
Privacy-Preserving Indexing of Iris-Codes with
Cancelable Bloom Filter-based Search Structures

P. Drozdowski∗†, S. Garg‡, C. Rathgeb∗, M. Gomez-Barrero∗, D. Chang‡ and C. Busch∗
∗ da/sec - Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany

† Norwegian Biometrics Laboratory, NTNU, Gjøvik, Norway
‡ Indraprastha Institute of Information Technology, New Delhi, India

{pawel.drozdowski,christian.rathgeb,marta.gomez-barrero,christoph.busch}@h-da.de
{surabhig,donghoon}@iiitd.ac.in

Abstract—Protecting the privacy of the enrolled subjects is
an important requirement expected from biometric systems. In
recent years, numerous template protection schemes have been
proposed, but so far none of them have been shown to be
suitable for indexing (workload reduction) in the computationally
expensive identification mode. This paper presents a, best to the
authors’ knowledge, first method in the scientific literature for
indexing protected iris templates. It is based on applying random
permutations to Iris-Code rows, and subsequent indexing using
Bloom filters and binary search trees. In a security evaluation,
the unlinkability, irreversibility and renewability of the method
are demonstrated quantitatively. The biometric performance and
workload reduction are assessed in an open-set identification
scenario on the IITD and CASIA-Iris-Thousand datasets. The
method exhibits high biometric performance and reduces the
required computational workload to less than 5% of the baseline
Iris-Code system.

I. INTRODUCTION

In recent years, interest in biometric systems have spiked
with many large-scale deployments (e.g. national databases
and border crossing control systems) appearing. Currently, the
largest such system is the Indian National ID system, into
which, at the time of this writing, 1.2 billion Indian residents
have been enrolled [1] with multi-biometric data and unique
identifier numbers. In the United Arab Emirates, the border
control agency employs an iris-based blacklist system, which
aims to prevent undesirable travellers (e.g. visa violators and
criminals) from re-entering the country [2].

Those and similar deployments have to operate in the
identification or duplicate-check modes. Due to the sheer size
of such systems, they are faced with strenuous requirements in
terms of biometric performance and computational workload.
The naı̈ve algorithm for such scenarios requires an exhaustive
(1:N) database search, i.e. comparing the probe against all
the references stored in the database. Notwithstanding the
use of efficient hardware and parallelism, with the growing
database sizes, the cost of executing such searches becomes
computationally prohibitive. Simultaneously, the probability of
false positives quickly becomes unacceptable. In [3], Daugman
shows the probability of at least one false positive (PN )
occurring in a identification scenario to be: PN = 1−(1−P1)N ,
where N is the number of enrolled subjects and P1 the
false positive probability of a one-to-one template comparison.

For this reason, research has been conducted into biometric
workload reduction, whereby the exhaustive search is replaced
with more advanced techniques. Those techniques often take
advantage of the underlying biometric template data represen-
tation, thus facilitating efficient search strategies; for example
through indexing or serial combination of algorithms. The
aim thereof is to vastly reduce the necessary number of
template comparisons per lookup, while maintaining or only
insignificantly reducing the biometric performance achieved
by the baseline, exhaustive algorithm. A biometric system
in an open-set identification mode (i.e. without an identity
claim) can be generalised to the classic nearest-neighbour
search (NNS) problem. However, additional non-trivial chal-
lenges arise due to high dimensionality, as well as intra-
class variation of the biometric data, which means that the
biometric templates extracted from the reference and probe
samples belonging to the same subject may be very similar,
but (almost) never identical. Consequently, typical workload
reduction approaches such as indexing need to be adapted to
account for the challenging properties of the biometric data
(see e.g. [4], [5], [6], [7], and [8] for a more comprehensive
survey). Other approaches used in (iris) biometric systems
include: cascading algorithms, whereby a computationally
efficient (albeit less accurate) method first computes a shortlist
of candidate identities, which is then searched exhaustively
by a slower and more accurate comparator (see e.g. [9],
[10], [11]); and classification, whereby the database is split
into buckets containing certain template classes (e.g. based
on gender, eye colour, some statistical properties etc.), with
the exhaustive search only being performed inside the bucket
corresponding to the probe (see e.g. [12], [13], [14]).

