R) be any element.
Then we can write λ as λQ + λR for some elements λQ ∈ kQ and λR ∈ kR. If
λ ∈ kerφ, then

0 = φ(λ) = ([λQ], [λR]),

so
λQ ∈ 〈ρ〉 and λR ∈ 〈σ〉 .

This means that
λ ∈ 〈ρ〉+ 〈σ〉 = 〈ρ ∪ σ〉 .

We thus have kerφ = 〈ρ ∪ σ〉, and φ induces an algebra monomorphism

φ : k(Q ∪R)/〈ρ ∪ σ〉 → kQ/〈ρ〉 × kR/〈σ〉

with

φ([q]) = ([q], 0) for q ∈ Q∗,
φ([r]) = (0, [r]) for r ∈ R∗.

We further see that φ is onto: For any element ([λQ], [λR]) of kQ/〈ρ〉 × kR/〈σ〉, we
have

([λQ], [λR]) = φ([λQ + λR]).

Thus, φ is an algebra isomorphism. �





Chapter 2

Tensor product of algebras

Given two k-algebras Λ and Γ, their tensor product Λ ⊗k Γ over k is again a
k-algebra, with multiplication induced by the rule

(λ1 ⊗ γ1)(λ2 ⊗ γ2) = λ1λ2 ⊗ γ1γ2

for simple tensors (where λ1 and λ2 are elements of Λ, and γ1 and γ2 elements of
Γ). We are interested in the case where Λ and Γ are quotients of path algebras.
Then their tensor product is isomorphic to a quotient of a path algebra. We will
show how to find the quiver and relations of this algebra based on the quivers and
relations of Λ and Γ.

Some bibliographical notes regarding the contents of this chapter: The name
“product quiver” and the notation Q × R (see definition on page 24) are taken
from [2]. Our Proposition 2.2 is the same as Proposition 3 in [2], but that paper
does not include the more general result which we state as Proposition 2.4. The
result of Proposition 2.4 can be found in [3] as Lemma 1.3, but with quite different
notation.

2.1 The quiver product
Let Q and R be quivers. Assuming that kQ⊗k kR actually is a quotient of a path
algebra, what should its quiver look like?

We know how to describe kQ⊗kkR as a k-vector space: It has a basis consisting
of all elements q ⊗ r where q and r are paths in Q and R, respectively.

Of these elements, we observe that each element u⊗ v which is made by com-
bining two vertices u ∈ Q0 and v ∈ R0 has the following property:

(u⊗ v)(q ⊗ r) =
{
q ⊗ r if h(q) = u and h(r) = v,
0 otherwise;

(q ⊗ r)(u⊗ v) =
{
q ⊗ r if t(q) = u and t(r) = v,
0 otherwise;
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for any paths q ∈ Q∗ and r ∈ R∗. This looks like the way vertices in a quiver
behave under multiplication, so it seems reasonable that the quiver for the tensor
product will have one vertex for every pair (u, v) of vertices from each of the two
original quivers.

If α : u→ u′ is an arrow in Q and v a vertex in R, the element α ⊗ v acts like
a path from u⊗ v to u′ ⊗ v, in the sense that it is unchanged under multiplication
by these on the appropriate side:

(α⊗ v)(u⊗ v) = α⊗ v = (u′ ⊗ v)(α⊗ v).

Furthermore, since such an element cannot be written as the product of two other
basis elements, it should correspond to an arrow in the tensor product’s quiver.
The same applies to elements of the form u⊗β where u is a vertex and β an arrow.
We thus create an arrow for each pair of arrow/vertex or vertex/arrow from the
original quivers.

Now any basis element of the tensor product can be decomposed as a product
of those we have already considered. Take for example an element

(α2α1)⊗ (β2β1),

where
u1

α1→ u2
α2→ u3 and v1

β1→ v2
β2→ v3

are paths in the respective quivers; it can be written as

(α2α1)⊗ (β2β1) = (α2 ⊗ v3)(α1 ⊗ v3)(u1 ⊗ β2)(u1 ⊗ β1) . (2.1)

In the quiver we indicated above, this corresponds to a path of length four.
Thus, we see that every basis element of the tensor product is represented by

some path in our quiver. But there may be several paths corresponding to the
same basis element. Consider again the decomposition in Equation (2.1). The
same element could also be written as the product

(α2α1)⊗ (β2β1) = (α2 ⊗ v3)(u2 ⊗ β2)(α1 ⊗ v2)(u1 ⊗ β1) .

So the quiver we suggest will not only produce all basis elements of the tensor
product – it may produce some of them several times, as different paths.

This is not desirable behaviour, but since it can be solved by introducing some
relations in the path algebra, we shall postpone worrying about it until the next
section. For the moment, we will be happy with what we have found and make the
following definition based on our observations.

Definition. The product quiver of two quivers Q and R, denoted Q × R, has
vertex set

(Q×R)0 = Q0 ×R0

and arrow set

(Q×R)1 = (Q1 ×R0) ∪ (Q0 ×R1) ,
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with heads and tails for arrows given by

h(α× v) = h(α)× v, t(α× v) = t(α)× v for α ∈ Q1 and v ∈ R0;
h(u× β) = u× h(β), t(u× β) = u× t(β) for u ∈ Q0 and β ∈ R1. �

We can visualize the product quiver of Q and R as a rectangular grid of vertices
with arrows filled in, such that each column is a copy of Q and each row a copy of
R.

A simple example should make the construction clear.

Example 2.1. Let Q and R be the quivers

Q : u1
α // u2 ,

R : v1
β // v2

γ // v3 .

Their product Q×R is

Q×R :
u1 × v1

u1×β //

α×v1

��

u1 × v2
u1×γ //

α×v2

��

u1 × v3

α×v3

��
u2 × v1

u2×β // u2 × v2
u2×γ // u2 × v3 �

We will now define some functions for moving paths into and out of a product
quiver. For a product quiver Q×R, we define the two projection maps

π1 : (Q×R)∗ → Q∗, π2 : (Q×R)∗ → R∗

by

π1

(∏
i

(qi × ri)
)

=
∏
i

qi , π2

(∏
i

(qi × ri)
)

=
∏
i

ri ;

where each qi × ri is either a vertex or arrow in Q × R. For a vertex v in R, we
define the inclusion map of Q into Q×R at v,

incv1 : Q∗ → (Q×R)∗,

by

incv1(u) = u× v for a vertex u in Q

incv1
(∏

i

αi

)
=
∏
i

(αi × v) for arrows αi in Q.

The inclusion map
incu2 : R∗ → (Q×R)∗

for a vertex u in Q is defined similarly.
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♪ The projection and inclusion maps preserve products of paths. That is, if we
have paths

p1 and p2 in (Q×R)∗ with p1p2 6= 0,
q1 and q2 in Q∗ with q1q2 6= 0,
r1 and r2 in R∗ with r1r2 6= 0;

then

π1(p1p2) = π1(p1) · π1(p2) incv1(q1q2) = incv1(q1) · incv1(q2)
π2(p1p2) = π2(p1) · π2(p2) incu2 (r1r2) = incu2 (r1) · incu2 (r2)

(for all vertices v ∈ R0 and u ∈ Q0). �

Example 2.2. We illustrate the inclusion and projection maps with the product
quiver

Q×R :
u1 × v1

u1×β //

α×v1

��

u1 × v2
u1×γ //

α×v2

��

u1 × v3

α×v3

��
u2 × v1

u2×β // u2 × v2
u2×γ // u2 × v3

from Example 2.1.
The three possible inclusions of the arrow α ∈ Q1 are

incv1
1 (α) = α× v1, incv2

1 (α) = α× v2, incv3
1 (α) = α× v3.

The two possible inclusions of the arrow β ∈ R1 are

incu1
2 (β) = u1 × β, incu2

2 (β) = u2 × β.

Similarly, there are two inclusions of the path γβ ∈ R∗:

incu1
2 (γβ) = (u1 × γ)(u1 × β), incu2

2 (γβ) = (u2 × γ)(u2 × β).

The paths

α× v1, (u1 × γ)(u1 × β) and (u2 × γ)(α× v2)(u1 × β)

in Q×R have projections

π1(α× v1) = α π2(α× v1) = v1

π1((u1 × γ)(u1 × β)) = u1 π2((u1 × γ)(u1 × β)) = γβ

π1((u2 × γ)(α× v2)(u1 × β)) = α π2((u2 × γ)(α× v2)(u1 × β)) = γβ �

Let us now introduce some convenient notation. Note that when we write a path
in a product quiver as a product of arrows, much of the information is redundant.
Take for example the path

(α× v3)(u1 × γ)
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in the product quiver of Example 2.1. Once we know that the path should be the
product of some inclusion of α and some inclusion of γ (in that order), the only
possibility is to include α at v3 (the head of γ) and γ at u1 (the tail of α). So we
would prefer to dispense with all the unnecessary information and write this path
simply as

αγ.

To make such notation unambiguous, we must assume that the quivers Q and
R are disjoint; otherwise a single expression could be interpreted both as a path in
the product quiver and as a path in one of the factors. Thus we will, for the rest
of this chapter, assume that the operands in any quiver product are disjoint.1

First define the products pq, qp, pr and rp of a path p in Q × R with a path
from one of the factors (q in Q and r in R) by

qp = incπ2(h(p))
1 (q) · p

pq = p · incπ2(t(p))
1 (q)

rp = incπ1(h(p))
2 (r) · p

pr = p · incπ1(t(p))
2 (r).

Next define the products qr and rq of one path from each of the factors (q in Q
and r in R) by

qr = inch(r)
1 (q) · inct(q)2 (r)

rq = inch(q)
2 (r) · inct(r)1 (q).

The general rule behind all these definitions is that we include any path which is
not already in the product quiver at the unique vertex where it makes sense to
include it in order for the product to be nonzero, if at all possible.

Observe that using this notation, any path in Q×R can be written as a product
of arrows and vertices from Q and R. Furthermore, any path with nontrivial
projection in both coordinates can be written as a product of arrows from Q and
R.

Example 2.3. We apply the new notation to the product quiver

Q×R :
u1 × v1

u1×β //

α×v1

��

u1 × v2
u1×γ //

α×v2

��

u1 × v3

α×v3

��
u2 × v1

u2×β // u2 × v2
u2×γ // u2 × v3

from Example 2.1.
1We will not use the assumption of disjoint quivers for anything besides simplifying the nota-

tion, so all our results hold for non-disjoint quivers as well.
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We can write the vertices as

u1v1 = u1 × v1 u2v1 = u2 × v1

u1v2 = u1 × v2 u2v2 = u2 × v2

u1v3 = u1 × v3 u2v3 = u2 × v3

and the arrows as

αv1 = α× v1 u1β = u1 × β u1γ = u1 × γ
αv2 = α× v2 u2β = u2 × β u2γ = u2 × γ
αv3 = α× v3

For the longer paths we have, for example,

βα = (u2 × β)(α× v1)
αβ = (α× v2)(u1 × β)

u1γβ = (u1 × γ)(u1 × β)
u2γβ = (u2 × γ)(u2 × β)
αγβ = (α× v3)(u1 × γ)(u1 × β)
γαβ = (u2 × γ)(α× v2)(u1 × β)
γβα = (u2 × γ)(u2 × β)(α× v1) �

For any quiver Q, we have the path length function l : Q∗ → N0 given by

l(q) =
{

0 if q is a vertex
n if q is the product of n arrows.

For the product quiver Q×R, define the component path length functions l1 = l◦π1
and l2 = l ◦ π2. Then define the decomposed path length function l∗ : (Q×R)∗ →
N0 × N0 by

l∗(p) = (l1(p), l2(p)).
Note that for p ∈ (Q×R)∗, we have l(p) = l1(p) + l2(p).
Example 2.4. Consider the paths

u1v1 = u1 × v1,

αβ = (α× v2)(u1 × β),
u1γβ = (u1 × γ)(u1 × β),
αγβ = (α× v3)(u1 × γ)(u1 × β)

in the product quiver Q×R of Example 2.1. We have

l(u1v1) = 0 l1(u1v1) = 0 l2(u1v1) = 0 l∗(u1v1) = (0, 0)
l(αβ) = 2 l1(αβ) = 1 l2(αβ) = 1 l∗(αβ) = (1, 1)

l(u1γβ) = 2 l1(u1γβ) = 0 l2(u1γβ) = 2 l∗(u1γβ) = (0, 2)
l(αγβ) = 3 l1(αγβ) = 1 l2(αγβ) = 2 l∗(αγβ) = (1, 2) �
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2.2 Tensor product of path algebras
We will now show that taking the quiver product actually produces the appropriate
quiver for the tensor product of two path algebras. For the moment we consider
only actual path algebras; we shall generalize to quotients of path algebras in the
next section.

Let us first tackle the problem that bothered us earlier: The product quiver
does not represent tensor product basis elements in a unique way. Consider two
arrows α : u1 → u2 in Q and β : v1 → v2 in R. Then a portion of the product
quiver Q×R looks like

u1 × v1
u1×β //

α×v1

��

u1 × v2

α×v2

��
u2 × v1

u2×β // u2 × v2.

Here we have two distinct paths

αβ = (α× v2)(u1 × β) and βα = (u2 × β)(α× v1)

in the product quiver, but the corresponding elements in the tensor product are
the same:

(α⊗ v2)(u1 ⊗ β) = α⊗ β = (u2 ⊗ β)(α⊗ v1).

In other words, we would want such a square in the product quiver to commute.
So let us make it commute!

The obvious way to do this is to take all differences

αβ − βα

(for arrows α in Q and β in R) as relations. We define κ(Q,R) to be the set
consisting of these relations for the product quiver Q×R.

Definition. Let Q and R be quivers. The set κ(Q,R) of commutativity rela-
tions in the product quiver Q×R is

κ(Q,R) = { αβ − βα | α ∈ Q1, β ∈ R1 }. �

We shall now show that the commutativity relations κ(Q,R) are exactly the
relations we need to turn the path algebra k(Q× R) over the product quiver into
an algebra isomorphic to the tensor product algebra kQ ⊗k kR. This result is
given in Proposition 2.2. A technical detail of the proof has been separated out as
Lemma 2.1.

Lemma 2.1. Let Q and R be quivers. For any path p in Q×R,

p
κ(Q,R)∼ π1(p) · π2(p).
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Proof. This result just states that we can reorder the arrows of a path in Q×R to
get all the path’s Q-arrows to the left of its R-arrows, without changing the path
modulo κ(Q,R). Intuitively, this is obvious: κ(Q,R) lets us reverse the order of
any pair of arrows which are not from the same quiver, so we can let each Q-arrow
“jump over” any R-arrow to its left it until we have a path where all Q-arrows
occur to the left of all R-arrows.

Let us now prove the result in a more rigorous way. We shall use induction on
the length l∗(p) = (l1(p), l2(p)). Order N0 × N0 by

(m,n) ≤ (m′, n′) if m ≤ m′ and n ≤ n′.

For a path p whose projection onto one of the components is a vertex, p is equal
to π1(p) · π2(p). This constitutes the base step of the induction.

Now for the inductive step. Let p be a path with nontrivial projection in both
components, that is, l1(p) > 0 and l2(p) > 0. Assume the result to be true for all
paths p′ with l∗(p′) < l∗(p) (with the ordering of N0 ×N0 given above). Write the
projections of p as

π1(p) = αn · · ·α1, π2(p) = βm · · ·β1;

where the αi are arrows in Q and the βj are arrows in R. To avoid problems with
empty products later, let2 α0 = t(α1) and β0 = t(β1). Then we have

π1(p) = αn · · ·α0, π2(p) = βm · · ·β0.

If we write p as a product of arrows, the leftmost arrow must be the appropriate
inclusion of either αn or βm. Let us investigate these two cases.

First, assume that p = αnp
′, where

π1(p′) = αn−1 · · ·α0, π2(p′) = βm · · ·β0.

Then we have

p = αnp
′

κ(Q,R)∼ αn · π1(p′) · π2(p′)
= αn(αn−1 · · ·α0)(βm · · ·β0)
= π1(p) · π2(p),

where the equivalence follows from the induction assumption.
Next, assume p = βmp

′, where

π1(p′) = αn · · ·α0, π2(p′) = βm−1 · · ·β0.

2Note that we here temporarily break our name conventions and give vertices Greek names.
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Then

p = βmp
′

κ(Q,R)∼ βm · π1(p′) · π2(p′)
= βm(αn · · ·α0)(βm−1 · · ·β0)
= (βmαn)(αn−1 · · ·α0)(βm−1 · · ·β0)

κ(Q,R)∼ (αnβm)(αn−1 · · ·α0)(βm−1 · · ·β0)
= αn(βmαn−1 · · ·α0)(βm−1 · · ·β0)

κ(Q,R)∼ αn(αn−1 · · ·α0βm)(βm−1 · · ·β0)
= π1(p) · π2(p). �

We are now ready to state and prove the result we want for tensor products of
path algebras.

Proposition 2.2. ([2], Proposition 3) For quivers Q and R, we have

kQ⊗k kR ∼= k(Q×R)/〈κ(Q,R)〉

as k-algebras, with isomorphisms induced by

q ⊗ r 7→ [qr] for q ∈ Q∗ and r ∈ R∗,
π1(p)⊗ π2(p)←[ [p] for p ∈ (Q×R)∗.

Proof. We will show that the maps described in the result are well-defined algebra
homomorphisms, and then that they are the inverses of each other.

Define a k-module homomorphism φ : k(Q×R)→ kQ⊗k kR by

φ(p) = π1(p)⊗ π2(p)

for any path p in Q × R, extending to k(Q × R) by linearity. We show that φ
is a k-algebra homomorphism by checking that the conditions of Lemma 1.1 are
satisfied. We first show that φ preserves the identity element:

φ(1k(Q×R)) = φ

( ∑
u∈Q0
v∈R0

u× v
)

=
∑
u∈Q0
v∈R0

φ(u× v) =
∑
u∈Q0
v∈R0

u⊗ v

=
( ∑
u∈Q0

u

)
⊗
( ∑
v∈R0

v

)
= 1kQ ⊗ 1kR = 1kQ⊗kR.

