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Abstract—This paper considers the evolution of 

independent offshore HVDC links into a multi-terminal 

network. It proposes a control strategy to maximize the DC 

voltage stability under the worst-case perturbation scenario 

and considers the intermittent nature of the power injection 

from connected wind farms. A decentralized linear feedback 

controller achieving the minimization of the DC voltage 

oscillations, while ensuring control input constraints (i.e. 

reference currents) compliance, is proposed. The motivation of 

this framework is to include the DC voltage stability 

maximization under the worst-case perturbation as an 

additional decision criterion in a multi-objective optimization 

for HVDC network expansion decision. The other criteria can 

include for instance, length or cost of a line or the power losses 

along the line. To evaluate the applicability of the proposed 

method, placement of a new HVDC link between two 

independent VSC-based point-to-point HVDC grids located in 

the North Sea is assessed, using real wind data for a 4-terminal 

test grid.    

Keywords—DC voltage stability index, offshore HVDC grid, 

optimal linear feedback controller, voltage stability, wind 

intermittency 

I. INTRODUCTION 

In recent years there is a global tendency towards the 
increasing implementation and improvement of renewable 
energy conversion technologies, especially solar and wind, in 
response to the realization of smart grid policies. The 
motivation for integrating renewables into the global energy 
network is not only to meet the increasing energy demand, 
but also to improve the energy availability, reliability, 
security and quality, as well as to compensate the adverse 
impact of fossil fuels on global warming. 

Wind energy is one of the most promising renewable 
energy resources. In Europe, during 2017, 15.6 GW of new 
wind energy capacity was connected to the power grid, of 
which 12.5 GW were installed onshore and 3.2 GW offshore 
[1]. Offshore wind resources are expected to account for 
more than one fifth of the total wind capacity in Europe by 
2030 [2] and the need to transmit such huge amounts of 
power to shore will require the deployment of offshore 
HVDC networks. 

The focus of this paper is on stability and control of the 
offshore HVDC-based wind farms located in the North Sea. 
The goal is to emphasize the significance of system 
dynamics’ considerations, together with the role that wind 

stochasticity and DC cable losses can play in any grid 
expansion decision. The majority of the existing or planned 
HVDC links are represented by point-to-point connections. 
The gradual interconnection of the existing point-to-point 
and newly designed HVDC grids into multi-terminal and 
meshed networks in the North Sea is a prerequisite for the 
implementation of an 100% renewable European smart grid 
[3]. In such highly interconnected HVDC networks, keeping 
the DC voltage constant in steady state condition and within 
a predefined range during dynamics and transients is of 
paramount importance, and it is an indicator of power 
balance and stability in the grid [4]. Additionally, DC voltage 
resonances due to the non-passive behavior of the Voltage 
Source Converters (VSCs) are considered as a source of 
instability in HVDC networks and should be avoided [5]. 

Due to the expected growth of HVDC networks, the most 
recent literature in transmission expansion planning (TEP) 
investigates the hybrid AC/DC grid expansion challenges 
and opportunities [6-10]. The main objective in TEP 
problems is generally to minimize costs and power losses. 
Control and stability criteria are seldom considered as 
expansion decision variables in hybrid AC/DC multi-
terminal networks dominated by intermittent energy 
resources [11]. For instance, [12] is one of the few references 
that has considered small signal stability enhancement as a 
means to improve hybrid AC/DC smart grid reliability and 
security in expansion planning. However, the focus is only 
on stability improvement on the AC side, and the DC voltage 
resonance risks have not been taken into account. 
Additionally, renewable energy intermittency is also a 
decisive criterion in grid expansion problems in the case of 
high penetration of solar or wind. Reference [13] integrates 
the wind intermittency effect into a robust day-ahead 
scheduling problem with multi-terminal VSC-HVDC 
network through a mixed integer linear programming 
(MILP) optimization approach. The proposed MILP method 
can efficiently compute a linearized AC optimal power flow 
(ACOPF) in large-scale systems. 

