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Abstract

The Hilbert transform has become increasingly popular over the years due to its

wide ranging applications not only in mathematics, but also in many other applied

areas. In a quest for more applications, studying various aspects of its two weight

forms has been a subject of high interest as early as the 1970’s. Of special interest is

the interface of the Hilbert transform with the notions of Carleson measures and the

system of reproducing kernels in spaces of analytic functions. Though these notions

have proved to be of fundamental importance and ubiquitous in the development of

function theoretic spaces, their properties for many significant spaces, including the

model subspace of the Hardy spaces H2, have not yet been well understood. The

present thesis focuses on this interface and provides answers to several problems

encompassing them.

The thesis consists of five chapters. The first chapter provides an up-to-date

review of the relevant background literature. The remaining chapters contain results

that have been published by, or intended for, international journals.

The work in chapter two covers the problems of unitarity, invertibility, bounded-

ness, and surjective mapping properties of the two weight discrete Hilbert transforms,

and a complete solution is obtained for the first one. Our solutions for the remaining

problems are complete under a sparsity priori growth condition. Under such a con-

dition, we describe bounded two weight Hilbert transforms in terms of a relatively

simple A2 conditions. As a consequence, computable geometric criteria have been

established for invertibility of such maps. Chapter two also provides all the basic

underpinnings for the materials presented in Chapter three and Chapter four, where

links have been established to interpolate all our results on the weighted transforms

into statements about Carleson measures and systems of reproducing kernels in

certain Hilbert spaces, of which de Branges spaces and model subspaces of H2,

are prime examples. As an application, a connection to the Feichtinger conjecture,

iii



which is known to be equivalent to dozens of other conjectures including the famous

Kadison–Singer problem, is pointed out and verified for certain classes of spaces.

Chapter five deals again with normalized reproducing kernel Riesz bases in model

subspaces of H2 generated by the class of meromorphic inner functions. In this

chapter, the approach to studying such bases digresses somewhat from the methods

used in the preceding chapters. Here, we study the normalized kernel bases from an

equality of spaces perspective. It is known that such bases can be described in terms

of equality of spaces whenever the kernels are associated with points all from the

real line. When the points are from the upper half-plane, it is now proved that the

analogous conditions may still be sufficient while failing to be necessary.
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1 Introduction

This thesis deals with two closely connected and recurring themes in complex and

harmonic analysis; weighted discrete Hilbert transforms, and Carleson measures

and systems of reproducing kernels in spaces of analytic functions. In this part, we

give a brief review of the relevant background with particular emphases on the class

of bounded Hilbert transforms on weighted spaces followed by its connection with

Carleson measures for the shift-coinvariant subspaces of the Hardy space H2.

The theory of the Hilbert transform began back in 1905 in D. Hilbert’s work on a

problem posed by B. Riemann concerning analytic functions which later came to

be known as the Riemann–Hilbert problem (cf. [14]). Since then, it has received

a lot of attention and that it has been extensively investigated in connection with

a wide range of applications. Hilbert’s work was originally concerned with the

transform of functions defined on the circle [49], in which case the transform is

given by convolutions of functions with the kernel

kH(t) = cot(t/2). (1.1)

Many of Hilbert’s earlier results were also connected to the discrete version of the

transform which were latter studied further by I. Schur [46] who extended them to

the continuous case, while the underlying space remained to be L2 or its atomic

version `2. Usually, the transform is understood as convolutions of functions defined

on the real line with the Cauchy kernel,

kC(t) = (πt)−1. (1.2)

The transform is explicitly defined using the Cauchy principal value as

H̃ f (x) =
1
π

p.v.
∫
R

f (t)
x− t

dt, (1.3)
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1 Introduction

which makes sense almost everywhere on the real line whenever∫
R

| f (t)|
1+ |t|

dt < ∞. (1.4)

The principal value notation p.v., as always, means that a symmetric neighborhood

about the pole is excluded before the limit is taken. Thus, we compute H̃ f by

lim
ε→0+

1
π

∫
|x−t|>ε

f (t)
x− t

dt =
1
π

lim
ε→0+

(∫ x−ε

−∞

f (t)
x− t

dt +
∫

∞

x+ε

f (t)
x− t

dt

)
.

For some applications, the class of functions for which the admissibility condition

(1.4) holds remains “small” and we may require to apply the transform on functions

integrable with respect to the Poisson measure on the real line. If π denotes such

measure, dπ(x) = (1+ x2)−1dx, then the transform of f in L1(π) is defined by

H̃pos f (x) =
1
π

p.v.
∫
R

f (t)
( 1

x− t
+

t
1+ t2

)
dt, (1.5)

where the kernel (x− t)−1 in (1.3) is replaced by the modified kernel (x− t)−1 +

t(1+ t2)−1. This modification provides a wider class of functions than the class of

functions for which (1.4) holds. We record our first simple example.

Example 1. If f stands for a signal that assumes a single value at all time t,

then condition (1.4) fails and its convolution with the Cauchy kernel diverges.

But f belongs to L1(π) and H̃pos f exists.

When (1.4) holds, the two transforms H̃pos and H̃ are related by H̃pos = H̃ +C

for some absolute constant1 C. It is thus essential to identify functions differing by

constants in dealing with these two forms of the transforms.

When we apply the transform twice in succession to a function f , an interesting

inverse relation occurs, namely that

H̃(H̃ f ) =− f

holds provided that the integrals defining both f and H̃ f converge in the underlying

spaces. Thus if it exists, the inverse can be also identified as a Hilbert transform, up
1From now on, the same letter C will denote various positive constants which may differ at

different occurrences even in the same chain of inequalities. Variables indicating the dependency of
C will often be specified in subscripts.
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1.1. Weighted Hilbert transforms

to a minus sign.

Later in 1928, a fundamental result was established by Marcel Riesz [84]. It

deals with functions f in Lp(R) when 1 < p < ∞. Riesz proved that there exists a

constant Cp for which the inequality

‖H̃ f‖Lp(R) ≤Cp‖ f‖Lp(R) (1.6)

holds for all functions f in Lp(R). M. Riesz proved a similar result for the discrete

version of the transform and also for functions defined on the circle. In fact, for each

nonzero x, the two defining kernels in (1.1) and (1.2) are connected by the identity

1
2

kH(x) = πkC(x)+
∞

∑
n=1

( 1
x+2nπ

− 1
2nπ

)
,

which may be used to transform results between the two different domains. By

Pichorides’s well known result [82], the best constant Cp in (1.6) is given by

max
{

tan(π/(2p)), cot(π/(2p))
}
=
∥∥H̃ : Lp(R)→ Lp(R)

∥∥. (1.7)

The same best constant holds when the operator acts on functions defined on the

circle.

It may be mentioned that the Hilbert transform was a motivating example for A.

Zygmund and A. Calderón [20] in their operator theoretic studies, which have pro-

foundly influenced the development of modern harmonic analysis. Today, the Hilbert

transform plays a significant role in many areas of science including mathematics,

physics, and signal processing.

1.1 Weighted Hilbert transforms
It became of practical importance to study Hilbert transforms H̃ acting on weighted

spaces Lp(R,w) consisting of all functions f satisfying

‖ f‖p
w,p =

∫
R
| f (t)|pw(t)dt < ∞.

The question was to characterize the weights2 w for which the norm inequality∫
R
|H̃ f (x)|pw(x)dx≤Cp‖ f‖p

w,p (1.1.1)

2Here and in what follows, by a weight we mean, as always, a positive real valued function. At
times, we may apply the name for a finite positive Borel measure.
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1 Introduction

holds for each f in Lp(R,w) and a constant Cp not necessarily given by (1.7).

In 1960, Helson and Szegő [48] fully described such weights for p = 2. The

Helson–Szegő condition states that w satisfies (1.1.1) if and only if it has the

representation

w(x) = exp
(

u(x)+ H̃v1(x)
)

(1.1.2)

for some L∞(R) functions u and v1 such that ‖v1‖L∞ < π/2. Notice that the

expression for the weight here involves the Hilbert transform but acting on a bounded

function v1.

Later, in 1971, R. Hunt, B. Muckenhoupt, and R. Wheeden [51] obtained the

following remarkable and entirely different description of the weights in terms of

what has become known as the Muckenhoupt’s Ap condition.

Theorem 1.1.1. The operator H̃ : Lp(R,w) −→ Lp(R,w) is bounded if and

only if w satisfies the Muckenhoupt’s Ap condition

sup
I

1
|I|

∫
I
w(x)dx

(
1
|I|

∫
I
w(x)

−1
p−1 dx

)p−1

< ∞,

where I ranges over all finite intervals in R.

In particular for p = 2, it implies that A2 is equivalent to the Helson–Szegő

condition. But to date, no direct proof has been found of this equivalence.

Let 1 < p < ∞ and µ be a positive Borel measure on the real line. We define the

Hilbert transforms H̃µ on Lp(R, µ) by

H̃µ f (x) =
1
π

∫
R

f (t)
x− t

dµ(t) (1.1.3)

for all x ∈ R \ supp( f ). One may then consider the question when H̃µ acts as a

bounded linear map on the space Lp(R,µ), i. e., there exists an absolute constant

Cp such that ∫
R
|H̃µ f |pdµ ≤Cp

∫
R
| f |pdµ. (1.1.4)

Helson and Szegő again provide both a necessary and a sufficient condition when

p = 2. The condition being that µ must be absolutely continuous, dµ(x) =

w(x)dx for some weight w which satisfies (1.1.2). As for other ranges of p, the

4



1.2. Two weight Hilbert transforms

condition ensures that the measure µ has to be again absolutely continuous with the

corresponding weight w satisfying the same Ap condition.

A thing to be noted is that the Ap condition not only gives a clear and workable

answer to the boundedness problem for the weighted Hilbert transform but also for

several other classical operators. For instance the same Muckenhoupt Ap condition

is both necessary and sufficient for the weighted norm inequality (1.1.1) to hold

when we replace H̃ by the Hardy–Littlewood maximal function

M f (x) = sup
x∈I

1
|I|

∫
I
| f (t)|dt. (1.1.5)

Here, the supremum is taken over all finite intervals containing x in R [66]. By

further setting that 0 < α < n, 1 < p < n/α and 1/q = 1/p−α/n, B. Muck-

enhoupt and R. Wheeden [64] proved that the fractional integral operator of order

α;

Tα f (x) =
∫
Rn
|x− t|α−n f (t)dt, (1.1.6)

satisfies

‖Tα f w‖Lq(Rn) ≤C(p,q)‖ f w‖Lp(Rn) (1.1.7)

if and only if

sup
Q

(
1
|Q|

∫
Q

w(x)qdx

)1/q(
1
|Q|

∫
Q

w(x)
−p
p−1 dx

) p−1
p

< ∞, (1.1.8)

with Q ranging over all n dimensional cubes.

The single weight case is now well understood for several operators including the

Hilbert transform. Some applications of one weight Hilbert transforms can be found

for instance in [81, 86, 88, 103] on spectral theory of stationary stochastic processes

and Toeplitz operators.

1.2 Two weight Hilbert transforms
The problem with two weights was first raised by B. Muckenhoupt [65] in the

context of more general operators. Obviously, it first attracted the attention due to

the well established theory of one weight operators. The problem is to describe the

5



1 Introduction

pairs of weights (v,w) for which H̃ is bounded from L2(R,v) to L2(R,w). That is,

there exists an absolute constant C for which the two weights norm inequality∫
R
|H̃ f (x)|2w(x)dx≤C

∫
R
| f (t)|2v(t)dt (1.2.1)

holds for each f in L2(R,v) 3. In the sequel, this will be referred to as the two weight

problem. A Helson–Szegő type characterization has been again already obtained by

M. Cotlar and C. Sadosky [34–36]. The condition states that for continuous pair of

weights (v,w), H̃ is bounded if and only if there exist an analytic function h in the

Hardy class H1 and a positive constant C such that the matrix(
Cw− v Cw+ v−h

Cw+ v− H̃h Cw− v

)

is positive semi definite. Thus the problem is completely solved as far as the Helson–

Szegő type description is concerned4. The question has been to characterize the

weights in terms of criteria somewhat akin to the classical A2 condition for the case

of single weighted transforms. One may suspect that a natural description should be

one that simply requires the weights to satisfy the two weight analog

sup
I

1
|I|

∫
I
w(x)−1dx

1
|I|

∫
I
v(x)dx < ∞ (1.2.2)

of A2. It turns out that nothing like this is sufficient for (1.2.1) to hold. This rather

intriguing result was proved by F. Nazarov (cf. [68, 73]). On the other hand, given

the huge degree of freedom associated with two weights in contrast with a single

weight, the lack of a full A2 type sufficient condition was not really unanticipated.

Evidently, things look much more complicated in two weight cases. For simple

operators like the Hardy operator,

T Hop f (x) =
∫ x

0
f (t)dt,

an A2 type characterization has already been obtained in [19, 66]. The description is

3The two weight problem can be analogously stated for all p in (1,∞). But here on, we will
restrict ourselves mainly to the case of p = 2.

4In [34, 37], they had also obtained the Helson–Szegő version of their result in Lp for p 6= 2.
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1.2. Two weight Hilbert transforms

that

sup
t, 0<t<∞

(∫
∞

t
w(x)dx

) 1
2
(∫ t

0
v(x)

1
2 dx
)2

< ∞. (1.2.3)

On the other hand, for the classical Hardy–Littlewood function M, it was shown [90]

that the two weights norm inequality holds if and only if∫
I
|MχIv

1
2 (x)|2w(x)dx≤C

∫
I
v

1
2 (x)dx < ∞ (1.2.4)

for all characteristic functions χI over intervals I in R. Apart from its simplicity, the

interesting aspect of this result is the solution to the boundedness problem depends

only on the action of M over some particular classes of functions of the form5

f = χIv
1
2 . On the other hand, unlike the A2 condition, the solution here involves

the operator M itself. Later, R. Wheeden [104] considered the more general case

when 1 < p < q < ∞ and 0 < α < n, and in which case the maximal operator is

defined by

Mα f (x) = sup
B: x∈B

1
|B|1−α/n

∫
B
| f (t)|dt

where B is a ball in Rn. He proved that the inequality(∫
Rn
|Mα f (x)|qw(x)dx

)1/q

≤C(p, q)

(∫
Rn
| f (x)|pv(x)dx

)1/p

holds if and only if the weights (v,w) satisfy

sup
B

(∫
Rn

w(x)(
|B|1/n + |x− xB|

)(n−α)q
dx

)1/q(∫
B

v(x)−1/(p−1)dx

) p−1
p

< ∞,

(1.2.5)

where xB is the center of the ball B. As noticed in [89], inequality (1.2) holds when

we replace Mα by the fractional integral operator Tα if and only if both (1.2.5) and

sup
B

(∫
Rn

w(x)dx
)1/q

(∫
B

v(x)
−1
p−1(

|B|1/n + |x− xB|
)(n−α)(p−1)/p

dx

) p−1
p

< ∞

5This particular result suggested whether the two weight problem for other operators could be
answered with similar conditions. The suggestion was latter refuted; for example it fails to hold for
the higher dimensional Hardy operators, see [94] for counterexample.
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1 Introduction

hold. The appearance of additional terms in this and (1.2.5) deviating from the

classical Ap form led to the question whether similar conditions could hold for the

two weight Hilbert transform. It turns out that this is indeed the case.

1.2.1 Improved A2 type and testing conditions

Following the result of F. Nazarov, which ensures that (1.2.2) fails to imply (1.2.1)

and the aforementioned modified Ap form for the maximal and integral operators,

recently, a new quantitative condition for the two weight problem has been found

[58,71]. We will refer such a condition as an improved A2 type condition. To state it,

we find it convenient at this point to recast (1.2.1) in a more general form, one that

permits the replacement of the weight functions (v,w) by positive Borel measures

µ and ω on R, and leads to∫
R
|H̃µ f (x)|2dω(x)≤C

∫
R
| f (t)|2dµ(t). (1.2.6)

Note that to deal with this, we need to replace the Lebesgue measure in (1.3) by the

measure µ as in (1.1.3). To see that (1.2.1) is also included in (1.2.6), one may

simply set dω(x) = w(x)dx, dµ(x) = v(x)dx and replace f by f v−1 in (1.2.6).

Then (1.2.2), the natural analog of the A2 conditions, takes the form

sup
I

µ(I)
|I|

ω(I)
|I|

< ∞, (1.2.7)

which obviously reduces to the A2 condition when the two weights are equal.

For an interval I and a measure ω, we define, as in [58], a variant of the Poisson

integral by

P(I,ω) =
∫
R

|I|(
|I|+dist(x, I)

)2 dω(x).

Then the improved A2 condition for two measures ω and µ states:

sup
I

P(I,ω)P(I,µ)< ∞. (1.2.8)

It may be noted that the supremum in (1.2.8) is bigger than the supremum in (1.2.2)

when we replace the weights by the corresponding positive measures. The result

of F. Nazarov shows that even this strengthened A2 type necessity condition is not

sufficient for the two weight inequality (1.2.1). Quite recently, the necessity of this

8



1.2. Two weight Hilbert transforms

condition was also supplemented in [58] where a new and real-variable proof is

obtained.

Two weight inequalities for maximal functions (as indicated in the previous

subsection), maximal singular integrals and other operators with positive kernels

have already been described. Those descriptions are given in terms of some obvious

necessary conditions; that the operators be uniformly bounded on a restricted class

of functions, namely indicators of intervals and cubes. For further details, interested

readers may wish to consult the papers [56, 57, 90–93].

Suggestions then prevailed to consider additional testing conditions, as in (1.2.4),

for the two weight problem which simply requires H̃µ and its adjoint H̃∗µ to be

uniformly bounded on systems of characteristic functions χI on intervals. That is

for all intervals I in R,∫
R
|H̃µ χI(x)|2dω(x)≤C

∫
I
dµ(x) (1.2.9)

and ∫
R
|H̃∗µ χI(x)|2dµ(x)≤C

∫
I
dω(x) (1.2.10)

hold. Clearly, these conditions are necessary. But the converse statement does not

in general follow from them alone.

In a series of papers [69–72], F. Nazarov, S. Treil, and A. Volberg have developed

powerful techniques towards proving the sufficiency of these testing conditions

combined with the improvement of the two weight A2 condition. In their successful

quest, by assuming further side conditions like doubling measure for the two weights

and pivotal conditions [71], they proved that (1.2.8), (1.2.9), and (1.2.10) are

indeed both necessary and sufficient for (1.2.1). Following the arguments described

in those papers, quite recently, the result has been improved by M. Lacey, E. Sawyer,

and I. Tuero [58] under a range of weaker side conditions which they called energy

conditions. The energy conditions weaken the pivotal conditions in [71] and gives a

negative answer to the question of whether the pivotal conditions were necessary.

There exists now a sizable literature on the two weight problem not only because

its relation to the one weight case attracted considerable attention but also because

it appears naturally in many areas for instance in perturbation theory of self-adjoint

operators [73], spectral theory of Jacobi matrices, [80, 101] and Carleson measures

9



1 Introduction

in model subspaces of H2 [69]. For further information, see the last three chapters

of the monograph by A. Volberg [102].

In the next chapter, we will continue to study the discrete version of the two

weight problem, paying special attention to its connection with Carleson measures

and Riesz bases of reproducing kernels in spaces of meromorphic functions. Subject

to an a priori sparsity condition, we will provide a solution to the problem in terms

of a rather a relatively simple A2 condition (cf, Theorem (2.2.1)).

1.3 Two weight problem and Carleson measures
We begin by recalling a few notions. Let H be a separable Hilbert space and

(en) a sequence of unit vectors in H. We say (en) is a Bessel sequence if there is a

positive constant C such that the inequality

∑
n

∣∣∣〈 f ,en〉H
∣∣∣2 ≤C‖ f‖2

H

holds for every f in H. The sequence (en) is a Riesz basic sequence if there exists

a positive constant A such that the inequalities

A−1
∑
n
|cn|2 ≤

∥∥∥∑
n

cnen

∥∥∥2

H
≤ A∑

n
|cn|2 (1.3.1)

holds for every finite sequence of scalars (cn). Equivalently, by a well-known lemma

of R. Boas [15], (en) is a Riesz basic sequence if it is a Bessel sequence for which

the moment problem
〈 f , en〉H = an

has a solution f in H for every square-summable sequence (an). If, in addition, the

solution is unique, we call (en) a Riesz basis. A Riesz basis is precisely the image

of an orthonormal basis under a bounded invertible operator. If, in particular, H is

defined on some sets for which point evaluations are bounded linear functionals,

then by the Riesz representation theorem, there exists a unique function kz in H

such that
f (z) = 〈 f , kz〉H

for all f in H. The function kz(w) = kw(z) is referred to as the reproducing kernel

of H. Both the Hardy space H2 and all its model subspaces K2
I are reproducing

kernel Hilbert spaces with respective kernel functions

10



1.3. Two weight problem and Carleson measures

kH2

λ
(z) =

i
2π

1

z−λ
and kK2

I
λ
(z) =

i
2π

1− I(z)I(λ )

z−λ

for points z and λ in the upper half-plane.

The thesis originated in an attempt to answer some questions about sequences of

reproducing kernels and Carleson measures in spaces of analytic functions, more

specifically in model subspaces of H2. As mentioned above, such questions are

closely connected with the two weight problem. Indeed, one of our main results

(Theorem 2.4.1) in the next chapter gives an explicit characterization of normalized

reproducing kernel Riesz bases in terms of the two weight problem. The connection

with Carleson measures in model subspaces has been already established in [69].

We let H2 denote the Hardy space in the upper half-plane, viewed in the usual

way as a subspace of L2(R)6. Given an inner function7 I in the upper half-plane,

we define the model subspace K2
I as

K2
I = H2	 IH2;

it is the orthogonal complement in H2 of functions divisible by the inner function I.

These spaces are, by a classical theorem of A. Beurling [13], the subspaces of H2

that are invariant with respect to the backward shift. Equivalently, such subspaces

can be described by

K2
I = H2∩ IH2.

The later description does not require the Hilbert space structure and it can be used

to define the analogous subspaces in all Hardy spaces H p for all8 p > 0. The spaces

arise in connection with several themes and plays a significant role in operator

theory. They received the name model subspaces because of their application in

the Sz.-Nagy–Foias [67] model for contractions in Hilbert spaces. They are often

called star-invariant or co-invariant subspaces. We refer to [27, 74–76] for more

information about the model theory related to the backward shift.

We now mention a couple of examples. We will give more examples in Subsection

6Here we mean that every function f in H2(C+) has a boundary limit function, fb(x) =
limy→0+ f (x+ iy) almost every where on R. The map f → fb identifies H2(C+) by H2(R) which
consists of functions in L2(R) whose Fourier transforms vanish a. e. on the negative axis.

7We call a bounded analytic function I in C+ inner if limy→0+ |I(x+ iy)|= 1 for almost all x ∈R
with respect to the Lebesgue measure.

8K p
I = H p∩ IH p.
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4.1.

Paley–Wiener spaces

For a > 0, the Paley–Wiener space PWa consists of entire functions of exponential

type at most a whose restriction to the real axis are square summable. It coincides

with the space of entire functions{
f : f (x) =

∫ a

−a
g(t)eitxdt, g ∈ L2(−a,a)

}
;

the space of the Fourier image of square integrable functions supported in the

interval (−a,a). If we set I(z) = eiaz, then the relation K2
I = SPWa/2 identifies the

Paley–Wiener spaces as model subspaces up to a unimodular factor S(z) = eiaz/2.

Linear span of fractions in L2(R)

We consider a sequence of points zn in the upper half-plane where each zn appears

with multiplicities mn. We assume that this sequence satisfies the Blaschke condition

∑
n

mnℑzn

|zn|2 +1
< ∞. (1.3.2)

Then the closed linear span in L2(R) of the fractions

1
(z− zn) j , j = 1, 2, ..., mn

coincides with the model subspace K2
B generated by the Blaschke product

B(z) = ∏
n

eiσn

(
z− zn

z− zn

)mn

with real sequence of points σn. Note that the factor eiσn is needed to make sure

that the product is convergent. We also note that the space K2
B contains no other

fractions of the form (z−w)− j with w 6= zn for all n. If the sequence (zn) fails to

satisfy (1.3.2), then the span of the fractions will be the whole space L2(R).

1.3.1 Carleson Measures in K2
I

A long-standing problem in the function theory of the spaces K2
I is to describe the

Carleson measures, i.e., those nonnegative measure µ on the closed upper half-plane

12



1.3. Two weight problem and Carleson measures

C+ for which an inequality of the form∫
C+

| f (z)|2dµ(z)≤C‖ f‖2
2 (1.3.3)

holds for all f in K2
I , either in geometric terms or more intrinsically in terms of

suitable properties of the inner function I 9. This question was first posed by W.

Cohn [31]. By the Closed Graph Theorem, (1.3.3) may be equivalently rephrased

as boundedness of the embedding map from K2
I into L2(µ). That is,

K2
I ⊂ L2(µ) and sup

f∈K2
I

‖ f‖L2(µ)

‖ f‖2
< ∞ (1.3.4)

holds for each nonzero f in K2
I .

In H2 and more generally in H p, 0 < p < ∞, a geometric characterization of

such measures was obtained by L. Carleson [26]. We state the result as follows.

Theorem 1.3.1. A nonnegative measure µ on C+ is a Carleson measure for

H2 if and only if

sup
(x0,l)

µ(Q(x0, l))
l

< ∞ (1.3.5)

for all squares Q(x0, l) = {x+ iy : x0 < x < x0 + l, 0 < y < l}.

It may be noted that the same condition (1.3.5) describes all the Carleson mea-

sures in H p for 0 < p < ∞.

Clearly, every Carleson measure for H2 is a Carleson measure for K2
I as well.

But functions in K2
I may have nicer boundary behavior than functions in H2, and

therefore the class of Carleson measures will be wider for K2
I . The following

interesting special case has been completely understood. We say that I is a one-

component inner function if there exists a positive number ε with 0 < ε < 1 such

that the set {
z ∈ C+ : |I(z)|< 1− ε

}
(1.3.6)

is connected. We refer to the paper [3] for some descriptions of the class of one-

component inner functions. The Carleson measures for K2
I have been completely

described, first by W. Cohn [31] himself, when I belongs to this class. For this case,
9For a function f in H2, we denote its H2 or any of its model subspaces norm by ‖ f‖2. Unless

explicitly stated otherwise, its usage will be clear from the context.
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Cohn proved that µ is a Carleson measure for K2
I if and only if (1.3.4) holds for

kernel functions kz for all z in the upper half-plane. The same result follows also

from [2, 87] as a particular case.

Later, Cohn [30] conjectured that his result in general describes all the Carleson

measures regardless of the number of components of the generating inner functions.

The conjecture has been refuted by Nazarov and Volberg [69]. The underlying

observation of that paper is that the problem of describing the Carleson measures

for K2
I is closely linked to the two weight problem for the Hilbert transform. The

link has made it possible to construct a counterexample from the latter setting.

For one-component inner functions I, the embedding result of Cohn can be

considered as saying that the reproducing kernel thesis holds for the embedding

operator from K2
I into L2(µ). We recall that an operator in a reproducing kernel

Hilbert space is said to satisfy the reproducing kernel thesis if its boundedness can

be completely determined by its action on the kernel functions alone. This property

holds for both boundedness and compactness of Toeplitz, Hankel [16], and the

Carleson embedding operators on H2.

More partial results on Carleson measures for K2
I may be found in [2, 3, 6, 8]

and [32, 41, 87]. For discrete measures, the problem can be also viewed as the

problem of describing Bessel sequences of normalized reproducing kernels in K2
I .

In Chapter three, we will study such measures in some function spaces, paying

special attention to the model subspaces. As an application of the results obtained, a

version of the Feichtinger conjecture in K2
I will be then considered.

1.3.2 Reproducing kernel Riesz bases in K2
I

The study of systems of reproducing kernel Riesz bases in model subspaces has

a long history. It begins with a perturbation result of Paley and Wiener [79] on

systems of nonharmonic Fourier series. Paley and Wiener asked for a precise bound

on d ensuring that

sup
n
|αn−n|= d, n ∈ Z, αn ∈ R,

imply that the system of exponentials
(
eiαnt

)
forms a Riesz basis in L2(0,2π).

They gave an affirmative answer for any d < π−2. Later on, A. Ingham [52]

noticed that for d = 1/4, the system may fail to be a Riesz basis. Their result was
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1.3. Two weight problem and Carleson measures

repeatedly revised and generalized by several authors before Kadets’ [54] proved

the best possible result that the exponential system forms a Riesz basis whenever

d < 1/4. The full description of Riesz bases of exponentials was obtained later

in [50] in terms of the Helson–Szegő condition.

The Fourier transform provides an isometry between L2(0,2π) and the model

subspace K2
I generated by the inner function I(z) = e2πiz. Thus the system of

exponentials
(
eiαnt

)
in L2(0,2π) translates into a family of normalized reproducing

kernels SR(αn) in K2
I . As mentioned in Section 1.3, the subspace K2

I has the special

form:
K2

I = eiπzPW 2
π ,

where PW 2
π is the Paley–Wiener space of entire functions f of exponential type

not bigger than π. The problem to characterize reproducing kernel Riesz bases in

model subspaces was then considered in [50], and a solution was given whenever

the generating inner function I and the sequences of points (αn) in C+ satisfy the

additional condition
sup

n
|I(αn)|< 1. (1.3.7)

Under this condition, with B denoting the Blaschke product with simple zeros (αn),

SR(αn) constitutes a Riesz basis in K2
I if and only if the Carleson interpolation

condition [26],

inf
m ∏

n,n6=m

∣∣∣∣αm−αn

αm−αn

∣∣∣∣> 0,

holds and the Toeplitz operator with symbol IB is invertible10. Invoking the clas-

sical Widom–Devinatz theorem [39, 105] for invertibility leads to well known and

beautiful descriptions of reproducing kernel Riesz bases. Good references on this

topic are [50, 74, 75].

A different approach to study Riesz bases of exponentials was developed by some

authors including B. Levin (cf. [79]), and Y. Lyubarskii and K. Seip [61]. The

essential role in their arguments was played by the so called generating function.

The result in [61] describes the exponential bases in terms of an A2 condition

involving such function. The core of their approach was to connect the problem

10The Toeplitz operator with symbol Φ ∈ L∞(R) is the map TΦ : H2 → H2, TΦ f = P+(Φ f )
where P+ is the orthogonal projection of L2(R) onto H2.
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with some mapping properties of the Hilbert transform. More precisely, they turned

the problem into one about the boundedness of the discrete Hilbert transform in a

weighted space of sequences.

A similar result in terms of the A2 condition was also obtained in [44] for the class

of de Branges spaces following a somewhat different operator theoretic approach.

But the main result in that paper still requires the a priori assumption (1.3.7) to hold.

The results in [44] and [61] are proved by different means and complement each

other. More recently, S. Gunter [45] gave an alternative description for exponential

bases in Paley–Wiener spaces. The novelty of the approach in this paper again lies

on the parametrization of the generating function.

The result can be regarded as a parametrization of bases of exponentials with real

frequencies by independent parameters. More partial results may be found among

others in [7, 10, 30, 42].

