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Abstract

Our main objective for this thesis is to present and discuss the linear mixed effects
model and, in particular, the different possible covariance structures for the random
effects and the residuals. The linear mixed effects model is widely used in biology
and medical research.

We use data from the diet intervention study, Arbo, Brattbakk, Langaas, Kuiper,
Lindberg, Kulseng and Johansen (2010), where the aim was to investigate the dif-
ference between a diet rich in carbohydrates and a diet rich in fat and protein. Data
from 32 participants were available. A series of biomarkers were measured before
and after both diets, giving repeated measurements from each participant across
time and diet.

We have studied different linear mixed effects models varying in covariance structure
for the random effects and the residuals. Further, we have focused on a thorough
treatment of statistical contrasts. The contrasts of interest in this study are esti-
mates of the effect of the two diets and the difference in effect between the two diets,
and is especially relevant to biologists and medical researchers. Statistically, there is
no common agreement on how degrees of freedom should be calculated when testing
contrasts. We will show that using different parameter coding for a between-subject
factor in the same model, yield different results.

The linear mixed effects model allows complex structures in correlated data to be
modeled, and so it is important to look at the implied marginal variance-covariance
matrix to understand the structure. We have calculated the empirical variance-
covariance matrix of the data, and compared it to the estimated implied marginal
variance-covariance matrix, in an attempt to get a more thorough understanding of
the covariance structures for the random effects and the residuals.

The estimated implied marginal variance-covariance matrix have also been used
to estimate the intraclass correlations.

Finally, we have fitted the linear mixed effects model using the Bayesian approach,
integrated nested Laplace approximations (INLA), and compared the results to the
results of the frequentist approach.
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Chapter 1

Introduction

In biology and medical analysis, we often meet data sets in which the response
variable is measured more than once for each subject across levels of one or more
factors, referred to as repeated measures. We can not analyze these data with lin-
ear regression, because the residuals from each subject are correlated. A popular
regression model for analyzing repeated measures is the linear mixed effects model,
which combine both fixed and random effects on a linear scale. Since we expect
the subjects to vary independently in the random effect, we allow the observations
within a subject to be correlated.

In Chapter 2 we will define the statistical methods used when fitting a linear mixed
effects model using the frequentist approach. In Chapter 3 we will present the diet
intervention study, Arbo et al. (2010), and use the frequentist approach to fit linear
mixed effects models. In particular we will take a closer look at four different forms
of the linear mixed effects model, varying in covariance structures for both random
effects and residuals. In Chapter 4 we will calculate and discuss contrasts. In Chap-
ter 5 we will study the implied marginal variance-covariance matrix associated with
the four fitted linear mixed effects models, in order to get a deeper understand-
ing of how the covariance in the data are structured in the random effects and the
residuals. We will also estimate the empirical variance-covariance matrix directly
from data and compare it to the implied marginal variance-covariance matrix asso-
ciated with the four fitted linear mixed effects models. In Chapter 6 we will define
a version of the intraclass correlation for LMEs, calculated by using the estimated
implied marginal variance-covariance matrix. In Chapter 7 we will use the Bayesian
approach, integrated nested Laplace approximations (INLA), to fit the four models
and compare the results to the results from the frequentist approach. Finally, in
Chapter 8 we will discuss our findings and conclude.

All statistical analysis and variable construction in this thesis were done using the
statistical software R, R Development Core Team (2010). The packages used were
nlme by Pinheiro, Bates, DebRoy, Sarkar and R Development Core Team (2010)
for model construction, gmodels by Warnes (2011) for contrast estimation, and inla
by Rue and Martino (2009) for Bayesian model construction.
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Chapter 2

Method

The presentation of the methods used in this chapter is based on Chapter 2 of West,
Welch and Galecki (2007) and Chapter 2 of Pinheiro and Bates (2000).

2.1 Types, structures and levels of data
The linear mixed effects model, LME, combine both fixed and random effects on
a linear scale. Fixed effects are parameters associated with an entire population
or with certain levels of factors. Random effects are associated with subjects, or
clusters, drawn at random from the population. Because we expect the subjects, or
clusters, to vary independently, we will have correlated observations within a sub-
ject, or cluster.

Linear mixed effects models are primarily used to describe relationships between
a response variable and one or more explanatory variables or factors, for the follow-
ing types of data:

• Clustered data
Data in which the response variable is measured once for each subject, and
the subjects are nested within clusters. An example is measures for students,
which are nested within different school classes.

• Longitudinal data
Data in which the response variable is measured repeatedly through time for
each subject.

• Clustered longitudinal data
Data in which the response variable is measured repeatedly through time for
each subject, and the subjects are nested within clusters.

• Repeated measures
Data in which the response variable is measured more than once for each sub-
ject across levels of one or more factors.

According to West et al. (2007) we can also think of these data as multilevel data
sets. The concept of "levels" of data is based on ideas from the hierarchical linear
modeling (HLM). Level 1 denotes the observations at the most detailed level of the
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data, level 2 represent the next level of the hierarchy and so forth. The multiple
levels of the four data types can be seen in Table 2.1. We stop at level 3, but clus-
tered data may have additional levels.

Type of data: Level 1 Level 2 Level 3

Clustered Subject Cluster of units
(Two-level) Student Class

Clustered Subject Cluster of units Cluster of cluster
(Three-level) Student Class School

Longitudinal measure Subject
Longitudinal Height Child

(At age 1,2,3 and 4)

Clustered Longitudinal measure Subject Cluster of unit
longitudinal Height Child Family

(At age 1,2,3 and 4)

Repeated Repeated measure Subject
measures Insulin Person

(Measured for two diets)

Table 2.1: Multilevel data sets, with examples.

In this thesis we will only consider two-level repeated measures data.

2.2 Nested vs. crossed factors

There are two types of both fixed and random effects, called nested and crossed
factors. A nested factor is a factor in which one level only can be measured within
a single level of another factor and not across multiple levels. Then the level of the
first factor are said to be nested within levels of the second factor. A crossed factor
is a factor in which one level can be measured across multiple levels of another factor.

In this thesis we will only consider data with crossed fixed and random effects.
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2.3 Specification of the linear mixed effects model
We will consider a two-level repeated measures data set with crossed fixed and
random effects, where level 1 represents the repeated measurements and level 2
represents the subjects. The two-level linear mixed effects model is defined as

Yi = Xiβ + Ziui + εi, for i = 1, ...,m, (2.1)

where Yi is a vector of continuous responses for the ith subject defined by

Yi =


Y1i

Y2i
...

Ynii

 .

Note that ni is dependent on i, hence the number of observations for each subject
may differ. We have m subject, in total n = ∑m

i ni observations.

The fixed effect design matrix, Xi, is a ni × p matrix, which represents p covariates
corresponding to the fixed effects for each observation of the ith subject. The fixed
effect design matrix is defined as

Xi =


x

(1)
1i x

(2)
1i · · · x

(p)
1i

x
(1)
2i x

(2)
2i · · · x

(p)
2i

... ... . . . ...
x

(1)
nii x

(2)
nii · · · x

(p)
nii

 .

The first column of the design matrix is often equal to 1 for all observations to
include an intercept term in the model.

The fixed effects vector, β, is a vector consisting of p unknown regression coef-
ficients associated with the covariates from the design matrix Xi, and is defined
as

β =


β1
β2
...
βp

 .

The random effect design matrix, Zi, is a ni × q matrix, which represents q co-
variates corresponding to the random effects for each observation of the ith subject.
The random effect design matrix is defined as

Zi =


z

(1)
1i z

(2)
1i · · · z

(q)
1i

z
(1)
2i z

(2)
2i · · · z

(q)
2i

... ... . . . ...
z

(1)
nii z

(2)
nii · · · z

(q)
nii

 .

The random effects are effects that vary randomly across subjects. Hence, it includes
the individual differences for the subjects. Covariates with random effect are often
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represented both in the Xi matrix and the Zi matrix. In the simplest example of
the linear mixed effects model, only the intercepts are assumed to vary randomly
from subject to subject. Hence, in this case the Zi matrix is simply reduced to a
vector of ni 1’s.

The random effect vector, ui, is a vector consisting of q random effects associated
with the covariates from the design matrix Zi, and is defined by

ui =


u1i

u2i
...
uqi

 .

We assume that the random effect vector, ui, follows a multivariate normal distri-
bution,

ui ∼ Nq(0,D),

where the positive definite symmetric covariance matrix D is defined as

D = Var(ui) =


Var(u1i) Cov(u1i, u2i) · · · Cov(u1i, uqi)

Cov(u1i, u2i) Var(u2i) · · · Cov(u2i, uqi)
... ... . . . ...

Cov(u1i, uqi) Cov(u2i, uqi) · · · Var(uqi)

 . (2.2)

Finally, the residual εi vector is defined by

εi =


ε1i

ε2i
...
εnii

 ,

where each element represents the residual associated with each response for the
ith subject. Unlike the residuals in standard linear models, the residuals associated
with repeated observations on the same subject in a linear mixed effects model can
be correlated. We assume that the ni residuals in the εi vector follow a multivariate
normal distribution,

εi ∼ Nni
(0,Ri),

where the positive definite symmetric covariance matrix Ri is defined as

Ri = Var(εi) =


Var(ε1i) Cov(ε1i, ε2i) · · · Cov(ε1i, εnii)

Cov(ε1i, ε2i) Var(ε2i) · · · Cov(ε2i, εnii)
... ... . . . ...

Cov(ε1i, εnii) Cov(ε2i, εnii) · · · Var(εnii)

 . (2.3)

We assume that the vectors of residuals, ε1, ..., εm, and the random effects, u1, ...,um,
are independent of each other.
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2.4 Covariance parameters, θ
We now want to introduce the vector of covariance parameters,

θ =
[
θD
θR

]
, (2.4)

which combines all parameters from the covariance matrices D and Ri, respectively
contained in the vectors θD and θR. Hence, in order to find the vector, θ, we need
to know the covariance structure of the matrices D and Ri. We will now take a
closer look at the most commonly used covariance structures for these matrices.

The two most commonly used structures for the positive definite symmetric covari-
ance matrix D in Equation (2.2), are the unstructured and the variance components
structure. The unstructured D matrix has no other constraints than being positive
definite and symmetric. If the linear mixed effects model have two random effects
associated with the ith subject, the unstructured D matrix is given as

D = Var(ui) =
[

σ2
u1 σu1,u2

σu1,u2 σ2
u2

]
. (2.5)

In this case, the vector θD contains three covariance parameters,

θD =

 σ2
u1

σu1,u2
σ2

u2

 . (2.6)

The variance components structure of the covariance matrix D is also called the
diagonal structure. If the linear mixed effects model have two random effects asso-
ciated with the ith subject, the variance components structured D matrix is given
as

D = Var(ui) =
[
σ2

u1 0
0 σ2

u2

]
. (2.7)

In this case, the vector θD contains two covariance parameters,

θD =
[
σ2

u1
σ2

u2

]
. (2.8)

The two most commonly used structures for the positive definite symmetric covari-
ance matrix Ri in Equation (2.3), are the diagonal and the compound symmetry
structure. The diagonal structure of the covariance matrix Ri is the simplest struc-
ture, in which the residuals within one subject are assumed to be uncorrelated and
have equal variances. Hence, the diagonal structure of the covariance matrix Ri is
given as

Ri = Var(εi) = σ2I =


σ2 0 · · · 0
0 σ2 · · · 0
... ... . . . ...
0 0 · · · σ2

 . (2.9)
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In this case, the vector θR only contain one covariance parameter,

θR = σ2. (2.10)

The compound symmetry structure of the covariance matrix Ri, assumes that the
residuals within one subject have a constant covariance, σ1, and a constant variance,
σ2 + σ1. Hence, the compound symmetry structure of the covariance matrix Ri, is
given as

Ri = Var(εi) =


σ2 + σ1 σ1 · · · σ1
σ1 σ2 + σ1 · · · σ1
... ... . . . ...
σ1 σ1 · · · σ2 + σ1

 . (2.11)

In this case, the vector θR contains two covariance parameters,

θR =
[
σ2

σ1

]
. (2.12)

Both the covariance matrices D and Ri can also be specified to allow heteroge-
neous variances for different levels of a specific factor.

2.5 The implied marginal model
The linear mixed effects model (2.1) implies the marginal linear model

Yi = Xiβ + ε?
i , (2.13)

where
ε?

i = Ziui + εi.

Hence the ε?
i is normally distributed with expected value

E(ε?
i ) = E(Ziui) + E(εi)

= ZiE(ui) + E(εi)
= Zi0 + 0
= 0

and covariance matrix

Cov(ε?
i ) = Cov(Ziui) + Cov(εi)

= ZiCov(ui)ZT
i + Cov(εi)

= ZiDZT
i + Ri.

By defining the marginal variance-covariance matrix as

Vi = ZiDZT
i + Ri, (2.14)

we get
ε?

i ∼ Nni
(0,Vi)

Hence, the marginal distribution of Yi is defined as

Yi ∼ Nni
(Xiβ,Vi). (2.15)
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2.6 Maximum likelihood estimation
The marginal distribution of Yi, (2.15), is the multivariate normal probability den-
sity function

f(Yi|β,θ) = (2π)− ni
2 det(Vi)− 1

2 exp(−1
2(Yi −Xiβ)T V−1

i (Yi −Xiβ)),

where det is the determinant and Vi is given by (2.14).

Hence, given the observed data Yi = yi, the likelihood function contribution for
the ith subject is

Li(β,θ) = (2π)− ni
2 det(Vi)− 1

2 exp(−1
2(yi −Xiβ)T V−1

i (yi −Xiβ)).

We have observed m independent subjects and the product of these m likelihood
functions, gives us the joint likelihood function

L(β,θ) =
m∏

i=1
Li(β,θ)

=
m∏

i=1
(2π)− ni

2 det(Vi)− 1
2 exp(−1

2(yi −Xiβ)T V−1
i (yi −Xiβ)).

Hence, the log-likelihood function is

l(β,θ) = −1
2n ln(2π)− 1

2

m∑
i=1

ln(det(Vi))−
1
2

m∑
i=1

(yi−Xiβ)T V−1
i (yi−Xiβ). (2.16)

By assuming that θ is known, the log-likelihood function becomes a function of
β only. This leads to the maximization of the log-likelihood function (2.16) being
equivalent to the minimization of its last term

q(β) = 1
2

m∑
i=1

(yi −Xiβ)T V−1
i (yi −Xiβ).

By using the method of generalized least squares, we minimize q(β) to find β̂.

∂q(β)
∂β

= ∂

∂β

1
2

m∑
i=1

yT
i V−1

i yi − yT
i V−1

i Xiβ − βT XT
i V−1

i yi + βT XT
i V−1

i Xiβ = 0

⇒
m∑

i=1
−XT

i V−1
i yi + XT

i V−1
i Xiβ = 0

⇒ β̂ = (
m∑

i=1
XT

i V−1
i Xi)−1

m∑
i=1

XT
i V−1

i yi. (2.17)

Since β̂ can be written as bTY , it is the best linear unbiased estimator (BLUE) of
β. Which means that E[bTY ] = β and that it has the smallest variance among all
unbiased linear estimators.
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Further, to obtain the maximum likelihood estimates of the covariance parameters,
θ, we construct a profile log-likelihood function, lML(θ). This is done by replacing
the fixed effects β with the best linear unbiased estimator of β, (2.17). Hence,

lML(θ) = −1
2n ln(2π)− 1

2

m∑
i=1

ln(det(Vi))−
1
2

m∑
i=1

(rT
i V−1

i ri), (2.18)

where
ri = yi −Xiβ̂ = yi −Xi((

m∑
i=1

XT
i V−1

i Xi)−1
m∑

i=1
XT

i V−1
i yi). (2.19)

The maximum likelihood estimates of the covariance parameters θ, θ̂, can not be
given in closed form. θ̂ can be found by numerical optimization. The R func-
tion nlme by Pinheiro et al. (2010) uses a hybrid approach, where an initial θ0 is
computed, then 25 expectation-maximization iterations in performed to refine the
estimate and finally, Newton-Raphson iterations is performed until convergence is
obtained.