The aim of this paper is trifold. First, to account for the 
wind intermittency in optimized offshore HVDC placement 
based on real wind data. The goal is to show that the stability 
considerations performed with respect to the nominal 
operating point are not sufficient in view of the grid 
expansion decision and a more comprehensive analysis 
accounting for wind variability is necessary. Second, we 
design a decentralized linear feedback controller, which is 



 

 
Fig. 1: Johan-Sverdrup and BorWin1 (a-b) hourly wind speed histograms, (c-d) normalized mean wind power curves and (e-f) normalized 

power histograms. 

optimal for the worst-case initial state perturbation. 
Additionally, our technique allows complying with input 
constraints for a realistic range of variability of the initial 
state perturbations. Third, the effect of the DC line losses as 
further expansion criterion is also taken into account.  

II. THEORY AND METHODOLOGY 

A. Wind Energy Data Analysis 

In this section, the wind variability effect on power 
extraction of HVDC offshore wind farms based on real wind 
datasets is analyzed. For this purpose, wind data time series 
are extracted for two locations in the North Sea. They are 
based on the Reanalysis dataset providing the average wind 
speed with a spatial resolution of 2.5 degrees and a temporal 
resolution of 6 hours in the years 2001-2005 [14]. The 
selected offshore sites are Johan-Sverdrup, Norway, and 
BorWin1, Germany. Linear interpolation has been applied in 
order to obtain hourly time series at the selected points. Wind 
speed time series correspond to the height of 45 m above the 
sea surface and since wind turbines’ hub height are typically 
higher (around 100 m); adjustment factors based on [15] are 
used in wind power time series calculation. 

Fig. 1a-b show the histograms of hourly wind speed at 
the two locations at the height of 45 m for the 5-year period. 
The average wind speed at Johan-Sverdrup is about 8.67 m/s 
and at BorWin1 is approximately 8.26 m/s, and min/max 
values are 0.63/29.47 m/s and 0.78/28.27 m/s, respectively. It 
is apparent from the histogram that wind data can be well fit 
into the Weibull probability distribution function. The 

normalized mean wind power curves (Fig. 1c-d) for the two 
locations are indeed average power curves for several wind 
turbines in the regions obtained by fitting power-speed 
dataset into a polynomial curve. 

Wind power time series are computed as a function of 
normalized mean wind power curves with the product of 
wind speed time series and adjustment factors as inputs: 

( ),P f aV                                                                          (1) 

where f is the normalized mean wind power curve, a is the 
adjustment factor, and V is the wind speed. The adjustment 
factors are used to compensate for discrepancies between the 
actual and computed wind energy and are extracted 
according to [14]. Histograms of the normalized wind power 
for the two offshore sites are depicted in Fig. 1e-f. It is worth 
noting that at both locations, the probability that wind farms 
produce 10% of the nominal power is the highest, and the 
second highest corresponds to 90% of the nominal power 
production. 

It is assumed there is a demand to connect the BorWin1 
wind farm to another wind farm to be constructed at Johan-
Sverdrup site via an offshore HVDC cable. Then, in order to 
quantify the total wind power production in the resultant 
HVDC network, the simultaneous occurrence of the 
normalized power in 4 ranges (0-0.25 pu, 0.25-0.5 pu, 0.5-
0.75 pu, and 0.75-1 pu) at the two farms is evaluated. The 
results are presented in Table I. The intersection of the 
normalized power range of 0-0.25 pu at both places can be 
interpreted as follows. There is 22% probability that the two 



 
Fig. 2: 4-terminal HVDC test grid: existing links (black lines) 

and possible expansions considered (red lines). 
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Fig. 3: Simplified model of the considered 2L-VSC [17]. 

Table I: Probability of simultaneous occurrence of normalized 

power at Johan-Sverdrup and BorWin1 locations (Base power: 

1200 MVA). 

Normalized power 

ranges in per unit 

BorWin1 

0 - 0.25 0.25 - 0.5 0.5 - 0.75 0.75 - 1 

J
o

h
a

n
-S

v
e
r
d

r
u

p
 

0 - 0.25 0.22 0.09 0.06 0.04 

0.25 - 0.5 0.07 0.05 0.04 0.04 

0.5 - 0.75 0.04 0.04 0.04 0.05 

0.75 - 1 0.03 0.04 0.05 0.09 

 

wind farms generate power in the range of 0-0.25 pu at the 
same time. 