In Chapter three, we will again study such bases in certain function spaces which

includes the model subspaces. The main tool in our approach will be the two

weight discrete Hilbert transform. During the course of our work, we have found

it both useful and conceptually appealing to transform these problem into a study

of the mapping properties of discrete Hilbert transforms. We have also learned to

appreciate that the essential difficulties in dealing with the Riesz basis problem seem

to appear in a more succinct form with the boundedness property of the Hilbert

transform. It should be mentioned that the motivation to study the problem from

this perspective first came from the works of Lyubarskii and Seip [61]. The idea

was further explored in the survey made by Seip [97].

1.4 New necessary conditions for bounded H̃

To give a flavor of the work in the subsequent chapters, we will now deduce some

necessary conditions for bounded two weight discrete Hilbert transforms. For the

sake of comparison, we shall first discuss an A2 type condition. We begin by noting

that the discrete version of the A2 condition, as stated in [51, 61], reads as

sup
n,m,m≤n

1
(n−m+1)2

n

∑
l=m

wl

n

∑
l=m

w−1
l < ∞. (1.4.1)
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1.4. New necessary conditions for bounded H̃

If we are now given two finite or infinite sequences of distinct points Γ = (γn) and

Λ = (λ j) in C and a sequence of positive numbers v = (vn), we may define the

discrete Hilbert transform by

(an)n 7→
(

∑
n

anvn

λ j− γn

)
j

. (1.4.2)

To make sense of this, we assume that Γ and Λ, viewed as subsets of C, are disjoint.

We also assume that Λ is a subset of the set

(Γ,v)∗ =
{

z ∈ C : ∑
n

vn

|z− γn|2
< ∞

}
because we wish to define the discrete Hilbert transform in (1.4.1) for sequences

(an)n in
`2

v =

{
(an)n : ∑

n
|an|2vn < ∞

}
.

We now assume the set (Γ,v)∗ be nonempty and associate another weight sequence

w = (w j) with Λ, and proceed to find an A2 type necessary condition for the

boundedness of the operator H̃ : `2
v → `2

w given by (1.4.2). To obtain a condition

similar to (1.4.1), we will simply adopt those arguments described in the works of

Lyubarskii and Seip [61] for single weighted discrete transforms. For each n, we

consider two squares of the form

Qn
1 = [ℜγn,ℜγn +h]× [0,h] and Qn

2 = [ℜγn +2h,ℜγn +3h]× [0,h]

of length h and a side lying along the real line, and a positive sequence (am)

supported on Qn
1 in the sense that am = 0 if γm /∈Qn

1. Then for j such that λ j ∈Qn
2,

it holds that∣∣H̃(am)
∣∣2 = ∣∣∣∣ ∑

m:γm∈Qn
1

amvm

λ j− γm

∣∣∣∣2 ≥
(

∑
m:γm∈Qn

1

amvmℜ(λ j− γm)

|λ j− γm|2

)2

≥ C
h2

(
∑

m:γm∈Qn
1

amvm

)2

.
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This along with the boundedness of H̃ leads to

1
h2 ∑

j:λ j∈Qn
2

w j

(
∑

m:γm∈Qn
1

amvm

)2

≤C ∑
m:γm∈Qn

1

|am|2vm. (1.4.3)

Setting am = 1, we deduce a discrete A2 type condition:

sup
n,h

1
h2 ∑

m:γm∈Qn
1

vm ∑
m:λm∈Qn

2

wm < ∞. (1.4.4)

The condition describes the local interaction between the weights whenever H̃ is

bounded from `2
v to `2

w. Applying H̃ or its adjoint to the sequence e(n) =
(
e(n)m
)

in

which e(n)n = 1 and 0 otherwise leads to a global necessary condition

sup
m

{
vm ∑

n

wn

|γm−λn|2
, wm ∑

n

vn

|γn−λm|2

}
< ∞. (1.4.5)

An application of the Cauchy–Schwarz inequality shows that this condition can be

sufficient if the supremum is small in the sense that the sum of any of the series

with respect to m against the respective weight sequence (vm) or (wm) is finite. The

class of transforms H̃ for which this smallness holds will be described in Section

3.2.

In the subsequent chapters, we will see that (1.4.5) serves as a testing condition,

which bears strong resemblance to those testing conditions introduced in [71]

and [58].

We may now assume that both γn and vn are indexed by the positive integers. In

addition, we assume that γn accumulates only at infinity in the sense that |γn| ↗ ∞

when n→∞. With each positive integer m, we associate two other positive integers

defined by

mmin = min
{

l : inf
l>m
|γl|/|γm| ≥ 2

}
and mmax = max

{
l : sup

l<m
|γm|/|γl| ≥ 2

}
.

For instance, if γn grows at least exponentially with respect to n,
(
|γn| ≥ exp(n)

)
,

then mmin = m+1 and mmax = m−1. We note that mmax may not exist for at most

a finite number of indices m. If so, we may alter those corresponding sequences γm.

Next, we consider another sequence λ j, which consists of points from (Γ,v)∗, such
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1.4. New necessary conditions for bounded H̃

that |γ j|< |λ j|< |γ j+1| for each j = 1,2, ... and a weight sequence w j associated

with it.

To obtain our next necessary condition for boundedness, we look at a sequence

a(m) = (a(m)
n ) in which a(m)

n = 1 for n≤ mmax and 0 otherwise. We then observe

that
‖a(m)‖2

`2
v
=

mmax

∑
n=1

vn,

and note that for λ j such that j ≥ mmin, it readily follows that

|H̃a(m)(λ j)|2 =
∣∣∣∣mmax

∑
n=1

vn

λ j− γn

∣∣∣∣2 ≥C
1
|λ j|2

(mmax

∑
n=1

vn

)2

. (1.4.6)

Taking into account the boundedness of H̃, we obtain from this that

mmax

∑
n=1

vn ≥C
∞

∑
j=1

w j|H̃a(m)(λ j)|2 ≥C
∞

∑
j=mmin

w j

|λ j|2

(mmax

∑
n=1

vn

)2

. (1.4.7)

On the other hand if we choose a(m) = (a(m)
n ) so that a(m)

n = 1/γn for n ≥ mmin

and zero else, then

‖a(m)‖2
`2

v
=

∞

∑
n=mmin

vn

|γn|2

and for each λ j such that j ≤ mmax, we obtain

|H̃a(m)(λ j)|2 =
∣∣∣∣ ∞

∑
n=mmin

vn

γn(λ j− γn)

∣∣∣∣2 ≥C
(

∞

∑
n=mmin

vn

|γn|2

)2

. (1.4.8)

Considering the boundedness of the H̃ again, we find that

∞

∑
n=mmin

vn

|γn|2
≥C

∞

∑
j=1

w j|H̃a(m)(λ j)|2 ≥C
mmax

∑
j=1

w j

(
∞

∑
n=mmin

vn

|γn|2

)2

. (1.4.9)

We summarize the result of our observations in the following theorem.

Theorem 1.4.1. Let the sequences (γn,vn) and (λn,wn) be constructed as

above. If the operator H̃ is bounded from `2
v to `2

w, then

sup
m≥1

vm

∞

∑
n=1

wn

|γm−λn|2
< ∞ (1.4.10)
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and

sup
m≥1

(
mmax

∑
l=1

vl

∞

∑
n=mmin

wn

|λn|2
+

mmax

∑
l=1

wl

∞

∑
n=mmin

vn

|γn|2

)
< ∞. (1.4.11)

In the next chapter, these conditions will be studied in depth including when the

target space `2
w is replaced by a weighted space of functions. In the special case

when the sequence γn grows much faster, interestingly, it turns out that such simple

conditions are sufficient as well and solve the corresponding two weight problem.

Organization of the thesis
The results of this thesis are organized into two main parts. The first part concerns

the different mapping properties of the two weight discrete Hilbert transforms. This

part is presented in the next chapter. The second part deals with Carleson measures

and various aspects of systems of reproducing kernels in spaces of analytic functions.

These are all presented in the remaining chapters.

Most of the material in Chapter 3 and Chapter 4 could be viewed as transforma-

tions of the main results from the preceding chapter into results about systems of

reproducing kernels and Carleson measures in function spaces. This makes each of

the chapters intertwined with its predecessor and need them to be read in sequence.

The last chapter is self-contained and can be read without priori information from

the preceding chapters except at few cases where we used a result from Subsection

2.4.3 in order to construct the counterexamples in Sections 5.2 and 5.3. A couple of

other notions which are used in earlier chapters are restated there for the reader’s

convenience.

We begin all of the remaining chapters with a brief discussion of the main points

to be addressed in there. The discussions could be viewed as abstracts for the main

results contained in the respective chapters. As in the introduction, only a few

fundamental results by other authors relevant to our work will be stated as theorems

or lemmas. Others will be either simply indicated by citations or briefly mentioned

without further details.
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Notation
We close this introduction with a few words on notation. Throughout the thesis,

the notation U(z) . V (z) (or equivalently V (z) & U(z)) means that there is a

constant C such that U(z) ≤ CV (z) holds for all z in the set in question, which

may be a Hilbert space, a set of complex numbers, or a suitable index set. We write

U(z)'V (z) if both U(z).V (z) and V (z).U(z). Sometimes we will need to

remove a set of points, say S1 from a given set S. The set thus obtained will then be

written S\S1.

We denote by kλ any kernel function associated with a given point λ . The space

where the kernel lives will be mainly clear from the context. Given a sequence

(λn) of points which will frequently be viewed as a subset of C, we then denote by

SR(λn) the system of normalized reproducing kernels associated with the sequence.

If Λ = (λn), then we alternatively write SR(Λ) instead of SR(λn).
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2 Two weight discrete Hilbert
transforms

In this chapter we consider the weighted discrete Hilbert transforms

(an)n 7→
(

∑
n

anvn

λ j− γn

)
j

(2.0.1)

from `2
v to `2

w, where Γ = (γn) and Λ = (λ j) are disjoint sequences of points in

the complex plane and v = (vn) and w = (w j) are positive weight sequences. It is

shown that if such a Hilbert transform is unitary, then Γ∪Λ is a subset of a circle

or a straight line, and a description of all unitary discrete Hilbert transforms is then

given. Transforms of the form

(an)n 7→∑
n

anvn

z− γn

from `2
v to a weighted L2 space are also studied. In the special case when |γn| grows

at least exponentially, bounded transforms of this kind are described in terms of a

simple relative to the Muckenhoupt’s A2 condition. The case when z is, in addition,

restricted to another sequence Λ is again studied in detail; it is shown that a bounded

transform satisfying a certain admissibility condition can be split into finitely many

surjective transforms, and precise geometric conditions are found for invertibility

of such two weight transforms. Our method to establish these results allows a

moderate weakening of the growth of (γn) at least when the weight sequence (vn)

is sufficiently regular. The interplay between the growth of the sequence (γn) and

the “smoothness” of the weight (vn) is briefly considered in the last section of the

chapter.

We note that all these operator theoretic results can be interpreted as statements

about systems of reproducing kernels and Carleson measures in certain Hilbert
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2 Two weight discrete Hilbert transforms

spaces of which de Branges spaces and model subspaces of H2 are prime examples.

This will be our main subject of study in the next two chapters.

2.1 Unitary discrete Hilbert transforms
This part is concerned with the unitary property of the map in (2.0.1) in the complex

plane. Our discussion will be based on [12]. We begin by assuming that we are given

a finite or an infinite sequence of distinct points Γ = (γn) in C and a corresponding

sequence of positive numbers v = (vn). We may define the weighted discrete Hilbert

transform as the map

(an) 7→∑
n

anvn

z− γn
, (2.1.1)

which is well defined when (an) belongs to `2
v and z is a point in the set (Γ,v)∗.

We denote the transformation defined in (2.1.1) by H(Γ,v) and ask when there are

a sequence of points Λ = (λ j) in (Γ,v)∗ and a corresponding weight sequence

w = (w j) for which the map

(an)n 7→
(

∑
n

anvn

λ j− γn

)
j

(2.1.2)

is a unitary transformation1 from `2
v to `2

w. First we note that there do exist pairs

of sequences (Γ,v) and (Λ,w) for which this holds. We may for instance set

Γ = Z, Λ = Z+ 1
2 and w j = v j = 1 for all j. Then as will be seen in Subsection

2.1.2, H(Z,1) constitutes a unitary map from `2
1 to `2

1.

To stress the dependence on the pair (Λ,w), we will re-denote the transformation

in (2.1.2) by H(Γ,v);(Λ,w). If H(Γ,v);(Λ,w) is assumed to be a unitary transformation,

then both H(Γ,v);(Λ,w) and its adjoint map orthonormal bases into orthonormal bases

in the respective spaces, from which it follows that

w j =

(
∑
n

vn

|λ j− γn|2

)−1

and vn =

(
∑

j

w j

|λ j− γn|2

)−1

.

This describes the associated weight sequence w in terms of the sequence Λ. Thus,

it remains to describe those sequences Λ which give rise to unitary transformations

1Recall that a bijective map T : H1→ H2 between two Hilbert spaces H1 and H2 is a unitary
transformation if 〈T h1,T h2〉H2 = 〈h1,h2〉H1 for all h1 and h2 in H1. It is an isometry as one can see
by setting h1 = h2 in this formula.
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2.1. Unitary discrete Hilbert transforms

H(Γ,v);(Λ,w).

2.1.1 Localization of the sequences Γ and Λ

Our starting point is the following localization result for the sequences Γ and Λ

generating unitary discrete Hilbert transforms.

Theorem 2.1.1. If the discrete Hilbert transform

H(Γ,v);(Λ,w) : `2
v → `2

w

is unitary, then Γ∪Λ is a subset of a circle or a straight line in C.

To prove the theorem, we need to recall a few concepts from projective geometry.

For a four-tuple of distinct points (z1, z2, z3, z4) in the extended complex plane,(
C∪{∞}

)
, the cross-ratio is defined by

C =
(z1− z2)(z3− z4)

(z1− z4)(z3− z2)
. (2.1.3)

Note that there exists different ways to define the cross-ratio. However, they all

differ from each other by a suitable permutation of the coordinates. In general, there

are six possible different values the cross-ratio can take depending on the order in

which the points are listed. If any one of these ratios is real, then all of them are

real. One of the fundamental properties of a cross-ratio is that it is invariant under a

Möbius transformation. It means that if

zk→
azk +b
czk +d

with ad− bc 6= 0, then C does not change for the new quadruple image points.

Such transformations map in particular circles in the Riemann sphere into circles in

the Riemann sphere. As a consequence, the following classical result holds.

Theorem 2.1.2. Four points (z1, z2, z3, z4) of the extended complex plane

lie on the same circle or a straight line if and only if their cross-ratio is real.

The proof of this result can be found in many standard books in projective

geometry or geometry of complex numbers; for instance in ( [95], P. 36). We now

turn to the proof of our first local result.
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2 Two weight discrete Hilbert transforms

Proof of Theorem 2.1.1

In what follows, we let e(n) denote the vectors in the standard orthonormal basis

for `2
v . Thus e(n) is the sequence for which the n-th entry is v−1/2

n and all the other

entries are 0.

We fix an index m and observe that since Γ is a subset of (Λ,w)∗, the function

G(z) = (z− γm)∑
j

w j

(λ j− γm)(λ j− z)

is well-defined for z in Γ. In fact, since H(Γ,v);(Λ,w) is assumed to be a unitary

transformation, the basis vectors e(n) map into an orthonormal system in `2
w, and

therefore G vanishes on Γ. Thus we may write

G(z) = G(z)−G(γn) = (z− γn)∑
j

w j(λ j− γm)

(λ j− γm)(λ j− γn)(λ j− z)
,

where on the right-hand side we have just subtracted the respective series that define

G(z) and G(γn). It follows that

G(z)
z− γn

= ∑
j

w j(λ j− γm)

(λ j− γm)(λ j− γn)(λ j− z)
,

and this function vanishes for z in Γ \ {γn}. Since H(Γ,v);(Λ,w) is assumed to be

unitary, the vectors H(Γ,v);(Λ,w)e(n) constitute an orthonormal basis for `2
w, and

therefore the sequence (
λ j− γm

λ j− γm
· 1

λ j− γn

)
j

is a multiple of the sequence
(
1/(λ j− γn)

)
j. Thus the complex numbers

(
λ j− γm

λ j− γn

)2

have the same argument for all j, and so(
(λ j− γm)(λl− γn)

(λ j− γn)(λl− γm)

)2

> 0
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2.1. Unitary discrete Hilbert transforms

for j 6= l and m 6= n. In other words, the cross ratio of the four complex numbers

λ j, λl , γn, γm is real. By Theorem 2.1.2, this can only happen if the points lie on the

same circle or straight line.

After having applied this argument to four arbitrary points, say λ1, λ2, γ1, and

γ2, we see that in fact every point from Γ∪Λ lies on the circle or a straight line

determined by the four initial points, because we may apply the same argument to

any given point in Γ∪Λ along with three of the points λ1, λ2, γ1, or γ2.

2.1.2 The unitary transformations associated with Γ and v

For a given sequence Γ being a subset of a circle or a straight line and an associated

weight sequence v, we wish to describe those pairs Λ and w such that H(Γ,v);(Λ,w) :

`2
v → `2

w is a unitary transformation. To begin with, we require the admissibility

condition

∑
n

vn

1+ |γn|2
< ∞, (2.1.4)

which is now a necessary and sufficient condition for (Γ,v)∗ to be nonempty; we

will say that v is an admissible weight sequence for Γ whenever (2.1.4) holds.

We will assume that Γ is a subset of the real line. The case when Γ is a subset of

a circle is completely analogous, as will be briefly commented on at the end of this

section. We set

ϕ(z) = ∑
n

vn

(
1

γn− z
− γn

1+ γ2
n

)
(2.1.5)

and observe that ϕ is well-defined on (Γ,v)∗ because the series in (2.1.5) converges

absolutely for z in (Γ,v)∗. We also note that ϕ is a Herglotz function in the upper

half-plane (cf. [28], Chapter 9 ). It means that ϕ is analytic in C+, meromorphic

in C, ϕ(z) = ϕ(z) and it belongs to C+ whenever z is in C+. A general Herglotz

function ψ in the upper half-plane can be written as

ψ(z) = b+ cz+
∫

∞

−∞

(
1

t− z
− t

1+ t2

)
dµ(t),

where b is a real constant, c a nonnegative constant, and µ a nonnegative measure

on the real line such that ∫
∞

−∞

dµ(t)
1+ t2 < ∞.
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2 Two weight discrete Hilbert transforms

We will say that ψ is a purely atomic Herglotz function if c = 0 and µ is a purely

atomic measure; our function ϕ is thus an example of a purely atomic Herglotz

function.

Now for every real number α , we set

Λ(α) =
{

λ ∈ (Γ,v)∗ : ϕ(λ ) = α
}
.

We observe that

∑
n

vn(z−w)
(w− γn)(z− γn)

= ϕ(z)−ϕ(w), (2.1.6)

which implies that the sequences (1/(λ − γn))n with λ in Λ(α) constitute an

orthogonal set in `2
v . This means that Λ(α) is at most a countable set, so that we

may associate with Λ(α) a weight sequence w(α) = (w j), where

w j =

(
∑
n

vn

(λ j− γn)2

)−1

(2.1.7)

for λ j in Λ(α). It is implicit in our arguments that if H(Γ,v);(Λ,w) : `2
v → `2

w is a

unitary transformation, then Λ = Λ(α) and w = w(α) for some real number α .

We will now prove the following main theorem.

Theorem 2.1.3. Let v be an admissible weight sequence for Γ. If Γ is a subset

of the real line, and α be a real number, then the discrete Hilbert transform

H(Γ,v);(Λ(α),w(α)) : `2
v → `2

w(α)

is unitary if and only if (α−ϕ(z))−1 is a purely atomic Herglotz function.

Proof. In this proof, we will again use the standard orthonormal basis vectors

e(n) in `2
v; we will denote the corresponding basis vectors in `2

w(α) by f ( j). We

will use the notation ‖ · ‖v and ‖ · ‖w for the respective norms in `2
v and `2

w.

It is clear that the adjoint transformation2 to H(Γ,v);(Λ(α),w(α)) is again a

discrete Hilbert transform. In fact, since Γ and Λ(α) are sequences of real

numbers, we have H∗(Γ,v);(Λ(α),w(α)) =−H(Λ(α),w(α));(Γ,v), where

2Here and in what follows T ∗ refers the adjoint of an operator T in the Hilbert space sense, i.e
the operator for which 〈T f ,g〉= 〈 f ,T ∗g〉 holds.
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2.1. Unitary discrete Hilbert transforms

H(Λ(α),w(α));(Γ,v) : `2
w(α)→ `2

v.

Therefore, H(Γ,v);(Λ(α),w(α)) is unitary if and only if both H(Γ,v);(Λ(α),w(α)) and

H(Λ(α),w(α));(Γ,v) are isometric. Hence it suffices to check whether(
H(Γ,v);(Λ(α),w(α)))e

(n)
)

and
(

H(Λ(α),w(α));(Γ,v) f ( j)
)

are orthonormal sequences in respectively `2
w(α) and `2

v .

The orthogonality of the vectors H(Λ(α),w(α));(Γ,v) f ( j) in `2
v has already

been verified (see (2.1.6)); it is just a consequence of the definition of Λ(α).

Likewise, by (2.1.7), we have automatically

‖H(Λ(α),w(α));(Γ,v) f ( j)‖2
v = ∑

n

w jvn

|γn−λ j|2
= 1.

So our task is to show that(
H(Γ,v);(Λ(α),w(α))e

(n)
)

is an orthonormal sequence in `2
w(α) if and only if (α −ϕ(z))−1 is a purely

atomic Herglotz function.

We first assume that (α−ϕ(z))−1 is indeed a purely atomic Herglotz func-

tion. It suffices to show that there is a real constant b such that

1
α−ϕ(z)

= b+∑
j

w j

(
1

λ j− z
−

λ j

1+λ 2
j

)
, (2.1.8)

where λ j are the points in Λ(α) and w j are as in (2.1.7). Indeed, by symmetry,

it will then follow that the numbers γn are solutions to the equation

∑
j

w j

(
1

λ j− z
−

λ j

1+λ 2
j

)
=−b,

so that the arguments already employed for the vectors H(Λ(α),w(α));(Γ,v) f ( j)

apply similarly to the vectors H(Γ,v);(Λ(α),w(α))e(n).

We start from the representation (2.1.8), with no a priori assumption on the

points λ j and the nonnegative numbers w j except the admissibility condition
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2 Two weight discrete Hilbert transforms

∑
j

w j

1+λ 2
j
< ∞;

our goal is to prove that the λ j are in Λ(α) and that the w j are given by

(2.1.7). We first observe that if we set z = λ j + iy, then we get, by restricting

to imaginary parts,

w j

y
≤
(

∑
n

yvn

(λ j− γn)2 + y2

)−1

,

whence

∑
n

vn(
λ j− γn

)2 ≤ w−1
j .

In other words, the points λ j belong to (Γ,v)∗. We now multiply each side

of (2.1.8) by z−λ j and take the limit when z = λ j + iy and y→ 0+; since λ j

is in (Γ,v)∗ and ϕ(λ j) = α , this gives (2.1.7).

Suppose, on the other hand, that (α−ϕ(z))−1 is not a purely atomic Her-

glotz function and that the vectors H(Γ,v);(Λ(α),w(α))e(n) constitute an orthonor-

mal system in `2
w(α). We will show that this leads to a contradiction. To begin

with, our assumption on (α−ϕ(z))−1 implies that

1
α−ϕ(z)

= b+∑
j

w j

(
1

λ j− z
−

λ j

1+λ 2
j

)
+cz+

∫
∞

−∞

(
1

t− z
− t

1+ t2

)
dµ(t),

(2.1.9)

with µ a spectral measure such that µ({λ j}) = 0 for every j and not both

c = 0 and µ = 0; the fact that the w j are given by (2.1.7) can be proved as in

the first part of the proof.

We now argue in the same way as above, reversing the roles of Γ and Λ(α).

This means that we first show, by again restricting to imaginary parts, that

∑
j

w j

(γn−λ j)2 +
∫

∞

−∞

dµ(t)
(γn− t)2 ≤ v−1

n

for every n. We infer from this that both the sum and the integral on the right-

hand side of (2.1.9) converge absolutely for z = γn. Indeed, the right-hand
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2.1. Unitary discrete Hilbert transforms

side of (2.1.9) vanishes for z = γn, and so if we put z = γn + iδ in (2.1.9),

divide each side by iy, and let y tend to 0, we get

v−1
n = ∑

j

w j

(γn−λ j)2 +
∫

∞

−∞

dµ(t)
(γn− t)2 .

Since we should have ‖H(Γ,v);(Λ(α),w(α))e(n)‖w(α) = 1, we have reached a con-

tradiction unless µ = 0. On the other hand, if µ = 0 and c > 0, then we also

reach a contradiction because the condition for orthogonality of the vectors

H(Γ,v);(Λ(α),w(α))e(n) becomes

∑
j

(
w j

γm−λ j
−

w j

γn−λ j

)
= 0

for m 6= n, and this is inconsistent with the right-hand side of (2.1.9) being 0

whenever z = γn.

A few remarks are in order. First, it should be noted that we may have (Γ,v)∗∩
R= /0 even if (Γ,v) is an admissible pair. The following is an example.

Example 2. Pick a sequence of distinct prime numbers pl such that

∑
l

p−1/2
l < ∞.

Set Γ=
⋃

l p−1
l Z, and equip Γ with the weight sequence v obtained by placing

a weight of magnitude p−3/2
l at every point of the sequence p−1

l Z.

On the other hand, if Γ is a discrete subset of the real line, then H(Γ,v);(Λ(α),w(α)) :

`2
v → `2

w(α) is unitary for every α with one possible exception: It fails to be unitary

when

∑
n

vn < ∞ and α = ∑
n

vnγn

1+ γ2
n
.

This statement follows almost immediately from Theorem 2.1.3. We get the excep-

tional case because the constant c in the representation (2.1.9) is obtained as

c = lim
y→∞

1
iy(α−ϕ(iy))

.
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2 Two weight discrete Hilbert transforms

If Γ is a subset of the unit circle, then the potential (2.1.5) should be replaced by

ϕ(z) =
i
2 ∑

n
vn

γn + z
γn− z

; (2.1.10)

the analysis goes through in the same way, and we obtain a statement completely

analogous to Theorem 2.1.3. Note, however, that for discrete sets Γ on the unit

circle, there will be no exceptional value for α because there is no linear term ‘cz’

in the general representation of a Herglotz function. Indeed, a Herglotz function ψ

in the unit disk is of the form

ψ(z) = b+

∫ 2π

0

eit + z
eit− z

dµ(t),

where b is a real constant and µ a nonnegative measure on the circle.

Finally, as will be seen in Section 4.5, the unitary transformations obtained from

Theorem 2.1.3 (and its counterpart for the unit circle) correspond precisely to Clark’s

orthonormal bases [29], and the exceptional case here is also like the exceptional

case in Clark’s result. From this point of view, Theorem 2.1.3 is essentially a

reformulation of Clark’s theorem.

2.2 Bounded discrete Hilbert transforms
When we now turn to questions about boundedness, surjectivity, and invertibility,

results of the same generality as in the previous section seem at present out of

reach. The results to be presented below are complete only when the discrete Hilbert

transforms are defined on particularly sparse sequences. We will nevertheless

present the problems in the most general setting, as we believe they merit further

investigations, and we will (next chapter) emphasize the connection with topics

such as Carleson measures and Riesz bases of normalized reproducing kernels in

Hilbert spaces of analytic functions; this will lead us to the most intriguing general

question, namely whether or not the Feichtinger conjecture holds true for systems of

reproducing kernel Bessel sequences in such spaces. This and the next two sections

are based on [11].

We now consider the transform H(Γ,v) defined by (2.1.1) and ask if we may

describe those nonnegative measures µ on (Γ,v)∗ such that H(Γ,v) acts as a bounded
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2.2. Bounded discrete Hilbert transforms

map from `2
v to L2

(
(Γ,v)∗,µ

)
. This question is another version of the long-standing

problem of finding criteria akin to the Muckenhoupt A2 condition for boundedness

of two weight Hilbert transforms.

We now also assume that both Γ = (γn) and the weight sequence v = (vn) are

indexed by the positive integers. The main result of this section is a solution to the

boundedness problem when Γ is exponentially or super-exponentially “sparse”, i.e.,

when we have
inf
n≥1
|γn+1|/|γn|> 1. (2.2.1)

In this case, (Γ,v)∗ is nonempty and in fact equal to C\Γ if and only if

∞

∑
n=1

vn

1+ |γn|2
< ∞. (2.2.2)

When we consider the boundedness problem for such sparse sequences Γ, it is

quite natural to partition C in the following way. Set Ω1 =
{

z ∈ C : |z| <(
|γ1|+ |γ2|

)
/2
}

and then

Ωn =
{

z ∈ C :
(
|γn−1|+ |γn|

)
/2≤ |z|<

(
|γn|+ |γn+1|

)
/2
}

for n≥ 2.

. . .

x

y

2 3
1

1r 2r 3r

Figure 2.1: rn =
(
|γn|+ |γn+1|

)
/2.

Our solution to the boundedness problem reads as follows.

Theorem 2.2.1. Suppose that the sequence Γ satisfies the sparseness con-

dition (2.2.1) and that v is an admissible weight sequence for Γ. If µ is a

nonnegative measure on C with µ(Γ) = 0, then the map H(Γ,v) is bounded
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2 Two weight discrete Hilbert transforms

from `2
v to L2(C,µ) if and only if

sup
n≥1

∫
Ωn

vndµ(z)
|z− γn|2

< ∞ (2.2.3)

and

sup
n≥1

(
n

∑
l=1

vl

∞

∑
m=n+1

∫
Ωm

dµ(z)
|z|2

+
n

∑
m=1

µ (Ωm)
∞

∑
l=n+1

vl

|γl|2

)
< ∞. (2.2.4)

It should be noted that neither (2.2.3) nor (2.2.4) alone is in general sufficient for

the boundedness of H(Γ,v). In other words, the two conditions are independent of

each other in the sense that no one implies the other. We will give simple examples

illustrating this in Subsection 2.2.2 . It should also be noted that the condition is

symmetric in the two measures ∞

∑
n=1

vnδγn

and µ . This is natural since the theorem also gives a necessary and sufficient

condition for the adjoint transformation

f 7→

(∫
C

f (z)dµ(z)
z− γn

)
n

to be bounded from L2(C,µ) to `2
v . The condition (2.2.4) can be understood as a

simple relative to the classical Muckenhoupt’s A2 condition.

Besides its simplicity, the main virtue of Theorem 2.2.1 is its role as a tool in our

study of surjectivity and invertibility of discrete Hilbert transforms in the subsequent

sections.

2.2.1 Proof of Theorem 2.2.1

In what follows, we will use the notation

V1 = 1, Vn =
n−1

∑
j=1

v j, and Pn =
∞

∑
j=n+1

v j

|γ j|2
. (2.2.5)
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2.2. Bounded discrete Hilbert transforms

Note that with these notations, condition (2.2.4) can be replaced by a dyadic version

sup
n≥1

(
Vn ∑

Vn≤Vm≤2Vn

∫
Ωm

dµ(z)
|z|2

+Pn ∑
Pn≤Pm≤2Pn

µ (Ωm)

)
< ∞. (2.2.6)

Proof of the necessity of the conditions in Theorem 2.2.1

The necessity of the conditions has been already established in Section 1.4 when

H(Γ,v) acts from `2
v to another weighted sequence space `2

w. We shall now redo

the arguments replacing the target space by L2(C,µ). We observe first that the

necessity of (2.2.3) is obvious: Just apply H(Γ,v) to the sequence e(n) = (e(n)m ) with

e(n)n = 1 and e(n)m = 0 for m 6= n.