Second, we must show that φ preserves products of basis elements. Let p and p′

be paths in Q×R. If t(p) = h(p′), the product pp′ is a path, and we have

φ(pp′) = π1(pp′)⊗ π2(pp′) = (π1(p) · π1(p′))⊗ (π2(p) · π2(p′))
= (π1(p)⊗ π2(p)) · (π1(p′)⊗ π2(p′)) = φ(p) · φ(p′).
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If t(p) 6= h(p′), then we must have

t(π1(p)) 6= h(π1(p′)) or t(π2(p)) 6= h(π2(p′)),

since
h(p) = h(π1(p))× h(π2(p)) and t(p) = t(π1(p))× t(π2(p)).

This means that at least one of

π1(p) · π1(p′) and π2(p) · π2(p′)

is zero, so
(π1(p) · π1(p′))⊗ (π2(p) · π2(p′)) = 0.

We thus have

φ(p) · φ(p′) = (π1(p)⊗ π2(p)) · (π1(p′)⊗ π2(p′))
= (π1(p) · π1(p′))⊗ (π2(p) · π2(p′)) = 0 = φ(0) = φ(pp′).

This completes the proof of φ being an algebra homomorphism.
We have κ(Q,R) ⊆ kerφ, since

φ(αβ − βα) = φ(αβ)− φ(βα) = α⊗ β − α⊗ β = 0

for any element αβ − βα of κ(Q,R). Thus there is an induced algebra homomor-
phism

φ : k(Q×R)/〈κ(Q,R)〉 → kQ⊗k kR,

with
φ([p]) = φ(p) = π1(p)⊗ π2(p)

for any path p in Q×R.
Let us now define the algebra homomorphism we need in the opposite direction.

Define the k-module homomorphism

ψ : kQ⊗k kR→ k(Q×R)/〈κ(Q,R)〉

by
ψ(q ⊗ r) = [qr],

on basis elements (q and r paths in Q and R, respectively), extending to kQ⊗k kR
by linearity. We again use Lemma 1.1 to check that we have an algebra homomor-
phism. We first show that the identity is preserved:

ψ(1kQ⊗kR) = ψ(1kQ ⊗ 1kR) = ψ

(( ∑
u∈Q0

u

)
⊗
( ∑
v∈R0

v

))

= ψ

( ∑
u∈Q0
v∈R0

u⊗ v
)

=
∑
u∈Q0
v∈R0

ψ(u⊗ v) =
∑
u∈Q0
v∈R0

[uv] =
[ ∑
u∈Q0
v∈R0

uv

]

= [1k(Q×R)] = 1k(Q×R)/〈κ(Q,R)〉.
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Second, we show that ψ preserves multiplication of basis elements. For basis ele-
ments q ⊗ r and q′ ⊗ r′, we have

ψ((q ⊗ r)(q′ ⊗ r′)) = ψ(qq′ ⊗ rr′) = [qq′rr′] != [qrq′r′] = [qr][q′r′]
= ψ(q ⊗ r) · ψ(q′ ⊗ r′),

where the marked equality follows from Lemma 2.1.
With both maps defined, the only thing that remains is to show that their com-

positions are the respective identities. It is sufficient to show this on a generating
set of each algebra. We have

φψ(q ⊗ r) = φ([qr]) = π1(qr)⊗ π2(qr) = q ⊗ r

for a basis element q ⊗ r (with q ∈ Q∗ and r ∈ R∗) in kQ⊗k kR, and

ψφ([u× v]) = ψ(u⊗ v) = [uv] = [u× v] (for u ∈ Q0 and v ∈ R0),
ψφ([α× v]) = ψ(α⊗ v) = [αv] = [α× v] (for α ∈ Q1 and v ∈ R0),
ψφ([u× β]) = ψ(u⊗ β) = [uβ] = [u× β] (for u ∈ Q0 and β ∈ R1)

for cosets of vertices and arrows in k(Q×R)/〈κ(Q,R)〉 (these generate the algebra
since their representatives generate k(Q×R)). �

We will now try this result out in an example.

Example 2.5. We continue using the quivers

Q : u1
α // u2

R : v1
β // v2

γ // v3

from Example 2.1. We use Proposition 2.2 to find a quiver and set of relations for
the tensor product algebra

kQ⊗k kR.

We remember from Example 2.1 that the product quiver of Q and R is

Q×R :
u1 × v1

u1×β //

α×v1

��

u1 × v2
u1×γ //

α×v2

��

u1 × v3

α×v3

��
u2 × v1

u2×β // u2 × v2
u2×γ // u2 × v3

The set of commutativity relations in Q×R is

κ(Q,R) = {βα− αβ,γα− αγ}.

By Proposition 2.2, we have

kQ⊗k kR ∼= k(Q×R)/〈κ(Q,R)〉 ,
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with isomorphisms

φ : kQ⊗k kR→ k(Q×R)/〈κ(Q,R)〉 ,
ψ : k(Q×R)/〈κ(Q,R)〉 → kQ⊗k kR

induced by

φ(q ⊗ r) = [qr] for q ∈ Q∗ and r ∈ R∗,
ψ([p]) = π1(p)⊗ π2(p) for p ∈ (Q×R)∗.

Let us look at how elements of the tensor product kQ ⊗k kR are represented
in the path algebra quotient k(Q × R)/〈κ(Q,R)〉. Assume that k is the field of
rationals. Let λ and γ be the elements

λ = 2α+ 3u2,

γ = 5γβ+ β

in kQ and kR, respectively. We will find the element of k(Q×R)/〈κ(Q,R)〉 which
corresponds to λ⊗ γ. We have

φ(λ⊗ γ) = φ
(
10(α⊗ γβ) + 2(α⊗ β) + 15(u2 ⊗ γβ) + 3(u2 ⊗ β)

)
= 10 · φ(α⊗ γβ) + 2 · φ(α⊗ β) + 15 · φ(u2 ⊗ γβ) + 3 · φ(u2 ⊗ β)
= [10αγβ+ 2αβ+ 15u2γβ+ 3u2β].

For the opposite direction, consider the element

[2γβα+ γαβ] ∈ k(Q×R)/〈κ(Q,R)〉 .

We will see how this can be interpreted as an element of kQ⊗k kR. We have

ψ([2γβα+ γαβ]) = ψ(2[γβα] + [γαβ])
= 2 · ψ([γβα]) + ψ([γαβ])
= 2(π1(γβα)⊗ π2(γβα)) + π1(γαβ)⊗ π2(γαβ)
= 2(α⊗ γβ) + α⊗ γβ
= 3(α⊗ γβ). �

2.3 Quotients
Armed with the above nice result for path algebras, let us now turn to the more
general case of quotients of path algebras. We will show that the tensor product

kQ/〈ρ〉 ⊗k kR/〈σ〉

is isomorphic to a quotient of the path algebra

k(Q×R),

where Q and R are quivers, and ρ ⊆ kQ and σ ⊆ kR are sets of relations.
We first show a small diagrammatical result which we will need in our proof.
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Lemma 2.3. Let T be a ring and

0

��

0

��

0

��
0 // X //

��

A2 //

j

��

Y //

��

0

0 // A1
i //

��

B
p //

q

��

C1 //

q′

��

0

0 // Z //

��

C2
p′ //

��

D //

��

0

0 0 0

a commutative diagram of T -modules with exact rows and columns. Then the se-
quence

0 // im i+ im j � � ι // B
p′q=q′p// D // 0

is exact.

Proof. We immediately have that p′q is an epimorphism (it is the composition of
two epimorphisms) and ι a monomorphism (it is an inclusion). The composition

(p′q)ι = (q′p)ι

is zero because p(b) = 0 for b ∈ im i and q(b) = 0 for b ∈ im j.
Now what remains is to show that ker p′q ⊆ im ι. This can be done by the

following diagram chase. Start with an element b ∈ ker p′q. Chase it down, then
left, then up, to get an element a1 ∈ A1 with qi(a1) = q(b). Chase b− i(a1) up to
an element a2 ∈ A2. Then

i(a1) + j(a2) = i(a1) + (b− i(a1)) = b,

so b ∈ im i+ im j = im ι. �

Now we will show how the tensor product kQ/〈ρ〉 ⊗k kR/〈σ〉 can be described
as a quotient of the path algebra k(Q × R). In order to define the ideal we want
to divide k(Q × R) by, we need some way of transfering elements of ρ and σ to
k(Q×R). We extend the product quiver inclusion maps

incv1 : Q∗ → (Q×R)∗ for v ∈ R0,
incu2 : R∗ → (Q×R)∗ for u ∈ Q0

by linearity, reusing the names, to get k-module homomorphisms

incv1 : kQ→ k(Q×R) for v ∈ R0,
incu2 : kR→ k(Q×R) for u ∈ Q0.
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For each relation r ∈ ρ, there are |R0| possible inclusions incv1(r) of r into
k(Q × R), corresponding to elements r ⊗ v of the tensor product. But all these
are zero in kQ/〈ρ〉 ⊗k kR/〈σ〉, so we can include them all in the set of relations we
divide k(Q×R) by. Similarly, this set of relations should contain all |Q0| inclusions
incu2 (s) of each relation s in σ.

Given subsets X ⊆ kQ and Y ⊆ kR, we define the notation

inc1(X) = { incv1(x) | x ∈ X, v ∈ R0 }
inc2(Y ) = { incu2 (x) | y ∈ Y, u ∈ Q0 }

for the sets consisting of all inclusions of elements of X and Y , respectively, into
the product quiver Q×R. Using this notation, the relation sets

ρ ⊆ kQ and σ ⊆ kR

are transferred to

inc1(ρ) ⊆ k(Q×R) and inc2(σ) ⊆ k(Q×R)

in the path algebra over the product quiver.
Furthermore, we must, as for the non-quotient case, divide out by commutativ-

ity relations.
With this in mind, we now state and prove the main result of this chapter.

Proposition 2.4. ([3], Lemma 1.3) Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path
algebras. Then

kQ/〈ρ〉 ⊗k kR/〈σ〉 ∼= k(Q×R)/〈inc1(ρ) ∪ inc2(σ) ∪ κ(Q,R)〉

as k-algebras, with isomorphisms induced by

[q]⊗ [r] 7→ [qr] for q ∈ Q∗ and r ∈ R∗,
[π1(p)]⊗ [π2(p)]←[ [p] for p ∈ (Q×R)∗.

Proof. We will show the result by first expressing

kQ/〈ρ〉 ⊗k kR/〈σ〉

as a quotient of kQ ⊗k kR, then translating to a quotient of k(Q × R) by using
Proposition 2.2.

We have exact sequences

0 // 〈ρ〉 �
� ι1 // kQ // // kQ/〈ρ〉 // 0

and

0 // 〈σ〉 �
� ι2 // kR // // kR/〈σ〉 // 0 .
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By combining these we can form the diagram

0

��

0

��

0

��
0 // 〈ρ〉 ⊗k 〈σ〉 //

��

〈ρ〉 ⊗k kR //

ι1⊗id
��

〈ρ〉 ⊗k kR/〈σ〉 //

��

0

0 // kQ⊗k 〈σ〉
id⊗ι2 //

��

kQ⊗k kR //

��

kQ⊗k kR/〈σ〉 //

��

0

0 // kQ/〈ρ〉 ⊗k 〈σ〉 //

��

kQ/〈ρ〉 ⊗k kR //

��

kQ/〈ρ〉 ⊗k kR/〈σ〉 //

��

0

0 0 0
where each map is the tensor product of a map from one of the above sequences
with the appropriate identity map. The diagram commutes because

(id⊗g) ◦ (f ⊗ id) = f ⊗ g = (f ⊗ id) ◦ (id⊗g)

for any maps f and g, and identity maps id. Since all k-modules are flat (k is a
field), the rows and columns are exact.

By Lemma 2.3 (and by identifying 〈ρ〉⊗k kR with im(ι1⊗ idkR) and kQ⊗k 〈σ〉
with im(idkQ⊗ι2)), we get an exact sequence

0 //
(
〈ρ〉 ⊗k kR

)
+
(
kQ⊗k 〈σ〉

) � � // kQ⊗k kR
ϑ // kQ

〈ρ〉 ⊗k
kR
〈σ〉

// 0

of k-vector spaces and k-linear maps, where ϑ is given by

ϑ(q ⊗ r) = [q]⊗ [r]

for paths q ∈ Q∗ and r ∈ R∗. Furthermore, kQ ⊗k kR and kQ/〈ρ〉 ⊗k kR/〈σ〉 are
k-algebras, and ϑ is a k-algebra homomorphism (this is easy to see, since the maps
kQ� kQ/〈ρ〉 and kR� kR/〈σ〉 are k-algebra homomorphisms).

Since kQ⊗kkR ∼= k(Q×R)/〈κ(Q,R)〉 (by Proposition 2.2), this effectively gives
a k-algebra epimorphism

k(Q×R)/〈κ(Q,R)〉 → kQ/〈ρ〉 ⊗k kR/〈σ〉 .

To express kQ/〈ρ〉⊗k kR/〈σ〉 as a quotient of k(Q×R), we want to find the kernel
of this epimorphism. The following diagram illustrates the situation, with φ and
ψ the isomorphisms from Proposition 2.2.

0 //
(
〈ρ〉 ⊗k kR

)
+
(
kQ⊗k 〈σ〉

) � � // kQ⊗k kR
ϑ //

ψ∼=
��

kQ
〈ρ〉 ⊗k

kR
〈σ〉

// 0

0 // ker(ϑφ) � � // k(Q×R)
〈κ(Q,R)〉

ϑφ //

φ

OO

kQ
〈ρ〉 ⊗k

kR
〈σ〉

// 0
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It is clear that

ker(ϑφ) = ψ(kerϑ) = ψ
(
(〈ρ〉 ⊗k kR) + (kQ⊗k 〈σ〉)

)
.

By applying ψ to a generating set of 〈ρ〉⊗k kR+ kQ⊗k 〈σ〉 (as ideal in kQ⊗k kR)
we will get a generating set of ker(ϑφ) (as ideal in k(Q × R)/〈κ(Q,R)〉). Let us
therefore look at generating sets for 〈ρ〉 ⊗k kR and kQ⊗k 〈σ〉.

For subsets A ⊆ kQ and B ⊆ kR, denote by A⊗B the subset

{ a⊗ b | a ∈ A, b ∈ B }

of kQ⊗k kR. Using this notation, we see that the ideals 〈ρ〉 ⊗k kR and kQ⊗k 〈σ〉
are generated by the sets

ρ⊗R0 and Q0 ⊗ σ,

respectively.
Let x⊗ v be an element of ρ⊗R0, with x ∈ ρ and v ∈ R0. Write x as

∑
i aiqi

for some ai ∈ k and qi ∈ Q∗. Then

ψ(x⊗ v) =
∑
i

ai · ψ(qi ⊗ v) =
∑
i

ai[qiv]

=
[∑

i

ai (qiv)
]

=
[∑

i

ai incv1(qi)
]

=
[

incv1

(∑
i

aiqi

)]
=
[

incv1(x)
]
.

Thus ψ(ρ⊗R0) consists of all elements in k(Q×R)/〈κ(Q,R)〉 of the form [incv1(x)]
for x ∈ ρ and v ∈ R0. These elements are the cosets modulo 〈κ(Q,R)〉 of the
elements of inc1(ρ), so they generate the ideal

〈inc1(ρ)〉+ 〈κ(Q,R)〉
〈κ(Q,R)〉

of k(Q×R)/〈κ(Q,R)〉.
Similarly,

ψ(Q0 ⊗ σ) =
{ [

incu2 (y)
] ∣∣ u ∈ Q0, y ∈ σ

}
,

which is a generating set for

〈inc2(σ)〉+ 〈κ(Q,R)〉
〈κ(Q,R)〉 .

Thus we have

ψ
(
〈ρ〉 ⊗k kR+ kQ⊗k 〈σ〉

)
= ψ

(
〈ρ⊗R0〉+ 〈Q0 ⊗ σ〉

)
=
〈
ψ(ρ⊗R0)

〉
+
〈
ψ(Q0 ⊗ σ)

〉
= 〈inc1(ρ)〉+ 〈κ(Q,R)〉

〈κ(Q,R)〉 + 〈inc2(σ)〉+ 〈κ(Q,R)〉
〈κ(Q,R)〉
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= 〈inc1(ρ)〉+ 〈inc2(σ)〉+ 〈κ(Q,R)〉
〈κ(Q,R)〉

= 〈inc1(ρ) ∪ inc2(σ) ∪ κ(Q,R)〉
〈κ(Q,R)〉 .

This means that

ker(ϑφ) = 〈inc1(ρ) ∪ inc2(σ) ∪ κ(Q,R)〉
〈κ(Q,R)〉 ,

so ϑφ induces an isomorphism

θ : k(Q×R)/〈κ(Q,R)〉
〈inc1(ρ) ∪ inc2(σ) ∪ κ(Q,R)〉 /〈κ(Q,R)〉

∼=→ kQ/〈ρ〉 ⊗k kR/〈σ〉

given by
θ([[x]]) = ϑφ([x])

for an element x ∈ k(Q×R). The action of θ on generators (cosets of paths) is

θ([[p]]) = ϑφ([p]) = ϑ(π1(p)⊗ π2(p)) = [π1(p)]⊗ [π2(p)]

for a path p ∈ (Q×R)∗. The inverse θ−1 is given on generators by

θ−1([q]⊗ [r]) = [[qr]]

for paths q ∈ Q∗ and r ∈ R∗, since π1(qr) = q and π2(qr) = r.
By the Third Isomorphism Theorem (for algebras),

k(Q×R)/〈κ(Q,R)〉
〈inc1(ρ) ∪ inc2(σ) ∪ κ(Q,R)〉 /〈κ(Q,R)〉

∼=
k(Q×R)

〈inc1(ρ) ∪ inc2(σ) ∪ κ(Q,R)〉
by the correspondence

[[x]]↔ [x].
So we have

kQ/〈ρ〉 ⊗k kR/〈σ〉 ∼=
k(Q×R)/〈κ(Q,R)〉

〈inc1(ρ) ∪ inc2(σ) ∪ κ(Q,R)〉 /〈κ(Q,R)〉 ,

with isomorphisms induced by

[q]⊗ [r] 7→ [qr] for q ∈ Q∗ and r ∈ R∗,
[π1(p)]⊗ [π2(p)]←[ [p] for p ∈ (Q×R)∗. �

We will now use this proposition in an example.
Example 2.6. Let Q and R be the quivers

Q : u1
α // u2 βgg R :

v2
δ

  BBBBBBBB

v1

γ
>>||||||||

ε
  BBBBBBBB v4

v3

ζ

>>||||||||
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Let ρ ⊆ kQ and σ ⊆ kR be the following sets of relations:

ρ = {β2},
σ = {δγ− ζε}.

