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ABSTRACT

We make two improvements to the Internet voting protocol written by Gjøsteen
[5]. The first improvement improves the performance of the protocol, by chang-
ing the encryption of the votes. The second improvement improves the security
of the protocol, by removing a private key used in the original protocol. The
second improvement is done to the protocol after the first improvement has been
implemented, so we end up with a protocol where both improvements are imple-
mented.
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CHAPTER 1

INTRODUCTION

In 2011, Norway is going to run a trial on Internet voting in the local govern-
ment election. For this purpose, Kristian Gjøsteen has described and analysed a
cryptographic protocol [5] to be used for these trial elections, hereafter called the
Internet voting protocol. The protocol is designed by a Spanish company named
Scytl.

In my thesis I have done two improvements to the Internet voting protocol.
One of them is to improve the performance of the protocol by changing the way we
encrypt ballots. The other is to improve the security of the protocol by removing
a connection between the three private keys used for encryption and decryption.
When doing this last improvement, I have used the first improvement as starting
point, to end up with a protocol where both changes are implemented.

Chapter 2 contains some general definitions and theory, and some calculations
on probabilities. In Chapter 3 we describe the protocol, make a general assump-
tion and make the changes of the first improvement to what Gjøsteen has called
the simplified protocol. Then we end the chapter by analysing the simplified
protocol with the new changes. The first improvement implemented into what
Gjøsteen refers to as the full protocol (this is what we refer to as the protocol)
is found in Chapter 4, this chapter also contains a new analysis of this protocol
with the new changes made. Chapter 5 describes two small protocols needed for
the second improvement, and some proofs that these two protocols fulfil some
properties we want. In Chapter 6, we give the new versions of the different parts
in the protocol with both improvements implemented. Then we analyse the new
protocol with both improvements implemented in Chapter 7. Lastly Chapter 8
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summarizes the thesis by looking at what gain we got from the first improvement,
and we also look at how the second improvement has effected the performance.

In this paper I will assume the knowledge of basic group theory, general
cryptography and basic probability theory.



CHAPTER 2

THEORY

In this chapter we give some general terminology and theory which we will make
use of in later chapters to make both improvements. First we relate a problem
we want to prove is difficult to solve, to a known problem which it is believed
is difficult to solve, the Decision Diffie-Hellman problem (DDH-problem). After
that we will define a special protocol and some other general theory that we will
need for our second improvement.

2.1 Subgroup Membership Problems

The Decision Diffie-Hellman problem was first described in [1]. Another version,
more suitable for our work, is described in [2]. We define the problem as follows:

Definition 2.1. Let G be a group of prime order. Given the tuple (g, α, β, γ)
where g and α are random elements, the DDH-problem is now to decide if (β, γ) ∈
K where K = 〈(g, α)〉.

Another perspective on the DDH-problem is to look at it as a subset membership
problem which is also described in the same article. We define it only for groups,
and call it a subgroup membership problem:

Definition 2.2. Given a finite abelian group G, and a proper non-trivial sub-
group K. The subgroup membership problem now is to decide if an element x in
G is in K or G \K
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From now on we denote a subgroup membership problem as follows: if G is the

group and K the subgroup, then we denote the problem G
?←→ K. We now make

a simulator S and an attacker A that plays a game between them relating to

G
?←→ K. Let both know what the group and the subgroup is. Then S draws an

element b randomly from {0, 1}. If b = 0, S generates a random element from K
and sends to A. If b = 1, S generates a random element from G, and sends to A.
The attacker is now supposed to decide what the value of b is and send it to S as
b̌. A wins if b̌ = b. We now define the advantage of an attacker A in this game:

Definition 2.3. Define E to be the event that A guesses correctly, i.e that b̌ = b.
We now define the advantage of an attacker in this game as follows:

AdvA =

∣∣∣∣Pr[E]− 1

2

∣∣∣∣
The reason we subtract a half is that any attacker can always guess, and thereby
get a probability of guessing of a half (we want to find out how much better than
a guess an attacker can do). Since we are always working with a finite group we
can define drawing randomly from G and randomly from K as drawing from G
with different probability distributions.

When we are drawing randomly from G we are drawing from G with uniform
distribution. When we are drawing randomly from K, we are drawing from G
with equal probability of drawing any element from K and zero probability of
drawing any element from G \ K. We denote drawing from G with uniform

distribution by x
r←− X1, and drawing from G with the other distribution is

denoted by x
r←− X0.

In the case where we have a subgroup of K, call it L, we want to consider the

three possible subgroup membership problems G
?←→ K, G

?←→ L and K
?←→ L.

Then drawing from G with all elements of L having equal probability of being
drawn, and all other elements having probability zero of being drawn, is denoted
by x

r←− X0. Drawing from G with equal probability of drawing any element from
K, and zero probability of drawing any other element, will be denoted x

r←− X1.
Lastly drawing from G with uniform probability distribution we in this case
denote x

r←− X2. If we have even longer sequences of subgroups we denote it in
the corresponding way.

By A(x) we mean the answer of the attacker A on input x. We now define

the following probabilities (for the case G
?←→ K):

µ00 = Pr[A(x) = 0 | x r←− X0]

µ01 = Pr[A(x) = 0 | x r←− X1]

µ10 = Pr[A(x) = 1 | x r←− X0]



2.2 Subgroup Membership Problems in Three Variables 5

µ11 = Pr[A(x) = 1 | x r←− X1]

Correspondingly, when we have an additional subgroup of K, L, we get µ02 =
Pr[A(x) = 0 | x r←− X2], etc.

2.2 Subgroup Membership Problems in Three
Variables

The goal of this section is to show that given an attacker with an advantage for

the problem G3 ?←→ H0, the attacker also has an advantage on the DDH-problem,
where H0 = 〈(g1, g2, g3)〉 and g1, g2 and g3 are generators of G. We will also
use the subgroup H1. We define H1 as H1 = 〈(g1, g2, g3), (g1, g2, 1)〉. We assume
known to us, not any attacker, that g2 = gk11 (for some number k1) and g3 = gk22

(for some number k2).

We now show that given a subgroup membership problem G2 ?←→ K, we
get the following probabilities when playing the game discussed in the previous
section:

Pr[A(x) = b] =
1

2
Pr[A(x) = 0 | x r←− X0] +

1

2
Pr[A(x) = 1 | x r←− X1]

=
1

2
µ00 +

1

2
µ11

=
1

2
µ00 +

1

2
− 1

2
µ01

So it follows that we get:

AdvA = |1
2
µ00 +

1

2
− 1

2
µ01 −

1

2
| = 1

2
|µ00 − µ01|

We now look at the G3 ?←→ H0 problem. To avoid confusion, we now use Y
instead of X when speaking about drawing from G3 and its subgroups; i.e. when
drawing an element randomly from G3 with uniform distribution, we denote it
by x

r←− Y2.

We have the problems G3 ?←→ H0, H1
?←→ H0 and G3 ?←→ H1. These give us

three games of the type discussed in the previous section, with respectively Y2

and Y0, Y1 and Y0 and Y2 and Y1 as sets with given probability distributions.
We further denote the advantage of an attacker in the three different games by

Adv
Y2/Y0

A , Adv
Y2/Y1

A and Adv
Y1/Y0

A . The variables µ00 etc. are denoted accord-

ingly. We now wish to say something about the relationship between Adv
Y2/Y0

A

and the two other advantages, Adv
Y2/Y1

A and Adv
Y1/Y0

A .
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Lemma 2.1. Having an advantage of ε on Adv
Y2/Y0

A gives an advantage on either

Adv
Y1/Y0

A or Adv
Y2/Y1

A of at least ε/2.

Proof. Earlier in this section we have showed that 2Adv
Y2/Y0

A = |µ00 − µ02|. We
now get:

2Adv
Y2/Y0

A = |µ00 − µ02|
= |µ00 − µ01 + µ01 − µ02|
≤ |µ00 − µ01|+ |µ01 − µ02|

= 2Adv
Y1/Y0

A + 2Adv
Y2/Y1

A .

So,

Adv
Y2/Y0

A ≤ Adv
Y2/Y1

A + Adv
Y1/Y0

A

⇓

If Adv
Y2/Y0

A = ε then Adv
Y1/Y0

A ≥ ε/2 or Adv
Y2/Y1

A ≥ ε/2.

Definition 2.4. Define F1 : G2 −−→ G3 by:{
F1 : G2 −−→ G3

(x1, x2) 7−−→ (xt1, x
k1t
1 , xk2t2 )

and F2 : G2 −−→ G3 by:{
F2 : G2 −−→ G3

(x1, x2) 7−−→ (xt1, x
t
2, r)

Where t
r←− Z|G| and r

r←− G

Remark: F1 and F2 are not functions. Since we use a random exponent t every
time, we can get different outputs on the same input.

Lemma 2.2. F1 sends the tuple (x1, x2) into a random element from H0 if the
tuple is of the form (x1, x2) = (gs1, g

s
2) and into a random element from H1 \H0

otherwise. Similarly F2 sends the tuple (x1, x2) into a random element from H1 if
the tuple is of the stated form, and into a random element from G3\H1 otherwise.

Proof. We start with the case of F1. Assume (x1, x2) = (gs1, g
s
2), then F1((x1, x2))

= (xt1, x
k1t
1 , xt2) = (gst1 , g

k1st
1 , gk2st2 ) = (gst1 , g

st
2 , g

st
3 ) ∈ H0. The exponent t is a

random number from Z|G|, hence xt1 is a random element of G. The element in
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the first coordinate of a tuple from H0 uniquely determines the second and third
coordinate, hence if F1 sends into H0 it is sent to a random element of H0.

Now assume there does not exist a number s such that (x1, x2) = (gs1, g
s
2).

Then F1((x1, x2)) = (xt1, x
k1t
1 , xk2t2 ) 6= (gst1 , g

k1st
1 , gk2st2 ) so F1((x1, x2)) /∈ H0, but

clearly we always have F1((x1, x2)) ∈ H1. So F1 sends into H1 \H0. Since t is a
random number, xt1 is a random element from G. The first coordinate of a tuple
from H1 uniquely determines the second coordinate, and now x2 is independent
of x1, and xt2 is a random element of G, hence the third coordinate is a random
element from G independent of the two others. So when F1 sends into H1 \H0,
it sends to a random element of H1 \H0.

Now we look at the case of F2. Assume (x1, x2) = (gs1, g
s
2), then F2((x1, x2)) =

(xt1, x
t
2, r) = (gst1 , g

st
2 , r) ∈ H1. The exponent t is a random number from the set

Z|G|. So xt1 is a random element of G, and r is by definition a random element of
G independent of the two others. Further if F2 sends into H1 then the element
in the first coordinate uniquely determines the element in the second coordinate,
hence we get a random element from H1.

Lastly assume that (x1, x2) 6= (gs1, g
s
2) for all numbers s ∈ Z|G|. Then

F2((x1, x2)) = (xt1, x
t
2, r) 6= (gst1 , g

st
2 , r), so we have F2((x1, x2)) /∈ H1, but clearly

F2((x1, x2)) ∈ G3. Still t is a random number, hence xt1 and xt2 are random ele-
ments from G. Since (x1, x2) 6= (gs1, g

s
2), xt1 and xt2 are also independent from each

other. The third coordinate is also a random element chosen independently from
the two other coordinates, hence we have three random elements independent of
each other, and therefore a random element from G3.

By Lemma 2.2, we get the following equalities:

Pr[(y1, y2, y3) = (r1, r2, r3) | (y1, y2, y3)
r←− Yb]

= Pr[F1((x1, x2)) = (r1, r2, r3) | (x1, x2)
r←− Xb]

and

Pr[(y1, y2, y3) = (r1, r2, r3) | (y1, y2, y3)
r←− Yb′ ]

= Pr[F2((x1, x2)) = (r1, r2, r3) | (x1, x2)
r←− Xb]

Where b ∈ {0, 1}, b′ = 1 if b = 0 and b′ = 2 if b = 1.

Lemma 2.3. If we denote the attacker on G2 ?←→ K by B and the attacker on

G3 ?←→ H1 or H1
?←→ H0 by A then, Adv

Y1/Y0

A = Adv
X1/X0

B and Adv
Y2/Y1

A =

Adv
X1/X0

B .
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Proof.

Adv
Y1/Y0

A = Adv
X1/X0

B :
We define what the attacker B does and show we get the first claimed equal-
ity.

B((x1, x2)) :
(y1, y2, y3) = F1((x1, x2))

b̌ = A((y1, y2, y3))

return b̌

Now we prove that we get the desired equality.

2Adv
X1/X0

B = |Pr[B((x1, x2)) = 0 | (x1, x2)
r←− X0]

−Pr[B((x1, x2)) = 0 | (x1, x2)
r←− X1]|

= |Pr[A((y1, y2, y3)) = 0 |
(y1, y2, y3) = F1((x1, x2)), (x1, x2)

r←− X0]
−Pr[A((y1, y2, y3)) = 0 |

(y1, y2, y3) = F1((x1, x2)), (x1, x2)
r←− X1]|

= |Pr[A((y1, y2, y3)) = 0 | (y1, y2, y3)
r←− Y0]

−Pr[A((y1, y2, y3)) = 0 | (y1, y2, y3)
r←− Y1]|

= 2Adv
Y1/Y0

A

Adv
Y2/Y1

A = Adv
X1/X0

B :
The proof of this case is similar to the other. The attacker B does exactly
as before, but uses F2 instead of F1. We then get the following probability cal-
culations:

2Adv
X1/X0

B = |Pr[B((x1, x2)) = 0 | (x1, x2)
r←− X0]

−Pr[B((x1, x2)) = 0 | (x1, x2)
r←− X1]|

= |Pr[A((y1, y2, y3)) = 0 |
(y1, y2, y3) = F2((x1, x2)), (x1, x2)

r←− X0]
−Pr[A((y1, y2, y3)) = 0 |

(y1, y2, y3) = F2((x1, x2)), (x1, x2)
r←− X1]|

= |Pr[A((y1, y2, y3)) = 0 | (y1, y2, y3)
r←− Y1]

−Pr[A((y1, y2, y3)) = 0 | (y1, y2, y3)
r←− Y2]|

= 2Adv
Y2/Y1

A

By combining the lemmas in this section we get the following theorem,

Theorem 2.4. An advantage ε on Adv
Y2/Y0

A gives an advantage on Adv
X1/X0

B

(DDH) of at least ε/2.
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Proof. Assume Adv
Y2/Y0

A = ε, by Lemma 2.1 either Adv
Y1/Y0

A ≥ ε/2 or Adv
Y2/Y1

A

≥ ε/2. By Lemma 2.3 we get Adv
X1/X0

A = Adv
Y1/Y0

A ≥ ε/2 or Adv
X1/X0

A =

Adv
Y2/Y1

A = ε/2, so Adv
X1/X0

A ≥ ε/2.