To show that (2.2.4) is also a necessary condition, we begin by looking at the

sequence c(n) = (c(n)m ) so that c(n)m = 1 for m < n and c(n)m = 0 otherwise. We

observe that ‖c(n)‖2
v =Vn and note that for z in Ωl and l ≥ n we have

|H(Γ,v)c
(n)(z)|2 =

∣∣∣∣n−1

∑
m=1

vm

z− γm

∣∣∣∣2 & V 2
n

|z|2
. (2.2.7)

Taking into account the boundedness of H(Γ,v), we deduce from this that

Vn&

∫
C
|H(Γ,v)c

(n)(z)|2dµ(z)=
∞

∑
k=1

∫
Ωk

∣∣∣∣n−1

∑
m=1

vm

z− γm

∣∣∣∣2dµ(z)&V 2
n ∑

m≥n

∫
Ωm

dµ(z)
|z|2

.

On the other hand, if we set a(n) = (a(n)m ) so that a(n)m = 1/γm for m > n and

a(n)m = 0 otherwise, then ‖a(n)‖2
v = Pn. We note that for z in Ωl and l ≤ n we have

|H(Γ,v)a
(n)(z)|2 =

∣∣∣∣ ∞

∑
m=n+1

vm

γm(z− γm)

∣∣∣∣2 & P2
n .

Thus

Pn &

∫
C
|H(Γ,v)a

(n)(z)|2dµ(z)& P2
n ∑

m≤n
µ(Ωm).
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Proof of the sufficiency of the conditions in Theorem 2.2.1

Let a = (an) be an arbitrary sequence in `2
v . We make first the following estimate:∫

Ωn

|H(Γ,v)a(z)|2dµ(z)≤ 3
∫

Ωn

(∣∣∣∣ n−1

∑
m=1

amvm

z− γm

∣∣∣∣2 + |an|2v2
n

|z− γn|2
+

∣∣∣∣ ∞

∑
m=n+1

amvm

z− γm

∣∣∣∣2
)

dµ(z)

.

∫
Ωn

(
|z|−2

( n−1

∑
m=1
|am|vm

)2

+

(
∞

∑
m=n+1

|am|vm

|γm|

)2
)

dµ(z)+ |an|2vn;

here we used the Cauchy–Schwarz inequality, (2.2.1) and (2.2.3). Hence it remains

for us to show that

∞

∑
n=1

( n−1

∑
m=1
|am|vm

)2∫
Ωn

|z|−2dµ(z).
∞

∑
j=1
|a j|2v j (2.2.8)

and
∞

∑
n=1

(
∞

∑
m=n+1

|am|vm

|γm|

)2

µ(Ωn).
∞

∑
j=1
|a j|2v j. (2.2.9)

We consider first (2.2.8). To simplify the writing, we set

τn =

(∫
Ωn

|z|−2dµ(z)
) 1

2
.

By duality, we have(
∞

∑
n=1

τ
2
n

( n−1

∑
m=1
|am|vm

)2
) 1

2

= sup
‖(cn)‖`2=1

∞

∑
n=1
|cn|τn

n−1

∑
m=1
|am|vm.

Since
∞

∑
n=1
|cn|τn

n−1

∑
m=1
|am|vm =

∞

∑
m=1
|am|vm

∞

∑
n=m+1

|cn|τn,

it suffices to show that the `2-norm of

αm = v
1
2
m

∞

∑
n=m+1

|cn|τn

is bounded by a constant times the `2-norm of (cn). To this end, we note that the

Cauchy–Schwarz inequality gives
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2.2. Bounded discrete Hilbert transforms

|αm|2 ≤ vm

∞

∑
n=m+1

|cn|2V
− 1

2
n

∞

∑
j=m+1

τ
2
j V

1
2
j .

By (2.2.4), we see that

∑
j:2lVm<V j≤2l+1Vm

τ
2
j V

1
2
j .

1

2
l
2V

1
2

m+1

for ł≥ 0. Summing these inequalities, we get

∞

∑
j=m+1

τ
2
j V

1
2
j .

1

V
1
2

m+1

.

Hence

|αm|2 .
vm

V
1
2

m+1

∞

∑
n=m+1

|cn|2V
− 1

2
n .

This gives us
∞

∑
m=1
|αm|2 .

∞

∑
m=1

vm

V
1
2

m+1

∞

∑
n=m+1

|cn|2V
− 1

2
n

=
∞

∑
n=1
|cn|2V

− 1
2

n

n−1

∑
m=1

vm

V
1
2

m+1

when we change the order of summation, and so (2.2.8) follows because

V
− 1

2
n

n−1

∑
m=1

vm

V
1
2

m+1

≤V
− 1

2
n

∫ Vn

0
x−

1
2 dx = 2. (2.2.10)

We next consider (2.2.9). We note to begin with that the Cauchy–Schwarz

inequality gives(
∞

∑
m=n+1

|am|vm

|γm|

)2

≤
∞

∑
m=n+1

|am|2vmP
1
2

m−1

∞

∑
j=n+1

v j

P
1
2
j−1|γ j|2

.

Since
∞

∑
j=n+1

v j

P
1
2
j−1|γ j|2

≤
∫ Pn

0
x−

1
2 dx≤ 2P

1
2

n ,
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2 Two weight discrete Hilbert transforms

it follows that

∞

∑
n=1

µ(Ωn)

(
∞

∑
m=n+1

|am|vm

|γm|

)2

.
∞

∑
n=1

µ(Ωn)P
1
2

n

∞

∑
m=n+1

|am|2vmP
1
2

m−1,

which becomes

∞

∑
n=1

µ(Ωn)

(
∞

∑
m=n+1

|am|vm

|γm|

)2

.
∞

∑
m=1
|am|2vmP

1
2

m−1

m−1

∑
n=1

µ(Ωn)P
1
2

n

when we change the order of summation. From (2.2.4) it follows that

m−1

∑
n=1

µ(Ωn)P
1
2

n .
∞

∑
l=0

∑
n:2lPm−1≤Pn≤2l+1Pm−1

µ(Ωn)P
1
2

n

.
1

P
1
2

m−1

∞

∑
l=0

1

2
l
2
.

1

P
1
2

m−1

,

and we get (2.2.9).

Special cases

Condition (2.2.3) of Theorem 2.2.1 is a condition on the local behavior of µ , while

condition (2.2.4) deals with its global behavior. Combining the two conditions, we

see that (2.2.3) may be replaced by a stronger global necessary condition:

sup
n≥1

∫
C

vndµ(z)
|z− γn|2

< ∞. (2.2.11)

This is in fact immediate because∫
C

vndµ(z)
|z− γn|2

=
∞

∑
m=1

∫
Ωm

vndµ(z)
|z− γn|2

'
∫

Ωn

vndµ(z)
|z− γn|2

+
vn

|γn|2
n−1

∑
m=1

µ(Ωm)+ vn

∞

∑
m=n+1

∫
Ωm

dµ(z)
|z|2

. (2.2.12)

One could also arrive at (2.2.11) by simply applying H(Γ,v) to the sequence e(n) =

(e(n)m )m where e(n)n = v
− 1

2
n and 0 for n 6= m.

We note that the sparsity assumption (2.2.1) plays no role in establishing (2.2.11)
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2.2. Bounded discrete Hilbert transforms

(and hence (2.2.3)).

We single out two cases in which (2.2.4) is automatically fulfilled once either

this condition or the original one (2.2.3) holds.

Corollary 2.2.2. Suppose the sequence Γ satisfies the sparseness condition

(2.2.1) and that the numbers vn grow at least exponentially and that the num-

bers vn/|γn|2 decay at least exponentially with n. If µ is a nonnegative mea-

sure on C with µ(Γ) = 0, then the operator H(Γ,v) is bounded from `2
v to

L2(C,µ) if and only if

sup
n≥1

∫
Ωn

vndµ(z)
|z− γn|2

< ∞. (2.2.13)

To see this it is enough to verify condition (2.2.4), namely that

sup
n≥1

n

∑
m=1

µ (Ωm)
∞

∑
l=n+1

vl

|γl|2
' sup

n≥1

vn+1

|γn+1|2
n

∑
m=1

∫
Ωm

dµ(z).

The right-hand quantity is bounded (up to a constant multiple) by

sup
n≥1

vn+1

|γn+1|2
n

∑
m=1

|γm+1|2

vm+1

∫
Ωm

vm

|z|2
dµ(z)< ∞;

here we used the exponential growth of the numbers |γn|2/vn to compare

|γm+1|2/vm+1 with vm/|z|2 for each z in Ωm.

Corollary 2.2.3. Suppose the sequence Γ satisfies the sparseness condition

(2.2.1) and that (vn) is summable. If µ is a nonnegative measure on C with

µ(Γ) = 0, then the operator H(Γ,v) is bounded from `2
v to L2(C,µ) if and only

if

sup
n≥1

∫
C

vndµ(z)
|z− γn|2

< ∞. (2.2.14)

This corollary also follows immediately from Theorem 2.2.1 by simply looking

at the splitting in (2.2.12).

Condition (2.2.4) may become simpler if additional assumption are made on the

data (γn,vn). If, for instance, we assume that there exists a positive constant C such

that
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2 Two weight discrete Hilbert transforms

Pm ≤C
Vm+1

|γm+1|2
(2.2.15)

for every m > 1, then it implies that

vn ≤CVn (2.2.16)

holds for n≥ 1, and hence Vn grows at most exponentially. We will see in the lemma

below that (2.2.15) is equivalent to (2.2.16) and exponential decay of Vn/|γn|2

along sufficiently sparse arithmetic progressions.

Lemma 2.2.4. Assume (2.2.15) holds. Then there exists a positive integer N

such that
Vn+N

|γn+N|2
≤ 1

2
Vn

|γn|2
(2.2.17)

holds for every positive integer n.

Proof. We set n1 = 1 and define nl inductively for l = 1,2, ... by letting nl

be the smallest index n such that Vnl/Vnl−1 ≥ 2. Since Vn grows at most

exponentially, there is a constant K such that also Vnl/Vnl−1 ≤ K for all l > 1.

We first note that the estimate

∞

∑
j=1

Vnl+ j

|γnl+ j |2
≤M

Vnl

|γnl |2

for some positive constant M is an immediate consequence of (2.2.15). We

then observe that if a sequence of positive numbers cl satisfies

∞

∑
j=1

cl+ j ≤Mcl,

then in particular cl+ j ≤Mcl+m for j > m, and therefore

cl+ j ≤
M
L

L

∑
m=1

cl+m ≤
M2

L
cl

for j > L. It follows that if nl−1 ≤ n < nl and nl+ j ≤ n+N < nl+ j, then

Vn+N

|γn+N|2
≤min

(
K j

cN ,
K2M2

j−1

)
Vn

|γn|2
,
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2.2. Bounded discrete Hilbert transforms

where c = infn |γn+1|/|γn|> 1. Since, independently of j,

min
(

K j

cN ,
K2M2

j−1

)
≤ 1

2

for sufficiently large N, the result follows.

Our claim that (2.2.16) and (2.2.17) together represent a reformulation of

(2.2.15) is now immediate because the implication in the other direction is trivial.

In what follows we will use the following consequence of (2.2.16) and (2.2.17):

Vn+ j

|γn+ j|2
. 2− j/N Vn

|γn|2
. (2.2.18)

Corollary 2.2.5. Suppose that the sequence Γ satisfies the sparseness con-

dition (2.2.1) and that v is an admissible weight sequence for Γ for which

(2.2.15) holds. If µ is a nonnegative measure on C with µ(Γ) = 0, then the

map H(Γ,v) is bounded from `2
v to L2(C,µ) if and only if (2.2.3) and

sup
n≥1

Vn

∞

∑
m=n+1

∫
Ωm

dµ(z)
|z|2

< ∞ (2.2.19)

hold.

The corollary follows from Theorem 2.2.1 and the above lemma because

sup
n≥1

Pn

n−1

∑
m=1

µ(Ωm) . sup
n≥1

Pn

n−1

∑
m=1
|γm+1|2

∫
Ωm

|z|−2dµ(z)

. sup
n≥1

Vn+1

|γn+1|2
n−1

∑
m=1

|γm+1|2

Vm−1
< ∞,

for the last inequality we in particular used Vn+1 ≤ (1 +C)3Vn−2 with C the

absolute constant in (2.2.15).

2.2.2 Bessel sequences

We now switch to discrete Hilbert transforms and require thus that µ be a purely

atomic measure. In other words, we are interested in the case when there are

a sequence of points Λ = (λ j) in (Γ,v)∗ and a corresponding weight sequence
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2 Two weight discrete Hilbert transforms

w = (w j) such that the discrete Hilbert transform H(Γ,v);(Λ;w) is bounded from `2
v

to `2
w. As will be explained in Section 3.2, this means that we will be dealing with

Bessel sequences of normalized reproducing kernels for certain Hilbert spaces of

analytic functions.

We now record the following consequence of the Open Mapping Theorem [85, p.

73].

Lemma 2.2.6. Suppose T is a bounded linear transformation from a Hilbert

space H1 to another Hilbert space H2. Then T is surjective if and only if

the adjoint transformation T ∗ is bounded from below.

If we let T be the map f 7→ (〈 f , f j〉H ) from H to `2, then we find

T ∗(c j) = ∑
j

c j f j.

Thus it follows from Lemma 2.2.6 that ( f j) is a Riesz basic sequence if and only if it

is a Bessel sequence for which the moment problem 〈 f , f j〉H = a j has a solution f

in H for every square-summable sequence (a j). We may also set T = H(Γ,v);(Λ,w)

and find that Lemma 2.2.6 gives the necessary condition

w j '

(
∞

∑
n=1

vn

|λ j− γn|2

)−1

(2.2.20)

for surjectivity of the transformation H(Γ,v);(Λ,w). To see this, observe that the

lemma implies
∞

∑
m=1

∣∣∣∣ ∞

∑
n=1

anwn

γm−λn

∣∣∣∣2vm '
∞

∑
n=1
|an|2wn (2.2.21)

for each `2
w-summable sequence (an). The desired conclusion follows once up on

setting an = 1, for n = j and 0 otherwise in (2.2.21).

When Γ and v are given and Λ is a sequence in (Γ,v)∗, we will say that the

sequence given by (2.2.20) is the Bessel weight sequence for Λ with respect to

(Γ,v). In the next chapter, we will indeed see that the sequence w
− 1

2
j constitutes the

norm of the reproducing kernels kλ j for certain Hilbert spaces of analytic functions.

We want to disentangle condition (2.2.4). To this end, we split any given sequence
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2.2. Bounded discrete Hilbert transforms

Λ into three disjoint sequences:

Λ
(0) =

{
λ ∈ Λ : if λ is in Ωn, then

vn

|λ − γn|2
≥max

(
Vn

|λ |2
,Pn

)}
.

Λ
(V ) =

{
λ ∈ Λ : if λ is in Ωn, then

Vn

|λ |2
> max

(
vn

|λ − γn|2
,Pn

)}
.

Λ
(P) =

{
λ ∈ Λ : if λ is in Ωn, then Pn > max

(
vn

|λ − γn|2
,

Vn

|λ |2

)}
.

We say that a sequence Λ is V -lacunary if

sup
n

#

Λ∩
⋃

m: 2n≤Vm≤2n+1

Ωm

< ∞

and P-lacunary if

sup
n

#

Λ∩
⋃

m: 2−n−1≤Pm≤2−n

Ωm

< ∞.

We then have the following interesting reformulation of Theorem 2.2.1.

Theorem 2.2.7. Suppose the sequence Γ satisfies the sparseness condition

(2.2.1) and that v is an admissible weight sequence for Γ. Let Λ be a se-

quence in (Γ,v)∗, and let w be the Bessel weight sequence for Λ with re-

spect to (Γ,v). Then H(Γ,v);(Λ,w) is a bounded transformation if and only if

supn #(Λ∩Ωn) < ∞, Λ(V ) is a V -lacunary sequence, Λ(P) is a P-lacunary

sequence, and

sup
n≥1

Vn ∑
m≥n

∑
λ∈Λ(0)∩Ωm

|λ − γm|2

vm|λ |2
+Pn ∑

m≤n
∑

λ∈Λ(0)∩Ωm

|λ − γm|2

vm

< ∞.

(2.2.22)

For each point λ j in Λ(0), the Bessel weight sequence can be estimated by

w−1
j '

∞

∑
n=1

vn

|λ j− γn|2
'

v j

|λ j− γ j|2
(2.2.23)
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2 Two weight discrete Hilbert transforms

which follows from the sparsity condition (2.2.1), and it implicitly appears in con-

dition (2.2.22). Qualitatively, this result for Bessel sequences is rather unexpected.

The sequence splits naturally into three sequences: one sequence Λ(0) being near

the points (γn) with a geometric condition on its distortion from (γn) and other two

sequences Λ(V ) and Λ(P) being “exponentially more sparse” than the sequence (γn)

and with no further restriction on their locations. This splitting into a “super-thin”

sequence Λ(V )⋃Λ(P) and a “distorted” sequence Λ(0) represents a phenomenon

not previously recorded, as far as we know.

Corollary 2.2.2 and Corollary 2.2.3, when restricted to the case of Bessel se-

quences, describe two situations in which the “super-thin” part does not appear, for

different reasons: Corollary 2.2.2 covers the case when Vn grows exponentially and

Pn decays exponentially with n; Λ(V ) and Λ(P) can then both be “absorbed” in Λ(0).

Corollary 2.2.3 covers the case when Vn is uniformly bounded so that Λ(V ) can only

be a finite sequence; the sequence Λ(P) can again be “absorbed” in Λ(0).

We conclude that the most interesting situation occurs when either vn/|γn|2 =
o(Pn) or vn = o(Vn) and Vn→ ∞ as n→ ∞. These two cases will be studied in

depth in Section 2.4.

We finish this section by constructing the examples promised in Section 2.2, which

show that neither condition (2.2.3) nor (2.2.4) is sufficient for the boundedness

of the Hilbert transform H(Γ,v). We can make our constructions following the

corresponding conditions in Theorem 2.2.7.

Example 3. For each n, set γn = 2n and the associated weight sequence vn

equals 1. We construct a sequence Λ = (λ j) by picking a single point λ j =

( j log( j+ 1))−1γ j from each annulus Ω j. If we now set w j = 1 for each j,

then Λ fails to satisfy (2.2.22). On the other hand if we pick the sequence

λn, j = γn + γn/ j, j = 1,2, ... then

Λ1 =

( ∞⋃
j=1

λn, j

)
n

easily meets condition (2.2.22) while there exists no uniform bound on the

number of its points found on each annulus Ωn.
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2.3. Surjective discrete Hilbert transforms

2.3 Surjective discrete Hilbert transforms
Our next general question is the following: If w = (w j) is the Bessel weight

sequence for Λ with respect to (Γ,v) and H(Γ,v);(Λ,w) is a bounded transformation,

is it possible to split Λ into a finite union of subsequences Λ′ such that, with w′

denoting the subsequence of w corresponding to Λ′, each of the transformations

H(Γ,v);(Λ′,w′) is surjective? As it will be explained in the next chapter, this question

would have a positive answer should the well known Feichtinger conjecture hold

true. The following result gives a positive answer to this question when (2.2.1)

holds.

Theorem 2.3.1. Suppose the sequence Γ satisfies the sparseness condition

(2.2.1) and that v is an admissible weight sequence for Γ. If Λ is a sequence

in C\Γ, w is the Bessel weight sequence for Λ with respect to (Γ,v), and the

transformation H(Γ,v);(Λ,w) is bounded, then Λ admits a splitting into a finite

union of subsequences such that, for each subsequence Λ′ and corresponding

subsequence w′ of w, the transformation H(Γ,v);(Λ′,w′) is surjective.

The geometry of the sequence Λ which generates a bounded map H(Γ,v);(Λ,w)

plays an essential role to make the splitting through the required properties.

2.3.1 Proof of Theorem 2.3.1

By Theorem 2.2.7 the points of Λ splits naturally into three subsequences. This

splitting is our starting point for proving the theorem. Indeed, we use the same split-

ting as in the theorem and treat the three sequences Λ(0), Λ(V ), and Λ(P) separately.

We also use Lemma 2.2.6, i.e., we make a splitting so that, for each subsequence Λ′

with associated weight sequence, the adjoint transformation H(Λ′,w′);(Γ,v) is bounded

below. From now on, we will use the notations

Wn =
n−1

∑
m=1

wm and Qn =
∞

∑
m=n+1

wm

|λm|2
. (2.3.1)

2.3.2 The splitting of Λ(0)

We may assume that there is at most one point λn in Λ(0) from each annulus Ωn; we

denote the corresponding weights by wn. Let Λ′ = (λn j) be a subsequence of Λ(0)
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2 Two weight discrete Hilbert transforms

with corresponding weight sequence w′ = (wn j), and let a = (an j) be an arbitrary

`2
w′-sequence. Since

|ξ −η |2 ≥ |ξ |2−2|ξ ||η |+ |η |2 ≥ 1
2
|ξ |2−|η |2

for arbitrary complex numbers ξ and η , we have

|H(Λ′,w′);(Γ,v)a(γn j)|
2 =

∣∣∣∣ ∞

∑
l=1

anl wnl

γn j−λnl

∣∣∣∣2

≥ 1
2

|an j |2w2
n j

|λn j− γn j |2
−2
∣∣∣∣ j−1

∑
l=1

anl wnl

γn j−λnl

∣∣∣∣2−2
∣∣∣∣ ∞

∑
l= j+1

anl wnl

γn j−λnl

∣∣∣∣2.
On the other hand, the sparsity condition (2.2.1) gives that

wn j '
|λn j− γn j |2

vn j

(2.3.2)

for each point λn j ∈ Λ(0). Therefore, by the definition of Λ(0), there is a positive

constant c such that

‖H(Λ′,w′);(Γ,v)a‖2
v ≥ c‖a‖2

w′−2
∞

∑
j=1

(∣∣∣∣ j−1

∑
l=1

anl wnl

γn j−λnl

∣∣∣∣2 + ∣∣∣∣ ∞

∑
l= j+1

anl wnl

γn j−λnl

∣∣∣∣2
)

vn j .

Hence it remains for us to show that, for a given ε > 0, we may obtain

∞

∑
j=1

( j−1

∑
l=1
|anl |wnl

)2 vn j

|λn j |2
≤ ε

∞

∑
j=1
|an j |

2wn j (2.3.3)

and
∞

∑
j=1

(
∞

∑
l= j+1

|anl |wnl

|λnl |

)2

vn j ≤ ε

∞

∑
j=1
|an j |

2wn j (2.3.4)

for every subsequence Λ′ in a finite splitting of Λ(0).

We proceed as in the proof of Theorem 2.2.1. Thus we set τ j = v
1
2
n j/|λn j | and

consider first (2.3.3). By duality,(
∞

∑
j=1

τ
2
j

( j−1

∑
l=1
|anl |wnl

)2
) 1

2

= sup
‖(c j)‖`2=1

∞

∑
j=1
|c j|τ j

j−1

∑
l=1
|anl |wnl .
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Since
∞

∑
j=1
|c j|τ j

j−1

∑
l=1
|anl |wnl =

∞

∑
l=1
|anl |wnl

∞

∑
j=l+1

|c j|τ j,

it suffices to show that the `2-norm of

αl = w
1
2
nl

∞

∑
j=l+1

|c j|τ j

can be made smaller than ε times the `2-norm of (c j). To this end, we note that the

Cauchy–Schwarz inequality gives

|αl|2 ≤ wnl

∞

∑
j=l+1

|c j|2W
− 1

2
n j

∞

∑
m=l+1

τ
2
mW

1
2

nm.

Using (2.2.4), we get
∞

∑
m=l+1

τ
2
mW

1
2

nm .
1

W
1
2

nl+1

.

Hence

|αl|2 .
wnl

W
1
2

nl+1

∞

∑
j=l+1

|c j|2W
− 1

2
n j .

This gives us
∞

∑
l=1
|αl|2 .

∞

∑
j=1
|c j|2W

− 1
2

n j

j−1

∑
l=1

wnl

W
1
2

nl+1

,

and so (2.3.3) would follow if we could obtain

j−1

∑
l=1

wnl

W
1
2

nl+1

≤ cεW
1
2

n j (2.3.5)

for an absolute constant c.

Having singled out this goal, we proceed to consider (2.3.4). We note to begin

with that the Cauchy–Schwarz inequality gives(
∞

∑
l= j+1

|anl |wnl

|λn j |

)2

≤
∞

∑
l= j+1

|anl |
2wnl Q

1
2
nl−1

∞

∑
m= j+1

wnm

Q
1
2
nm−1|λnm|2

.

47



2 Two weight discrete Hilbert transforms

Now our goal will be to obtain

∞

∑
m= j+1

wnm

Q
1
2
nm−1|λnm|2

≤ cεQ
1
2
n j . (2.3.6)

Indeed, this would imply

∞

∑
j=1

(
∞

∑
l= j+1

|anl |wnl

|λnl |

)2

vn j . ε

∞

∑
j=1

vn jQ
1
2
n j

∞

∑
l= j+1

|anl |
2wnl Q

1
2
nl−1

= ε

∞

∑
l=1
|anl |

2wnl Q
1
2
nl−1

l−1

∑
j=1

vn jQ
1
2
n j .

By (2.2.4), we have
l−1

∑
j=1

vn jQ
1
2
n j .

1

Q
1
2
nl−1

,

and so it will suffice to have (2.3.6).

In order to obtain the two estimates (2.3.5) and (2.3.6) for every subsequence in

our finite splitting of Λ(0), we make a splitting according to the following algorithm:

(1) Let δ be a small positive number to be chosen later. Select those n for which

wn > δWn. If we choose Λ′ to consist of every N-th λn in the corresponding

subsequence of Λ(0), then we get

j−1

∑
l=1

wnl

W
1
2

nl+1

≤ 2
δN

W
1
2

n j

by again comparing the sum to the integral of the function x−
1
2 over the

interval from 0 to Wn j . Thus we achieve our goal if we choose N to be of the

order of magnitude 1/(δε).

(2) Return to those points λn j not selected in (1). For these we have wn j ≤ δWn j .

Group these points into blocks of points with consecutive indices such that

for each block

δ ≤∑
j

wn jW
−1
n j

< 2δ .

Construct new subsequences by picking every N-th block from this sequence
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2.3. Surjective discrete Hilbert transforms

of blocks. Then some elementary estimates, again using comparisons with an

integral, lead to the following inequality:

j−1

∑
l=1

wnl

W
1
2

nl+1

≤ 16δ

1− (1−2δ )N W
1
2

n j ,

where we sum over the new subsequence. Thus it would suffice if we choose

N to be roughly 1/δ and δ to be a suitable constant times ε .

(3) Take one of the subsequences selected in (1) or (2) and consider the subse-

quence of this subsequence, say Λ′= (λn j), along which wn j |λn j |−2 > δQn j .

If we select a new subsequence by picking every N-th λn j in the sequence

Λ′, then the sum in (2.3.6) becomes smaller than 2/(δN)Qn j by the same

argument as in (1). Again our goal is achieved if we choose N to be of the

order of magnitude 1/(δε).

(4) Take again one of the subsequences selected in (1) or (2) and consider those

subsequences of these for which we have wn j |λn j |−2 ≤ δQn j . Group the

points in these subsequences into blocks of points with consecutive indices

such that for each block

δ ≤∑
j

wn j |λn j |
−2Q−1

n j
< 2δ .

Now construct new subsequences by picking every N-th block from this

sequence of blocks. Then as in point (2) we get

∞

∑
m= j+1

wnm

Q
1
2
nm−1|λnm|2

≤ 16δ

1− (1−2δ )N Q
1
2
n j .

(Here the summation is again over the new subsequence.) We observe once

more that it would suffice if we choose N to be roughly 1/δ and δ to be a

suitable constant times ε .
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2 Two weight discrete Hilbert transforms

2.3.3 The splitting of Λ(V )

The splitting of Λ(V ) is almost identical to that of Λ(0). We will now use the estimate

|H(Λ′,w′);(Γ,v)a(γn)|2 ≥
1
2

|an j |2w2
n j

|λn j− γn|2
−2
∣∣∣∣ j−1

∑
l=1

anl wnl

λn j− γn

∣∣∣∣2−2
∣∣∣∣ ∞

∑
l= j+1

anl wnl

γn−λnl

∣∣∣∣2.
The reason we write ‘γn’ instead of ‘γn j ’ is that we need to sum over several annuli

Ωn in order to estimate the norm of ‖a‖w. Indeed, we may assume that λn j belongs

to a union of annuli Ωn, denoted by ∆ j, such that

∑
γn∈∆ j

vn

|λn j− γn|2
≥ 1

10
Vn j

|λ j|2
,

with the sets ∆ j being pairwise disjoint. Therefore, by the definition of Λ(V ), there

is a constant c such that

∑
γn∈∆ j

|an j |
2w2

n j

vn

|λn j− γn|2
≥ c|an j |

2wn j .

Hence we obtain

‖H(Λ′,w′);(Γ,v)a‖2
v ≥ c‖a‖2

w′−2
∞

∑
j=1

∑
γn∈∆ j

(∣∣∣∣ j−1

∑
l=1

anl wnl

λn j− γn

∣∣∣∣2 + ∣∣∣∣ ∞

∑
l= j+1

anl wnl

λn j− γn

∣∣∣∣2
)

vn j .

The splitting is then done in essentially the same way as above, repeating the

reasoning based on the estimate (2.3.2).

2.3.4 The splitting of Λ(P)

We use once more (2.3.3), but this time we may assume that λn j belongs to a union

of annuli Ωn, again denoted by ∆ j, such that

∑
γn∈∆ j

vn

|λn j− γn|2
≥ 1

10
Pn j ,

with the sets ∆ j being pairwise disjoint. Therefore, by the definition of Λ(P), there

is a constant c such that

∑
γn∈∆ j

|an j |
2w2

n j

vn

|λn j− γn|2
≥ c|an j |

2wn j .
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Hence we obtain

‖H(Λ′,w′);(Γ,v)a‖2
v ≥ c‖a‖2

w′−2
∞

∑
j=1

∑
γn∈∆ j

(∣∣∣∣ j−1

∑
l=1

anl wnl

λn j− γn

∣∣∣∣2 + ∣∣∣∣ ∞

∑
l= j+1

anl wnl

λn j− γn

∣∣∣∣2
)

vn j ,

and proceed as outlined in the previous paragraph.

2.4 Invertible discrete Hilbert transforms
We proceed now to our next main result, which is a general statement about invertible

discrete Hilbert transforms. The observation that leads to this result, is that the

inverse transformation, if it exists, can be identified effectively as another discrete

Hilbert transform.

To make a precise statement, we introduce the following terminology. We say

that a sequence Λ of distinct points in (Γ,v)∗ is a uniqueness sequence for H(Γ,v) if

there is no nonzero vector a in `2
v such that H(Γ,v)a vanishes on Λ; we say that Λ is

an exact uniqueness sequence for H(Γ,v) if it is a uniqueness sequence for H(Γ,v),

but fails to be so on the removal of any one of the points in Λ. If Λ is an exact

uniqueness sequence for H(Γ,v), then we say that a nontrivial function G defined

on (Γ,v)∗ is a generating function for Λ if G vanishes on Λ but, for every λ j in Λ,

there is a nonzero vector a( j) in `2
v such that

G(z) = (z−λ j)H(Γ,v)a
( j)(z)

for every z in (Γ,v)∗. It is clear that if a generating function exists, then it is unique

up to multiplication by a nonzero constant.