B. HVDC-VSC Based Grid Configuration and Modelling 

A four-terminal HVDC grid based on the configuration 
and parameters reported in [16] is considered as the test 
system, whose structure is given in Fig. 2. It is assumed that 
cable 1-2 is representative of HVDC link from Johan-
Sverdrup to the onshore grid in Norway with 200 kilometers 
length whereas cable 3-4 is a point-to-point HVDC link 
between BorWin1 and Germany (200 km). It is further 
considered that there is a plan for interconnection of the two 
networks. The goal is to improve the grid availability. Given 
the weather-dependent wind farms’ productivities, the 
challenge is to select the line, which ensures the best grid 
operation subject to dynamics and transients, while 
minimizing power losses. It should also be noted that in 
selecting the HVDC link, environmental and regulatory 
constraints, such as water depth restrictions or Exclusive 
Economic Zones (EEZ) are not taken into account. 

For a preliminary assessment, the four converters in 
offshore and onshore substations are considered to be three-
phase 2-Level Voltage Source Converters (2-L VSC), which 
are modeled in the synchronous dq0 reference frame in per 
unit. A simplified architecture of the 2-L VSC and the 
corresponding control are shown in Fig. 3 [17]. In order to 
apply the selected optimization methodology, the entire 
HVDC grid, consisting of converters with inner current 
controllers and cables, needs to be linearized around an 
equilibrium point and represented through the state-space 
equations (2) and (3).  

( ) ( ) ( ),x t A x t B u t                                                        (2) 

( ) ( ).z t C x t                                                                      (3) 

The state vector, Δx(t), containing 23 elements, is 
composed of converters’ dq-axis AC current components’ 
variation (Δid/q,n, n=1-4), inner current controller dq-axis AC 
current integral components’ variation (Δgd/q,n, n=1-4), and 
DC voltage variations (Δvdc,n, n=1-4) as well as DC cables’ 
current variation (Δidc,ab, ab=12, 34, …). The state vector 
corresponding to the configuration with link 1-3 is given as 
an example, 

1 3 ,1 ,1 ,1 ,1 ,1 ,2 ,2 ,2

,2 ,2 ,12 ,3 ,3 ,3 ,3 ,3

,4 ,4 ,4 ,4 ,4 ,34 ,13

[ , , , , , , , ,...

, , , , , , , ,...

, , , , , , ],

( )
d q dc d q d q dc

d q dc d q dc d q

d q dc d q dc dc

x i i v g g i i v

g g i i i v g g

i i v g g i i

t


        

       

      

      (4) 

where we dropped the explicit dependence on time of the 
components of Δx1-3(t) to simplify the notation.  

The control input vector, Δu(t), is composed of dq-axis 
components of the converters’ reference AC current 
variation, i.e. 

, ,1 , ,1 , ,2 , ,2

, ,3 , ,3 , .4 , ,4

( ) [ , , , ,

, , , ].

d ref q ref d ref q ref

d ref q ref d ref q ref

u t i i i i

i i i i

     

   
                         (5) 

The output vector, Δz(t), which is a subset of the desired 
state variables, consists of converters’ DC voltage variations 
where the goal is to minimize them. 