We will use Proposition 2.4 to find a quotient of a path algebra which is isomorphic
to the tensor product

kQ/〈ρ〉 ⊗k kR/〈σ〉 .

The product quiver Q×R is

Q×R :

u1 × v2

α×v2

��

u1×δ

##HHHHHHHHHHHHHHHHHH

u1 × v1

α×v1

��

u1×γ

;;vvvvvvvvvvvvvvvvvv

u1×ε ##HHHHHHHHHHHHHHHHHH u2 × v2

β×v2

XX
u2×δ

##HHHHHHHHHHHHHHHHHH u1 × v4

α×v4

��
u2 × v1

β×v1

XX

u2×ε

##HHHHHHHHHHHHHHHHHH

u2×γ
;;vvvvvvvvvvvvvvvvvv

u1 × v3

α×v3

��

u1×ζ

;;vvvvvvvvvvvvvvvvvv
u2 × v4

β×v4

XX

u2 × v3

β×v3

XX

u2×ζ

;;vvvvvvvvvvvvvvvvvv

The relations we get by including ρ and σ into Q×R are

inc1(ρ) = {β2v1,β
2v2,β

2v3,β
2v4},

inc2(σ) = {δγu1 − ζεu1, δγu2 − ζεu2}.

The set κ(Q,R) of commutativity relations is

κ(Q,R) = {αγ− γα,αδ− δα,αε− εα,αζ− ζα,
βγ− γβ,βδ− δβ,βε− εβ,βζ− ζβ}.

By Proposition 2.4, we have

kQ/〈ρ〉 ⊗k kR/〈σ〉 ∼= k(Q×R)/〈inc1(ρ) ∪ inc2(σ) ∪ κ(Q,R)〉 . �







Chapter 3

Bimodules

In this chapter, we show how bimodules over quotients of path algebras can be
described by representations over quivers. The first two sections of this chapter
give bimodule versions of the definitions and results of Section 1.2. Then Section 3.3
shows how we can turn a representation for a bimodule ΛMΓ into representations
for the one-sided modules ΛM and MΓ. Finally, Section 3.4 shows how to find a
representation for the Λ–Λ-bimodule structure of an algebra Λ.

3.1 Representations for bimodules
If Λ and Γ are k-algebras, then a Λ–Γ-bimodule is the same as a left Λ ⊗k Γop-
module. If M is such a module, then the correspondence between these two module
structures is given by

λ ∗m ∗ γ = (λ⊗ γop)~m (3.1)
for elements λ ∈ Λ, γ ∈ Γ and m ∈M , where ∗ denotes the multiplication of M as
Λ–Γ-bimodule, and ~ the multiplication of M as Λ⊗k Γop-module.

For (quotients of) path algebras, this means that a bimodule can be described
by a representation over the product quiver. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of
path algebras. Then, by the above correspondence and Proposition 2.4, a kQ/〈ρ〉–
kR/〈σ〉-bimodule can be described by a representation over Q×Rop respecting the
relation set

inc1(ρ) ∪ inc2(σop) ∪ κ(Q,Rop).

In this section, we will find out how we can turn such a representation into a
bimodule, and vice versa. We first consider an example of a representation over a
product quiver, to see how the induced bimodule structure behaves.
Example 3.1. Let Q and R be the quivers

Q : u1
α // u2 ,

R : v1
β // v2

γ // v3 .
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By Proposition 2.2, we have

kQ⊗k kRop ∼= k(Q×Rop)/〈κ(Q,Rop)〉 (3.2)

with isomorphisms induced by

q ⊗ rop 7→ [qrop] for q ∈ Q∗ and r ∈ R∗,
π1(p)⊗ π2(p)← [ [p] for p ∈ (Q×Rop)∗.

Here Q×Rop is the product quiver

Q×Rop :
u1 × v1

α×v1

��

u1 × v2

α×v2

��

u1×βop
oo u1 × v3

α×v3

��

u1×γop
oo

u2 × v1 u2 × v2
u2×βop
oo u2 × v3

u2×γop
oo

and κ(Q,Rop) is the commutativity relation set

κ(Q,Rop) = {αβop − βopα, αγop − γopα}.

Let (V, f) be the following representation over Q×Rop:

(V, f) :
k2

(1 −1)
��

k

(
1
1

)
oo

��

k
1oo

1
��

k 0oo koo

Since both squares in the representation commute, the representation respects the
relation set κ(Q,Rop). LetM be the corresponding k(Q×Rop)/〈κ(Q,Rop)〉-module.

We will see how this induces a kQ–kR-bimodule structure on M , by first turning
M into a left kQ⊗k kRop-module by the isomorphism of Equation (3.2), and then
turning it into a kQ–kR-bimodule by Equation (3.1).

To distinguish between the different module structures, we use the symbols ∗
and ~ for the scalar multiplications of M as left k(Q × Rop)/〈κ(Q,Rop)〉-module
and left kQ⊗k kRop-module, respectively. We thus write:

χ ∗m for χ ∈ k(Q×Rop)/〈κ(Q,Rop)〉 and m ∈M ,
(λ⊗ γop)~m for λ ∈ kQ, γ ∈ kR and m ∈M .

By the correspondence of Equation 3.1, we have

λmγ = (λ⊗ γop)~m

for an element m ∈M , and algebra elements λ ∈ kQ and γ ∈ kR. We can express
left multiplication with a path q ∈ Q∗ by

qm = q ·m · 1kR = (q ⊗ 1kRop)~m
= (q ⊗ (v1 + v2 + v3))~m
= (q ⊗ v1)~m+ (q ⊗ v2)~m+ (q ⊗ v3)~m
= (qv1) ∗m+ (qv2) ∗m+ (qv3) ∗m.



3.1. REPRESENTATIONS FOR BIMODULES 45

Similarly, right multiplication with a path r ∈ R∗ is expressed by

mr = 1kQ ·m · r = (1kQ ⊗ rop)~m
= ((u1 + u2)⊗ rop)~m
= (u1 ⊗ rop)~m+ (u2 ⊗ rop)~m
= (u1r

op) ∗m+ (u2r
op) ∗m.

Let B be the left uniform basis for M (as k(Q × Rop)-module) given by the
following diagram:

B :

(
a
b

)

��

coo

��

doo

��
e 0oo foo

We compute all products of the basis element d with paths of Q on the left and
paths of R on the right:

u1d = (u1v1) ∗ d + (u1v2) ∗ d + (u1v3) ∗ d = 0 + 0 + d = d
u2d = (u2v1) ∗ d + (u2v2) ∗ d + (u2v3) ∗ d = 0 + 0 + 0 = 0
αd = (αv1) ∗ d + (αv2) ∗ d + (αv3) ∗ d = 0 + 0 + f = f
dv1 = (u1v1) ∗ d + (u2v1) ∗ d = 0 + 0 = 0
dv2 = (u1v2) ∗ d + (u2v2) ∗ d = 0 + 0 = 0
dv3 = (u1v3) ∗ d + (u2v3) ∗ d = d + 0 = d
dβ = (u1β

op) ∗ d + (u2β
op) ∗ d = 0 + 0 = 0

dγ = (u1γ
op) ∗ d + (u2γ

op) ∗ d = c + 0 = c
d(γβ) = (u1β

opγop) ∗ d + (u2β
opγop) ∗ d = (a + b) + 0 = a + b

There are a few observation to make here. The basis element d lies in the vector
space Vu1×v3 of the representation. We see that in order for a product qd to be
nonzero, the path q must have u1 as its tail, and in order for a product dr to be
nonzero, the path r must have v3 as its head. Furthermore, the vertices u1 and v3
act as a left and right identity, respectively, on d. When it comes to multiplication
by arrows, we see that left multiplication of d by α is given by the map fα×v3 of
the representation, while right multiplication of d by γ is given by the map fu1×γop

of the representation. �

The moral of the above example is that when we represent a kQ/〈ρ〉–kR/〈σ〉-
bimodule by a representation over Q×Rop, the linear maps in the representation
corresponding to arrows of the form

α× v for α ∈ Q1 and v ∈ R0

describe left multiplication by α, while the maps corresponding to arrows of the
form

u× βop for u ∈ Q0 and β ∈ R1
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describe right multiplication by β.
We will now aim to give a precise description of the correspondence between

bimodules and representations over product quivers. We will first describe how
bimodules correspond to modules over product quivers. Then it will be easy to
see (although somewhat tedious to describe precisely) how they correspond to
representations.

The following proposition gives the relationship between left multiplication by
paths of the product quiver and simultaneous left and right multiplication by paths
in a bimodule.

Proposition 3.1. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path algebras. Then any
kQ/〈ρ〉–kR/〈σ〉-bimodule is also a left module over

k(Q×Rop)/〈inc1(ρ) ∪ inc2(σop) ∪ κ(Q,Rop)〉 ,

and vice versa. Let M be such a module, and denote its scalar multiplication as
bimodule by ∗ and its scalar multiplication as left module by ~. Then the corre-
spondence between these two module structures is given by

q ∗m ∗ r = [qrop]~m

for a module element m ∈M and paths q ∈ Q∗ and r ∈ R∗.

Proof. We know that kQ/〈ρ〉–kR/〈σ〉-bimodules correspond to left modules over

kQ/〈ρ〉 ⊗k kRop/〈σop〉

by Equation (3.1), and these again correspond to left modules over

k(Q×Rop)/〈inc1(ρ) ∪ inc2(σop) ∪ κ(Q,Rop)〉

by the isomorphism of Proposition 2.4. Following these two correspondences, we
get

q ∗m ∗ r = (q ⊗ rop) •m = [qrop]~m

for a module element m ∈ M and paths q ∈ Q∗ and r ∈ R∗, where • denotes the
scalar multiplication of M as left module over

kQ/〈ρ〉 ⊗k kRop/〈σop〉 . �

When using the correspondence of the above proposition to convert a left mod-
ule over the product quiver into a bimodule, it is convenient to know the result of
one-sided multiplication of a module element by a path. The following proposition
tells us how to find this.

Proposition 3.2. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path algebras, and let M
be a left module over

k(Q×Rop)/〈inc1(ρ) ∪ inc2(σop) ∪ κ(Q,Rop)〉 ,
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with scalar multiplication denoted by ~. Then, in the induced kQ/〈ρ〉–kR/〈σ〉-
bimodule structure on M , we have

qm =
∑
v∈R0

(qv)~m for a path q ∈ Q∗ and an element m ∈M ,

mr =
∑
u∈Q0

(urop)~m for a path r ∈ R∗ and an element m ∈M .

Proof. Using Proposition 3.1, we compute

qm = q ·m · 1kR/〈σ〉 = q ·m ·
( ∑
v∈R0

[v]
)

=
∑
v∈R0

qmv =
∑
v∈R0

(qv)~m

for a module element m ∈M and a path q ∈ Q∗. An analogous computation gives

mr =
∑
u∈Q0

(urop)~m

for a module element m ∈M and a path r ∈ R∗. �

Now we can create an explicit description of the correspondence between bi-
modules and product quiver representations by using the two above propositions,
together with the usual correspondence between modules and representations for
the algebra

k(Q×Rop)/〈inc1(ρ) ∪ inc2(σop) ∪ κ(Q,Rop)〉 .

The following two propositions do precisely this. First we show how to go from a
bimodule to a representation.

Proposition 3.3. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path algebras, and let M
be a kQ/〈ρ〉–kR/〈σ〉-bimodule. Then the representation over Q×Rop corresponding
to M is (V, f), where the vector spaces are

Vu×v = uMv

for each pair of vertices u ∈ Q0 and v ∈ R0, and the maps are given by

fα×v : Vt(α)×v → Vh(α)×v

x 7→ αx

for an arrow α ∈ Q1 and a vertex v ∈ R0, and

fu×βop : Vu×h(β) → Vu×t(β)

x 7→ xβ

for a vertex u ∈ Q0 and an arrow β ∈ R1.
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Proof. We use Proposition 3.1 and the correspondence between modules and rep-
resentations described in Section 1.2.

To distinguish the module structures on M , we denote the scalar multiplication
of M as left k(Q×Rop)-module by ∗.

For a pair of vertices u× v ∈ Q0×R0, we get that the vector space Vu×v at the
vertex u× v of the product quiver is

Vu×v = (u× v) ∗M = uMv,

by first using Equation (1.1), and then Proposition 3.1.
We will now describe the linear map

fα×v : Vt(α)×v → Vh(α)×v

for an arrow α×v of the product quiver, where α is an arrow in Q and v is a vertex
in R. For an element m ∈ Vt(α)×v, we have

fα×v(m) = (α× v) ∗m = αmv = αm,

by first using Equation (1.2), then Proposition 3.1, and finally the fact that mv =
m, since m is an element of Vt(α)×v.

Finding the linear map fu×βop for a vertex u ∈ Q0 and an arrow β ∈ R1 can
be done in a similar way. �

Now we will show how to go from a representation to a bimodule.

Proposition 3.4. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path algebras, and let
(V, f) be a representation over Q×Rop respecting the relations

inc1(ρ) ∪ inc2(σop) ∪ κ(Q,Rop).

Then the corresponding kQ/〈ρ〉–kR/〈σ〉-bimodule M is

M =
⊕
u∈Q0
v∈R0

Vu×v

as k-vector space. For an element m ∈M and a pair of vertices u× v ∈ Q0 ×R0,
denote by mu×v the component of m belonging to the vector space Vu×v.

The scalar multiplications of elements of m by algebra elements on the left and
right are defined as follows. Let m be an element of M . For vertices u′ ∈ Q0 and
v′ ∈ R0, the products u′m and mv′ are given componentwise by

(u′m)u×v =
{
mu×v if u = u′

0 otherwise

(mv′)u×v =
{
mu×v if v = v′

0 otherwise
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for every pair of vertices u × v ∈ Q0 × R0. For arrows α ∈ Q1 and β ∈ R1, the
products αm and mβ are given componentwise by

(αm)u×v =
{
fα×v(mt(α)×v) if u = h(α)
0 otherwise

(mβ)u×v =
{
fu×βop(mu×h(β)) if v = t(β)
0 otherwise

for every pair of vertices u×v ∈ Q0×R0. For arbitrary algebra elements λ ∈ kQ/〈ρ〉
and γ ∈ kR/〈σ〉, the products λm and mγ are defined by extending from the above
definitions for vertices and arrows using the module axioms.

Proof. We use Proposition 3.2 and the correspondence between modules and rep-
resentations described in Section 1.2.

To distinguish the module structures on M , we denote the scalar multiplication
of M as left k(Q×Rop)-module by ∗.

Equation (1.3) gives the description of M as vector space:

M =
⊕
u∈Q0
v∈R0

Vu×v.

We need to find the result of multiplying a module element with a vertex or
arrow on either side.

We first compute the product u′m of a vertex u′ ∈ Q0 and a module element
m ∈M . By Proposition 3.2, we have

u′m =
∑
v∈R0

(u′ × v) ∗m.

For a pair of vertices u× v ∈ Q0 ×R0, the (u× v)-component of u′m is

(u′m)u×v =
( ∑
v′∈R0

(u′ × v′) ∗m
)
u×v

=
∑
v′∈R0

(
(u′ × v′) ∗m

)
u×v

=
{
mu×v if u = u′,
0 otherwise;

where the last equation follows from using Equation (1.4) on (u′ × v′) ∗m:(
(u′ × v′) ∗m

)
u×v =

{
mu×v if u× v = u′ × v′,
0 otherwise.

The computation for the product mv′ of a module element m ∈ M and a vertex
v′ ∈ R0 is similar.

We now compute the product αm of an arrow α ∈ Q1 and a module element
m ∈M . By Proposition 3.2, we have

αm =
∑
v∈R0

(α× v) ∗m.
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For a pair of vertices u× v ∈ Q0 ×R0, the (u× v)-component of αm is

(αm)u×v =
( ∑
v′∈R0

(α× v′) ∗m
)
u×v

=
∑
v′∈R0

(
(α× v′) ∗m

)
u×v

=
{
fα×v(mt(α)×v) if u = h(α),
0 otherwise;

where the last equation follows from using Equation (1.5) on (α× v′) ∗m:(
(α× v′) ∗m

)
u×v =

{
fα×v′(mt(α)×v) if u× v = h(α)× v′,
0 otherwise.

Finally, we compute the product mβ of a module element m ∈M and an arrow
β ∈ R1. This is similar to the above computation for αm, except that we need to
change to βop when translating to the left module structure. By Proposition 3.2,
we have

mβ =
∑
u∈Q0

(u× βop) ∗m.

For a pair of vertices u× v ∈ Q0 ×R0, the (u× v)-component of mβ is

(mβ)u×v =
( ∑
u′∈Q0

(u′ × βop) ∗m
)
u×v

=
∑
u′∈Q0

(
(u′ × βop) ∗m

)
u×v

=
{
fu×βop(mu×h(β)) if u = t(β),
0 otherwise;

where the last equation follows from using Equation (1.5) on (u′ × βop) ∗m:(
(u′ × βop) ∗m

)
u×v =

{
fu′×βop(mu×t(βop)) if u× v = u′ × h(βop),
0 otherwise. �

Now that we have established our desired correspondence, we will identify bi-
modules over quotients of path algebras with representations over the product
quiver respecting the necessary relations, just as we identify left modules over a
quotient of a path algebra with representations over its quiver.

3.2 Uniform elements and bases
For one-sided modules over path algebras, we have the notions of left uniform
elements and left uniform bases. We will now define similar concepts for bimodules.
Since these involve multiplication on both sides, we use the term “uniform” instead
of “left uniform”. We also extend the notion of “heads” and “tails” to uniform
bimodule elements.