We note that if Λ is an exact uniqueness sequence for H(Γ,v), then there exists

a unique element e = (en) in `2
v such that H(Γ,v);(Λ,w)e = (1,0,0, ...). We set

ν = (νn) and ϖ = (ϖ j), where

νn = vn|λ1− γn|2|en|2, (2.4.1)

ϖ1 = w−1
1 , and

ϖ j = w−1
j |λ j−λ1|−2

∣∣∣∣∣ ∞

∑
n=1

envn

(λ j− γn)2

∣∣∣∣∣
−2

, (2.4.2)

presuming the series appearing in the latter expression converges absolutely. We
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2 Two weight discrete Hilbert transforms

will see that, plainly, we have absolute convergence of this series whenever Λ admits

a generating function.

Our next result reads as follows.

Theorem 2.4.1. Suppose that every exact uniqueness sequence for H(Γ,v) ad-

mits a generating function. Let Λ be a sequence in (Γ,v)∗, and let w be the

Bessel weight sequence for Λ with respect to (Γ,v). Then H(Γ,v);(Λ,w) is an

invertible transformation if and only if

(1) Λ is an exact uniqueness sequence for H(Γ,v) and

(2) the transformations H(Γ,v);(Λ,w) and H(Λ,ϖ);(Γ,ν) are bounded.

Note that when we write ‘H(Λ,ϖ);(Γ,ν) is bounded’, it is implicitly understood

that Γ⊂ (Λ,ϖ)∗.

We may observe that if γn→ ∞ when n→ ∞, then the function

Φ(z) = (z−λ1)
∞

∑
n=1

envn

z− γn
, (2.4.3)

and its reciprocal Ψ = 1/Φ are meromorphic functions in C, and Φ is then the

generating function for Λ. We may then rewrite the expressions for ν and ϖ as

νn =
vn

|Ψ′(γn)|2
and ϖ j = w−1

j |Φ
′(λ j)|−2. (2.4.4)

Combining Theorem 2.4.1 with Theorem 2.2.1, we will obtain computable and

geometric invertibility criteria when Γ is a sparse sequence as defined by (2.2.1).

2.4.1 Proof of Theorem 2.4.1

It is clear that if the mapping H(Γ,v);(Λ,w) is invertible, then Λ is an exact uniqueness

sequence for H(Γ,v), which in turn implies that there is a unique element e = (en)

in `2
v such that H(Γ,v)e vanishes on Γ\{λ1} and takes the value 1 at λ1. Then

G(z) = (z−λ1)
∞

∑
n=1

envn

z− γn

is a generating function for Λ. Since by assumption G(λ j) = 0 for j > 1, we may

write

G(z) = G(z)−G(λ j) = (z−λ j)
∞

∑
n=1

envn(γn−λ1)

(γn−λ j)(z− γn)
,
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2.4. Invertible discrete Hilbert transforms

where on the right-hand side we have just subtracted the respective series that define

G(z) and G(λ j). Since G is a generating function for Λ, it follows that

∞

∑
n=1

|en|2|γn−λ1|2vn

|γn−λ j|2
< ∞.

In particular, the sequence

e( j) =

en
γn−λ1

γn−λ j

(
∞

∑
m=1

emvm(λ1− γm)

(λ j− γm)2

)−1


n

will be the unique vector in `2
v such that H(Γ,v)e( j)(λl) is 0 when l 6= j and 1 for

l = j.

To simplify the writing, we set

α j =

(
∞

∑
m=1

emvm(λ1− γm)

(λ j− γm)2

)−1

;

thus if b = (b1,b2, ...,bl,0,0, ...) is a sequence with only finitely many nonzero

entries, then the sequence

a =

(
en(γn−λ1)

l

∑
j=1

b jα j

γn−λ j

)
n

(2.4.5)

will be the unique vector in `2
v such that H(Γ,v);(Λ,w)a = b. This means that we

have identified a linear transformation, defined on a dense subset of `2
w, that must

be the inverse transformation to H(Γ,v);(Λ,w), should it exist. Hence, under the

assumption that Λ is an exact uniqueness sequence for H(Γ,v), a necessary and

sufficient condition for invertibility of H(Γ,v);(Λ,w) is that the linear transformation

defined by (2.4.5) extends to a bounded transformation on `2
w. An equivalent

condition is that the transformation H(Λ,ϖ);(Γ,ν) be bounded, where

νn = vn|λ1− γn|2|en|2

and

ϖ j = w−1
j

∣∣∣∣∣ ∞

∑
n=1

envn(λ1− γn)

(λ j− γn)2

∣∣∣∣∣
−2

= w−1
j |λ j−λ1|−2

∣∣∣∣∣ ∞

∑
n=1

envn

(λ j− γn)2

∣∣∣∣∣
−2

.
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2 Two weight discrete Hilbert transforms

In the final step, we used the definition of the sequence (en).

An interesting feature of our results for sparse sequences is that invertibility

implies that Λ is a perturbation of Γ, in a sense to be made precise. As a consequence,

we will see that there may exist bounded transformations H(Γ,v);(Λ,w) such that no

infinite subsequence Λ′ of Λ is also a subsequence of another sequence Λ′′ for

which the associated Hilbert transform is invertible.

2.4.2 Localization of Λ when Γ is a sparse sequence

We will for the rest of this section consider two interesting special cases. The main

point of this subsection will be that, although Λ may possibly have a nontrivial split-

ting into three sequences Λ(0), Λ(V ), Λ(P) (cf. the discussion in Subsection 2.2.2),

the invertibility of H(Γ,v);(Λ,w) forces the sequences Λ(V ) and Λ(P) to be trivial, in a

sense to be made precise.

We assume as before that Γ = (γn) is indexed by the positive integers, and that

the sequence is sparse in the sense that (2.2.1) holds. We retain the notation

Vn =
n−1

∑
m=1

vm and Pn =
∞

∑
m=n+1

vm

|γm|2

from the previous section. In the discussion below, the sets

Dn(v;M) =

{
λ ∈Ωn :

Mvn

|λ − γn|2
≥max

(
Vn

|λ |2
,Pn

)}
,

defined for every admissible weight sequence v and positive number M, will play an

essential role. If M is fixed and either vn = o(Vn) or vn/|γn|2 = o(Pn) when n→∞,

then these sets are essentially disks centered at γn with radii that are o(|γn|) when

n→ ∞. In such situations, the splitting of a sequence Λ into the three sequences

Λ(0), Λ(V ), Λ(P) may be nontrivial, in the sense that

Λ\
⋃
n

Dn(v;M)

may be an infinite sequence for every positive M.

We will assume that Λ = (λn) is a sequence disjoint from Γ, indexed by a

sequence of integers (n0,n0 +1,n0 +2, ...) and ordered such that the moduli |λn|
increase with n. For convenience, we assume that λn0 6= 0. The choice of n0 is
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2.4. Invertible discrete Hilbert transforms

made such that Λ is “aligned” with Γ. More precisely, we will say that Λ is a

v-perturbation of Γ if n0 can be chosen such that, for a sufficiently large M, λn is in

Dn(v;M) for all but possibly a finite number of indices n. If Λ is a v-perturbation

of Γ, it will be implicitly understood that n0 is chosen so that the two sequences are

“aligned” in this way.

A v-perturbation Λ of Γ will be said to be, respectively

� an exact v-perturbation of Γ if n0 = 1;

� a v-perturbation of Γ of deficiency n0−1 if n0 > 1;

� a v-perturbation of Γ of excess 1−n0 if n0 < 1.

The main results of this subsection are the following two local theorems.

Theorem 2.4.2. Suppose w is the Bessel weight sequence for Λ with respect

to (Γ,v) and that vn = o(Vn) when n→∞. If, in addition, the transformation

H(Γ,v);(Λ,w) is invertible, then Λ is either an exact v-perturbation of Γ or a

v-perturbation of deficiency 1.

Theorem 2.4.3. Suppose w is the Bessel weight sequence for Λ with respect

to (Γ,v) and that vn/|γn|2 = o(Pn) when n→ ∞. If, in addition, the transfor-

mation H(Γ,v);(Λ,w) is invertible, then Λ is either an exact v-perturbation of Γ

or a v-perturbation of Γ of excess 1.

Note the contrast between these results and Theorem 2.2.7; Λ has no nontrivial

V -lacunary or P-lacunary subsequences when H(Γ,v);(Λ,w) is an invertible trans-

formation. We will see in the next subsection that, quite remarkably, all the three

cases—exactness, deficiency 1, and excess 1—may occur.

Proof of Theorem 2.4.2 and Theorem 2.4.3

The proof of the two theorems require several steps. In order to structure the

proof, we formulate each of the main steps as separate lemmas. Each lemma is in

fact of independent interest. We begin with a simple estimate, to be used repeatedly

in what follows. It concerns the quantity
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ρn =
n

∏
m=max(1,n0)

|γm|2

|λm|2
,

which will appear prominently in our conditions for invertibility. We use again the

notation introduced in (2.3.1), i.e., we set

Wn =
n−1

∑
m=n0

wm and Qn =
∞

∑
m=n+1

wm

|λm|2
.

Lemma 2.4.4. If Λ is a v-perturbation of Γ and |γn| ' |λn|, then we have

both ∣∣∣∣log
ρm

ρn

∣∣∣∣2 . (Vm+1−Vn+1)(Qn−Qm) (2.4.6)

and ∣∣∣∣log
ρm

ρn

∣∣∣∣2 . (Wm+1−Wn+1)(Pn−Pm) (2.4.7)

when m > n. If, in addition, either vn = o(Vn) or vn/|γn|2 = o(Pn) when

n→ ∞, then logρn = o(n) when n→ ∞.

Proof. Since |γn| ' |λn|, we have∣∣∣∣ log
ρm

ρn

∣∣∣∣= 2
∣∣∣∣ m

∑
l=n+1

log
|γl|
|λl|

∣∣∣∣ ≤ 2
m

∑
l=n+1

log
(

1+
∣∣∣1− |γl|
|λl|

∣∣∣)
.

m

∑
l=n+1

∣∣∣∣1− |γl|
|λl|

∣∣∣∣. (2.4.8)

Hence, by the Cauchy–Schwarz inequality, we get∣∣∣∣log
ρm

ρn

∣∣∣∣2 . m

∑
l=n+1

vl

m

∑
j=n+1

|γ j−λ j|2

v j|λ j|2
,

which is the desired estimate (2.4.6) since w j ' |λ j− γ j|2/v j. Another appli-

cation of the Cauchy–Schwarz inequality to (2.4.8) gives∣∣∣∣log
ρm

ρn

∣∣∣∣2 . m

∑
l=n+1

|γl−λl|2

vl

m

∑
j=n+1

v j

|γ j|2
,

which is the second estimate (2.4.7).
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Finally, starting again from (2.4.8) and using the Cauchy–Schwarz inequal-

ity a third time, we get

| logρn|2 . n
n

∑
l=max(1,n0)

|γl−λl|2

|λl|2
. n

n

∑
l=max(1,n0)

min
(

vl

Vl
,

vl

|γl|2Pl

)
,

where in the last step we used that Λ is a v-perturbation of Γ. This relation

gives the last statement in the lemma, namely that logρn = o(n) when either

vn = o(Vn) or vn/|γn|2 = o(Pn) as n→ ∞.

We next prove the following lemma, which is really a corollary to Theorem 2.2.1.

It also shows why the discs Dn(v;M) appear naturally in our study of invertible

discrete Hilbert transforms.

Lemma 2.4.5. Suppose that either vn = o(Vn) or vn/|γn|2 = o(Pn) when n→
∞. If, in addition, µ is a nonnegative measure on C with µ(Γ) = 0 and the

map H(Γ,v) is both bounded and bounded below from `2
v to L2(C,µ), then

there exist positive numbers M and δ such that∫
Dn(v;M)

vndµ(z)
|z− γn|2

≥ δ

for all but finitely many indices n.

Proof. Applying the assumption about boundedness below to any sequence

with only one nonzero entry, we find that there is a positive number σ inde-

pendent of n such that ∫
C

vndµ(z)
|z− γn|2

≥ σ

for every n. On the other hand, since |γn| grows at least exponentially and

H(Γ,v) is bounded from `2
v to L2(C,µ), we have

∞

∑
m=n+1

∫
Ωm

vndµ(z)
|z− γn|2

. vn

∞

∑
m=n+1

∫
Ωm

dµ(z)
|z|2

.min
(

vn

Vn
,

vn

|γn|2Pn

)
and

n−1

∑
m=1

∫
Ωm

vndµ(z)
|z− γn|2

.
vn

|γn|2
n−1

∑
m=1

∫
Ωm

dµ(z).min
(

vn

Vn
,

vn

|γn|2Pn

)
,
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which by assumption tend to 0 when n→ ∞. We also have∫
Ωn\Dn(v;M)

vndµ(z)
|z− γn|2

≤ 1
M

∫
Ωn

max
(

Vn

|λ |2
,Pn

)
dµ(z).

1
M
,

again using the condition for boundedness of the map H(Γ,v) : `2
v→ L2(C,µ).

The result follows with δ = σ/2 if we choose a sufficiently large M.

The preceding lemma shows that if the transformation H(Γ,v);(Λ,w) is invertible,

then Λ must contain a subsequence that is a v-perturbation of Γ. The next two

lemmas show that Λ itself must be a v-perturbation of Γ.

Lemma 2.4.6. Suppose that vn = o(Vn) when n→ ∞. If, in addition, Λ is an

exact v-perturbation of Γ, then Λ is a uniqueness sequence for H(Γ,v).

Proof. We argue by contradiction. So suppose there is a nonzero vector a =

(an) in `2
v such that H(Γ,v)a vanishes on Λ. This means that there is a nonzero

entire function J(z) such that
∞

∑
n=1

anvn

z− γn
= J(z)

∞

∏
m=1

1− z/λm

1− z/γm

for every z in C \Γ. Applying Cauchy–Schwarz on the left hand-side we

obtain ∣∣∣∣ ∞

∑
n=1

anvn

z− γn

∣∣∣∣2 ≤ ‖(am)‖2
v

(
Vn

|z|2
+

vn

|z− γn|2
+

vn+1

|γn+1|2

)
' ‖(am)‖2

v

(
Vn

|z|2
+

vn

|z− γn|2

)
. (2.4.9)

Note that in the estimation we used the fact that vn grows at most sub-

exponentially because of the assumption and hence vm/|γm|2 decays expo-

nentially. If we now choose M sufficiently large, then we have

Vn

|z|2
& |J(z)|2ρn

for z in Ωn \Dn(v;M). Since vn = o(Vn) when n→ ∞, the left-hand side is

bounded by e−δn for some positive δ , while, by Lemma 2.4.4, ρn = eo(n)
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when n→ ∞. Thus the maximum of |J(z)| in Ωn \Dn(v;M) tends to 0 when

n→ ∞, which is a contradiction unless J(z)≡ 0.

Lemma 2.4.7. Suppose that vn/|γn|2 = o(Pn) when n→ ∞. If, in addition,

Λ is a v-perturbation of Γ of excess 1, then Λ is a uniqueness sequence for

H(Γ,v).

Proof. We argue again by contradiction and assume that there is a nonzero

vector a = (an) in `2
v such that H(Γ,v)a vanishes on Λ. In this case, it follows

that there is a nonzero entire function J(z) such that
∞

∑
n=1

anvn

z− γn
= J(z)(z−λ0)

∞

∏
m=1

1− z/λm

1− z/γm

for every z in C \ Γ. As in the preceding proof, after applying Cauchy–

Schwarz on the left-hand side, if we choose M sufficiently large, we then

have
Pn & |J(z)|2|z|2ρn

for z in Ωn \ Dn(v;M). Since vn/|γn|2 = o(Pn) when n → ∞, we have

that Pn/|z|2 is bounded by e−δn for some positive number δ , while, by

Lemma 2.4.4, ρn = eo(n) when n → ∞. Thus the maximum of |J(z)| in

Ωn \ Dn(v;M) tends to 0 when n → ∞, which is a contradiction unless

J(z)≡ 0.

We finally prove two lemmas that, together with the previous three lemmas, give

the precise restrictions stated in Theorem 2.4.2 and Theorem 2.4.3 and complete

their proofs.

Lemma 2.4.8. Suppose that vn = o(Vn) when n→ ∞. If, in addition, Λ is a

v-perturbation of Γ of deficiency 2, then Λ is not a uniqueness sequence for

H(Γ,v).

Proof. We may write
c

(z− γ1)(z− γ2)

∞

∏
m=3

1− z/λm

1− z/γn
=

∞

∑
n=1

anvn

z− γn
+h(z),

where h is an entire function and
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|an|2v2
n '
|γn−λn|2

|γn|4
ρn.

Since Λ is a v-perturbation, we therefore get

∞

∑
n=1
|an|2vn .

∞

∑
n=1

ρn

|γn|2Vn
< ∞,

where in the final step we used that the ratio ρn/Vn grows at most sub-

exponentially. We then get

|h(z)|2 . ρn

|z|4
+

Vn

|z|2

when z is in Dn(v;M) with M sufficiently large. Using again that both ρn

and Vn grow at most sub-exponentially, we have that h(z)→ 0 when z→ ∞,

which means that h≡ 0.

Lemma 2.4.9. Suppose that vn/|γn|2 = o(Pn) when n→∞. If, in addition, Λ

is a v-perturbation of Γ of deficiency 1, then Λ is not a uniqueness sequence

for H(Γ,v).

Proof. In this case, we may write

c
z− γ1

∞

∏
m=2

1− z/λm

1− z/γm
=

∞

∑
n=1

anvn

z− γn
+h(z),

where h is an entire function and

|an|2v2
n '
|γn−λn|2

|γn|2
ρn.

Since Λ is a v-perturbation, we get
∞

∑
n=1
|an|2vn .

∞

∑
n=1

ρn

|γn|2Pn
< ∞,

where we now used that the ratio ρn/Pn grows at most sub-exponentially. It

follows that

|h(z)|2 . ρn

|z|2
+Pn

when z is in Dn(v;M) with M sufficiently large. We conclude that h(z)→ 0
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when z→ ∞, which means that h≡ 0.

2.4.3 Geometric criteria for invertibility of H(Γ,v);(Λ,w)

After the preliminary results of the previous subsection, we may now state our

geometric conditions for invertibility of H(Γ,v);(Λ,w) when Γ is a sparse sequence.

We begin with the case when vn = o(Vn) as n→ ∞.

Theorem 2.4.10. Suppose w is the Bessel weight sequence for Λ with respect

to (Γ,v) and that Vn→ ∞ and vn = o(Vn) when n→ ∞. Then the transforma-

tion H(Γ,v);(Λ,w) is invertible if and only if

sup
n≥1

VnQn < ∞ (2.4.10)

and one of the following two conditions holds:

(1) Λ is an exact v-perturbation of Γ and there are positive constants C

and δ such that
ρm

ρn
≤C

(
Vm

Vn

)1−δ

(2.4.11)

whenever m > n.

(2) Λ is a v-perturbation of Γ of deficiency 1 and there are positive con-

stants C and δ such that

ρm

ρn
≥C

(
Vm

Vn

)1+δ

(2.4.12)

whenever m > n.

It is quite remarkable that the essential quantitative conditions for invertibility,

found in (1) and (2), only depend on the moduli of the complex numbers γn/λn,

and beautifully interconnected with the weight sequence (vn). As will be explained

in the next chapter, the result gives a geometric characterization of Riesz bases of

normalized reproducing kernels in some spaces of meromorphic functions of which

the de Branges spaces are leading examples.

We note that in the case when

61



2 Two weight discrete Hilbert transforms

∞

∑
n=1

vn < ∞,

the result is much simpler and less delicate. Then, as can be seen from the proof of

part (1) of Theorem 2.4.10, the following consequence holds.

Corollary 2.4.11. Suppose w is the Bessel weight sequence for Λ with re-

spect to (Γ,v) and the sequence (vn) is summable. Then the transformation

H(Γ,v);(Λ;w) is invertible if and only if Λ is an exact v-perturbation of Γ and

sup
n≥1

Qn < ∞.

In the case when vn/|γn|2 = o(Pn), we have the following counterpart to Theo-

rem 2.4.10.

Theorem 2.4.12. Suppose w is the Bessel weight sequence for Λ with respect

to (Γ,v) and that vn/|γn|2 = o(Pn) when n→ ∞. Then the transformation

H(Γ,v);(Λ,w) is invertible if and only if

sup
n≥1

WnPn < ∞

and one of the following two conditions holds:

(1) Λ is an exact v-perturbation of Γ and there are positive constants C

and δ such that
ρm

ρn
≥C

(
Pm

Pn

)1−δ

(2.4.13)

whenever m > n.

(2) Λ is a v-perturbation of Γ of excess 1 and there are positive constants

C and δ such that
ρm

ρn
≤C

(
Pm

Pn

)1+δ

(2.4.14)

whenever m > n.

There is a slight lack of symmetry between the two theorems; while it may happen

that supnVn < ∞, we will always have that Pn→ 0. Therefore, no precaution is

needed concerning the decay of Pn.
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2.4.4 Kadets’-1/4 type stability results

We will now show how the above two results can be used to obtain results similar

to Kadets’-1/4 theorem for complex exponentials [54]. We note that the Lp version

of the Kadets’-1/4 theorem can be found in [61] where a complete description of

the complete interpolating sequences for the Paley–Wiener space is obtained.

Corollary 2.4.13. Suppose that both vn = o(Vn) and Vn → ∞ when n→ ∞,

and write Γ= (γn) and Λ= (λn), with both sequences indexed by the positive

integers. Moreover, assume that there exists a positive constant C such that

|γn−λn|
|γn|

≤C
vn

Vn
(2.4.15)

for every positive integer n.

(1) If, in addition, there is a real constant c < 1/2 such that

|γn|
|λn|
−1≤ c

vn

Vn

for all sufficiently large n, then H(Γ,v);(Λ,w) is an invertible transforma-

tion.

(2) If, on the other hand, there is a positive constant c > 1/2 such that

|γn|
|λn|
−1≥ c

vn

Vn

for all sufficiently large n, then H(Γ,v);(Λ(1),w(1)) is an invertible transfor-

mation, where Λ(1) = (λ2,λ3, ...) and w(1) = (w2,w3, ...).

It follows from (2.4.15) that H(Γ,v);(Λ,w) is a bounded transformation, while

the respective conditions in (1) and (2) imply that the inverse transformations are

bounded, subject to the proviso that, when (2) holds, one point be removed from Λ.

This rather puzzling result can be seen as an analogue of the Kadets’-1/4 theorem

for complex exponentials. We note that if we have the precise relation

|γn|
|λn|
−1 =

1
2

vn

Vn
, (2.4.16)
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then neither H(Γ,v);(Λ,w) nor H(Γ,v);(Λ(1),w(1)) is an invertible transformation (see the

next example below). Another curious point is that if we replace the condition that

Vn→ ∞ by the assumption that supnVn < ∞, then (2.4.15) automatically implies

that H(Γ,v);(Λ,w) is an invertible transformation.

To arrive at the results stated in the corollary, we note that if

|γn−λn|
|λn|

.
vn

Vn
,

then

Qn =
∞

∑
m=n+1

wm

|λm|2
.

∞

∑
m=n+1

vm

V 2
m+1
≤ 1

Vn+1
,

where in the last step we compared the sum with the integral of 1/x2 from Vn+1 to

∞. We also have, assuming |γn|/|λn|−1≤ cvn/Vn, that

log
ρm

ρn
≤ 2c

(
1+o(1)

) m

∑
j=n+1

vl

Vl
= 2c

(
1+o(1)

)
log

Vm

Vn
(2.4.17)

when m > n and n→ ∞. In view of Theorem 2.4.10, this gives part (1) of the

corollary; part (2) follows by the same argument, with the inequality in (2.4.17)

reversed.

We now construct an example to show that when (2.4.4) holds the invertibility of

the operators in the corollary may fail.

Example 4. For each n, we set γn = 2n and vn = 1. Then if we consider a

sequence of real points Λ = (λn) where

λn =
(n−1)2n+1

2n−1
,

then Λ satisfies (2.4.15). But from a simple computation, it follows that

neither (2.4.11) nor (2.4.12) holds.

We have the following statement, in complete analogy with Corollary 2.4.13 and

with the same proof:

Corollary 2.4.14. Suppose that vn/|γn|2 = o(Pn) when n→ ∞ and that

sup
n≥1

WnPn < ∞.
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(1) If, in addition, Λ is an exact v-perturbation of Γ and there is a real

constant c < 1/2 such that

|λn|
|γn|
−1≤ c

vn

|γn|2Pn

for all sufficiently large n, then H(Γ,v);(Λ,w) is an invertible transforma-

tion.

(2) If, on the other hand, Λ is a v-perturbation of Γ of excess 1 and there

is a positive constant c > 1/2 such that

|λn|
|γn|
−1≥ c

vn

|γn|2Pn

for all sufficiently large n, then H(Γ,v);(Λ,w) is an invertible transforma-

tion.

In the next two subsections, we will present the proof of Theorem 2.4.10; the

proof of Theorem 2.4.12 is completely analogous and will therefore be omitted.

2.4.5 Proof of Theorem 2.4.10

In addition to the results of Subsection 2.4.2, we will need the following simple

facts.

Lemma 2.4.15. Let c = (cn) be a sequence of positive numbers.

(i) If there is a constant C such that
n−1

∑
m=1

cm ≤Ccn

for n> 1, then there is a positive constant δ such that cm/cn≥C2δ (m−n)

whenever m > n.

(ii) If there is a constant C such that
∞

∑
m=n+1

cm ≤Ccn

for every positive integer n, then there is a positive constant δ such that

cm/cn ≤C2−δ (m−n) whenever m > n.
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Proof. We consider (i). The assumption implies that

Ncn−1 ≤ N
n−1

∑
m=1

cm ≤C
n+N−1

∑
m=n

cm ≤C2cn+N.

which means that if we choose N > 2C2, then cn+ j(N+1) ≥ 2 jcn. The result

follows if we choose δ = 1/(N +2).

To prove (ii), we again apply the assumption which implies

Ncn−1 ≤ N
∞

∑
m=n−1

cm ≤C
n−2+2N

∑
m=n−2+N+1

cm ≤C2Cn−2+N

and the rest can be performed in a similar way as in (i).

Proof of the necessity of the conditions in Theorem 2.4.10

We turn to the proof of the necessity of the conditions in Theorem 2.4.10. Thus we

begin by assuming that H(Γ,v);(Λ,w) is an invertible transformation. Since this means

that, in particular, H(Γ,v);(Λ,w) is a bounded transformation, we must have

sup
n≥1

VnQn < ∞.

Also, in view of Theorem 2.4.2, we already know that Λ is either an exact v-

perturbation of Γ or a v-perturbation of Γ of deficiency 1. Thus it remains only to

establish the necessity of the conditions in parts (1) and (2), under the respective

assumptions of exactness and deficiency 1.

We treat the two cases separately:

(1) Λ is an exact v-perturbation of Γ.

Since vn = o(Vn), the weight sequence w = (wn) defined by (2.2.20) satisfies

wn '
|γn−λn|2

vn
. (2.4.18)

As a consequence, we now obtain simple estimates for the weight sequences ν =

(νn) and ϖ = (ϖ j) appearing in Theorem 2.4.1.

We begin by noting that if Λ is a v-perturbation of Γ and an exact uniqueness
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sequence for H(Γ,v), then there is a constant c such that

∞

∑
n=1

envn

z− γn
=

c
z− γ1

∞

∏
m=2

1− z/λm

1− z/γn
(2.4.19)

for every z in C\Γ, where again e = (en) is the vector such that H(Γ,v);(Λ,w)e =

(1,0,0, ...). Indeed, the expression on the left-hand side can have zeros only at the

points λm for m > 1, since Λ is assumed to be an exact uniqueness sequence for

H(Γ,v). From (2.4.19) we obtain

|en|2v2
n '
|λn− γn|2

|λn|2
ρn,

and, therefore, using (2.4.1) and (2.4.18), we obtain

νn ' wnρn. (2.4.20)

On the other hand, differentiating (2.4.19) at z = λn, we get∣∣∣∣∣ ∞

∑
l=1

elvl

(λn− γl)2

∣∣∣∣∣' |γn|
|λn|2|λn− γn|

n−1

∏
m=1

|γm|
|λm|

.

Thus using (2.4.2) and again (2.4.18), we obtain

ϖn ' vnρ
−1
n . (2.4.21)

To simplify the writing, we set

V (ρ,0)
n =

n−1

∑
m=1

vmρ
−1
m and P(ρ,0)

n =
∞

∑
m=n+1

vm|λm|−2
ρm−1

as well as

W (ρ,0)
n =

n−1

∑
m=1

wnρn and Q(ρ,0)
n =

∞

∑
m=n+1

wnρn|λn|−2.

By Theorem 2.4.1 and Theorem 2.2.1, we must have

sup
n≥1

V (ρ,0)
n Q(ρ,0)

n < ∞;

we will now show that the estimate in part (1) is a consequence of this condition.

We set n1 = 2 and define n j inductively by requiring Vn j+1−1/Vn j < 2 ≤
Vn j+1/Vn j . By (2.4.6) of Lemma 2.4.4 and the uniform boundedness of VnQn,
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it follows that there are constants c and C such that c < ρn/ρm ≤C when n and m

both lie in the interval [n j,n j+1]. Hence we have

V (ρ,0)
n j '

j

∑
l=1

Vnl ρ
−1
nl

. (2.4.22)

Now if

Qn j−Qn j+1 ≥
ε

Vn j+1

, (2.4.23)

then our condition supnV (ρ,0)
n Q(ρ,0)

n < ∞ and (2.4.22) imply that there exists a

constant C such that
j

∑
l=1

Vnl ρ
−1
nl
≤CVn j+1ρ

−1
n j+1

. (2.4.24)

If, on the other hand, we have

Qn j−Qn j+1 <
ε

Vn j+1

,

then an application of (2.4.2) of Lemma 2.4.4 gives ρn j+1/ρn j ≤ 5/4 if ε is

sufficiently small. Hence we have
Vn j+1ρn j

Vn jρn j+1

≥ 8
5
,

which means that Vn jρ
−1
n j

increases exponentially on any set of consecutive integers

j for which (2.4.23) fails. Combining (2.4.24) with the latter estimate, we therefore

get that
j

∑
l=1

Vnl ρ
−1
nl
≤
(

5
8

C+
8
3

)
Vn j+1ρ

−1
n j+1

when (2.4.23) fails and ε is sufficiently small. Thus (2.4.24) holds for every index

j if the constant C is suitably adjusted. Hence, by part (i) of Lemma 2.4.15, there

exists a constant C such that

ρn j+l

ρn j

≤C
Vn j+l

Vn j

2−δ l ≤C

(
Vn j+l

Vn j

)1−δ/2

,

where in the last step we used that Vn j+1/Vn j ≤ 4 for sufficiently large j. We are

done since it suffices to establish (2.4.11) for n = n j and m = n j+l .
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(2) Λ is a v-perturbation of Γ of deficiency 1

As in the previous case, we begin by finding estimates for the weight sequences

ν = (νn) and ϖ = (ϖ j) appearing in Theorem 2.4.1. If Λ is a v-perturbation of Γ

of deficiency 1 and an exact uniqueness sequence for H(Γ,v), then there is a constant

c such that
∞

∑
n=1

envn

z− γn
=

c
(z− γ1)(z− γ2)

∞

∏
m=3

1− z/λm

1− z/γn

for every z in C\Γ, where again e = (en) is the vector such that H(Γ,v);(Λ,w)e =

(1,0,0, ...). Arguing in the same way as in the preceding case, we obtain from this

relation the estimates

νn ' wnρn|γn|−2 (2.4.25)

and

ϖn ' vnρ
−1
n |γn|2. (2.4.26)

We now set

V (ρ,1)
n =

n−1

∑
m=1

vn|γn|2ρ
−1
n and P(ρ,1)

n =
∞

∑
m=n+1

vnρn

as well as

W (ρ,1)
n =

n−1

∑
m=1

wn|γn|−2
ρn and Q(ρ,1)

n =
∞

∑
m=n+1

wn|γn|−4
ρn.

