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ABSTRACT
Risers are commonly arranged as clusters with relatively s-

mall spacing due to economic necessity. As a consequence, col-
lision between risers becomes an essential problem. This study
presents a comprehensive assessment of various methods for ris-
er collision probability analysis. A pair of tandem arrangement
risers subjected to combined current and wave loads is modelled.
Three hours short-term simulation is performed in order to ob-
tain the time history samples for the collision probability analy-
sis. The wake effect due to the presence of the upstream riser is
considered. The shortest distance between risers is calculated at
each time step. Four methods for estimation of the extreme val-
ue distribution, e.g. Gumbel probability paper method, Weibull
based method, average conditional exceedance rate method and
moment based Hermit method, are presented, and the results ob-
tained from different methods are compared and discussed.

INTRODUCTION
As the offshore industry moves to deeper water, risers are

commonly arranged as clusters with small spacing due to limit-
ed size of the platform as well as the cost considerations. The
dynamic response of riser clusters, induced by the waves, cur-
rents, and platform motions, becomes significantly important.
The complication of the response is increased by the arrange-
ment of the risers. When the risers are in tandem arrangement
and close enough, the local fluid kinematics in terms of ampli-
tude, frequency and phase around the downstream riser is signif-

icantly modified, compared to that for the upstream riser. Addi-
tionally, the differences in excitation force on neighbouring riser-
s will cause large relative distance, leading to possibility of riser
collision, especially when they are subjected to a severe sea state.

There are two different design strategies for riser collision
assessment according to DNV-RP-201 [1]. One is called ’No
Collision Allowed’, which means that riser collision is not al-
lowed under normal, extreme or survival conditions. The prob-
lem is then reduced to determine the probability of the relative
distance between risers over a given threshold value. Anoth-
er one is ’Collision Allowed’, indicated that infrequent collision
may be allowed in some extreme conditions. Hence, assessment
of structural interaction will be required. For the present study,
the former design strategy will be considered.

Duggal and Niedzwecki [2] performed experiments for top
tension risers subjected to random waves in order to estimate the
riser collision probability. They considered the relative distance
between two nodes located at the same water depth as a random
process, so that the collision probability problem was equivalen-
t to a crossing process for a threshold value. The probabilistic
model is developed by adapting first-passage time formulation-
s, and is extended to account for a non-Gaussian collision pro-
cess by applying the Hermite transformation technique. He and
Low [3] provided an approach for estimation of the probability of
collision between two flexible risers, and the relative distance is
calculated as the shortest distance between two lines. Fu et al. [4]
developed an approach for estimation of collision probability be-
tween two flexible risers by accounting for the uncertainties of

Proceedings of the ASME 2018 37th International
Conference on Ocean, Offshore and Arctic Engineering

OMAE2018
June 17-22, 2018, Madrid, Spain

OMAE2018-78318

1 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 03/05/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



the important parameters, e.g., shielding effects, floater motion
and current velocity.

The purpose of this paper is to estimate the collision prob-
ability of a pair of flexible risers in tandem arrangement which
are subjected to combined current and wave loads. The approach
developed in this study is based on the short-term time domain
simulations. Particular attention is given to the flexible riser in
the wave configuration. Several 3-hour short-term simulations
are performed to obtain the time history samples, and the relative
distance is treated as a random process for the collision probabil-
ity analysis. The performances of extreme value analysis meth-
ods, such as Gumbel probability paper, Weibull based method,
average conditional exceedance rate method and moment-based
Hermite method are evaluated. The importance of the threshold
value is discussed for better modelling the tail of the distribution
and the estimating of the extreme value.

TIME DOMAIN SIMULATIONS
Time domain simulations are necessary for calculating the

nonlinear riser response under combined current and wave loads.
The nonlinearity is increased when the shielding effects are tak-
en into account. The shielding effects is considered by combin-
ing the finite element software Riflex [5] along with the Blevins
wake model [6]. The Riflex is specially designed to handle static
and dynamic analyses of slender marine structures. The Blevins
weak model expresses both drag force and lift force on the down-
stream riser as a function of the relative distance between two
risers.