Definition. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path algebras, M a kQ/〈ρ〉–
kR/〈σ〉-bimodule and m an element of M . Given vertices u ∈ Q0 and v ∈ R0, we
say that m is (u, v)-uniform if

umv = m.
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The element m is uniform if it is (u, v)-uniform for some pair of vertices (u, v).
If m is (u, v)-uniform, we define the head and tail of m by h(m) = u and

t(m) = v, respectively. �

♪ An element m of a kQ/〈ρ〉–kR/〈σ〉-bimodule M is (u, v)-uniform if and only if
it is left (u× v)-uniform when M is viewed as a left k(Q×Rop)-module. �

♪ If kQ is a path algebra and I ⊆ kQ an ideal, then we have two different definitions
of uniformity for elements of I. We can either use the definition on page 14, viewing
the elements of I as elements of the path algebra, or we can use the definition above,
viewing I as a kQ-bimodule. Fortunately, these two definitions coincide. �

Definition. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path algebras, M a kQ/〈ρ〉–
kR/〈σ〉-bimodule and B a k-basis for M . Then B is a uniform basis if every
element of B is uniform. �

♪ If B is a basis for a kQ/〈ρ〉–kR/〈σ〉-bimodule M , then B is uniform if and only
if it is a left uniform basis for M as left k(Q×Rop)-module. �

We have already (in Example 1.1) introduced a diagrammatical notation for
describing a left uniform basis. We can use the same notation to describe a uniform
basis, as shown in the following example.

Example 3.2. Consider the kQ–kR-bimodule M from Example 3.1, given by the
representation

k2

(1 −1)
��

k

(
1
1

)
oo

��

k
1oo

1
��

k 0oo koo

over the product quiver

Q×Rop :
u1 × v1

α×v1

��

u1 × v2

α×v2

��

u1×βop
oo u1 × v3

α×v3

��

u1×γop
oo

u2 × v1 u2 × v2
u2×βop
oo u2 × v3

u2×γop
oo

In Example 3.1, we had a left uniform basis B for M as left k(Q×R)-module. By
the note above, B is then a uniform basis for M as kQ–kR-bimodule. The basis B
was given by the following diagram:

B :

(
a
b

)

��

coo

��

doo

��
e 0oo foo
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We will from now on use such diagrams to describe uniform bases of bimodules.
In a diagram like this, the (u, v)-uniform elements of the basis are placed at

vertex u × v, for each pair of vertices u ∈ Q0 and v ∈ R0. In our basis B, we see
that a and b are (u1, v1)-uniform, c is (u1, v2)-uniform, and so on. Thus, the heads
and tails of the basis elements are:

h(a) = u1 t(a) = v1

h(b) = u1 t(b) = v1

h(c) = u1 t(c) = v2

h(d) = u1 t(d) = v3

h(e) = u2 t(e) = v1

h(f) = u2 t(f) = v3 �

The fact that we define heads and tails of uniform bimodule elements indicates
that we want to think of these elements as being similar to paths. The motivation
behind this becomes clear in Chapter 4, where we will make arrows that represent
uniform basis elements of a bimodule. Then we will use the head and tail of each
basis element as head and tail of the arrow we construct to represent it.

3.3 Forgetting module structure
Given a kQ–kR-bimodule M , we can forget one of its module structures to obtain
a left kQ-module or a right kR-module. We shall now show how to find represen-
tations over Q and Rop for these module structures, given a representation for M
over Q×Rop.

It turns out that there is a very simple method for doing this: If we view the
product quiver Q × Rop as a rectangular grid where each column is a copy of Q
and each row a copy of Rop, we can find the representation for M over Q or Rop

simply by summing along the rows or columns. The following proposition makes
this precise.
Proposition 3.5. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path algebras. Let M
be a kQ/〈ρ〉 ⊗k kR/〈σ〉-module given by a representation (V ×, f×) over Q × Rop.
Define the representation (V Q, fQ) over Q where the vector spaces are

V Qu =
⊕
v∈R0

V ×u×v

for vertices u ∈ Q0, and the maps are

fQα : V Qt(α) → V Qh(α)

(xv)v∈R0 7→ (f×α×v(xv))v∈R0

for arrows α ∈ Q1. Similarly, define the representation (V Rop
, fR

op) over Rop

where the vector spaces are
V R

op

u =
⊕
u∈Q0

V ×u×v
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for each vertex u ∈ R0, and the maps are

fR
op

βop : V R
op

h(β) → V R
op

t(β)

(xu)u∈Q0 7→ (f×u×βop(xu))u∈Q0

for each arrow β ∈ R1.
Then (V Q, fQ) is a representation for M as left kQ-module, and (V Rop

, fR
op)

is a representation for M as right kR-module.

Proof. We show that (V Q, fQ) is a representation for M as left kQ-module. That
(V Rop

, fR
op) is a representation for M as right kR-module can be shown in a similar

way.
Let M be the left kQ-module given by the representation (V Q, fQ). We will

show that
M ∼= M

as left kQ-modules. Then it will follow that M is also a kQ/〈ρ〉-module, and
isomorphic to M as such.

For an element m of M and vertices u ∈ Q0 and v ∈ R0, we denote the
component of m belonging to the vector space V ×u×v by mu×v. For an element m
of M and a vertex u ∈ Q0, we denote the component of m belonging to the vector
space V Qu by mu. For an element x ∈ V Qu , we denote the component of x belonging
to the vector space V ×u×v by xv.

As vector spaces, M and M are clearly isomorphic, since

M =
⊕
u∈Q0

V Qu =
⊕
u∈Q0

( ⊕
v∈R0

V ×u×v

)
∼=
⊕
u∈Q0
v∈R0

V ×u×v = M.

We have a vector space isomorphism

φ : M →M

given componentwise by
φ(m)u×v = (mu)v

for an element m ∈M and vertices u ∈ Q0 and v ∈ R0.
Now we only need to check that φ is a kQ-module homomorphism. Since we

already know that it is a vector space homomorphism, it is enough to show that it
preserves multiplication by vertices and arrows.

Let m be an element of M . Given a vertex u′ ∈ Q0, we have (by Proposition 3.4
and Equation (1.4))

(u′ · φ(m))u×v
3.4=
{
φ(m)u×v = (mu)v if u = u′,
0 otherwise;

and

φ(u′m)u×v = ((u′m)u)v
(1.4)=

{
(mu)v if u = u′,
0 otherwise;
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for any pair of vertices u ∈ Q0 and v ∈ R0, and thus

u′ · φ(m) = φ(u′m).

Given an arrow α ∈ Q1, we have (by Proposition 3.4 and Equation (1.5))

(α · φ(m))u×v
3.4=
{
f×α×v(φ(m)t(α)×v) = f×α×v((mt(α))v) if u = h(α),
0 otherwise;

and

φ(αm)u×v = ((αm)u)v
(1.5)=

{
(fQα (mt(α)))v = f×α×v((mt(α))v) if u = h(α),
0 otherwise;

for any pair of vertices u ∈ Q0 and v ∈ R0, and thus

α · φ(m) = φ(αm). �

Example 3.3. Let us apply the above proposition to the bimodule M from Ex-
ample 3.1. We had the representation

(V, f) :
k2

(1 −1)
��

k

(
1
1

)
oo

��

k
1oo

1
��

k 0oo koo

over Q×Rop for M as kQ–kR-bimodule, and a uniform basis B for M given by

B :

(
a
b

)

��

coo

��

doo

��
e 0oo foo

By Proposition 3.5, M as left kQ-module is given by the representation

k4(
1 −1 0 0
0 0 0 1

)
��
k2

over Q. This can be viewed as the sum of the columns in (V, f). From the uniform
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basis B, we derive a left uniform basis
a
b
c
d


��(
e
f

)
for M as left kQ-module.

Similarly, M as right kR-module is given by the representation

k3 k

(
1
1
0

)
oo k2

(1 0)oo ,

over Rop. This can be viewed as the sum of the rows in (V, f). From the uniform
basis B, we derive a left uniform basisa

b
e

 coo
(

d
f

)
oo

for M as left kRop-module. �

3.4 The enveloping algebra
If Λ is a k-algebra, then the enveloping algebra of Λ is

Λe = Λ⊗k Λop.

Thus a Λ-bimodule is the same as a left Λe-module. In particular, we can view
Λ as a left Λe-module. For a path algebra kQ/〈ρ〉, this means that the kQ/〈ρ〉-
bimodule structure of kQ/〈ρ〉 can be described by a representation over the product
quiver Q ×Qop. We will now look at how we can use Proposition 3.3 to find this
representation.

Consider a path algebra Λ = kQ. Let (V, f) be the representation over Q×Qop

for Λ as Λ-bimodule that we get from Proposition 3.3. The vector space at vertex
u× v (for u and v in Q0) is

Vu×v = uΛv.
This is the set of all (u, v)-uniform elements, and has a basis consisting of all paths
from v to u. The linear map

fα×v : Vt(α)×v → Vh(α)×v



56 CHAPTER 3. BIMODULES

for an arrow α ∈ Q1 and a vertex v ∈ Q0 is defined by left multiplication with α.
On our basis, consisting of paths, this just means concatenating with α on the left.
Similarly, the map

fu×βop : Vu×h(β) → Vu×t(β)

for an arrow β ∈ Q1 and a vertex u ∈ Q0 is given on basis elements by concatenating
with β on the right.

If Λ is a quotient of a path algebra, we can find a representation for Λ as
Λ-bimodule in a similar way, except that the basis for the vector space

uΛv

does not necessarily include representatives of all paths from v to u, only a linearly
independent subset.

The following example shows the process of finding a representation for the
bimodule structure of a path algebra.

Example 3.4. Let Q be the quiver

Q : u1
α // u2

β //

γ
// u3

We will find a representation (V, f) over Q×Qop for kQ as kQ-bimodule.
The product quiver Q×Qop is

Q×Qop :

u1 × u1

α×u1

��

u1 × u2
u1×αop
oo

α×u2

��

u1 × u3
u1×βop
oo

u1×γop
oo

α×u3

��
u2 × u1

β×u1

��

γ×u1

��

u2 × u2
u2×αop
oo

β×u2

��

γ×u2

��

u2 × u3
u2×βop
oo

u2×γop
oo

β×u3

��

γ×u3

��
u3 × u1 u3 × u2

u3×αop
oo u3 × u3

u3×βop
oo

u3×γop
oo

By taking the set of all paths from v to u as basis for the vector space Vu×v of
the representation, we get the following uniform basis:

u1

��

0

��

oo 0

��

oo
oo

α

�� ��

u2

�� ��

oo 0

�� ��

oo
oo

(
βα
γα

) (
β
γ

)
oo u3

oo
oo
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Since the maps of the representation are given, on basis elements, by left or right
concatenation with the appropriate arrow, we see that the representation is

(V, f) :

k

1

��

0

��

oo 0

��

oo
oo

k(
1
0

)
��

(
0
1

)
��

k(
1
0

)
��

(
0
1

)
��

1oo 0

�� ��

oo
oo

k2 k2(
1 0
0 1

)oo k

(
1
0

)
oo (

0
1

)oo

�





Chapter 4

Triangular matrix algebras
and trivial extensions

In this chapter, we will look at two different constructions involving one or two
algebras and a bimodule.

Given two k-algebras Λ and Γ, and a Λ–Γ-bimodule M , we have the lower
triangular matrix algebra(

Γ 0
M Λ

)
=
{(

γ 0
m λ

)∣∣∣∣λ ∈ Λ, γ ∈ Γ,m ∈M
}
,

where the addition and multiplication are defined as usual matrix addition and
matrix multiplication, respectively.

A similar construction, called trivial extension, involves a k-algebra Λ and a Λ-
bimodule M . The trivial extension of Λ by M , denoted ΛnM , is a new k-algebra.
As a vector space, it is the direct sum of Λ and M . The multiplication is given by

(λ1,m1)(λ2,m2) = (λ1λ2, λ1m2 +m1λ2).

for elements (λ1,m1) and (λ2,m2) of Λ nM .
Trivial extensions can be viewed as a generalization of triangular matrix alge-

bras, since any triangular matrix algebra is isomorphic to a trivial extension (this
is Proposition 4.7): (

Γ 0
M Λ

)
∼= (Λ× Γ) nM.

When the algebras involved are quotients of path algebras, a triangular matrix
algebra or trivial extension is isomorphic to a quotient of a path algebra. The goal
of this chapter is to describe how to find the quivers and relations of these algebras.

The methods we will use produce quivers which may contain superfluous arrows,
and relations that make these arrows equal to other paths. Thus, the relation sets
are not necessarily admissible. In the next chapter, we will look at how we can fix
this problem.
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4.1 Triangular matrix algebras
Consider two quotients of path algebras kQ/〈ρ〉 and kR/〈σ〉, and a kQ/〈ρ〉–kR/〈σ〉-
bimodule M . We shall look at how to compute the triangular matrix algebra(

kR/〈σ〉 0
M kQ/〈ρ〉

)
as a quotient of a path algebra. We will for convenience assume that the quivers
Q and R are disjoint.

Let us first discuss the idea of the method we will be using. To avoid unnecessary
complications, we assume that the sets ρ and σ of relations are empty, so that our
algebra is just (

kR 0
M kQ

)
with M a kQ–kR-bimodule. When we come to the more formal description later,
the addition of relations will not cause any problems.

First consider the case M = 0. Then the matrix algebra is isomorphic to the
direct product of kQ and kR, which we know (from Proposition 1.3) is isomorphic
to the path algebra over the union Q ∪R of the quivers:(

kR 0
0 kQ

)
∼= kQ× kR ∼= k(Q ∪R).

Under this isomorphism, paths of Q ∪ R correspond to elements of the matrix
algebra as follows:

q ↔
(

0 0
0 q

)
for q ∈ Q∗,

r ↔
(
r 0
0 0

)
for r ∈ R∗.

Now, if M 6= 0, we could start with the quiver Q ∪ R (and the above corre-
spondence between paths and matrices), and then add some paths to represent the
module elements. Let B be a uniform k-basis for M . Then each element b of B is
uniform, and thus has a head h(b) ∈ Q0 and a tail t(b) ∈ R0. We have(

0 0
0 h(b)

)(
0 0
b 0

)
=
(

0 0
b 0

)
=
(

0 0
b 0

)(
t(b) 0
0 0

)
,

so the element (
0 0
b 0

)
could be represented by a path from t(b) to h(b). Let us create an arrow

−→
b : t(b)→ h(b)
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for each basis element b ∈ B, and add these to the quiver Q ∪ R. We denote the
resulting quiver by R B−→ Q. We use the following correspondence between the new
arrows and elements of the matrix algebra:

−→
b ↔

(
0 0
b 0

)
for b ∈ B.

Now every element of the matrix algebra is represented by some linear combi-
nation of paths in the quiver R B−→ Q. But this quiver contains too much! Consider
a basis element b ∈ B and an arrow α ∈ Q1, with

t(α) = h(b).

Then αb is some element of M , and thus it can be written as a linear combination
of basis elements from B, say

αb =
∑
i

xibi

for basis elements bi ∈ B and coefficients xi ∈ k. In the matrix algebra, we have(
0 0
0 α

)(
0 0
b 0

)
=
(

0 0∑
i xibi 0

)
=
∑
i

xi

(
0 0
bi 0

)
.

When we look at the corresponding elements of k(R B−→ Q), we see that(
0 0
0 α

)(
0 0
b 0

)
corresponds to α

−→
b ,

which is a path of length two, while∑
i

xi

(
0 0
bi 0

)
corresponds to

∑
i

xi
−→
bi ,

which is a linear combination of arrows. To get an isomorphism between the matrix
algebra and the new algebra we are producing, we need these to be the same. So
we introduce the relation

α
−→
b −

∑
i

xi
−→
bi ,

together with similar relations for all other products

α
−→
b and −→

b β

of basis elements b ∈ B and arrows α ∈ Q1 and β ∈ R1. We call the set of these
relations

µ(Q,R,B).
Using the quiver and relations we have created now, we will get(

kR 0
M kQ

)
∼= k(R B−→ Q)/〈µ(Q,R,B)〉 .
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This is stated (in a slightly more general version) later in this section as Proposi-
tion 4.1, and we will prove it in Section 4.3.

Now that we have an idea of what we are going to do, let us write more precise
definitions of the quiver

R
B−→ Q

and the set of relations
µ(Q,R,B)

in terms of the quivers Q and R and the uniform bimodule basis B.
Note that for creating the new quiver, we do not use the fact that B is a basis

for a bimodule – we only use it as a set with a head and a tail for each element.
The definition therefore only assumes a set together with head and tail functions.

Definition. Let Q and R be disjoint quivers and A a finite set, and let h and t be
functions

h : A→ Q0,

t : A→ R0.

We define the augmented union of R and Q with (A, h, t), denoted

R
(A,h,t)−−−−→ Q,

by

(R (A,h,t)−−−−→ Q)0 = Q0 ∪R0,

(R (A,h,t)−−−−→ Q)1 = Q1 ∪R1 ∪
−→
A ;

where −→A is a set consisting of one arrow
−→a : t(a)→ h(a)

for each element a of A.
When it is clear from the context what the functions h and t are, we will omit

them from the notation and write just

R
A−→ Q

for
R

(A,h,t)−−−−→ Q. �

Example 4.1. Let Q and R be the quivers

Q : u1
α // u2,

R : v1
β // v2

γ // v3.
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Let A be the set {a,b, c}, and define the functions

h : A→ Q0,

t : A→ R0

by

h(a) = u1, t(a) = v1,

h(b) = u2, t(b) = v1,

h(c) = u2, t(c) = v2.

Then we have
−→
A = {−→a : v1 → u1,

−→b : v1 → u2,
−→c : v2 → u2 },

and the quiver R (A,h,t)−−−−→ Q is

R
(A,h,t)−−−−→ Q :

v1

β

��

−→a //

−→
b

  BBBBBBBBBB u1

α

��
v2

γ

��

−→c
// u2

v3 �

If Q and R are disjoint quivers, M a kQ–kR-bimodule and B a uniform basis
for M , then we have an augmented union

R
B−→ Q,

where the head and tail functions are understood to be given by the usual h and t.
We then define a k-vector space homomorphism

−→ : M → k(R B−→ Q)

by linear extension of the function from B to −→B mapping b to −→b .
In the definition below, we use the −→ homomorphism to express the relation

set µ(Q,R,B) for a triangular matrix algebra.