1 2 3 4( ) [ , , , ].dc dc dc dcz t v v v v                                             (6) 

Given the linearized model around a specific equilibrium 
point, we aim to solve an optimization problem to identify 
the best performance in the worst-case perturbation scenario. 
The cost function of this problem represents a “DC voltage 
stabilization index” and can be expressed as the integral of 
z(t) squared over time until steady-state. The problem is 
subject to input constraints, which have to be satisfied for 
any realization of the initial state perturbations. We model 
input constraints as coupled ellipsoidal constraints on Δid, ref, n 
and Δiq, ref, n for every converter station. From a physical 
point of view, this reflects the way the total current limitation 
of 2-L VSC couples the admitted AC current variations on 
the d and q axes of each converter. At the same time, the 



ellipsoidal constraint takes into account that the current 
capability of each converter does not affect the current 
capabilities of converters at the other terminals. Given the 
diverse nature of the scalar state variables in (4), we also 
model the initial state perturbations as separate ellipsoidal 
sets or intervals for different sets of state variables. For 
instance, we assume that Δid,n and Δiq,n belong to a different 
2-dimensional ellipsoid for each n, while we assume that 
Δvdc,n belongs to an interval for each n. We consider a total  
of 15 separate ellipsoidal sets of perturbations for different 
initial state variables, which yields more realistic results than 
[17] and requires manipulation of the optimization problems 
involved. 

C. Optimization Problem Derivation 

The optimization methodology applied in this paper is 
based on Semi Definite Programming (SDP) and is an 
extension of the approach introduced in [18, 19]. The 
motivation to select the technique in [18] is twofold. First, it 
offers the possibility of tackling a bi-level optimization 
problem in a tractable way. In particular, the procedure 
identifies the worst-case initial state perturbation and jointly 
computes a linear feedback controller, which is optimal 
against this specific perturbation. Second, the procedure 
allows complying with the physical constraints of the inputs 
(4) considering realistic initial state perturbation sets. The 
original scope in [18, 19] is on AC grid reinforcement by 
placement of the best HVDC link. However, the focus in this 
paper is to identify the best location of an added HVDC link 
in order to maximize the DC voltage stability. 

An extension of the optimization method [18, 19] aimed 
at decoupling the constraints on the control input signals of 
every converter station has been proposed in [17]. Here, we 
further extend the technique of [17] in order to address more 
realistic perturbations on the initial state variables as per 
Section II-B.  

a) Problem Formulation: We consider a continuous-

time linear system in the form 

( ) ( ) ( )

z ( ) ( ) ,

( ) ( )

x t A x t Bu t

t C x t

u t Kx t

 





                                                          (7) 

where ( ) ,  ( ) ,  ( ) ,n m px t u t z t   and K is the 

decentralized optimal linear controller ensuring the best 
performance under the worst-case perturbation scenario. In 
accordance with the discussion in Section II-B, the 
optimization problem for a specific network configuration 
and a specific operating equilibrium point can be formulated 
as follows. 

0
0(0)

0

min max ( ) ( )

s.t. (7), ( ) is asympt . stable, is decentralized,

(0) , : ( ) ,

T

K x
J z t z t dt

A BK K

x t u t U












   



   (8) 

where the sets 
0  and U are defined as follows: 

 

  

  

0 1 1,

1 1,q

, 1 ,

, 1 ,

i

j

T nT T T i

r i i x ir

T mT T T j

q j j u j

x x x x i x E x

U u u u u j u E u

        
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 (9) 

Clearly 
1

r

i

i

n n


  and 
1

.
q

i

j

m m


 The matrices 0i

xE   

and 0j

uE   in (9) are symmetric positive definite matrices, 

which define the range of admissible perturbations on the 
initial states and the constraints on the input variables.  

We require that controllers at each converter station only 
know local state information. For example, the controller at 
converter station 1, in the case that the link 1-3 is added, 
only knows Δid,1, Δiq,1, Δvdc,1, Δgd,1, Δgq,1, Δidc,12 and Δidc,13. 
To ensure this, only those specific entries of K 
corresponding to available state information are allowed to 
be assigned a value, while those corresponding to 
unavailable state information are constrained to be null. 