By Theorem 2.4.1 and Theorem 2.2.1, we must have

sup
n≥1

W (ρ,1)
n P(ρ,1)

n < ∞

; we will now show that also the estimate in part (2) is a consequence of this

condition.

We let the sequence (n j) j be as above and find that

P(ρ,1)
n j '

∞

∑
l= j+1

Vnl ρ
−1
nl

(2.4.27)
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whenever j ≥ 1. Now if

Qn j+1−Qn j ≥
ε

Vn j+1

, (2.4.28)

then it follows from the condition supnW (ρ,1)
n P(ρ,1)

n < ∞ and (2.4.27) that

∞

∑
l= j+1

Vnl ρ
−1
nl
.Vn jρ

−1
n j

. (2.4.29)

As in the preceding case, we find that, if ε is sufficiently small, then Vn jρ
−1
n j

increases exponentially on any set of consecutive integers j for which (2.4.28) fails.

The relation (2.4.27) implies that no such set is infinite; thus there is an infinite

sequence of indices n j for which (2.4.29) holds, and there must in fact be a uniform

bound on the number of points found in any set of consecutive integers j for which

(2.4.28) fails. We may infer from this argument that in fact (2.4.29) holds for every

index n j ≥ 1. Finally, we invoke part (ii) of Lemma 2.4.15, which implies that there

is a constant C such that

ρn j+l

ρn j

≥C
Vn j+l

Vn j

2δ l ≥C

(
Vn j+l

Vn j

)1+δ

,

and we are done since it suffices to establish (2.4.12) for n = n j and m = n j+l .

Proof of the sufficiency of the conditions in Theorem 2.4.10

We begin by noting that the condition

sup
n≥1

VnQn < ∞

implies that H(Γ,v);(Λ,w) is a bounded transformation. Indeed, (2.2.3) in Theo-

rem 2.2.1 holds trivially when

µ =
∞

∑
n=1

wnδλn.

We also have
Wn .

|γn|2

Vn
and Pn .

vn

|γn|2

by the assumptions that vn = o(Vn) and supnVnQn < ∞. Therefore, Theorem 2.2.1

allows us to conclude that H(Γ,v);(Λ,w) is a bounded transformation.

We will now use Theorem 2.4.1 and show that the respective conditions in part
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(1) and part (2) in Theorem 2.4.10 imply those in Theorem 2.4.1. The sequence

(n j) j will be the same as in the previous subsection.

(1) Λ is an exact v-perturbation of Γ

We already know from Lemma 2.4.6 that if Λ is an exact v-perturbation of Γ, then Λ

is a uniqueness sequence for H(Γ,v). To check that Λ is in fact an exact uniqueness

sequence for H(Γ,v), we note that we may write

c
z− γ1

∞

∏
m=2

1− z/λm

1− z/γn
=

∞

∑
n=1

anvn

z− γn
+h(z),

where h is an entire function and

|an|2vn '
wn

|γn|2
ρn.

By the assumption that supnVnQn < ∞, we have

∞

∑
n=1
|an|2vn .

∞

∑
j=1

ρn j

Vn j

,

which, in view of (2.4.11), implies that (an) is in `2
v . In particular, we then have

|h(z)|2 . ρn

|z|2
+

Vn

|z|2

when z is in Dn(v;M) with M sufficiently large. Thus h(z)→ 0 when z→ ∞

which means that h≡ 0.

It remains only to verify that H(Λ,ϖ);(Γ,ν) is a bounded transformation. By

Theorem 2.2.1, we need to show that we have both

sup
n≥1

W (ρ,0)
n P(ρ,0)

n < ∞ and sup
n≥1

V (ρ,0)
n Q(ρ,0)

n < ∞.

To this end, we note that since ρn can only grow sub-exponentially, we have

sup
n≥1

W (ρ,0)
n P(ρ,0)

n < ∞

by the same argument that gave supnWnPn < ∞. Since supnVnQn < ∞, we have

V (ρ,0)
n Q(ρ,0)

n . ∑
n j<n

Vn j

ρn j

ρn

Vn
;
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2 Two weight discrete Hilbert transforms

here the right-hand side is uniformly bounded whenever (2.4.11) holds.

(2) Λ is a v-perturbation of Γ of deficiency 1

In view of Lemma 2.4.8, we will have that Λ is an exact uniqueness sequence for

H(Γ,v) if we can show that there is no nonzero a in `2
v such that H(Γ,v)a vanishes

on Λ. To show this, we assume to the contrary that such a sequence a exists. Then

there is a constant c such that
∞

∑
n=1

anvn

z− γn
=

c
z− γ1

∞

∏
m=2

1− z/λm

1− z/γn
. (2.4.30)

By estimating each side of (2.4.30) for z in Dn(v;M) with M sufficiently large, we

get
Vn

∞

∑
m=1
|am|2vm & ρn.

But this is a contradiction, because (2.4.12) implies that ρn/Vn is an increasing

sequence.

It remains only to verify that H(Λ,ϖ);(Γ,ν) is a bounded transformation. To this

end, we note that

sup
n≥1

V (ρ,1)
n Q(ρ,1)

n < ∞

holds trivially because 1/ρn can only grow sub-exponentially, while

W (ρ,1)
n P(ρ,1)

n . ∑
n j<n

Pn j

ρn j

ρn

Pn
,

which is uniformly bounded when (2.4.12) holds.

2.5 Interplay between the growth of Γ and

“smoothness” of v

As remarked earlier, our methods used in the previous sections allow for a moderate

weakening of the growth condition (2.2.1), at least when the sequence (vn) is

sufficiently regular. In this section we will consider an example of such interplay

between the growth of the sequence Γ = (γn) and the “smoothness” of v = (vn). We

first note that for any given admissible pair sequence (γn,vn), if µ is a nonnegative
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2.5. Interplay between the growth of Γ and “smoothness” of v

measure on C with µ(Γ) = 0 and the operator H(Γ,v) is bounded from `2
v to

L2(C,µ), then the estimate

β
2
n =

∫
C

1
|z− γn|2

dµ(z).
1
vn

(2.5.1)

holds for each n. Thus condition (2.5.1) ( and hence (2.2.3)) remains in general

necessary independent of the growth of (γn). When the sequence (βn) has small

growth in the sense that it belongs to `2
v, the condition is sufficient as well. The

class of transforms for which this holds will be described in Section 3.2.3.

The goal is now to weaken the sparseness condition (2.2.1) on (γn) and compen-

sate it by instead requiring some sort of regularity from the weight sequence (vn).

In what follows we will replace (2.2.1) by the weaker condition

|γn+ j− γn| ≥ c
| j||γn|

nα
, (2.5.2)

whenever | j| ≤ nα , 0<α < 1 and a positive constant c independent of the positive

integer n. For convenience, we also set γ0 = 0. We observe that |γn|= exp(n1−α)

is an example of a sequence γn of “minimal” growth satisfying (2.5.2). Note that

if we allowed α = 0, then we would be back to the previous situation since in this

case |γn| grows at least exponentially. On the other hand, if we allowed α ≥ 1, then

the minimal growth of |γn| would be; power for α = 1 and logarithmic for α > 1,

and for such growth our general methods do not apply.

We further assume that the weight sequence vn satisfies a regularity condition3:

n2αv2n+ j .Vn, (2.5.3)

for | j| ≤ nα . We observe that vn can have at most a power growth when α ≤ 1
2 . The

growth of (vn) needs also to be “smooth”. For instance if we set vn = n whenever

n = 2m and 1 otherwise, then v does not satisfy condition (2.5.3). To see this, take

j = 0, and observe that

n2αv2n = 22αmv2m+1 = 2(2α+1)m+1 ' 2(2α+1)mV2m

which fails to satisfy (2.5.3) when m→ ∞.

With these a priori assumptions at hand, we ask as before the questions about

3Clearly, this condition is not optimal. A thorough investigation is awaiting.
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2 Two weight discrete Hilbert transforms

boundedness, invertibility and surjective decomposition of the operators H(Γ,v). In

this section, we will be only dealing with the boundedness problem. All the other

questions about surjective decomposition and invertibility properties of H(Γ,v) can

be dealt with in a similar manner.

Theorem 2.5.1. Suppose that the sequence Γ satisfies the sparseness condi-

tion (2.5.2) and v satisfies the regularity condition (2.5.3). If µ is a nonnega-

tive measure on C with µ(Γ) = 0, then the map H(Γ,v) is bounded from `2
v to

L2(C,µ) if and only if

sup
n≥1

∫
Ωn

vndµ(z)
|z− γn|2

< ∞ (2.5.4)

and

sup
n≥1

(
Vn ∑

m=n

∫
Ωm

dµ(z)
|z|2

+Pn

n

∑
m=1

µ(Ωm)

)
< ∞. (2.5.5)

The theorem draws a similar conclusion as Theorem 2.2.1 from a weaker hy-

pothesis on the growth of the sequence (γn), but with an additional restriction on

the variation of the sequence (vn). Obviously, the result falls short of addressing

all possible interplays between Γ and the weight sequence w. A comprehensive

smoothness condition for the weight sequences remains yet to be found or assumed.

Proof of Theorem 2.5.1

To prove the necessity of condition (2.5.5), we argue as in the proof of the

necessity of Theorem 2.2.1, i.e. we look at the sequence c(n) = (c(n)m ) so that

c(n)m = 1 for m < 2n and c(n)m = 0 otherwise. We observe that ‖c(n)‖2
v =V2n and

note that for z in Ωl and l ≥ 2n we have

|H(Γ,v)c
(n)(z)|2 =

∣∣∣∣2n−1

∑
m=1

vm

z− γm

∣∣∣∣2 & V 2
2n
|z|2

. (2.5.6)

Taking into account the boundedness of H(Γ,v), we deduce from this that

V2n &
∫
C
|H(Γ,v)c

(n)(z)|2dµ(z) =
∞

∑
k=1

∫
Ωk

∣∣∣∣2n−1

∑
m=1

vm

z− γm

∣∣∣∣2dµ(z)

& V 2
2n ∑

m≥2n

∫
Ωm

dµ(z)
|z|2

.
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2.5. Interplay between the growth of Γ and “smoothness” of v

The necessity of the remaining part of (2.5.5) can be handled in the same way.

We now turn to the proof of the sufficiency. We let (an) be a sequence in `2
v and

make, as before, the following estimate:∫
Ωn

|H(Γ,v)a(z)|2dµ(z) .

∫
Ωn

∣∣∣∣ ∑
m<n−nα

amvm

z− γm

∣∣∣∣2dµ(z)+

∫
Ωn

∣∣∣∣ ∑
| j|≤nα

an+ jvn+ j

z− γn+ j

∣∣∣∣2dµ(z)

+

∫
Ωn

∣∣∣∣ ∑
m>n+nα

amvm

z− γm

∣∣∣∣2dµ(z), (2.5.7)

which follows from the Cauchy–Schwarz inequality. Using the growth condition

(2.5.2), we further split the second integral on the right-hand side of (2.5.7) into∫
Ωn

|an|2v2
n

|z− γn|2
dµ(z)+

∫
Ωn

n2α

|z|2

(
∑

j: j 6=0, | j|≤nα

|an+ j|vn+ j

| j|

)2

dµ(z). (2.5.8)

Taking the sum with respect to n, we observe that the sum involving the first and

the third integrals on the right-hand side of (2.5.7) can be handled following the

same arguments used to establish (2.2.8) and (2.2.9). The sum over n of the first

term in (2.5.8) is bounded by a constant times ‖(an)‖2
v as follows by (2.2.3). The

remaining task is to show that

∞

∑
n=1

∫
Ωn

n2α

|z|2

(
∑

j,| j|≤nα

|an+ j|vn+ j

| j|+1

)2

dµ(z). ‖(an)‖2
v (2.5.9)

and
∞

∑
n=1

∫
Ωn

(
∑

m>n+nα

|am|vm

|z− γm|

)2

dµ(z). ‖(an)‖2
v. (2.5.10)

We first consider (2.5.9). Applying Cauchy–Schwarz and the regularity condition

(2.5.3), we obtain ∫
Ωn

n2α

|z|2

(
∑

j, | j|≤nα

|an+ j|vn+ j

| j|+1

)2

dµ(z)

.V[n/2] ∑
j, | j|≤nα

|an+ j|2vn+ j

∫
Ωn

dµ(z)
|z|2
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2 Two weight discrete Hilbert transforms

where [n/2] refers to the greatest integer not bigger than the number n/2. For

notational convenience, setting

τ
2
n =

∫
Ωn

|z|−2dµ(z)

as before, we note that
∞

∑
n= j

τ
2
n .

1
Vj

(2.5.11)

by our assumption (2.5.5). It follows that the double sum

∞

∑
n=1

τ
2
nV[n/2] ∑

j, | j|≤nα

|an+ j|2vn+ j

is bounded a constant times

∞

∑
l=0

sup
2l≤n≤2l+1

(
V[n/2] ∑

j, | j|≤nα

|an+ j|2vn+ j

)
2l+1

∑
n=2l

τ
2
n

.
∞

∑
l=0

sup
2l≤n≤2l+1

∑
j, | j|≤nα

|an+ j|2vn+ j . ‖(an)‖2
v,

where for the later estimate we used (2.5.11).
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3 Carleson measures and systems
of reproducing kernels

In this chapter we will translate our problems and main results from the preceding

chapter into statements about systems of reproducing kernels and Carleson measures

in certain Hilbert space of meromorphic functions, with particular emphasis on

applications to de Branges spaces and model subspaces of the Hardy space H2.

Descriptions of Carleson measures and Riesz bases of normalized reproducing

kernels for some of these spaces follow from those results. In particular, a connection

to the Feichtinger conjecture is pointed out, and we verify that for certain classes of

Hilbert spaces. While dealing with Carleson measures, the reproducing kernel thesis

is ubiquitous. It is proved that some of our solutions to the Carleson measure problem

may be explicitly interpreted as the statement that this thesis holds. Compactness and

Schatten class membership of the embedding maps induced by Carleson measures

are also considered. This and the next chapter are based on the papers [11, 12, 63].

3.1 A class of Hilbert spaces
We begin by recalling a few definitions that will be used quite often in the sequel.

Let H be a separable Hilbert space which consists of complex-valued functions

defined on some set Ω in C. We will say that a sequence Λ of distinct points in

Ω is a uniqueness sequence if no nonzero function in H vanishes on Λ; we say

that Λ is an exact uniqueness sequence for H if it is a uniqueness sequence for

H , but fails to be so on the removal of any one of the points in Λ. If Λ is an exact

uniqueness sequence for H , then we say that a nontrivial function G defined on Ω

is a generating function for Λ if G vanishes on Λ but, for every λ j in Λ, there is a

nonzero function g j in H such that
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3 Carleson measures and systems of reproducing kernels

G(z) = (z−λ j)g j(z) (3.1.1)

for every z in Ω. It is clear that if a generating function exists, it is unique up to

multiplication by a nonzero constant. If not, our assumption implies that there exists

a sequence of functions g j in H such that g j(λm) equals 0 when m 6= j and 1 for

m = j. If there exists another sequence of functions h j which satisfy (3.1.1), then

we observe that
g j−

1
h j(λ j)

h j ∈H

and vanishes on Λ and contradicts its uniqueness property.

We will assume that H satisfies the following three axioms:

(Ax1) H has a reproducing kernel kλ at every point λ in Ω, i.e., the point evaluation

functional kλ : f → f (λ ) is continuous in H for every λ in Ω.

(Ax2) Every exact uniqueness sequence for H admits a generating function.

(Ax3) There exists a sequence of distinct points Γ= (γn) in Ω such that the sequence

of normalized reproducing kernels SR(γn) constitutes a Riesz basis for H .

In addition, there is at least one point z in Ω\Γ for which kz 6= 0.

The second axiom (Ax2) may be viewed as a weak statement about the possibility

of dividing out zeros. To see this, we may observe that (Ax2) holds trivially if H

has the property that whenever f (λ ) = 0 for some f in H and λ in Ω, we have

that f (z)/(z−λ ) also belongs to H . Indeed, if Λ is an exact uniqueness sequence,

then there exists a unique function g j in H such that g j(λl) = 1 for l = j and 0

otherwise. We fix an index n0 and set G(z) = (z−λn0)gn0(z). It follows from the

the hypothesis that

fn(z) = G(z)/(z−λn) = gn0(z)+(λn−λn0)gn0(z)/(z−λn0)

also belongs to H .

On the other hand, (Ax2) and (Ax3) lead to a representation of functions in

H (see below) which shows that if λ is a point in Ω\Γ such that kλ 6= 0, then

f (z)/(z−λ ) is in H whenever f is in H and f (λ ) = 0. In general, however,

this division property need not hold at the accumulation points of Γ when we only

assume (Ax2).

A prime example of such spaces is the Paley–Wiener space PWπ . For this space,
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3.1. A class of Hilbert spaces

kλ (z) =
sinπ(z−λ )

π(z−λ )
.

Axiom (Ax3) is satisfied with an orthonormal basis of reproducing kernels associ-

ated with the sequence of integers(
sinπ(z−n)

π(z−n)

)
n∈Z

,

leading to what is known as the cardinal series or the Shannon sampling theorem.

We will give more examples of such spaces in the next chapter.

The Riesz basis SR(γn) has a biorthogonal basis, which we will call (gn). By

axiom (Ax2), we may write G(z) = cn(z− γn)gn(z) for some nonzero constant cn.

We use the suggestive notation G′(γn) for the value of G(z)/(z− γn) at γn. We

have G′(γn) 6= 0 because otherwise G(z)/(z−γn) would be identically zero, which

can only happen if all functions in H vanish at every point in Ω\Γ; this would

contradict the last part of (Ax3). By the uniqueness of the biorthogonal sequence

(gn), we now have

gn(z) =
G(z)

G′(γn)(z− γn)

for every n. The function G, which is unique up to a multiplicative constant, is the

generating function for Γ. We may assume that G does not vanish at any point λ

in Ω\ Γ, because then G(z)/(z−λ ) would be a vector in H vanishing at every

point in Γ. Hence G(z)/(z−λ ) would be identically zero, which again would be

in contradiction with the second part of (Ax3).

The sequence gn is also a Riesz basis for H (cf. [106], p. 29), and therefore

every vector h in H can be written as

h(z) = ∑
n

h(γn)
G(z)

G′(γn)(z− γn)
, (3.1.2)

where the sum converges with respect to the norm of H and

‖h‖2
H '∑

n

|h(γn)|2

‖kγn‖2
H

< ∞.

Since point evaluation at every point z is a bounded linear functional, (3.1.2) also
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3 Carleson measures and systems of reproducing kernels

converges pointwise in Ω\Γ. Note that by (3.1.2) we have

h(z) = ∑
n

h(γn)

‖kγn‖H
·
‖kγn‖H G(z)

G′(γn)(z− γn)
,

and by the assumption that h 7→
(
h(γn)/‖kγn‖H

)
is a bijective map from H to

`2, it follows that

∑
n

‖kγn‖2
H

|G′(γn)|2|z− γn|2
< ∞ (3.1.3)

whenever z is in Ω\Γ. We set

vn =
‖kγn‖2

H

|G′(γn)|2

and observe that by the last part of axiom (Ax3), there is at least one such z in Ω\Γ.

Therefore, (3.1.3) implies that

∑
n

vn

1+ |γn|2
< ∞. (3.1.4)

We may now change our viewpoint: Given a sequence of distinct complex numbers

Γ = (γn) and a weight sequence v = (vn) that satisfy the admissibility condition

(3.1.4), we introduce the space H (Γ,v) consisting of all functions

f (z) =
∞

∑
n=1

anvn

z− γn

for which

‖ f‖2
H (Γ,v) =

∞

∑
n=1
|an|2vn < ∞,

assuming that the set (Γ,v)∗ is nonempty. Thus we obtain the value of a function

f in H (Γ,v) at a point z in (Γ,v)∗ by computing a discrete Hilbert transform.

We note that the inner product of functions f and g generated by `2
v-summable

sequences (an) and (bn) is

〈 f ,g〉H (Γ,v) =
∞

∑
n=1

anbnvn.

From the preceding discussion, we observe that the class of Hilbert space H

introduced above is isometric to some space of meromorphic functions in Ω. We
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3.2. Carleson measures in H (Γ,v)

summarize all these observations as follows.

Proposition 3.1.1. Let H and Ω be as above, and Γ = (γn) consisting of

distinct points in Ω such that SR(γn) is a Riesz basis in H . Then there exist a

generating function G in Hol(Ω)1 and a positive weight sequence (vn) such

that
f ∈H ⇔ f (z) = G(z)

∞

∑
n=1

anvn

z− γn
, (3.1.5)

and ‖ f‖2
H ' ∑

∞
n=1 |an|2vn for some `2

v- summable sequence (an).

In other words, the space H (Γ,v) introduced above coincides with H /G, and

both spaces consist of functions in Ω with simple poles contained in the sequence

Γ. From now on, H (Γ,v) will be our natural object to study.

3.2 Carleson measures in H (Γ,v)

Carleson measures have proved to be objects of fundamental importance in

the study of function spaces since they were introduced in the late 1950’s by

L. Carleson [26] for studying the problem of interpolation by bounded analytic

functions. They play an important role harmonic analysis, complex analysis and

partial differential equations. In this section we will discuss these objects in the

spaces H (Γ,v).

We say that a nonnegative measure µ on (Γ,v)∗ is a Carleson measure for

H (Γ,v) if the inequality∫
(Γ,v)∗

| f (z)|2dµ(z). ‖ f‖2
H (Γ,v)

holds for every f in H (Γ,v). It is now immediate that µ is a Carleson measure

for H (Γ,v) if and only if the map H(Γ,v) is bounded from `2
v to L2

(
(Γ,v)∗,µ

)
. If

Γ satisfies the sparseness condition (2.2.1), then Theorem 2.2.1 describes all such

measures for H (Γ,v). Translating Theorem 2.2.7 to this setting gives all Bessel

sequences of normalized reproducing kernels in H (Γ,v). We also note that the

discrete version of Corollary 2.2.2 ensures the existence of a uniform bound on the

number of points from Λ found in each shell Ωn is both a necessary and sufficient

1Hol(Ω) denotes the class of holomorphic functions on Ω.
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3 Carleson measures and systems of reproducing kernels

condition for SR(Λ) to be a Bessel sequence.

Since the sparseness condition is the main tool in the development of this result it

is very unlikely that the result describes all the Carleson measures in H (Γ,v). In

fact, the necessity of the analogous conditions to (2.2.3) and (2.2.4) for the general

case has already been established in Theorem 1.4.1. The priori sparsity assumption

plays a crucial role in the proof of the converse statement. But we believe that even

these partial results give interesting information about the general problem.

3.2.1 Reproducing kernel thesis property in H (Γ,v)

It is not always easy to determine whether a given operator on a function space

possesses important properties, such as boundedness, compactness and Schatten

class membership. For reproducing kernel Hilbert spaces, one fruitful approach has

been to employ a small class of test functions, namely the reproducing kernels, such

that the operator’s properties may be determined by its action on these functions

alone. In general, there exists no reason why this should be true. But many important

results from harmonic analysis may be interpreted as examples of this phenomenon,

for example the Carleson measure theorem and Cohn’s [31] embedding result on

model subspaces generated by one-component inner functions fall into this.

On the other hand, as pointed in Section 1.3, Cohn’s embedding conjecture [30]

for all model subspaces which was later refuted by Nazarov and Volberg [69] serves

as an example that the property does not hold in general.

A natural problem for us is now whether our Carleson measure results on the

spaces H (Γ,v) could be interpreted as another example of this property. Alter-

natively stated, we are interested in whether conditions (2.2.3) and (2.2.4) can

be established by applying sequences of reproducing kernel test functions from

H (Γ,v). We are able to establish this whenever the weight sequence (vn) possess

some regularity conditions.

We first note that the reproducing kernel of H (Γ,v) at a point z in (Γ,v)∗ is

explicitly given by

kz(ζ ) =
∞

∑
n=1

vn

(z− γn)(ζ − γn)
; (3.2.1)

this is a direct consequence of the definition of H (Γ,v). Indeed, if gλ from

H (Γ,v),
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3.2. Carleson measures in H (Γ,v)

gλ (z) =
∞

∑
n=1

bλ
n vn

z− γn
,

stands for the kernel function at the point λ , then for any

f (z) =
∞

∑
n=1

anvn

z− γn

in H (Γ,v), we have

〈 f ,gλ 〉H (Γ,v) =
∞

∑
n=1

anbλ
n = f (λ ) =

∞

∑
n=1

anvn

λ − γn
.

This means that ∞

∑
n=1

anvn

(
bλ

n −
1

λ − γn

)
= 0

for all sequence an ∈ `2
v. This happens only if

bλ
n =

1

λ − γn
.

We could also directly observe the explicit expression for the kernel from the general

fact that every kernel function has the series expansion

kz = ∑
n

en(z)en

for any orthonormal basis (en) of the given space. In particular setting

en(z) = v
1
2
n /(z− γn),

an orthonormal basis in H (Γ,v), immediately gives (3.2.1) as required.

When Γ satisfies the sparsity condition (2.2.1), the norm of the reproducing kernels

at each point λ ∈Ωm, m > 1 can be estimated by

‖kλ‖2
H (Γ,v) =

∞

∑
n=1

vn

|λ − γn|2
' Vm

|λ |2
+

vm

|γm−λ |2
+Pm

' max
{

Vm|λ |−2, vm|γm−λ |−2, Pm
}
. (3.2.2)

Furthermore, for any point z, we may write

|kλ (z)|2 =
∣∣∣∣ vm

(λ − γm)(z− γm)
+

m−1

∑
n=1

vn

(λ − γn)(z− γn)
+

∞

∑
n=m+1

vn

(λ − γn)(z− γn)

∣∣∣∣2,
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and try to compare the three terms appearing here depending on the position of

λ relative to γn. We consider the case when vn grows at least exponentially and

vn|γn|−2 decreases exponentially with respect to n. We then pick a sequence of

points
(
λm
)

such that λm in Ωm is chosen sufficiently close to γm in such a way

that ∣∣kλm(z)
∣∣2 & v2

m
∣∣z− γm

∣∣−2∣∣λm− γm
∣∣2 (3.2.3)

uniformly holds for z ∈Ωm. Such a choice is possible since |λm− γm| can be made

as small as we wish while |z− γm| is bounded by

max
{
|γm− γm−1|/2, |γm− γm+1|/2

}
.

If µ is a Carleson measure for H (Γ,v), then an appeal to (3.2.2) and (3.2.3) leads

to

vm|γm−λm|−2 &
∫
C

∣∣kλm(z)
∣∣2dµ(z)&

∫
Ωm

v2
m
∣∣z− γm

∣∣−2∣∣λm− γm
∣∣2 dµ(z)

from which condition (2.2.3) and (2.2.11) follow. We now record this observation

into the following corollary.

Corollary 3.2.1. Suppose the sequence Γ satisfies the sparseness condition

(2.2.1) and that the numbers vn grow at least exponentially and that the num-

bers vn/|γn|2 decay at least exponentially with n. If µ is a nonnegative mea-

sure on C with µ(Γ) = 0, then the following are equivalent.

(i) The operator H(Γ,v) is bounded from `2
v to L2(C,µ).

(ii) µ is a Carleson measure for H (Γ,v).

(iii)

sup
n≥1

∫
Ωn

vndµ(z)
|z− γn|2

< ∞. (3.2.4)

(iv)

sup
λ∈(Γ,v)∗

‖kλ‖−2
H (Γ,v)

∫
C
|kλ (z)|2dµ(z)< ∞.
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3.2. Carleson measures in H (Γ,v)

3.2.2 Vanishing Carleson measures in H (Γ,v)

Among all bounded linear operators on Hilbert spaces, the compact ones have

many properties similar to those of finite rank transformations. In fact in such spaces,

every compact operator is a norm limit of a sequence of finite rank operators.

Our main objective in this part is to identify those Carleson measures µ for which

the embedding maps Iµ from H (Γ,v) into L2(C,µ) are compact. Whenever µ

induces such an embedding, we call it a vanishing or compact Carleson measure for

H (Γ,v). For the Hardy spaces H p, such measures have been characterized by a

simple geometric condition, namely that;

lim
l→0

µ(Q(x0, l))
l

= 0 (3.2.5)

for each squares of the form Q(x0, l) = {x+ iy∈C : x0 < x < x0+ l, 0 < y < l}.
This description can be equivalently stated in terms of reproducing kernels on H2

as
lim
|λ |→∞

∫
C

ℑλdµ(z)

|z−λ |2
= 0.

In the closed unit disc D, the corresponding measures were explicitly studied by

Power [83] and characterized by a similar geometric condition2.

Vanishing Carleson measures appear naturally in the study of compact com-

position operators in various function spaces. As far as their characterization is

concerned, there exists a general “folk theorem”: once the Carleson measures are

described by a certain “big oh” condition, vanishing Carleson measures are then

characterized by the corresponding “little oh” counterparts. From this perspective,

the natural candidates to characterize the vanishing Carleson measures in H (Γ,v)

would be ∫
Ωn

dµ(z)
|z− γn|2

= o(v−1
n ) (3.2.6)

n

∑
m=1

µ(Ωm) = o(P−1
n ) (3.2.7)

2The corresponding result on the disc could be read by simple change of variables. That is
η ∈ D⇔ z = z(η) = −i(η+1)

η−1 ∈ C+, and then dz = 2i
(η−1)2 dη .
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and
∞

∑
m=n

∫
Ωm

dµ(z)
|z|2

= o(V−1
n ) (3.2.8)

as n → ∞. It turns out that these are indeed the right conditions in the space

H (Γ,v). We note that since our space is reflexive, µ induces a compact embedding

if and only if each weakly convergent sequence in H (Γ,v) converges in norm in

L2(C,µ). The necessity of the above conditions can be easily verified. We may

first choose a sequence of test functions

qn(z) =
√

vn

z− γn
.