Definition. Let Q and R be disjoint quivers, M a kQ–kR-bimodule, and B a
uniform basis for M . Define the set µ(Q,R,B) of relations in k(Q B−→ R) by

µ(Q,R,B) = { α−→b −−→αb | α ∈ Q1 and b ∈ B with t(α) = h(b) }

∪ {
−→
b β −

−→
bβ | b ∈ B and β ∈ R1 with t(b) = h(β) } �
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We are now ready to formulate our result for expressing triangular matrix al-
gebras as quotients of path algebras.

Proposition 4.1. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path algebras, with Q and
R disjoint quivers. Let M be a kQ/〈ρ〉–kR/〈σ〉-bimodule and B a uniform basis for
M . Then (

kR/〈σ〉 0
M kQ/〈ρ〉

)
∼= k(R B−→ Q)/〈ρ ∪ σ ∪ µ(Q,R,B)〉

as k-algebras, with isomorphisms induced by(
0 0
0 [q]

)
↔ [q] for a path q ∈ Q∗,(

[r] 0
0 0

)
↔ [r] for a path r ∈ R∗,(

0 0
b 0

)
↔
[−→
b
]

for a basis element b ∈ B. �

♪ The relation set ρ∪σ∪µ(Q,R,B) in Proposition 4.1 is not necessarily admissible,
even if ρ and σ are admissible in kQ and kR. The problem is that elements of
k(R B−→ Q) of the form −→αb or −→bβ , used in µ(Q,R,B), are linear combinations of
arrows. If any of these are nonzero, we will not get

〈ρ ∪ σ ∪ µ(Q,R,B)〉 ⊆ J2
R
B→Q

.

We do, however, always have

J t
R
B→Q
⊆ 〈ρ ∪ σ ∪ µ(Q,R,B)〉 ⊆ J

R
B→Q

for some t (provided that ρ and σ are admissible), so the relation set is preadmis-
sible. We show this in Proposition 4.2 later in this section.

In Chapter 5, we will see how to turn a quotient of a path algebra with pread-
missible relation set into one with admissible relation set. We will then be able to
create a new quiver S with admissible relation set τ ⊆ kS, such that(

kR/〈σ〉 0
M kQ/〈ρ〉

)
∼= k(R B−→ Q)/〈ρ ∪ σ ∪ µ(Q,R,B)〉 ∼= kS/〈τ〉 .

�

We will prove Proposition 4.1 later (in Section 4.3), after proving the corre-
sponding result for trivial extensions in Proposition 4.5. Right now we will only
look at how the procedure works on a simple example.

Example 4.2. Let Q and R be the quivers

Q : u1
α // u2 ,

R : v1
β // v2

γ // v3 .
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Then the product quiver Q×Rop is

Q×Rop :
u1 × v1

α×v1

��

u1 × v2

α×v2

��

u1×βop
oo u1 × v3

α×v3

��

u1×γop
oo

u2 × v1 u2 × v2
u2×βop
oo u2 × v3

u2×γop
oo

Let M be the kQ–kR-bimodule given by the following representation over Q×Rop

(observe that the representation respects the relations κ(Q,Rop), since both squares
commute):

k2

(1 −1)
��

k

(
1
1

)
oo

��

k
1oo

1
��

k 0oo koo

We will find a quotient of a path algebra which is isomorphic to the triangular
matrix algebra (

kR 0
M kQ

)
by using the method of Proposition 4.1.

Let B be the following uniform basis for M :

B :

(
a
b

)

��

coo

��

doo

��
e 0oo foo

Following the definition of the augmented union R
B−→ Q, we get new arrows

−→
B =

{−→a : v1 → u1,
−→b : v1 → u1,

−→c : v2 → u1,
−→d : v3 → u1,

−→e : v1 → u2,
−→f : v3 → u2

}
,

and our quiver is thus

v1
β //

−→a

��???????????

−→
b

��???????????

−→e

**

v2
γ //

−→c

��

v3

−→
d

�������������

−→
f

tt

R
B−→ Q : u1

α

��
u2
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We will now compute the relation set µ(Q,R,B). We get the following relations
by taking every combination of an arrow α ∈ Q1 and a basis element b ∈ B with
t(α) = h(b):

α−→a −−−→αa = α−→a −−→e ,

α
−→b −−−→αb = α

−→b −
−−−→
(−e) = α

−→b +−→e ,
α−→c −−−→αc = α−→c −−→0 = α−→c ,

α
−→d −−−→αd = α

−→d −−→f .

We get the following relations by taking every combination of a basis element b ∈ B
and an arrow β ∈ R1 with t(b) = h(β):

−→c β−−−→cβ = −→c β−−−−−→a + b = −→c β−−→a −−→b ,
−→d γ−−−→dγ = −→d γ−−→c ,
−→f γ−−→fγ = −→f γ−−→0 = −→f γ.

We thus have the relation set

µ(Q,R,B) =
{
α−→a −−→e , α−→b +−→e , α−→c , α−→d −−→f ,
−→c β−−→a −−→b , −→d γ−−→c , −→f γ }

Now Proposition 4.1 tells us that(
kR 0
M kQ

)
∼= k(R B−→ Q)/〈µ(Q,R,B)〉 .

This is, however, not completely satisfactory, since the relation set µ(Q,R,B)
is not admissible. In Example 5.5, we will continue this example and find a path
algebra quotient with admissible relation set which is isomorphic to

k(R B−→ Q)/〈µ(Q,R,B)〉 . �

We now show that the relation set produced by Proposition 4.1 is preadmissible.

Proposition 4.2. Let kQ/〈ρ〉 and kR/〈σ〉 be quotients of path algebras, with Q
and R disjoint quivers, and ρ and σ admissible sets of relations. Let M be a
kQ/〈ρ〉–kR/〈σ〉-bimodule and B a uniform basis for M . Then the relation set

ρ ∪ σ ∪ µ(Q,R,B) ⊆ k(R B−→ Q)

is preadmissible.

Proof. We must show that

J t
R
B→Q
⊆ 〈ρ ∪ σ ∪ µ(Q,R,B)〉 ⊆ J

R
B→Q
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for some t.
We immediately have

〈ρ ∪ σ ∪ µ(Q,R,B)〉 ⊆ J
R
B→Q

.

To get the other inclusion, choose t1 and t2 such that

J t1Q ⊆ 〈ρ〉 and J t2R ⊆ 〈σ〉 .

We show that
J t1+t2
R
B→Q
⊆ 〈ρ ∪ σ ∪ µ(Q,R,B)〉 .

Let p be a path of length t1 + t2 in R B−→ Q. If p does not contain any arrow of −→B ,
then it is completely contained in either Q or R, and thus lies in either 〈ρ〉 or 〈σ〉.
Otherwise, we have

p = q
−→
b r

for some basis element b ∈ B and paths q ∈ Q∗ and r ∈ R∗. Since the length of p
is t1 + t2, we must have either

l(q) ≥ t1 or l(r) ≥ t2.

Thus, we either have q in 〈ρ〉 or r in 〈σ〉. In all cases, we get

p ∈ 〈ρ ∪ σ〉 ,

so we have
J t1+t2
R
B→Q
⊆ 〈ρ ∪ σ ∪ µ(Q,R,B)〉 .

�

4.2 Trivial extensions
In this section, we will describe how a trivial extension

kQ/〈ρ〉nM,

where M is a kQ/〈ρ〉-bimodule, can be computed as a quotient of a path algebra.
The idea is similar to our procedure for triangular matrix algebras in the pre-

vious section. Let B be a uniform basis for M . We construct a new quiver which
consists of Q and one new arrow for each basis element of M , denoted

Q � B.

We define a relation set ν(Q,B) (analogous to the relation set µ(Q,R,B) in
the previous section) consisting of relations of the forms

α
−→
b −
−→
αb and −→

b β −
−→
bβ
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for arrows α and β in Q, and basis elements b ∈ B. These relations capture the
way elements of the path algebra act on module basis elements (this is described
more precisely in Lemma 4.3).

Since
(0,m) · (0,m′) = 0

in kQ/〈ρ〉 nM for any elements m and m′ of M , we need additional relations to
kill products of the arrows that represent basis elements of M . We therefore define
a relation set ξ(Q,B) consisting of all possible products of two such arrows.

The result we will show (in Proposition 4.5) is that

kQ/〈ρ〉nM ∼= k(Q � B)/〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉 .

We first state a precise definition of the notation

Q � B

which we will use for the quiver of a trivial extension.

Definition. Let Q be a quiver, A a finite set, and let h and t be functions

h : A→ Q0,

t : A→ Q0.

We define the augmented quiver Q � (A,h,t) of Q with (A, h, t) by

(Q � (A,h,t))0 = Q0,

(Q � (A,h,t))1 = Q1 ∪
−→
A ;

where −→A is a set consisting of one arrow
−→a : t(a)→ h(a)

for each element a of A.
When it is clear from the context what the functions h and t are, we will omit

them from the notation and write just

Q � A

for
Q � (A,h,t). �

If Q is a quiver, M a kQ-bimodule and B a uniform basis for M , then we have
an augmented quiver

Q � B,

where the head and tail functions are understood to be given by the usual h and t.
We then define a k-vector space homomorphism

−→ : M → k(Q � B)
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by linear extension of the function from B to −→B mapping b to −→b . This is analogous
to what we did for augmented unions of quivers with bimodules in the previous
section. The similarities between augmented unions of quivers and augmented
quivers are further explored in the following note.

♪ The definition of the augmented quiver above is essentially the same as the
definition of an augmented union of quivers on page 62, except that it is based on
a quiver on the form

• dd

instead of one on the form
• // • .

We have chosen to make two separate definitions since we only need these two
special cases. We could however have used the following more general definition
instead.

Let Q be a quiver. Assign a quiver Q(u) to each vertex u in Q, and a finite set
Aα and functions

hα : Aα → Q
(h(α))
0 ,

tα : Aα → Q
(t(α))
0

to each arrow α in Q. Then we define, for each arrow α in Q, the set −−→Aα consisting
of an arrow

−→a : tα(a)→ hα(a)

for each element a of Aα. We define the combined quiver Q(Q,A,h,t) by

(Q(Q,A,h,t))0 =
⋃
u∈Q0

Q
(u)
0 ,

(Q(Q,A,h,t))1 =
( ⋃
u∈Q0

Q
(u)
1

)
∪
( ⋃
α∈Q1

−−→
Aα

)
.

We can further define the following notation for the combined quiver Q(Q,A,h,t):
Draw the quiver Q, with the quiver Q(u) placed at vertex u for each u ∈ Q0, and
(Aα, hα, tα) placed by the arrow α for each α ∈ Q1.

By taking Q to be

• dd or • // • ,

we get a combined quiver which is the same as an augmented quiver or augmented
union of quivers, and the notation is exactly the same as the one we originally
defined for these. �

Having defined the quiver we want to use, let us now define the sets ν(Q,B)
and ξ(Q,B) of relations.
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Definition. Let Q be a quiver, M a kQ-bimodule and B a uniform basis for M .
Define the relation sets ν(Q,B) and ξ(Q,B) in k(Q � B) by

ν(Q,B) =
{
α
−→
b −
−→
αb

∣∣∣ α ∈ Q1 and b ∈ B with t(α) = h(b)
}

∪
{ −→
b α−

−→
bα

∣∣∣ b ∈ B and α ∈ Q1 with t(b) = h(α)
}
,

ξ(Q,B) =
{ −→
b1
−→
b2

∣∣∣ b1 and b2 in B with t(b1) = h(b2)
}
. �

Now we have the ingredients we need to describe trivial extensions as quo-
tients of path algebras. Before we prove the main result, we will show some useful
properties of the relation sets ν(Q,B) and ξ(Q,B). We give these as two lemmata.

Our first lemma says that modulo the relation set ν(Q,B), the new arrows −→b
in the quiver Q � B behave just like the corresponding basis elements b of M with
respect to multiplication by elements of the algebra kQ.

Lemma 4.3. Let kQ be a path algebra, M a kQ-bimodule, and B a uniform basis
for M . Then

λ−→m γ
ν(Q,B)∼

−−−→
λmγ

for any elements λ and γ of kQ, and element m of M .

Proof. Throughout this proof we will write just ν for ν(Q,B).
It is sufficient to show that

λ−→m ν∼
−−→
λm and −→m γ

ν∼ −−→mγ .

We show λ−→m ν∼
−−→
λm ; the proof for −→m γ

ν∼ −−→mγ is analogous.
We build up the result in several steps by first showing some special cases:

1. u−→b ν∼
−→
ub for a vertex u ∈ Q0 and a basis element b ∈ B: If u = h(−→b ), then

u
−→
b = −→b = −→ub ;

otherwise,
u
−→
b = 0 = −→0 = −→ub .

2. α−→b ν∼
−→
αb for an arrow α ∈ Q1 and a basis element b ∈ B: If t(α) = h(−→b ),

then
α
−→
b −
−→
αb ∈ ν;

otherwise,
α
−→
b = 0 = −→0 = −→αb .

3. q−→m ν∼ −−→qm for a vertex or arrow q ∈ Q? and an element m ∈M : Write

m =
∑
i

cibi,
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where the bi are basis elements in B and the ci coefficients from k. Then we
have

q−→m = q ·
−−−−−→∑

cibi = q
∑

ci
−→
bi =

∑
ci · q
−→
bi

ν∼
∑

ci ·
−−→
qbi

=
−−−−−−−→∑

ci · qbi =
−−−−−−→
q
∑

cibi = −−→qm ,

where the equivalence follows from steps 1 and 2.

4. q−→m ν∼ −−→qm for any path q ∈ Q∗ and an element m ∈ M : Paths of length 0
and 1 are taken care of by step 3, so assume l(q) > 1. Write

q = α1 · · ·αn,

where each αi is an arrow in Q. Then, by applying step 3 repeatedly, we have

q−→m = α1 · · ·αn−1αn
−→m

ν∼ α1 · · ·αn−1
−−−→αnm

ν∼ · · · ν∼ −−−−−−−−−→α1 · · ·αn ·m = −−→qm .

Now we are ready to show that λ−→m ν∼
−−→
λm for an element λ ∈ kQ and an element

m ∈M . Write
λ =

∑
i

ciqi,

where the qi are paths in Q and the ci coefficients from k. Then we have, by using
step 4,

λ−→m =
(∑

ciqi
)−→m =

∑
ciqi
−→m ν∼

∑
ci
−−→qim

=
−−−−−−−→∑

ciqim =
−−−−−−−−−→(∑

ciqi
)
m = −−→λm . �

The next lemma essentially shows that when we already have the relations
ν(Q,B), adding the relations ξ(Q,B) is sufficient for killing every element of
k(Q � B) which corresponds to a product of two elements of M . Such an ele-
ment must be a linear combination of paths containing two arrows from −→B ; we
show that all these paths are killed by the relations ν(Q,B) ∪ ξ(Q,B).

Lemma 4.4. Let kQ be a path algebra, M a kQ-bimodule, and B a uniform basis
for M . Then any path in k(Q � B) which contains two or more arrows of −→B lies
in the ideal

〈ν(Q,B) ∪ ξ(Q,B)〉 .

Proof. It is enough to show that any path
−→
b1 q
−→
b2 for b1 and b2 in B, and q ∈ Q∗
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lies in 〈ν(Q,B) ∪ ξ(Q,B)〉. Let

b1q =
∑
i

cibi (with each ci in k and each bi in B)

be the expansion of the module element b1q as a linear combination of basis ele-
ments. Then we have, by Lemma 4.3,

−→
b1 q
−→
b2

ν(Q,B)∼
−−→
b1q
−→
b2 =

∑
i

ci
−→
bi
−→
b2 ∈ 〈ξ(Q,B)〉 .

�

We now state and prove the main result of this section.

Proposition 4.5. Let kQ/〈ρ〉 be a quotient of a path algebra, M a kQ/〈ρ〉-bimodule,
and B a uniform basis for M . Then

kQ/〈ρ〉nM ∼= k(Q � B)/〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉

as k-algebras, with isomorphisms induced by

([q], 0)↔ [q] for any path q in Q,

(0, b)↔
[−→
b
]

for any basis element b in B.

Proof. Define a k-algebra homomorphism

φ : k(Q � B)→ kQ/〈ρ〉nM

by the following actions on vertices and arrows (remember that (Q � B)1 = Q1 ∪−→
B ):

u 7→ ([u], 0) for a vertex u ∈ (Q � B)0 = Q0,
α 7→ ([α], 0) for an arrow α ∈ Q1,
−→
b 7→ (0, b) for an arrow −→b ∈ −→B .

This gives a well-defined algebra homomorphism, by Lemma 1.2 (it is straightfor-
ward to check that the conditions of the lemma are satisfied).

We observe that φ is an epimorphism: The set

{ ([q], 0) | q ∈ Q∗ } ∪ { (0, b) | b ∈ B }

is contained in the image of φ since

φ(q) = ([q], 0) for q ∈ Q∗ and

φ(−→b ) = (0, b) for b ∈ B,

and this set generates kQ/〈ρ〉nM as vector space.
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We want to show that the relation sets ρ, ν(Q,B) and ξ(Q,B) are mapped to
zero by φ. We have

φ(r) = ([r], 0) = (0, 0)

for any r ∈ ρ. To see that ν(Q,B) is mapped to zero, consider an arrow α ∈ Q1
and a basis element b ∈ B with t(α) = h(b). Then αb is an element of M and thus
some linear combination

∑
i cibi of basis elements bi ∈ B with coefficients ci ∈ k.

We compute

φ
(
α
−→
b
)

= φ(α) · φ
(−→
b
)

= ([α], 0) · (0, b) = (0, αb)

=
(

0,
∑
i

cibi

)
=
∑
i

ci · (0, bi) =
∑
i

ci · φ
(−→
bi
)

= φ
(∑

i

ci
−→
bi

)
= φ

(−−−−−→∑
i

cibi

)
= φ

(−→
αb
)

to get
φ
(
α
−→
b −
−→
αb
)

= 0.