 In the case in which 1, , ,i jn m i j    the problem is 

equivalent to the one studied in [18, 19]. For 1,jm   the 

problem is equivalent to the one studied in [17]. Here, we 
address the general case where ni and mj are both integer 
values larger than 1. 

b) Formulation of the Worst-Case Performance J: It is 
known based on the Lyapunov stability theory that if (A+BK) 
is asymptotically stable, then 

0
( ) ( ) (0) (0),T T Tx t C C x t dt x P x



                                   (10) 

where 0P  is the unique symmetric positive definite 

solution to ( ) ( ) 0.T TP A BK A BK P C C      Now, we  

focus on the inner maximization of (8), which is equivalent 

to maximization of the term (0) (0)Tx P x  over the set 

0. Since 0i

xE  for every  1,
,

r
i we can compute 

 

1

2ˆ ˆ ˆ, ,i i iT i i i

x x x x x xE E E E V D   

where the columns of 
i

xV  contain the eigenvectors of 
i

xE  

and 

1

2i

xD  contains the square root of the eigenvalues of 
i

xE  

on its diagonal. We define 
ix  such that ˆ( ) .i T

i x ix E x  To 

obtain a tractable formulation of (8)-(9), we impose the 
following restriction on matrix P. 

Restriction: Matrix P  is required to be block-diagonal 

and its i-th block 
iP  must have dimensions .i in n   

Given the restriction above, we have 

 0 0 1,2

1

1,
1

1

max

1

ˆ ˆmax (0) (0) max ( ) ( )

ˆ ˆ(( ) ( ) ).

i r

r
T T i i T

i x i x i
x x i

i

r
i i T

x i x

i

x P x x E P E x

E P E





 
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

 










     (11) 

Next, by substituting (11) into (8), the cost function can 
be expressed as, 

1

max

1

ˆ ˆmin (( ) ( ) )

s.t. ( ) ( ) 0.

r
i i T

x i x
K

i

T T

E P E

P A BK A BK P C C

  


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
                      (12) 

Now, by introducing variables , s 0,i is    for every 

 1,
,

r
i  the following upper-bound holds: 



1

max

1ˆ ˆ(( ) ( ) ) .i i T

x i x

i

E P E
s

                                                  (13) 

Equation (13) is equivalent to the SDP constraint as 
below                                                          

1( ) 0,i

i i xQ s E                                                                  (14) 

where 
10, ,i i iQ Q P   for every  1,

,
r

i   and where we 

defined blkdiag( ).iQ Q Using the Schur complement and 

defining the new decision variable ,Y KQ (12) can be 

equivalently formulated as: 
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1
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 



                          (15) 

We will now focus on the input constraints (9). 

c) Robustness to Perturbations on the Initial States: 

According to (7) and (9), it is required that ( ) ( ) 1T j

j u ju t E u t   

for every 
 1,q

,j  and every time instant 0 ,t   where 

( ) ( ),j ju t K x t and blkcol( ).jK K This is equivalent to 

requiring that ( ) ( ) 1T T j

j u jx t K E K x t   for every 

 1,q
,j and every time instant 0 .t  Recall that the 

Lyapunov matrix P defines level sets for the controlled state 

trajectories, in the sense that 1 1( ) ( )Tx t P x t k  for some 

0k   and 1 0t  implies that ( ) ( )Tx t P x t k  for every 

1.t t  Also, notice that  

0 0 1

1
(0) (0) max (0) (0) ,

r
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which is equivalent to 

1

(0) (0) 1.
1

T

r

i
i

P
x x

s




We conclude 

that the constraints on the input signals can be formulated as 
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which is equivalent to 
1

1
0.

rT j

j u ji
i

Q Y E Y
s

  By 

exploiting the Schur complement the former can be written 

as  
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
                       (18) 

Notice that if 1,r   then (18) is a SDP constraint and the 

problem (15), (18) admits an equivalent convex formulation 

by maximizing s  instead of minimizing 
1

.
s

 Further 

elaboration is needed if 1.r   Indeed, in our case 15.r   

d) Convex Formulation of (18): The harmonic mean of 

the decision variable  1,
, ,i r

s i is defined as 

1

( ) .
1r

i
i

r
h s

s




                                                                 (19) 

Our approach is based on lower bounding the harmonic 
mean by introducing an additional decision variable ,w  

subject to ( ).w h s  First, notice that ( )w h s  is equivalent 

to 

2

1

,
r

i i

w
rw

s

                                                                       (20) 