2.3 Subgroup Membership Problems in More
Than Three Variables

In this section we generalize what we did in the previous section into several vari-
ables. We want to prove that an advantage on a subgroup membership problem
with Gl, l > 3, and a subgroup of it gives an advantage on DDH.

Firstly we now get several more subgroups. Let H0 = 〈(g1, g2, . . . ,
gl)〉, H1 = 〈(g1, g2, . . . , gl), (g1, g2, . . . , gl−1, 1)〉, . . . ,Hl−2 = 〈(g1,
. . . , gl), (g1, . . . , gl−1, 1), . . . , (g1, g2, 1, . . . , 1)〉 and Hl−1 = Gl. We assume that
it is known to us, not any attacker, that g2 = gu1

1 , g3 = gu2
2 , . . . , gl = g

ul−1

l−1 .

We continue using Y instead of X when talking about drawing from Gl and its
subgroups; i.e. when drawing with uniform distribution from Hi we denote it
x

r←− Yi.
The lemmas in this section are given without proof since they are analogous

to the proofs of the three variable cases done in the previous section.

Lemma 2.5. An advantage on Adv
Yl−1/Y0

A gives an advantage on Adv
Y1/Y0

A ,

Adv
Y2/Y1

A , . . . ,Adv
Yl−2/Yl−3

A or Adv
Yl−1/Yl−2

A of at least ε/(l − 1)

Proof. Similar to the proof of Lemma 2.1.

Definition 2.5. Define Fi : G2 −−→ Gl by:{
Fi : G2 −−→ Gl

(x1, x2) 7−−→ (xu0t
1 , xu0u1t

1 , . . . , x
t
∏l−(i+1)

j=0 uj

1 , x
t
∏l−i

j=1 vj
2 , rl−i+2, . . . , rl)

i ∈ {1, . . . , l − 1}, t r←− Z|G|, ri
r←− G, vj = uj for j ∈ {2, . . . , l − 1}, v1 = u0 = 1

Lemma 2.6. Fi((x1, x2)) sends the tuple into a random element from Hi−1 if
it is of the form (x1, x2) = (gt1, g

t
2) and into a random element from Hi \ Hi−1

otherwise, i ∈ {1, . . . , l − 1}, where Hl−1 = Gl.

Proof. Similar to the proof of Lemma 2.2.

By Lemma 2.6 we get the following equalities:

Pr[(y1, . . . , yl) = (r1, . . . , rl) | (y1, . . . , yl)
r←− Yb′ ]

= Pr[Fi(x1, x2) = (r1, . . . , rl) | (x1, x2)
r←− Xb]
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Where b ∈ {0, 1}, b′ = i− 1 if b = 0 and b′ = i if b = 1, i ∈ {1, . . . , l − 1}.

Lemma 2.7. If we denote the attacker on G2 ?←→ K by B and the attacker on

one of H1 ←→ H0, . . . , G
l ?←→ Hl−2 by A, then Adv

Y1/Y0

A = Adv
X1/X0

B , Adv
Y2/Y1

A =

Adv
X1/X0

B , . . . ,Adv
Yl−1/Yl−2

A = Adv
X1/X0

B .

Proof. Similar to the proof of Lemma 2.3.

Theorem 2.8. An advantage ε on Adv
Yl−1/Y0

A gives an advantage on Adv
X1/X0

B

(DDH) of at least ε/(l − 1)

Proof. Similar to the proof of Theorem 2.4

2.4 Σ-protocols and Commitments

For the second change we are going to propose, we are going to need some theory
on Σ-protocols and commitments. We define what they are in this section.

Σ-protocols

We are now going to define what a Σ-protocol is. A Σ-protocol is defined for a
relation R. The relations R we are going to use is a subset of G2i × Zq, where
q, i ∈ Z+. The relation is such that for (v, w) ∈ R, x = (~r,~s) and w is a
witness such that (~r)w = ~s. It is important that ~r and ~s has the same number of
coordinates, namely i coordinates. To make a Σ-protocol, the protocol must be
of a three move from. A three move from just means that first the prover sends
a message to the verifier, the verifier replies with a challenge, before the prover
comes up with a answer. We now define a Σ-protocol. The definition is found in
[3]:

Definition 2.6. A protocol P is said to be a Σ-protocol for relation R if:

• P is of the above 3-move form, and we have completeness: if P , V follow
the protocol on input x and private input w to P where (x,w) ∈ R, the
verifier accepts.

• From any x and any pair of accepting conversations on input x, (a, e, z),
(a, e′, z′) where e 6= e′, one can efficiently compute w such that (x,w) ∈ R.
This is sometimes called the special soundness property.

• There exists a polynomial-time simulator M , which on input x and a ran-
dom e outputs an accepting conversation of the form (a, e, z), with the same
probability distribution as conversations between the honest P , V on input
x. This is sometimes called special honest-verifier zero-knowledge.
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In the same article it is also said that given a random oracle one can make the
Σ-protocol non-interactive, i.e. the prover can make a satisfactory conversation
before sending anything to the verifier and still not be able to cheat. A random
oracle is a functionality that all players have access to, and can be viewed as a
random function hidden in a black box such that non of the players can look
inside of the box. It will always return the same answer on a given input, but
given the answer of one input it is not possible to deduce something about the
answer on another input. From a heuristic point of view you can view one-way
hash functions as random oracles, but this cannot be formally proved.

Commitments

Commitments are described in [4]. A commitment scheme is a way of convinc-
ing another person that you have made a choice and committed to some secret
(a number, a message, etc.) without having to reveal the actual secret when
convincing the other person. A commitment scheme has two basic properties:

• Binding property: When you have committed to a secret, you may no longer
change the secret. You have have made your choice, and cannot change that
choice.

• Hiding property: When convincing the other person, you have to give him
some sort of evidence that you have committed to some secret. The other
person should not be able to find the secret based on the evidence he gets,
even though it should be enough to convince him that you have made your
choice.

Both the binding property and the hiding property can either be unconditional
or computational. If either the hiding or the binding property is unconditional,
it means that it holds no matter how much time or how much computing power
you get to brake the property; i.e. if you have a unconditional binding com-
mitment scheme, it is not even theoretically possible to change your choice after
committing to the choice with this scheme.

If you have a computational hiding property or binding property it means
that you can, given large enough resources, break the property, but the chances
for doing so would be very small. The point about computational binding and
hiding is that it is theoretically possible to change your mind or break the hiding
property, but that it is very unlikely to happen. Damg̊ard and Nielsen point out
that unfortunately it is not possible with a commitment scheme that satisfies
both unconditional hiding and unconditional binding, so one can at most make
one of the properties unconditional.

We now define the commitment scheme we are going to use. First we must
choose a random element yc from the group G. Then a commitment to a message
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m is defined as comyc(m, r) = (gr, yrcm) ∈ G × G, where r
r←− Z|G|. Sometimes

we will also write [m]r for this commitment. The commitment scheme satisfies
unconditional binding since when you have committed to m and r is chosen, there
is only one r′ such that gr

′
= gr, namely r′ = r. And given r, m is uniquely

determined. The commitment scheme also satisfies computational hiding. There
are two ways of finding the message hidden in the commitment, either you find
p such that yc = gp or you find the exponent r. So if you are able to break the
hiding property you should be able to get an advantage on the DDH-problem
in G2, which for the group we are going to use in the protocol is believed to be
hard.



CHAPTER 3

SIMPLIFIED PROTOCOL

In this chapter we want to use what we have proved in Chapter 2 to make changes
to what Gjøsteen has called the simplified protocol in [5]. The simplified protocol
is found in Chapter 3 of his paper. Firstly, we will describe the different players in
the original protocol and some assumptions we will make. Secondly, we will come
up with three different choices for how to change the protocol, and give arguments
for the choice we have made. Then we make the changes that are needed in the
simplified protocol, before we analyse the security of the new simplified protocol
in the last section.

3.1 The Different Players in the Protocol

The protocol consists of many players. We will call the collection of players that
the voter has no control over “the system”. The players we consider are the
voter V , the voter’s computer P , a key generation system KG, a ballot box B,
a receipt generator R, a decryption service D and an auditor A. The voter and
it’s computer are the only players relating to the voter, all other players are part
of the system.

Before the election the key generation functionality KG generates private and
public keys and functions used under the election. The key generation function-
ality KG closes before the election starts. The private keys are a1, a2 and a3,
and we have corresponding public keys y1 = ga1 , y2 = ga2 and y3 = ga3 where g
is a fixed generator in the group G that is to be used. The private key a1 is sent
to D, the private key a2 is sent to B and the private key a3 is sent to R. The
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ballot box is the part receiving encrypted votes from the voter’s computer and
storing them until counting, when they are sent to the decryption service. The
ballot box also generates some messages that are sent to R.

The receipt generator is the part that generates codes to send directly to the
voter (without going trough the voter’s computer or the ballot box). At the
moment it looks like SMS will be the way the codes will be sent. The point
of generating the codes is to stop P from altering the ballots before sending
them to the ballot box. The decryption service is responsible for decrypting the
ciphertexts after receiving them from the ballot box when the election has closed.
At last the auditor controls that the other players in the system do what they
are supposed to do, simplified you can say that the auditor gets all the contents
of the other players inside the system and check their computations.

From now on we assume that G, the group used in the protocol, is a multi-
plicative cyclic group of prime order.

3.2 What to Change?

In this section we propose three possible ways of changing the protocol, and then
give arguments for why two of them would not be secure.

The change we want to make is how the voter’s computer encrypts the ballots.
Instead of having one secret key a1 and one public key y1 = ga1 used by the
computer, we now want to have kmax different secret keys a1i and kmax different
public keys y1i = ga1i , one for each possible choice the voter can make. The idea
is that we now only will need one x, and that encryption will be as follows:

(x,w1, . . . , wkmax) = (gt, yt11f(v1), . . . , yt1kmax
f(vkmax)), t ∈ Z|G|

Then we get decryption as follows:

f(vi) = wix
−a1i , i ∈ {1, . . . , kmax}

So we still have one decryption key for every choice. But in the original proto-
col we have the following relationship between the private keys: a1 + a2 ≡ a3

(mod |G|). Clearly this is no longer a possibility. Instead we get three possible
ways in which to get a similar relationship between the private keys. The three
ways are as follows:

a1i + a2i ≡ a3 (mod |G|)
a1i + a2 ≡ a3i (mod |G|)
a1i + a2i ≡ a3i (mod |G|)

i ∈ {1, . . . , kmax}
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Now we argue why two of these choices are not secure enough. Let us look at
a1i + a2i ≡ a3 (mod |G|), i ∈ {1, . . . , kmax} first. Assume that an attacker A has
corrupted the ballot box, and that A can guess one choice the voter has done. So
A knows f(vj) for one j. The ballot box already knows a2i ∀i ∈ {1, . . . , kmax},
so the attacker can find xa3 by the following calculations:

xa1j = ga1jt = yt1j = wj(f(vj))
−1

xa3 = xa1jxa2j

Now we can find xa1i ∀i by doing the following calculation for all i:

xa1i = xa3x−a2i

Hence by taking the inverse of each of these xa1i ’s we obtain all the information
needed to decrypt the ciphertexts.

Let us now look at a1i + a2 ≡ a3i (mod |G|), i ∈ {1, . . . , kmax}. Assume that
an attacker A has corrupted receipt generator, and that A can guess f(vj) for one
j. The receipt generator has {a3i}, so the attacker can find xa2 by the following
calculations:

xa1j = ga1jt = yt1j = wj(f(vj))
−1

xa2 = xa3jx−a1j

Now we find {xa1i} by calculating

xa1i = xa3ix−a2 ∀i ∈ {1, . . . , kmax}

By taking the inverse of each xa1i we obtain all the information needed to decrypt
the ciphertexts.

Remark: It is not a unlikely event that an attacker can guess one choice the
voter has made; for example many voters will not use all their choices, and hence
vkmax = 0 for these voters.

Remark 2: In both cases above it is likely that if a guess is wrong, the ballot
box or the receipt generator respectively will notice, since the ballot obtained by
decrypting with the found information would likely yield a spoilt ballot.

So we have showed that using a1i + a2 ≡ a3i or a1i + a2i ≡ a3 will not suffice.
Hence we propose to use a1i + a2i ≡ a3i, i ∈ {1, . . . , kmax} as our change in the
protocol. Clearly neither of the above attacks can be used in this case, since the
relationship a1i + a2i ≡ a3i is independent of the relationship a1j + a2j ≡ a3j

for j 6= i, j ∈ {1, . . . , kmax}. Now we must prove that using the relationship
a1i + a2i ≡ a3i will give us a secure protocol.
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3.3 The New Simplified Protocol

In this section we implement the changes made to the simplified protocol. I
want to mention that we only comment on the parts where there has been made
changes. The parts of the protocol we haven’t changed will not be mentioned
here.

Key generation:

Instead of generating three secret parameters, we must now generate 3kmax
secret parameters. We must generate kmax sets of triples a1i, a2i and a3i,
i ∈ {1, . . . , kmax} such that

a1i + a2i ≡ a3i (mod |G|)

This also gives 3kmax public parameters,

y1i = ga1i , y2i = ga2i , and y3i = ga3i , i ∈ {1, . . . kmax}

The ballot box gets the set of a2i’s, the receipt generator gets the set of a3i’s and
the decryption service gets the set of a1i’s, i ∈ {1, . . . , kmax}. Note that r(v) is
not changed because of this, it is just as before.

Vote submission:

Given the vote {v1, . . . , vk} we encrypt as follows:

1. The voter sends (v1, . . . , vk) to his computer P . The computer sets vi = 0
for i = k + 1, . . . , kmax.

2. Sample one t from Z|G|, compute (x,w1, . . . , wkmax)
= (gt, yt11f(v1), . . . , yt1kmax

f(vkmax).

3. The ballot box computes x̌ = xs and w̌i = wsi x̌
a2i , i ∈ {1, . . . , kmax}. The

ciphertexts (x̌, w̌1, . . . , w̌kmax) and the voter’s name is sent to R.

4. The receipt generator computes ři = d(w̌ix̌
−a3i) and sends (ři, . . . , řk) to

the voter. (Note that the fact that k can be deduced from the number of
non-identity decryptions still holds.)

5. The voter verifies that every pair (vi, ři) is in the set of receipt codes received
before the election, and if so considers the ballot cast.
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Counting:

When we count, we close the ballot box, choose the last submitted ballot from
each voter and send the set of these in a random order to the decryption service.
Then the decryption service decrypt by µi = wix

−a1i and outputs the decrypted
ballots obtained by this decryption in a random order.