The expectation-maximization algorithm, EM, is an iterative algorithm for likeli-
hood estimation in models with incomplete data. The iterations are based on re-
garding the random effects as unobserved data. At iteration w, where w = 1, ..., 25,
we use the current covariance parameter vector θ(w) to evaluate the distribution of
β|y and derive the expectation of the log-likelihood for a new value of θ given this
conditional distribution. Then we maximize this expectation with respect to θ, to
produce θ(w+1).

The Newton-Raphson algorithm is a optimization algorithm which uses a first-order
expansion of the score function, which is the gradient of the log-likelihood function,
around the current estimate of the covariance parameter vector, θ(w), to produce
the next estimate θ(w+1).

Now we are ready to calculate β̂. We insert the estimated θ̂ into D and Ri to
obtain D̂ and R̂i. And by inserting these estimates into Vi in Equation (2.14), we
get an estimate of Vi,

V̂i = ZiD̂ZT
i + R̂i. (2.20)

Further, by replacing Vi by V̂i in the log-likelihood function (2.16), θ is known
(implicit assumed), the maximization of the log-likelihood function is equivalent to
the minimization of its last term. Hence, by using the method of weighted least
squares we obtain the empirical best linear unbiased estimator (EBLUE) of β,

β̂ = (
m∑

i=1
XT

i V̂i
−1

Xi)−1
m∑

i=1
XT

i V̂i
−1

yi. (2.21)

2.7 Restricted maximum likelihood estimation
The REML estimation is an alternative way of estimating the covariance parameters
in θ, which is often preferred to ML estimation due to the fact that it produces un-
biased estimates of covariance parameters by taking into account the loss of degrees
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of freedom that results from estimating the linear fixed effects in β.

The REML log-likelihood function is given by

lREML(θ) =− 1
2(n− p) ln(2π)− 1

2

m∑
i=1

ln(det(Vi)) (2.22)

− 1
2

m∑
i=1

(rT
i V−1

i ri)−
1
2

m∑
i=1

ln(det(XT
i V−1

i Xi)), (2.23)

where ri is given by Equation (2.19). Here we observe that the difference between
the ML- and the REML log-likelihood function is that the REML subtracts less in
the first term, n− p instead of n, and an extra term 1

2
∑m

i=1 ln(det(XT
i V−1

i Xi)). The
general motivation for using REML is to obtain unbiased estimates of the covariance
parameters.

By optimization of this REML log-likelihood function we obtain the REML esti-
mates of the covariance parameters in θ. Once an estimate of the variance-covariance
matrix Vi, V̂i, has been obtained, the REML-based estimates of the fixed effect pa-
rameters, β̂, can be computed by using Equation (5.2) and (2.21) from the ML
estimation. Hence, the ML-based and the REML-based estimates of the fixed effect
parameters, β̂, differ due to the fact that the estimate of the variance-covariance
matrix, V̂i, is different.

2.8 Likelihood ratio test
The likelihood ratio tests are a class of tests based on comparing the values of
likelihood functions for two nested models defining a hypothesis being tested. Such
hypotheses can be about both fixed effect parameters or covariance parameters in
a linear mixed effects model. In general, the likelihood ratio test requires that both
the nested model and the reference model corresponding to a specific hypothesis are
fitted to the same subset of data. The likelihood ratio test statistic, is according to
West et al. (2007) defined as

−2 log( Lnested

Lreference

) = −2 log(Lnested)− (−2 log(Lreference)) ∼ χ2
df ,

where Lnested refers to the value of the likelihood function evaluated at the ML or
REML estimates of the parameters in the nested model, and Lreference refers to the
value of the likelihood function in the reference model. Likelihood theory states
that under mild regularity conditions the likelihood ratio test statistic asymptot-
ically follows a χ2 distribution, in which the degrees of freedom, df , is obtained
by subtracting the number of parameters estimated in the nested model from the
number of parameters estimated in the reference model. Hence, if the test statistic
is sufficiently large there is evidence against the null hypothesis, which is that the
nested model is a better fit for the data than the reference model. Similarly, if the
test statistic is sufficiently small there is evidence of the null hypothesis, and the
nested model is the best fit for the data.
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2.8.1 Likelihood ratio test for fixed effect parameters
The likelihood ratio test for fixed effect parameters should be used when the esti-
mated fixed effects have been obtained by ML estimation. In this case the nested
model and the reference model have the same set of covariance parameters, but
different sets of fixed effect parameters. The likelihood ratio test statistic is in this
case defined as

− 2lnested − (−2lreference) ∼ χ2
df , (2.24)

where l is the log-likelihood function, lML, given by Equation (2.18). Hence the test
statistic has a χ2 asymptotic null distribution, with degrees of freedom, df , equal
to the difference in fixed effect parameters between the two models. Pinheiro and
Bates (2000) do not recommend this method for testing fixed effect parameters, due
to the fact that p-values calculated might be greater than they should be, referred
to as "anticonservative".

2.8.2 Likelihood ratio test for covariance parameters
The likelihood ratio test for covariance parameters should be used when the esti-
mated covariance parameters have been obtained by REML estimation. We assume
that the nested model and the reference model have the same set of fixed effect
parameters, but different sets of covariance parameters. The likelihood ratio test
statistic is in this case defined as

− 2lnested − (−2lreference), (2.25)

where l is the log-likelihood function, lREML, given by Equation (2.23). The null
distribution of the test statistic depends on whether the null hypothesis values for
the covariance parameters lie on the boundary of the parameter space for the co-
variance parameters or not.

The first case is that the covariance parameters satisfying the null hypothesis do
not lie on the boundary of the parameter space. In this case the test statistic has a
χ2 asymptotic null distribution, with degrees of freedom, df , equal to the difference
in number of covariance parameters between the nested model and the reference
model.

The second case is when the covariance parameters satisfying the null hypothe-
sis lie on the boundary of the parameter space. This case often arises when we test
whether a given random effect should be kept in a model or not. Which is tested
by whether the variances and covariances corresponding to the given random effect,
are equal to zero or not.

In the case where a model has a single random effect, we might wish to test whether
that random effect can be omitted. That is,

H0 : D = 0 versus H1 : D = σ2. (2.26)

It has been shown by Verbeke and Molenberghs (2000) (page 69-70) that the likeli-
hood ratio test statistic, (2.25), has a asymptotic null distribution that is a mixture
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of χ2
1 and χ2

0 with equal weights 0.5.

In the case where a model contains two random effects, we might wish to test
whether one of them can be omitted. That is,

H0 : D =
[
σ2

1 0
0 0

]
versus H1 : D =

[
σ2

1 σ1,2
σ1,2 σ2

2

]
. (2.27)

It has been shown by Verbeke and Molenberghs (2000) (page 70) that the the likeli-
hood ratio test statistic, (2.25), has a asymptotic null distribution that is a mixture
of χ2

1 and χ2
2 with equal weights 0.5.

Hence, we can calculate a p-value for the test statistic as follows:

p = 0.5(1− χ2
test−statistic,1) + 0.5(1− χ2

test−statistic,2), (2.28)

where the test statistic is defined in Equation (2.25). If the test statistic is significant
on a α-level, that is if p < α, we reject the null hypothesis and retain the random
effect tested in the model.

Since most statistical software procedures capable of fitting linear mixed effects
models provide the option of using either ML estimation or REML estimation, we
can choose to use the estimation method suitable for the hypothesis we want to test.

2.9 Conditional tests for fixed effect parameters
The conditional tests for fixed effect parameters include the t-test and the F-test,
which are both conditioned on the estimates of the covariance parameters, θ̂.

2.9.1 The conditional t-test

The conditional t-test for fixed effect parameters, tests the hypothesis given as

H0: β = 0 vs. H1: β 6= 0.

The corresponding t-statistic, or t value, is defined by

t = β̂

se(β̂)
. (2.29)

The t-statistic follows an approximate t distribution, with degrees of freedom deter-
mined by the grouping level at which the term is estimated.

Using the lme function of Pinheiro et al. (2010), the conditional t-tests are imple-
mented in the summary method. Here the significance of each fixed effect parameter
are conditional on all other fixed effects in the model.
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2.9.2 The conditional F-test
The conditional F-test for fixed effect parameters, tests the hypothesis given as

H0: Cβ = 0 vs. H1: Cβ 6= 0,

where C is a known matrix. The F -statistic is defined by

F = β̂CT (C(∑m
i XT

i V̂−1
i Xi)−1CT )−1Cβ̂

rank(C) . (2.30)

The F -statistic follows an approximate F distribution, with numerator degrees of
freedom equal to the rank of the matrix C and denominator degrees of freedom
determined by the grouping level at which the term is estimated.

The conditional F-tests and t-tests is according to Pinheiro and Bates (2000) pre-
ferred for assessing the significance of fixed effect parameters, due to the fact that
p-values are more realistic than the p-values from the likelihood ratio test, (2.24).

The conditional F-tests are implemented in the ANOVA method of R Develop-
ment Core Team (2010). It is a Type I F-test, which means that the fixed effects
are tested sequentially. That is, the significance of each fixed effect is conditional
on the fixed effects listed prior in the model.

2.9.3 Denominator degrees of freedom
The conditional t-test and F-test for fixed effect parameters both require denomi-
nator degrees of freedom, given by

denDFi = mi − (mi−1 + pi), (2.31)

where i is the level at which the term is estimated. A term is estimated at level i if
it is inner to the (i− 1)th grouping factor and outer to the ith grouping factor. If a
term is inner to all Q grouping factors it is at (Q+ 1)st level. If a term is inner, its
value can change within a given level of the grouping factor and if a term is outer
its value can not change within a given level of the grouping factor.

More specifically, mi is the total number of groups in the ith grouping factor, where
m0 = 1 if intercept is included in the model, m0 = 0 otherwise and mQ+1 = n
which is the total number of observations. Finally, the sum of numerator degrees of
freedom for terms estimated at level i, is given as pi.

Observe that the denominator degrees of freedom is not influenced by the struc-
ture of the covariance matrices, D and Ri.

It is important for us to specify that the term "level", is used in two different ways.
In Table 2.1, we use the term to denote levels of data. When calculating denomi-
nator degrees of freedom however, the term is used to denote the level at which a
fixed effect term is estimated.
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In this thesis we have considered a two-level repeated measures data set, where
level 1 represents the repeated measures made on the same subject and level 2 rep-
resents the subjects. Hence, we have one grouping factor, the subject, and so Q = 1.
We have chosen to include intercept in the model and so m0 = 1. The total number
of groups in the 1st grouping factor, m1, is the number of subjects and m2 = n
is the total number of observations. The sum of numerator degrees of freedom
for terms estimated at level 1, p1, is the sum of numerator degrees of freedom for
the between-subject factors. Finally, the sum of numerator degrees of freedom for
terms estimated at level 2, p2, is the sum of numerator degrees of freedom for the
within-subject factors.

2.10 The top-down strategy
There are several ways of fitting a linear mixed effects model. The aim of model
selection is to find the simplest model with the best fit for the data. We will in this
thesis use the top-down strategy, as performed in Chapter 5 of West et al. (2007).

The top-down strategy starts with a model which includes the maximum num-
ber of fixed effects, called the model with the loaded mean structure. We select a
structure for the random effects in the model by performing REML-based likelihood
ratio test for the associated covariance parameters. Further, we select a covariance
structure for the residuals in the model by performing REML-based likelihood ratio
test, using the ANOVA method of R Development Core Team (2010).

Finally, we reduce the model by performing an type I F-test using the ANOVA
method of R Development Core Team (2010), to determine whether each of the
fixed effect parameters should be included in the model. Since the type I F-test
tests the fixed effect sequentially, we iteratively test the fixed effects and remove
the first term in the sequence of fixed effects which is not significant on a α = 0.05
significance level. We do not allow interaction terms to be included unless all factors
in that interaction term is present in the model. This is done until we are left with
only significant fixed effects. Notice that the denominator degrees of freedom, given
in Equation (2.31), changes as the number of fixed effect factors are excluded from
the model.

2.11 Information criteria
There are two types of information criteria often used to choose the best fitted model
for the data, the Akaike information criteria and the Bayes information criteria.

The Akaike information criteria, AIC, is defined by

AIC = −2l(β̂, θ̂) + 2p (2.32)

where l(β̂, θ̂) can be either the ML- or REML log-likelihood function and p rep-
resents the total number of parameters, both the fixed and random effects, being
estimated in the model. The model with the lowest AIC value is assumed to be the
best fit for the data.
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The Bayes information criteria, BIC, is defined by

BIC = −2l(β̂, θ̂) + p ln(n) (2.33)

where l(β̂, θ̂) is the ML log-likelihood function, p represents the total number of
parameters, both the fixed and random effects, being estimated in the model and
n is the total number of observations used in estimation of the model. That is,
n = ∑m

i=1 ni.

According to Pinheiro and Bates (2000) we can calculate the REML version of
the BIC by simply using the REML log-likelihood function and replacing ln(n) by
ln(n− pfixed), where pfixed is the number of estimated fixed effect parameters in the
model, in Equation (2.33).

In other words, the BIC applies a greater penalty for models with more param-
eters than the AIC. And as for the AIC, the model with the lowest BIC value is
assumed to be the best fit for the data.

According to West et al. (2007) there is no information criterion which stands apart
as the best criterion to be used when selecting linear mixed effects models.

2.12 Diagnostics
After a linear mixed effects model is fitted it is important to check whether the un-
derlying distributional assumptions for the random effects and the residuals appear
valid for the data. Diagnostic methods for linear models are well established, but
diagnostics for linear mixed effects models are however more difficult to perform and
interpret due to the complexity of the model. The most useful method for diagnos-
tics, are according to Pinheiro and Bates (2000), based on plots of the residuals, the
fitted values and the estimated random effects.

In this thesis we will do all diagnostic by using the functions qqnorm.lme and
plot.lme in Pinheiro et al. (2010). Here the standardized, or Pearson residuals,
defined as the raw residuals divided by the estimated corresponding standard devi-
ation, are used.
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Chapter 3

The diet intervention study

In this chapter we will illustrate the methods in Chapter 2, using the nlme package
in R by Pinheiro et al. (2010).

In the diet intervention study, Arbo et al. (2010), the aim was to examine dif-
ferences between a diet rich in carbohydrates and a diet rich in fat and protein. The
participants volunteered to join the study, but only those who met certain criteria
where asked to participate. The participants had to be between 18−30 years of age,
with BMI between 24, 5− 27, 5 and they had to pass a health check which checked
if their biomarkers where inside reference areas.

Out of the 56 persons who met the requirements, 32 completed the study. The
participants where given two fluid diets with different macronutrient composition.
The high-carbohydrate diet is referred to as diet A, and the moderate-carbohydrate
diet is referred to as diet B. The different nutrition compositions of diet A and diet B
can be seen in Table 3.1, where E% is the percentage of the individual total energy
intake.

Carbohydrates Fat Protein
Diet A 65E% 20E% 15E%
Diet B 27E% 43 E% 30E%

Table 3.1: Composition of diet A and diet B in the diet intervention study.

All 32 participants were assigned to start on either diet A or diet B by randomiza-
tion, controlling for gender, age and waist circumference. Both diets were given for
six days, with a wash-out period of eight days between the two diets. Blood samples
were taken before and after each diet, hence at day zero and day six for both diet
A and diet B, yielding four blood samples for each individual. From these blood
samples Arbo et al. (2010) investigated 32 biomarkers.

Hence, each participant in the diet intervention study have following four mea-
surements for each biomarker:

• A0: Measurement of diet A at day 0.

• AB: Measurement of diet A at day 6.
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• B0: Measurement of diet B at day 0.

• B6: Measurement of diet B at day 6.

3.1 Fitting linear mixed effects models
In analyzing these biomarkers we will exemplify different linear mixed effect models,
with varying complexity. In order to choose which biomarkers to have a closer look
at, we have to find the model with the best fit for all 32 biomarkers. Since the
varying complexity of interest lies in the covariance matrix of the random effects,
D and in the covariance matrix of the residuals Ri, we are only interested in the
first steps of the top-down strategy, fitting a model with a loaded mean structure,
selecting a structure for the random effects and selecting a covariance structure for
the residuals in the model.

In order to decide if the responses should be analyzed on a original or logarith-
mic scale, we first modeled all biomarkers by the simplest model and examined
QQ-plots.