A similar argument holds for elements of ν(Q,B) which are of the form −→b β−−→bβ .
For elements −→b1

−→
b2 of ξ(Q,B), we have

φ
(−→
b1
−→
b2
)

= φ
(−→
b1
)
· φ
(−→
b2
)

= (0, [b1]) · (0, [b2]) = (0, 0).

This means that
ρ ∪ ν(Q,B) ∪ ξ(Q,B) ⊆ kerφ ,

and thus
〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉 ⊆ kerφ .

So φ induces an algebra homomorphism

φ : k(Q � B)/〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉 → kQ/〈ρ〉nM,

with

φ([q]) = ([q], 0) for a path q ∈ Q∗,

φ
([−→

b
])

= (0, b) for a basis element b ∈ B.

Now we only need to show that

kerφ ⊆ 〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉

to establish that φ is an isomorphism.
Let λ ∈ k(Q � B) be any element. We can write this element as

λ = λ0 + λ1 + λ2,
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where λ0 is a linear combination of paths containing no arrows from −→B (that is,
λ0 ∈ kQ), λ1 is a combination of paths containing exactly one arrow from −→B , and
λ2 is a combination of paths containing two or more arrows from −→B .

Let us look at what the elements λ0, λ1 and λ2 are mapped to by φ. Since
λ0 ∈ kQ, we have

φ(λ0) = ([λ0], 0).
We can write λ1 as

λ1 =
∑
i

ci · qi
−→
bi ri

for some coefficients ci ∈ k, paths qi and ri in Q∗ and basis elements bi ∈ B. Let

λ′1 =
∑
i

ci · qibiri

be the corresponding element of M ; then

φ(λ1) =
∑
i

ci · φ(qi) · φ(−→bi ) · φ(ri) =
∑
i

ci · ([qi], 0) · (0, bi) · ([ri], 0)

=
∑
i

ci · (0, qibiri) =
(

0,
∑
i

ci · qibiri
)

= (0, λ′1).

We see that φ(λ2) = (0, 0), since

φ
(−→
b1 q
−→
b2
)

= φ(−→b1 ) · φ(q) · φ(−→b2 )
= (0, b1) · ([q], 0) · (0, b2) = (0, b1q) · (0, b2) = (0, 0)

for any basis elements b1 and b2 in B, and any path q ∈ Q∗. We thus have

φ(λ) = φ(λ0) + φ(λ1) + φ(λ2) = ([λ0], 0) + (0, λ′1) + (0, 0)
= ([λ0], λ′1).

Assume that φ(λ) = 0. Then λ0 ∈ 〈ρ〉 and λ′1 = 0. By Lemma 4.3, we have

λ1
ν(Q,B)∼

−→
λ′1 = −→0 = 0,

and thus λ1 ∈ 〈ν(Q,B)〉. By Lemma 4.4, we have λ2 ∈ 〈ν(Q,B) ∪ ξ(Q,B)〉. This
means that

λ = λ0 + λ1 + λ2 ∈ 〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉 ,
and we have thus shown that

kerφ ⊆ 〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉 . �

♪ Just like in the case of triangular matrix algebras (see the note on page 64), the
relation set we produce for a trivial extension is preadmissible (we show this in
Proposition 4.6 later in this section), but not necessarily admissible. In Chapter 5,
we will see how we can produce an isomorphic quotient of a path algebra where
the relation set is admissible. �



4.2. TRIVIAL EXTENSIONS 75

Let us look at an example of a trivial extension to see how Proposition 4.5
works in practice.

Example 4.3. Let Q be the quiver

Q : u1
α // u2

β // u3 .

Then the product quiver Q×Qop is

Q×Qop :

u1 × u1

α×u1

��

u1 × u2
u1×αop
oo

α×u2

��

u1 × u3
u1×βop
oo

α×u3

��
u2 × u1

β×u1

��

u2 × u2
u2×αop
oo

β×u2

��

u2 × u3
u2×βop
oo

β×u3

��
u3 × u1 u3 × u2

u3×αop
oo u3 × u3

u3×βop
oo

Let M be the kQ-bimodule given by the following representation over Q×Qop:

M :

0

��

k

1
��

oo k

1
��

1oo

0

��

k

��

oo k

��

1
oo

0 0oo 0oo

Let B the following uniform basis for M :

B :

0

��

a

��

oo b

��

oo

0

��

c

��

oo d

��

oo

0 0oo 0oo

We use Proposition 4.5 to find a quotient of a path algebra which is isomorphic
to the trivial extension

kQnM.

The quiver Q � B is

Q � B : u1
α // u2

β //
−→a
ii

−→c

��
u3

−→
d

ii

−→
b

SS
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The relation sets ν(Q,B) and ξ(Q,B) are

ν(Q,B) = {α−→a −−→c , α−→b −−→d , β−→c , β−→d , −→a α, −→c α, −→b β−−→a , −→d β−−→c },

ξ(Q,B) = {−→a −→c , −→a −→d , −→c 2, −→c −→d }.

By Proposition 4.5, we have

kQnM ∼=
k(Q � B)

〈ν(Q,B) ∪ ξ(Q,B)〉 ,

with isomorphisms

φ : kQnM → k(Q � B)
〈ν(Q,B) ∪ ξ(Q,B)〉

and

ψ : k(Q � B)
〈ν(Q,B) ∪ ξ(Q,B)〉 → kQnM

given by

φ(λ,m) = [λ+−→m ] for (λ,m) ∈ kQnM ,
ψ([q]) = (q, 0) for a path q ∈ Q∗,

ψ([−→b ]) = (0, b) for a basis element b ∈ B.

Now we have a quotient of a path algebra which is isomorphic to the trivial
extension kQ nM , but its relation set is not admissible. We will continue this
example in Example 5.6, where we will find a quiver R and admissible relation set
σ ⊆ kR such that

kQnM ∼=
k(Q � B)

〈ν(Q,B) ∪ ξ(Q,B)〉
∼= kR/〈σ〉 .

�

We now show that the relation set produced by Proposition 4.5 is preadmissible.

Proposition 4.6. Let kQ/〈ρ〉 be a quotient of a path algebra (with ρ an admissible
relation set), M a kQ/〈ρ〉-bimodule, and B a uniform basis for M . Then the
relation set

ρ ∪ ν(Q,B) ∪ ξ(Q,B) ⊆ k(Q � B)
is preadmissible.

Proof. We immediately have

〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉 ⊆ JQ � B.

Choose t such that
J tQ ⊆ 〈ρ〉 .
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We show that
J2t
Q � B ⊆ 〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉 .

Let p be a path in Q � B of length 2t. We have one of the following three cases,
depending on how many arrows from −→B the path p contains:

1. If p does not contain any arrow from −→B , then p ∈ Q∗, and we get p ∈ 〈ρ〉
since the length of p is greater than t.

2. If p contains exactly one arrow from −→B , then

p = q
−→
b r

for some basis element b ∈ B, and some paths q and r in Q. Since p has
length 2t, either q or r must have length at least t and thus lie in 〈ρ〉. So we
get p ∈ 〈ρ〉.

3. If p contains two or more arrows from −→B , then p ∈ 〈ν(Q,B) ∪ ξ(Q,B)〉 by
Lemma 4.4.

In all cases, we get
p ∈ 〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉 ,

so we have
J2t
Q � B ⊆ 〈ρ ∪ ν(Q,B) ∪ ξ(Q,B)〉 . �

4.3 Return of the triangular matrix algebras
We will now return to the result we left unproved in Section 4.1, namely Propo-
sition 4.1. We will see that a lower triangular matrix algebra is isomorphic to
a trivial extension, and that the path algebra quotient we want for the triangu-
lar matrix algebra is equal to the one we produce for the trivial extension using
Proposition 4.5.

We first describe how a lower triangular matrix algebra can be converted to a
trivial extension.

Proposition 4.7. Let Λ and Γ be k-algebras, and M a Λ–Γ-bimodule. Then M
can be viewed as a (Λ× Γ)-bimodule by

(λ, γ)m = λm,

m(λ, γ) = mγ

for elements (λ, γ) ∈ Λ× Γ and m ∈M ; and we have(
Γ 0
M Λ

)
∼= (Λ× Γ) nM
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as k-algebras, with isomorphisms given by(
γ 0
m λ

)
↔ ((λ, γ),m)

for λ ∈ Λ, γ ∈ Γ and m ∈M .

♪ This result is given (without proof) on page 79 in [1].

Proof. It is easy to check that the multiplication defined above gives a (Λ × Γ)-
bimodule structure on M .

As k-vector spaces, (
Γ 0
M Λ

)
and (Λ× Γ) nM

are clearly isomorphic, since they are both isomorphic to the direct sum Λ⊕Γ⊕M .
The obvious vector space isomorphism is the function

φ :
(

Γ 0
M Λ

)
→ (Λ× Γ) nM

defined by

φ

(
γ 0
m λ

)
= ((λ, γ),m).

Now we only need that φ is in fact a k-algebra homomorphism. We see this by
checking that it preserves multiplication and the identity element:

φ

((
γ1 0
m1 λ1

)
·
(
γ2 0
m2 λ2

))
= φ

(
γ1γ2 0

m1γ2 + λ1m2 λ1λ2

)
= ((λ1λ2, γ1γ2),m1γ2 + λ1m2)
= ((λ1, γ1),m1) · ((λ2, γ2),m2)

= φ

(
γ1 0
m1 λ1

)
· φ
(
γ2 0
m2 λ2

)
,

φ(1( Γ 0
M Λ

)) = φ

(
1 0
0 1

)
= ((1, 1), 0) = 1(Λ×Γ)nM . �

In a similar way, we can express an augmented union of quivers as an augmented
quiver.

Proposition 4.8. Let Q and R be disjoint quivers, A a finite set, and h and t
functions

h : A→ Q0,

t : A→ R0.
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Let h′ and t′ be the functions defined by extending the codomains of h and t to
(Q ∪R)0:

h′ : A→ (Q ∪R)0, h′(a) = h(a) for a ∈ A;
t′ : A→ (Q ∪R)0, t′(a) = t(a) for a ∈ A.

Then the augmented union of R and Q by (A, h, t) is the same as the augmented
quiver of Q ∪R by (A, h′, t′):

R
(A,h,t)−−−−→ Q = (Q ∪R) � (A,h′,t′).

Proof. This result follows immediately from the definitions of augmented union of
quivers and augmented quiver, since the set −→A of new arrows is the same in both
cases. �

We will now describe the relationship between a path algebra quotient on the
form

k(R B−→ Q)
〈ρ ∪ σ ∪ µ(Q,R,B)〉

and one on the form

k
(
(Q ∪R) � B

)
〈ρ ∪ σ ∪ ν(Q ∪R,B) ∪ ξ(Q ∪R,B)〉 .

The first of these is what we want to be isomorphic to the triangular matrix algebra(
kR/〈σ〉 0
M kQ/〈ρ〉

)
,

and the second we know (by Proposition 4.5) to be isomorphic to the trivial exten-
sion

k(Q ∪R) nM.

The following proposition shows how the quivers and relation sets of these algebras
are related.

Proposition 4.9. Let Q and R be disjoint quivers, let M be a kQ–kR-bimodule,
and let B be a uniform basis for M .

Then M has an induced k(Q∪R)-bimodule structure with scalar multiplication
(which we denote by ∗) induced by

q ∗m = qm r ∗m = 0
m ∗ q = 0 m ∗ r = mr

for a module element m ∈ M and paths q ∈ Q∗ and r ∈ R∗. The basis B is still
uniform with respect to this module structure, and we have the equality

R
B−→ Q = (Q ∪R) � B
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of quivers. The relation sets ν(Q ∪R,B) and ξ(Q ∪R,B) are given by

ν(Q ∪R,B) = µ(Q,R,B),
ξ(Q ∪R,B) = ∅.

Proof. It is easy to see that the multiplication ∗ described above gives a k(Q∪R)-
bimodule structure on M .

For any (u, v)-uniform element m ∈M (as kQ–kR-bimodule), we have

u ∗m ∗ v = umv = m,

so m is still (u, v)-uniform when we view M as k(Q∪R)-bimodule. Therefore, the
basis B is uniform for M as k(Q ∪R)-bimodule, with the endpoints

h(b) and t(b)

of each basis element b ∈ B the same as in the original bimodule structure. Then,
by Proposition 4.8, we have

R
B−→ Q = (Q ∪R) � B.

Since h(b) ∈ Q0 and t(b) ∈ R0 for every basis element b ∈ B, and the quivers Q
and R are disjoint, we have

ν(Q ∪R,B) =
{
α
−→
b −
−→
αb

∣∣∣ α ∈ (Q ∪R)1 and b ∈ B with t(α) = h(b)
}

∪
{ −→
b α−

−→
bα

∣∣∣ b ∈ B and α ∈ (Q ∪R)1 with t(b) = h(α)
}

=
{
α
−→
b −
−→
αb

∣∣∣ α ∈ Q1 and b ∈ B with t(α) = h(b)
}

∪
{ −→
b α−

−→
bα

∣∣∣ b ∈ B and α ∈ R1 with t(b) = h(α)
}

= µ(Q,R,B).

We see that
t(b1) 6= h(b2)

for any basis elements b1 and b2 in B, since t(b1) is a vertex in R, h(b2) is a vertex
in Q, and the quivers Q and R are disjoint. Thus we have

ξ(Q,B) =
{ −→
b1
−→
b2

∣∣∣ b1 and b2 in B with t(b1) = h(b2)
}

= ∅. �

With the above results we have almost proved Proposition 4.1; what remains is
only to put the pieces together.
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Proof (of Proposition 4.1). The following diagram shows how we get the iso-
morphism we want (the dotted arrow in the left column) by combining four propo-
sitions: (

kR/〈σ〉 0
M kQ/〈ρ〉

)
oo ∼=

(Prop. 4.7)
//

OO

∼=

���
�
�
�
�
�
�

(kQ/〈ρ〉 × kR/〈σ〉) nM
OO

∼=(Prop. 1.3)

��
k(Q ∪R)/〈ρ ∪ σ〉nM

OO

∼=(Prop. 4.5)
��

k(R
B−→Q)

〈ρ∪σ∪µ(Q,R,B)〉
k(Q∪R) � B

〈ρ∪σ∪ν(Q∪R,B)∪ξ(Q∪R,B)〉
//=

(Prop. 4.9)
oo

We get a k(Q ∪ R)-bimodule structure on M in two ways: through proposi-
tions 4.7 and 1.3, and through Proposition 4.9. We need these bimodule structures
to be the same for the above diagram to make sense. If we denote the scalar mul-
tiplication of M as (kQ/〈ρ〉 × kR/〈σ〉)-module by ~ and the scalar multiplication
of M as k(Q ∪R)-module by ∗, then propositions 4.7 and 1.3 give

[q] ∗m = ([q], 0)~m = [q]m
[r] ∗m = (0, [r])~m = 0 ·m = 0
m ∗ [q] = m~ ([q], 0) = m · 0 = 0
m ∗ [r] = m~ (0, [r]) = m[r]

for a module element m ∈ M and paths q ∈ Q∗ and r ∈ R∗. This is the same as
the k(Q ∪R)-module structure we get on M from Proposition 4.9.

Now we have established(
kR/〈σ〉 0
M kQ/〈ρ〉

)
∼= k(R B−→ Q)/〈ρ ∪ σ ∪ µ(Q,R,B)〉 ,

and we only need to check that our isomorphisms act the way we want on elements;
namely, (

0 0
0 [q]

)
↔ [q] for a path q ∈ Q∗,(

[r] 0
0 0

)
↔ [r] for a path r ∈ R∗,(

0 0
b 0

)
↔
[−→
b
]

for a basis element b ∈ B.

If we chase an element of the form(
0 0
0 [q]

)
∈
(
kR/〈σ〉 0
M kQ/〈ρ〉

)
or

[q] ∈ k(R B−→ Q)/〈ρ ∪ σ ∪ µ(Q,R,B)〉
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around our diagram, we get(
0 0
0 [q]

)
oo // (([q], 0), 0)

OO

��
([q], 0)
OO

��
[q] [q]//oo

A completely similar chase gives (
[r] 0
0 0

)
↔ [r].

If we chase an element of the form(
0 0
b 0

)
∈
(
kR/〈σ〉 0
M kQ/〈ρ〉

)
or [−→

b
]
∈ k(R B−→ Q)/〈ρ ∪ σ ∪ µ(Q,R,B)〉 ,

we get (
0 0
b 0

)
oo // ((0, 0), b)

OO

��
(0, b)
OO

��[−→
b
] [−→

b
]

//oo
�







Chapter 5

From preadmissible to
admissible relation sets

In Chapter 4, we constructed path algebra quotients kQ/〈ρ〉 where the relation set
ρ did not satisfy the usual admissibility condition

J tQ ⊆ 〈ρ〉 ⊆ J2
Q for some t ≥ 2, (5.1)

but only the weaker condition

J tQ ⊆ 〈ρ〉 ⊆ JQ for some t ≥ 2. (5.2)

That is, the relations may contain paths of length 1.
Recall that we call a relation set ρ satisfying equation (5.1) admissible, and one

satisfying equation (5.2) preadmissible. We usually want our relation sets to be
admissible. In this chapter, we will look at how to turn a path algebra quotient
kQ/〈ρ〉 with ρ preadmissible into an isomorphic algebra kQ′/〈ρ′〉 with ρ′ admissible.

5.1 Idea
Let kQ be a path algebra, and ρ ⊆ kQ a preadmissible set of relations. Our basic
idea is that if we have a relation

α−
∑
i∈I

ciqi ∈ ρ

for some arrow α, paths qi and coefficients ci ∈ k, then

[α] =
[∑
i∈I

ciqi

]
in kQ/〈ρ〉. We can thus remove α from the quiver without losing anything – the
element that was represented by α in kQ/〈ρ〉 is still represented by

∑
ciqi. Before

discussing why this idea does not work in general, we consider a simple example
where it works.
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Example 5.1. Let Q be the quiver

Q :

u2
ζ // u3

β

!!CCCCCCCC

u1

ε

OO

α

==||||||||

γ
!!CCCCCCCC u5

u4

δ

==||||||||

and let
ρ = {βα− δγ, α− ζε}

be a set of relations in kQ. Then ρ is preadmissible but not admissible. The
offending relation is α− ζε, so we try to remove the arrow α, replacing it by ζε.