Next, we introduce a set of decision variables 

 1,
, ,i r

y i  which allows us to cast (20) as 

 
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1

.
r

i

i

y rw


                                                                         (22) 

Equation (21) describes a rotated cone and can thus be 
expressed as the following Second Order Cone Programming 
constraint: 

 1,
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                                         (23) 

We conclude that the problem (8)-(10) admits the 
following tractable SDP formulation: 
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             (24) 

Notice that, thanks to the fact that Q is block-diagonal, 
those entries of Y that are required to be null are also null in 
matrix K. 

D. Simulation Results 

An analysis has been performed to study the effect of the 
wind variability on the operating point of the HVDC grid, 
and the corresponding impact on the optimization procedure. 
Each wind scenario, results in a different operating 
condition, which is the point around which the nonlinear 
equations of (2)-(3) are linearized. Hence, the A, B matrices 
in (2)-(3) are dependent on the wind scenario. The DC 
voltage stability index, J, is calculated for various operating 



Table II: DC voltage stability indices of the 4-terminal HVDC test grid under different scenarios (different added HVDC links and different AC 

current d-component references). 

Added 

HVDC link 

Added 

HVDC 

link's 

Length 

(km) 

AC current  

d-component 

reference in per unit 

DC voltage 

stability index 

AC current  

d-component 

reference in per unit 

DC voltage 

stability index 

AC current  

d-component 

reference in per unit 

DC voltage 

stability index 

AC current  

d-component 

reference in per unit 

DC voltage 

stability index 

id, ref, 1: 

Johan-

Sverdrup 

reference 

1-3 600 id, ref, 1 -0.125 3.73 id, ref, 1 -0.125 4.10 id, ref, 1 -0.125 3.98 id, ref, 1 -0.125 3.71 

-0.125 
1-4 750 id, ref, 2 0.75 4.21 id, ref, 2 0.75 4.16 id, ref, 2 0.75 3.63 id, ref, 2 0.75 2.93 

2-3 650 id, ref, 3 -0.125 5.08 id, ref, 3 -0.375 4.84 id, ref, 3 -0.625 5.09 id, ref, 3 -0.875 3.50 

2-4 800 id, ref, 4 -0.5 5.59 id, ref, 4 -0.25 5.09 id, ref, 4 0 5.25 id, ref, 4 0.25 3.89 

    

1-3 600 id, ref, 1 -0.375 3.87 id, ref, 1 -0.375 4.19 id, ref, 1 -0.375 3.89 id, ref, 1 -0.375 3.80 

-0.375 
1-4 750 id, ref, 2 0.75 5.23 id, ref, 2 0.75 3.80 id, ref, 2 0.75 3.30 id, ref, 2 0.75 3.95 

2-3 650 id, ref, 3 -0.125 4.83 id, ref, 3 -0.375 5.04 id, ref, 3 -0.625 3.64 id, ref, 3 -0.875 3.78 

2-4 800 id, ref, 4 -0.25 5.34 id, ref, 4 0 5.28 id, ref, 4 0.25 3.79 id, ref, 4 0.5 3.91 

    

1-3 600 id, ref, 1 -0.625 4.01 id, ref, 1 -0.625 4.10 id, ref, 1 -0.625 3.85 id, ref, 1 -0.625 3.92 

-0.625 
1-4 750 id, ref, 2 0.75 3.86 id, ref, 2 0.75 3.70 id, ref, 2 0.75 3.80 id, ref, 2 0.75 3.52 

2-3 650 id, ref, 3 -0.125 5.00 id, ref, 3 -0.375 3.63 id, ref, 3 -0.625 3.76 id, ref, 3 -0.875 3.49 

2-4 800 id, ref, 4 0 5.33 id, ref, 4 0.25 3.80 id, ref, 4 0.5 3.87 id, ref, 4 0.75 4.00 

    

1-3 600 id, ref, 1 -0.875 3.57 id, ref, 1 -0.875 3.85 id, ref, 1 -0.875 3.92 id, ref, 1 -0.875 3.82 