Step 1
The linear mixed effect model with a loaded mean is defined by

Yi = βXi + uiZi + εi, (3.1)

where the loaded fixed effect vector is given by

β =



βintercept

βsex

βtime

βdiet

βsex:time

βsex:diet

βtime:diet

βsex:time:diet


, (3.2)

Xi is the design matrix for subject i, Zi is a vector of ni ones, ui = uint,i ∼ N(0, σ2
int),

εi ∼ Nni
(0,Ri) and Ri is a ni × ni covariance matrix, with σ2 on the diagonal.

Step 2
We then include a second subject-specific random effect, u2,i, to the model with the
loaded mean structure. Hence, the new model is similar to the loaded model, in
Equation (3.1), but where Zi is a ni× 2 matrix with ones i the first column and the
design vector corresponding to the random effect, u2,i, in the second column. That
is, ui = [u1,iu2,i]T ∼ N2(0,D) and

D =
[

σ2
u1 σu1,u2

σu1,u2 σ2
u2

]
,
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where u1,i is the random effect associated with the intercept, uint,i, for the ith subject.

In Hypothesis (3.3), we test if the random effect associated with time for each
subject can be omitted from the model.

H0: D =
[
σ2

int 0
0 0

]
vs. H1: D =

[
σ2

int σint,time

σint,time σ2
time

]
. (3.3)

We use REML-based likelihood ratio test, defined in Equation (2.25), and calculate
a p-value for the test statistic according to Equation (2.28).

Similarly, in Hypothesis (3.4) we test if the random effect associated with diet for
each subject can be omitted from the model.

H0: D =
[
σ2

int 0
0 0

]
vs. H1: D =

[
σ2

int σint,diet

σint,diet σ2
diet

]
. (3.4)

If none of the hypotheses have significant test statistics, the original model, given in
Equation (3.1), is the preferred model. But if one of the the hypothesis have signif-
icant test statistics, then the corresponding model is the preferred model. However,
if both hypothesis have significant test statistics, we decide which random effect to
include by using the Akaike information criteria, (2.32). Then the model with the
lowest AIC is the preferred model at this stage of the analysis.

Notice that we have chosen to follow the top-down strategy as preformed in Chapter
5 of West et al. (2007) and therefore we do not test whether the diagonal structure,
given in Equation (2.7), is the best fit for the covariance matrix D associated with
the random effects. There is a series of other structures which could be tested. For
example whether the best fit is a covariance matrix D which allows heterogeneous
variances for different levels of a specific factor.

Step 3
When selecting a covariance structure for the residuals in the model, we start by
investigating if the residual variances differ for the two levels of time. Hence, we
replace Ri in the preferred model at this stage of the analysis with

Ri =


σ2

time=0 0 0 0
0 σ2

time=1 0 0
0 0 σ2

time=0 0
0 0 0 σ2

time=1



or Ri =


σ2

diet=A 0 0 0
0 σ2

diet=A 0 0
0 0 σ2

diet=B 0
0 0 0 σ2

diet=B

 ,

where the order of the diagonal elements are dependent on the order of the mea-
surements of subject i.
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In Hypothesis (3.5), we test whether we should retain the heterogeneous residual
variance structure, associated with time, for the Ri matrix or not.

H0: σ2
time=0 = σ2

time=1 vs. H1: σ2
time=0 6= σ2

time=1. (3.5)

We use the likelihood ratio test, defined in Equation (2.8), where the reference model
is the new model with heterogeneous residual variance structure and the nested
model is the preferred model at this stage of the analysis. In order to calculate the
p-value for the test statistic we simply use the ANOVA method of R Development
Core Team (2010).

Similarly, in Hypothesis (3.6) we test if the residual variances differ for the two
levels of diet.

H0: σ2
diet=A = σ2

diet=B vs. H1: σ2
diet=A 6= σ2

diet=B. (3.6)

If none of the hypotheses have significant test statistics, the preferred model from
step 2 is still the preferred model. But if one of the the hypothesis have significant
test statistics, then the corresponding model is the preferred model. However, if
both hypothesis have significant test statistics, we decide the covariance structure
for the residuals in the model by using the Akaike information criteria, (2.32). Then
the model with the lowest AIC is the preferred model.

Notice that we have chosen to follow the top-down strategy as preformed in Chapter
5 of West et al. (2007) and therefore we do not test whether the compound sym-
metry structure, given in Equation (2.11), is the best fit for the covariance matrix
Ri associated with the residuals. There is a series of other structures which could
be tested. For example whether the best fit is a covariance matrix Ri which allows
heterogeneous variances for all four measures.

Summary
We end up with five potential models for each of the biomarkers, with four corre-
sponding hypotheses. A summary of what these five different models contain, can
be seen in Table 3.2. Here entries marked with X means that the term in the given
row is present in the model of the given column. Entries marked with ? depends on
the result of hypothesis 1 and 2.
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Variable Notation Model
1 2 3 4 5

Random Intercept uint,i X X X X X
effects Time utime,i X ? ?

Diet udiet,i X ? ?
Residuals εi X X X X X

Variance of σ2
int X X X X X

intercepts
Variance of σ2

time X ? ?
time effects

Covariance Covariance of σint,time X ? ?
parameters intercepts

for D and time effects
Variance of σ2

diet X ? ?
diet effects

Covariance of σint,diet X ? ?
intercepts

and diet effects
Covariance Variance of σ2 X X X σ2

t=0 6= σ2
d=A 6=

parameters residuals σ2
t=1 σ2

d=B

for Ri Structure Ri σ2Ini
σ2Ini

σ2Ini
Het Het

Table 3.2: The five different possible models for the biomarkers in the diet interven-
tion study, where Het is a heterogeneous residual variance across time or diet.

Results
In Table 3.3 we report the p-values from the four hypothesis tests for all 32 biomark-
ers. In the second column, we see whether the response should be transformed on
a natural logarithmic scale or not, according to the QQ-plots when the data are
fitted by the simplest LME model, given by Equation (3.1). And finally in the last
column, Model, we have concluded based on all the hypothesis tests and given the
preferred model for the specific biomarker.

From Table 3.3 we choose to take a closer look at four biomarkers:

• Resistin, which has the simplest form of the LME as its best fit.

• Uric acid, which has an LME where the random effect is associated with time
for each subject.

• Triglycerides, which has an LME where the residual variances differ for the
two levels of time.

• Visfatin, which has an LME where the random effect is associated with diet
for each subject and the residual variances differ for the two levels of diet.
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Biomarker log Hyp (3.3) Hyp (3.4) Hyp (3.5) Hyp (3.6) Model
Glucose 0.5088 1.0000 0.4155 0.3153 1
Insulin X 0.1412 0.0275 0.6434 0.2149 3

C-peptide X 0.2401 0.0914 0.5322 0.6839 1
hsCRP X 0.8916 0.4710 0.1807 0.0072 5

Adiponectin X 0.0028 0.0286 <0.0001 <0.0001 4
PAI-1 X 0.0002 0.1584 0.9426 0.3242 2

Glucagon X 0.7945 0.0021 0.1189 0.8694 3
GLP-1 X 0.5082 0.0635 0.3398 0.4026 1

HOMA2 IR X 0.3920 0.1401 0.4837 0.5889 1
HOMA2 B X 0.6118 0.0963 0.8686 0.1808 1
HOMA2 S X 0.3741 0.0988 0.6348 0.5866 1

Triglycerides X 0.8018 0.4492 0.0366 0.7946 4
Total cholesterol X 0.2932 0.0233 0.7992 0.8062 3
LDL-cholesterol X 0.0753 0.6295 0.1380 0.9981 1
HDL-cholesterol X 0.0127 0.1468 0.0001 No conv. 4
Tri-HDL ratio X 0.2953 0.0193 0.1760 0.9723 3

TNF-alpha X 0.0296 0.0319 0.8580 0.7574 2
IL-6 X 0.0028 0.0147 0.6448 0.7028 2

Serum amyloid A X 0.4120 0.7471 0.3941 0.7128 1
GIP X 0.0700 0.0291 0.2789 0.9391 3

Ghrelin X 0.7186 0.0350 0.1643 0.7679 3
Leptin X 0.0283 0.3872 0.4423 0.4072 2

Visfatin X 0.2447 0.0079 0.6653 0.0002 5
Resistin 0.1624 0.3853 0.1411 0.0709 1

Uric acid X 0.0006 0.9644 0.0627 0.6196 2
Leukocytes X 0.5598 0.2864 0.3193 0.3260 1
Monocytes X 0.8175 0.2859 0.2743 0.5732 1
Eosinophils 0.3555 0.3696 0.1242 0.2103 1

Neutrophiles X 0.1932 0.6935 0.2518 0.1728 1
Lymphocytes 0.2758 0.5887 0.5020 0.3886 1

Basophiles 0.9296 0.7709 0.0298 0.8805 4
Platlets X 0.2939 0.4128 0.8460 0.9381 1

Table 3.3: P-values of all hypothesis for the 32 biomarkers from the diet intervention
study, where "No conv." means that the hypothesis could not be tested due to lack
of convergence.
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3.2 Simplest form of a LME: Resistin
Resistin is according to Berger (2001) a protein in the human body, which links
obesity to type 2 diabetes. The name resistin comes from "resistance to insulin".

Descriptive statistics
The descriptive statistics for the resistin measurements from the diet intervention
study, can be seen in Table 3.4. Here we observe that the resistin measurements are
higher in diet A, than in diet B. Further, we observe that the stating values for the
two different diets are quite different. Hence, the wash-out period of the diet inter-
vention study was perhaps too short. We also notice that the female participants
have higher values of resistin than the male participants in the study.

Mean N Std.Deviation Minimum Maximum
A0 607.50 32 272.98 246.00 1198.00
A6 810.44 32 386.00 294.00 1584.00

A-total 708.97 64 347.05 246.00 1584.00
B0 566.66 32 294.31 91.00 1533.00
B6 706.44 32 286.63 281.00 1375.00

B-total 636.55 64 296.66 91.00 1533.00
T0 587.08 64 282.34 91.00 1533.00
T6 758.44 64 341.30 281.00 1584.00

T-total 672.76 128 323.62 91.00 1584.00
Female 738.69 52 395.62 91.00 1584.00
Male 627.64 76 256.58 176.00 1434.00

Table 3.4: Descriptive statistics for the resistin measurements in the diet intervention
study.

In Figure 3.1, we can see line graphs of resistin measurements for each individ-
ual by diet, from day zero to day six, where the different colors represent each
individual. Here we observe that both diets seem to increase the resistin measure-
ments, probably a little more in diet A than in diet B. We also observe that the
between-participant variation is large in both diets.
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Figure 3.1: Line graphs of resistin for each individual (marked by separate colors)
by time within levels of diet.

Fitting the linear mixed effects model
Resistin was not significant for any of the Hypotheses, (3.3), (3.4), (3.5) or (3.6).
Hence, the best fit for the resistin data is given by

Yti = Xiβ + uint,i + εti, (3.7)

where Yti is the resistin measurement number t (t = 1, 2, 3, 4) for the i-th subject
(i = 1, ..., 32),

uint,i ∼ N(0, σ2
int) and

εi =


ε1i

ε2i

ε3i

ε4i

 ∼ N4(0, σ2I4).

Following the top-down strategy, we now want to reduce the loaded model by pre-
forming type I F-tests iteratively, using the ANOVA method of R Development Core
Team (2010).
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In Table 3.5 we report the results of the final F-test. Here we observe that only time
and diet should be included as fixed effects in the model. Hence, the fixed effect
vector is given by

β =

 βintercept

βtime

βdiet

 . (3.8)

Fixed effect numDF denDF F-value p-value
Intercept 1 94 200.64 0.00e+00

Time 1 94 27.25 1.07e-06
Diet 1 94 4.87 2.98e-02

Table 3.5: The final F-test results for the fitted resistin model.

The denominator degrees of freedom in the fitted resistin model (3.7), with the
fixed effect vector given by Equation (3.8), is calculated according to Equation
(2.31). Since the fixed effect vector only contains within-subject factors, which are
estimated at level 2, the denominator degrees of freedom is given by

denDF2 = m2 − (m1 + p2) = 128− (32 + 2) = 94.

Results

The results of the estimation of the fitted resistin model (3.7), with the fixed effect
vector given by Equation (3.8), using the lme function in Pinheiro et al. (2010), can
be seen in Table 3.6.

Notation Estimate Standard error 95% Confidence Interval
Fixed effects
Intercept, β0 623.29 52.86 (518.32, 728.25)
Time, β1 171.36 32.83 (106.18, 236.54)
Diet, β2 -72.42 32.83 (-137.60, -7.24)
Random effects
Intercept, σint 252.12 (189.91, 334.71)
Residuals
Intercept, σ 185.70 (160.97, 214.24)

Table 3.6: Results for the resistin model (3.7), using the lme function in R.
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Diagnostics
We obtain diagnostic plots for assessing the normality of residuals and random effects
in the linear mixed effects model, by using the functions qqnorm.lme and plot.lme
in Pinheiro et al. (2010).

Residual diagnostics

The normal plot of the residuals, conditioned on diet, for the fitted resistin model
(3.7), with the fixed effect vector given by Equation (3.8), can be seen in Figure 3.2.
Here we observe that the normality assumption for the residuals seems plausible for
both diets.

Residuals

Q
ua

nt
ile

s 
of

 s
ta

nd
ar

d 
no

rm
al

−2

−1

0

1

2

−200 0 200 400

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Diet A

−200 0 200 400

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

Diet B

Figure 3.2: Normal plot of the residuals, conditioned on diet, from the resistin model
(3.7).

In Figure 3.3 we have plotted the observed versus the fitted resistin measures, for the
fitted resistin model (3.7), with the fixed effect vector given by Equation (3.8). This
plot strengthens our belief that the that the normality assumption for the residuals
seems plausible for both diets.

Random effect diagnostics

The normal plot of estimated random effects, for the fitted resistin model (3.7),
with the fixed effect vector given by Equation (3.8), can be seen in Figure 3.4.
Here we notice two outliers, however for the rest of the observations the normality
assumption seems reasonable.
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Figure 3.3: Observed versus fitted values plot for the resistin data.

Random effects

Q
ua

nt
ile

s 
of

 s
ta

nd
ar

d 
no

rm
al

−2

−1

0

1

2

−400 −200 0 200 400 600

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

(Intercept)

Figure 3.4: Normal plot of the estimated random effects from the resistin model
(3.7).
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3.3 Time associated random effect: Uric acid
Uric acid is according to Dugdale (2009) created when the body breaks down purines.
Purines are found in various foods, such as dried beans and beer. Most uric acid
dissolves in blood and passes out in urine, but high concentrations of uric acid in
the blood may be harmful.

Descriptive statistics
The descriptive statistics for the uric acid measurements on a natural logarithmic
scale, can be seen in Table 3.7. Here we observe that the uric acid measurements are
higher in diet B, than in diet A. Notice that there is a missing value at the starting
time of diet B. Further, we observe that the female participants have lower values
of uric acid than the male participants in the study, but with a higher standard
deviation.

Mean N Std.Deviation Minimum Maximum
A0 5.67 32 0.18 5.21 6.14
A6 5.58 32 0.20 5.19 5.89

A-total 5.62 64 0.19 5.19 6.14
B0 5.73 31 0.18 5.38 6.15
B6 5.62 32 0.19 5.29 6.12

B-total 5.67 63 0.19 5.29 6.15
T0 5.70 63 0.18 5.21 6.15
T6 5.60 64 0.19 5.19 6.12

T-total 5.65 127 0.19 5.19 6.15
Female 5.54 51 0.18 5.19 6.12
Male 5.72 76 0.16 5.35 6.15

Table 3.7: Descriptive statistics for the uric acid measurements in the diet interven-
tion study, on a natural logarithmic scale.

In Figure 3.5, we can see line graphs of uric acid measurements on a natural log-
arithmic scale for each individual by diet, from day zero to day six. The different
colors represent each individual. Here we observe that the uric acid measurements
for both diets seems to both decrease and increase for different individuals. We also
observe that the between-participant variation is large in both diets.

Fitting the linear mixed effects model
Uric acid was only significant for Hypothesis (3.3). Hence, the best fit for the uric
acid data is given by

Yti = Xiβ +


1 0
1 1
1 0
1 1

 ui + εti, (3.9)
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Figure 3.5: Line graphs of uric acid for each individual (marked by separate colors)
by time within levels of diet.

where Yti is the uric acid measurement number t (t = 1, 2, 3, 4) for the i-th subject
(i = 1, ..., 32),

ui =
[
uint,i

utime,i

]
∼ N2(0,D),

D =
[

σ2
int σint,time

σint,time σ2
time

]
and

εi =


ε1i

ε2i

ε3i

ε4i

 ∼ N4(0, σ2I4).