Structural and Environmental Modelling
The flexible riser used in present study is the wave riser. A

wave riser has the addition of buoyancy modules along a part of
the riser length in order to form a ’wave’ shape, so that some
of the axial tensile forces acting on the riser can be relieved, as
shown in Fig. 1. The total length of the riser is l = 160 with
diameter D = 0.25 m. The length of the buoyancy module is
lb = 50 m with diameter Db = 0.63 m, and along the riser at
water depth h = 60 ∼ 90 m. The main riser properties are sum-
marized in Table 1. Two identical risers arranged in tandem are
modelled in Riflex. The top ends are rigidly connected with a
semi-platform. The bottom ends are fixed at the seabed. The gap
between ends is L0 = 10 m. The platform is to be modelled as
a rigid body with six-DOF, and the motion of the body is spec-
ified through the Response Amplitude Operators (RAOs). For
simplicity, only the first-order wave loads are considered in the
dynamic analyses.

For short-term analyses it is assumed that the most critical
response occurs during a design sea state corresponding to a giv-
en return period, i.e., 100 years. The JONSWAP spectrum is
selected using a γ factor of 3.3, and a significant wave height

FIGURE 1. RISER CONFIGURATION.

TABLE 1. RISER AND BUOYANCY ELEMENTS PROPERTIES.

Unit Riser Buoyancy elements

Outside diameter [m] 0.25 0.63

Inside diameter [m] 0.05 0.05

Mass coefficient [kg/m] 100 100

EI [kNm2] 104 104

Content density [kg/m3] 1000 1000

Total length [m] 110 50

Hs = 14m and a spectral peak period TP = 18s. The current ve-
locity Vc is set to be 1.0m/s at the sea surface and to decrease
linearly to 0.8m/s at the seabed. Only collinear wave-current
interaction is considered.

Hydrodynamic Loads
The hydrodynamic forces are calculated based on two-

dimensional strip theory. The wave-induced excitation forces
(Froude-Kriloff and diffraction forces) are computed by a long
wavelength approximation which involves added mass and po-
tential damping of the actual cross section together with the wave
kinematics. The viscous loads are computed using the drag term
in a modified Morisons equation, taking into account the rela-
tive motion between riser and fluid flow. In addition, shielding
effects generated by the upstream cylinder has to be accounted
for. In the present study, the downstream riser is placed at the
wake center-line so that the lift force caused by the asymmetry
flow can be neglected. The drag force is reduced due to the wake
shielding from the upstream riser. In this study, the Blevins wake
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model is used, by which the reduction of the local flow veloc-
ity is transformed to the reduction of the drag coefficient. The
formulation is given in Eqs. 1.

CD(x) =CD0

{
1− k1

(√
CD0Du

x

)
exp
(
−k2y2

CD0Dux

)}2

(1)

where x is the position of the downstreme cylinder with respect
to the upstream cylinder; CD is the downstream cylinder drag
coefficient based on local flow velocity; CD0 is the reference drag
coefficient based on undisturbed flow velocity; Du is the diameter
of the upstream cylinder; Parameters k1 = 1 and k2 = 4.5 are
constants, and determined by fitting curve to the experimental
data at x/D= 3, 5, 9 and 20.3 using the least-squares method [7].
However, more data is required in order to validate this model.

The upstream riser is considered as a single, isolated cylin-
der. However, the drag force on the downstream riser depends on
the relative distance with respect to the upstream riser. Due to the
current profile and the riser boundary condition, the drag force
varies along the riser. Therefore, an iteration process searching
for the static equilibrium position and reduced drag force is nec-
essary. This is achieved by combining the wake model in Eq. 1
and static analysis in Riflex. The equilibrium static position of
the risers and the associated drag coefficient is used further in the
dynamic analysis.

Definition of Random Process
In Riflex, a riser is modelled as line represented by a series

of line segments, according to their property and geometry. To
estimate the probability of collision between the discrete lines,
the distance between each pair of the line segments should be
found. As mentioned previously, the risers are initially arranged
in tandem with relative distance L0 = 10 m. The initial position
can be calculated by using the catenary equilibrium calculations.
When the current loads are applied, the final static position can be
found by an iteration process as described. The shortest distance
between the risers at the static position is denoted as Ls. For
the dynamic analysis, the shortest distance is then defined as the
minimum distance between risers at each time step, i.e. Ld(t).
Figure 2 illustrates the definitions of the different distances.