In addition to the aforementioned need for workload re-
duction, potential of data exposure is a large concern in
biometric system deployments, where the stored data is, in
most cases, secured using traditional encryption algorithms
[15]. Once compromised, this can lead to serious problems
such as identity theft, cross-matching without consent and
severely limited renewability. Furthermore, centralised storage
of sensitive personal and biometric data has been increasingly
receiving attention from the general public and various non-
governmental organisations, thus leading to widened legisla-



Fig. 1. An overview of the proposed system.

tion against privacy violations (e.g. GDPR in Europe [16]).
Those matters have led to research into biometric template
protection (see e.g. [17] and [18] for comprehensive surveys),
with the aim of developing protection schemes especially
dedicated for biometric data. Such systems must guarantee the
properties stipulated by ISO/IEC IS 24745:2011 [19]:

Unlinkability It should be infeasible to determine whether or
not two or more protected templates were derived from
the same instance. This property prevents cross-matching
across different databases.

Irreversibility Given a protected template and its correspond-
ing secret, it should be infeasible to reconstruct the orig-
inal biometric data. This property increases the security
of the system against presentation and replay attacks.

Renewability It should be possible to issue new and revoke
old protected templates from the same biometric instance
and/or sample. This property ensures that in case of the
biometric database being compromised, the data can be
revoked and reissued, thereby preventing misuse.

Performance preservation The biometric performance is not
significantly degraded by the template protection scheme.

With the aforementioned issues as motivation, this paper
presents a, best to the authors’ knowledge, first method in the
scientific literature for indexing of protected iris templates.
The method is based on Bloom filters and search trees (see
[20] and [21]), which were previously shown to exhibit high
workload reduction at an insignificant degradation to biometric
performance, as well as scalability for an arbitrary number of
enrollees. In this paper, said approach is extended by adapting
ideas from [22] to accommodate cancelable iris templates
which fulfil the aforestated properties and are suitable for
indexing.

The remainder of this paper is organised as follows: in
section II, a method for privacy-preserving indexing of iris data
is proposed. Section III presents the experiments and results,
while section IV contains a summary and concluding remarks.

II. PRIVACY-PRESERVING INDEXING OF IRIS-CODES

In this section, the key components of the proposed system
are presented. Subsection II-A describes a row-based permu-
tation of Iris-Codes, while their transformation to a Bloom
filter-based representation, as well as indexing and retrieval
are outlined in subsection II-B. Figure 1 shows a schematic
overview of the proposed system.

A. Row-based Permutation

To dissipate the statistical composition of the Iris-Code, a
two-step feature rearrangement adapted from [22] is applied:

1) The Iris-Code is split into a small number of parts
(ICparts). The aim is to minimise the potential negative
impact of the template protection on the biometric per-
formance by preserving more spatial information. Several
alternatives have been explored, namely: a) 2 parts – the
real and imaginary response of the feature extractor; b) 4
or 8 parts – a further subdivision of each response into 2
or 4 parts, respectively.

2) A different row-based permutation is applied to each
of the parts, which, as will be shown later (section
III), makes inversion attacks infeasible (even under the
full-disclosure attacker model, where the attacker is in
possession of the permutation key). Potential loss of
discriminative power due to the permutation is (mostly)
avoided, since the horizontal neighbourhoods within rows
persist. Note, that a column-wise permutation would
not have had the desirable effect, due to the nature of
Bloom filter-based Iris-Code representation explained in
subsection II-B.

B. Indexing and Retrieval

Following the permutation of the Iris-Codes, the enrolled
templates are organised into tree-based search structures fol-
lowing the methods of [20] and [21] described below.

1) The Iris-Codes are evenly split into j equally sized blocks
of adjustable height and width (H ×W). Subsequently, a
simple transformation function is applied to the blocks
column-wise, whereby each column (a binary string), is
mapped to its corresponding decimal value.

2) For each block, an empty (i.e. all bits set to 0) Bloom filter
(b) of length 2H is created and the indices corresponding
to the decimal column values are set to 1.

3) Hence, the resulting template (B) is a sequence of j such
Bloom filters - [b1, . . . , bj].

4) The dissimilarity (DS) between two Bloom filter-based
templates (denoted B and B′) can be efficiently computed
(utilising intrinsic CPU operations and trivially parallelis-
able), as shown in the equation below, where | · | represents
the population count, i.e. Hamming weight.

DS(B,B′) = 1
j

j∑
i=1

��bi ⊕ b′i
��

|bi | +
��b′i ��



The Bloom filter-based templates are, to a certain degree,
rotation-invariant, which means that contrary to the Iris-Codes,
no alignment compensation is needed during the template
comparison stage. Furthermore, the data representation is
sparse, which is a crucial property for the indexing step
described below. The representation sparseness is guaranteed,
since for each Bloom filter of length 2H , at most W (in practice
fewer – due to the bit correlations in the Iris-Codes) indices
are activated, and for the considered system configurations
W � 2H .

1) The list of N enrolled templates is (approximately evenly)
split and assigned to T trees. This step is needed (for any
sizeable N values) to maintain the sparseness of the data
representation.