Completeness:

The protocol is complete as long as when every player is honest, the decryption
service decrypts the ballots correctly and the receipt generator generates the
correct receipt codes. The only non-obvious thing about completeness is the
receipt codes received by the voter being correctly generated. The argument is
as follows for ri:

w̌ix̌
−a3i = wsi x̌

a2i x̌−a3i = wsi x̌
−a1i = wsi (x

s)−a1i = (wix
−a1i)s = (f(vi))

s

3.4 Analysis of the New Simplified Protocol

The only concerned part of the security analysis from the original protocol is the
ballot box in part c) of section 3.2 in [5]. We have to make a new argument for
the ballot box not being able to extract any information from the ballots.

Say an attacker A has an advantage on the Decision Diffie-Hellman problem,
say AdvDDH

A = εDDH. We have come up with two different analyses giving two
different bounds, both analyses are similar and we give a sketch for the first
analysis giving the rougher bound, while giving the second and best analysis in
detail. In the two analyses we have made, we make a set of games taking our
information (the ballots) from being encrypted as in real life to just be encryptions
of random elements fromG. We name real life for the 0’th game (G0), and number
them increasingly.

In the first analysis we made, we started out with all ballots encrypted as in
real life. Then in turn we randomized one voters ballot for each game, keeping the
ballots that was randomized in the earlier games still randomized. So in Game
i, i ballots were randomized. Then we made algorithms Bi that took as input a
tuple (x0, . . . , xkmax) that was either a tuple from Gkmax+1 drawn at random or
a tuple from Hkmax+1

0 drawn at random. The algorithms were made so that if
the tuple was drawn from Hkmax+1

0 , then Bi ' Gi (Gi is game number i), and
if the tuple was drawn from Gkmax+1, Bi ' Gi+1. Hence if we could distinguish
between the Game Gi and the Game Gi+1, then we would have a distinguisher

for the subgroup membership problem Gkmax+1 ?←→ Hkmax+1
0 .
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Then we basically summed up the advantage an attacker could get on distin-
guishing each game from the previous one , to find the advantage one could get
on distinguishing the first and the last game. Remember that the first game was
encryptions of real ballots and the last game was that all ciphertexts were encryp-
tions of random group elements. Taking the sum we got that the advantage an at-
tackerA could get on distinguishing between all ciphertexts being real encryptions
and all ciphertexts being random encryptions was AdvdistA = (N+1) ·kmax ·εDDH,
where N , is the number of votes (i.e N ≈ 3.8 × 106 [6], in an analysis we must
assume every voter votes).

What does this bound really give us? We know N + 1 < 222 and if we say
kmax = 60 ≈ 26, then the advantage is AdvdistA = (N + 1) · kmax · εDDH <
222 · 26 · εDDH = 228 · εDDH. It is reasonable to say that 2−60 is a small advantage
and 2−10 is a large advantage, so we therefore assume an attacker can get an
advantage of 2−60 on the Decision Diffie-Hellman problem. Then the advantage
becomes AdvdistA = 228 · εDDH = 2−32. This is neither close to 2−60 nor 2−10.
Therefore we wanted to try to make a better bound, and came up with a analysis
giving a better bound.

Now we show how to do the analysis giving the best bound. We make a
set of games reducing the problem of finding any information from the ballots
when encrypted as in real life, to the problem of finding any information from
the ballots when given encryptions of elements drawn at random from the group
(in this situation a guess will do as good as anything else). We further show that
being able to distinguish a game from the previous one is equal to obtaining an
advantage on the Decision Diffie-Hellman problem. We name the games with
numbers, i.e. Game 0 (real life) is named G0 and so on. The games goes as
follows:

Gi: In this game we do as follows for each ballot:

1. Set (u1, . . . , ui) to be elements drawn at random from G

2. Set (ui+1, . . . ukmax
) = (f(vi+1), . . . f(vkmax

))

3. Encrypt by: (x,w1, . . . , wkmax) = (gt, yt11u1, . . . , y
t
1kmax

ukmax)

Remark: In each game the attacker, A, is supposed to guess 0 or 1, 0 if he thinks
the encrypted ballots he gets are encrypted as in real life, and 1 if he thinks the
encrypted ballots he gets is encryptions of random elements from G.

Define Hkmax+1
i = 〈(g, y11, . . . , y1kmax

), (g, r1, y12, . . . , y1kmax
), . . . ,

(g, r1, . . . , ri, y1(i+1), . . . , y1kmax
)〉 for i ∈ {0, . . . , kmax}. Now we make an algo-

rithm Bi that takes in a tuple x = (x0, . . . , xkmax
) such that x ∈ Hkmax+1

i or

x ∈ Hkmax+1
i+1 . The algorithm uses this tuple such that if x ∈ Hkmax+1

i we get

Bi ' Gi and if x ∈ Hkmax+1
i+1 we get Bi ' Gi+1. We now describe Bi:
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Algorithm Bi:

1. Input: (x0, . . . , xkmax
)

2. For each voter generate a t′ and a t and do the following

3. (x,w1, . . . , wkmax
) =(gtxt

′

0 , x
t′

1 , . . . , x
t′

i , y
t
1(i+1)x

t′

i+1f(vi+1),

. . . , yt1kmax
xt
′

kmax
f(vkmax

))

4. Send all the (x,w1, · · · , wkmax
) tuples, one for each voter, to A and

wait for an answer

5. Bi outputs the number A answers with (0 or 1)

Lemma 3.1. |Pr[Bi(x) = 1 | x ∈ Hkmax+1
i+1 ] − Pr[Bi(x) = 1 | x ∈ Hkmax+1

i ]| =
εDDH.

Proof. If we keep on using the notation of Yi we used in Chapter 2, i.e we write
x

r←− Yi when drawing from Gkmax+1 with equal probability of drawing any ele-
ment from Hkmax+1

i and zero probability of drawing any other element, we get
the following

|Pr[Bi(x) = 1 | x ∈ Hkmax+1
i+1 ]− Pr[Bi(x) = 1 | x ∈ Hkmax+1

i ]|
= Adv

Yi+1/Yi

A = εDDH

Where the last equality follows from Lemma 2.7.

Lemma 3.2. If x ∈ Hkmax+1
i then Bi ' Gi and if x ∈ Hkmax+1

i+1 then Bi ' Gi+1.

Proof. Assume x = (gt
′′
, x1, . . . , xi, y

t′′

1(i+1), . . . , y
t′′

1kmax
) ∈ Hkmax+1

i . The tuples
A gets as input from Bi are then on the following form:

(x,w1, . . . , wkmax
) =(gtxt

′

0 , x
t′

1 , . . . , x
t′

i , y
t
1(i+1)x

t′

i+1f(vi+1),

. . . , yt1kmax
xt
′

kmax
f(vkmax

))

=(gt+t
′t′′ , xt

′

1 , . . . , x
t′

i , y
t+t′t′′

1(i+1)f(vi+1),

. . . , yt+t
′t′′

kmax
f(vkmax

))

Now the only difference between the tuples sent to A by Bi and the tuples sent
to A from game Gi is that in game Gi we multiply the random ui’s with yt1i while
when using Bi we take xi to the power t′ for every i. We have that ui and xi
are random elements for i ∈ {1, . . . , i}, and multiplying a random element with
another element is still a random element. An exponent of a random element is
still a random element, so in both cases we end up with random elements. Hence
we get Bi ' Gi
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Assume now that x = (gt
′′
, x1, . . . , xi+1, y

t′′

1(i+2), . . . , y
t′′

1kmax
) ∈ Hkmax+1

i+1 . Now
the tuples A gets as input from Bi are on the following form:

(x,w1, . . . , wkmax) =(gtxt
′′

0 , x
t′

1 , . . . , x
t′

i+1, y
t
1(i+2)x

t′

i+2f(vi+2),

. . . , yt1kmax
xt
′

kmax
f(vkmax))

=(gt+t
′t′′ , xt

′

1 , . . . , x
t′

i+1, y
t+t′t′′

1(i+2)f(vi+2),

. . . , yt+t
′t′′

kmax
f(vkmax

))

The tuples sent to A by Bi and the tuples sent to A from Game Gi+1 now only
differ in that we multiply the different ui’s with yt1i in Gi+1 and exponentiate
the xi’s by t′ in Bi. With the same argument as for the first case we conclude
Bi ' Gi+1.

Definition 3.1. Define Ei to be the event that A guesses 1 in Game Gi.

We have the following:

Pr[“A wins“ | real encryption] = Pr[“A guesses 0“ | A plays in G0]

= 1− Pr[E0]

Pr[“A wins“ | random encryption] = Pr[Ekmax ]

By the definition of advantage in Chapter 2 we get the following result:∣∣∣∣Pr[“A wins“]− 1

2

∣∣∣∣ =

∣∣∣∣12Pr[“A wins“ | real encryption]

+
1

2
Pr[“A wins“ | random encryption]− 1

2

∣∣∣∣
=

∣∣∣∣12 − 1

2
Pr[E0] +

1

2
Pr[Ekmax ]− 1

2

∣∣∣∣
=

1

2
|Pr[Ekmax

]− Pr[E0]|

=
1

2
|Pr[Ekmax ]− Pr[Ekmax−1] + Pr[Ekmax−1]

− . . .+ Pr[E1]− Pr[E0]|

≤
kmax∑
i=1

|Pr[Ei]− Pr[Ei−1]|

=

kmax∑
i=1

(|Pr[Bi−1(x) = 1 | x ∈ Hkmax+1
i ]
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− Pr[Bi−1(x) = 1 | x ∈ Hkmax+1
i−1 ]|)

= kmax · εDDH

Hence the advantage an attacker can get on distinguishing between the cipher-
texts being encryptions of real ballots and encryptions of random group elements
is AdvdistA = kmax · εDDH. This is clearly a much better bound on the advan-
tage of A. If we as before assume kmax = l ≈ 26 and εDDH = 2−60 we get
AdvdistA = kmax · εDDH = 26 · 2−60 = 2−54. Now this number is fairly close to
εDDH = 2−60, so we don’t get much of an advantage. Even though we have stated
what we say is a small and large advantage without any reference, we still see
that the advantage is dependent on the advantage on the DDH-problem. So a
distinguisher between encryptions of real ballots and encryption of random group
elements must give us an adversary for the DDH-problem.
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CHAPTER 4

FULL PROTOCOL

In this chapter we describe the changes made to what Gjøsteen has called the
full protocol, then we analyse the full protocol with these changes. The original
full protocol is found in section 4 of [5].

4.1 Changes in the Full Protocol

In this section we comment on the changes made in the full protocol. We only
comment on places where changes have been made.

Key generation

It is the electoral board that generates the secret election keys {a1i}, {a2i} and
{a3i}, it also generates the per-voter keys. As in the original protocol we model
this by a simple ideal functionality.

The original key generation functionality is found in Figure 7, p.18-19 in [5].
The key generation functionality with the changes made, is as follows:

Once (start) has been received from every electoral board player:
1: Choose the function f : O → G.
2: Choose random a1i and a2i, and compute a3i = (a2i + a1i) (mod |G|) for
i ∈ {1, . . . , kmax}. Compute y1i = ga1i , y2i = ga2i and y3i = ga3i for i ∈
{1, . . . , kmax}.
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3: For every voter V , choose a random exponent s and a PRF instance d. Com-
pute the per-voter commitment γ = gs and the set RC = {(v, d(f(v)s)) | v ∈
O}. Send (codes,RC) to V .

4: Send (keys, {y1i}, {a2i}, {y3i}, (V, s)) to B, (keys, {y1i}, {y2i}, {a3i}, (V, γ, d))
to R, and (keys, {y1i}) to A.

5: For every computer P, send (keys, {y1i}, f) to P .
Once (count) has been received by a qualified majority of the electoral board

players:
1: Send (keys,

∑kmax

i=1 a1i) to D.

Program 1: Updated ideal functionality for key generation

The Voter’s Computer

The computer gets the voters ballot from the voter, encrypts the ballot, proves
it knows the contents of the ciphertexts generated by encrypting, signs the en-
crypted ballot and the proof of knowledge and sends this to the ballot box via
Feid. Then the computer waits for a receipt from B containing the receipt gen-
erator’s signature that it has seen the ballot the computer sent to the ballot box.
When this receipt is received the computer checks it and, if it is valid, outputs
to the voter that the ballot was accepted.

The original program for the voter’s computer is found in Figure 9, p. 20-21
in [5]. The voter’s computer’s program with changes made, is as follows:

On (keys, {y1i}, f) from Fkey:
1: Store {y1i} and f .
On (vote, v1, . . . , vk) from V :
1: Send (establish, V, B) to Feid and wait for (established, sid).
2: Set vk+1 = · · · = vkmax

= 0.
3: Choose random t and compute x = gt.
4: For i from 1 to kmax: compute wi = yt1if(vi).
5: Send (prove, V, 1, g, x, t) to Fpok and wait for (proof, . . . , π) from Fpok.
6: Send (sign, V ((x,w1, . . . , wkmax

), π)) to Feid, and wait for (signature, . . . , σV )
from Feid.

7: Send (send, sid, (vote, V ((x,w1, . . . , wkmax
), π), σV )) to Feid, and wait for

(recv, sid, (receipt, σR)) from Feid.
8: Compute hb ← Hash(V, (x,w1, . . . , wkmax), π).
9: Send (verify, R, hb, σR) to Feid and wait for (verified, R, hb, σR).

10: Send (accepted) to V .

Program 2: Updated program for the voter’s computer
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The Ballot Box

The ballot box does not do any work until it has received its codes. Then as com-
puters wants to submit ballots, the ballot box connects to the computers, receives
the encrypted and signed ballot, verifies the signature and proof of knowledge,
does the appropriate computations, proves that it has computed correctly and
sends the result to the receipt generator. Then it awaits the receipt generator’s
reply containing a signature of the hash of the ballot, checks the signature and
sends the signature to the computer.

When the election closes, the ballot box is told to close, it then waits for
ongoing submissions to complete, selects the ballots to be counted and sends
them to the decryption service in a random order. Then it’s final work is to send
it’s contents to the auditor.

The original program for the ballot box is found in Figure 10, p. 21-23 in [5].
The program for the ballot box with changes made, is as follows:

Do nothing until (keys, {y1i}, {a2i}, {y3i}, {(V, s)}) has been received
from Fkey, then do:

1: Record {y1i}, {a2i}, {y3i} and the pairs (V, s).
On (established, sid, V, P ) from Feid:
1: Wait for (recv, sid, P, (((x,w1, . . . , wkmax

), π), σV )) from Feid.
2: Send (verify, V, ((x,w1, . . . , wkmax

), π), σV ) to Feid and wait for
(verified, . . . , σV ) from Feid.