The probability of the riser collision, actually, is an extreme
minimum value problem. However, it is convenient to transfor-
m the extreme minimum value problem to the non-dimensional
extreme maximum value problem by writing the process as:

X(t) =−Ld(t)/D (2)

In this case, the process X(t) < 0, and the risers clash when
X(t) = −1. Figure 3 compares the time history of X and Ld ,

Initial position       Static position     Dynamic position (time ��) 
 

current 
      + 
 waves �� 

�� 

����(��) 

current 

FIGURE 2. DEFINATION OF THE RELATIVE DISTANCE, L0, Ls

and Ld .
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FIGURE 3. TIME SERIES OF THE PROCESS X and Ld .

with the concerning maximum and minimum values, i.e. Xm and
Ld,min.

EXTREME VALUE ANALYSIS
This section introduces four existing methods evaluating the

extreme value distribution of a stochastic process during the time
duration T.

For classical extreme value theory, it is assumed that the se-
quence of maxima Xmi is independent and identically distributed
with common distribution function FXm(x). The extreme value
of a finite number is then Xe = max{Xm1,Xm2, ...,Xmn}. The dis-
tribution of Xe can be derived as:

FXe(x) = Prob{Xe ≤ x}= [FXm(x)]n (3)
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FIGURE 4. GUMBEL PROBABILITY PAPER.

This equation will normally converge towards one of three
possible asymptotic extreme value distributions as n→∞. In the
present study, the Gumbel distribution function will be adopted
due to the behaviour of the upper tail of the distribution of the
maxima.

Gumbel Probability Method
The Gumbel probability paper method is a simple and effi-

cient method to determine the distribution parameters. The cu-
mulative distribution function is given by:

FXe(x) = exp{−exp(−α(x−u))} (4)

where α and µ are the scale and location parameters, respective-
ly. By taking the logarithm of both left and right hand side of this
equation twice, the following equation is obtained:

− ln[− ln(FXe(x))] = α(x−u) (5)

Further, by introducing y = − ln[− ln(FXe(x))] a linear function
y = α(x−u) is obtained, which implies that in a x-y axis system,
the cumulative distribution becomes a straight line. The param-
eters α and µ can be estimated by the least-square fitting of the
samples to the straight line.

The fitted straight line and the extreme samples identified
from the 50 three-hour simulations with different random seed-
s for generating time series of wave are plotted in Fig. 4. The
shape and location parameters are α = 1.03 and µ =−5.72, re-
spectively.

The Gumbel method requires a large set of simulated time
series samples in order to estimate the distribution with accept-
able accuracy. Only the largest maxima will be used for the es-
timation. In order to use more information from the time series
samples, some other estimations of the extreme values based on
the time series sample or based on the individual maxima will be
introduced in the following sections.

Weibull Based Method
The Weibull based method for extreme value estimation is

based on the assumption that, if the local maxima follows a three
parameters Weibull distribution, the extreme response will fol-
low a Gumbel extreme value distribution. The Gumbel parame-
ters α and µ can be expressed in term of the Weibull parameters
as following [8]:

µ +
γ

α
= a+b

{
(lnn)

1
c +

0.57722
a

(lnn)
1−c

c

}
α =

c
b
(lnn)

1−c
c

(6)

where γ is the Euler’s constant; n is the number of maxima for a
given time duration; u, β and λ are the location, scale and shape
parameters of the Weibull distribution function, respectively. The
three parameters Weibull function is given as:

FXmax(x) = 1− exp

{
−
(

x−u
β

)λ
}

(7)

The constants u, β and λ can be determined by applying moment
estimator according to Farnes and Moan [9] based on experience.
The detail of the moment estimator can found in Appendix A.
It is also recommended that only the global maxima, i.e. the
largest maxima between zero up-crossings should be used for
calculation of the sample statistical moments in order to obtain
optimal results.