2) Each node of a tree (containing M = N
T templates) is con-

structed through a union of templates, which corresponds
to the binary OR applied to the individual Bloom filters
in the sequence. The tree root is constructed from all
templates assigned to the respective trees (i.e.

⋃M
m=1 Bm),

while the children at subsequent levels are created each
from half of the templates from their parent node (e.g. at
first level – the children of the root node –

⋃ M
2
m=1 Bm and⋃M

m=M
2 +1 Bm).

3) The templates (B1, . . . ,BM ) are inserted as tree leaves.
After constructing the trees, the retrieval can be performed

as shown below.
1) A small number of the most promising trees (t) out of T

constructed trees can be pre-selected (denoted t⁄T) based
on comparison scores between the probe and root nodes.

2) The chosen trees are successively checked until the first
candidate identity is found or all the pre-selected trees
have been visited. Note, that for the genuine transactions,
thanks to the pre-selection step, the trees most likely to
contain the sought identity are visited first.
A tree is traversed by, at each level, computing the
comparison score between its nodes and the probe, and
choosing the path with the best score. Once a leaf is
reached, a final comparison takes place. The idea is based
on the representation sparseness: as long as, at each level,
the relation DSgenuine � DSimpostor generally holds true,
the genuine probes will be able to traverse the tree using
the correct path to reach a matching leaf template. Note,
that the row-based permutation (subsection II-A) does
not, in any way, impair the representation sparseness,
since the average number of activated indices remains
identical for the Bloom filters produced from permuted
and unpermuted Iris-Codes.

The complexity of a single lookup is O(T + t ∗ (2 ∗ log M)).
As it is sufficient to pre-select only a small fraction of the
constructed trees, i.e. t � T , the lookup workload remains
low, while arbitrarily many enrollees can be accommodated.
For reference, figure 2 shows the indexing and retrieval in
a single tree. If multiple trees are constructed, the search is
trivially parallelisable by simultaneously traversing many trees
at once.
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Fig. 2. Indexing and retrieval in the Bloom filter-based system. In this case, the
retrieval follows the bold arrow path down to a leaf, where the final decision
is made.

III. EXPERIMENTS

This section presents experiments performed to assess the
proposed system. The experimental setup is outlined in sub-
section III-A, while the performance and privacy evaluations
are presented in subsection III-B.

A. Experimental Setup

Two publicly available datasets of near-infrared iris images
were chosen for the experiments: IITDv1 [23] and CASIA-
IrisV4-Thousand [24] (henceforth referred to as ”IITD” and
”CASIA”, respectively). They contain 1120 and 20000 images
from 224 and 1000 subjects, respectively. Example images
from the datasets are shown in figure 3.

(a) IITD

(b) CASIA

Fig. 3. Example images from the chosen datasets.

The raw images were processed with the commonly used
methods using open-source libraries: OSIRIS [25] and USIT
[26]. After segmentation, where the iris and pupil boundaries
are located, the iris textures were normalised according to
the rubbersheet model [27] and subsequently enhanced by
applying Contrast Limited Adaptive Histogram Equalization
(CLAHE). Features were extracted with the Daugman-like 1D-
LogGabor algorithm (LG), generating 512×20 bits Iris-Codes.
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Fig. 4. DET curves for the proposed system. The faint colours around the curves represent the 95% confidence interval, while the black line represents the
baseline (with EER of 0.66) – an Iris-Code system performing an exhaustive search and using ±4 bit-shifts for sample alignment compensation.

For the experiments, 256 references (from the IITD dataset –
left and right eye instances are mutually independent and thus
treated as separate subjects) were enrolled. The entire CASIA
dataset together with the remainder of the IITD data are used
to supply an ample number of impostor comparison trials.
To make the evaluation more robust, 50 random permutations
are generated and used throughout the experiments. In other
words, the performance evaluation for each system configura-
tion is repeated 50 times with the different permutations of the
Iris-Code templates.

Following metrics were used for evaluation of the various
aspects of the proposed system:
Biometric performance: ISO/IEC IS 19795-1:2006 [28]

metrics are used.
• The false positive and false negative identification rates

plotted as detection error trade-off (DET) curves.
• The equal-error-rate (EER).

Workload: metrics from ISO/IEC IS 19795-1:2006 [28], and
proposed in [21] is used.
• The penetration rate (p).
• The required number of bit comparisons per identifi-

cation transaction expressed as a fraction (z) of the
number of required Iris-Code baseline bit comparisons.

Template protection: metrics introduced in [29] are adopted.
• Unlinkability: the overall measure of the linkability of

a given biometric template protection system (Dsys
↔ ).