In Table 3.8 we report the results of the final F-test. Here we observe that sex,
time and diet, but no interaction terms, should be included as fixed effects in the
model. Hence, the fixed effect vector is given by

β =


βintercept

βsex

βtime

βdiet

 . (3.10)

The denominator degrees of freedom in the fitted uric acid model (3.9), with the
fixed effect vector given by Equation (3.10), is calculated according to Equation
(2.31). As we saw in Table 3.7, the uric acid data have one missing value. Hence
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Fixed effect numDF denDF F-value p-value
Intercept 1 93 54188.02 0.00e+00

Sex 1 30 13.64 8.81e-04
Time 1 93 14.31 2.74e-04
Diet 1 93 10.10 2.02e-03

Table 3.8: The final F-test results for the fitted uric acid model.

the denominator degrees of freedom for the two types of factors in the fitted uric
acid model are given by

denDF1 = m1 − (m0 + p1) = 32− (1 + 1) = 30
and

denDF2 = m2 − (m1 + p2) = 127− (32 + 2) = 93,

where the within-subject factors, time and diet, and the intercept are estimated at
level 2 and the between-subject factor, sex, is estimated at level 1.

Results
The results of the estimation of Model (3.9), with the fixed effect vector given by
Equation (3.10), using the lme function in Pinheiro et al. (2010), can be seen in
Table 3.9.

Notation Estimate Standard error 95% Confidence Interval
Fixed effects
Intercept, β0 5.5643 0.0399 (5.4851, 5.6436)
Sex, β1 0.1814 0.0495 (0.0802, 0.2825)
Time, β2 -0.0962 0.0253 (-0.1464, -0.0460)
Diet, β3 0.0463 0.0146 (0.0173, 0.0752)
Random effects
Intercept, σint 0.1348 (0.0998, 0.1822)
Time, σtime 0.1169 (0.0798, 0.1715)
Intercept:Time, ρint,time -0.253 (-0.6187, 0.2029)
Residuals
Intercept, σ 0.0818 (0.0686, 0.0975)

Table 3.9: Results for the uric acid model (3.9), using the lme function in R.
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Diagnostics
Residual diagnostics

The normal plot of the residuals, conditioned on diet, for the fitted uric acid model
(3.9), with the fixed effect vector given by Equation (3.10), can be seen in Figure
3.6. Here we notice one outlier for diet A, however for the rest of the observations
the normality assumption for the residuals seems plausible for both diets.
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Figure 3.6: Normal plot of the residuals, conditioned on diet, from the uric acid
model (3.9).

In Figure 3.7 we have plotted the observed versus the fitted uric acid measures,
for the fitted uric acid model (3.9), with the fixed effect vector given by Equa-
tion (3.10). This plot strengthens our belief that the normality assumption for the
residuals seems plausible for both diets.

Random effect diagnostics

The normal plot of estimated random effects, for the fitted uric acid model (3.9),
with the fixed effect vector given by Equation (3.10), can be seen in Figure 3.8. Here
the assumption of normality seems reasonable for both random effects.
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Figure 3.7: Observed versus fitted values plot for the uric acid data.
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Figure 3.8: Normal plot of the estimated random effects from the uric acid model
(3.9).
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3.4 Time associated residual variances: Triglyc-
eride

Triglyceride is according to Dugdale (2010) a type of fat in the human body, which
in high levels may lead to atherosclerosis. Atherosclerosis increases the risk of heart
attack and stroke. High triglyceride levels may also cause inflammation of the
pancreas.

Descriptive statistics

In Table 3.10 we can see the descriptive statistics for the triglyceride measurements
on a natural logarithmic scale, from the diet intervention study. Here we observe
that the triglyceride measurements are highly decreasing over time for both diets,
however more so for diet B than for diet A. We also notice that the triglyceride
measurements are very similar for male and female participants, though the female
participants have a larger standard deviation.

In Figure 3.9, we can see line graphs of triglyceride measurements on a natural log-
arithmic scale, for each individual by diet, from day zero to day six. The different
colors represent each individual. Here we observe that the triglyceride measurements
for both diets seems to decrease for the most part. There are however participant,
whom triglyceride levels increase. We notice that the between-participant variation
is large in both diets.

Mean N Std.Deviation Minimum Maximum
A0 -0.11 32 0.31 -0.69 0.53
A6 -0.26 32 0.32 -0.92 0.34

A-total -0.19 64 0.32 -0.92 0.53
B0 -0.14 32 0.39 -0.92 0.53
B6 -0.44 32 0.30 -0.92 0.10

B-total -0.29 64 0.37 -0.92 0.53
T0 -0.13 64 0.35 -0.92 0.53
T6 -0.35 64 0.32 -0.92 0.34

T-total -0.24 128 0.35 -0.92 0.53
Female -0.24 52 0.32 -0.92 0.53
Male -0.23 76 0.37 -0.92 0.53

Table 3.10: Descriptive statistics for the triglyceride measurements in the diet in-
tervention study, on the natural logarithmic scale.
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Figure 3.9: Line graphs of triglyceride for each individual (marked by separate
colors) by time within levels of diet.

Fitting the linear mixed effects model
Triglyceride was significant for Hypothesis 3.5. Hence, the best fit for the triglyceride
data is given by

Yti = Xiβ + uint,i + εti, (3.11)
where Yti is the triglyceride measurement number t (t = 1, 2, 3, 4) for the i-th subject
(i = 1, ..., 32),

uint,i ∼ N(0, σ2
int),

εi =


ε1i

ε2i

ε3i

ε4i

 ∼ N4(0,Ri) and

Ri =


σ2

Day0 0 0 0
0 σ2

Day6 0 0
0 0 σ2

Day0 0
0 0 0 σ2

Day6

 .

In Table 3.11 we report the results of the final F-test. Here we observe that time
and diet are the only terms included as fixed effects in the model. Hence, the fixed
effect vector is given by

β =

 βintercept

βtime

βdiet

 . (3.12)
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Fixed effect numDF denDF F-value p-value
Intercept 1 94 32.61 1.31e-07

Time 1 94 32.70 1.27e-07
Diet 1 94 12.11 7.64e-04

Table 3.11: The final F-test results for the fitted triglyceride model.

The denominator degrees of freedom in the fitted triglyceride model (3.11), with
the fixed effect vector given by Equation (3.12), is calculated according to Equation
(2.31). Since the fixed effect vector only contains within-subject factors, which are
estimated at level 2, the denominator degrees of freedom is given by

denDF2 = m2 − (m1 + p2) = 128− (32 + 2) = 93.

Results
The results of the estimation of Model 3.11, with the fixed effect vector given by
Equation 3.12, using the lme function in Pinheiro et al. (2010), can be seen in Table
3.12.

Notation Estimate Standard error 95% Confidence Interval
Fixed effects
Intercept, β0 -0.0623 0.0577 (-0.1769, 0.0523)
Time, β1 -0.2228 0.0390 (-0.3001, -0.1454)
Diet, β2 -0.1277 0.0367 (-0.2005, -0.0548)
Random effects
Intercept, σint 0.2518 (0.1879, 0.3374)
Residuals
Time, σDay0 0.2547 (0.2086, 0.3110)
Time, σDay6 0.1796 (0.1070, 0.3014)

Table 3.12: Results for the triglyceride model (3.11), using the lme function in R.
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Diagnostics
Residual diagnostics

The normal plot of the residuals, conditioned on diet, for the fitted triglyceride
model (3.11), with the fixed effect vector given by Equation (3.12), can be seen in
Figure 3.10. Here the normality assumption for the residuals seems reasonable for
both diets.
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Figure 3.10: Normal plot of the residuals, conditioned on diet, from the triglyceride
model (3.11).

In Figure 3.11 we have plotted the observed versus the fitted triglyceride measures,
for the fitted triglyceride model (3.11), with the fixed effect vector given by Equa-
tion (3.12). This plot strengthens our belief that the normality assumption for the
residuals seems plausible for both diets.

Random effect diagnostics

The normal plot of estimated random effects, for the fitted triglyceride model (3.11),
with the fixed effect vector given by Equation (3.12), can be seen in Figure 3.12.
Here the assumption of normality seems highly reasonable for the random effects.
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Figure 3.11: Observed versus fitted values plot for the triglyceride data.
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Figure 3.12: Normal plot of the estimated random effects from the triglyceride model
(3.11).
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3.5 Diet associated random effect and residual
variances: Visfatin

Visfatin is according to Chi (2007) a protein in fat cells. Its physiological role
has been subject of much controversy regarding its insulin-mimetic properties and
potential of being a drug target for type 2 diabetes.

Descriptive statistics

In Table 3.13 we can see the descriptive statistics for the visfatin measurements on a
natural logarithmic scale. Here we observe that the measures from diet A both have
higher mean values and standard deviation, than diet B. Hence, the wash-out period
of the diet intervention study was perhaps too short. We also notice that the vis-
fatin data have 2 missing values at day zero and 5 missing values at day six of diet A.

In Figure 3.13, we can see line graphs of visfatin measurements on the natural
logarithmic scale for each individual by diet, from day zero to day six. The different
colors represent each individual. Here we observe that there seem to be differences
between in the measurements from diet A and diet B. In diet A participants seem
to be both increasing and decreasing in visfatin measurements over time. In diet
B however, the participants seems to mainly have decreasing visfatin measurements
over time. We also observe that the between-participant variation is large in both
diets.

Mean N Std.Deviation Minimum Maximum
A0 7.97 30 1.08 5.18 9.73
A6 7.46 27 1.11 4.80 9.99

A-total 7.73 57 1.11 4.80 9.99
B0 7.16 32 0.92 4.14 8.48
B6 6.93 32 0.73 5.48 8.20

B-total 7.05 64 0.83 4.14 8.48
T0 7.55 62 1.07 4.14 9.73
T6 7.17 59 0.95 4.80 9.99

T-total 7.37 121 1.03 4.14 9.99
Female 7.40 49 1.04 4.80 9.99
Male 7.34 72 1.03 4.14 9.73

Table 3.13: Descriptive statistics for the visfatin measurements in the diet interven-
tion study, on a natural logarithmic scale.
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Figure 3.13: Line graphs of visfatin for each individual (marked by separate colors)
by time within levels of diet.

Fitting the linear mixed effects model
Visfatin was significant for both Hypothesis 3.4 and Hypothesis 3.6. Hence, the best
fit for the visfatin data is given by

Yti = Xiβ +


1 0
1 0
1 1
1 1

 ui + εti, (3.13)

where Yti is the visfatin measurement number t (t = 1, 2, 3, 4) for the i-th subject
(i = 1, ..., 32),

ui =
[
uint,i

udiet,i

]
∼ N2(0,D),

D =
[

σ2
int σint,diet

σint,diet σ2
diet

]
,

εi =


ε1i

ε2i

ε3i

ε4i

 ∼ N4(0,Ri) and

Ri =


σ2

DietA 0 0 0
0 σ2

DietA 0 0
0 0 σ2

DietB 0
0 0 0 σ2

DietB

 .
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In Table 3.14 we report the results of the final F-test. Here we observe that only
time and diet should be included as fixed effects in the model. Hence, the fixed
effect vector is given by

β =

 βintercept

βtime

βdiet

 . (3.14)

numDF denDF F-value p-value
(Intercept) 1 87 4102.24 0.00e+00

factor(time) 1 87 8.16 5.35e-03
factor(diet) 1 87 11.89 8.74e-04

Table 3.14: The final F-test results for the fitted visfatin model.

The denominator degrees of freedom in the fitted visfatin model (3.13), with the
fixed effect vector given by Equation (3.14), is calculated according to Equation
(2.31). As we saw in Table 3.13, the visfatin data have seven missing values and
since the fixed effect vector only contains within-subject factors, which are estimated
at level 2, the denominator degrees of freedom is given by

denDF2 = m2 − (m1 + p2) = 121− (32 + 2) = 87.

Results
The results of the estimation of Model 3.13, with the fixed effect vector given by
Equation 3.14, using the lme function in Pinheiro et al. (2010), can be seen in Table
3.15.

Notation Estimate Standard error 95% Confidence Interval
Fixed effects
Intercept, β0 7.8503 0.1710 (7.5103, 8.1902)
Time, β1 -0.2744 0.0981 (-0.4693, -0.0794)
Diet, β2 -0.6680 0.1938 (-1.0532, -0.2829)
Random effects
Intercept, σint 0.6315 (0.3495, 1.1409)
Diet, σdiet 0.7991 (0.4874, 1.3101)
Intercept:Time, ρint,time -0.529 (-0.8537,0.0914)
Residuals
Diet, σDietA 0.8936 (0.6852, 1.1653)
Diet, σDietB 0.4297 (0.2287, 0.8074)

Table 3.15: Results for the visfatin model (3.13), using the lme function in R.
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Diagnostics
Residual diagnostics

The normal plot of the residuals, conditioned on diet, for the fitted visfatin model
(3.13), with the fixed effect vector given by Equation (3.14), can be seen in Figure
3.14. This plot shows that the distribution of the residuals for diet A have heavier
tails than expected under normality. According to Pinheiro and Bates (2000), this
suggests that a mixture of normal distributions or a t-distribution with a moderate
number of degrees of freedom perhaps would be a better distribution of the residuals
for diet A. But because the tails seem to be symmetric around zero, the estimates
of the fixed effects should not change substantially under either a mixture model
or a t-model. However, the assumption of normality for the residuals seems highly
reasonable for diet B, but with one outlier.
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Figure 3.14: Normal plot of the residuals, conditioned on diet, from the visfatin
model (3.13).

In Figure 3.15 we have plotted the observed versus the fitted visfatin measures,
for the fitted visfatin model (3.13), with the fixed effect vector given by Equation
(3.14). This plot strengthens our belief that the normality assumption for the resid-
uals of diet A is not a good assumption. However, the assumption of normality
seems highly reasonable for diet B.

Random effect diagnostics

The normal plot of estimated random effects, for the fitted visfatin model (3.13),
with the fixed effect vector given by Equation (3.14), can be seen in Figure 3.16.
Here the assumption of normality seems reasonable for both random effects, though
there is some asymmetry in the distribution of the random effect associated with
diet.
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Figure 3.15: Observed versus fitted values plot for visfatin data.
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Figure 3.16: Normal plot of the estimated random effects from the visfatin model
(3.13).
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Chapter 4

Contrasts

When linear mixed effect models are used to analyze medical data, we are often
interested in the effect of a specific treatment or risk factor under a given condition.
Hence, the estimates of fixed- and random-effects may in many cases not answer the
questions we are interested in.

We use the diet intervention study as an example. This is a full factorial design
with two factors, diet and time. We have four combinations of diet and time covari-
ates, A0, A6, B0 and B6. These effects are not directly of interest to biologists. To
biologists, the contrasts of interest are:

• The effect of diet A, A6− A0.

• The effect of diet B, B6−B0.

• The difference in effect between diet A and diet B, (B6−B0)− (A6− A0).

There are several ways of finding the linear functions for these three contrasts. One
way is to use the linear functions of the full factorial design, and simply subtract
the linear function corresponding to A0 from the linear function corresponding to
A6, and so on.

Another way is to interpret the fixed coefficients in the linear mixed effect model
directly as contrasts. For example, in the case where the fixed effect vector is given
as

β =


βintercept

βtime

βdiet

βtime:diet

 , (4.1)

each of the coefficients can be interpreted directly as contrasts. This is called the
treatment− contrast parametrization, and can be seen in Table 4.1.
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Coefficient Contrast Interpretation
Intercept A0 The baseline level
Time A6− A0 The effect of diet A
Diet B0− A0 The difference in starting values
Time:Diet (B6−B0)− (A6− A0) The difference in effect between the diets

Table 4.1: The treatment-contrast parametrization of the diet intervention study.

We notice that the contrast of interest, B6−B0, is not directly represented in Table
4.1. B6 − B0 can however be extracted as the sum of the time coefficient and the
interaction coefficient of the original model. That is, ((B6 − B0) − (A6 − A0)) +
(A6− A0) = B6−B0.