The sequence converges weakly to zero in H (Γ,v). This is a particular case of a

much more general statement which says that any orthonormal sequence in a Hilbert

space converges weakly to zero3. This along with compactness of µ yields

0 = lim
n→∞

∫
C
|qn(z)|2dµ(z)

from which the first condition (3.2.6) follows. To prove the necessity of the re-

maining conditions, we recall a few general facts. It is well known that a weakly

convergent sequence is uniformly norm bounded. In general, the converse statement

does not hold. But under additional assumption, the following particular case of

Nordgren’s [77] result holds.

Lemma 3.2.2. Let ( fn) be a sequence of functions in H (Γ,v). Then ( fn)

converges weakly to zero (weekly null) if and only if it converges pointwise

to zero and
sup

n
‖ fn‖H (Γ,v) < ∞. (3.2.9)

Next we consider a sequence of unit norm functions defined by

gn(z) =
1√
Pn

∞

∑
m=n+1

vm

γm(z− γm)
.

If z belongs to the shell ΩN, then |gn(z)| ' P
1
2

n whenever n > N and converges

pointwise to zero as n→ ∞. Thus by the above lemma, the sequence gn is weakly

null. Taking into account compactness of µ , we have
3This is an immediate consequence of Bessel property of orthonormal sequences.
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0 = lim
n→∞

∫
C
|gn(z)|2dµ(z)≥ lim

n→∞
Pn

n

∑
m=1

µ(Ωm)

from which (3.2.7) follows. On the other hand, If supnVn < ∞, then (3.2.8)

trivially holds for each Carleson measure µ. We shall thus consider the case when

Vn→ ∞ as n→ ∞. In this case, we may consider another sequence of unit norm

test functions

hn(z) =
1

V
1
2

n

n−1

∑
m=1

vm

z− γm
.

It can be easily verified that hn converges pointwise to zero, and by Lemma 3.2.2

it constitutes a weakly null sequence. If µ induces a compact embedding, we then

have
0 = lim

n→∞

∫
C
|hn(z)|2dµ(z)& lim

n→∞
Vn

∞

∑
k=n

∫
Ωk

dµ(z)
|z|2

,

which gives the remaining assertion in (3.2.7).

Theorem 3.2.3. Suppose that the sequence Γ satisfies the sparseness condi-

tion (2.2.1) and that v is an admissible weight sequence for Γ. A nonnegative

measure µ on C with µ(Γ) = 0 is a compact Carleson measure for H (Γ,v)

if and only if

lim
n→∞

∫
Ωn

vndµ(z)
|z− γn|2

= 0 (3.2.10)

and

lim
n→∞

(
Vn

∞

∑
m=n

∫
Ωm

dµ(z)
|z|2

+Pn

n

∑
m=1

µ(Ωm)

)
= 0. (3.2.11)

Proof. The “only if part” was already established in the previous paragraphs.

Assume conversely that the conditions (3.2.10) and (3.2.11) hold, and con-

sider a weakly null sequence

fn(z) =
∞

∑
m=1

an
mvm

z− γm

in H (Γ,v). Then an appeal to the classical Riesz representation theorem

gives that for each sequence (bm) in `2
v, we have

∞

∑
m=1

an
mvmbm −→ 0

87



3 Carleson measures and systems of reproducing kernels

whenever n→∞. Taking in particular b(l) =
(
b(l)m
)
= 1 for m = l and b(l)m = 0

otherwise implies

lim
n→∞
|an

m|vm = 0 (3.2.12)

for each m. We may first make the following splitting:

∞

∑
l=1

∫
Ωl

| fn(z)|2dµ(z) .
∞

∑
l=1

∫
Ωl

1
|z|2

( l−1

∑
m=1
|an

m|vm

)2

dµ(z)

+
∞

∑
l=1

∫
Ωl

|an
l |2v2

l
|z− γl|2

dµ(z)+
∞

∑
l=1

µ(Ωl)

(
∞

∑
m=l+1

|an
m|vm

|γm|

)2

,

which follows from Cauchy–Schwarz and the growth condition (2.2.1). It

suffices to show that each of the three right-hand sums converges to zero

when n→ ∞.

We first show that

lim
n→∞

∞

∑
l=1

∫
Ωl

|an
l |2v2

l
|z− γl|2

dµ(z) = 0. (3.2.13)

From (3.2.10), for each small ε > 0, there exists N for which∫
Ωl

vl

|z− γl|2
dµ(z)< ε

when l > N. It follows that

∞

∑
l=1

∫
Ωl

|an
l |2v2

l
|z− γl|2

dµ(z) .
N

∑
l=1
|an

l |2vl

∫
Ωl

vl

|z− γl|2
dµ(z)+ ε

∞

∑
l=N+1

|an
l |2vl

.
N

∑
l=1
|an

l |2vl + ε;

here we used (3.2.9) and (3.2.10). Taking the limit n→ ∞ in (3.2.14) and

invoking (3.2.12) leads to the desired conclusion (3.2.13).

We next prove that

lim
n→∞

∞

∑
l=1

∫
Ωl

1
|z|2

(
l−1

∑
m=1
|an

m|vm

)2

dµ(z) = 0. (3.2.14)

Here we only need to modify the arguments used to establish (2.2.8) in the
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previous chapter. We keep the notation τl from that chapter. By duality, we

have (
∞

∑
l=1

τ
2
l

(
l−1

∑
m=1
|an

m|vm

)2) 1
2

= sup
‖cl‖2`=1

∞

∑
l=1

τl|cl|
l−1

∑
m=1
|an

m|vm

≤ sup
‖cl‖2`=1

∞

∑
m=1
|an

m|vm

∞

∑
l=m+1

τl|cl|.

The Cauchy–Schwarz inequality applied to the last sum gives(
∞

∑
l=m+1

τl|cl|
)2

≤
∞

∑
l=m+1

τ
2
l V

1
2

l ∑
j=m+1

|c j|2V
− 1

2
j . (3.2.15)

By (3.2.11), we observe that for each ε > 0, there exists N1 for which

∑
l:2kVm<Vl≤2k+1Vm

τ
2
l V

1
2

l .
ε

2k/2V
1
2

m+1

for k ≥ 0 and m≥ N1. Summing these inequalities for m≥ N1, we get

∞

∑
l=m+1

τ
2
l V

1
2

l .
ε

V
1
2

m+1

. (3.2.16)

Combining (3.2.15) with (3.2.16), we find that

∞

∑
m=1

vm

(
∞

∑
l=m+1

τl|cl|
)2

=
N1

∑
m=1

vm

(
∞

∑
l=m+1

τl|cl|
)2

+
∞

∑
m=N1+1

vm

(
∞

∑
l=m+1

τl|cl|
)2

.
N1

∑
m=1

vm

Vm+1
∑

j=m+1
|c j|2V

− 1
2

j + ε

∞

∑
m=N1+1

vm

Vm+1

∞

∑
j=m+1

|c j|2V
− 1

2
j

.
N1

∑
m=1

vm

Vm+1
∑

j=m+1
|c j|2V

− 1
2

j︸ ︷︷ ︸
=C

+ε,
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where in the last inequality we used (2.2.10). To obtain (3.2.14), we see that

∞

∑
m=1
|an

m|2vm

∞

∑
m=1

(
∞

∑
l=m+1

τl|cl|
)2

. C
N1

∑
m=1
|an

m|2vm + ε

∞

∑
m=N1

|an
m|2vm

.
N1

∑
m=1
|an

m|2vm −→ 0

as n→ ∞ which follows from (3.2.12).

It remains to prove that

lim
n→∞

∞

∑
l=1

µ(Ωl)

(
∞

∑
m=l+1

|an
m|vm

|γm|

)2

= 0. (3.2.17)

We note to begin with that the Cauchy–Schwarz inequality gives

∞

∑
l=1

µ(Ωl)

(
∞

∑
m=l+1

|an
m|vm

|γm|

)2

≤
∞

∑
m=l+1

|an
m|2vmP

1
2

m−1

∞

∑
j=l+1

v j

P
1
2
j−1|γ j|2

.

Since
∞

∑
j=l+1

v j

P
1
2
j−1|γ j|2

≤
∫ Pl

0
x−

1
2 dx≤ 2P

1
2

l ,

it follows that

∞

∑
l=1

µ(Ωl)

(
∞

∑
m=l+1

|an
m|vm

|γm|

)2

.
∞

∑
l=1

µ(Ωl)P
1
2

l

∞

∑
m=l+1

|an
m|2vmP

1
2

m−1,

which becomes

∞

∑
l=1

µ(Ωl)

(
∞

∑
m=l+1

|an
m|vm

|γm|

)2

.
∞

∑
m=1
|an

m|2vmP
1
2

m−1

m−1

∑
l=1

µ(Ωl)P
1
2

l

when we change the order of summation. By (3.2.11), for each ε > 0, there

exists again an N2 for which for m≥ N2 it follows that

∑
l:2kPm−1≤Pl≤2k+1Pm−1

µ(Ωl)P
1
2

l .
ε

P
1
2

m−12k/2
.

90



3.2. Carleson measures in H (Γ,v)

Summing these inequalities with respect to k gives

m−1

∑
l=1

µ(Ωl)P
1
2

l .
ε

P
1
2

m−1

,

and we get
∞

∑
m=1
|an

m|2vmP
1
2

m−1

m−1

∑
l=1

µ(Ωl)P
1
2

l .
N2

∑
m=1
|an

m|2vm + ε

∞

∑
m=N2+1

|an
m|2vm

.
N2

∑
m=1
|an

m|2vm −→ 0

as n→ ∞ which again follows from (3.2.12).

Our next result provides a necessary condition for all compact operators acting

on H (Γ,v) in terms of the reproducing kernels when the weight sequence vn is

not summable. The question whether the converse statement holds remains open.

Proposition 3.2.4. Suppose the sparseness condition (2.2.1) holds and that

vn is not summable. If T is any compact operator from H (Γ,v) to a normed

space H, then
lim
|λ |→∞

∥∥T kλ/‖kλ‖H (Γ,v)
∥∥
H
= 0. (3.2.18)

Proof. We need to show that kλ/‖kλ‖H (Γ,v) converges weakly to zero

inH (Γ,v) as |λ | → ∞.

We shall verify Lemma 3.2.2. Assume λ ∈Ωm and z belongs to the shell Ωn

for some n < m. Then we estimate:

|kλ (z)|
‖kλ‖H (Γ,v)

.min
{
|λ − γm|

v
1
2
m

,
|λ |

V
1
2

m

,
1

P
1
2

m

}(
Vn

|λ ||z|
+

vn|λ |−1

|z− γn|
+

1
|λ |

m−1

∑
k=1

vk

|γk|
+

vm|γm|−1

|λ − γm|
+Pm

)
.

Expanding out the product, we obtain

|kλ (z)|
‖kλ‖H (Γ,v)

.
Vn

V
1
2

m |z|
+

vn

|z− γn|V
1
2

m

+
1

V
1
2

m

m−1

∑
k=1

vk

|γk|
+

v
1
2
m

|γm|
+P

1
2

m −→ 0

as m→ ∞(|λ | → ∞).
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Corollary 3.2.5. Suppose the sequence Γ satisfies the sparseness condition

(2.2.1) and that the numbers vn grow at least exponentially and that the num-

bers vn/|γn|2 decay at least exponentially with n. If µ is a nonnegative mea-

sure on C with µ(Γ) = 0, then the following are equivalent.

(i) µ is a compact Carleson measure for H (Γ,v).

(ii)

lim
n→∞

∫
Ωn

vndµ(z)
|z− γn|2

= 0.

(iii)

lim
|λ |→∞

∫
C
‖kλ‖−2

H (Γ,v)

∣∣kλ (z)
∣∣2dµ(z) = 0.

The corollary follow from the above proposition and the arguments used to

establish the thesis property in Corollary 3.2.1.

Because of the Open Mapping Theorem, H(Γ,v);(Λ,w) can not be both surjective

and compact. But (w j) could be still of the form in (2.2.20) under compactness.

The point is now whether the super-thin phenomenon associated to Bessel sequence

of normalized reproducing kernels in H (Γ,v), observed in Theorem 2.2.7, still

happens when H(Γ,v);(Λ,w) is a compact operator. By Theorem 3.2.3, more precisely

its discrete version, it follows that no such phenomena occurs in this case.

3.2.3 Schatten class membership

Another important class of operators is the trace ideals or the Schatten class.

It constitutes a special class of compact operators. Let T be a compact operator

between two separable Hilbert spaces H1 and H2. Then there exist orthonormal

bases (en) and (σn) of H1 and H2 respectively, and a null sequence of nonnegative

scalars (sn(T )) such that

T x = ∑
n

sn(T )〈x,en〉H1σn

for each x ∈H1. The sequence (sn(T )) constitutes the singular values (s-numbers)

of T,
sn(T ) = inf

{
‖T −K‖H1→H2, rank K≤ n−1

}
,
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which coincides with the eigenvalues of the positive operator (T ∗T )1/2 = |T | on

H1.
4 For p > 0, the Schatten class Sp(H1,H2) consists of all such operators T

for which the singular values sn(T ) forms a sequence in `p. If 1 ≤ p < ∞, then

Sp(H1,H2) is a Banach space equipped with the norm

‖T‖Sp =

(
∑
n
|sn(T )|p

)1/p

< ∞.

In particular, S2(H1,H2) and S1(H1,H2) represent the two most important

classes which are often referred to as Hilbert–Schmidt and trace class (nuclear)

operators respectively. If T belongs to the former class, then its norm can be

equivalently computed as

‖T‖S2 =

(
∑
n
‖Ten‖2

H2

) 1
2

(3.2.19)

with any orthonormal basis (en) of H1.

We refer to the monographs [43] and [107] for the basic facts about the Schatten

classes.

If T ∈ S1(H1,H1), we may define its trace as

tr(T ) = ∑
n
〈Ten,en〉H1 (3.2.20)

for any orthonormal basis (en) of H1. Note that the series converges absolutely and

is independent of the choice of the orthonormal basis (cf. [107], p. 19). In particular,

if T is positive, we further have

tr(T ) = ‖T‖S1.

A natural question of interest is to ask when a compact Carleson measure µ induces

a Schatten class embedding map Iµ from H (Γ,v) into L2(C,µ). Our answer

essentially depends on how fast the sequence of the integrals∫
C

vndµ(z)
|z− γn|2

decays. For p = 2, the next apparently well-known result, gives the precise quan-

4We note that sn(T ) can be defined for any bounded operator T. But sn(T )→ 0 if and only if T
is compact.
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tification as a particular case.

Theorem 3.2.6. Let Iµ be a bounded embedding map from a reproducing

kernel Hilbert space H into L2(Ω,µ). Then Iµ belongs to S2(H,L2(Ω,µ)) if

and only if

‖Iµ‖2
S2
=
∫

Ω

‖kz‖2
H dµ(z)< ∞.

This classical result classifies the Hilbert–Schmidt membership of Iµ in terms of

its actions on the reproducing kernels alone.

Proof. For completeness, we include a short proof of the theorem. We may

compute the series in (3.2.19) using any orthonormal basis (en) in H. That

is

‖Iµ‖2
S2

=
∞

∑
n=1
〈Iµen, Iµen〉L2(Ω,µ)

= lim
m→∞

m

∑
n=1

∫
Ω

|en(z)|2dµ(z)

=
∫

Ω

∞

∑
n=1
|en(z)|2dµ(z) =

∫
Ω

‖kz‖2
H dµ(z);

here we used the Lebesgue’s monotone convergence theorem to interchange

the sum and the integral signs.

An immediate consequence of this result is that if the sequences Γ and v

constitute an admissible pair and Γ satisfies the sparseness assumption (2.2.1),

then for any nonnegative measure µ on C with µ(Γ) = 0, we have that Iµ ∈
S2
(
H (Γ,v),L2(C,µ)

)
if and only if∫

C
‖kz‖2

H (Γ,v)dµ(z)'
∞

∑
m=1

∫
Ωm

(
Vm

|z|2
+

vm

|z− γm|2
+Pm

)
dµ(z)< ∞.

This is equivalent to saying that

∞

∑
m=1

∫
Ωm

vmdµ(z)
|z− γm|2

< ∞ (3.2.21)

∞

∑
m=1

Vm

∫
Ωm

dµ(z)
|z|2

< ∞ (3.2.22)
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and
∞

∑
m=1

Pmµ(Ωm)< ∞. (3.2.23)

In the case when the target space L2(C,µ) has a reproducing kernel, we obtain a

similar description of Hilbert–Schmidt embedding maps from the following general

result.

Theorem 3.2.7. Let T be a bounded operator from a Hilbert space H

into a reproducing kernel Hilbert subspace of L2(Ω,µ). Then T belongs to

S2(H,L2(Ω,µ)) if and only if

‖T‖2
S2
=
∫

Ω

‖T ∗kz‖2
H dµ(z)< ∞.

Proof. Let (en) be any orthonormal basis in H. We wish to show that the

series in (3.2.19) converges with the norm of the sequences computed in

L2(Ω,µ). We have that

‖T‖2
S2
=

∞

∑
n=1
‖Ten‖2

L2(Ω, µ) = lim
m→∞

m

∑
n=1
‖Ten‖2

L2(Ω, µ)

=
∫

Ω

∞

∑
n=1
|Ten(z)|2 dµ(z)

which follows by Lebesgue’s monotone convergence theorem. By the repro-

ducing property of the kernels, we obtain
∞

∑
n=1
|Ten(z)|2 =

∞

∑
n=1
|〈Ten,kz〉|2 =

∞

∑
n=1
|〈en,T ∗kz〉|2 = ‖T ∗kz‖2

H,

where the last equality is due to Parseval’s identity.

When we now turn to the discrete Hilbert transform H̃ considered in Section 1.4,

we have that H̃ ∈ S2(`
2
v, `

2
w) if and only if

∑
j
∑
n

w jvn

|λ j− γn|2
< ∞. (3.2.24)
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If the sequence (γn) satisfy the growth condition (2.2.1), then (3.2.24) simplifies to

∑
j

w jv j

|λ j− γ j|2
< ∞

and

∑
j

w j

(
Vj

|λ j|2
+Pj

)
< ∞.

To prove our next main results, we need the following general result ( [107], p.

20–21).

Lemma 3.2.8. Let H1 and H2 be Hilbert spaces and T : H1 7→ H2 be a

compact operator. Then for each p > 0, the following are equivalent.

(i) T ∈ Sp(H1,H2).

(ii) T ∗ ∈ Sp(H2,H1).

(iii) |T | ∈ Sp(H1,H2).

(iv) |T |p =
(
T ∗T

)p/2 ∈ S1(H1).

(v) T ∗T ∈ Sp/2(H1).

If any one of the above holds, we also have that

‖T‖Sp = ‖T ∗‖Sp =
∥∥|T |∥∥Sp

=
∥∥|T |p∥∥1/p

S1
=
∥∥T ∗T

∥∥ 1
2
S p

2

.

Our next result which provides a sufficient condition for Schatten p-class member-

ship, involves the series
∞

∑
n=1

(∫
Ωn

vndµ(z)
|z− γn|2

) p
2

(3.2.25)

for all exponents p.

Theorem 3.2.9. Suppose that the sequences Γ and v constitute an admissible

pair and Γ satisfies the sparsity condition (2.2.1). Let µ be a nonnegative

measure on C with µ(Γ) = 0. Then Iµ ∈ Sp
(
H (Γ,v),L2(C,µ)

)
if

(i) 0 < p≤ 2, and the series in (3.2.25),

∞

∑
n=1

(
vn

∞

∑
m=n+1

∫
Ωm

dµ(z)
|z|2

) p
2

and
∞

∑
n=1

(
vn

|γn|2
n−1

∑
m=1

µ(Ωm)

) p
2

are finite.
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(ii) p≥ 2, and the series in (3.2.25),

∞

∑
n=1

(
Vn

∞

∑
m=n+1

∫
Ωm

dµ(z)
|z|2

) p
2

and
∞

∑
n=1

(
Pn

n

∑
m=1

µ(Ωm)

) p
2

are finite.

Proof. By Lemma (3.2.8), Iµ belongs to Sp
(
H (Γ,v),L2(C,µ)

)
if and only

if (I∗µIµ)
p/2 belongs to the trace class for H (Γ,v). We first consider when

0 < p≤ 2. Applying the trace formula with the sequence en(z) = v
1
2
n /(z−γn)

we have that

∞

∑
n=1

〈
(I∗µIµ)

p
2 en,en

〉
≤

∞

∑
n=1

〈
I∗µIµen,en

〉 p
2 =

∞

∑
n=1

(∫
C

vndµ(z)
|z− γn|2

) p
2
. (3.2.26)

By the sparsity assumption, we have that the right-hand sum in (3.2.26) is

comparable to

∞

∑
n=1

(∫
Ωn

vndµ(z)
|z− γn|2

+ vn

∞

∑
m=n+1

∫
Ωm

dµ(z)
|z|2

+
vn

|γn|2
n−1

∑
m=1

µ(Ωm

) p
2

from which (i) follows. Note that the inequality in (3.2.26) is due to a gen-

eral result in (cf. [107], p. 24).

To prove (ii), we only need to check the conditions for p = 2 and p = ∞. The

estimates for the remaining exponents p will follow by complex interpola-

tion between the spaces S2(H (Γ,v),L2(C,µ)) and S∞(H (Γ,v),L2(C,µ)).
When p = 2, the first series in (ii) is exactly condition (3.2.21). The remain-

ing estimates in (3.2.22) and (3.2.23) can be easily deduced from the second

and third series in (ii). On the other hand, when p = ∞, the conditions in (ii),

simplify to those conditions in Theorem 2.2.1.

We now assume that the weight sequence vn enjoys some smoothness in the sense

that

Vn ' vn and Pn '
vn+1

|γn+1|2
. (3.2.27)

Corollary 3.2.10. Suppose that the sequences Γ and v are an admissible pair

and satisfy conditions (2.2.1) and (3.2.27). Let µ be a nonnegative measure
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on C with µ(Γ) = 0 and p≥ 2. Then Iµ ∈ Sp
(
H (Γ,v),L2(C,µ)

)
if and only

if
∞

∑
n=1

(∫
Ωn

vndµ(z)
|z− γn|2

) p
2
< ∞ (3.2.28)

∞

∑
n=1

(
vn

∞

∑
m=n+1

∫
Ωm

dµ(z)
|z|2

) p
2
< ∞ (3.2.29)

and
∞

∑
n=1

(
vn

|γn|2
n−1

∑
m=1

µ(Ωm)

) p
2
< ∞. (3.2.30)

Proof. The sufficiency of the conditions follows by the theorem above. We

may note that the smoothness assumption for p= 2 is not really needed since

∞

∑
m=1

Pmµ(Ωm) =
∞

∑
m=1

µ(Ωm) ∑
n=m+1

vn

|γn|2
=

∞

∑
n=1

vn

|γn|2
n−1

∑
m=1

µ(Ωm)

which coincides with (3.2.30), and (3.2.29) follows from

∞

∑
m=1

Vm

∫
Ωm

dµ(z)
|z|2

=
∞

∑
m=1

m−1

∑
n=1

vn

∫
Ωm

dµ(z)
|z|2

=
∞

∑
n=1

vn

∞

∑
m=n+1

∫
Ωm

dµ(z)
|z|2

.

On the other hand, when p≥ 2, the inequality in (3.2.26) gets reversed from

which the necessity of the conditions follows.

We remark that the conditions in the corollary fail to imply the boundedness

condition (2.2.4) for p > 2 if we remove the smoothness assumption (3.2.27). A

simple example that illustrates this is the following.

Example 5. Set vn = 1 for each n and construct a Carleson measure µ for

H (Γ,v) for which

tn =
∞

∑
m=n+1

∫
Ωm

dµ(z)
|z|2

' 1(
n log(n+1)2

) 2
p
.

Then it is easily seen that
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sup
n

n tn = ∞

when p > 2.

Corollary 3.2.11. Suppose the sequence Γ satisfies the sparseness condition

(2.2.1) and that vn ∈ `1. Let µ be a nonnegative measure on C with µ(Γ) = 0

and p≥ 2. Then Iµ ∈ Sp
(
H (Γ,v),L2(C,µ)

)
if and only if

∞

∑
n=1

(∫
C

vndµ(z)
|z− γn|2

) p
2
< ∞. (3.2.31)

In the case when the sequence vn is summable, the bounded embedding maps are

identified by Corollary 2.2.3. On the other hand, for p = 2, Theorem 3.2.6 implies∫
C

vndµ(z)
|z− γn|2

≤
∞

∑
n=1

∫
Ωn

vndµ(z)
|z− γn|2

< ∞. (3.2.32)

The condition for other exponents p follows by interpolation and hence the suffi-

ciency follows. When p≥ 2, the inequality in (3.2.26) gets reversed from which

the necessity of the condition also follows.

3.3 Reproducing kernel Riesz bases in H (Γ,v)

Given a sequence Λ = (λ j) in (Γ,v)∗, we associate with it the corresponding se-

quence of normalized reproducing kernels SR(Λ). We observe that if w is the Bessel

weight sequence for Λ with respect to (Γ,v), then the transformation H(Γ,v);(Λ,w) is

invertible if and only if the system SR(Λ) is a Riesz basis for H (Γ,v). If H (Γ,v)

is obtained from a space H satisfying (Ax1), (Ax2), (Ax3), as described in one of

the previous sections, then Theorem 2.4.1 applies. In the special case when γn→ ∞

as n→∞, we may write the meromorphic function defined in (2.4.3) as Φ = F/G,

with G again denoting the generating function for Γ and F an entire function with

a simple zero at each point λ j. Then the expressions appearing in (2.4.4) can be

restated as
νn =

vn|F(γn)|2

|G′(γn)|2
and ϖ j =

|G(λ j)|2

w j|F ′(λ j)|2
,

which expresses the weights in a natural way in terms of the generating functions.

Then Theorem 2.4.1 translates into the following statement in H (Γ,v).
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3 Carleson measures and systems of reproducing kernels

Theorem 3.3.1. Let Λ be a sequence in (Γ,v)∗, and let w be the Bessel weight

sequence for Λ with respect to (Γ,v). Then the following statements are

equivalent.

(i) The sequence SR(Λ) is a Riesz basis for H (Γ,v);

(ii) Λ is an exact uniqueness sequence for H (Γ,v) and the transforma-

tions H(Γ,v);(Λ,w) and H(Λ,ϖ);(Γ,ν) are bounded.

The theorem reduces the Riesz bases problem into one about boundedness of two

weighted discrete Hilbert transforms. Thus the essential difficulties in the problem

seem to appear in a particularly succinct form in this formulation. In other words the

specific challenges to the given space should be limited to the study of its Carleson

measures or more generally to the two weight problem for the Hilbert transform.

Though the latter property is yet to be understood well, the Helson–Szegő type

condition has already been established [34, 36] and a weaker version of the basis

problem will neatly follow from this link.

3.3.1 Reproducing kernel Riesz bases from sparse sequences

We now turn to the case when the sequence (γn) satisfies the sparseness condition

(2.2.1). As before we let G denote the generating functions for Γ, F an entire

function with simple zeros at each λ j in Λ⊂ (Γ,v)∗ and

Φ(z) =
F(z)
G(z)

.

In addition, we introduce the following notations:

hn =
|G(λn)|2‖kλn‖2

H (Γ,v)

|F ′(λn)|2
, Hn =

n−1

∑
m=1

∑
λ j∈Ωm

h j

and

Wn =
∞

∑
m=n+1

∑
λ j∈Ωm

h j

|λ j|2
.

Then our next translation of the results from the previous chapter reads as follows.

Corollary 3.3.2. Suppose the sequence Γ satisfies the sparseness condition

(2.2.1) and that v is an admissible weight sequence for Γ. Let Λ = (λn) be a
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sequence in (Γ,v)∗ and w be its weight sequence with respect to (Γ,v). Then

SR(Λ) is a Riesz basis in H (Γ,v) if and only if it is complete and minimal,

supn #(Λ∩Ωn)< ∞,

sup
n≥1

sup
λ j∈Ωn

‖kλ j‖H (Γ,v)

v
1
2
n |γn−λ j|

|F(γn)G(λ j)|
|F ′(λ j)G′(γn)|

< ∞, (3.3.1)

and

sup
n≥1

(
Hn

∞

∑
m=n

|F(γm)|2

vm|G′(γm)|2|γm|2
+Wn

n

∑
m=1

|F(γm)|2

vm|G′(γm)|2

)
< ∞. (3.3.2)

This result could be read in the following way: condition (3.3.1) is a separation

condition whenever SR(λn) constitutes a Riesz basis in H (Γ,v). Indeed, if two

points λk and λl from Λ are close enough, then the numbers |F ′(λk)| and |F ′(λl)|
gets smaller and contradicts (3.3.1). The other condition (3.3.2) gives a sort of “bal-

ance” on the distribution of the sequences (λn), and plays a role as a “replacement”

for the A2 condition.

Proof of Corollary 3.3.2. The result is a direct consequence of Theorems 2.2.1

and 3.3.1. We shall give here an alternative proof for the necessity. We assume that

(kλ/‖kλ‖H (Γ,v))λ∈Λ constitutes a Riesz basis. Then the Bessel property ensures

that there exists a uniform bound on the number of points from Λ found in each

annulus Ωn. For each square summable sequence (an), the interpolation problem

f (λ ) = aλ‖kλ‖H (Γ,v)

has also a unique solution f in H (Γ,v). We solve the problem by means of the

Lagrange-type formula

f (z) = Φ(z) ∑
λ∈Λ

aλ

‖kλ‖H (Γ,v)

Φ′(λ )(z−λ )
, (3.3.3)

which makes sense at least for finite sequence (aλ ). The fact that the series con-

vergence in H (Γ,v) for infinite sequence can be verified by duality. On the other

hand, there exists an `2
v sequence (cm) such that f has the expansion

f (z) =
∞

∑
m=1

cmvm

z− γm
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3 Carleson measures and systems of reproducing kernels

for which we have ‖ f‖2
H (Γ,v) ' ∑

∞
m=1 |cm|2vm. Because of minimality and com-

pleteness, we may compute the sequence cm via (3.3.3). That is

cmvm = lim
z→γm

(z− γm) f (z) = ∑
λ∈Λ

aλ

‖kλn‖H (Γ,v)

Φ′(λ )(γm−λ )
lim

z→γm
(z− γm)Φ(z)

=
F(γm)

G′(γm)
∑

λ∈Λ

aλ

‖kλ‖H (Γ,v)/Φ′(λ )

γm−λ

=
F(γm)

G′(γm)
∑

λ∈Λ

aλ

√
hλ

γm−λ
. (3.3.4)

Now a similar argument made to prove Theorem 2.2.1 shows that the inequality

∞

∑
m=1
|cm|2vm =

∞

∑
m=1

|F(γm)|2

vm|G′(γm)|2

∣∣∣∣ ∑
λ∈Λ

aλ

√
hλ

γm−λ

∣∣∣∣2 . ∑
λ∈Λ

|aλ |2 ' ‖ f‖2
H (Γ,v)

holds for all sequences (aλ ) ∈ `2 only if (3.3.1) and (3.3.2) hold.

To be able to apply Corollary 3.3.2, we need to have a full description of those

complete and minimal sequences SR(Λ). Our next result states as follows.