Since the aim of the fitting is to obtain a Weibull model to
be used for estimation of extremes, it is more important that the
fitting procedure gives a good fit to the upper tail of the sam-
ple maxima distributions. Therefore, a threshold is necessary in
order to avoid including small maxima. Choosing of the thresh-
old is empirical, and in this paper, the following values E(x)+η

are used as the threshold levels, where E(x) the expected value;
η = [0,0.5σ ,σ ,1.2σ ,1.4σ ] where σ is the standard deviation.

The global maxima over a threshold η = σ identified from
the time history sample and its 3-parameter Weibull density func-
tion are presented in Fig. 5. The effect of the thresholds on the
fitting result is shown in Fig. 6. The Largest maxima identified
from each simulations are plotted in the same figure. It appears

4 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 03/05/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Time(s)
0 2000 4000 6000 8000 10000

R
an

do
m

 p
ro

ce
ss

 X

-25

-20

-15

-10

-5

X
m

-11 -10 -9 -8 -7 -6 -5 -4

P
ro

ba
bi

lit
y 

de
ns

ity
 p

df

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Histogram
Weibull dist.

FIGURE 5. GLOBAL MAXIMA WITH THRESHOLD η = σ

FOR A THREE-HOUR SIMULATION. TOP: TIME HISTORY AND
GLOBAL MAXIMA OVER THRESHOLD; BOTTOM: PROBABILI-
TY DENSITY FUNCTION

that the choice of threshold has a significant effect on the statis-
tics and the shape of the distribution. The lower threshold value,
i.e. η = 0 and η = 0.5σ , preserves the greatest number of max-
ima from the time series. However, the distribution is heavily
weighted to lower values of the maxima and the fitted distribu-
tion does not agree well for the upper tail data. As the threshold
value increases, the weight of the upper tail data becomes impor-
tant, but the amount of the data is reduced. Therefore, it is found
that η = σ gives a good agreement with the extreme data for the
present study, and will be adopted in the following calculation.
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FOR DIFFERENT THRESHOLDS. TOP: WEIBULL DISTRIBU-
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Average Conditional Exceedance Rate

Unlike the above mentioned methods based on the para-
metric distribution functions, the average conditional exceedance
rate (ACER) method estimates the exact extreme value distribu-
tion by constructing a sequence of non-parametric distribution
functions, i.e. the ACER functions. The principle and develop-
ment of the ACER functions are given in Refs. [10] and [11].

With the time series of the individual maxima, the extreme
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value can be expressed as:

Fxe(x)≈ Pk(x)≈ exp{−(N− k+1)ε̂(x)} (8)

where k is the order of the ACER function; Pk is the approxi-
mation of the extreme value distribution based on the k-th order
ACER function; ε̂(x) is the empirical ACER function of order
k, which can be determined by applying the existed time series.
As the order k increases, the accuracy of Eq. 8 improves, but the
amount of data for calculating ε̂(x) reduces.

In order to predict the extreme value distribution in the tail
region, an extrapolation scheme is applied. Specifically, in the
upper tail region (e.g. x≥ x0), the ACER functions behaves sim-
ilarly to exp{−a(x− b)c}, where a > 0, b ≤ x0 and c > 0 are
suitable constants.

The empirical ACER function is assumed to be in the form
of:

ε̂k(x) = qk exp{−ak(x−bk)
ck} ; x≤ x0 (9)

where ak, bk, ck and qk are suitable constants which dependent
on the order k. These parameters can be found by an optimized
fitting on the log scale. It should be noted that Eq. 9 is applicable
at the upper tail region, i.e., x ≥ x0, where x ≥ x0 is an appro-
priately chosen tail marker. By comparing the empirical ε̂k(x)
with different value of k, an appropriate value of k is selected to
capture the dependence structure of the time series.

These parameters can be determined by the following mean-
square-error function:

F(qk,ak,bk,ck) =
N

∑
i=1

ρ j| ln ε̂k(xi)− lnq+a(xi−b)c|2 (10)

where xi, i = 1, ...,n are levels at which the ACER functions have
been empirically estimated. The weight factor ρ j is given by the
relationship ρ j = (lnCI+(xi)− lnCI−(xi))

−2, where CI repre-
sents the 95% confidence interval, which can be approximately
expressed as:

CI±(xi) = ε̂k(xi){
1.96√

(N− k+1)ε̂k(xi)
} (11)

Therefore, it is seen in Eqs. 10 and 11, that the weight fac-
tor ρ j decreases as the level xi increases which implies that the
extrapolation scheme puts more emphasis on the more reliable
data points. Moreover, it should be noted that there is a level xi
beyond which the weight factor ρ j is no longer defined since the
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FIGURE 7. ESTIMATIONS OF ACER FUNCTION FOR k = 1...6

CI− estimated by Eq. 11 would be negative as the levels exceed
xi.