It is computed in terms of the probabilities of having
a mated or non-mated comparison for each possible
linkage score between templates enrolled in different
applications. It yields values in the closed range [0, 1],
and reports a decreasing degree of unlinkability (i.e.
increasing degree of linkability).

• Irreversibility: the success probability (Pguess) of guess-
ing an original biometric template given a protected
template under full-disclosure attacker model (i.e. the
used permutation sequence is known to the attacker).

• Renewability: the number of possible permutation se-
quences, |K | (i.e. the size of the key space).

B. Performance Evaluation and Protection Analysis

Figure 4 shows DET curves (with axes using a standard
deviate scale [30]) for some of the best performing system
configurations. Plots for each ICparts ∈ {2, 4, 8} show the three
best configurations in terms of biometric performance and
three best configurations in terms of workload reduction. The
proposed protected indexing system exhibits high biometric
performance, albeit naturally suffering a relatively small loss
from the baseline Iris-Code based system. It can also be
observed, that splitting the Iris-Code into more groups than just
the real and imaginary parts prior to applying the permutation,
is beneficial for the biometric performance. This is due to
the fact that by splitting the Iris-Code into more parts, the
potential for information loss due to permutation is decreased
by preserving more spatial information. The plotted confidence
intervals show that the biometric performance of the proposed
system is stable across different permutations (in other words,
changing the applied random permutation does not adversely
affect the biometric performance of the system).

In table I, the workload and security parameters of the
proposed system (for the configurations plotted in figure 4)
are listed. A significant workload reduction is noticeable – the
proposed system only requires between 1% and 10% of the
workload incurred by the baseline system. This is achieved
partly by decreasing the penetration rate as can be seen in
the table, and partly by reducing the size of the biometric
templates in terms of number of bits. Table I also shows the
unlinkability, irreversibility and renewability of the proposed
system1. It can be readily seen, that the keyspace (|K |) for
the proposed system is huge, thereby ensuring renewability
and contributing to the infeasibility of reversing the protected
templates (Pguess), which is further enhanced by the nature

1In calculations, the average number of activated bits in the Bloom filters
must be rounded to the nearest integer, thus in some cases the resulting Pguess
may be equal for different H values (particularly when H = 8 or H =
10). Furthermore, since the full-disclosure attacker model is used, the further
effort of reversing the row-wise permutation (which would have been differ
depending on H values) is not included in Pguess, since the attacker is assumed
to be in possession of the used permutation sequences.



of the Bloom filter based representation (some loss of local
information). Lastly, the measure of global unlinkability (Dsys

↔ )
for the tree leaves puts the proposed system (depending on the
configuration) in close to fully unlinkable and semi-unlinkable
region (as defined in [29]). Thus, for appropriate configuration
selection, the security goals of a cancelable template protection
scheme are accomplished.

TABLE I
RESULTS

ICparts H W t⁄T EER p z Dsys
↔ Pguess |K |

2

8 8
8⁄8 1.96 0.31 0.063 0.32 2−960 210097
4⁄8 2.15 0.19 0.038 0.29

16 8⁄8 3.01 0.31 0.063 0.45 2−1472 24414

10 8
8⁄8 2.11 0.31 0.063 0.09 2−960 210097
4⁄8 2.71 0.19 0.038 0.10

16 8⁄8 2.84 0.31 0.063 0.19 2−1536 24414

4

8 8 8⁄8 1.46 0.31 0.063 0.31

2−960
22019510 8

8⁄8 1.55 0.31 0.063 0.10
4⁄8 1.92 0.19 0.038 0.10
2⁄8 2.04 0.11 0.022 0.09
1⁄8 2.97 0.07 0.014 0.09

12 8 2⁄8 2.87 0.11 0.022 0.07 2−1080

8

8 8 8⁄8 1.12 0.31 0.063 0.31

2−960 240390

10 8
8⁄8 0.92 0.31 0.063 0.11
4⁄8 1.15 0.19 0.038 0.09
1⁄8 2.51 0.07 0.014 0.09

16 2⁄8 2.36 0.11 0.022 0.16 2−1536 217655

12 8 2⁄8 1.99 0.11 0.022 0.06 2−1080 240390

IV. SUMMARY

In this paper, an approach for indexing cancelable iris
templates has been proposed. The approach is based on a row-
wise permutation of the Iris-Code rows and indexing them
in Bloom filter-based tree structures. The experiments show
that the proposed system fulfils the pre-requisites stipulated
by ISO/IEC IS 24745:2011 for biometric template protection
schemes (unlinkability, irreversibility, renewability and biomet-
ric performance), and additionally vastly reduces the workload
associated with identification scenario – to less than 5% of the
baseline system.
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