Theorem 3.3.3. Let (Γ,v) be an admissible pair and Λ⊂ (Γ,v)∗. Then SR(Λ)

is complete and minimal in H (Γ,v) if and only if

limsup
y→∞

|F(iy)|
|G(iy)|y

= 0, (3.3.5)

and at least one of the following two conditions hold:

∞

∑
n=1

|F(γn)|2

vn|G′(γn)|2
= ∞, (3.3.6)

limsup
y→∞

|F(iy)|
|G(iy)|

> 0. (3.3.7)

Proof. To prove the theorem we argue as follows. From exactness of the

system we observe that Φ(z)/(z− λ1) belongs to H (Γ,v) and so (3.3.5)

holds. On the other hand, writing the partial fraction decomposition for Φ,

Φ(z) =
∞

∑
m=1

amvm

z− γm
+g(z)
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with g an entire function, we observe that either

limsup
y→∞

|g(iy)|> 0

in which case (3.3.7) holds or g = 0 in which case

am = lim
z→γm

1
vm

(z− γm)Φ(z) =
F(γm)

vmG′(γm)

is not square-summable. If not, Φ will live in H (Γ,v). Assuming the condi-

tions of the theorem, we note that Φ /∈H (Γ,v) by (3.3.6) and (3.3.7). On the

other hand, (3.3.5) implies Φ/(z−λ1)∈H (Γ,v), which leads to the desired

conclusion.

We note that in the special case when the points (γn) satisfy (2.2.1), we get a

more geometrical sufficient condition when Λ has a subsequence Λ′ satisfying the

conditions in Lemma 2.4.6 or 2.4.7.

We will now clarify a point considered in the previous chapter, namely the relation

between “super-thin” sequences and Riesz bases of normalized reproducing kernels

in H (Γ,v). We begin by noting that if in addition the weight sequence v has the

property that
vn = o(Vn) or vn/|γn|2 = o(Pn) (3.3.8)

when n→ ∞, then Theorem 2.4.10 and Theorem 2.4.12 give interesting geometric

criteria for normalized reproducing kernel Riesz bases in H (Γ,v). The translation

into this discrete setting of Theorem 2.2.7 is surprisingly subtle: The sequence Λ

splits naturally into three subsequences, one that should be viewed as a perturbation

of Γ and then two sequences satisfying only certain “extreme” sparseness conditions.

Translating Lemma 2.4.5 to this setting along with (3.3.8) shows that, the points

that generate normalized kernel Riesz bases are all from the discs Dn(v;M). In

other words, all Riesz bases appear as perturbations of the canonical basis associated

with the sequence (γn), and if Λ is an Λ(V )-lacunary or Λ(P)-lacunary sequence

with infinitely many points outside every set
∞⋃

n=1

Dn(v;M),
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then Λ is not a subsequence of any (αn) such that SR(αn) is a Riesz basis for

H (Γ,v).

3.4 The Feichtinger conjecture
The Feichtinger conjecture claims that every bounded frame in a separable Hilbert

space can be expressed as a finite union of Riesz basic sequences. In an interesting

series of papers [21–24], it has been revealed that the conjecture is equivalent to

a number of other long-standing problems including the Kadison–Singer problem

first formulated by R. Kadison and I. Singer in [55].

The Kadison–Singer problem, which grew out of mathematical physics and

quantum mechanics, was first stated in 1959 5. The attention around the problem

slowed down especially from the mid 1960’s until 1981 when J. Anderson [4]

introduced the idea of paving and showed that the problem is equivalent to what is

now known as the Paving conjecture. The paving idea generated a lot of interest and

many authors including J. Bourgain and L. Tzafriri have published several papers

on this topic. By 1991, ideas on paving had run out and the momentum around the

problem again went down.

Another breakthrough came in 2006 when P. Casazza and J. Tremain [21] showed

that the problem is equivalent to several unsolved problems in different areas of

research in both pure and applied mathematics. We refer to the papers [21, 24] for

all these historical accounts and the different reformulations on the various aspects

of the problem.

Though a significant amount of effort has been invested in trying to solve these

conjectures, the general problem remains yet to be solved6. When we return to the

Feichtinger conjecture, we may refer to the recent paper [25] for a weaker version

where it is proved that it suffices to make the decomposition into a finite union of

frame sequences. We recall that a sequence of vectors ( fn) is a frame sequence in a

Hilbert space H if it constitutes a frame for its closed linear span.

5Implicitly, it has been already contained in the 1937 P. M. Dirac’s famous book on foundations
of quantum mechanics.

6In September 2006, workshop on the Kadison–Singer problem was held at the AIM institute in
Palo Alto, organized by P. Casazza, R. Kadison, and D. Larson. Part of the goal of the workshop was
to initiate people to work together on the different version of the problem and to keep the subject
alive until it gets resolved.
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We are here interested in the version of the conjecture that involves unit norm

Bessel functions which we state as:

The Feichtinger conjecture: Every Bessel sequence of unit vectors in a

separable Hilbert space can be expressed as a finite union of Riesz basic

sequences.

An interesting approach to the Feichtinger conjecture is to restrict attention to

normalized reproducing kernels for so-called model subspaces of H2. This special

case does not appear to be much easier than the general one, owing to the profound

richness of structure and variety of the class of model subspaces. The lack of

general results on the geometry of Bessel sequences (which is a particular case of

the Carleson measure problem) and Riesz bases is an obvious challenge when we

address the Feichtinger conjecture in this setting. Bessel sequences from kernel

functions are well understood for many classical spaces of functions for instance

Hardy, Bergman and Fock spaces, and the validity of the conjecture follows from

various known results about sampling and interpolation in these spaces. Model

subspaces therefore constitute a natural object of study as far as our version of the

Feichtinger conjecture is concerned. This view will be justified more in the next

subsection.

It was recently shown by A. Baranov and K. Dyakonov [5] that the Feichtinger

conjecture holds true for Bessel sequences of normalized reproducing kernels for

K2
I when either I is a one-component inner function or the points λn satisfy

sup
n
|I(λn)|< 1. (3.4.1)

In the latter case, the complete description of Riesz basic sequences from [50] plays

an essential role in their argument7. A. Baranov and K. Dyakonov used their result

for the case when (3.4.1) holds to treat the general case of one-component inner

functions. Their approach was to split the half-plane into two regions, one in which

|I(z)| is bounded away from 1 and another in which a perturbation argument for

Clark bases applies. In Subsection 2.2.2 we have already observed a situation where

no splitting of this kind can be made. Indeed, we encountered examples of Bessel

7The geometry of normalized reproducing kernel Riesz basic sequences in K2
I is well understood

when the associated sequence of points satisfy condition (3.4.1). The general case is also briefly
considered in [50]. But no workable or explicit solution is obtained. For further information, we
refer to [50] or the monograph by Seip [98], where a complete analysis can be found.
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sequences of normalized reproducing kernels which cannot be associated with a

perturbation of any Riesz basis. Our examples show that the methods of [5] can

not be extended beyond the case of one-component inner functions. In the next

subsection we will identify a collection of more model subspaces for which the

problem can be completely understood. Our result complements the findings of A.

Baranov and K. Dyakonov [5].

3.4.1 The Feichtinger conjecture in H (Γ,v)

We now turn to the special case of normalized reproducing kernels for H (Γ,v).

Given a sequence Λ = (λ j) in (Γ,v)∗, we associate with it the corresponding

sequence of normalized reproducing kernels SR(λ j) in H (Γ,v). We observe that if

w is the Bessel weight sequence for Λ with respect to (Γ,v), then the transformation

H(Γ,v);(Λ,w) is bounded if and only if the system SR(Λ) is a Bessel sequence in

H (Γ,v). Moreover, this transformation is both bounded and surjective if and

only if the system SR(Λ) is a Riesz basic sequence in H (Γ,v). If, in addition, Γ

satisfies the sparseness condition (2.2.1), then it follows from Theorem 2.3.1 that

the conjecture holds true for Bessel sequences of normalized reproducing kernels

in H (Γ,v), and this result applies for all classes of spaces considered in the next

chapter. This special case of the conjecture pertaining to discrete Hilbert transforms

appears as an interesting setting in which the ramifications of the general Feichtinger

conjecture could be explored.

Recently, S. Lata and V. Paulsen [59] obtained two more equivalences of the

Feichtinger conjecture that involve only reproducing kernel Hilbert spaces, specif-

ically for every space contractively8 contained in the Hardy space H2. The main

point of [59] is that not only it suffices to verify the conjecture in such spaces but it

interestingly reduces the question about general Bessel sequences to special class

of functions which have more structure in our disposal. More specifically, they

proved that the conjecture holds true if one can partition each Bessel sequence of

normalized kernel functions in each contractively contained subspaces of H2 into

finitely many Riesz basic sequences.

8A subspace HS of the Hardy space H2 is contractively contained in H2 if the inclusion map
from HS to H2 is a contraction, i.e. ‖ f‖H2 ≤ ‖ f‖HS for every f ∈HS.

106



4 Examples of spaces H (Γ,v)

The prime examples of Hilbert spaces belonging to the general class described in

Section 3.1 are found among so-called de Branges spaces and model subspaces of

H2. In this chapter we discuss how these fundamental spaces fit into our class of

Hilbert space H (Γ,v). An interesting aspect of our approach is that it allows us to

pay an implicit revisit to the characterization of the orthogonal bases of reproducing

kernels introduced by L. de Branges and D. Clark. If a Hilbert space of complex-

valued functions defined on a subset of C satisfies a few basic axioms and has

more than one orthogonal bases of reproducing kernels, then it is shown that these

bases are all of Clark’s type. In other words, there are no other orthogonal bases of

reproducing kernels than those already introduced and studied by L. de Branges [38]

and D. Clark [29].

In the last part of the chapter we will give a negative answer to a question of A.

Baranov about the relation between the growth of the phase function of I at real

points generating a Bessel sequence of normalized reproducing kernels in K2
I .

4.1 de Branges spaces
To begin with, we note that de Branges spaces may be defined in terms of axioms

that are very similar to those introduced above. Indeed, a Hilbert space H of

entire functions which contains a nonzero element is called a de Branges space if it

satisfies the following three axioms:

(H1) H has a reproducing kernel kλ at every point λ in C, i.e., the point evaluation

functional kλ : f → f (λ ) is continuous in H for every λ in C.

(H2) If f is in H and f (λ ) = 0 for some point λ in C, then f (z)(z− λ̄ )/(z−λ )

is in H and has the same norm as f .
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(H3) The function f (z̄) belongs to H whenever f belongs to H , and it has the

same norm as f .

The general reference for de Branges spaces is the book [38]. The leading example

of a de Branges space is again the Paley–Wiener space PWπ .

A space H that satisfies (H1), (H2), (H3), will in particular satisfy (Ax1), (Ax2),

(Ax3) with Ω = C. Indeed, we observe that then (H1) and (Ax1) coincide, and it

is also plain that (H2) implies (Ax2). Indeed, if Λ is an exact uniqueness set, then

there exists a unique function g j such that g j(λm) = 1 for m = j and 0 otherwise.

We fix n0 and observe that

z−λn

z−λn
gn0(z) = gn0(z)+

(λn−λn)gn0(z)
z−λn

.

Then by (H2), it follows that gn0(z)/(z− λn) belongs to H . Thus, G(z) =

(z−λn0)gn0(z) constitutes a generating function for Λ because

fn(z) = G(z)/(z−λn) = gn0(z)+(λn−λn0)gn0(z)/(z−λn0)

also belongs to H . We observe that if we choose λ nonreal, by axiom (H2) there

exists a nonzero function f in the space for which λ is not included in its zero

set. Then kλ is nonzero and the last part of axiom (Ax3) follows. One of the basic

results in de Branges’s theory is that a space that satisfies (H1), (H2), (H3), will

have an orthogonal basis consisting of reproducing kernels kγn with Γ = (γn) being

a sequence of real points. Thus, in particular, (H1), (H2), (H3) imply that our third

general axiom (Ax3) holds. We will recall this fundamental result below. In the

case of the Paley–Wiener space, we have an orthogonal basis of reproducing kernels

associated with the sequence of integers.

Another way of defining de Branges spaces is as follows. We say that an entire

function E belongs to the Hermite–Biehler (HB) class if it has no real zeros and

satisfies
|E(z)|> |E(z)|, z ∈ C+.

Each such function E generates a space H(E) consisting of all entire functions f

such that both f/E and f ∗/E belong to the Hardy space H2 where f ∗(z) = f (z).
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If we equip H(E) with the standard inner product

〈 f ,g〉H(E) =
∫

∞

−∞

f (x)g(x)
|E(x)|2

dx,

then it becomes a reproducing kernel Hilbert space with kernel function

kλ (z) =
i

2π

E(z)E(λ )−E(z)∗E(λ )∗

z−λ
(4.1.1)

at each point λ in C. In particular when λ is real we have

‖kλ‖2
H(E) =

1
π

ϕ
′(λ )|E(λ )|2 (4.1.2)

where ϕ refers to the phase function of E, i.e. a continuous function in R such that

E(t)eiϕ(t) is real for each t. The point of interest to us is that H(E) is in addition a

de Branges space, and the following basic result of de Branges gives that every de

Branges space can be obtained in this way via a function E in the Hermite–Biehler

class (cf. [38], p. 57). We arrive at the Paley–Wiener space by setting E(z) = e−iπz.

Theorem 4.1.1. A Hilbert space H of entire functions which contains a

non zero element, and satisfies the axioms (H1), (H2), and (H3) is equal

isometrically to some space H(E).

We shall now state one of the fundamental results in de Branges spaces concerning

the existence of orthogonal bases of reproducing kernels associated to sequence of

points on the real line (cf. [38], p. 55).

Theorem 4.1.2. Let E be an HB class function with an associated phase

function ϕ such that ϕ(γn) = α + nπ,n ∈ Z,α,γn ∈ R. If eiαE − e−iαE∗ /∈
H(E), then SR(γn) constitutes an orthonormal basis for H(E), and also the

property eiαE− e−iαE∗ ∈ H(E) holds for at most one α modulo π .

It follows from the preceding remarks that all the results from the previous chapter

and sections apply to de Branges spaces with orthogonal bases of reproducing

kernels located at a sequence of nonzero real points γn such that

inf
n
|γn+1|/|γn|> 1.
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4.2 Model subspaces of H2

We now turn to the model subspaces of the Hardy space H2. The elements of K2
I

(originally defined in C+) have meromorphic extensions into C if the function I has

such an extension1. In this case, we have the relation I = E∗/E and the function E

in the HB class is unique up to an entire function with no zeros on both the upper

and the lower half-planes and real valued on the real line.

Clearly, the map f 7→ f/E is unitary from H(E) to K2
I . Thus de Branges spaces

can be viewed as a subclass of the collection of all model subspaces of H2.

It is a well established fact that all model subspaces satisfy axiom (Ax1) from

Section 3.1. We now prove that every model subspace satisfies also axiom (Ax2).

This is obvious if we consider K2
I as a space of functions on the upper half-plane,

but for our purposes it is essential that we also include those points on the real line

at which point evaluation makes sense. We will need the fact that the reproducing

kernel for K2
I at some point ζ in the upper half-plane is

kζ (z) =
i

2π
· 1− I(ζ )I(z)

z−ζ
.

This formula extends to each point on the real line at which every function in K2
I has

a nontangential limit whose modulus is bounded by a constant times the H2 norm

of the function. This immediately holds if for instance I is a meromorphic inner

functions. For a general I, a paper of P. Ahern and D. Clark [1] gives that these are

exactly the points ζ at which I has an angular derivative, i.e., at which both I and I′

have non-tangential limits and |I(ζ )|= 1. In other words, for a real point ζ :

kζ ∈ K2
I ⇔ |I′(ζ )|= a+∑

n

2ℑzn

|ζ − zn|2
+
∫
R

dψ(t)
(t−ζ )2 < ∞, (4.2.1)

where (zn) constitutes the zeros of the Blaschke factor in the factorization

I(z) = γ exp(iaz)B(z)Iψ(z).

The same conclusion also follows from a more general result due to W. Cohn [33]:

1An inner function is meromorphic if it accumulates at infinity. Each such function I is described
by an HB class function E such that I = E∗/E. Details can be read in [47] where a proof is given.
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for 1 < p < ∞, the kernel function kζ belongs to the Hardy space H p if and only if

(4.2.1) holds when 2 is replaced by p.

The singular inner function Iψ is defined by

Iψ(z) = exp
(

i
∫
R

( 1
t− z

− t
1+ t2

)
dψ(t)

)
.

In this case we always have

‖kζ‖2
K2

I
=
|I′(ζ )|

2π
. (4.2.2)

Lemma 4.2.1. The Hilbert space K2
I , viewed as a space of functions on the

set
Ω = {z = x+ iy : y≥ 0 and f 7→ f (z) is bounded } ,

satisfies axiom (Ax2) of Section 3.1.

To make the proof more transparent, we single out the main technical ingredient

as a separate lemma.

Lemma 4.2.2. If x0 is a point on the real line at which the point evaluation

functional for K2
I is bounded, then

lim
y→0
‖kx0+iy− kx0‖H2 = 0.

Proof. Assuming I(x0) = 1, we may write

2π

i
(kx0+iy(t)− kx0(t)) =

1− I(x0 + iy)I(t)

t− (x0 + iy)
− 1− I(t)

t− x0
.

The right-hand difference can be further rearranged into

(1− I(x0 + iy))I(t)

t− (x0 + iy)
− (1− I(t))iyt

(t− x0)(t− (x0 + iy))
.

Here the first term has H2 norm bounded by a constant times y
1
2 in view of

the theorem of Ahern and Clark [1], while the H2 norm of the second term

tends to 0 when y→ 0, by Lebesgue’s dominated convergence theorem.

Proof of Lemma 4.2.1. Let Λ be an exact uniqueness set for K2
I consisting of
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points in Ω. We will let g j denote the unique function in K2
I such that g j(λl)

equals 0 when l 6= j and 1 for l = j. We can choose an arbitrary point in Λ,

say λ1, and choose G(z) = (z− λ1)g1(z) as our candidate for a generating

function. It is plain that if λ j is a point in the open half-plane, then

g j(z) =
G(z)

G′(λ j)(z−λ j)
.

The difficulty occurs if λ j is a point on the real line. In this case, if we replace

λ j by λ j + iε , then the modified sequence Λ(ε) will still be an exact unique-

ness sequence for K2
I with ε sufficiently small. In fact, by Lemma 4.2.2, the

function g1 vanishing on Λ(ε) \{λ1} will vary continuously with ε . Thus the

corresponding generating function Gε(z) will tend to G(z) for every point in

the upper half-plane when ε → 0. On the other hand, another application of

Lemma 4.2.2 gives that

Gε(z)
G′ε(λ j + iε)(z−λ j + iε)

→ g j(z)

in K2
I when ε → 0. Lemma 4.2.2 also gives that G′ε(λ j + iε) converges to a

finite number, say 1/α , and we may therefore conclude that

g j(z) = α
G(z)
z−λ j

.

As for axiom (Ax3), it remains an open problem, posed by N. Nikol‘skiǐ ( cf. [76],

p. 210), to decide whether every model subspace K2
I has a Riesz basis of normalized

reproducing kernels. Thus it is not known whether the class of spaces introduced in

Section 3.1 includes all model subspaces. However, there exists an interesting class

of model subspaces that actually possess orthogonal bases of reproducing kernels

associated with sequences of real points. Such bases, to be discussed briefly below,

are called Clark bases [29]. We also note that if the inner function I happens to be

an interpolating Blaschke product, then it is immediate that K2
I has a Riesz basis of

normalized reproducing kernels associated with the sequence of zeros of I.

The spaces K2
I that possess Clark bases, correspond precisely to those spaces
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H (Γ,v) for which Γ is a real sequence. To get from H (Γ,v) to the corresponding

space K2
I , we construct the Herglotz function

ϕ(z) =
∞

∑
n=1

vn

(
1

γn− z
− γn

1+ γ2
n

)
. (4.2.3)

Then

I(z) =
ϕ(z)− i
ϕ(z)+ i

(4.2.4)

will be an inner function in the upper half-plane with

Γ =
{

t ∈ R : I(t) = 1
}
, and |I′(γn)|= 2/vn.

Then the map f 7→ (1− I) f will be a unitary map from H (Γ,v) to K2
I ; it is

implicit in this construction that in fact every function in K2
I has a non-tangential

limit at each point γn and also that the corresponding point evaluation functional is

bounded at γn. Note that in this case

µ =
∞

∑
n=1

vnδγn,

where δt denotes the Dirac measure at the point t is the Clark measure for the

function I.

Similarly, if Γ is the zero sequence of an interpolating Blaschke product B in

the upper half-plane, then we may set vn ' ℑγn and Γ = (γn). Then the map

f 7→ 2
√

π f will be a unitary map from H (Γ,v) to K2
B.

Along with the above question, N. Nikol‘skiǐ ( cf. [76], p. 210) has also raised

the question to decide the class of reproducing kernel Riesz basic sequences in

K2
I which could be extended to a reproducing kernel Riesz basis into the whole

space. From the results in the previous chapter, we observe that not all infinite

subsequences can be extended to a Riesz basis into the whole space K2
I .

We conclude that our general discussion applies to model subspaces K2
I that

possess Clark bases or when I is an interpolating Blaschke product in the upper

half-plane.

Since positive results on Carleson measures are scarce, we mention without proof

the following observation: A suitable adaption of Theorem 2.2.1 gives a description

of any Carleson measure µ restricted to a cone
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Γx0 =
{

z = x+ iy : |z− x0|<Cy
}

;

here x0 is an arbitrary real point and C a positive constant. To arrive at this result,

one may represent the space by means of its Clark basis or more generally as an L2

space with respect to a Clark measure [29], and act similarly as in Subsection 2.2.1.

By the observation made at the end of Section 3.3, the problem of describing

all Riesz bases of normalized reproducing kernels for K2
I is part of the problem

of deciding when discrete Hilbert transforms H(Γ,v);(Λ,w) are bounded. The most

far-reaching result known about such bases is that found in [50] dealing with the

case when (3.4.1) holds. The general result in [50] for this particular case leads to

a description of all Riesz bases of normalized reproducing kernels for the Paley–

Wiener space and also for a wider class of de Branges spaces known as weighted

Paley–Wiener spaces [62]. As pointed out in Subsection 1.3.2, one of the main

points of [50] is that when (3.4.1) holds, one can transform the problem into

a question about invertibility of Toeplitz operators and then apply the Devinatz–

Widom theorem. Another approach, closer in spirit to the present work, can be

found in [61], where the Riesz basis problem is explicitly related to a boundedness

problem for Hilbert transforms.

4.3 Fock-type spaces
It may be noted that our work gives a full description of the Carleson measures

and the Riesz bases of normalized reproducing kernels for certain Fock-type spaces

studied recently by A. Borichev and Y. Lyubarskii [17]. The spaces Fϕ considered

by these authors consist of all entire functions f such that

‖ f‖2
ϕ =

∫
C
| f (z)|2e−2ϕ(|z|)dm(z)< ∞,

where ϕ is a positive, increasing, and unbounded function on [0,∞) and m denotes

Lebesgue area measure on C. The main point of [17] is that if ϕ grows “at most

as fast” as [log(1+ r)]2, then the corresponding space Fϕ has a Riesz basis of

reproducing kernels and, conversely, if the growth of ϕ is “faster” than [log(1+r)]2,

then no such basis exists. It is proved that when ϕ(r) = [log(1+ r)]2, we can

choose such a basis associated with a sequence Γ = (γn) satisfying |γn| = en/2;

if ϕ(r) = [log(r+ 1)]α with 1 < α < 2, then the growth of |γn| will be super-
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exponential.

We note that the study of such bases for Fock-type spaces began with the results

of Seip [96] which shows that the classical Fock space, ϕ(x) = x2, contains no

basis of reproducing kernels. When ϕ grows faster than this, similar result was

obtained in [18]. In the case when ϕ(x) = x− 3
2 logx, the absence of such basis

was established in [53]. On the other hand, when the growth of ϕ behaves like the

logarithmic function, ϕ(x)' logx, then the space Fϕ becomes finite dimensional

and obviously contains such bases. Thus the result of A. Borichev and Y. Lyubarskii

is meant to address the remaining gap when ϕ grows more slowly than x2 but more

rapidly than c logx, in which case Fϕ has infinite dimension.

In view of the discussions made in the previous chapter and Section 4.1, the results

of Borichev and Lyubarskii clarify when a Fock-type space equals a de Branges

space, i.e., the two spaces consist of the same entire functions and have equivalent

norms. It would be of interest to find a direct proof of this equality; transforming

the area integral in Fock-space into a line integral in de Branges space. Indeed, we

conjecture that for each f in Fϕ ,

‖ f‖2
ϕ '

∫
∞

0

∣∣∣∣ ∞

∑
n=0

anxn+1/2e−ϕ(x)
∣∣∣∣2dx =: I f (4.3.1)

holds. We will verify I f . ‖ f‖2
ϕ in what follows. Thus the problem is, in fact, to

show that the other estimate I f & ‖ f‖2
ϕ .

Since
lim
r→∞

exp(n logr−ϕ(r)) = 0

for all n, the spaces Fϕ contain all the polynomials, and in particular (zn),n≥ 0

constitutes an orthogonal basis for Fϕ . Each f in Fϕ has a series expansion

f (z) =
∞

∑
n=0

anzn
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and its norm can be estimated as

‖ f‖2
ϕ =

∫
C

∣∣∣∣ ∞

∑
n=0

anzn
∣∣∣∣2e−2ϕ(|z|)dm(z)

=
∫
C

∣∣∣∣ ∞

∑
n=0

anzn
∣∣∣∣2e−2log(1+|z|)α

dm(z)

'
∞

∑
n=0
|an|2

∫
∞

0
e(2n+1) logr−2ϕ(r)dr

'
∞

∑
n=0
|an|2 exp

(
2(α−1)

(n+1
α

)α/(α−1)
)
. (4.3.2)

To simplify the writing, we set

ηn = (α−1)
(n+1

α

)α/(α−1)

and observe that the sequence of functions

exp
(
(2n+1) logr−2ϕ(r)

)
attain the extremum values at the points ηn. Applying the substitution t = logr, we

write

I f '
∫

∞

−∞

∣∣∣∣ ∞

∑
n=0

ane(n+1)t−tα

∣∣∣∣2dt

≤
∫

∞

−∞

(
∞

∑
n=0
|an|eηn e−

(
ηn+tα−(n+1)t

))2

dt. (4.3.3)

We set Jm = [m
2 −

1
4 ,

m
2 + 1

4 ] and observe that t ' m/2 whenever t belongs to Jm.

We estimate the integral when t ≥−1/4. The remaining piece can be essentially

handled in the same manner. Applying the Cauchy–Schwarz inequality, we have

that
∞

∑
m=0

∫
Jm

( m

∑
n=0
|an|eηn e−

(
ηn+tα−(n+1)t

))2

dt

.
∞

∑
m=0

m

∑
n=0
|an|2e2ηn e−

(
ηn+(m/2)α− (n+1)m

2

)
(4.3.4)

116



4.3. Fock-type spaces

since
∞

∑
n=0

e−
(

ηn+(m/2)α− (n+1)m
2

)
is uniformly bounded by an absolute constant. By interchanging the order of

summation, we find that the left-hand double sum in (4.3.4) is also bounded by

‖ f‖2
ϕ .

Similarly, by Cauchy–Schwarz, it follows that

∞

∑
m=0

∫
Jm

(
∞

∑
n=m+1

|an|eηn e−
(

ηn+tα−(n+1)t
))2

dt

.
∞

∑
m=0

∞

∑
n=m+1

|an|2e2ηn e−
(

ηn+(m/2)α− (n+1)m
2

)
=

∞

∑
n=0
|an|2e2ηn

n

∑
m=0

e−
(

ηn+(m/2)α− (n+1)m
2

)
. ‖ f‖2

ϕ . (4.3.5)

We will in what follows make some computations to simplify further our results

for the space Fϕ for all radial weight functions ϕ(z) = (log(1+ |z|))α with 1 <

α ≤ 2.

Case 1: ϕ(r) =
(

log(1+ r)
)2

For this case, it has been proved that the normalized reproducing kernels associated

with the sequence (γn) = (exp(n/2+ iθn)) constitutes a Riesz basis for each real

sequence (θn). We arrive at the de Branges space when we in particular set θn = 0

for each n. To proceed further, we need the following lemma from [17].

Lemma 4.3.1. Let Γ = (γn). Then the following holds.

(i) For each point z in C, the estimate

‖kz‖2
ϕ '

e2ϕ(|z|)

1+ |z|2
(4.3.6)

holds.

(ii) The product
G(z) = ∏

γn∈Γ

(
1− z

γn

)
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converges uniformly on compact sets in C and satisfies the estimate

|G(z)| ' eϕ(|z|)dist(z,Γ)
|z|3/2 (4.3.7)

for each z ∈ C.

As in (4.3.7), we notice that the estimate

|G′(γn)| ' |γn|−3/2eϕ(|γn|) ' exp
(
(n2−3n)/4

)
(4.3.8)

also holds. Setting the corresponding weight sequence

vn =
‖kγn‖2

ϕ

|G′(γn)|2 +1
' |γn|, (4.3.9)

we find that Corollary 2.2.2 immediately gives the Carleson measures for Fϕ ,

namely that; a nonnegative measure µ on C with µ(Γ) = 0 is a Carleson measure

for Fϕ if and only if

sup
n≥1

∫
Ωn

|γn|dµ(z)
|z− γn|2

< ∞.

Because of the sparseness condition on both sequences (γn) and (vn), the norm of

the kernel functions in H (Γ,v) can be easily estimated. That is if λ j belongs to

Ω j, then

‖kλ j‖
2
H (Γ,v) =

∞

∑
n=1

vn

|λ j− γn|2
'

v j−1

|λ j|2
+

v j

dist2(λ j,Γ)
+

v j+1

|γ j+1|2

'
|γ j|

dist2(λ j,Γ)
. (4.3.10)

From this, (4.3.7), (4.3.8), and (4.3.9), we observe that the basis conditions (3.3.1)

simplifies to

sup
n≥1

sup
λ j∈Ωn

|F(γn)|
|γn−λ j||F ′(λ j)|

< ∞, (4.3.11)

while (3.3.2) becomes

sup
n≥1

(
Hn

∞

∑
m=n

|F(γm)|2

exp
(
m2/2

)+Wn

n

∑
m=1

|F(γm)|2

exp
(
(m2−2m)/2

))< ∞.
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Case 2: ϕ(r) =
(

log(1+ r)
)1+δ

, 0 < δ < 1

We denote αn = log‖zn‖2
ϕ ,n≥ 0, and r0 = 0 and rn = exp

(
(αn+1−αn−1)/4

)
for n ≥ 1. Then one of the main results from [17] ensures that the sequence of

normalized reproducing kernels associated with the points (rneiθn) forms a Riesz

basis for each real sequence (θn) again. As before setting θn = 0 for each n leads

to the de Branges spaces. The reproducing kernel of Fϕ at a point λ is

kλ (ζ ) =
∞

∑
n=0

λ
n ζ n

‖zn‖2
ϕ

=
∞

∑
n=0

λ
n
ζ

ne−αn

and hence

‖kλ‖2
Fϕ

=
∞

∑
n=0
|λ |2ne−αn. (4.3.12)

To compute the series, we need to describe the growth of the sequence αm. We have

‖zm‖2
Fϕ

=
∫
C
|z|2m exp

(
−2ϕ(|z|)

)
dm(z)

= 2π

∫
∞

0
r2m exp

(
−2(log+ r)1+δ

)
rdr

'
∫

∞

0
exp
(
(2m+2)t−2t1+δ

)
dt.