3: Send (verify, V, 1, g, x, π) to Fpok and wait for (verified, . . . , π) from Fpok.
4: Look up the stored pair (V, s) and place an exclusive lock on the pair (waiting

for any other session to release it’s exclusive lock).
5: Select the next sequence number seq.
6: Compute x̌ as specified on the next page.
7: for i = 1 to kmax :
8: Compute (w̌i, π̌i) as specified on the next page.
9: Send (ballot, seq, V, x, x̌, ((w1, w̌1, π̌1), . . . , (wkmax

, w̌kmax
, π̌kmax

)), π, σV ) toR,
and wait for (receipt, seq, σR) from R.

10: Compute hb ← Hash(V, (x,w1, . . . , wkmax
), π).

11: Send (verify, R, hb, σR) to Feid and wait for (verified, R, hb, σR) from Feid.
12: Store (seq, V, (x,w1, . . . , wkmax), π, σV ) and release the lock on the record

(V, s).
13: Send (receipt, σR) to P .
On (count) from D:
1: Stop processing (established, . . . ) messages from Feid.
2: Stop any voting sessions that have not yet reached Step 4 and wait for re-

maining sessions to terminate.
3: Send (count) to R.
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4: Let Sbb be the list of all recorded entries (seq, V, (x,w1, . . . , wkmax
), π, σV ).

5: For each voter V , find the recorded entry with the largest
sequence number seq and extract the ballot (x,w1, . . . , wkmax).
Compute

w =

kmax∏
i=1

wi

and add (x,w) to the list L.
6: Sort L. Send (decrypt, L) to the decryption service D, and (content, Sbb) to
A.

Program 3: Updated program for the ballot box

Remark: To obtain the product
∏kmax

i=1 f(vi) we now multiply as follows:

kmax∏
i=1

f(vi) = w · x−
∑kmax

i=1 a1i

We compute x̌ and the w̌i’s as in section 3.3. The correctness proofs π̌i are
made as follows:

Input: x, {wi}, s and a2i.

1. Compute x̄ = xs.

2. For i from 1 to kmax: compute w̄i = wsi and ŵi = x̄a2i .

3. Send (prove, V, 1, (g, x, w1, . . . , wkmax
), (gs, x̄, w̄1, . . . , w̄kmax

), s) to Fpok and
wait for (proof, . . . , π̄) from Fpok.

4. For i from 1 to kmax: send (prove, V, 1, (g, x̄), (y2i, ŵi), a2i) to Fpok and wait
for (proof, . . . , π̂i) from Fpok.

5. Now the result is (x̌, w̌i) = (x̄, w̄iŵi), the proof is π̌i = (w̄i, ŵi, π̄, π̂i).

To verify the proofs π̌i on input (x,w1, . . . , wkmax
), (x̌, w̌1, . . . , w̌kmax

), {y2i}, γ
do as follows:

1. For i from 1 to kmax: check that w̌i = w̄iŵi.

2. Send (verify, V, 1, (g, x, w1, . . . , wkmax), (γ, x̄, w̄1, . . . , w̄kmax), π̄) to Fpok and
wait for (verified, . . . ) from Fpok.

3. For i from 1 to kmax: send (verify, V, 1, (g, x), (y2i, ŵi), π̂i) to Fpok and wait
for (verified, . . . ) from Fpok.
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Receipt Generator

The receipt generator receives from the ballot box the encrypted signed ballot
with the voter’s computer’s proof of knowledge, together with a sequence number.
It also receives the ciphertexts (x̌, w̌1, . . . , w̌kmax

) made by the ballot box and the
proof made by the ballot box for the ballot box computing correctly. It verifies
the signature, all the proofs and the sequence number. Then the receipt generator
decrypts (x̌, w̌1, . . . , w̌kmax) to obtain the receipt codes, and sends the obtained
receipt codes to the voter. At last the receipt generator stores the voters name,
the sequence number and a hash of the encrypted ballots. The signed hash of
the encrypted ballots is also sent as a receipt to the ballot box.

The program for the original receipt generator is found in Figure 11, p. 23-
24 in [5]. The new program for the receipt generator with changes made, is as
follows:

On (keys, {y1i}, {y2i}, {a3i}, {(V, γ, d)}) from Fkey:
1: Record {y1i}, {y2i}, {a3i} and the triples (V, γ, d).
On (ballot, seq, V, x, x̌, ((w1, w̌1, π̌1) . . . , (wkmax

, w̌kmax
, π̌kmax

)), π, σV ) from B:
1: Compute hb ← Hash(V, (x,w1, . . . , wkmax

), π, σV ) and h′b ← Hash(V,
(x,w1, . . . , wkmax

), π).
2: Look up the recorded tuple (V, γ, d) and place an exclusive lock on the tuple

(waiting for any other session to release it’s exclusive lock).
3: Verify that no record (·, ·, ·, h′b) or (V, seq′, ·, ·) with seq′ ≥ seq exists.
4: Send (verify, V, ((x,w1, . . . , wkmax

), π), σV ) to Feid and wait for (verified
, . . . , σV ).

5: Send (verify, V, 1, g, x, π) to Fpok and wait for (verified, . . . ).
6: for i = 1 to kmax :
7: Verify the computation of (x̌, w̌i) using the proof π̌i a described

under the ballot box’s changed program.
8: Compute ri = w̌ix̌

−a3i . If ri 6= 1, then k = i.
9: Compute ři = d(ri).

10: Send (sign, R, hb,) to Feid and wait for (signature, R, hb, σR).
11: Record (V, seq, hb, h

′
b). Send (receipt, seq, σR) to B.

12: Send (receipt, ř, . . . , řk) to V .
On (count) from B:
1: Verify that all sessions have terminated.
2: Send (flush) to Fsc.
3: Let SR be the list of all recorded entries (V, seq, hb, h

′
b). Send (hashes, SR) to

A.

Program 4: Updated program for the receipt generator
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Decryption service

When the election is over, the decryption service receives the ballots to count from
the ballot box in a random order. It then decrypts the ballots and shuffles them
before output. Before the decryption service is allowed to decrypt, the auditor
must accept the input as correct, this is done by the fact that the decryption
service takes the hash of all ballots and sends the result to the auditor, then the
auditor takes the hash of the ballots it has found should be counted based on
what it has received from the ballot box and the receipt generator. If the two
hashes are the same, the auditor tells the decryption service to proceed.

When finished, the decryption service must prove to the auditor that the
encrypted ballots contain a permutation of the decrypted ballots it outputs. To
prove that the encrypted ballots contain a permutation of the output ballots,
the decryption service shuffles and rerandomize the encrypted ballots, and then
decrypts the result. Correctness of the shuffle and decryption is proved to the
auditor.

The decryption service also decodes the decrypted ballots. Since we have not
changed anything about the decoding or shuffle proofs, we refer to the original
protocol for more information on this.

The original decryption service program is found in Figure 12, p. 25 in [5].
The decryption service program with changes made, is as follows:

On (keys,
∑kmax

i=1 a1i) from Fkey:
1: Send (count) to B.
2: Wait for (decrypt, (x1, w1), . . . , (xn, wn)) from B.
3: Compute χ ← Hash((x1, w1), . . . , (xn, wn)), send (hash, χ) to A, and wait

for (proceed) from A.
4: Choose a permutation Π on {1, . . . , n}.
5: Let y =

∏kmax

i=1 y1i.
6: for i = 1 to n :
7: Choose a random number ti.
8: Compute x′i = xΠ(i)g

ti w′i = wΠ(i)(
∏kmax

j=1 y1j)
ti .

9: Compute µi = w′i(x
′
i)
−

∑kmax
i=1 a1i , send (prove,−, 1, (g, x′i), (y, w′iµ−1),∑kmax

i=1 a1i) to Fpok and wait for (proof, . . . , πi).
10: Create a proof π′ that (x′1, w

′
1), . . . , (x′n, w

′
n) is a shuffle of (x1, w1), . . . ,

(xn, wn).
11: Send (proofs, (x′1, w

′
1, µ1, π1), . . . , (x′n, w

′
n, µn, πn), π′) to A, then output

(ballots, φ(µ1), . . . , φ(µn)).

Program 5: Updated program for the decryption service
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Auditor

The auditor verifies that the ballot box and the receipt generator has seen the
same encrypted ballots. Then it verifies the selection of encrypted ballots sent
for decryption, before it verifies the correction of decryption.

On (keys, {y1i}) from B:
1: Store {y1i}.
On (content, Sbb) from B:
1: Wait for (hashes, SR) from R.
2: Verify that every encrypted ballot in Sbb has a corresponding hash in SR, and

vice versa.
3: Verify the signatures and proofs of knowledge on the encrypted ballots.
4: Select from Sbb the ciphertexts that should be decrypted, sort the list and

compute a hash χ of the list.
5: Wait for (hash, χ′) from D. Verify that χ = χ′, then send (proceed) to D.
6: Wait for (proofs, (x′1, w

′
1, µ1, π1), . . . , (x′n, w

′
n, µn, πn), π′) from D.

7: Let y =
∏kmax

i=1 y1i.
8: for i = 1 to n :
9: Send (verify,−, 2, (g, x′i), (y, w′iµ−1), πi) to Fpok and wait for

(verified, . . . ) from Fpok.
10: Verify the proof π′.
11: Output (accepted, φ(µ1), . . . , φ(µn)).

Program 6: Updated program for the auditor

4.2 Security Analysis of the Full Protocol

In this section we analyse the security based on cases for corruption given on page
29 in [5]. The cases for corruption in the order we handle them are as follows:

• A subset of the voters and computers are corrupt, and possibly the ballot
box.

• The receipt generator is corrupt.

• The decryption service is corrupt.

• The auditor is corrupt.

We use Kristian Gjøsteen’s security analyses found in Chapter 5 in the original
protocol as a basis for our security analyses.
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Voters, Computers and the Ballot Box

Our starting point is, as it is in the original analysis made by Gjøsteen, the real
protocol interacting with a real adversary that has corrupted a number of voters
and computers, and possibly the ballot box. We use the games already made as
a starting point and evolve them into games suitable for our protocol. We also
give arguments for why every game is indistinguishable from the previous one.
What we shall prove is the same as in the original protocol, which is (copied from
[5]):

• If the ballot box is not corrupt, the auditor will not fail the election.

• For any honest voter that uses only honest computers, any ballot accepted
as cast and not superseded should be counted if the auditor accepts the
election. The ballot remains confidential regardless.

• If an honest voter uses a corrupt computer (not necessarily for voting),
nothing can be guaranteed for voters that submit multiple ballots. However,
for voters that submit exactly one ballot and accepts that ballot as cast,
with high probability that ballot will be counted unless the voter observes
an attack. If the ballot was submitted through an honest computer, the
ballot remains confidential.

Game 1 In this game we wish to let a machine M simulate all honest players,
this includes all honest voters and computers. Also since M simulate all honest
players, M knows all decryption keys, and especially the secret keys {a1i}, {a2i}
and {a3i}. Clearly this game is indistinguishable from the real protocol.

Game 2 The next step is to remove the need for shuffle proofs and proving
correctness of decryptions. The reason for this is that we at some point want
to start encrypting random elements and therefore will not be able to make a
correct proof. Since B cannot see the communication between the decryption
service and the auditor, this game is clearly indistinguishable from the previous
one.

Game 3 Now we want to be able to assume that Hash(·) is a injective function,
so we tell M to abort if it ever observes a collision in Hash(·). As long as Hash(·)
is collision resistant, this game is indistinguishable from the previous one. From
now on we assume Hash(·) is a injective function in this analysis.

Game 4 We will later need that the per-voter function d : G→ C is a random
function between G and C. Therefore we now sample it from all functions from
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G to C. Since F is a pseudo-random function family, we conclude that this game
is indistinguishable from the previous one.

Game 5 We change this game so that the return code is computed as d(wix
−a1i)

instead of using d(w̌ix̌
−a3i), which means M must now generate the receipt

codes sent to v beforehand as d(f(v)) not d(f(v)s). The reason for this is
to remove any use of (x̌, w̌1, . . . , w̌kmax). Still d is a permutation and expo-
nentiation is a permutation, so the only way these changes can be observable
is if (wix

−a1i)s 6= (w̌ix̌
−a3i). As before, if the ballot box proofs are valid,

(wix
−a1i)s = (w̌ix̌

−a3i) holds except with negligible probability. So we con-
clude this game is indistinguishable from the previous one. We can observe that
we now use none of the receipt code generator’s decryption keys {a3i}.

Game 6 When an honestly generated encrypted ballot is made, M makes it
and therefore knows the ballot contained in the encrypted ciphertexts. So when
these ballots arrive at the simulated receipt generator we use the remembered bal-
lot to generate the receipt codes instead of decrypting, and when these ballots are
sent for final decryption at the decryption service we again use the remembered
cleartext ballot instead of decrypting. This game is clearly indistinguishable from
the previous one.

Game 7 Now we want to remove the use of a1i. This is because we later

on want to make a reduction on the subgroup membership problem Gkmax+1 ?←→
Hkmax+1

0 using {y1i} as base together with g to randomize the ballots. If we were
still using a1i we would have a distinguisher for this problem since we have the
private keys {a1i}, this we do not want. The way to remove the use of a1i is to
use the witness that is given to Fpok to generate π to obtain the receipt codes. So
when an adversarially generated encrypted ballot ((x,w1, . . . , wkmax

), π) reaches
the simulated receipt generator, we use the witness p, that satisfies x = gp,
provided by the adversary to generate π. The witness p is used to decrypt f(vi) =
wiy
−p
1i instead of decrypting f(vi) = wix

−a1i .
M remembers the cleartext ballot for adversarially encrypted ballots that

arrive and is decrypted at the receipt generator, and uses these stored ballots for
decryption instead of decrypting ciphertexts when doing the final decryption.

As in the original protocol, by the properties of Fpok, the computed decryp-
tions are always correct. So this game is indistinguishable from the previous
game.

Claim. The decryption keys {a1i} are not used in Game 7.

Proof. The same argument as the one used in [5] to argue that a1 is not used in
Game 7 there, is valid in this case also.
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Game 8 Now we want simulated honest computers to be able to generate
ciphertexts as encryptions of ballots without actually knowing the contents or
any witness for proving that you know the contents. We want this because
in the next game we want to encrypt with random elements when simulating
honest computers, and therefore will not be able to produce a witness for our
encryptions. So now we no longer give Fpok a witness. Fpok is a trusted third
party, and when checking a proof, Fpok just replies with verified or invalid, so
Fpok does not actually use the witnesses as long as the encrypted ballot comes
from a simulated honest voter since both are simulated by M . So therefore this
game is indistinguishable from the previous one.