We then obtain the new quiver

Q′ :

u2
ζ // u3

β

!!CCCCCCCC

u1

ε

OO

γ
!!CCCCCCCC u5

u4

δ

==||||||||

and relation set
ρ′ = {βζε− δγ}.

The relation we used for removing α, namely α−ζε, becomes zero when we replace
α by ζε. Therefore, this relation disappears in ρ′.

The new relation set ρ′ is admissible, and we see that kQ/〈ρ〉 ∼= kQ′/〈ρ′〉 by the
following correspondence between basis elements of the two algebras:

kQ/〈ρ〉 kQ′/〈ρ′〉
[ui] ↔ [ui] for i ∈ {1, . . . , 5}

[ζε] = [α] ↔ [ζε]
[q] ↔ [q] for q ∈ {β,γ, δ, ε, ζ,βζ}

[βζε] = [βα] = [δγ] ↔ [δγ] = [βζε] �

By generalization from this example, we get the following procedure for turning
a path algebra quotient kQ/〈ρ〉 with preadmissible relation set into an isomorphic
algebra kQ′/〈ρ′〉 with admissible relation set: As long as there are relations con-
taining paths of length one left, we choose one such relation, say

α−
∑
i∈I

ciqi,
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where α is an arrow in Q, the qi are paths in Q and the ci coefficients from k, such
that α does not occur in any of the qi. We remove this relation from ρ, and remove
the arrow α from Q, replacing all references to α in other relations by

∑
ciqi.

In certain situations, in particular when the quiver Q does not contain ori-
ented cycles, this is sufficient. In the general situation, however, we may run into
problems.

The problem is that there may exist relations on the form

α−
∑
i∈I

ciqi,

but only ones where the arrow α is contained in one or more of the paths qi. In
this case, it does not make sense to remove α from the quiver and replace it by∑
ciqi in all the relations, because some relations would then still refer to the now

non-existing arrow α.
To solve this problem, we perform the substitution

α 7→
∑
i∈I

ciqi

repeatedly on the expression
∑
ciqi, which we want to use as a replacement for α.

By doing this, we will eventually get all occurences of α to disappear (modulo ρ).
The following example illustrates the process.

Example 5.2. Let Q be the quiver

Q : u1
α ))

β

55 u2 γgg

and let
ρ = {α− γα− γβ, γ2α, γ3}

be a set of relations in kQ. The relation keeping ρ from being admissible is

α− γα− γβ.

We compute

α
ρ∼ γα+ γβ
ρ∼ γ(γα+ γβ) + γβ = γ2α+ γ2β+ γβ
ρ∼ γ2β+ γβ.

We first performed the substitution α 7→ γα + γβ twice. Then we observed that
in the new expression, γ2α + γ2β + γβ, the term containing α was an element
of 〈ρ〉, so we removed that term. The final expression is equivalent to α without
containing α, and we can create a new quiver with relations by removing α from
the quiver and substituting

α 7→ γ2β+ γβ
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in the relations.
The new quiver is

Q′ : u1
β

55 u2 γgg ,

and the new relation set

ρ′ = {γβ− γ2β− γ3β, γ4β+ γ3β, γ3}.

Note that here, unlike the case in Example 5.1, the relation we used for removing
α does not disappear in the new relation set.

(Many of the terms in ρ′ are clearly redundant; we can simplify it to

ρ′′ = {γβ− γ2β, γ3},

which generates the same ideal.) �

5.2 Removing an arrow
We now turn from specific examples to the general case. We will create an algorithm
which follows the idea of Example 5.2.

To describe substitutions such as those performed in Example 5.2, we define
a class of algebra homomorphisms, indexed by the arrow to be removed and its
replacement.

Definition. Let Q be a quiver, α an arrow in Q, and s an α-uniform element of
kQ. Then the substitution map

subst(α,s) : kQ→ kQ

is an algebra homomorphism defined on vertices and arrows by

subst(α,s)(q) =
{
q if q 6= α
s if q = α

for q ∈ Q?. The conditions of Lemma 1.2 are satisfied, so this gives a well-defined
algebra homomorphism. �

♪ If the arrow α does not occur in the substitution value s, we will view the
substitution map subst(α,s) as a homomorphism from kQ to kQ′, where Q′ is the
quiver made by removing α from Q. �

Example 5.3. First consider Example 5.1. The substitution induced from the
relation

α− ζε,

which we used to get rid of α, is described by the substitution map

subst(α,ζε) : kQ→ kQ′.
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For example, we have

subst(α,ζε)(βα− δγ) = βζε− δγ.

Furthermore, the map
φ : kQ/〈ρ〉 → kQ′/〈ρ′〉

given by
φ([λ]) = [subst(α,ζε)(λ)]

is an isomorphism.
Now consider Example 5.2. The substitutions we used there are described by

the substitution maps
subst(α,γα+γβ) : kQ→ kQ

and
subst(α,γ2β+γβ) : kQ→ kQ′. �

We will use substitution maps in the context of a quotient algebra kQ/〈ρ〉 where
the relation set ρ is preadmissible. We want our substitution maps to respect the
relations ρ, in the sense that for any element λ of kQ, the element subst(α,s)(λ) is a
representative of the same equivalence class as λ. The following lemma shows that
this is true, given that α and s are representatives of the same equivalence class.

Lemma 5.1. Let Q, Q′, α and s be as in the definition above, and let ρ be a
preadmissible set of relations in kQ, with

α
ρ∼ s.

Then subst(α,s) takes any element of kQ to one that is equivalent modulo ρ. That
is,

subst(α,s)(λ) ρ∼ λ for any λ ∈ kQ.

Proof. We immediately have

subst(α,s)(q)
ρ∼ q

for any vertex or arrow q ∈ Q?. Since the equivalence relation ρ∼ respects multipli-
cation and addition, this extends to

subst(α,s)(λ) ρ∼ λ

for any element λ ∈ kQ. �

We introduce some new notation which will be used in Algorithm 1.

Definition. Let λ ∈ kQ be an element and X ⊆ kQ a subset of a path algebra
kQ. We define

termsX(λ) = terms(λ) ∩ 〈X〉
to be the set of terms in λ which are contained in the ideal generated by X. �
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♪ If α is an arrow, then
terms{α}(λ)

is the set of terms in λ which contain α. �

Algorithm 1, Eliminate arrow(α, rα, Q, ρ), describes how we can turn a path
algebra quotient with preadmissible relation set into one where the relation set
is closer to being admissible. We will later (see Algorithm 2, page 99) use this
repeatedly to reach a path algebra quotient with admissible relation set.

We demonstrate how the algorithm works by walking through it in an example.

Example 5.4. Let Q be the quiver

Q :

u2
β

!!CCCCCCCC

u1

α

==||||||||
γ

// u3

δ

YY

ε ))

ζ

55 u4

and let
ρ = {γ− δγ− βα, δ3, ε− εδ− ζ+ ζδ2, ζγ− εβα }

be a set of relations in kQ. We see that ρ is preadmissible, but not admissible.
We have three possible arrows to remove. We can either use the relation

γ− δγ− βα

to remove γ, or use the relation

ε− εδ− ζ+ ζδ2

to remove either ε or ζ. We choose the first of these possibilities. Thus, we will
perform Eliminate arrow(γ,γ− δγ− βα, Q, ρ).

The first two lines of the algorithm set Q′ to be the quiver

Q′ :

u2
β

!!CCCCCCCC

u1

α

==||||||||
u3

δ

YY

ε ))

ζ

55 u4

Then we get
cγ = coefficient(γ,γ− δγ− βα) = 1,

and
s0 = γ− (γ− δγ− βα) = δγ+ βα.

We initialize the loop counter i to 0. In the test of the while loop, we get

terms{γ}(s0) = {δγ} 6= ∅,
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Algorithm 1 Eliminate arrow(α, rα, Q, ρ)
Input: A quiver Q, a preadmissible set of relations ρ ⊆ kQ, an arrow α ∈ Q1, and
a relation rα ∈ ρ with coefficient(α, rα) 6= 0.
Output: A quiver Q′ (which is equal to Q with the arrow α removed), a pread-
missible set of relations ρ′ ⊆ kQ′ and an element s ∈ kQ′, such that

kQ/〈ρ〉 ∼= kQ′/〈ρ′〉

as k-algebras, with isomorphisms given by

[λ] 7→ [subst(α,s)(λ)] for λ ∈ kQ,
[λ]←[ [λ] for λ ∈ kQ′.

1: Q′0 := Q0
2: Q′1 := Q1 − {α}
3: cα := coefficient(α, rα)
4: s0 := α− c−1

α rα # Solve rα = cα(α− s0) for s0.
5: i := 0
6: while terms{α}(si) 6= ∅ :
7: i := i+ 1
8: si := subst(α,s0)(si−1)
9: Ti := terms(si)− termsρ(si)

10: si :=
∑
t∈Ti t

11: n := i
12: s := sn
13: ρ′ := { subst(α,s)(r) | r ∈ ρ }
14: return (Q′, ρ′, s)
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so we enter the loop. The first iteration increments i to 1 and produces the values

s1 = subst(γ,s0)(s0) = δ(δγ+ βα) + βα = δ2γ+ δβα+ βα,
T1 = terms(s1)− termsρ(s1) = { δ2γ, δβα, βα } − ∅ = { δ2γ, δβα, βα },

s1 =
∑
t∈T1

t = δ2γ+ δβα+ βα.

Now we get
terms{γ}(s1) = {δ2γ} 6= ∅,

in the loop test, so we continue with a second iteration. The loop counter i is
incremented to 2, and we get the values

s2 = subst(γ,s1)(s1) = δ2(δ2γ+ δβα+ βα) + δβα+ βα
= δ4γ+ δ3βα+ δ2βα+ δβα+ βα,

T2 = terms(s2)− termsρ(s2) = { δ4γ, δ3βα, δ2βα, δβα, βα } − { δ4γ, δ3βα }
= { δ2βα, δβα, βα },

s2 =
∑
t∈T2

t = δ2βα+ δβα+ βα.

Now we have
terms{γ}(s2) = ∅,

so the loop stops here. The remaining lines set

n = 2,
s = s2 = δ2βα+ δβα+ βα,
ρ′ = { subst(γ,s)(r) | r ∈ ρ }

= {−δ3βα, δ3, ε− εδ− ζ+ ζδ2, ζδ2βα+ ζδβα+ ζβα− εβα }.

We observe that in our new algebra kQ′/〈ρ′〉, the relation set is still not ad-
missible, but now there is only one relation which contains paths of length one,
namely,

ε− εδ− ζ+ ζδ2.

We apply our algorithm again to the new algebra. Now we can remove either ε or
ζ; we choose ε. Thus, we perform Eliminate arrow(ε, ε − εδ − ζ + ζδ2, Q′, ρ′)
to get a new quiver Q′′ and relation set ρ′′.

The first lines of the algorithm give us the new quiver

Q′′ :

u2
β

!!CCCCCCCC

u1

α

==||||||||
u3

δ

YY
ζ

55 u4
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and the initial substitution value

s0 = εδ+ ζ− ζδ2.

The first iteration of the while loop gives

s1 = subst(ε,s0)(s0) = εδ2 + ζδ− ζδ3 + ζ− ζδ2,

T1 = terms(s1)− termsρ′(s1) = { εδ2, ζδ, ζ, −ζδ2 },

s1 =
∑
t∈T1

t = εδ2 + ζδ+ ζ− ζδ2.

The second iteration gives

s2 = subst(ε,s1)(s1) = εδ4 + ζδ3 − ζδ4 + ζδ+ ζ,
T2 = terms(s2)− termsρ′(s2) = { ζδ, ζ },

s2 =
∑
t∈T2

t = ζδ+ ζ.

We have
terms{ε}(s2) = ∅,

so the iteration stops here. The last part of the algorithm gives

n = 2,
s = s2 = ζδ+ ζ,
ρ′′ = { subst(ε,s)(r) | r ∈ ρ′ } = {−δ3βα, δ3, 0, ζδ2βα }.

Now we have (provided the algorithm is correct)

kQ/〈ρ〉 ∼= kQ′/〈ρ′〉 ∼= kQ′′/〈ρ′′〉 ,

and the relation set ρ′′ is admissible. �

Let us now show that the Eliminate arrow algorithm works as intended.
We will first (Proposition 5.2) show that it terminates, and then (Lemma 5.3,
Lemma 5.4 and Proposition 5.5) that it produces a correct result.

Proposition 5.2. Eliminate arrow(α, rα, Q, ρ) terminates after at most t − 2
iterations of the while loop, where t is a path length bound for kQ/〈ρ〉 (that is,
J tQ ⊆ 〈ρ〉).

Proof. The main observation to make is that any path which occurs in si and
contains α has length at least i + 2. We shall show this soon, but let us first see
why it is sufficient for proving the proposition.

If the while loop runs through iteration number t − 2, then st−2 is produced.
Since any path in st−2 which contains α has length at least t, such a path must lie
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in 〈ρ〉. But st−2 is defined to be the sum of the terms of st−2 which are not in 〈ρ〉,
so there is no such path. Therefore,

terms{α}(st−2) = ∅,

and the loop does not continue.
Let us now prove the result we claimed above. For any element λ ∈ kQ, denote

by m(λ) the minimal length of a path in λ containing α, or ∞ if there is no such
path; that is,

m(λ) = min
(
{ l(q) | q ∈ 〈α〉 with coefficient(q, λ) 6= 0 } ∪ {∞}

)
.

Then our claim is that
m(si) ≥ i+ 2

for every si produced by the algorithm. We will show this by induction.
For the base case of the induction, we need to show that m(s0) ≥ 2. The

definition of s0 ensures that

coefficient(α, s0) = 0,

and thus any path in s0 containing α must have length at least 2.
For the inductive step, we begin by showing that

m(subst(α,s0)(λ)) ≥ m(λ) + 1

for any λ ∈ kQ. Any path q in

subst(α,s0)(λ)

must be equal to some path q′ in λ, with every occurence of α replaced by some
path in s0. Assume q to be a path of minimal length containing α.1 Then q′ must
contain α as well, and we have

q′ = q0

m∏
j=1

(αqj)

for some positive integer m, and paths q0, . . . , qm which do not contain α. We get

q = q0

m∏
j=1

(rjqj)

for some paths r1, . . . , rm in s0. Since ρ is preadmissible, we have

minlength(s0) ≥ 1,
1If no path of subst(α,s0)(λ) contains α, then

m(subst(α,s0)(λ)) =∞ ≥ m(λ) + 1,

and we are done.
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and thus
l(rj) ≥ 1

for every rj . This means that
l(q) ≥ l(q′).

But since we assume that q contains α, some rj must contain α and thus have
length at least 2 (since m(s0) ≥ 2). Thus

l(q) ≥ l(q′) + 1.

So we have
m(subst(α,s0)(λ)) = l(q) ≥ l(q′) + 1 ≥ m(λ) + 1.

Now the inductive step follows easily: Assuming

m(si) ≥ i+ 2,

we get

m(si+1) ≥ m(si+1) = m(subst(α,s0)(si)) ≥ m(si) + 1 = i+ 3. �

Now that we know our algorithm terminates, we will show its correctness. We
first show some technical details in the following two lemmata.

Lemma 5.3. In Eliminate arrow(α, rα, Q, ρ), the substitution value s is equiv-
alent to α modulo ρ; that is,

[α] = [s] in kQ/〈ρ〉.

Proof. We have
α− s0 = c−1

α rα ∈ 〈ρ〉 ,

so α ρ∼ s0.
For any i ∈ {1, . . . n}, we have

si−1
ρ∼ subst(α,s0)(si−1) = si

ρ∼ si,

where the first equivalence follows from Lemma 5.1, and the last from the fact that
si is obtained from si by removing terms that lie in 〈ρ〉.

By repeated application of the above, we have

α
ρ∼ s0

ρ∼ s1
ρ∼ · · · ρ∼ sn = s. �

Lemma 5.4. In Eliminate arrow(α, rα, Q, ρ),

〈ρ′〉 = 〈ρ〉 ∩ kQ′.
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Proof. We have
〈ρ′〉 ⊆ kQ′ ⊆ kQ.

We will first show 〈ρ′〉 ⊆ 〈ρ〉, then 〈ρ〉 ∩ kQ′ ⊆ 〈ρ′〉.
Any element of ρ′ is of the form

subst(α,s)(r)

for some r ∈ ρ. Since α ρ∼ s (Lemma 5.3), we have by Lemma 5.1 that

subst(α,s)(r)− r ∈ 〈ρ〉 ,

and thus
subst(α,s)(r) ∈ 〈ρ〉 .

This means that ρ′ ⊆ 〈ρ〉. Thus

〈ρ′〉 ⊆ 〈ρ〉 ,

where both ideals are in kQ. But since kQ′ ⊆ kQ, the ideal generated by ρ′ in kQ′
is contained in the ideal generated by ρ′ in kQ.

Now we will show 〈ρ〉 ∩ kQ′ ⊆ 〈ρ′〉. Let

λ ∈ 〈ρ〉 ∩ kQ′.

Then subst(α,s)(λ) ∈ 〈ρ′〉 since λ ∈ 〈ρ〉, and subst(α,s)(λ) = λ since λ ⊆ kQ′. Thus

λ ∈ 〈ρ′〉 . �

Proposition 5.5. The algorithm Eliminate arrow(α, rα, Q, ρ) produces a cor-
rect result. More precisely,

kQ/〈ρ〉 ∼= kQ′/〈ρ′〉

as k-algebras, with the maps

[λ] 7→ [subst(α,s)(λ)] for λ ∈ kQ,
[λ]← [ [λ] for λ ∈ kQ′

being isomorphisms; and ρ′ is a preadmissible set of relations.

Proof. Let

π : kQ→ kQ/〈ρ〉 ,
π′ : kQ′ → kQ′/〈ρ′〉

be the natural projections.
Define the algebra homomorphism φ : kQ→ kQ′/〈ρ′〉 by

φ = π′ ◦ subst(α,s) : kQ
subst(α,s)−−−−−−→ kQ′

π′−→ kQ′/〈ρ′〉 .
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Since, by the definition of ρ′,

subst(α,s)(ρ) = ρ′,

we have φ(ρ) = 0. Thus φ induces an algebra homomorphism

φ : kQ/〈ρ〉 → kQ′/〈ρ′〉 ,

with
φ([λ]) = [subst(α,s)(λ)] for λ ∈ kQ.