It suffices to describe the asymptotic behavior of the last integral when m→ ∞.

Invoking Saddle point approximation, we obtain∫
∞

0
exp
(
(2m+2)t−2t1+δ

)
dt ' m

1−δ

δ exp
(

2δ (1+δ )−
δ+1

δ (m+1)
δ+1

δ

)
,

which shows that the sequence (αm) has a polynomial growth faster than second

degree. From this along with (4.3.12) we observe that for each γ j = r jeiθ j we have

‖kγ j‖
2
Fϕ
' exp

(
α j+1−α j−1

2

)
= |γ j|2. (4.3.13)

We need to estimate the weight sequence vm. For each point z ∈ C∩Ωm, we first

compute

|G(z)| ' |z|
m−1 dist(z,Γ)
|γm|

m−1

∏
n=1
|γn|−1,

and so
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log |G(z)| ' (m−1) log |z|− log |γm|+ logdist(z,Γ)−
m−1

∑
n=1

(αn+1−αn−1)/4

' (m−1) log |z|− log |γm|+ logdist(z,Γ)−m log |γm−1|.

This implies that

|G(z)| ' |z|
m−1 dist(z,Γ)
|γm||γm−1|m

, (4.3.14)

and in particular, for points in Γ we find

|G′(γm)| '
|γm|m−2

|γm−1|m
(4.3.15)

from which we get the weight sequence

vm '
‖kγm‖2

Fϕ

|G′(γm)|2 +1
' |γm−1|2m

|γm|2m−6 . (4.3.16)

Since it again suffices to consider the asymptotic behavior of the α ′ms when m goes

to infinity, we observe that vm has a “super-exponential” decay. Thus the Carleson

measures for Fϕ follows from Corollary 2.2.3. That is, a non-negative measure µ

on C with µ(Γ) = 0 is a Carleson measure for Fϕ if and only if

sup
n≥1

∫
C

vndµ(z)
|z− γn|2

< ∞. (4.3.17)

A simple computation gives the estimate

‖kλ j‖
2
H (Γ,v) '

v j

dist2(λ j,Γ)
.

This is deducible along the lines of (4.3.10). It remains to apply this together with

the estimates (4.3.14), (4.3.16) and (4.3.15), and observe that condition (3.3.1)

simplifies to

sup
n≥1

sup
λ j∈Ωn

|λ jγ
−1
n |n−1|F(γn)|

|γn−λ j||F ′(λ j)|
< ∞.

On the other hand, applying the relation vm|G′(γm)|2 ' ‖kγm‖2
Fϕ
, condition
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(3.3.2) for this special setting also reduces to

∞
sup
n=1

(
Hn ∑

m≥n

|F(γm)|2

|γm|4
+Wn

n

∑
m=1

|F(γm)|2

|γm|2

)
< ∞.

4.4 Orthogonal bases of reproducing kernels
We wish to describe those spaces H which admit orthogonal bases of reproduc-

ing kernels. We note that this family of spaces is part of the much larger family of

spaces H that admits Riesz bases of normalized reproducing kernels. Since each

space of the latter kind can be equipped with an equivalent norm such that one of the

Riesz bases becomes an orthonormal basis (cf. [106], p. 33), the question of interest

is when a space H has more than one orthogonal basis of reproducing kernels. We

note that if Λ = (λ j) is a sequence in (Γ,v)∗ associated with a weight sequence

w = (w j), where

w j = ‖kλ j‖
−2
H (Γ,v) =

(
∑
n

vn

|λ j− γn|2

)−1

,

then SR(Λ) is an orthonormal basis for H (Γ,v) if and only if H(Γ,v):(Λ,w) : `2
v→ `2

w

is a unitary transformation. Thus from the two Subsections 2.1.1 and 2.1.2 we

conclude:

If the space H (Γ,v) has an orthogonal bases of reproducing kernels, then Γ is a

subset of a straight line or a circle. Moreover, when Γ is a subset of the real line, the

orthogonal bases of reproducing kernels for H (Γ,v) are obtained from the unitary

transformations described by Theorem 2.1.3; an analogous result holds when Γ is a

subset of the unit circle.

4.5 Relation to Clark’s Bases
We are now finally prepared to point out the correspondence between our descrip-

tion of unitary discrete Hilbert transforms and the orthogonal bases of reproducing

kernels studied by de Branges [38] and Clark [29]. We restrict to Clark’s bases; the

only difference between the two cases is that Clark considered the case of the unit

circle while de Branges worked on the real line with, in our terminology, |γn| → ∞.

Said differently, de Branges studies with the class of meromorphic inner functions
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4 Examples of spaces H (Γ,v)

while Clark treated the general case. The result of de Branges has already been

placed in context in Section 4.1.

Suppose ϕ is of the form (2.1.10) with Γ = (γn) a sequence of distinct points on

the unit circle. Then the function

I(z) =
ϕ(z)− i
ϕ(z)+ i

is an inner function in the open unit disk D. We associate with I the model subspace

K2
I of the Hardy space H2 of the unit disk. Since 1/(1− ζ z) is the reproducing

kernel for H2 at a point ζ in D, the reproducing kernel for K2
I at the same point ζ

is

kζ (z) =
1− I(ζ )I(z)

1−ζ z
.

This formula extends to each point on the unit circle at which every function in K2
I

has a radial limit whose modulus is bounded by a constant times the H2 norm of the

function.

A computation shows that

i
1+ I(z)
1− I(z)

= ϕ(z)

which according to Clark’s theorem means that the reproducing kernels

kγn(z) =
1− I(z)
1− γnz

constitute an orthogonal basis for K2
I . In fact, Clark’s theorem says that if β is a

point on the unit circle and the spectral measure of the Herglotz function

ϕβ (z) = i
β + I(z)
β − I(z)

is purely atomic, then the reproducing kernels associated with the spectrum of ϕβ

also constitute an orthogonal basis for K2
I . The spectral measures generated in this

way correspond precisely to the spectral measures of the functions

1
α−ϕ(z)

with α any real number.

Having observed this correspondence, we conclude that a Hilbert space H of
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the type considered in the previous chapter can have more than one orthogonal basis

of reproducing kernels only if H is, up to trivial modifications, a model space K2
I

either in the unit disk or in the upper half-plane. In other words, there are no other

orthogonal bases of reproducing kernels than those already introduced and studied

by L. de Branges [38] and D. Clark [29].

An additional wonder, which can be seen from Clark’s theorem or indeed by a

straightforward computation, is that the norm in H can always be computed as an

L2 integral over a circle or a straight line.

4.6 Baranov’s Separation Problem
A classical theorem of Plancherel–Pólya (cf. [60]) states that for real sequences

(x j) such that
inf
m6= j
|x j− xm|> 0,

the inequality

∑
j
| f (x j)|2 . ‖ f‖2

L2(R) (4.6.1)

holds for all entire functions f of exponential type say ω whose restriction to R
belongs to L2(R). As explained in Section 1.3, the inner function which generates

the Paley–Wiener space here is I(z) = exp(iωz). The above separation condition

can be equivalently stated as

inf
m 6= j
|ψ(x j)−ψ(xm)|> 0

where ψ(t) = ωt for each real t is the continuous branch of the argument of I, i. e.

I(t) = exp(iψ(t)) for each t ∈ R.
In what follows we discuss the analogue of Plancherel–Pólya’s result in the class

of model spaces generated by meromorphic inner functions. Let I be a meromorphic

inner function and ϕ be a continuous branch of its argument. It holds that

2π‖kt‖2 = |I′(t)|= ϕ
′(t)

which follows from (4.2.2). We may then likewise consider a sequence of real

points (tn) satisfying the separation condition

inf
n

(
ϕ(tn+1)−ϕ(tn)

)
> 0. (4.6.2)
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For one-component inner functions I, it is known that the Plancherel–Pólya type

inequality

∑
n

| f (tn)|2

ϕ ′(tn)
. ‖ f‖2

K2
I

(4.6.3)

holds for all functions f in K2
I whenever the points (tn) satisfy (4.6.2). This is

no longer true if the inner function is not one-component. Counterexamples can

be found in [10]. One can also construct other examples by simply extending any

sequence of points that gives rise to a V -lacunary sequence in Theorem 2.2.7.

We stress that the problems of deciding the Carleson measures and reproducing

kernel Riesz bases in model subspaces rely on the geometry of the generating

inner functions. A good example in this regard is the case of Cohn’s embedding

theorem [31] in conjunction with the result of F. Nazarov and A. Volberg [69], which

asserts that uniform embedding of all the reproducing kernels may not characterize

the Carleson measures in model subspaces if the generating inner function is not

one-component. Additional example valid only for one-component case can be a

perturbation result of W. Cohn [30] with respect to small changes in the argument

of the generating inner function. Counterexamples for this when the inner function

has more components can be found in [10].

Inspired by the preceding connection between separation and the Bessel property,

A. Baranov posed the question whether condition (4.6.2) is necessary for (4.6.3):

there exists M such that for any J = [a,b] with ϕ(b)−ϕ(a) = 1

#{n : tn ∈ J} ≤M.

The question has again a positive answer for one-component inner functions. The

main objective in this section is prove that the answer in general is negative. Indeed,

a slight modification of our general approach in Section 2.2 to construct Bessel

sequences will lead to a suitable counterexample. This provides one more example

of the fact that the Carleson measure problem changes quite substantially when we

move from one-component to infinitely many component inner functions.

In the remaining part of this section we present an example that gives a negative

answer to Baranov’s question. Since it introduces no additional complications, we

may first state the problem in a more general form as follows.
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4.6. Baranov’s Separation Problem

Question. Suppose that Γ and Λ are disjoint sequences of real numbers

and that γn ↗ ∞. If w is the Bessel weight sequence for Λ with respect to

(Γ,v) and H(Γ,v);(Λ,w) is a bounded transformation, then is it true that there

is a uniform bound on the number of λ j such that |γn| ≤ |λ j| ≤ |γn+1|?

4.6.1 An example answering Baranov’s question

We will now modify our construction to obtain an example that gives a negative

answer to Baranov’s question.

We assume that (tn) is a sequence of positive numbers such that

inf
n≥1

tn+1

tn
> 1.

In addition, we will assume that, for each positive integer n, we have the following

cluster of n points:
γn,l = tn + l−1, 1≤ l ≤ n.

We denote this finite sequence by Γn and set

Γ =
∞⋃

n=1

Γn.

We will consider the simplest case when the corresponding weight sequence v is

identically 1, i.e., vn,l = 1 for every point γn,l in Γ.

It may be noted that if we want to describe the measures µ for which H(Γ,1) is

bounded from `2 to L2(C\Γ,µ), then it suffices to consider the behavior of µ in

the Carleson squares

Sn = {z = x+ iy : |x− γn,1| ≤ 2n, 0≤ y≤ 4n} .

Indeed, outside these squares, each cluster Λn has basically the same effect as if a

single point were located at, say, λn,1 with weight n. This means that Theorem 2.2.1

applies to describe the behavior of µ outside the squares Sn. In fact, by this

observation, one may obtain a complete solution to the boundedness problem for

these particular sequences Γ and v. We omit this description here and confine the

discussion to a suitable example solving Baranov’s problem.

The preceding notes indicate that the sequence Λ should be placed inside the

union of the squares Sn. We set
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λn,s = γn,1−2s, 0≤ s≤ log2 n

and then Λn = (λn,s)s with s running from 0 to [log2 n] (the integer part of log2 n),

and
Λ =

∞⋃
n=1

Λn.

We observe that

∞

∑
m=1

n

∑
l=1

1
|γm,l−λn,s|2

'
n

∑
l=1

1
|γn,l−λn,s|2

+
n−1

∑
m=1

n
|λn,s|2

+
∞

∑
m=n+1

n

∑
l=1

1
|γm,l|2

' |λn,s− γn,1|−1 = 2−s,

from which we have
wn,s ' 2s.

These numbers constitute the sequence w, which is the Bessel weight sequence for

Λ with respect to (Γ,v). We now state our result which appears in [11].

Theorem 4.6.1. If the sequences Γ, Λ and w are constructed as above, then

H(Γ,1);(Λ,w) is a bounded transformation.

The interesting point, giving a negative answer to Baranov’s question, is that there

are more than log2 n points from Λ between the neighboring clusters Λn−1 and Λn.

Proof of the theorem. Let a = (am,l) be an arbitrary `2-sequence associated

with Γ and set

H(Γ,1):(Λ,w)a(λ ) =
∞

∑
m=1

m

∑
l=1

am,l

λ − γm,l

for each point λ in (Γ,v)∗. An application of the Cauchy–Schwarz inequality

gives
[log2 n]

∑
s=0
|H(Γ,1):(Λ,w)a(λn,s)|2wn,s .

[log2 n]

∑
s=0

( n

∑
l=1

|an,l|
|λn,s− γn,l|

)2

wn,s +

[log2 n]

∑
s=0

(( n−1

∑
m=1

m

∑
l=1

|am,l|
|λn,s|

)2

+

(
∞

∑
m=n+1

m

∑
l=1

|am,l|
|γn,l|

)2
)

wn,s

.
n3

t2
n
‖a‖2

`2 +
[log2 n]

∑
s=0

2s
( n

∑
l=1

|an,l|
|λn,s− γn,l|

)2

.
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The summation over n of the first term on the right-hand side causes no prob-

lem because tn grows at least exponentially with respect to n. We therefore

concentrate on the second term

An =
[log2 n]

∑
s=0

2s
( n

∑
l=1

|an,l|
2s + l−1

)2

.

The Cauchy–Schwarz inequality again gives( n

∑
l=1

|an,l|
2s + l−1

)2

≤
n

∑
j=1

j−
1
2

2s + j−1

n

∑
l=1

l
1
2 |an,l|2

2s + l−1

=

(
2s

∑
j=1

j−
1
2

2s + j−1
+

n

∑
j=2s+1

j−
1
2

2s + j−1

)
n

∑
l=1

l
1
2 |an,l|2

2s + l−1
.

The sum of the two sums on the right-hand side is bounded by a constant

times 2−
s
2 , and so it follows that

An ≤
[log2 n]

∑
s=0

2
s
2

n

∑
l=1

l
1
2 |an,l|2

2s + l−1
.

Changing the order of summation and using that

[log2 n]

∑
s=0

2
s
2

2s + l−1
. l−1/2,

we finally obtain the desired estimate:

An .
n

∑
j=1
|an, j|2.
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5 Reproducing kernel Riesz bases
from equality of spaces

Following the arguments used in the work of J. Ortega–Cerdà and K. Seip [61],

A. Baranov [7] described reproducing kernel Riesz bases associated to real points

for model subspaces in terms of equality of spaces. In this chapter we will study

the natural analogue of his result with the real points being replaced by sequences

of points located in the upper half-plane. We show that the analogous conditions

are indeed sufficient but not in general necessary. We will also discuss invertibility

of Toeplitz operators from this equality of spaces perspective. Roughly speaking,

the work in this part may be viewed as a remark on the interrelationship among

three objects; invertible Toeplitz operators, equality of spaces and Riesz bases of

reproducing kernels in model subspaces generated by the class of meromorphic

inner functions. It is shown that none of these can be described in terms of the others

in a sense to be made precise.

5.1 Equality of spaces
We say that a sequence ( f j) in a Hilbert space H is a frame if there exists a positive

constant C such that the inequalities

C−1‖ f‖2
H ≤∑

j
|〈 f , f j〉H|2 ≤C‖ f‖2

H (5.1.1)

hold for functions f in H. While the lower inequality ensures completeness with

`2 norm control over the coefficients of a frame system, i.e. each f in H can be

approximated by a finite combination

∑
j

c j f j with ‖(c j)‖`2 . ‖ f‖H,
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5 Reproducing kernel Riesz bases from equality of spaces

the upper inequality encompasses frames as a special class of Bessel sequences.

A frame constitutes a Riesz basis if and only if it ceases to be a frame after the

removal of any one of its elements. It may be noted that K. Seip [99] constructed

frames of exponentials in L2(−π,π) that contains no Riesz basis subsequence.

The approach we intend to follow here begins with a problem of R. Duffin and

A. Schaeffer [40] to describe real sequences which generate Fourier frames in

L2(−π,π). In an interesting paper [78], J. Ortega–Cerdà and K. Seip have solved

the problem by equivalently describing the sampling sequences in the Paley–Wiener

space PWπ , in terms of equality of two spaces1. Their result reads:

Theorem 5.1.1. A separated real sequence2 (tn) is sampling3 for PWπ if and

only if there exist entire functions E and F in the HB class such that

(i) H(E) = PWπ and
(ii) (tn) constitutes the zero sequence of EF +E∗F∗.

Following their approach, A. Baranov [7] was able to prove the following two

more general results in model subspaces generated by the class of meromorphic

inner functions.

Theorem 5.1.2. Let E be an HB class function, I = E∗/E and (tn) be a

sequence of real points for which SR(tn) constitutes a frame for K2
I . Then

there exist entire functions E1 in the HB class and E2 either in the HB class

or a constant such that

(i) H(E) = H(E1),
(ii) the sequence (tn) constitutes a zero sequence for the function E1E2−

E∗1 E∗2 and
(iii) 1− I1I2 6∈ L2(R) with I1 = E∗1/E1 and I2 = E∗2/E2.

These conditions are about the lower inequality in (5.1.1), and require the Bessel

property to be sufficient as well. In particular, if E2 is a constant, then the next

stronger result holds which also reveals that the overcompleteness of a frame comes

from the existence of a second entire function E2 in the HB class.
1Here and in what follows by equality of two spaces we mean equality as a set equipped with

equivalent norms. We denote by H1 = H2 if the spaces H1 and H2 satisfy such a relation.
2Here we mean that the points are separated in the Euclidean distance.
3We recall that Λ is a sampling sequence for a reproducing kernel Hilbert space H if SR(Λ)

constitutes a frame for H .
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Theorem 5.1.3. Let E be an HB class function, I = E∗/E and (tn) be a

sequence of real points. Then SR(tn) is a Riesz basis in K2
I if and only if there

exists an HB class function E1 such that

(i) H(E) = H(E1) and

(ii) the sequence (tn) is the zero set of the function I1−1 and I1−1 6∈ L2(R)
where I1 = E∗1/E1.

Baranov’s result provides a new approach to study reproducing kernel Riesz bases,

bypassing the usual appeal to either invertible properties of Toeplitz operators or

an A2 condition involving generator functions. The above results are all dealing

with when the points associated with the kernel functions are real. In particular if ψ

denotes the increasing branch of the argument of I1, then the points tn satisfy the

relation
ψ(tn) = α +2πn, n ∈ Z

for some α ∈ [0,2π). A natural question is then whether an analog of Theo-

rem 5.1.3, with I1− 1 replaced by a meromorphic inner function, holds when

we associate the kernel functions with a sequence of points located in the upper

half-plane. It turns out that such analogues are indeed sufficient but not in general

necessary. This seems rather natural since the condition equality of spaces is so

strong. We now prove the following.

Theorem 5.1.4. Let E be an HB class function, I = E∗/E and (λn) ⊂ C+.

Then SR(λn) is a Riesz basis in K2
I if there exists an interpolating Blaschke

product B = E∗1/E1, E1 an HB class function such that

(i) H(E) = H(E1) and

(ii) the sequence (λn) constitutes the zero set of B.

We will construct counterexamples in Section 5.2 to show that (i) is not in

general necessary. On the other hand, by Theorem 1 in [50], and since the Carleson

interpolation condition implies the Blaschke condition, (ii) is always necessary.

From Theorems 5.1.3 and 5.1.4, we conclude that larger perturbations of reproducing

kernel Riesz bases is admissible with points from the upper half-plane than along

the real line.
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To be able to apply these results, we need to have a characterization of those

entire functions E1 for which the spaces H(E) and H(E1) are equal. An obvious

sufficient condition is of course when |E1(z)| ' |E(z)| holds for each z ∈C+∪R.
The converse statement here is not true. This problem was considered in [7] and a

solution has been given in terms of increasing branches of the arguments of E1 and

E . For weighted Paley–Wiener spaces, the same problem was treated in [62].

In general, checking equality of two spaces for given functions E and E1 is

practically quite hard. One reason, as stated in the next lemma from [7], is that it

can be equivalently reformulated in terms of another longstanding open problem;

Carleson measures in model subspaces. To state the lemma, we need to recall the

Smirnov class functions N +. An analytic function f is said to be in N + if the

representation f = g/h holds for some H∞ functions g and h with h outer as well.

Note that since h is outer, the ratio is well defined.

Lemma 5.1.5. Let E and E1 be HB class functions, and I = E∗/E, I1 =

E∗1/E1 and w = E/E1. Then H(E) = H(E1) if and only if

(i) w, w−1 ∈N +∩L2(π)

(ii) µ = w2dm and µ1 = w−2dm are Carleson measures for the space K2
I

and K2
I1 respectively where dm and π respectively stand to the Lebesgue

and Poisson measures on the real line.

The lemma again complements the fact that the Riesz basis problem is a special

case of the Carleson measure or the two weight problems for the Hilbert transform

(cf. Theorem (2.4.1)). We state one more extension of a theorem from [7]. The

result is an immediate consequence of Theorem 5.1.4. We keep the notation H̃pos

from (1.5) for the Hilbert transform when it acts on functions integrable with respect

to the Poisson measure on the real line. That is for g in L1(π);

H̃posg(x) = p.v.
1
π

∫
R

( 1
x− t

+
t

t2 +1

)
g(t)dt.

Corollary 5.1.6. Let I be a meromorphic inner function with an increasing

branch of argument ϕ and (λn) ⊂ C+. Then SR(λn) is a Riesz basis in K2
I

if there exists a meromorphic inner function I1 with an increasing branch of

argument ϕ1 such that
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(i) ϕ−ϕ1 ∈ L1(π) and H̃pos(ϕ−ϕ1) ∈ L∞(R)

(ii) the sequence (λn) constitutes the zero set of I1.

This result was proved in [7] for the case when the sequence λn consists only

of real points. The proof was based on Theorem 5.1.3 and another general result

(Theorem 3.2) from [7]. The corollary will follow from a similar proof. We only

have to use this time Theorem 5.1.4 in place of Theorem 5.1.3.

Proof of Theorem 5.1.4

We may first note that B being an interpolating Blaschke product in the hypothesis,

which is known from Theorem 1.1 in [50], makes our proof easy. We will use

arguments similar to those used by Baranov in [7]. We should only argue using

normalized reproducing kernel Riesz bases associated with sequence of points from

C+ instead of de Branges basis. We include a proof for the sake of completeness.

For convenience, denote by Kz, kz, K1
z and k1

z the reproducing kernels of the spaces

H(E), K2
I , H(E1) and K2

B respectively at the point z. If (λn) is the zero set of an

interpolating Blaschke product B, then the family of normalized reproducing kernels

associated to (λn) constitutes a Riesz basis in K2
B. This result is due to Shapiro and

Shields [100]. In view of the unitary isomorphism f 7→ E1 f from K2
B onto H(E1),

which in particular maps reproducing kernels onto reproducing kernels, this holds

true if and only if the system{ E1k1
λn

‖k1
λn
‖2

}
=

{ K1
λn

‖k1
λn
‖2E1(λn)

}
=

{ K1
λn

‖K1
λn
‖H(E1)

}
constitutes a Riesz basis for H(E1) where the equalities are due to the kernels

relation

K1
z (w) = E1(w)E1(z)

i
2π

(
1− I1(z)I1(w)

w− z

)
= E1(z)E1(w)k1

z (w) (5.1.2)

for points z and w in the upper half-plane. Equivalently, it means that the interpola-

tion problem
f (λn) = an

has a unique solution f in H(E1) whenever the admissibility condition
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∞

∑
n=1
|an|2‖K1

λn
‖−2

H(E1)
< ∞

holds. By duality and the hypothesis we have that

‖K1
z ‖H(E1) = sup

g∈H(E1)

‖g‖H(E1)
=1

∣∣〈g,K1
z
〉∣∣

H(E1)
= sup

g∈H(E1)

‖g‖H(E1)
=1

|g(z)|

' sup
g∈H(E)
‖g‖H(E)=1

|g(z)|= ‖Kz‖H(E) (5.1.3)

for each point z in C+ and in particular for the λ ′ns. It follows that for each sequence

cn satisfying
∞

∑
n=1
|cn|2‖Kλn‖

−2
H(E) '

∞

∑
n=1
|cn|2‖K1

λn
‖−2

H(E1)
< ∞,

there exists a unique function f in H(E) = H(E1) such that f (λn) = cn. This

proves that (λn) is a complete interpolating sequence for H(E) and so is for K2
I .

5.2 Equality of spaces fails to be necessary
In this section we are concerned with constructing counterexamples which would

lead to the conclusion that the natural analog of A. Baranov’s result (Theorem 5.1.3)

fails to hold in general. We will exhibit two different examples using one and

infinitely many component inner functions. This, in addition, is meant to stress the

fact that results valid in model subspaces generated by the class of one-component

inner functions may in general fail when the generating inner function has infinitely

many components.

Example 6. The condition fails to be necessary even for the case of the classi-

cal Paley–Wiener space. This can be easily seen from Baranov’s example [7]

where he explained that equality of spaces may also fail to follow from in-

vertibility of Toeplitz operators. We present the example here to make the

exposition self-contained. Let E(z) = exp(−πiz) and

E1(z) = lim
R→∞

∏
|λ |<R

(
1− z

λn

)
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5.2. Equality of spaces fails to be necessary

with a sequence (λn);

λn =

n+ i, n≤ 0

n+δ + i, n > 0

where 0< δ < 1/4. Then I(z)=E∗(z)/E(z)= exp(2πiz) and B=E∗1/E1. By

Kadets’-1/4 theorem, the system of exponentials (eiλnt) constitutes a Riesz

basis in L2(0,2π). We claim that H(E) 6= H(E1). Were it not, then setting

ϕ and ϕ1 respectively as increasing branches of the arguments of the inner

functions I and B, we have

‖kt‖2
H(E) ' |E(t)|

2
ϕ
′(t)' |E1(t)|2ϕ

′
1(t)' ‖kt‖2

H(E1)

for each real point t. It is rather a simple estimate that for all such points

ϕ ′(t)' ϕ ′1(t)' 1 and hence∣∣∣ E(t)
E1(t)

∣∣∣' |t|δ → ∞

when |t| → ∞ and results again in a contradiction.

We now turn to the case of infinitely many component inner functions. We

may first note that each entire function E in HB class admits the factorization

E(z) = S(z)P(z) with S an entire function which assumes real values on the real

line and can have only real zeros, and

P(z) = αe−aiz
∞

∏
n=1

(
1− z

zn

)
ezℜ(1/zn) (5.2.1)

where a≥ 0, α ∈C with |α|= 1, and the sequence zn in C+ satisfies the Blaschke

condition. If I is a meromorphic inner function identified by such E, then for each z

in C+, we have

I(z) =
E∗

E
(z) =

α

α
e2aiz

∞

∏
n=1

1− z/zn

1− z/zn

which is always independent of the parameter S. In other words, the inner function

I = E∗/E = P∗/P acquires all of its structure only from the product factor P. This

simple fact will be used effectively to construct our next example.

Example 7. We consider a model subspace K2
B with B a Blaschke product
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5 Reproducing kernel Riesz bases from equality of spaces

with simple zeros at the points zn = γn + i, indexed by the positive integers

and γn satisfying the growth condition (2.2.1), That is

inf
n

γn+1/γn > 1. (5.2.2)

The system kzn, n = 1, 2, ..., constitutes a Riesz basis in K2
B. Another way

of phrasing this property is to say that the map

(an) 7→
∞

∑
n=1

an

z− zn

is a Hilbert space isomorphism from `2 onto K2
B. An application of this makes

use of another immediate consequence, namely that the norm equivalence

‖ f‖2
2 '

∞

∑
n=1
|〈 f ,kzn〉|2 =

∞

∑
n=1
| f (zn)|2 (5.2.3)

holds for functions f in K2
B. If Z = (zn) and λ is a point in the upper half-

plane, then
‖kλ‖2

2 'max
{

n|λ |−2, dist−2(λ ,Z)
}

(5.2.4)

for some positive integer n. The reason such a simple estimate holds for

‖kλ‖2 is the “minimal” interaction between the zeros of B implied by our a

priori growth condition (5.2.2): Geometrically, this almost lack of interaction

is reflected in the (essential) lack of intersection between the disks

Dn =
{

z ∈ C+ : |z− zn|. |zn|/
√

n
}
.

We shall now proceed to construct our example. Consider the sequence

(λn) =

(
γn

(
1+

1
n log(n+1)

)
+ i
)
⊂

∞⋃
n=1

Dn (5.2.5)

where each λn belongs to the respective Dn. By Theorem 2.4.10 ((2.4.10) and

(2.4.11) holds) we observe that such a sequence gives rise to a reproducing

kernel Riesz basis in K2
B. Setting

E(z) =
∞

∏
m=1

(
1− z

zm

)
, E1(z) =

∞

∏
m=1

(
1− z

λm

)
,
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5.3. Invertibility of Toeplitz operators

I = E∗1/E1 and ρn =
n

∏
k=1

|zk|
|λk|

,

we claim that ‖K1
λn
‖H(E1) 6' ‖Kλn‖H(E). Were it not, then

‖K1
λn
‖2

H(E1)
= |E1(λn)|2‖k1

λn
‖2

K2
I
' ℑλn|λn|2n−2

∏
n
k=1 |λk|2

(5.2.6)

and applying (5.2.4), we also have

‖Kλn‖
2
H(E) = |E(λn)|2‖kλn‖

2
K2

I
' |λn|2n−2

∏
n
k=1 |zk|2

. (5.2.7)

Invoking (5.1.3) would imply that

1 = ℑλn '
1
ρn
→ ∞

when n→ ∞ and yields a contradiction.

5.3 Invertibility of Toeplitz operators
As pointed out earlier, when condition (1.3.7) holds, the essential part of the

Riesz basis condition involves the invertibility of certain Toeplitz operators. We

now consider the inverse question, namely whether the Toeplitz operator TIBΛ
is

necessarily invertible whenever SR(Λ) constitutes a Riesz basis in K2
I where BΛ

here refers to the Blaschke product with zero set Λ. It turns out that the answer

to this question is in general negative. For one-component inner functions I, this

was already noticed in [7]. The answer remains negative when the generating inner

function possesses infinitely many components. To see this, one can use the space

K2
B introduced in the above example and observe that the zero set of the Blaschke

product BΛ;
Λ =

(
γn(1+1/n2)+ i/ log(n+1)

)
, (5.3.1)

generates a reproducing kernel Riesz basis in K2
B (cf. Theorem 2.4.10) while the

Toeplitz operator with symbol BBΛ fails to be invertible.

Invertibility of the Toeplitz operator is not a necessity for equality of spaces either.

We refer to remark 6.5 (1) in [7] for a counterexample which first appeared in [62].

Conversely, the example in Subsection 4.2 clarifies that invertibility again fails to
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5 Reproducing kernel Riesz bases from equality of spaces

imply equality of spaces. To see this, first observe that condition (1.3.7) holds for

Λ and I = E∗/E. Thus (eiλ t)λ∈Λ is a Riesz basis and implies invertibility of the

Toeplitz operator with symbol IBΛ. To this effect, the basis property implies neither

equality of spaces nor invertibility of the Toeplitz operator though it easily follows

from the former (cf. Theorem 5.1.4).
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