Game 9 Now we remove the connection between the ciphertexts and the
ballots when it is a honest computer who generates the ciphertexts, this makes
it easier for us to make the analysis. So instead of encrypting the encoded ballot
options we encrypt random group elements. We already use cleartext ballots
instead of decrypting in both the receipt generator and decryption service, so we
only need to show that B cannot distinguish between encryptions of real ballots
(the previous game) and random elements (this game).

Claim. A distinguisher between this and the previous game would give an

adversary on the subgroup membership problem Gkmax+1 ?←→ Hkmax+1
0 , where

Hkmax+1
0 = 〈(g, y11, . . . , y1kmax)〉.

Proof. So given a tuple x = (x0, . . . , xkmax
) we compute as follows:

(x,w1, . . . , wkmax
) = (gtxt

′

0 , y
t
11x

t′

1 f(v1), . . . , yt1kmax
xt
′

kmax
f(vkmax

))

We now see that if x ∈ Hkmax+1
0 the encryption is as in the previous game,

and if x ∈ Gkmax+1 the encryption is as in this game. Hence, if we have a
distinguisher between this and the previous game, we get an adversary on the

subgroup membership problem Gkmax+1 ?←→ Hkmax+1
0 .

Analysis We are now in the same situation as in Game 9 of [5], and therefore
the analysis done there is valid in our case also. Hence we are able to prove that
the same conditions (listed earlier) still holds.

Receipt Generator

We start with the real protocol interacting with a real adversary. We wish to
prove the following (this is copied from the original protocol, [5]):

• The corrupt receipt generator learns nothing about the submitted ballots,
except what the receipt codes tell it.
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Game 1 As we did in the previous section when analysing the voter, the voter’s
computer and the ballot box, we again want to make a machine M that simulate
all honest players. Again the machine M has all decryption keys, and especially
knows {a1i}, {a2i} and {a3i}. This game is indistinguishable to the previous one.

Game 2 Now we want to remove the use of the decryption keys {a1i}. So,
now every time M encrypts a ballot, M remembers the cleartext ballot corre-
sponding to each encrypted ballot. So when the encrypted ballos are received
by the decryption service, M uses the cleartext ballots instead of decrypting the
ciphertexts. Clearly this game is indistinguishable to the previous one. Note that
the decryption keys {a1i} are not used anymore.

Game 3 There is no need for M to be able to prove that it knows the contents
of (x,w1, . . . , wkmax

) now. This is because we know M is honest and since Fpok
only needs to output verified or invalid to R when R asks Fpok to verify the proof
of knowledge. So Fpok now receives random witnesses. Since the witnesses are
never used by Fpok, this game is indistinguishable from the previous one.

Game 4 We will at a later game want to change the order in which we compute
different ciphertexts, hence we now want to generate all ciphertexts at the same
time so that (x̌, w̌1, . . . , w̌kmax

) can be computed before (x,w1, . . . , wkmax
) as long

as the relationship between them is kept. So now M creates the messages to the
receipt generator when encrypting the ballots, but does not send the messages
to R before the corresponding encrypted ballots are received by the ballot box.
This game is clearly indistinguishable from the previous one.

Game 5 In this game we change the order in which we compute the ballots.
The reason for this is that we want to compute the ciphertexts B is going to
compute first, and then relate the other ciphertexts to these. This way we can
randomize the ciphertexts used to generate receipt codes in a later game, and
still get the other ciphertexts to have the correct relationship. So we change the
machine M ’s computation of the values x,wi, x̄, w̄i, ŵi, x̌, w̌i related to the option
vi as follows:

x̌ = gt w̌i = x̌a3if(vi)
s

ŵi = x̌a2i

x̄ = x̌ w̄i = w̌iŵ
−1
i

x = x̄s
−1

wi = w̄s
−1

Where s−1 is the multiplicative inverse of s modulo |G|.
A straight-forward computation will show that the change in method of com-

putation does not change the induced probability distributions. Therefore, this
game is indistinguishable from the previous game.
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Game 6 It is now time to remove the use of the keys {a2i}. We do this to
remove the connection between the x and the wi’s. This way we can in a later
game randomize the wi’s so that they contain no information. So now we generate
ŵi as a random element from G instead of computing ŵi = x̌a2i . A similar

argument as in Game 6 in [5] will give us an adversary againstGkmax+1 ?←→ Hkmax
0 .

Game 7 At this step we randomize wi so that it is just a random element from
G, this way the only element containing information on the ballots is w̌i. So we
change the machine M ’s computation of x,wi, x̄, w̄i, ŵi, x̌, w̌i as follows:

x = gt wi = gt
′

i

x̄ = xs w̄i = wsi
x̌ = x̄ w̌i = x̌a3if(vi)

s

ŵi = w̌iw̄
−1
i

Claim. This game is indistinguishable to the previous one.

Proof. To prove this, we look at the elements as exponents of g, and compare the
set of exponents. Then we show that we can make a one-to-one correspondence
between the set of exponents. At last we explain why this one-to-one correspon-
dence gives that the two computations have the same probability distributions.
We only look at this for one i, this could be any i hence it holds for all i. Firstly,
since g is a generator, there exists an r ∈ Z|G| such that f(vi) = gr. Now we
make a table, the entries in the table will be what g must be exponentiated with
to get the indicated element at the top of the column. The table is as follows:

x x̌ (x̄) wi w̄i ŵi w̌i
Game 6 ts−1 t a1its

−1 + r a1it+ rs a2it a3it+ rs
Game 7 t ts t′ t′s a3its− tsa3i + rs

t′s+ rs

Note that it is not the same t in Game 6 and 7. By checking one can see that
we get a one-to-one correspondence by sending t 7→ ts−1 and t′ 7→ a1its

−1 + r,
where both maps go from Game 7 to Game 6. Now t and t′ in Game 7 are
random numbers from Z|G|. In Game 6 t is a random element, hence ts−1 and
a1its

−1 + r are random. Now if we generate random t and t′ in Game 7 and
use our one-to-one correspondence to generate the exponents in Game 6, or if we
generate the random t in Game 6 and generate it we now see that the probability
distributions for the exponents in Game 6 will be the same.

Likewise if we generate the random t in Game 6 and use the one-to-one cor-
respondence to generate t and t′ in Game 7, or if we generate random t and t′ in
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Game 7, we get the same probability distributions for the exponents in Game 7.
So since we have a one-to-one correspondence between the exponents such that
we can start in any of the games and generate the exponents of both games so
that the probability distribution of each game is the same independent of which
game you actually start with, we must have that the probability distributions
for the exponents in the two games are the same. Hence the two games are
indistinguishable.

Game 8 Now that the only connection between the ciphertext and the cleart-
ext ballot is contained in w̌i we want to remove this last connection. We remove
it by replacing the per voter functions v 7→ f(v)s with a random function from
O to G. A similar argument to the one given in [5] gives that this game and the
previous game are indistinguishable.

Analysis We end up in the same situation as in [5], and hence conclude that
still the receipt generator learns no unavoidable information about the submitted
ballots.

Decryption Service

We have not made any changes in the protocol that will need any change of the
analysis given in [5] for the decryption service.

Auditor

Gjøsteen proved that the following holds for the auditor in [5]:

• The submitted ballot remains confidential.

We want to prove that the same holds with the new changes.

Game 1 Firstly we let a machine M simulate all the honest players. This
machine knows all private decryption keys, especially it knows {a1i}, {a2i} and
{a3i}.

Game 2 Since M controls all players that want to make zero knowledge proofs,
Fpok never needs to use the supplied witnesses. So now, instead of giving Fpok
the actual witness, we instead give a random witness. Since they are never used,
this game is indistinguishable from the previous one.

Game 3 M knows the cleartext ballot of all encrypted ballots, hence we now
let M use the cleartext ballot instead of decrypting both in R and D. This means



36 4 Full protocol

that the contents of the encrypted ballots are never used. These changes are not
observable for the auditor, hence this game is indistinguishable from the previous
one.

Game 4 Now we want to randomize the encrypted ballots, so that they con-
tain no connection to the cleartext ballots. So now we encrypt random group
elements instead of cleartext ballots. A straight-forward reduction to the prob-

lem Hkmax+1
0

?←→ Gkmax+1, with Hkmax+1
0 = 〈(g, y11, . . . , y1kmax

)〉 will show that
this game is indistinguishable to the previous one.

Game 5 In this final game the decryption service uses fresh random encryp-
tion in each round instead of rerandomizing when generating the shuffle proof.

Again, a straight-forward reduction to the problem Hkmax+1
0

?←→ Gkmax+1, with
Hkmax+1

0 = 〈(g, y11, . . . , y1kmax
)〉 will show that this game is indistinguishable

from the previous game.

Analysis Clearly we are in the same position here as in [5], and hence the
analysis done there is valid also in our case.



CHAPTER 5

SUB PROTOCOLS

In this chapter we will describe the changes we want to make to the protocol.
With these changes we will need to some times use commitments and Σ-protocols
instead of zero-knowledge proofs to prove that different players have done their
computations correctly. Our goal is to remove the private keys {a2i} from the
protocol, and thereby also remove the dependency a1i + a2i = a3i. To do this
we make P compute two different ciphertexts, wi and ŵi, for each choice vi the
voters computer computes as follows:

wi = yt1if(vi)

ŵi = yt3if(vi)

We still compute x = gt as before. Now P sends this to B who stores
(x,w1, . . . , wkmax

) and computes x̌ = xs and w̌i = ŵsi for all i before it sends
(x̌, w̌1, . . . , w̌kmax) to R. In this brief description many details are left out. All
the details can be found in the programs on later pages, but firstly we will show
how we now will use Σ-protocols and commitments to prove that some of the com-
putations are done correctly. The relation we are going to use for the Σ-protocols
is as follows:S

{(v, w) = ((~r,~s), w) | (~r)w = (rw0 , . . . , r
w
kmax

) = ~s = (s0, . . . , skmax
)}

Firstly P will have to prove both to B and R that (w1, . . . , wkmax) and
(ŵ1, . . . , ŵkmax

) contains the same ballot. Secondly B have to prove to R that we
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have produced (x̌, w̌1, . . . , w̌kmax
) correctly from (x, ŵ1, . . . , ŵkmax

). Both of these
proofs must be done without showing R (ŵ1, . . . , ŵkmax), since it then would be
able to decrypt the ballot.

5.1 Proving P Computes Correctly

We begin by describing the communication between P and R to prove that
(w1, . . . , wkmax

) and (ŵ1, . . . , ŵkmax
) contains the same ballot. We simplify by do-

ing computations for only one i. All the communication naturally goes trough B,
and it also checks the proof to convince itself that (w1, . . . , wkmax) and (ŵ1, . . . ,
ŵkmax

) contains the same ballot, but since it does not alter anything and checks
the same as R, we simplify it to P and R communicating directly with eachother.
It goes as follows:

P − R
Common :
g, {y1i}, {y3i}
yc, x, wi, [ŵi]

Have:
(x̂, ŵi), t, {ri} s.t.
[ŵi] = (gri , yric ŵi)

Compute:

r′i, b
r←− Z|G|

α0 = gb

αi =
(
y3i
y1i

)b
[αi] = (gr

′
i , y

r′i
c αi)

a0,[αi]−−−−→
e←−− e

r←− Z|G|
Compute:
z = te+ b

Ri = r′i + rie
z,Ri−−−→ Let

[wi] = (1, wi)[
y3i
y1i

]
=
(

1, y3iy1i

)
Check:

α0x
eg−z = 1

[αi]
(

[ŵi]
[wi]

)e [
y3i
y1i

]−z
= (gRi , yRi

c )

Figure 5.1: How to prove wi and ŵi contains the same ballot
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Now we prove that this protocol gives us completeness, special soundness and
special honest-verifier zero-knowledge (SHVZK), so we actually prove it is a Σ-
protocol.

Completeness
We need to show that R will accept if both P and R follow the protocol with the
given input. To show this we compute all the equalities to check that they are
correct given that the protocol has been followed:

α0x
eg−z = gb(gt)eg−(te+b) = gb+te−te−b = 1

[αi]

(
[ŵi]

[wi]

)e [
y3i

y1i

]−z
=

(
gr
′
i , y

r′i
c

(
y3i

y1i

)b)(
gri , yric

ŵi
wi

)e(
1,
y3i

y1i

)−z
=

(
gr
′
i , y

r′i
c

(
y3i

y1i

)b)(
geri , yeric

(
y3i

y1i

)te)
(

1,

(
y3i

y1i

)−z)

=

(
gr
′
i+eri , y

r′i+eri
c

(
y3i

y1i

)b+te−z)
=
(
gRi , yRi

c

)
Special Soundness
To show special soundness we will need to show that given two accepted con-
versations, with α0 and [αi] fixed, we can obtain the secret key t. So given
two accepted conversations (α0, [αi], e, z, Ri) and (α0, [αi], ē, z̄, R̄i) we compute
as follows:

α0x
eg−z = 1 = α0x

ēg−z̄

xe−ē = gz−z̄

x = g(z−z̄)(e−ē)−1

t = (z − z̄)(e− ē)−1 (mod |G|)

Special Honest-Verifier Zero-Knowledge
To prove SHVZK we need to make a simulator which given the common input
and a random e can compute an accepting conversation with the same probability
distribution as the conversation between a honest P and a honest R on the same
common input. We do this by making a hybrid protocol between the real protocol
and the simulator showing that they all give satisfactory conversations and that
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the probability distributions are the same in the real protocol, the hybrid protocol
and the simulator. It goes as follows:

Real Hybrid Simulator
Input: Input: Input:
e e e
Compute: Compute: Compute:
r′i, b← Z|G| Ri, z ← Z|G| Ri, z ← Z|G|
z = te+ b b = z − te
Ri = r′i + rie r′i = Ri − rie
α0 = gb α0 = gzx−e α0 = gzx−e

αi =
(
y3i
y1i

)b
αi =

(
y3i
y1i

)b
[αi] = (gr

′
i , y

r′i
c αi) [αi] = [αi] =

[1]Ri

[
y3i
y1i

]z (
[ŵi]
[wi]

)−e
[1]Ri

[
y3i
y1i

]z (
[ŵi]
[wi]

)−e
Note that we have used that it is known that [wi] = (1, wi) and

[
y3i
y1i

]
=(

1, y3iy1i

)
.

Now we argue that all of these give satisfactory conversations and the same
probability distributions. Firstly we see that it is clear that the conversations in
both the hybrid protocol and the simulator are satisfactory. So we argue that the
probability distributions are the same in all three. We compare the probability
distributions in the real protocol and the hybrid first.

Firstly we see that in the hybrid protocol we pick z and Ri random instead
of r′i and b, but since z and Ri are random, we see from the computations that
r′i and b are also random. And since r′i and b are random in the real protocol, z
and Ri are random in the real protocol.