In order to get a thorough understanding of how contrasts are estimated and even
more interesting, how they are tested, we will now take a closer look at some varia-
tions of the resistin measurements’ fitted linear mixed effect model, given in Equa-
tion (3.7). The different variations of the model will include different fixed effect
vectors with different parametrization. Since the focus here is on the fixed part of
the LME, we will keep the random effects and the residuals on the simplest forms.
We remember from Equation (2.31), that the denominator degrees of freedom is not
influenced by the structure of the covariance matrices, D and Ri.

In R, there are several ways of estimating such contrasts for LME-objects. We have
chosen to use the function estimable, in the package gmodels by Warnes (2011).
The estimable function uses the conditional t-test, given in Equation (2.29), with
degrees of freedom equal to the smallest degree of freedom among the parameters
used to construct the linear function or contrast being tested.

4.1 Within-subject factors

The first variation of the resistin measurements’ fitted linear mixed effect model,
given in Equation (3.7), only contains two dichotomous within-subject factors and
their interaction term in the fixed effect vector, given by Equation (4.1).

Hence, the four possible outcomes of the models fixed effects are given by the fol-
lowing linear functions, 

A0
A6
B0
B6

 =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 .

That is, A0 = βintercept, A6 = βintercept + βtime, B0 = βintercept + βdiet and B6 =
βintercept + βtime + βdiet + βtime:diet.

43



By subtraction, we find that the contrasts of interest are given by A6− A0
B6−B0

(B6−B0)− (A6− A0)

 =

 0 1 0 0
0 1 0 1
0 0 0 1

 .

That is, A6−A0 = βtime, B6−B0 = βtime +βtime:diet and (B6−B0)− (A6−A0) =
βtime:diet.

The results of all the estimated linear functions and contrasts can be seen in Table
4.2. Here each linear function and contrast is tested with the conditional t-test,
given in Equation (2.29). Since all the factors included in the model are within-
subject factors, that is, level 2 factors, the degrees of freedom will also be given on
level 2 according to Equation (2.31). Hence, since the resistin measurements have
no missing values, the degrees of freedom for factors estimated at level 2 is given by

DFlevel2 = m2 − (m1 + p2) = 128− (32 + 3) = 93. (4.2)

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 607.50 55.36 10.97 93 0.00e+00
A6 810.44 55.36 14.64 93 0.00e+00
B0 566.66 55.36 10.24 93 0.00e+00
B6 706.44 55.36 12.76 93 0.00e+00
A6-A0 202.94 46.44 4.37 93 3.24e-05
B6-B0 139.78 46.44 3.01 93 3.37e-03
(B6-B0)-(A6-A0) -63.16 65.68 -0.96 93 3.39e-01

Table 4.2: Contrasts for the within-subject model, given in Equation (4.1).

In Table 4.2 we observe that all the linear combinations and both the contrast
which represents the effect of diet A and the contrast which represents the effect of
diet B, are significant on a α = 0.05 significance level. However, the contrast which
represents the difference in effect between the two diets are not significant.

4.2 Between-subject factors
The second variation of the resistin measurements’ fitted linear mixed effect model,
given in Equation (3.7), contains the all the fixed effects from the previous model
and the between-subject factor sex. Hence, the fixed effect vector is given by

β =


βintercept

βsex

βtime

βdiet

βtime:diet

 . (4.3)
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This means that we no longer only have factors estimated at level 2, but also a
factor estimated at level 1. Since we still have the same number of factors estimated
at level 2 as in the model only including within-subject factors, the degrees of free-
dom for factors estimated at level 2 is still given by Equation (4.2). The degrees of
freedom for factors estimated at level 1 however, is given by

DFlevel1 = m1 − (m0 + p1) = 32− (1 + 1) = 30. (4.4)

Hence, the linear functions and contrasts have different degrees of freedom depend-
ing on whether sex is among the parameters used to construct the linear function
or contrast, or not.

Due to the inclusion of the sex factor, we are now able to calculate the linear func-
tions, A0, A6, B0 and B6, for male and female separately or together as a mean,
or a weighted mean, of all included subjects in the study. There are several ways of
doing this. We will now estimate and test the linear functions and contrasts using
two different parameterizations of the sex factor, the treatment contrast coding and
the sum to zero contrast coding.

4.2.1 Treatment contrast coding
We start by coding the sex factor as "treatment", by usingmale = 1 and female = 0
in the design matrix for the fixed effects, Xi. This is the default setting in R if a
factor has two levels.

Female participants

The four possible outcomes of model coefficients for the female participants, when
the sex factor is coded as "treatment", are

A0
A6
B0
B6

 =


1 0 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 1 1 1

 .

That is, A0 = βintercept, A6 = βintercept + βtime, B0 = βintercept + βdiet and B6 =
βintercept + βtime + βdiet + βtime:diet.

By subtraction, we find that the contrasts of interest are given by A6− A0
B6−B0

(B6−B0)− (A6− A0)

 =

 0 0 1 0 0
0 0 1 0 1
0 0 0 0 1

 . (4.5)
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That is, A6−A0 = βtime, B6−B0 = βtime +βtime:diet and (B6−B0)− (A6−A0) =
βtime:diet.

Here we observe that the sex factor is not included in any of the linear functions,
A0, A6, B0 and B6, nor contrasts. Hence, all the included factors are at level 2
and all the linear function’s and contrast’s degrees of freedom are given by Equation
(4.2), DF = DFlevel2 = 93.

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 673.43 79.39 8.48 93 3.30e-13
A6 876.37 79.39 11.04 93 0.00e+00
B0 632.59 79.39 7.97 93 3.95e-12
B6 772.37 79.39 9.73 93 8.88e-16
A6-A0 202.94 46.44 4.37 93 3.24e-05
B6-B0 139.78 46.44 3.01 93 3.37e-03
(B6-B0)-(A6-A0) -63.16 65.68 -0.96 93 3.39e-01

Table 4.3: Contrasts for the female participants for Model (4.3), using the treatment
contrast coding for sex.

The results of the estimated linear functions and contrasts can be seen in Table
4.3. Here we observe that all the linear combinations are significant on a α = 0.05
significance level. Compared to the model which only included within-subject fac-
tor, given in Equation (4.1), in Table 4.2, we observe that the estimates of the linear
functions are larger for the female participants.

The contrasts however, have the exact same estimates as they had in Table 4.2.
Hence, both the contrasts which represents the effect of diet A and the contrast
which represents the effect of diet B, are significant on a α = 0.05 significance level.
And the contrast which represents the difference in effect between the two diets are
not significant for the female participants.

Male participants

The four possible outcomes of model coefficients for the male participants, when the
sex factor is coded as "treatment", are

A0
A6
B0
B6

 =


1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 1 1 1

 .

That is, A0 = βintercept+βsex, A6 = βintercept+βsex+βtime, B0 = βintercept+βsex+βdiet

and B6 = βintercept + βsex + βtime + βdiet + βtime:diet.
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By subtraction, we find that the contrasts of interest are the exact same as for
the female participants, given by Equation (4.5). That is, A6 − A0 = βtime,
B6−B0 = βtime + βtime:diet and (B6−B0)− (A6− A0) = βtime:diet.

In this case, the sex factor is included in all the linear functions, A0, A6, B0 and
B6, and since the linear functions degrees of freedom is equal to the smallest degree
of freedom among the set of parameters included in the linear function, the corre-
sponding degrees of freedom is given by Equation (4.4), DF = DFlevel1 = 30.

For the three contrasts however, sex is not included and so the contrast’s degrees of
freedom are given by Equation (4.2) as for the female participants, DF = DFlevel2 =
93.

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 562.39 67.59 8.32 30 2.75e-09
A6 765.32 67.59 11.32 30 2.34e-12
B0 521.54 67.59 7.72 30 1.31e-08
B6 661.32 67.59 9.78 30 7.57e-11
A6-A0 202.94 46.44 4.37 93 3.24e-05
B6-B0 139.78 46.44 3.01 93 3.37e-03
(B6-B0)-(A6-A0) -63.16 65.68 -0.96 93 3.39e-01

Table 4.4: Contrasts for the male participants for Model (4.3), using the treatment
contrast coding for sex.

The results of the estimated linear functions and contrasts can be seen in Table
4.4. Here we observe that all the linear combinations are significant on a α = 0.05
significance level. Compared to the model which only included within-subject factor,
Equation (4.1), in Table 4.2, we observe that the estimates of the linear functions
are smaller for the male participants.

The contrasts have the exact same estimates as they had for both the within-subject
model in Table 4.2 and the female participants’ model in Table 4.3.

All participants

When the sex factor is coded as "treatment", we can find the mean linear functions
for all included subjects in the study by using sex = 0.5. Hence, the linear functions
for the mean participant, when the sex factor is coded as "treatment", are


A0
A6
B0
B6

 =


1 0.5 0 0 0
1 0.5 1 0 0
1 0.5 0 1 0
1 0.5 1 1 1

 .
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That is, A0 = βintercept + 0.5βsex, A6 = βintercept + 0.5βsex + βtime, B0 = βintercept +
0.5βsex + βdiet and B6 = βintercept + 0.5βsex + βtime + βdiet + βtime:diet.

By subtraction, we find that the mean contrasts of interest are the same as for the
male and female participants, given by Equation (4.5). That is, A6 − A0 = βtime,
B6−B0 = βtime + βtime:diet and (B6−B0)− (A6− A0) = βtime:diet.

In this case, the sex factor is included in all the mean linear functions, A0, A6,
B0 and B6, and since the linear functions degrees of freedom is equal to the small-
est degree of freedom among the set of parameters included in the linear function,
the corresponding degrees of freedom should have been given by Equation (4.4),
DF = DFlevel1 = 30. However, the results in Table 4.5 shows that the estimable
function in R weights the degrees of freedom. Hence, the degrees of freedom used
for the linear functions, A0, A6, B0 and B6, in Table 4.5 is 30 × 0.5 = 15, due to
the fact that sex = 0.5.

For the three mean contrasts however, sex is not included and so the contrast’s
degrees of freedom are given by Equation (4.2) as for the male and female partici-
pants, DF = DFlevel2 = 93.

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 617.91 55.88 11.06 15 1.31e-08
A6 820.85 55.88 14.69 15 2.60e-10
B0 577.07 55.88 10.33 15 3.26e-08
B6 716.85 55.88 12.83 15 1.73e-09
A6-A0 202.94 46.44 4.37 93 3.24e-05
B6-B0 139.78 46.44 3.01 93 3.37e-03
(B6-B0)-(A6-A0) -63.16 65.68 -0.96 93 3.39e-01

Table 4.5: Contrasts for the mean participant for Model (4.3), using the treatment
contrast coding for sex.

The results of the estimated mean linear functions and contrasts can be seen in Ta-
ble 4.5. Here we observe that the linear combinations are significant on a α = 0.05
significance level. We also observe that the estimates of the linear functions are
larger than the estimates made from the model only including within-subject fac-
tors in Table 4.2. This is due to the fact that we have not taken into account that
there are more male than female participants in the diet intervention study.

The contrasts have the exact same estimates as they had for the within-subject
model in Table 4.2, the female participants’ model in Table 4.3 and the male par-
ticipants’ model in Table 4.4.
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All participants with a weighted mean

By taking into account that there are more male than female participants in the diet
intervention study, we can find the weighted mean linear functions and contrasts by
using sex = weight. Where weight is calculated by,

weight = number of male participants
number of male and female participants = 19

32 = 0.59375.

Hence, the weighted mean linear functions are
A0
A6
B0
B6

 =


1 0.59375 0 0 0
1 0.59375 1 0 0
1 0.59375 0 1 0
1 0.59375 1 1 1

 .

That is, A0 = βintercept + 0.59375βsex, A6 = βintercept + 0.59375βsex + βtime, B0 =
βintercept+0.59375βsex+βdiet and B6 = βintercept+0.59375βsex+βtime+βdiet+βtime:diet.

By subtraction, we find that the weighted mean contrasts of interest are the same
as for the male, female and the mean participant, given by Equation (4.5). That
is, A6−A0 = βtime, B6−B0 = βtime+βtime:diet and (B6−B0)−(A6−A0) = βtime:diet.

In this case, the sex factor is included in all the weighted mean linear functions,
A0, A6, B0 and B6, and since the linear functions degrees of freedom is equal to the
smallest degree of freedom among the set of parameters included in the linear func-
tion, the corresponding degrees of freedom should have been given by Equation (4.4),
DF = DFlevel1 = 30. However, the results in Table 4.6 shows that the estimable
function in R weights the degrees of freedom. Hence, the degrees of freedom used
for the linear functions, A0, A6, B0 and B6, in Table 4.6 is 30× 0.59375 = 17.81.

For the three weighted mean contrasts however, sex is not included and so the
contrast’s degrees of freedom are given by Equation (4.2), DF = DFlevel2 = 93.

The results of the estimated weighted mean linear functions and contrasts can be
seen in Table 4.6. Here we observe that all estimates are identical to the estimates
made from the model only including within-subject factors in Table 4.2. The stan-
dard error is however a little smaller for the linear functions, A0, A6, B0 and B6.
And from Equation (2.29), we know that a smaller standard error gives a larger
t-value. Due to the fact that the t-values for the linear functions are so large it does
not matter that the degrees of freedom are smaller than they should, because the
linear combinations are still significant on a α = 0.05 significance level.

The contrasts have the exact same estimates and standard error as they had for
the within-subject model in Table 4.2, the female participants’ model in Table 4.3,
the male participants’ model in Table 4.4 and the unweighted mean participant’
model in Table 4.5.
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Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 607.50 55.14 11.02 18 2.21e-09
A6 810.44 55.14 14.70 18 2.13e-11
B0 566.66 55.14 10.28 18 6.51e-09
B6 706.44 55.14 12.81 18 2.01e-10
A6-A0 202.94 46.44 4.37 93 3.24e-05
B6-B0 139.78 46.44 3.01 93 3.37e-03
(B6-B0)-(A6-A0) -63.16 65.68 -0.96 93 3.39e-01

Table 4.6: Contrasts for the weighted mean participant for Model (4.3), using the
treatment contrast coding for sex

4.2.2 Sum to zero contrast coding
Now we code the sex factor as "sum to zero", by usingmale = −1 and female = 1 in
the design matrix for the fixed effects, Xi. This coding is often used when you want
to extract information about the mean, which given there are the same amount of
male and female participant, is sex = 0.

Female participants

The linear functions, A0, A6, B0 and B6, for female participants, when the sex
factor is coded as "sum to zero", are

A0
A6
B0
B6

 =


1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 1 1 1

 .

That is, A0 = βintercept+βsex, A6 = βintercept+βsex+βtime, B0 = βintercept+βsex+βdiet

and B6 = βintercept + βsex + βtime + βdiet + βtime:diet.

By subtraction we find that the contrasts of interest are the same as before, given
by Equation (4.5). That is, A6 − A0 = βtime, B6 − B0 = βtime + βtime:diet and
(B6−B0)− (A6− A0) = βtime:diet.

In this case, the sex factor is included in all the linear functions, A0, A6, B0 and
B6, and since the linear functions degrees of freedom is equal to the smallest degree
of freedom among the set of parameters included in the linear function, the corre-
sponding degrees of freedom is given by Equation (4.4), DF = DFlevel1 = 30.

For the three contrasts however, sex is not included and so the contrast’s degrees of
freedom are given by Equation (4.2), DF = DFlevel2 = 93.
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Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 673.43 79.39 8.48 30 1.82e-09
A6 876.37 79.39 11.04 30 4.36e-12
B0 632.59 79.39 7.97 30 6.81e-09
B6 772.37 79.39 9.73 30 8.65e-11
A6-A0 202.94 46.44 4.37 93 3.24e-05
B6-B0 139.78 46.44 3.01 93 3.37e-03
(B6-B0)-(A6-A0) -63.16 65.68 -0.96 93 3.39e-01

Table 4.7: Contrasts for the female participants for model (4.3), using the sum to
zero contrast coding for sex.

The results of the estimated linear functions and contrasts can be seen in Table 4.7.
Here we observe that both the linear functions and the contrasts are the exact same
as in Table 4.3, for the female participants when sex was coded as "treatment".

Male participants

The linear functions, A0, A6, B0 and B6, for male participants, when the sex factor
is coded as "sum to zero", are


A0
A6
B0
B6

 =


1 −1 0 0 0
1 −1 1 0 0
1 −1 0 1 0
1 −1 1 1 1

 .