The empirical ACER functions, ε̂k(x) for different orders of
k and the corresponding estimated ACER function with k = 2 and
estimated confidence interval are plotted in Fig. 7. From the top
figure it appears that, for the lower range of the individual max-
ima, there is a noticeable variation of the empirical ACER func-
tions for different orders of k, which implies significant effect of
dependence between the data points. Nevertheless, these func-
tions coalesce in the tail region as k ≥ 2, which means that ε̂(x)
can be used for the extrapolation purpose. This is advantageous
since in the cases with k ≤ 2, the second order empirical ACER
function is the one most accurately estimated because more data
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are available for its estimation. The bottom figure presents the
ε̂2(x) and the 95% confidence interval obtained from the time se-
ries as well as the estimated curve in the upper tail region and
the corresponding estimated confidence interval provided by the
extrapolation scheme.

Moment Based Hermite Method
Moment-based Hermite Method provides a transforma-

tion between the non- Gaussian process and Gaussian process
through a memoryless monotonic translations, as given in Eq.

12, so that the cumulative distribution function of the extreme
value can be estimated based on the traditional Gaussian process:

FX (x∗) = Φ(z)

x∗ = g(z) = F−1
X [Φ(z)]

(12)

where x∗ = (x−mx)/σ is the non-Gaussian processes where mx
and σ are the mean and standard deviation of X ; Z is the standard
Gaussian process; FX and Φ(z) are CDFs of X∗(t) and Z(t); g(·)
is the translation function; F−1

X∗ is inverse function of FX∗ . The
extreme value distribution is then can be determined by applica-
tion of the extreme value theory of the Gaussian process, which
can be expressed as:

FXe(x)≈ exp{−ν
+(x)T} ≈ exp{−ν0T exp{[g−1(x∗)]2/2}}

(13)
where ν+(x) is the up-crossing rate at a threshold x; ν0 is the
zero up-crossing rate.

Winterstein [12] demonstrated that the translation function
can be expressed as the Hermite polynomials:

x∗ = g(z) = κ{z+
∞

∑
n=3

hnHen}

≈ κ{Z + h̄3(Z2−1)+ h̄4(Z3−3Z)+ ...}
(14)

where hn and κ are the shape and scale factors of the mod-
el,respectively; Hen(z) is the n-th Hermite polynomial function.
For n = 4 moments, the parameters can be expressed as:

h4 =

√
1+1.5(α4−3)−1

18

h3 =
α3

4+2
√

1+1.5(α4−3)

κ = 1/
√

1−2h2
3 +6h2

4

(15)

where α3 and α4 are the skewness and kurtosis of the process,
respectively. The inverse translation function is then given as:

z = g−1(x∗)

=

{√
ξ 2(x∗)+ c+ξ (x∗)

} 1
3
−
{√

ξ 2(x∗)+ c−ξ (x∗)
} 1

3
−a

(16)

where ξ (x∗) = 1.5b(a+x∗/κ)−a3; a = h3/3h4; b = 1/3h4; c =
(b−1−a2)3. It should be noted that the above Hermite model is
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only applicable for softening non-Gaussian processes, i.e., α4 ≤
3.

Figure 8 presents the PDFs of the initial process X∗ with
E(X∗) = 0 and σ(X∗) = 1 as well as the translated standard
Gaussian process Z. The distribution of the initial process is fit-
ted by the kernel sampling density function. However, this will
not be elaborated further here; see reference [13] for more detail-
s. The figure it is found that the standard Gaussian distribution
translated by the Hermite polynomials agrees well with the upper
tail values. However, it is not a good translation function for the
lower tail values.