Now |G| is a group of prime order, so any non-identity element is a generator,
and hence taking the power of a non-identity element in G by a random num-
ber is the same as picking a random element from G with uniform distribution.
Furthermore, taking the product of random elements is still a random element,
hence we see that α0 and αi are random elements in both the real and the hy-
brid protocol. By inspection one sees that still [αi] =comyc(αi, r

′
i) in the hybrid

protocol, so [αi] in the hybrid protocol has the same probability distribution as
in the real protocol. Hence we see that the real protocol and the hybrid protocol
has the same probability distributions.

Lastly we compare the probability distributions of the hybrid protocol and the
simulator. Ri and z are generated as random elements in both and α0 and [αi]
is computed in the same way in both. We also note that since we no longer use b
and r′i to generate the conversation, there is no point in generating them at all.



5.2 Proving B Computes Correctly 41

So the hybrid protocol and the simulator share the same probability distribution.
Now, since both the real protocol and the simulator has the same probability
distribution as the hybrid protocol, they must have the same probability distri-
butions.

So we have made a simulator that makes a satisfactory conversation with the
same probability distribution as a conversation in a real protocol with only the
common information and e as input. Hence our protocol is SHVZK.

So since we have showed that the protocol satisfies completeness, special
soundness and SHVZK, it is a Σ-protocol.

5.2 Proving B Computes Correctly

Now we describe how B proves to R that (x̌, w̌1, . . . , w̌kmax) is computed correctly
from (x, ŵ1, . . . , ŵkmax

). Again we simplify to show how it goes for one i:

B − R
Common :

(x̌, w̌i), γ, yc, x
g, [ŵi], [w̌i]

Have:
(x̂, ŵi), ri, q

′
i s.t

[ŵi] = (gri , yric ŵi)

[w̌i] = (gq
′
i , y

q′i
c w̌i)

Compute:
β1 = gq, β3 = xq

β2i = ŵqi

[β2i] = (gq
′′
i , y

q′′i
c β2i)

β1,[β2i],β3−−−−−−−→
f←−− f

r←− Z|G|
Compute:
z′ = q + sf

R′i = q′′i + fq′i − z′ri
z′,R′i−−−→ Check:

β1γ
fg−z

′
= 1

β3x̌
fx−z

′
= 1

[β2i][w̌i]
f [ŵi]

−z′ = [1]R′i
= comyc(1, R′i)

Figure 5.2: How to prove B has exponentiated with s
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As before we prove that this protocol gives us completeness, special soundness
and SHVZK, that is we prove it is a Σ-protocol as defined earlier.

Completeness
We show that if B and R are honest and follow the protocol, R will accept. The
computations are as follows:

β1γ
fg−z

′
= gqgsfg−z

′
= gz

′−sfgsfg−z
′

= 1

β3x̌
fx−z

′
= xz

′−sfxsfx−z
′

= xz
′−sf+sf−z′ = 1

[β2i][w̌i]
f [ŵi]

−z′ = (gq
′′
i , y

q′′i
c β2i)(g

q′i , y
q′i
c w̌i)

f (gri , yric ŵi)
−z′

= (gq
′′
i , y

q′′i
c ŵqi )(g

fq′i , y
fq′i
c w̌fi )(g−z

′ri , y−z
′ri

c ŵ−z
′

i )

= (gq
′′
i +fq′i−z

′ri , y
q′′i +fq′i−z

′ri
c ŵz

′−sf
i ŵsfi ŵ

−z′
i )

= (gR
′
i , y

R′i
c )

Special Soundness
We argue that given two conversations between B and R that are accepted, with
β1, [β2i] and β3 fixed, will make us able to compute s. So assume (β1, [β2i], β3, f,
z′, R′i) and (β1, [β2i], β3, f̄ , z̄

′, R̄′i) are two accepted conversations, we compute as
follows:

β1γ
fg−z

′
= 1 = β1γ

f̄g−z̄
′

γfg−z
′

= γf̄g−z̄
′

γf−f̄ = gz
′−z̄′

γ = g(z′−z̄′)(f−f̄)−1

So s = (z′ − z̄′)(f − f̄)−1 (mod |G|). And hence we have proved that we can
find the secret s given two accepted conversations and the common input, so we
have special soundness.

SHVZK
Again, to prove SHVZK, we need to make a simulator which given a random f
and the common input can compute a satisfactory conversation with the same
probability distribution as the conversations happening in the real protocol when
both B and R are honest. As before, we make a hybrid protocol between the
real protocol and the simulator to make it easier to argue that the probability
distributions are the same. We get the following:
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Real Hybrid Simulator
Input: Input: Input:
f f f
Compute: Compute: Compute:
q, q′′i ← Z|G| R′i, z

′ ← Z|G| R′i, z
′ ← Z|G|

z′ = q + sf q = z′ − sf
β1 = gq β1 = gz

′
γ−f β1 = gz

′
γ−f

β2i = ŵqi β2i = ŵz
′

i w̌
−f
i

[β2i] = (gq
′′
i , y

q′′i
c β2i) [β2i] = [β2i] =

[1]R′i [ŵi]
z′ [w̌]−f [1]R′i [ŵi]

z′ [w̌]−f

R′i = q′′i + fq′i − z′ri q′′i = R′i − fq′i + z′ri
β3 = xq β3 = xz

′
x̌−f β3 = xz

′
x̌−f

Clearly both the real protocol, the hybrid protocol and the simulator generates
satisfactory conversations, so we argue that the probability distribution of the
different conversations are the same. We note that we only need to generate the
messages B is supposed to send to R, that is we must generate β1, [β2i], β3, z′

and R′i. We do not need to generate numbers B uses to compute messages if we
no longer need them in our computation of the messages.

In the real protocol we choose q, q′′i at random. f is random, the product of a
number with a random number is a random number and the sum of two random
numbers is a random number. So z′ and R′i in the real protocol are random. In
the hybrid protocol we pick R′i and z at random, and use these to generate q and
q′′i . Again, by the arguments just mentioned, q and q′′i must be random.

In the real protocol β1, β2i and β3 are random elements generated uniformly
over G since q is a random number. In the hybrid protocol β1, β2i and β3 are
all the product of two random elements distributed uniformly over G (z′ and f
are random numbers), and hence random elements distributed uniformly over G.
Certainly [β2i] is a random element from G×G with uniform distribution in the
real protocol, and the same [1]R′i , [ŵi]

z′ and [w̌i]
−f is in the hybrid protocol.

Multiplying together three random elements from G×G gives a random element
in G×G, hence [β2i] is a random element in G×G with uniform distribution in
both the real and the hybrid protocol. So we see that the real protocol and the
hybrid protocol have the same probability distributions.

Now we argue that the hybrid protocol has the same probability distributions
as the simulator. Since every computation done in the simulator is exactly the
same as the ones done in the hybrid protocol (we just don’t generate q, q′′i and
β2i), and z and R′i is generated in the same way, it is obvious that the computed
messages in the hybrid protocol and the simulator have the same probability
distributions.

So the messages generated by the real protocol must have the same probability
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distributions as the messages generated by the simulator, since the messages
from both have the same probability distributions as the messages generated
in the hybrid protocol. The simulator only uses the input f and the common
information, so we have SHVZK.

So we have shown that the last protocol has completeness, soundness and
SHVZK, it is therefore a Σ-protocol.

5.3 Why The Protocols Fulfil Our Requirements

So we have proved that both protocols are Σ-protocols, but it can be somewhat
difficult to see why our protocols realize our requirements. That is, why the
ciphertexts have to contain the same ballots because of the first protocol and
why B is forced to exponentiate by s because of the second protocol. We are
not going to go into an elaborate proof of why this must be, but we will give
an informal discussion for both cases here. This is to make it a little bit more
clear why they realize the wanted requirements. We start with the first protocol,
which is supposed to prove to R that P knows the contents of the ballots and
that wi and ŵi contain the same contents.

Why P is Forced to put the Same Ballot in Both Ciphertexts

The soundness argument shows that given two accepting conversations (α0, [αi], e,
z, Ri) and (α0, [αi], ē, z̄, R̄i) we are able to find a t′ = (z − z̄)(e− ē)−1 such that
gt
′

= x. Obviously wi = yt
′

1im and ŵi = yt
′

3im̂ for some m, m̂ ∈ G, where m and
m̂ not necessarily is the same element.

Let us assume for a moment we had dropped the commitments and that we

had obtained this t′. We also then have the equations αi

(
ŵi

wi

)e (
y3i
y1i

)−z
= 1 and

αi

(
ŵi

wi

)ē (
y3i
y1i

)−z̄
= 1. We then do the following calculations:

αi

(
ŵi
wi

)e(
y3i

y1i

)−z
= αi

(
ŵi
wi

)ē(
y3i

y1i

)−z̄
(
ŵi
wi

)e(
y3i

y1i

)−z
=

(
ŵi
wi

)ē(
y3i

y1i

)−z̄
(
ŵi
wi

)e−ē
=

(
y3i

y1i

)z−z̄
ŵi
wi

=

(
y3i

y1i

)(z−z̄)(e−ē)−1
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ŵi
wi

=

(
y3i

y1i

)t′

But as we said above we also have wi = yt
′

1im and ŵi = yt
′

3im̂, this gives us:

ŵi
wi

=
yt
′

3im̂

yt
′

1im
=

(
y3i

y1i

)t′
m̂

m(
y3i

y1i

)t′
m̂

m
=

(
y3i

y1i

)t′
m̂

m
= 1

m̂ = m

So we see that if αi

(
ŵi

wi

)e (
y3i
y1i

)z
= 1 holds then ŵi and wi contains the same bal-

lot. So if we could show that this equation must hold when [αi]
(

[ŵi]
[wi]

)e [
y3i
y1i

]−z
=

[1]Ri = (gRi , yRi
c ) holds, then we would be done. Now we can look at [αi],

[ŵi]
[wi]

,[
y3i
y1i

]
and [1]Ri

as elements in G × G/〈(g, yc)〉. The equation still holds in this

group. Now define

{
ψ : G×G/〈(g, yc)〉 −−→ G

(gr, yrcm) 7−−→ m

It can be checked that this is a group isomorphism. Since this is an isomor-

phism, and [αi]
(

[ŵi]
[wi]

)e [
y3i
y1i

]−z
= [1]Ri

holds in G × G/〈(g, yc)〉 we must have

that the equation αi

(
ŵi

wi

)e (
y3i
y1i

)−z
= 1 must hold in G. So therefore ŵi and wi

must contain the same ballot. And since we know t′, we can find m. So P knows
the contents of the ciphertexts.

Why B has to Exponentiate by s

By the soundness argument we can find s′ = (z′ − z̄′)(f − f̄)−1 such that
γ = gs

′
given that we have two accepted conversations (β1, [β2i], β3, f, z

′, R′i) and
(β1, [β2i], β3, f̄ , z̄

′, R̄′i). Again we will assume for a while that we drop the commit-

ments. Then we have the equations β3x̌
fx−z

′
= 1, β3x̌

f̄x−z̄
′

= 1, β2iw̌
f
i ŵ
−z′
i = 1

and β2iw̌
f̄
i ŵ
−z̄′
i = 1. We then compute as follows:
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β2iw̌
f
i ŵ
−z′
i = β2iw̌

f̄
i ŵ
−z̄′
i

w̌fi ŵ
−z′
i = w̌f̄i ŵ

−z̄′
i

w̌f−f̄i = ŵz
′−z̄′
i

w̌i = ŵ
(z′−z̄′)(f−f̄)−1

i

w̌i = ŵs
′

i

β3x̌
fx−z

′
= β3x̌

f̄x−z̄
′

x̌f−f̄ = xz
′−z̄′

x̌ = x(z′−z̄′)(f−f̄)−1

x̌ = xs
′

And since B has no possibility to corrupt the γ R receives before the election

starts we see that B must have exponentiated correctly by s′ = s if β2iw̌
f
i ŵ
−z′
i = 1

and β2iw̌
f̄
i ŵ
−z̄′
i = 1 holds. Using the same group isomorphism ψ we used to prove

that wi and ŵi contains the same ballot we see that these two equations hold
when [β2i][w̌i]

f [ŵi]
−z′ = [1]R′i and [β2i][w̌i]

f̄ [ŵi]
−z̄′ = [1]R̄′i holds. These two

equations hold if the conversations gets accepted, hence B must have computed
correctly and used s as exponent when generating x̌ and the w̌i’s.



CHAPTER 6

CHANGES TO THE
PROTOCOL

In this chapter we give the new programs, with both changes implemented, that
together is the new protocol. Then we analyse this new protocol in the next
chapter. We have used the programs given in Chapter 4 as basis for the changes.

6.1 Key Generation

The only change to the key generation functionality is that we do not generate
{a2i} and {y2i} and that now every player gets {y1i} and {y3i}. Therefore we do
not mention anything more on the key generation functionality here.

6.2 The Voter’s Computer

The voter’s computer receives the ballot from the voter, encrypts it two times
with different sets of public keys, generate the first part of the conversation in
the Σ-protocol and signs on all of this. All this information is sent to B via Feid.
Then the computer awaits the answer from R on the Σ-protocol (the answer goes
via B), computes the answer to this, and returns his answer to B. At last B
awaits the final receipt from R, checks it, and, if valid, outputs to the voter that
the ballot was accepted. The new program for the voter’s computer is as follows:
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On (keys, {y1i}, {y3i}, f) from Fkey:
1: Store {y1i}, {y3i} and f .
On (vote, v1, . . . , vk) from V :
1: Send (establish, V, B) to Feid and wait for (established, sid).
2: Set vk+1 = · · · = vkmax

= 0.

3: Compute x = gt, t
r←− Z|G|.

4: Compute yc
r←− G.

5: Pick b
r←− Z|G|.

6: Compute α0 = gb.
7: for i = 1 to kmax :
8: Compute wi = yt1if(vi) and ŵi = yt3if(vi).

9: Compute [ŵi] = comyc(ŵi, ri), ri
r←− Z|G|.

10: Compute αi =
(
y3i
y1i

)b
.

11: Compute [αi] = comyc(αi, r
′
i), r

′
i
r←− Z|G|.

12: Send (sign, V, (x,w1, . . . , wkmax
), ([ŵ1], . . . , [ŵkmax

]), ([α1], . . . , [αkmax
]), α0) to

Feid, and wait for (signature, . . . , σV ) from Feid.
13: Send (send, sid, (vote, V, (x,w1, . . . , wkmax

), ([ŵ1], . . . , [ŵkmax
]),

([α1], . . . , [αkmax ]), α0, σV ), (ŵ1, . . . , ŵkmax), (r1, . . . , rkmax), yc) to Feid,
and wait for (response, sid, e) from Feid.