That is, A0 = βintercept−βsex, A6 = βintercept−βsex+βtime, B0 = βintercept−βsex+βdiet

and B6 = βintercept − βsex + βtime + βdiet + βtime:diet.

By subtraction we find that the contrasts of interest are the exact same as for
the female participants, given by Equation (4.5). That is, A6 − A0 = βtime,
B6−B0 = βtime + βtime:diet and (B6−B0)− (A6− A0) = βtime:diet.

In this case, the sex factor is included in all the linear functions, A0, A6, B0 and
B6, and since the linear functions degrees of freedom is equal to the smallest degree
of freedom among the set of parameters included in the linear function, the corre-
sponding degrees of freedom is given by Equation (4.4), DF = DFlevel1 = 30.

For the three contrasts however, sex is not included and so the contrast’s degrees of
freedom are given by Equation (4.2) as for the female participants, DF = DFlevel2 =
93.

The results of the estimated linear functions and contrasts can be seen in Table
4.8. Here we observe that both the linear functions and the contrasts are the exact
same as in Table 4.4, for the male participants when sex was coded as "treatment".
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Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 562.39 67.59 8.32 30 2.75e-09
A6 765.32 67.59 11.32 30 2.34e-12
B0 521.54 67.59 7.72 30 1.31e-08
B6 661.32 67.59 9.78 30 7.57e-11
A6-A0 202.94 46.44 4.37 93 3.24e-05
B6-B0 139.78 46.44 3.01 93 3.37e-03
(B6-B0)-(A6-A0) -63.16 65.68 -0.96 93 3.39e-01

Table 4.8: Contrasts for the male participants for Model (4.3), using the sum to
zero contrast coding for sex.

All participants

The linear functions, A0, A6, B0 and B6, for the mean participant, when the sex
factor is coded as "sum to zero", are


A0
A6
B0
B6

 =


1 0 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 1 1 1

 .

That is, A0 = βintercept, A6 = βintercept + βtime, B0 = βintercept + βdiet and B6 =
βintercept + βtime + βdiet + βtime:diet.

However this mean is not weighted, meaning that is does not take into account
that there are more male than female participants in the diet intervention study.

By subtraction, we again find that the contrasts of interest given by Equation (4.5).
That is, A6−A0 = βtime, B6−B0 = βtime +βtime:diet and (B6−B0)− (A6−A0) =
βtime:diet.

In this case, the sex factor is not included in any of the linear functions, A0, A6,
B0 and B6. Hence, the degrees of freedom, for both the linear functions and the
contrasts, are given by Equation (4.2), DF = DFlevel2 = 93.

The results of the estimated linear functions and contrasts can be seen in Table
4.9. Here we observe that all estimates are identical to the contrast estimates for
the unweighted mean participant, using the treatment contrast coding for sex, in
Table 4.5.
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Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 617.91 55.88 11.06 93 0.00e+00
A6 820.85 55.88 14.69 93 0.00e+00
B0 577.07 55.88 10.33 93 0.00e+00
B6 716.85 55.88 12.83 93 0.00e+00
A6-A0 202.94 46.44 4.37 93 3.24e-05
B6-B0 139.78 46.44 3.01 93 3.37e-03
(B6-B0)-(A6-A0) -63.16 65.68 -0.96 93 3.39e-01

Table 4.9: Contrasts for the mean participant for Model (4.3), using the sum to zero
contrast coding for sex.

4.3 Interaction between within-subject and between-
subject factors

We have also estimated contrasts for the loaded model, which is given by Equation
(3.1) with the fixed effect vector given by

β =



βintercept

βsex

βtime

βdiet

βsex:time

βsex:diet

βtime:diet

βsex:time:diet


. (4.6)

The between-subject factor, sex, is still the only factor estimated at level 1. Hence,
the degrees of freedom for factors estimated at level 1 is still given by Equation (4.2).

The amount of factors estimated at level 2, has however increased. In the fixed
effect vector, (4.6), we count 6 within-subject factors. Hence, the degrees of free-
dom for factors estimated at level 2 is given by

DFlevel2 = m2 − (m1 + p2) = 128− (32 + 6) = 90. (4.7)

The results of the estimated linear functions and contrasts, for the loaded model
given by Equation (4.6), can be seen in Appendix A. We have chosen not to include
all the results due to the fact that the conclusions are the same as for the other
variations of the simplest model, given by Equation (4.1) and (4.3).
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4.4 Contrast discussion
We have not succeeded in finding theoretical articles on conditional tests based on
contrasts, which leaves the probability that we might have overlooked work in this
field unintentionally. The only literature on degrees of freedom for contrasts we have
found are connected to the following R packages, gmodels by Warnes (2011), Design
by Harrell (2009) and contrasts by Kuhn, Weston, Wing and Forester (2010). Spe-
cially on degrees of freedom, there are variations between the different packages in
R, which estimates and tests contrasts.

It is clearly undesirable that the linear functions, A0, A6, B0 and B6, have dif-
ferent degrees of freedom for male and female dependent on the parametrization of
the between-subject factor, sex. For example, when comparing Table 4.3 and 4.7 we
observe that the estimates and standard error of the linear functions are the same
for the two models, but they have different degrees of freedom. We believe that the
degrees of freedom for male or female linear functions, should be equal to the degrees
of freedom for the sex factor which is estimated at level 1 and therefore given by
Equation (4.4), DF = DFlevel1 = 30. The contrasts for male or female are however
the difference between to linear functions for either female or male participants, and
is therefore independent of the sex factor. Hence, we believe that contrasts should
be equal to the degrees of freedom for the within-subject factors which are estimated
at level 2 and therefore given by Equation (4.2), DF = DFlevel2 = 93.

We also believe that the weighting of degrees of freedom is the wrong approach
for calculating degrees of freedom for the linear functions, A0, A6, B0 and B6 for
the mean and the weighted mean in Table 4.5 and 4.6, respectively. We believe that
the degrees of freedom here should be the same as for males and females. That is,
the degrees of freedom should be equal to the smallest degrees of freedom among the
parameters used to construct the linear function, which is the sex factor estimated
at level 1 and therefore given by Equation (4.4), DF = DFlevel1 = 30.

Another complicating factor in the estimations of contrasts, is the interpretation
of the mean and the weighted mean contrasts for all participants. If we compare
the results in Table 4.2 and 4.6 we observe that the estimates are the same for both
models, but the standard errors are slightly different. Hence, the weighted mean lin-
ear functions, with weights relative to the sample proportions of males and females,
and contrasts are the overall mean of this data set.

If we compare the results in Table 4.5 and 4.9, we observe that both the estimates
and the standard errors are equal for the two models. Hence, the unweighted mean
linear functions and contrasts, using the treatment contrast coding, and the mean
linear functions and contrasts, using sum to zero contrast coding, are the mean lin-
ear functions and contrasts for the entire population, when it is assumed to be a
50 percent chance of being male and a 50 percent chance of being female. This is
however also true when fitting linear models, but for LM there are no within-subject
correlation and so the degrees of freedom are equal for all factors in the model.
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Chapter 5

The implied marginal model

In this chapter we will use the implied marginal variance-covariance matrix, Vi,
given by Equation (2.14), to get a deeper understanding of how the correlation in
the data is structured in the covariance matrix associated with the random effects,
D, and covariance matrix associated with the residuals, Ri.

From the implied marginal linear model, given by Equation (2.13), we saw that
the linear mixed effect model can be written as a linear model with normally dis-
tributed residuals with a mean of zero and a implied marginal variance-covariance
matrix, given as

Vi = ZiDZT
i + Ri.

For the diet intervention study example from Chapter 3, the loaded linear model is
given as

ylm
i = Xiβ

lm + εlm
i , (5.1)

where Xi is the design matrix for subject i,

βlm =



βintercept

βsex

βtime

βdiet

βsex,time

βsex,diet

βtime,diet

βtime,diet,sex


and εlm

i ∼ Nni
(0,V) is the residuals.

By fitting a loaded linear model to the data we can estimate the empirical variance-
covariance matrix, V̂, of the residuals, by

V̂ =


V̂ar(εA0) Ĉov(εA0, εA6) Ĉov(εA0, εB0) Ĉov(εA0, εB6)

Ĉov(εA6, εA0) V̂ar(εA6) Ĉov(εA6, εB0) Ĉov(εA6, εB6)
Ĉov(εB0, εA0) Ĉov(εB0, εA6) V̂ar(εB0) Ĉov(εB0, εB6)
Ĉov(εB6, εA0) Ĉov(εB6, εA6) Ĉov(εB6, εB0) V̂ar(εB6)

 . (5.2)
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In our analysis of the diet intervention study, we have looked at three potential
structures for the the covariance matrix associated with the random effect, D, and
three potential structures for the covariance matrix associated with the residuals, Ri.
Hence, there are 9 potential structures for the implied marginal variance-covariance
matrix, Vi. Our aim in this chapter is to use the estimated empirical variance-
covariance matrix, V̂, to predict which of these structures is the best fit for resistin,
uric acid, triglyceride and visfatin.

5.1 The simplest form of a LME: Resistin
We start by fitting the resistin data to the loaded linear model, given in Equation
(5.1), using the lm method by R Development Core Team (2010). Further, we
estimate the residuals, εlm

i , for all subjects i and construct an empirical variance-
covariance matrix, V̂, given by Equation (5.2). That is,

V̂ =


70885 67273 49119 53353
67273 145457 61140 73381
49119 61140 83061 58777
53353 73381 58777 80372

 . (5.3)

Here we observe that V̂ar(εA6) in element (2, 2) of the matrix, is greater than the
other variances. Hence, the structure of the covariance matrix of the random effects,
D, nor the covariance matrix of the residuals, Ri, are not likely to be associated
with time diet or time.

The implied marginal linear model of the fitted resistin model, (3.7), with the fixed
effect parameter given by Equation (3.8), is given as

Yi = Xi

 βintercept

βtime

βdiet

 + ε?
i ,

where
ε?

i ∼ Nni
(0,Vi)

and the implied marginal variance-covariance matrix, Vi, is given as

Vi = ZiDZT
i + Ri

=


1
1
1
1

σ2
int[1111] +


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

σ2

=


σ2

int + σ2 σ2
int σ2

int σ2
int

σ2
int σ2

int + σ2 σ2
int σ2

int

σ2
int σ2

int σ2
int + σ2 σ2

int

σ2
int σ2

int σ2
int σ2

int + σ2

 .
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By inserting the estimates from the fitted resistin model in Table 3.6, we find that
the estimated implied marginal variance-covariance matrix, Ṽi, is given as

Ṽi =


98051 63565 63565 63565
63565 98051 63565 63565
63565 63565 98051 63565
63565 63565 63565 98051

 , (5.4)

for all participants i.

In order to get a more thorough understanding of the variance and covariance in the
resistin data, we take a closer look at the difference between the empirical variance-
covariance matrix, V̂, and the implied marginal variance-covariance matrix, Ṽi,
given as

V̂− Ṽi =


−27166 3708 −14446 −10212

3708 47406 −2426 9816
−14446 −2426 −14990 −4788
−10212 9816 −4788 −17680

 .

Here we observe that the variance and covariance in the resistin data are not mod-
eled particularly well. We notice that the variance for A6, in element (2, 2) of the
matrix, has the worst fit. Perhaps a better fit for the data would be a heterogeneous
variance structure of Ri, given as

Ri =


σ2 0 0 0
0 σ2

A0 0 0
0 0 σ2 0
0 0 0 σ2

 , (5.5)

where σ2
A0 > σ2, which allows the A0 resistin measurements to have a higher variance

than the other measurements. This structure for the residual covariance matrix, Ri,
is however not investigated in this thesis.

5.2 Time associated random effect: Uric acid
We fit the uric acid data to the loaded linear model, given in Equation (5.1), using
the lm method by R Development Core Team (2010). Due to the fact that there
is one missing value in the uric acid data, we choose to remove all measurements
from the participant with missing values in order to calculate the empirical variance-
covariance matrix, V̂. The empirical variance-covariance matrix, V̂, is given as

V̂ =


0.0248 0.0133 0.0191 0.0133
0.0133 0.0290 0.0130 0.0207
0.0191 0.0130 0.0222 0.0144
0.0133 0.0207 0.0144 0.0302

 . (5.6)
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Here we observe that V̂ar(εA6) and V̂ar(εB6), in element (2, 2) and (4, 4) respec-
tively, are greater than the two other elements on the diagonal, which makes us
believe that time most likely should be associated with either the random effects or
the residuals. Since we also observe that both Ĉov(εA0, εB0) and Ĉov(εA6, εB6) are
higher than the other covariances, time should most likely be associated with the
random effects in a unstructured D matrix, given by Equation (2.5).

The implied marginal linear model of the fitted uric acid model, (3.9), with the
fixed effect parameter given by Equation (3.10), is given as

Yi = Xi


βintercept

βsex

βtime

βdiet

 + ε?
i ,

where
ε?

i ∼ Nni
(0,Vi)

and the implied marginal variance-covariance matrix, Vi, is given as
Vi = ZiDZT

i + Ri

=


1 0
1 1
1 0
1 1


[

σ2
int σint,time

σint,time σ2
time

] [
1 1 1 1
0 1 0 1

]
+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

σ2

=


σ2

int+σ2 σ2
int+σint,time σ2

int σ2
int+σint,time

σ2
int+σint,time σ2

int+2σint,time+σ2
time+σ2 σ2

int+σint,time σ2
int+2σint,time+σ2

time

σ2
int σ2

int+σint,time σ2
int+σ2 σ2

int+σint,time

σ2
int+σint,time σ2

int+2σint,time+σ2
time σ2

int+σint,time σ2
int+2σint,time+σ2

time+σ2

 .

By inserting the estimates from the fitted uric acid model in Table 3.9, we find
that the estimated implied marginal variance-covariance matrix, Ṽi, is given as

Ṽi =


0.0249 0.0181 0.0182 0.0181
0.0181 0.0384 0.0181 0.0317
0.0182 0.0181 0.0249 0.0181
0.0181 0.0317 0.0181 0.0384

 , (5.7)

for all participants i.

Hence,

V̂− Ṽi =


−1.09e−04 −4.78e−03 9.66e−04 −4.81e−03
−4.78e−03 −9.47e−03 −5.17e−03 −1.10e−02
9.66e−04 −5.17e−03 −2.69e−03 −3.74e−03
−4.81e−03 −1.10e−02 −3.74e−03 −8.22e−03

 .

Here we observe that the variances and covariances in the data are modeled very
well.
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5.3 Time associated residual variances: Triglyc-
eride

Fitting the triglyceride data to the loaded linear model, given in Equation (5.1), we
find that the empirical variance-covariance matrix, V̂, is given as

V̂ =


0.0968 0.0537 0.0542 0.0496
0.0537 0.1032 0.0791 0.0636
0.0542 0.0791 0.1507 0.0758
0.0496 0.0636 0.0758 0.0894

 . (5.8)

Here we observe that V̂ar(εB0), in element (3, 3), is greater than the other three
elements on the diagonal, and that both Ĉov(εA6, εB0) and Ĉov(εB0, εB6) are higher
than the other covariances. This does not look like any of the structures we have
tested, perhaps a better fit for the triglyceride data would be a unstructured covari-
ance matrix D, associated with measurement B0,

D =
[

σ2
int σint,B0

σint,B0 σ2
B0

]
. (5.9)

This is however not one of our three potential structures of the covariance matrix
D. We do however assume that the covariance should be associated to either time
or diet in the covariance matrix associated with the residuals, Ri, because V̂ar(εB0)
is greater than the three other elements on the diagonal. This might however lead
to a overestimation of either V̂ar(εA0) or V̂ar(εB6), respectively.

The implied marginal linear model of the fitted triglyceride model, (3.11), with
the fixed effect parameter given by Equation (3.12), is given as

Yi = Xi

 βintercept

βtime

βdiet

 + ε?
i ,

where
ε?

i ∼ Nni
(0,Vi)

and the implied marginal variance-covariance matrix, Vi, is given as

Vi = ZiDZT
i + Ri

=


1
1
1
1

σ2
int[1111] +


σ2

time=0 0 0 0
0 σ2

time=1 0 0
0 0 σ2

time=0 0
0 0 0 σ2

time=1



=


σ2

int + σ2
time=0 σ2

int σ2
int σ2

int

σ2
int σ2

int + σ2
time=1 σ2

int σ2
int

σ2
int σ2

int σ2
int + σ2

time=0 σ2
int

σ2
int σ2

int σ2
int σ2

int + σ2
time=1

 .
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By inserting the estimates from the fitted triglyceride model in Table 3.12, we find
that the estimated implied marginal variance-covariance matrix, Ṽi, is given as

Ṽi =


0.1282 0.0634 0.0634 0.0634
0.0634 0.0956 0.0634 0.0634
0.0634 0.0634 0.1282 0.0634
0.0634 0.0634 0.0634 0.0956

 , (5.10)

for all participants i.