-0.875 
1-4 750 id, ref, 2 0.75 3.29 id, ref, 2 0.75 3.51 id, ref, 2 0.75 3.84 id, ref, 2 0.75 4.25 

2-3 650 id, ref, 3 -0.125 3.52 id, ref, 3 -0.375 3.69 id, ref, 3 -0.625 3.59 id, ref, 3 -0.875 3.69 

2-4 800 id, ref, 4 0.25 3.93 id, ref, 4 0.5 3.94 id, ref, 4 0.75 4.01 id, ref, 4 1 3.99 

id, ref, 3: BorWin1 reference -0.125 -0.375 -0.625 -0.875   

 

 
points that are correlated with different wind speeds and 
corresponding wind power extractions 

Implementing (24) is simple by using the YALMIP 
toolbox [20] of Matlab® in combination with the MOSEK 

[21] solver. Once the optimal solution 
* * * * *( , , , , )Q Y s w y  is 

obtained, it is possible to retrieve the worst initial 

perturbation (0) ,worstx the worst-case performance parameter 

J*, and the corresponding optimal controller K* as follows. 

Compute 
* * 1( ) .P Q   For each  1,

,
q

j  compute 

(0)worst

ix as the eigenvector associated with the maximum 

eigenvalue of matrix 
1 *ˆ ˆ( ) ( ) .i i T

x i xE P E 
Then 

(0) col( (0) ),worst worst

ix x * *(0) (0)
Tworst worstJ x P x     and 

* * *.Y K Q  Naturally, the performance J* can also be 

computed via simulation, by setting the initial state (0) ,worstx  

applying the controller K* and integrating the trajectory of 

( ) ( )z t Cx t  over time until steady state is achieved. 

Although we kept the derivation general, we remind the 
reader that the model (2), (3) will be used for the purpose of 
this paper. For the considered model we thus have that, 

23, 8, 4,n p m j    and 2,jm  for every j and 
in is 

equal to 1 or 2 depending on the different scalar state 
variables, which are coupled or uncoupled, as per (4). 

The matrices  1,q
, ,j

uE j  are chosen as diagonal 

matrices enforcing (9) with the dq-reference currents at each 
terminal to be bounded as follows: 

2 2

, , , , ,| | 0.5 . . .ref n d ref n q ref ni i i p u                                (25) 

Similarly, the matrices  1,
, ,i

x r
E i   are also diagonal 

matrices to impose constraints (9) on the maximum allowed 
deviations of the initial state variables (26-29). The AC 
current boundaries are extracted from [22], and the DC 

current and voltage limitations correspond to the physical 
characteristics of  the DC cable.  

2 2

, ,| | 0.1 . . ,n d n q ni i i p u                                             (26) 

,| | 0.1 . . ,dc nv p u                                                              (27) 

2 2

, ,| | 0.01 . . ,n d n q ng g g p u                                        (28) 

,| | 0.1 . . .dc ni p u                                                               (29) 

Simulation results for different scenarios are presented in 
Table II. Wind farm operating points are selected to be the 
average of each normalized power range considered in Table 
I. These four values are applied to the offshore converters 1 
and 3 forming 16 different scenarios, which change the 
trajectory along which we linearize. Converter 2 operating 
condition is kept constant at 0.75 per unit, corresponding to a 
passive load, constantly absorbing a fixed amount of power. 
Converter 4 is representative of the slack bus and ensures the 
grid power balance. As can be seen in Table II, the DC 
voltage stability index value, which is representative of the 
DC voltage oscillation under worst-case initial condition, 
varies from one scenario to another. The reference current, 
id,ref,1, is representative of the d-component of the AC current 
reference at Johan-Sverdrup whereas id,ref,3, is the d-
component of the AC current reference at BorWin 1. Since 
the AC voltage d-component references at the four terminals 
are assumed to be one per unit (base voltage: 400 kV), the 
per unit average power values can be substituted by the per 
unit current values. Performance indices are calculated for 
the 16 possible scenarios considering four different grid 
topologies, which are based on the connection of the two 
point-to-point HVDC networks through the four different 
HVDC links. The optimal DC voltage stability index (the 
minimum value) at every scenario is highlighted in green. In 
eight different scenarios, the addition of the HVDC link 1-4 
results in the optimal DC voltage stability index while 
addition of the HVDC links 1-3 and 2-3, lead to the optimal 
solution in two and six cases, respectively. Addition of the 



 

Fig. 4: Comparison of the considered expansion options. 