14: Compute z = te+ b.
15: for i = 1 to kmax :
16: Compute Ri = r′i + rie.
17: Send (opening, sid, V, z, (R1, . . . , Rkmax)), and wait for (recv, sid, (receipt, σR))

from Feid.
18: Compute hb ← Hash(V, (x,w1, . . . , wkmax

), ([ŵ1], . . . , [ŵkmax
]),

([α1], . . . , [αkmax
]), α0, σV ).

19: Send (verify, R, hb, σR) to Feid and wait for (verified, R, hb, σR).
20: Send (accepted) to V .

Program 7: Updated program for the voters computer

6.3 The Ballot Box

The ballot box does nothing until it has received it’s codes from KG. When
a computer wishes to submit a ballot, the ballot box connects to the computer.
Then the ballot box receives the encrypted ballot in two versions, and in addition
B receives the first part of the conversation in the Σ-protocol proving that P has
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computed correctly. Note that all information that is going unchanged to R
is signed on, so B must check the signature on this. Then B computes the
ciphertexts R are going use to make the receipt codes, and the contents of the
first conversation of the second Σ-protocol proving B has computed correctly.
Then B sends to R the contents of the first part of the conversation P and R
have to prove that P has computed correctly, the ciphertexts R is going to use
to create the receipt codes and the contents of the first part of the conversation
B makes with R to prove it has computed correctly. Then B awaits the response
from R on both Σ-protocols, sends the response P needs to P and awaits the
last part of the conversation of the Σ-protocol between P and R from P . It then
checks the answer from P to see that it becomes a Σ-protocol, computes the
answer in the Σ-protocol between B and R, and sends both responses back to R.
He then awaits the receipt from R, checks it, and sends it to P .

When the ballot box is told to close, it awaits for ongoing submissions to
complete, sends the ballots to be counted to D and send it’s contents to A. The
new program for the ballot box, with both changes implemented, is as follows:

Do nothing until (keys, {y1i}, {y3i}, {(V, s)}) has been received from Fkey, then
do:

1: Record {y1i}, {y3i} and the pairs (V, s).
On (established, sid, V, P ) from Feid:
1: Wait for (recv, sid, P, ((x,w1, . . . , wkmax), ([ŵ1], . . . , [ŵkmax ]),

([α1], . . . , [αkmax
]), α0, σV ), (ŵ1, . . . , ŵkmax

), (r1, . . . , rkmax
), yc) from Feid.

2: Send (verify, V, (x,w1, . . . , wkmax
), ([ŵ1], . . . , [ŵkmax

]), ([α1], . . . , [αkmax
]), α0,

σV ) to Feid and wait for (verified, . . . , σV ) from Feid.
3: Look up the stored pair (V, s) and place an exclusive lock on the pair (waiting

for any other session to release it’s exclusive lock).
4: Select the next sequence number seq.
5: Compute x̌ = xs.
6: Compute β1 = gq, q

r←− Z|G|.
7: for i = 1 to kmax :
8: Compute w̌i = ŵsi .

9: Chose q′i, q
′′
i

r←− Z|G|.
10: Compute [w̌i] = comyc(w̌i, q

′
i).

11: Compute β2i = ŵqi and [β2i] = comyc(β2i, q
′′
i ).

12: Compute β3 = xq.
13: Send (ballot, seq, V, ((x,w1, . . . , wkmax

), ([ŵ1], . . . , [ŵkmax
]),

([α1], . . . , [αkmax
]), α0, σV ), (x̌, w̌1, . . . , w̌kmax

), ([w̌1], . . . , [w̌kmax
]), β1,

([β21], . . . , [β2kmax ]), β3, yc) to R and wait for (response, seq, V, e, f) from R.
14: Send (response, sid, P, e) to Feid and wait for (opening, sid, V, z,

(R1, . . . , Rkmax
)) from Feid.
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15: Compute z′ = q + sf .
16: Check that α0x

eg−z = 1.
17: for i = 1 to kmax :

18: Let [wi] = (1, wi) and [y∗i ] =
(

1, y3iy1i

)
.

19: Check that [αi]
(

[ŵi]
[wi]

)e
[y∗i ]−z = comyc(1, Ri).

20: Compute R′i = q′′i + fq′i − z′ri.
21: Send (opening, seq, V, z, z′, (R1, . . . , Rkmax

), (R′1, . . . , R
′
kmax

)) to R and wait
for (receipt, seq, σR) from R.

22: Compute hb ← Hash(V, (x,w1, . . . , wkmax), ([ŵ1], . . . , [ŵkmax ]),
([α1], . . . , [αkmax

]), α0, σV ).
23: Send (verify, R, hb, σR) to Feid and wait for (verified, R, hb, σR) from Feid.
24: Store (seq, V, (x,w1, . . . , wkmax

), ([ŵ1], . . . , [ŵkmax
]), ([α1], . . . , [αkmax

]), α0,
σV , z, (R1, . . . , Rkmax

)) and release the lock on the record (V, s).
25: Send (receipt, σR) to P .
On (count) from D:
1: Stop processing (established, . . . ) messages from Feid.
2: Stop any voting sessions that have not yet reached Step 4 and wait for re-

maining sessions to terminate.
3: Send (count) to R.
4: Let Sbb be the list of all recorded entries (seq, V, (x,w1, . . . , wkmax),

([ŵ1], . . . , [ŵkmax ]), ([α1], . . . , [αkmax ]), α0, σV , z, (R1, . . . , Rkmax)).
5: For each voter V , find the recorded entry with the largest

sequence number seq and extract the ballot (x,w1, . . . , wkmax
).

Compute

w =

kmax∏
i=1

wi

and add (x,w) to the list L.
6: Sort L. Send (decrypt, L) to the decryption service D, and (content,
Sbb) to A.

Program 8: Updated program for the ballot box

6.4 The Receipt Generator

The receipt generator receives from the ballot box the contents of the first part of
the conversation needed to prove that P has made two ciphertexts containing the
same ballot, the ciphertexts it needs to generate receipt codes and the contents
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of the first part of the conversation needed to prove B has computed correctly. It
checks the signature and the sequence number, and replies to B with the answers
for the two Σ-protocols, then it awaits the response with the last part of the
conversation of the two Σ-protocols. Then R checks that both Σ-protocols are
fulfilled and thereafter generates the receipt codes, which are sent directly to the
voter. The last step during a vote submission is that the receipt generator stores
the name of the voter, the sequence number and a hash of the ballots and the
first part of the conversation proving that P has computed correctly, and then
signs on the hash and sends the signature to B.

When the election is finished and the receipt generator is told to close, it
sends the list of voters, sequence numbers and hashes to the auditor. The new
program for the receipt generator, with both changes implemented, is as follows:

On (keys, {y1i}, {a3i}, {y3i}, {(V, γ, d)}) from Fkey:
1: Record {y1i}, {a3i} and the triples (V, γ, d).
On (ballot, seq, V, ((x,w1, . . . , wkmax

), ([ŵ1], . . . , [ŵkmax
]), ([α1], . . . , [αkmax

]), α0,
σV ), (x̌, w̌1, . . . , w̌kmax

), ([w̌1], . . . , [w̌kmax
]), β1, ([β21], . . . , [β2kmax

]), β3, yc)
from B:

1: Compute hb ← Hash(V, (x,w1, . . . , wkmax , ([ŵ1], . . . , [ŵkmax ]),
([α1], . . . , [αkmax ]), α0, σV ) and h′b ← Hash(V, x, w1, . . . , wkmax).

2: Look up the recorded tuple (V, γ, d) and place an exclusive lock on the tuple
(waiting for any other session to release it’s exclusive lock).

3: Verify that no record (·, ·, ·, h′b) or (V, seq′, ·, ·) with seq′ ≥ seq exists.
4: Send (verify, V, (x,w1, . . . , wkmax

), ([ŵ1], . . . , [ŵkmax
]), ([α1], . . . , [αkmax

]), α0,
σV ) to Feid and wait for (verified, . . . , σV ).

5: Chose e, f
r←− Z|G|.

6: Send (response, seq, V, e, f) to B and wait for (opening, seq, V, z, z′,
(R1, . . . , Rkmax

), (R′1, . . . , R
′
kmax

)) from B.
7: for i = 1 to kmax :

8: Let [wi] = (1, wi) and [y∗i ] =
(

1, y3iy1i

)
.

9: Check that [αi]
(

[ŵi]
[wi]

)e
[y∗i ]−z = comyc(1, Ri).

10: Check that [β2i][w̌i]
f [ŵi]

−z′ = comyc(1, R′i).
11: Check that α0x

eg−z = 1.
12: Check that β1γ

fg−z
′

= 1.
13: Check that β3x̌

fx−z
′

= 1.
14: Send (sign, R, hb,) to Feid and wait for (signature, R, hb, σR).
15: Record (V, seq, hb, h

′
b). Send (receipt, seq, σR) to B.

16: Send (receipt, ř, . . . , řk) to V .
On (count) from B:
1: Verify that all sessions have terminated.
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2: Send (flush) to Fsc.
3: Let SR be the list of all recorded entries (V, seq, hb, h

′
b). Send (hashes, SR) to

A.

Program 9: Updated program for the receipt generator

6.5 The Decryption Service

There is no change in the messages D receives compared to the program given
earlier in this paper, and hence no changes in the functionality of D. So we do
not mention it further here.

6.6 The Auditor

There are only two changes to the program we have given earlier in this paper,
and that is that the auditor now also receives and stores {y3i} and, instead of
checking the proofs of knowledge, must check that the equations α0x

eg−z = 1

and [αi]
(

[ŵi]
[wi]

)e
[y∗i]−z = comyc(1, Ri) hold, where still [y∗i ] =

(
1, y3iy1i

)
. We do

not comment more on this in this paper.



CHAPTER 7

ANALYSIS OF THE NEW
PROTOCOL

We mention here that when we are doing the analysis of the new system, we
model the generation of the Σ-protocols as something Fpok does, and at all times
assume that Fpok is a trusted third party. The way we model it is that the player
wanting to make a conversation gives Fpok the common input, and in addition
the special input the prover has, including the secret the prover has (in our case
the secret is either t or s). Then Fpok generates the proof and returns it as π.
When verifying a proof the verifier sends the common input and π to Fpok and
then Fpok responds with verified or invalid. Commitments are still done by the
players.

7.1 Voters, Computers and the Ballot Box

As before, we try to prove the same conditions as stated in the original protocol
[5] by Gjøsteen. They are as follows:

• If the ballot box is not corrupt, the auditor will not fail the election

• For any honest voter that uses only honest computers, any ballot accepted
as cast and not superseded should be counted if the auditor accepts the
election. The ballot remains confidential regardless.
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• If an honest voter uses a corrupt computer (not necessarily for voting),
nothing can be guaranteed for voters that submit multiple ballots. However,
for voters that submit exactly one ballot and accepts that ballot as cast,
with high probability that ballot will be counted unless the voter observes
an attack. If the ballot was submitted through an honest computer, the
ballot remains confidential.

Game 1 We start by making a machine M that has all the information the
honest players have, and that can simulate all the players. So in this game M
plays the role of every honest player. Note that M has the private keys {a1i}
and {a3i}. Clearly this is indistinguishable from the real protocol.

Game 2 Since we know M is honest, there is no reason for M to do the
mixing of encrypted ballots and proving the correctness of decryptions. In a later
game we will make M encrypt random group elements, and then use cleartext
ballots instead of decrypting ciphertexts. Then M will not be able to make the
correctness proofs of decryption, hence we will need the fact that M does not do
these proofs anymore. So now we decrypt the encrypted ballots, and then shuffle
the decrypted ballots. An adversary cannot observe the communication between
D and A, so therefore this game is indistinguishable from the previous one.

Game 3 We will later need to assume that we have a injective Hash(·) func-
tion. So we make M abort if it ever observes a collision in Hash(·). If Hash(·) is
collision resistant (which we assume it is in the real protocol) this game is clearly
indistinguishable from the previous game.

From now on we treat Hash(·) as a injective function in our analysis.

Game 4 Now we wish to randomize the function d used to generate receipt
codes. This is done because in the next game we wish to change the input d
gets to generate receipt codes. Then we will need the fact that d is a completely
random function to argue indistinguishability when having changed the input.
Since F is a pseudo-random function family, this game is indistinguishable to the
previous one.

Game 5 In this game we want to eliminate the dependency to the per voter
exponent s. So in this game M changes the return codes sent back to the voter
to d(f(vi)) instead of d(f(vi)

s). Now M computes the return code as d(wix
−a1i).

As in the original protocol, these changes are only observable if (wix
−a1i
i )s 6=

w̌ix̌
−a3i . Now as long as the Σ-protocol proving correct behaviour when B com-

putes (x̌, x̌1, . . . , x̌kmax) holds and the Σ-protocol proving that P has created two
ciphertexts containing the same ballots holds, the soundness argument of the
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two Σ-protocols together gives that this holds except with negligible probabil-
ity. So this game is indistinguishable to the previous game. Note that now the
decryption keys {a3i} are no longer in use.

Game 6 It is now time to change the computation of x, wi and ŵi that
simulated honest computers do such that we can generate a random ŵi in the
next game and prove indistinguishability with a DDH-reduction. So for ballots
encrypted by a simulated honest computer we change the computation of x, wi
and ŵi to the following:

x = gt

wi = xa1if(vi)

ŵi = yt3if(vi)

In addition, simulated honest computers now provides Fpok with a random
witness instead of t.

Clearly, this game is indistinguishable to the previous one as Fpok no longer
uses the witness and the end results of the computations are the same.

Game 7 We are now in a position where we wish to compute random ŵi’s
when simulated honest computers are encrypting ballots, to start randomizing
what the ballot box receives from simulated honest computers. So we change the
computations of x, wi and ŵi to the following for simulated honest computers:

x
r←− G

wi = xa1if(vi)

ŵi
r←− G

Claim. A distinguisher between game 6 and 7 will result in an adversary for the
DDH problem.

Proof. We will prove that a distinguisher between the two games gives an ad-

versary for the subgroup membership problem Hkmax+1
0

?←→ Gkmax+1 defined in
Chapter 2, where Hkmax+1

0 = (g, y31, . . . , y3kmax
). By Theorem 2.8 this gives an

adversary for the DDH problem. So take a tuple u = (u0, . . . , ukmax
), where

u ∈ Hkmax+1
0 or u ∈ Gkmax+1. Let r, t

r←− Z|G|, and compute as follows:

x = gtur0
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ŵi = yt3iu
r
i f(vi),∀i ∈ {1, . . . , kmax}

If u ∈ Hkmax+1
0 , the computations are as in Game 6, and if u ∈ Gkmax+1, the

computations go as in Game 7. So a distinguisher between the games gives an

adversary for the problem Hkmax+1
0

?←→ Gkmax+1.