Hence,

V̂− Ṽi =


−3.14e−02 −9.68e−03 −9.17e−03 −1.37e−02
−9.68e−03 7.55e−03 1.57e−02 2.61e−04
−9.17e−03 1.57e−02 2.25e−02 1.24e−02
−1.37e−02 2.61e−04 1.24e−02 −6.20e−03

 .

Here we observe that the variances and covariances in the data are modeled fairly
well.

5.4 Diet associated random effect and residual
variances: Visfatin

Fitting the visfatin data to the loaded linear model, given in Equation (5.1), we have
to remove all participants with missing values in order to calculate the empirical
variance-covariance matrix, V̂. The empirical variance-covariance matrix, V̂, is
given as

V̂ =


1.1744 0.4241 0.2231 0.2244
0.4241 1.2766 −0.0201 −0.0901
0.2231 −0.0201 0.4919 0.3904
0.2244 −0.0901 0.3904 0.5485

 . (5.11)

Here we observe that V̂ar(εA0) and V̂ar(εA6), in element (1, 1) and (2, 2) respec-
tively, are greater than the other two elements on the diagonal. Hence, we assume
that diet should be associated with either the random effects or the residuals. Since
Ĉov(εA0, εA6) and Ĉov(εB0, εB6) are greater than the other covariances in the ma-
trix, we assume that diet should be associated with the random effects in a unstruc-
tured D matrix, given in Equation (2.5).

The implied marginal linear model of the fitted visfatin model, (3.13), with the
fixed effect parameter given by Equation (3.14), is given as

Yi = Xi

 βintercept

βtime

βdiet

 + ε?
i ,

where
ε?

i ∼ Nni
(0,Vi)
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and the implied marginal variance-covariance matrix, Vi, is given as

Vi = ZiDZT
i + Ri

=


1 0
1 0
1 1
1 1


[

σ2
int σint,diet

σint,diet σ2
diet

] [
1 1 1 1
0 0 1 1

]
+


σ2

diet=A 0 0 0
0 σ2

diet=A 0 0
0 0 σ2

diet=B 0
0 0 0 σ2

diet=B



=


σ2

int+σ2
diet=A σ2

int σ2
int+σint,diet σ2

int+σint,diet

σ2
int σ2

int+σ2
diet=A σ2

int+σint,diet σ2
int+σint,diet

σ2
int+σint,diet σ2

int+σint,diet σ2
int+2σint,diet+σ2

diet+σ2
diet=B σ2

int+2σint,diet+σ2
diet

σ2
int+σint,diet σ2

int+σint,diet σ2
int+2σint,diet+σ2

diet σ2
int+2σint,diet+σ2

diet+σ2
diet=B

 .

By inserting the estimates from the fitted visfatin model in Table 3.15, we find
that the estimated implied marginal variance-covariance matrix, Ṽi, is given as

Ṽi =


1.1972 0.3988 0.2640 0.2640
0.3988 1.1972 0.2640 0.2640
0.2640 0.2640 0.9524 0.7678
0.2640 0.2640 0.7678 0.9524

 , (5.12)

for all participants i.

Hence,

V̂− Ṽi =


−2.28e−02 2.53e−02 −4.09e−02 −3.97e−02
2.53e−02 7.93e−02 −2.84e−01 −3.54e−01
−4.09e−02 −2.84e−01 −4.60e−01 −3.77e−01
−3.97e−02 −3.54e−01 −3.77e−01 −4.04e−01

 .

Here we observe that that the variances and covariances in the data are modeled
fairly well. However we do observe that V̂ar(εB0) and V̂ar(εB6), in element (3, 3) and
(4, 4) respectively, have the lowest difference and is perhaps slightly overestimated.
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5.5 Discussion
Our motivation for examining the implied marginal variance-covariance matrix, Vi,
is the fact that it is hard to get a understanding of Vi by just studying the covari-
ance matrix associated with the random effects, D, and covariance matrix associated
with the residuals, Ri.

We have observed that the empirical variance-covariance matrix, V̂, and the es-
timated implied marginal variance-covariance matrix, Ṽi, helps us get insight into
the covariance structure of the data.

After examining the empirical variance-covariance matrix, V̂, for the four biomark-
ers, we have seen that other structures of the covariance matrix associated with the
random effects, D, or covariance matrix associated with the residuals, Ri, might be
of interest. We therefore believe that it perhaps would be useful to examine the em-
pirical variance-covariance matrix, V̂, prior to choosing which covariance structures
to test in the top-down strategy. Since the empirical variance-covariance matrix
might give strong indications on the structure, we can save time by not testing
structures which fits badly.
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Chapter 6

Intraclass correlation

The intraclass correlation, called the ICC, is a term often used in biology and med-
ical analysis. According to Shrout and Fleiss (1979) the ICC is the correlation
between one measurement on a target and another measurement obtained on that
target. The motivation behind finding the ICC is to assess the amount of error due
to specific factors. There are several versions of the ICC, and so it is important to
report which version one uses. The ICC can also be seen as a generalized correlation
coefficient.

For the simplest form for a LME, exemplified by the resistin measurements from
the diet intervention study in Chapter 3, the intraclass correlation is given as

ICC = σ2
int

σ2
int + σ2 . (6.1)

In linear mixed effects models with more complex structures of the covariance ma-
trix associated with the random effects, D, and covariance matrix associated with
the residuals, Ri, the ICC formula, given in Equation (6.1), can not be used. Using
the estimated implied variance-covariance matrix, Ṽi, we can very easily calculate
one version of the ICC. Hence, for the LME we define the ICC as

ICCM1,M2 = Ĉov(εM1, εM2)√
V̂ar(εM1)

√
V̂ar(εM2)

, (6.2)

where M1 is one measurement on a target and M2 is another measurement ob-
tained on that target.

Hence, from the estimated implied marginal variance-covariance matrix, Ṽi, in
Chapter 5, we can calculate the intraclass correlations corresponding to the four
biomarkers resistin, uric acid, triglyceride and visfatin, in the diet intervention study.
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ICCs for the resistin data
Since resistin has been modeled by the simplest form of a LME, we can easily with
the results from Table 3.6 calculate the intraclass correlation given by Equation
(6.1). That is,

ICC = 63565.29
63565.29 + 34486.17 = 0.65

Due to the structure of the estimated implied marginal variance-covariance ma-
trix, Ṽi, of the fitted resistin model, given in Equation (5.4), all ICCs are given
as

ICCM1,M2 = 63565√
98051×

√
98051

= 0.65,

where M1 and M2 are all combinations of A0, A6, B0 and B6. Hence, for the
simplest model the two versions of the ICC, given in Equation (6.1) and (6.2), gives
the same results.

ICCs for the uric acid data
From Equation (5.7), the intraclass correlations corresponding to the fitted uric acid
model (3.9), with the fixed effect vector given by Equation (3.10), are given as

ICCA0,A6 = ICCA0,B6 = ICCA6,B0 = ICCB0,B6 = 0.0181√
0.0249×

√
0.0384

= 0.59,

ICCA0,B0 = 0.0182√
0.0249×

√
0.0249

= 0.73

and ICCA6,B6 = 0.0317√
0.0384×

√
0.0384

= 0.83.

ICCs for the triglyceride data
From Equation (5.10), the intraclass correlations corresponding to the fitted triglyc-
eride model (3.11), with the fixed effect vector given by Equation (3.12), are given
as

ICCA0,A6 = ICCA0,B6 = ICCA6,B0 = ICCB0,B6 = 0.0634√
0.1282×

√
0.0956

= 0.57,

ICCA0,B0 = 0.0634√
0.1282×

√
0.1282

= 0.49

and ICCA6,B6 = 0.0634√
0.0956×

√
0.0956

= 0.66.
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ICCs for the visfatin data
From Equation (5.12), the intraclass correlations corresponding to the fitted visfatin
model (3.13), with the fixed effect vector given by Equation (3.14), are given as

ICCA0,B0 = ICCA0,B6 = ICCA6,B0 = ICCA6,B6 = 0.2640√
1.1972×

√
0.9524

= 0.25,

ICCA0,A6 = 0.3988√
1.1972×

√
1.1972

= 0.33

and ICCB0,B6 = 0.7678√
0.9524×

√
0.9524

= 0.81.

65



Chapter 7

Integrated nested Laplace
approximations (INLA)

Integrated nested Laplace approximations, INLA, is a method for Bayesian inference
on latent Gaussian models, which combines Laplace approximations and numerical
integration in a very efficient manner, according to Rue, Martino and Chopin (2009).

We will now fit the four models for resistin, uric acid, triglycerides and visfatin
using INLA and compare the results to the results from the lme fit in Chapter 3.
For each model parameter we present median in the posterior distribution, the es-
timate, and the lower and upper 2.5% percentile of the posterior distribution, the
credibility interval.

7.1 The simplest form of a LME: Resistin
We fit the resistin model (3.7), with the fixed effect vector given by Equation (3.8),
using the inla function in R by Rue and Martino (2009). The results can be seen
in Table 7.1, next to the results we got estimating the same model with lme. When
comparing the two results, we can see that the estimates are very different.

inla estimate lme estimate
(95% Credibility interval) (95% Confidence interval)

Fixed effects
Intercept, βint 660.73 (593.72, 727.97) 623.29 (518.32, 728.25)
Time, βtime 41.69 (-13.07, 95.97) 171.36 (106.18, 236.54)
Diet, βdiet -17.61 (-71.67, 36.53) -72.42 (-137.60, -7.24)
Random effects
Intercept, σ2

int 5.3e-05 (1.5e-05, 0.00061) 252.12 (189.91, 334.71)
Residuals
Intercept, σ2 99843.84 (79064.67, 128811.89) 185.70 (160.97, 214.24)

Table 7.1: Estimated parameters for the resistin model using inla, compared to the
results from lme.
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Since the QQ-plot of the simplest LME model of the resistin data were quite simi-
lar for both the original and natural logarithmic form, we choose to try fitting the
resistin measurements on a natural logarithmic scale instead. The results of all the
hypothesis’ can be seen in Table7.2. Here we see that the best fit for the resistin
measurements is still the simplest LME model, (3.7).

Hyp 3.3 Hyp 3.4 Hyp 3.5 Hyp 3.6
P-value 0.5674 0.0658 0.1447 0.2788

Table 7.2: P-values of all hypothesis for the resistin data on a natural logarithmic
scale.

Following the top-down strategy, we reduce the loaded model by preforming type I
F-tests iteratively, using the ANOVA method by R Development Core Team (2010).
Here we find that on a significance level α = 0.05, only the intercept and time factor
should be included as fixed effects in the model. Hence, the fixed effect vector is
given by

β =
[
βintercept

βtime

]
. (7.1)

We fit the new resistin model (3.7), with the fixed effect vector given by Equa-
tion (7.1), using the inla method by Rue and Martino (2009). The results can be
seen in Table 7.3, next to the results of fitting the same model with lme. When
comparing the two results, we see that the estimates are almost identical. We find
the largest differences in the random-effect term, σ2

int. But comparing the lme 95%
confidence interval with the inla 95% credibility interval, we see that these intervals
overlap for all parameters.

inla estimate lme estimate
(95% Credibility interval) (95% Confidence interval)

Fixed effects
Intercept, βint 6.2525 (6.0991, 6.4058) 6.2525 (6.0960, 6.4090)
Time, βtime 0.2765 (0.1673, 0.3856) 0.2765 (0.1663, 0.3867)
Random effects
Intercept, σ2

int 0.1338 (0.0795, 0.2476) 0.14958 (0.0836, 0.2676)
Residuals
Intercept, σ2 0.0969 (0.0744, 0.1299) 0.0987 (0.0742, 0.1311)

Table 7.3: Estimated parameters for the resistin model on a logarithmic scale using
inla, compared to the results from lme.
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It is not completely clear why the inla results on the original scale, given in Table
7.1, are so different from the lme results, while the results on the natural logarithmic
scale, given in Table 7.3, agree very well. In particular, because the LME model on
the original scale for the resistin data seem to fit well according to the diagnostic
plots in Figure 3.2, 3.3 and 3.4. A possible reason for the differences in Table 7.1
could be that there are more than one solution. That is if the model is unidentifiable.

7.2 Time associated random effect: Uric acid
In Table 7.4 we observe the results from fitting the uric acid model (3.9), with the
fixed effect vector given by Equation (3.10), using both inla and lme in R. Compar-
ing the two results, we see that the estimates of the fixed effects are very similar,
but that there are some differences in the random effects as well as in the residuals.

For the fixed effects all lme 95% confidence interval and inla 95% credibility in-
terval overlap. This is also the case for the estimated residual variance, σ2. The
estimated correlation parameter, ρint,time in the covariance matrix corresponding to
the random effects, D, is in both lme and inla negative and the lme 95% confidence
interval and inla 95% credibility interval overlap. But for the estimated variance
of intercepts, σ2

int, and time, σ2
time, the differences are larger. This might suggest

a possible non uniqueness in partitioning of variance for intercepts, σ2
int, and time,

σ2
time.

inla estimate lme estimate
(95% Credibility interval) (95% Confidence interval)

Fixed effects
Intercept, βint 5.5473 (5.3926, 5.7014) 5.5643 (5.4851, 5.6436)
Sex, βsex 0.2100 (0.0163, 0.4037) 0.1814 (0.0802, 0.2825)
Time, βtime -0.0962 (-0.1776, -0.0150) -0.0962 (-0.1464, -0.0460)
Diet, βdiet 0.0463 (0.0182, 0.0743) 0.0463 (0.0173, 0.0752)
Random effects
Intercept, σ2

int 0.0736 (0.0462, 0.1280) 0.0182 (0.0100, 0.0332)
Time, σ2

time 0.0460 (0.0296, 0.0766) 0.0137 (0.0064, 0.0294)
Intercept:Time, ρint,time -0.3660 (-0.6336, -0.0634) -0.2530 (-0.6187, 0.2029)
Residuals
Intercept, σ2 0.0062 (0.0046, 0.0088) 0.0067 (0.0047, 0.0095)

Table 7.4: Estimated parameters for the uric acid model using inla, compared to
the results from lme.
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7.3 Time associated residual variances: Triglyc-
eride

We fit Model 3.11, with the fixed effect vector given by Equation 3.12, using the
inla function in R. The results can be seen in Table 7.5 next to the results we got
estimating the same model with lme. When comparing the two results, we can see
that all the estimates are practically the same.

inla estimate lme estimate
(95% Credibility interval) (95% Confidence interval)

Fixed effects
Intercept, βint -0.0625 (-0.1751, 0.0507) -0.0623 (-0.1769, 0.0523)
Time, βtime -0.2228 (-0.2992, -0.1464) -0.2228 (-0.3001, -0.1454)
Diet, βdiet -0.1272 (-0.2001, -0.0523) -0.1277 (-0.2005, -0.0548)
Random effects
Intercept, σ2

int 0.0568 (0.0336, 0.1050) 0.0634 (0.0353, 0.1138)
Residuals
Time, σ2

Day0 0.0619 (0.0430, 0.0935) 0.0649 (0.0435, 0.0967)
Time, σ2

Day6 0.0306 (0.0203, 0.0491) 0.0322 (0.0114, 0.0908)

Table 7.5: Estimated parameters for the triglyceride model using inla, compared to
the results from lme.

7.4 Diet associated random effect and residual
variances: Visfatin

We fit Model 3.13, with the fixed effect vector given by Equation 3.14, using the
inla function in R. The results can be seen in Table 7.6 next to the results we got
estimating the same model with lme. When comparing the two results, we can see
that the estimates of the fixed effects are quite similar, but that there are some
differences both in the random effects and in the residuals.