For the opposite direction, define the algebra homomorphism ψ : kQ′ → kQ/〈ρ〉
by

ψ = π ◦ inc : kQ′ ↪→ kQ
π−→ kQ/〈ρ〉 .

Since ρ′ ⊆ 〈ρ〉 (by Lemma 5.4), we have ψ(ρ′) = 0, and thus ψ induces an algebra
homomorphism

ψ : kQ′/〈ρ′〉 → kQ/〈ρ〉 ,

with
ψ([λ]) = [λ] for any λ ∈ kQ′.

Now it is easy to see that φ and ψ are inverses of each other:

φψ([λ]) = φ([λ]) = [subst(α,s)(λ)] != [λ] for λ ∈ kQ′,
ψφ([λ]) = ψ([subst(α,s)(λ)]) ∗= ψ([λ]) = [λ] for λ ∈ kQ.

The equality marked “!” follows from the fact that

subst(α,s)(λ) = λ

for any λ ∈ kQ′, since Q′ does not contain α. The equality marked “*” follows
from Lemma 5.1 and Lemma 5.3.

We have thus established the desired isomorphisms. All that is left now is to
check that ρ′ is preadmissible.

Since ρ is preadmissible, we have

J tQ ⊆ 〈ρ〉 ⊆ JQ

for some t. Taking intersections with kQ′ gives

J tQ ∩ kQ′ ⊆ 〈ρ〉 ∩ kQ′ ⊆ JQ ∩ kQ′.

Since
J iQ′ = J iQ ∩ kQ′

for any i, and 〈ρ〉 ∩ kQ′ = 〈ρ′〉 (by Lemma 5.4), this means that

J tQ′ ⊆ 〈ρ′〉 ⊆ JQ′ ,

so ρ′ is preadmissible. �
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5.3 Repeat until admissible
To go all the way from a path algebra quotient with preadmissible relation set to
one with admissible relation set, we may need to perform the Eliminate arrow
algorithm many times. In order to describe the resulting isomorphism from the
original algebra to the new one, we define a generalization of the substitution map.

Definition. Let Q and Q′ be quivers with

Q′0 = Q0

Q′1 = Q1 − {α1, . . . , αn},

for some arrows α1, . . . , αn in Q, and let s1, . . . , sn be elements of kQ′ such that si
is αi-uniform for each i. Then the translation map

tr{(α1,s1),...,(αn,sn)} : kQ→ kQ′

is an algebra homomorphism defined on vertices and arrows by

tr{(α1,s1),...,(αn,sn)}(q) =
{
si if q = αi (for some i ∈ {1, . . . , n}),
q otherwise,

for q ∈ Q?. The conditions of Lemma 1.2 are satisfied, so this gives a well-defined
algebra homomorphism. �

♪ A translation map is like several substitution maps performed simultaneously.
It is clear that

tr{(α1,s1),...,(αn,sn)} = subst(α1,s1) ◦ · · · ◦ subst(αn,sn)

whenever the translation map is defined. Furthermore, this function is independent
of the order of the (αi, si) pairs. �

Algorithm 2, Preadmissible to admissible(Q, ρ), describes the complete pro-
cess for turning a path algebra quotient with preadmissible relation set into one
with admissible relation set. Note that all the interesting work here is done by
the Eliminate arrow algorithm; Preadmissible to admissible simply applies
that algorithm repeatedly (in the while loop) until the resulting relation set is ad-
missible, then (in the for loop) combines all the generated substitutions to make
one translation map.

It is clear that the algorithm terminates, since one arrow is removed in each
iteration of the while loop.

We will now show that the algorithm is correct. Certain technical details re-
garding the translation map are proved separately in the following two lemmata,
before the main result is given in Proposition 5.8.

Lemma 5.6. In Preadmissible to admissible(Q, ρ), each substitution value si
(for i ∈ {1, . . . , n}) is an αi-uniform element of kQ′ (this means that the translation
map tr{(α1,s1),...,(αn,sn)} is defined).
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Algorithm 2 Preadmissible to admissible(Q, ρ)
Input: A quiver Q and a preadmissible set of relations ρ ⊆ kQ.
Output: A quiver Q′, an admissible set of relations ρ′ and a set

{(α1, s1), . . . , (α1, sn)}

with each αi an arrow in Q and each si an element of kQ; such that

kQ/〈ρ〉 ∼= kQ′/〈ρ′〉

as k-algebras, with isomorphisms given by

[λ] 7→ [tr{(α1,s1),...,(αn,sn)}(λ)] for λ ∈ kQ,
[λ]←[ [λ] for λ ∈ kQ′.

1: Q(0) := Q
2: ρ0 := ρ
3: i := 0
4: while there is some relation r ∈ ρi with minlength(r) = 1 :
5: i := i+ 1
6: Choose a relation ri ∈ ρi−1 with minlength(ri) = 1
7: Choose an arrow αi ∈ Q(i−1)

1 with coefficient(αi, ri) 6= 0.
8: (Q(i), ρi, si) := Eliminate arrow(αi, ri, Q(i−1), ρi−1)
9: n := i

10: sn := sn
11: for j ∈ (n− 1, n− 2, . . . , 1) :
12: sj := tr{(αj+1,sj+1),...,(αn,sn)}(sj)
13: Q′ := Q(n)

14: ρ′ := ρn
15: return (Q′, ρ′, {(α1, s1), . . . , (αn, sn)})
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Proof. First note that every si is an αi-uniform element of kQ(i).
We will show the desired result by induction on i from n to 1. The case i = n

is clear, since sn = sn, which is an αn-uniform element of kQ(n) = kQ′.
For the inductive step, assume that sj is an αj-uniform element of kQ′ for every

j ∈ {i+ 1, . . . , n}. This ensures that the translation map

tr{(αj+1,sj+1),...,(αn,sn)}

in line 12 of the algorithm is defined. Since si lies in kQ(i), it does not contain
any of the arrows α1, . . . , αi. After applying the translation map, any occurences
of the arrows αi+1, . . . , αn are replaced by elements of kQ′. Thus, si is an element
of kQ′. Furthermore, applying a translation map does not destroy uniformity, so
si is αi-uniform. �

Lemma 5.7. In Preadmissible to admissible(Q, ρ),

subst(αn,sn) ◦ · · · ◦ subst(α1,s1) = tr{(α1,s1),...,(αn,sn)} .

Proof. We use induction on i from n to 1, showing

subst(αn,sn) ◦ · · · ◦ subst(αi,si) = tr{(αi,si),...,(αn,sn)}

for every i. For the base case (i = n), we have

subst(αn,sn) = subst(αn,sn) = tr{(αn,sn)} .

For the inductive step, assume

subst(αn,sn) ◦ · · · ◦ subst(αi+1,si+1) = tr{(αi+1,si+1),...,(αn,sn)} .

To show that

subst(αn,sn) ◦ · · · ◦ subst(αi,si) = tr{(αi,si),...,(αn,sn)},

it is enough to show that the two maps give the same result on any arrow and
vertex of Q, since they are algebra homomorphisms. For αi, we have(

subst(αn,sn) ◦ · · · ◦ subst(αi,si)
)
(αi) =

(
tr{(αi+1,si+1),...,(αn,sn)} ◦ subst(αi,si)

)
(αi)

= tr{(αi+1,si+1),...,(αn,sn)}(si)
= si

= tr{(αi,si),...,(αn,sn)}(αi).

For any other arrow or vertex q ∈ Q? − {αi}, we have(
subst(αn,sn) ◦ · · · ◦ subst(αi,si)

)
(q) =

(
subst(αn,sn) ◦ · · · ◦ subst(αi+1,si+1)

)
(q)

= tr{(αi+1,si+1),...,(αn,sn)}(q)
= tr{(αi,si),...,(αn,sn)}(q),

since the substitution of si for αi does not affect q. �
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Proposition 5.8. The algorithm Preadmissible to admissible(Q, ρ) produces
a correct result.

Proof. We need to show two things:

1. That kQ/〈ρ〉 ∼= kQ′/〈ρ′〉 by the maps

[λ] 7→ [tr{(α1,s1),...,(αn,sn)}] for λ ∈ kQ,
[λ]← [ [λ] for λ ∈ kQ′.

2. That ρ′ is admissible.

From Proposition 5.5, we have

kQ/〈ρ〉 = kQ(0)/〈ρ0〉 ∼= kQ(1)/〈ρ1〉 ∼= · · · ∼= kQ(n)/〈ρn〉 = kQ′/〈ρ′〉 .

We compose the isomorphisms we get from Proposition 5.5 to obtain the isomor-
phisms we want. From right to left, all the maps are [λ] 7→ [λ], so their composition
is also [λ] 7→ [λ]. From left to right, the composition of isomorphisms is

subst(αn,sn) ◦ · · · ◦ subst(α1,s1),

which by Lemma 5.7 is the same as

tr{(α1,s1),...,(αn,sn)} .

The Eliminate arrow algorithm ensures that each relation set ρi is pread-
missible, so ρ′ = ρn is preadmissible. Since every relation r ∈ ρ′ has

minlength(r) > 1

by the condition of the while loop, we also have

〈ρ′〉 ⊆ J2
Q′ . �

We will now apply our algorithm to two examples from the previous chapter.

Example 5.5. This example is a continuation of Example 4.2. We have the quiver

v1
β //

−→a

��???????????

−→
b

��???????????

−→e

**

v2
γ //

−→c

��

v3

−→
d

�������������

−→
f

tt

R
B−→ Q : u1

α

��
u2
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and preadmissible relation set

µ(Q,R,B) =
{
α−→a −−→e , α−→b +−→e , α−→c , α−→d −−→f ,
−→c β−−→a −−→b , −→d γ−−→c , −→f γ }

for the triangular matrix algebra (
kR 0
M kQ

)
.

We will apply Preadmissible to admissible(R B−→ Q,µ(Q,R,B)) to get a new
quiver S and an admissible relation set τ such that(

kR 0
M kQ

)
∼= k(R B−→ Q)/〈µ(Q,R,B)〉 ∼= kS/〈τ〉 .

We start with ρ0 = µ(Q,R,B). The while loop produces the following values
(note that there is an arbitrary choice involved for each ri except r4, and that we
do not include relations which are zero).

First iteration:

r1 = α−→a −−→e
α1 = −→e
s1 = α−→a

ρ1 = {α−→b + α−→a , α−→c , α−→d −−→f , −→c β−−→a −−→b , −→d γ−−→c , −→f γ}

Second iteration:

r2 = α
−→d −−→f

α2 = −→f

s2 = α
−→d

ρ2 = {α−→b + α−→a , α−→c , −→c β−−→a −−→b , −→d γ−−→c , α−→d γ}

Third iteration:

r3 = −→c β−−→a −−→b
α3 = −→a

s3 = −→c β−−→b

ρ3 = {α−→c β, α−→c , −→d γ−−→c , α−→d γ}
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Fourth iteration:

r4 = −→d γ−−→c
α4 = −→c

s4 = −→d γ

ρ4 = {α−→d γβ, α−→d γ}

Since there is no relation r in ρ4 with minlength(r) = 1, the while loop terminates
here, and we get n = 4. Line 10 and the for loop produce the following values:

s4 = s4 = −→d γ

s3 = tr{(α4,s4)}(s3) = tr{(−→c ,−→d γ)}(
−→c β−−→b ) = −→d γβ−−→b

s2 = tr{(α3,s3),(α4,s4)}(s2) = tr{(−→a ,−→d γβ−−→b ),(−→c ,
−→
d γ)}(α

−→d ) = α
−→d

s1 = tr{(α2,s2),(α3,s3),(α4,s4)}(s1) = tr{(−→f ,α−→d ),(−→a ,
−→
d γβ−

−→
b ),(−→c ,

−→
d γ)}(α

−→a )

= α
−→d γβ− α−→b

The resulting quiver S is R B−→ Q with the arrows −→e , −→f , −→a and −→c removed;
that is,

v1
β //

−→
b

  AAAAAAAAAAA
v2

γ // v3

−→
d

~~}}}}}}}}}}}

S : u1

α

��
u2

The resulting relation set is

ρ4 = {α−→d γβ, α−→d γ}.

It is clear that the first relation here is superfluous, so we let

τ = {α−→d γ}.

We then have
k(R B−→ Q)/〈µ(Q,R,B)〉 ∼= kS/〈τ〉 ,

with isomorphisms given by

[λ] 7→
[
tr{(−→e ,α−→d γβ−α−→b ),(

−→
f ,α
−→
d ),(−→a ,

−→
d γβ−

−→
b ),(−→c ,

−→
d γ)}(λ)

]
for λ ∈ k(R B−→ Q),

[λ]←[ [λ] for λ ∈ kS.
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Combining with the isomorphism from Example 4.2, we get(
kQ 0
M kR

)
∼= kS/〈τ〉 .

Let us create isomorphisms

φ :
(
kQ 0
M kR

)
→ kS/〈τ〉

and

ψ : kS/〈τ〉 →
(
kQ 0
M kR

)
by composing the isomorphisms we have. We can describe φ by its actions on basis
elements:

φ

(
q 0
0 0

)
= [q] for q ∈ Q∗,

φ

(
0 0
0 r

)
= [r] for r ∈ R∗,

φ

(
0 0
a 0

)
=
[−→d γβ−−→b ],

φ

(
0 0
b 0

)
=
[−→b ],

φ

(
0 0
c 0

)
=
[−→d γ],

φ

(
0 0
d 0

)
=
[−→d ],

φ

(
0 0
e 0

)
=
[
α
−→d γβ− α−→b

]
,

φ

(
0 0
f 0

)
=
[
α
−→d
]
.

We describe ψ by its actions on equivalence classes of vertices and arrows:

ψ
(
[q]
)

=
(
q 0
0 0

)
for q ∈ Q?,

ψ
(
[r]
)

=
(

0 0
0 r

)
for r ∈ R?,

ψ
([−→b ]) =

(
0 0
b 0

)
,

ψ
([−→d ]) =

(
0 0
d 0

)
. �
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Example 5.6. This example is a continuation of Example 4.3. We have the quiver

Q � B : u1
α // u2

β //
−→a
ii

−→c

��
u3

−→
d

ii

−→
b

SS

and preadmissible relation set

ν(Q,B) ∪ ξ(Q,B) = {α−→a −−→c , α−→b −−→d , β−→c , β−→d ,
−→a α, −→c α, −→b β−−→a , −→d β−−→c ,
−→a −→c , −→a −→d , −→c 2, −→c −→d }

for the trivial extension
kQnM.

We will apply Preadmissible to admissible(Q � B, ν(Q,B)∪ ξ(Q,B)) to get a
new quiver R and an admissible relation set σ such that

kQnM ∼=
k(Q � B)

〈ν(Q,B) ∪ ξ(Q,B)〉
∼= kR/〈σ〉 .

We start with ρ0 = ν(Q,B) ∪ ξ(Q,B). The while loop produces the following
values (as in the previous example, we do not write zero relations):

First iteration:

r1 = α−→a −−→c
α1 = −→c
s1 = α−→a

ρ1 = {α−→b −−→d , βα−→a , β−→d , −→a α, α−→a α, −→b β−−→a , −→d β− α−→a ,
−→a α−→a , −→a −→d , α−→a α−→a , α−→a −→d }

Second iteration:

r2 = α
−→b −−→d

α2 = −→d

s2 = α
−→b

ρ2 = {βα−→a , βα−→b , −→a α, α−→a α, −→b β−−→a , α−→b β− α−→a ,
−→a α−→a , −→a α−→b , α−→a α−→a , α−→a α−→b }
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Third iteration:

r3 = −→b β−−→a
α3 = −→a

s3 = −→b β

ρ3 = {βα−→b β, βα−→b , −→b βα, α−→b βα,
−→b βα−→b β, −→b βα−→b , α−→b βα−→b β, α−→b βα−→b }

Since there is no relation r in ρ3 with minlength(r) = 1, the while loop terminates
here, and we get n = 3. Line 10 and the for loop produce the following values:

s3 = s3 = −→b β

s2 = tr{(α3,s3)}(s2) = tr{(−→a ,−→b β)}(α
−→b ) = α

−→b

s1 = tr{(α2,s2),(α3,s3)}(s1) = tr{(−→d ,α−→b ),(−→a ,
−→
b β)}(α

−→a ) = α
−→b β

The resulting quiver R is Q � B with the arrows −→c , −→d and −→a removed; that
is,

R : u1
α // u2

β // u3

−→
b

SS

The resulting relation set is

ρ3 = {βα−→b β, βα−→b , −→b βα, α−→b βα, −→b βα−→b β,
−→b βα−→b , α−→b βα−→b β, α−→b βα−→b }.

It is clear that we only need the relations βα−→b and −→b βα to generate 〈ρ3〉, so we
let

σ = {βα−→b , −→b βα}.

We then have
k(Q � B)

〈ν(Q,B) ∪ ξ(Q,B)〉
∼= kR/〈σ〉 ,

with isomorphisms given by

[λ] 7→
[
tr{(−→c ,α−→b β),(

−→
d ,α
−→
b ),(−→a ,

−→
b β)}(λ)

]
for λ ∈ k(Q � B),

[λ]←[ [λ] for λ ∈ kR.

Combining with the isomorphism from Example 4.3, we get

kQnM ∼= kR/〈σ〉 .
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Let us create isomorphisms

φ : kQnM → kR/〈σ〉 ,
ψ : kR/〈σ〉 → kQnM

by composing the isomorphisms we have. We can describe φ by its actions on basis
elements:

φ(q, 0) = [q] for q ∈ Q∗,

φ(0,a) =
[−→b β],

φ(0,b) =
[−→b ],

φ(0, c) =
[
α
−→b β

]
,

φ(0,d) =
[
α
−→b
]
.

We describe ψ by its actions on equivalence classes of vertices and arrows:

ψ
(
[q]
)

= (q, 0) for q ∈ Q?,

ψ
([−→b ]) = (0,b). �
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