Game 8 It is now possible to start getting into a position where we no longer
use the the decryption keys {a1i}, this will be needed in order for us to later be
able to randomize the wi’s. So in this game, when honest simulated computers
encrypt ballots, M stores the cleartext ballot. When such ballots are received by
the receipt generator, the receipt generator uses the cleartext ballots instead of
decrypting and when encrypted ballots from simulated honest computers is sent
for final decryption, the decryption service uses the cleartext ballots instead of
decrypting.

When an adversarially generated encrypted ballot is received by the simulated
R it verifies the proof π. This forces the the adversary to give Fpok a witness p
such that x = gp. So now when receiving encrypted ballots from a corrupt com-
puter, we decrypt f(vi) = wiy

−p
1i when generating receipt codes. This decryption

is remembered by M and when the corresponding encrypted ballot is received by
the decryption service, it uses the remembered decrypted ballot from R instead
of decrypting. By the properties of Fpok, the computations when decrypting are
still correct, so this game is indistinguishable from the previous one. Note that
now the only use of the decryption keys {a1i} is when generating wi.

Game 9 We will need to remove the use of the decryption keys {a1i}, so we
now change back the computations of x and wi that simulated honest computers
do so that we in the next game can randomize wi. So for simulated honest
computers we compute as follows:

x = gt

wi = yt1if(vi)

ŵi
r←− G

The end result of the computations are just as in the previous game, hence
this game is indistinguishable from the previous one.

Claim. The decryption keys {a1i} are no longer used in this game.

Proof. The same proof as in [5] holds in this case also.
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Game 10 In this last game, when simulated honest computers computes ci-
phertexts, we randomize the ciphertexts so that they contain no information. So
we compute as follows:

x
r←− G

wi
r←− G

ŵi
r←− G

Claim. A distinguisher between Game 9 and 10 will give us an adversary for the
DDH problem.

Proof. We will prove that a distinguisher between the two games gives an ad-

versary for the subgroup membership problem Hkmax+1
0

?←→ Gkmax+1, where now
Hkmax+1

0 = (g, y11, . . . , y1kmax). By Theorem 2.8 this gives an advantage on the
DDH problem. So take a tuple u = (u0, . . . , ukmax

), where u ∈ Hkmax+1
0 or

u ∈ Gkmax+1. Let r, t
r←− Z|G|, and compute as follows:

x = gtur0

wi = yt1iu
r
i f(vi),∀i ∈ {1, . . . , kmax}

If u ∈ Hkmax+1
0 the computations will be as in Game 9, and if u ∈ Gkmax+1 the

computations are as in Game 10. So a distinguisher will result in an adversary

for the problem Hkmax+1
0

?←→ Gkmax+1.

Analysis We are now in the same situation as in the original protocol and the
analysis there is valid in this case also.

7.2 The Receipt Generator

Now we make a security analysis with the receipt generator corrupted. We want
to prove that the same condition as in the original protocol [5] holds here, the
condition is as follows:

• The corrupt receipt generator learns nothing about the submitted ballots,
except what the receipt codes tell it.

Game 1 In this game we want to make one player that has all the information
the honest players have, and that can simulate all the players. So in this game
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M plays the role of every honest player. Note that M has the private keys {a1i}
and {a3i}. Clearly this is indistinguishable from the real protocol.

Game 2 Now we want to get independent of the encryptions, that is we no
longer want to be dependent on the encryptions being valid for D to output the
correct ballot. So instead of decrypting the encrypted ballots, we use the cleartext
ballots. Since M plays the role of both D and every P , it knows the cleartext
ballots corresponding to every encryption. Clearly this game is indistinguishable
from the previous one. Note that now {a1i} are never used.

Game 3 The next step in the process is to get independent of the proofs. Since
all computers and the ballot box now are honest, Fpok never uses the witnesses
when verifying the proofs for R. Therefore we now change the protocols so that
B and all the P ’s give random witnesses to Fpok. Since the witnesses are never
used, this game is indistinguishable from the previous one.

Game 4 We change the computation of the ŵi’s so that we in the next game
can randomize the wi’s. So we compute as follows:

x = gt wi = yt1if(vi)

ŵi = xa3if(vi)

x̌ = xs w̌i = ŵsi

The only change we have made is that now ŵi is computed as ŵi = xa3if(vi)
instead of ŵi = yt3if(vi). But as this give the same result, this game is indistin-
guishable from the previous one.

Game 5 Now we randomize the wi’s, so that they contain no information. So
now when encrypting ballots we compute as follows:

x = gt wi
r←− G

ŵi = xa3if(vi)

x̌ = xs w̌i = ŵsi

Claim. A distinguisher between this and the previous game will give an adver-
sary for the DDH problem.

Proof. We will prove that a distinguisher between the two games gives an ad-

versary for the subgroup membership problem Hkmax
0

?←→ Gkmax , where now
Hkmax

0 = (y11, . . . , y1kmax). By Theorem 2.8 this will give an adversary for the
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DDH problem. Let u = (u1, . . . , ukmax
) be a tuple such that u ∈ Hkmax

0 or

u ∈ Gkmax . Let r, t
r←− Z|G|, and compute as follows:

wi = yt1iu
r
i f(vi),∀i ∈ {1, . . . , kmax}

Now if u ∈ Hkmax
0 the computations will be as in Game 3, and if u ∈ Gkmax the

computations are as in Game 4. So a distinguisher will result in an adversary for

the problem Hkmax
0

?←→ Gkmax .

Game 6 Now we want the computations done by B to be done at the same
time as generating the encrypted ballots, this way we can later alter the order
in which we compute the different ciphertexts. It is important to note that the
ballot box does not send the messages before the appropriate message has been
received from P . Clearly this game is indistinguishable from the previous one.

Game 7 Now we wish to alter the way the w̌i’s and the ŵi’s are computed so
that we at a later time can randomize the per voter functions v 7→ f(v)s. We
now compute as follows:

x = gt wi
r←− G

ŵi
r←− G

x̌ = xs w̌i = x̌a3if(vi)
s

Since R only sees a commitment to the ŵi’s, but not the ŵi’s themselves and
the w̌i’s end up as the same as before this game is indistinguishable from the
previous one.

Game 8 In this last game we replace the per voter function v 7→ f(v)s with
random functions φ from O to G. So now we compute as follows:

x = gt wi
r←− G

ŵi
r←− G

x̌ = xt
′

w̌i = x̌a3iφ(vi)

Note that φ(·) is a random function, so φ(vi) is a random element in G.

Claim. A distinguisher for this and the previous game will give an adversary for
the DDH-problem.
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Proof. We will show that a distinguisher for this and the previous game gives an

advantage on the subgroup membership problem H
|O|
0

?←→ G|O|, where H
|O|
0 =

〈(l1, . . . , l|O|)〉. By Theorem 2.8 this will give an advantage on DDH. So our
adversary gets as input (l1, . . . , l|O|) and (u1, . . . , u|O|). Further define f(vi) = li,
i ∈ {1, . . . , |O|}. We then compute as follows for every voter:

g =

|O|∏
j=1

l
rj
j γ =

|O|∏
j=1

u
rj
j

x =

|O|∏
j=1

l
tj
j wi

r←− G

ŵi
r←− G

x̌ =

|O|∏
j=1

u
tj
j w̌i = x̌a3iui

If there exists an s such that uj = lsj , ∀j ∈ {1, . . . , |O|}, then we have the same
probability distributions as the previous game. If not, then we still have the same
relationship as in this game between x, x̌ and w̌i, further ui’s are random elements
of G and hence the function we have simulated used as encoding function is a
random function (It must satisfy (φ(vi) = ui ∀i ∈ {1, . . . ,O}, and hence could
be any function). So we see that we have the same probability distributions as
in this game. Hence we see that a distinguisher for this game and the previous
one will give a distinguisher for the DDH-problem.

Analysis Since the encrypted ballots received by R in the last game contain
no information about the ballots and R must see the receipt codes, it learns no
unavoidable information about the submitted ballots.

7.3 Decryption Service

Since the information D gets is not changed compared to what D gets in the
original protocol [5], we conclude that the analysis in the original protocol is still
valid. Therefore we do not comment on it here.

7.4 Auditor

Will prove the same as Gjøsteen [5] did in the original protocol, that is:
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• The submitted ballots remain confidential.

Game 1 In this game we want to do as we always have done so far, namely sim-
ulate all the players by one machine M . M knows all decryption keys, especially
M knows {a1i} and {a3i}.

Game 2 We see that Fpok never uses the witnesses received from the players,
since it knows the players are honest, hence we do not need to provide the real
witnesses. So in this game we provide Fpok with random witnesses. This game
is clearly indistinguishable from the previous one.

Game 3 Since M knows the cleartext of each encrypted ballot, we no longer
decrypt in the decryption service or the receipt generator. Instead we use the
remembered cleartext ballots. These changes are not observable for the auditor
since the end result is the same, hence the game is indistinguishable from the
previous one. Note that we no longer use the contents of the encrypted ballots.

Game 4 Now we encrypt random group elements instead of the cleartext bal-
lots when creating x, the wi’s and the ŵi’s. Note that ŵi and wi is created
with the same random group element. Since the auditor never sees the ŵi’s,
only commitments to them, it cannot distinguish between generating them with
encryptions of real ballots or random group elements. We also randomize wi
with the same random group element as ŵi. A straight-forward reduction will
show that if we can distinguish between generating wi with a real ballot or a ran-

dom group element, we get an advantage on the problem Hkmax+1
0

?←→ Gkmax+1,
with Hkmax+1

0 = 〈(g, y11, . . . , y1kmax
)〉. So this game is indistinguishable to the

previous one.

Game 5 In this last game we generate new random encryption in each round
of the shuffle proof instead of rerandomization. As in the previous game, a

straight-forward reduction to the problemHkmax+1
0

?←→ Gkmax+1, withHkmax+1
0 =

〈(g, y11, . . . , y1kmax
)〉 will show that this game is indistinguishable to the previous

one.

Analysis We are now in the same position as in the original protocol, and
hence the analysis done there will hold in our case also.
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CHAPTER 8

CONCLUSION

We have now proposed two changes in the protocol, and proved that it will not
reduce the security. We had, though, a perfectly good protocol, and it is no point
in changing it if we do not make any improvements to it. We have claimed that
our first change would improve the performance of the protocol, and it is now
time to find out exactly how much performance is improved because of this first
change.

We will also look at what the second improvement has done to the number of
expected exponentiations, even though the most important goal of that change
was to remove {a2i}. Throughout we assume that computing the exponentiation
of a element g with a number r takes one time unit, computation of the sum
of two elements, product of two elements and computation of a hash function is
assumed to use negligible time.

First we analyse the cost of the different functionalities in the old system
(without the changes) and sum up, then we analyse the cost of the functionalities
in the new system (with the first change). At last we analyse the cost of the
functionalities with the second change implemented, before we comment on the
differences between them.
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Cost, old system

Player Cost
Key generation 2N + 3
The voter’s computer 3kmax
Ballot box and receipt generator N(23kmax)
Counting N(kmax + 15)

Cost, after first change

Player Cost
Key generation 2N + 3kmax
The voter’s computer kmax + 2
Ballot box and receipt generator N(12kmax + 9)
Counting 17N

Cost, after second change

Player Cost
Key generation 2N + 2kmax
The voter’s computer 7kmax + 3
Ballot box and receipt generator N(23kmax + 10)
Counting N(4kmax + 17)

Note that N is the number of voters and kmax is the maximum number of choices
a voter can make. Further note that the number of exponentiations we have said
the ballot box and the receipt generator uses is the number they use in total on
receiving ballots (not including counting).

Firstly we see that even though we have counted them, we are not worried
about that fact that the number of exponentiations the key generation function-
ality must do has increased. These computations are done before the election and
are therefore not noticed by the voters. One could argue in the same way that the
counting is done after the election, but as people want to know the election result
as fast as possible, it is meaningful to look at the number of exponentiations one
must do during counting.

One sees that the number of exponentiations we must do to count has changed.
After the first improvement we see that the number of exponentiations done to
count the ballots has gone down heavily. The reason for this is that the proof of
knowledge to prove P has computed correctly done after the first improvement is
much simpler than in the original protocol. After the second improvement we see
that the number of exponentiations has increased, the number of exponentiations
needed is almost 4 times as many as in the original protocol. This comes from the
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fact that it after the second change is more complicated to check if a ciphertext
is correctly computed. Since both B and R checks the proofs of knowledge, one
could consider if the auditor needs to check the proofs. Both B and R must
be corrupt if a proof of knowledge is invalid, and if both B and R are corrupt
nothing can be guaranteed.

Now we look at the number of exponentiations needed to submit a ballot.
We see that with the first change (but not the second change) implemented
the voter’s computer must do about one third as many exponentiations as in the
original protocol. Also the ballot box and the receipt generator uses about half as
many exponentiations when processing a ballot with the first change implemented
compared to the original protocol.

So we see that we have achieved a pretty good speed up when it comes to
submitting votes. Especially the improvement in the number of exponentiations
the ballot box and the receipt generator must do is worth noticing. In practice
it will be defined a limit for the amount of time it should take from the voter’s
computer sends the encrypted ballot to the ballot box, until we should receive a
receipt telling the voter’s computer that the ballot is accepted or not accepted.
Therefore if we use half as many exponentiations when submitting a ballot, we
use about half as much computing power and hence we will need to purchase half
as much hardware.

When we look at how the last improvement effects the number of exponenti-
ations, we see that the number of exponentiations the ballot box and the receipt
generator must do when receiving a ballot is about as many as in the original
protocol. Further, we see that the number of exponentiations the voter’s com-
puter must do when submitting a ballot is in fact more than twice as many as
in the original protocol and 7 times as many as after the first improvement. The
reason for this is that we had to introduce commitments to make the protocol
secure. But the goal of this improvement was not to improve the performance,
but rather to increase security by removing the connection between the different
decryption keys. And this we have managed.

Still it is interesting to look at how to overcome this increased number of
exponentiations. There are many possible commitment schemes, so one thing
one could look at is if one could find a commitment scheme that uses fewer ex-
ponentiations without losing any security measures. We have not had the time
to look into this, but it is something that could be interesting to look at, at a
later stage. If one could find such a scheme one might be able to reduce the
number of exponentiations significantly as now the voter’s computer uses 4kmax
exponentiations per voter, the ballot box 2kmax exponentiations per voter and
the receipt generator 4kmax exponentiations per voter on just generating com-
mitments with this second change implemented. It would though be important
that this commitment scheme is as secure as the one used now.
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