Table III: DC voltage stability index at nominal condition versus 

average DC voltage stability index.  

Added 

HVDC 

link 

Added 

HVDC link's 

Length (km) 

DC voltage 

stability index at 

nominal condition 

Average DC 

voltage 

stability index  

1-3 600 3.82 3.88 

1-4 750 4.25 3.96 

2-3 650 3.69 4.37 

2-4 800 3.99 4.71 

 

HVDC link 2-4 does not lead to minimum DC voltage 
oscillation in any of the scenarios.  

The radial network, which is the result of the connection 
of the two point-to-point HVDC grids through the link 2-3 
provides the optimal DC voltage stability index when id,ref,1 
and  id,ref,3 are both generating - 0.875 per unit power. This 
scenario is assumed to represent the nominal operating 
condition of the system, being the closest to the nominal 
power capacity of both wind farms. This would be the only 
scenario taken into consideration if only nameplate 
information (and no wind time-series) was available for the 
wind farms. To further consider the probability of the 
occurrence of each operating condition, the average DC 
voltage stability criterion was estimated. The average DC 
voltage stability index is calculated as the sum of all the 
products between the DC voltage stability indices and the 
corresponding event probability given in Table I. Therefore, 
the optimal HVDC link expansion option ensuring the best 
stability performance at worst-case initial condition is the 
link with the lowest average DC voltage stability index. As 
can be seen in Table III, the HVDC link between the 
substations 1 and 3 gives the lowest average DC voltage 
stability index and, hence, the optimal solution from the 
stabilization standpoint. On the other hand, link 2-3 provides 
the optimal solution under the nominal operating condition. 
Therefore, if the assessment of the stability index was only 
based on the nominal operating condition (i.e. the 
assumption of full power production of the wind farms) and 
the intermittency of wind speed was not taken into account, it 
could have misguided to the selection of the link 2-3 as the 
new HVDC link.   

Finally, we assess the expansion problem based on the 
two (equally weighted) criteria of: a) minimum average 
ohmic cable losses; and b) minimum average DC voltage 
stability index (i.e. minimum DC voltage oscillations). 
Average ohmic cable losses are calculated for every added 
HVDC link with the same procedure as the average DC 
voltage stability index by taking the probability of 
occurrence of every operating scenario into account. In the 
presented case, link 1-3 is the best option according to both 
criteria and it represents the point at minimum distance from 
the origin according to Fig. 4. Therefore, it should be the 
final choice in the expansion decision. However, if different 
weights are allocated to the different criteria based on 
specific expansion planning priorities, different preferable 
configurations may be selected. 

III. CONCLUSIONS 

This paper presents an approach to minimize DC voltage 
oscillations in a multi-terminal HVDC grid, taking into 
account how the wind variability affects the power 
production of connected wind farms. The selected test case 
considers the placement of a new HVDC link between two 
separate point-to-point HVDC grids. The goal is to identify 
the link that ensures minimum DC voltage variations under 
worst-case initial perturbation, and the decentralized linear 
controller that guarantees such performance. The expansion 
choice is made considering that different links contribute 
differently to the grid stabilization, depending on the specific 
operating conditions induced by the wind variability. It is 
shown that taking the latter effect into account leads to a 
different expansion decision than working under the 
simplifying assumption that wind farms always provide a 
nominal power production. Finally, active power loss on the 
DC cables is considered as an additional criterion to orient 
the expansion decision, and it is shown that in the specific 
case both criteria identify link 1-3 as the best expansion 
alternative.   
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