COMPARISON OF THE RESULTS
The results obtained from the above methods are based on

one specific 3-hour simulation. In practice, due to the statistical
uncertainties which are inherent in the random response process,
repeated simulations are required in order to obtain a reliable
estimation of the extreme response. Therefore, the so-called av-
erage expected value is introduced in order to consider the un-
certainties. More specifically, for the Weibull based method, a
reasonable estimation is that the extreme response follows the
Gumbel distribution with the average expected value and the av-
erage standard deviation from each sample, given in Eq. 17:

E[xe] =
1
N

N

∑
i=1

(Ei[xe])

ST D[xe] = {
1

N−1

N

∑
i=1

(Ei[xe]−E[xe])}
1
2

(17)

Here N is the number of the time histories, and Ei[xe] is the
expected value of the simulation number i.

For the ACER method and moment based Hermite method,
a suitable estimation is to use the mean up-crossing rate for the
samples of the total time history, which is defined as:

ν̂
+
0 =

1
N ·T

N

∑
i=1

n+i (18)

where ni is the counted zero up-crossing number for simulation
number i.

The estimated extreme value distribution in terms of excee-
dence probability for the different methods is shown in Fig. 9.
The vertial dash line denotes the criterion of the collsion. Phys-
ically, the collision will occur when X ≥ −1. However, due to
the hydrodynamic interference, it is reasonable to believe that the
collision will take place when the riser clearance is smaller than
2D where the drag force becomes negative [14]. The collision
probabilities obtained by using both definitions of collision are
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TABLE 2. COLLISION PROBABILITY

Method
Probability of exceedance

D 2D

GUMBEL 6.40×10−3 1.78×10−2

WBM 1.52×10−3 6.46×10−3

ACER 1.35×10−3 5.71×10−3

MBH 1.06×10−4 3.92×10−4

summarized in Table 2. It is observed that the moment based
Hermite method is not a good estimation for the present extreme
distribution, as it fails to translate the highly skewed distribution
to a standard Gaussian distribution. The Weibull based method
and ACER method with the threshold value E(X)+σ cover most
of the extreme samples from each time histories, and give satis-
factory estimation of the collision probability. The Gumbel prob-
ability paper method, by contrast, give the most critical result
because all the largest maxima from each simulation are equally
weighted.

CONCLUSIONS
This paper evaluated the performance of different methods

for the short-term extreme value analysis for the riser collision.
A pair of tandem arrangement risers with steep-wave configura-
tion, which are subjected to combined current and wave loads,
are modelled. The Blevins wake model is used to calculate the
reduced drag force caused by the wake effect. The minimum
relative distance between the risers at each time step is com-
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puted. The random process is obtained by changing the sign of
the minimum distance in order to deal with the maxima extreme
value problem. The performance of the Gumbel probability pa-
per method, Weibull based method, ACER method and momen-
t based Hermite method are evaluated. Firstly, it appears that
the Gumbel probability paper method requires a large number of
simulations to achieve acceptable results. Secondly, the Weibull
based method is more practical when the data is limited. How-
ever, the selection of an appropriate threshold has a significant
effect on the estimation. Moreover, the results obtained by using
the ACER and Weibull based methods are quite similar, giving
satisfactory results. Lastly, the moment based Hermite method
does not give a good estimation, as it fails to translate the highly
skewed distribution to a standard Gaussian distribution.
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APPENDIX A
The moment of x are given by:

mx
n =

∫
∞

0
xn fX dx = bn

Γ(1+
n
c
) (19)

The moment of the sample are given by:

x̂n =
1
n

n

∑
i=1

x̂n
i (20)

where n is the number of the max. Then, the expected value,
variance and skewness can be found as following:

Expected value:

1
n

n

∑
i=1

x̂ = a+bΓ(1+
1
c
) (21)

Variance:

1
n

n

∑
i=1

(x̂−a)2 = b2
{

Γ

(
1+

2
c

)
−Γ

2
(

1+
1
c

)}
(22)

Skewness:

(
x̂3

x̂2

)
3/2

=
Γ(1+3/c)−3Γ(1+1/c) ·Γ(1+2/c)+2T 3(1+1/c))

{Γ(1+2/c)−Γ2(1+1/c)}
3
2

(23)

where Γ(·) is the gamma function. The distribution parameters
a, b and c can be obtained by solving the Eqs. 21 to 23.
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