The lme 95% confidence interval and inla 95% credibility interval overlap for all
parameters. But in particular, the estimated variance of diet, σ2

diet, the differences
are quite large. This might suggest a possible non uniqueness in partitioning of
variance.
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inla estimate lme estimate
(95% Credibility interval) (95% Confidence interval)

Fixed effects
Intercept, βint 7.8447 (7.5014, 8.1871) 7.8503 (7.5103, 8.1902)
Time, βtime -0.2687 (-0.4662, -0.0755) -0.2744 (-0.4693, -0.0794)
Diet, βdiet -0.6653 (-1.0213, -0.3106) -0.6680 (-1.0532, -0.2829)
Random effects
Intercept, σ2

int 0.3812 (0.0896, 2.3325) 0.3988 (0.1222, 1.3017)
Diet, σ2

diet 0.2410 (0.0741, 0.8822) 0.6385 (0.2376, 1.7163)
Intercept:Diet, ρint,diet -0.6682 (-0.9214, -0.0230) -0.5292 (-0.8537, 0.0914)
Residuals
Diet, σ2

DietA 0.9183 (0.5457, 1.7011) 0.7985 (0.4695, 1.3578)
Diet, σ2

DietB 0.1730 (0.1132, 0.2887) 0.1846 (0.0523, 0.6519)

Table 7.6: Estimated parameters for the visfatin model using inla, compared to the
results from lme.

7.5 Discussion
With one exception, being the resistin model on the original scale, the fixed effect
lme parameter estimates and the inla parameter estimates, the median of the pos-
terior distribution, agree very well. For two of the data sets fitted, resistin on the
natural logarithmic scale and triglyceride, the random effects and the residual pa-
rameters agree well. But for the other three data sets, there seem to be more than
one way to distribute variances across parameter.
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Chapter 8

Discussion and conclusion

In this master thesis we have presented and discussed the linear mixed effects model
for analyzing repeated measures data. We have seen that the covariance matrices
for the random effects and the residuals can vary in complexity, which can make it
difficult to interpret the results of a estimated LME.

We have studied several statistical aspects of the linear mixed effects model, in-
cluding estimation of contrasts, investigations of the structure the implied marginal
variance-covariance matrix, the intraclass correlation and using integrated nested
Laplace approximations (INLA) to fit a LME.

We have chosen to follow the top-down strategy for model selection, according to
Chapter 2 of West et al. (2007). Here only three potential structures of the co-
variance matrix for the random effects, D, and three potential structures of the
covariance matrix for the residuals, Ri, are tested. We have observed that there are
several other covariance structures for both D and Ri, which could have been tested
and perhaps given a better fitted model to the biomarkers in the diet intervention
study. Perhaps it would be useful to examine the empirical variance-covariance ma-
trix, V̂, prior to choosing which covariance structures to test, since the empirical
variance-covariance matrix might give strong indications on the structure.

We have seen that writing down the estimated implied marginal variance-covariance
matrix, Ṽi, and the ICCM1,M2 gain insight into the estimated LME.

We have in this thesis work looked at using the LME to analyze repeated measures
data where multiple observations are recorded for each subject, thus a two-level
analysis. The simplest solution to the challenge of correlated observations within
subjects is to include a random intercept in the covariance matrix for the random
effects, D. This solution is easy to understand and for this model the ICC has a clear
interpretation. We have looked at fitting more complex structures for the covariance
matrix for the random effects, D, and the covariance matrix for the residuals, Ri,
leading to a more difficult interpretation of the ICC and the variance-covariance
structure of the LME. Is the added complexity by incorporating a more elaborate
covariance matrix for the random effects, D, and the residuals, Ri, a sound invest-
ment? Does it change the conclusions to inferential questions asked? Is the most
important mission of the covariance matrix for the random effects, D, just to model
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the intercept? Is it necessary to introduce correlation between random effects? We
have only looked at a two-level repeated measures data set, perhaps more complex
structures of the covariance matrices, D and Ri is more useful in LMEs with more
nested levels?

When between-subject factors are not present in the LME, hypothesis tests of linear
contrasts are to our understanding handled satisfyingly with the estimable function
in the gmodels package in R. But, when between-subject factors are included we
have seen that the strategy of using the smallest degrees of freedom among the pa-
rameter estimates included in the contrast, leads to ambiguous results dependent
on the coding of the parameters in the design matrix. This is highly unsatisfying.

In retrospect, there are so many interesting topics connected to the linear mixed
effects model, and we see that we have tried to cover too many topics to be able
to cover all in great depth. Thus the thesis contains less work than desired on the
integrated nested Laplace approximations (INLA) in Chapter 7. Nevertheless, the
results from Chapter 7 inspires further research. The Bayesian approach is not often
used for LME, but for generalized linear mixed effects models the method has be-
come popular, Fong, Rue and Wakefield (2010). Using INLA for inference in LME
would produce credibility intervals for contrasts as easily as for parameters. Thus,
the degrees of freedom problems with between-subject factors we encountered using
the frequentist approach, would not be an issue.
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Appendix A

Contrasts for the loaded model

Treatment contrast coding
Female participants

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 679.23 86.87 7.82 90 9.62e-12
A6 881.23 86.87 10.14 90 0.00e+00
B0 637.62 86.87 7.34 90 9.15e-11
B6 756.69 86.87 8.71 90 1.38e-13
A6-A0 202.00 73.99 2.73 90 7.62e-03
B6-B0 119.08 73.99 1.61 90 1.11e-01
(B6-B0)-(A6-A0) -82.92 104.64 -0.79 90 4.30e-01

Table A.1: Female contrasts for model 4.6, using the treatment contrast coding.

Male participants

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 558.42 71.86 7.77 30 1.14e-08
A6 762.00 71.86 10.60 30 1.15e-11
B0 518.11 71.86 7.21 30 5.03e-08
B6 672.05 71.86 9.35 30 2.12e-10
A6-A0 203.58 61.20 3.33 90 1.28e-03
B6-B0 153.95 61.20 2.52 90 1.37e-02
(B6-B0)-(A6-A0) -49.63 86.55 -0.57 90 5.68e-01

Table A.2: Male contrasts for model 4.6, using the treatment contrast coding.
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All participants

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 618.83 56.37 10.98 15 1.44e-08
A6 821.76 56.37 14.58 15 2.90e-10
B0 577.98 56.37 10.25 15 3.59e-08
B6 717.76 56.37 12.73 15 1.91e-09
A6-A0 202.94 47.16 4.30 53 7.21e-05
B6-B0 139.78 47.16 2.96 53 4.53e-03
(B6-B0)-(A6-A0) -63.16 66.69 -0.95 53 3.48e-01

Table A.3: Mean contrasts for model 4.6, using the treatment contrast coding.

The weighted mean participant

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 607.50 55.37 10.97 18 2.36e-09
A6 810.44 55.37 14.64 18 2.27e-11
B0 566.66 55.37 10.23 18 6.94e-09
B6 706.44 55.37 12.76 18 2.14e-10
A6-A0 202.94 47.16 4.30 53 7.21e-05
B6-B0 139.78 47.16 2.96 53 4.53e-03
(B6-B0)-(A6-A0) -63.16 66.69 -0.95 53 3.48e-01

Table A.4: Weighted contrasts for model 4.6, using the treatment contrast coding.

Sum to zero contrast coding
Female participants

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 679.23 86.87 7.82 30 1.00e-08
A6 881.23 86.87 10.14 30 3.28e-11
B0 637.62 86.87 7.34 30 3.56e-08
B6 756.69 86.87 8.71 30 1.03e-09
A6-A0 202.00 73.99 2.73 90 7.62e-03
B6-B0 119.08 73.99 1.61 90 1.11e-01
(B6-B0)-(A6-A0) -82.92 104.64 -0.79 90 4.30e-01

Table A.5: Female contrasts for model 4.6, using the sum to zero contrast coding.
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Male participants

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 558.42 71.86 7.77 30 1.14e-08
A6 762.00 71.86 10.60 30 1.15e-11
B0 518.11 71.86 7.21 30 5.03e-08
B6 672.05 71.86 9.35 30 2.12e-10
A6-A0 203.58 61.20 3.33 90 1.28e-03
B6-B0 153.95 61.20 2.52 90 1.37e-02
(B6-B0)-(A6-A0) -49.63 86.55 -0.57 90 5.68e-01

Table A.6: Male contrasts for model 4.6, using the sum to zero contrast coding.

All participants

Contrast Estimate Std. Error t value DF Pr(>|t|)
A0 618.83 56.37 10.98 90 0.00e+00
A6 821.62 56.37 14.58 90 0.00e+00
B0 577.86 56.37 10.25 90 0.00e+00
B6 714.37 56.37 12.67 90 0.00e+00
A6-A0 202.79 48.01 4.22 90 5.74e-05
B6-B0 136.51 48.01 2.84 90 5.52e-03
(B6-B0)-(A6-A0) -66.28 67.90 -0.98 90 3.32e-01

Table A.7: Mean contrasts for model 4.6, using the sum to zero contrast coding.
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Appendix B

R code

B.1 Fitting a LME model, with lme

R code for fitting a linear mixed effects model to the resistin, uric acid, triglyceride
and visfatin data, using the lme method by Pinheiro et al. (2010). Used for all
biomarkers are resp, which is the biomarker measurements, id, which is the identi-
fication of all the participants, sex, which is a vector of all the participants gender,
diet and time, which is the diet and time at which the biomarker measurement were
taken, respectively.

Resistin
Fitting the resistin model (3.7), with the fixed effect vector given by Equation (3.8).

res.data <- data.frame(resp, id, diet, time, sex)
lme.res <- lme(resp~factor(time) + diet, random = ~1 | id,
data = res.data, na.action = na.omit)

Uric acid
Fitting the uric acid model (3.9), with the fixed effect vector given by Equation
(3.10)

uric.data <- data.frame(resp=log(resp), id, diet, time, sex)
lme.uric <- lme(resp ~ sex + factor(time) + diet,
random = ~ factor(time) | id, data = uric.data, na.action = na.omit)

Triglyceride
Fitting the triglyceride model (3.11), with the fixed effect vector given by Equation
(3.12).

tri.data <- data.frame(resp=log(resp), time, diet, id)
lme.tri <- lme(resp ~ factor(time) + diet, random = ~ 1 | id,
weights = varIdent(form = ~1 | factor(time)), data = tri.data,
na.action = na.omit)
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Visfatin

Fitting the visfatin model (3.13), with the fixed effect vector given by Equation
(3.14).

vis.data <- data.frame(resp=log(resp), time, diet, id)
lme.vis <- lme(resp ~ factor(time) + diet, random = ~ diet | id,
weights = varIdent(form = ~1 | diet), data = vis.data,
na.action = na.omit)

B.2 Diagnostics
R code for obtaining diagnostic plots. We have chosen to only include the R code
for the resistin data.

Normal plot of residuals by diet:

qqnorm(lme.res, ~ resid(.) | diet)

Plot of observed versus fitted values:

plot(lme.res, resp ~ fitted(.) | diet, abline = c(0,1),
ylab="Observed values")

Normal plot of random effects:

qqnorm(lme.res, ~ ranef(.))

B.3 Contrasts
R code for estimating contrasts for the loaded model, (3.1), with the fixed effect
vector given by Equation (4.6). We have chosen to only include the R code for the
mean participant, when the sex factor is coded as "sum to zero".

new.data <- res.data
sex.sum <- contr.sum(2)
new.data[,"sex"] <- C(new.data[,"sex"], sex.sum)
fit <- lme(resp~sex*factor(time)*diet, random=~1 | id, data=new.data)
A0 <- estimable(fit, c(1,0,0,0,0,0,0,0))
A6 <- estimable(fit, c(1,0,1,0,0,0,0,0))
B0 <- estimable(fit, c(1,0,0,1,0,0,0,0))
B6 <- estimable(fit, c(1,0,1,1,0,0,1,0))
AA <- estimable(fit, c(0,0,1,0,0,0,0,0))
BB <- estimable(fit, c(0,0,1,0,0,0,1,0))
AB <- estimable(fit, c(0,0,0,0,0,0,1,0))
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B.4 The variance-covariance matrices
R code for extracting the implied marginal variance-covariance matrix, Vi, given by
Equation (2.14). We have chosen to only include the R code for the visfatin data,
since this model has the most complicated covariance structure.

var1 <- intervals(lme.vis)$reStruct$id[1,2][1]^2
var2 <- intervals(lme.vis)$reStruct$id[2,2]^2
cor <- intervals(lme.vis)$reStruct$id[3,2]
cov <- cor*var1*var2
resA <- intervals(lme.vis)$sigma[2]^2
resB <- (coef(lme.vis$modelStruct$varStruct, uncons = FALSE)*
intervals(lme.vis)$sigma[2])^2
row1 <- c(var1+resA, var1, var1+cov, var1+cov)
row2 <- c(var1, var1+resA, var1+cov, var1+cov)
row3 <- c(var1+cov, var1+cov, var1+2*cov+var2+resB, var1+2*cov+var2)
row4 <- c(var1+cov, var1+cov, var1+2*cov+var2, var1+2*cov+var2+resB)
V.mat <- rbind(row1, row2, row3, row4)

For the resistin model we are able to extract the implied marginal variance-covariance
matrix, Vi, using the getV arCor function by Pinheiro et al. (2010). This function
does however not work for models with correlated random effects or a heterogeneous
structure for the covariance matrix associated with the residuals, Ri.

R code for constructing the empirical variance-covariance matrix, V̂, of the loaded
linear model for the visfatin data.

na <- which(is.na(resp))
na.id <- id[na]
una <- unique(na.id)
list <- NULL
for(i in una){

rem <- which(id==i)
list <- c(list, rem)

}
sex <- sex[-una]
diet <- diet[-list]
time <- time[-list]
resp <- resp[-list]
new.data <- data.frame(resp, diet, time, sex)
fit.lm <- lm(resp ~ sex*factor(time)*diet, data=new.data)
res <- residuals(fit.lm)
V.emp <- cov(cbind(res[1:26], res[27:52], res[53:78], res[79:104]))

B.5 Fitting a LME model, with inla

R code for fitting a linear mixed effects model to the resistin, uric acid, triglyceride
and visfatin data, using the inla method by Rue and Martino (2009). In addition
to the response and the explanatory variables introduced in the R code for fitting a
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LME using the lme method, we now also use random which is another identification
vector similar to id but with different numbers, used to allow correlated random
effects in inla.

Resistin
Fitting the resistin model, (3.7), with the fixed effect vector given by Equation (3.8),
using the inla method by Rue and Martino (2009).

res.data <- data.frame(resp=log(resp), id, diet, time)
inla.res <- inla(resp ~ factor(time) + diet + f(id,model="iid"),
family="gaussian", data=res.data)

Uric acid
Fitting the uric acid model, (3.9), with the fixed effect vector given by Equation
(3.10), using the inla method by Rue and Martino (2009).

uric.data <- data.frame(resp=log(resp), id, diet, time, sex, random)
inla.uric <- inla(resp ~ sex + factor(time) + diet
+ f(id, model="iid2d", n=64) + f(random, factor(time), copy="id",
fixed=T), family = "gaussian", data = uric.data)

Triglyceride
Fitting the triglyceride model, (3.11), with the fixed effect vector given by Equation
(3.12), using the inla method by Rue and Martino (2009).

resp <- log(resp)
temp1 <- rep(NA, 4*n)
temp1[time==0] <- resp[time==0]
temp2 <- rep(NA, 4*n)
temp2[time==1] <- resp[time==1]
resp.mat <- cbind(temp1, temp2)
new.tri.data <- data.frame(resp.mat, time, diet, id)
inla.tri <- inla(resp.mat ~ factor(time) + diet + f(id, model="iid"),
family = c("gaussian", "gaussian"), data = new.tri.data)

Visfatin
Fitting the visfatin model, (3.13), with the fixed effect vector given by Equation
(3.14), using the inla method by Rue and Martino (2009).

resp <- log(resp)
temp1 <- rep(NA, 4*n)
temp1[diet=="A"] <- resp[diet=="A"]
temp2 <- rep(NA, 4*n)
temp2[diet=="B"] <- resp[diet=="B"]
resp.mat <- cbind(temp1, temp2)
vis.data <- data.frame(resp.mat, time, diet, id, random)
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inla.vis <- inla(resp.mat ~ factor(time) + diet
+ f(id, model="iid2d", n=64) + f(random, diet, copy="id", fixed=T),
family = c("gaussian", "gaussian"), data = vis.data)
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