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Abstract
Let R be a connected selfinjective Artin algebra. We prove that any almost split
sequence ending at an Ω-perfect R-module of finite complexity has at most four
non-projective summands in a chosen decomposition of the middle term into in-
decomposable modules. Moreover, we show that a chosen decomposition into
indecomposable modules of the middle term of an almost split sequence ending at
an R-module of complexity 1 lying in a regular component of the Auslander-Reiten
quiver has at most two summands. Furthermore, we prove that the regular compo-
nent is of type ZA∞ or ZA∞/〈τn〉. We use this to study modules with eventually
constant and eventually periodic Betti numbers.
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Chapter 1

Introduction

The results presented in this thesis are mainly inspired by the work of Edward L.
Green and Dan Zacharia in [6] and [7]. We let R be a connected selfinjective Artin
algebra and we investigate both almost split sequences ending at an Ω-perfect R-
module of finite complexity and regular components containing an R-module of
complexity 1. Throughout the entire thesis we assume R is connected even though
it is not always pointed out.

In Chapter 2 we present the necessary preliminaries. The definitions and results
here are mostly basic knowledge. We have chosen to divide this chapter in three
subchapters where the first presents general notation and almost split sequences.
In the second subchapter we look at Auslander-Reiten quivers, before we in the
third and last subchapter explore properties of selfinjective Artin algebras.

Chapter 3 is divided in two subchapters. In Subchapter 3.1 we present Betti
numbers and in Subchapter 3.2 we investigate complexity.

So called Ω-perfect modules are the main object of study in Chapter 4. Such
modules are defined in both [6] and [7], but slightly different. To give a uniform
presentation of the work we have chosen the definition in [7] and modified the
proofs in [6] so they correspond to the definition we use. Again, we have chosen to
divide the chapter in two subchapters, where we investigate respectively Ω-perfect
modules and eventually Ω-perfect modules.

We end our work in Chapter 5. Here, we present the main results of this the-
sis. It is divided in three subchapters, Subchapter 5.1, 5.2 and 5.3. In the first
subchapter we explore almost split sequences ending at Ω-perfect R-modules of fi-
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nite complexity. The second subchapter revolves around complexity 1. It is again
divided in two sections. In the first of these sections, Section 5.2.1, we look at the
structure of a regular component of the Auslander-Reiten quiver of an selfinjective
Artin algebra containing a module of complexity 1. In the latter part, Section
5.2.2, we use this knowledge to further investigate different properties of regular
components containing modules with eventually constant and eventually periodic
Betti numbers. In Subchapter 5.3 we present some closing remarks.

To avoid writing a textbook in abstract algebra we assume that the reader is
familiar with concepts and results from the following courses taught at NTNU:
MA3201 Rings and modules, MA3203 Ring theory and MA3204 Homological al-
gebra.



Chapter 2

Preliminaries

In this chapter we introduce notation and results that is used in the later chapters.
With few exceptions, the reader is referred to other literature for proofs. What is
presented here is in some cases used without reference later in the thesis, as a result
of it being mostly basic knowledge. This chapter is divided in three subchapters
where the first introduces some definitions and results concerning Artin algebras.
In the second subchapter we investigate Auslander-Reiten quivers of Artin alge-
bras before we explore the special type of Artin algebras called selfinjective Artin
algebras in the last subchapter.

2.1 General notation and almost split sequences

In the entire thesis we let R be an Artin algebra over a commutative Artin ring k.
That is, R is a ring and we have a ring morphism φ : k−→R where Imφ ⊆ Z(R)
and R is finitely generated as a k-module. Here, Z(R) is the centre of R. Further-
more, we assume R is a connected algebra. That is, R is not a direct product of
two algebras. We let modR be the category of finitely generated left R-modules.
All modules in this thesis is of such kind if not stated otherwise. That is, when-
ever we say that M is an R-module, what we actually mean is that it is a finitely
generated left R-module. Moreover, modRop is the category of finitely gener-
ated right R-modules. We let modR be the category modR modulo projectives.
That is, the objects are the objects in modR. Furthermore, if M and N are
in modR, the morphisms from M to N in modR are HomR(M,N)/P(M,N),
where P(M,N) is the morphisms from M to N that factors through a projective
R-module. This set of morphisms is denoted HomR(M,N). Similarily, modR is
the category modR modulo injectives. That is, the objects are the objects in
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modR. Further, ifM and N are in modR, the morphisms fromM to N in modR
are HomR(M,N)/I (M,N), where I (M,N) is the morphisms from M to N that
factors through an injective R-module, denoted HomR(M,N). In the last sub-
chapter of this chapter we present a useful equivalence between modR and itself
called the syzygy functor when we assume that R is so called selfinjective. This
assumption also gives us an important isomorphism between functors from modR
to modR which is introduced later.

Before presenting some important definitions and results we look at some notation
that is used in later chapters. If A is a finitely generated R-module we denote the
projective cover of A by P (A)−→A. Further, if f is a map from A to B we let
f̄ be the map from A/JA to B/JB where a + JA maps to f(a) + JB. Here, J
denotes the Jacobson radical of R. It is easy to show that this is a well-defined
map. Moreover N denotes the positive integers 1, 2, 3, ..., also known as the natural
numbers. Note that 0 /∈ N.

We now introduce two functors that prove important in this thesis. First, we
have HomR(−, R) from modR to modRop. We denote this functor by (−)∗ and
have the following result.

Proposition 2.1.1. [4, Proposition II.4.3] The functor (−)∗ |P(R) : P(R)−→P(Rop)
is a duality, where P(R) is the category of finitely generated projective R-modules.

Further, we define the second functor. By assumption, k is a commutative
Artin ring, that is, it has only a finite number of non-isomorphic simple modules
S1, S2, . . . , Sn. We let I(Si) be the injective envelope of Si and let I = ⊕ni=1I(Si).
We then have a contravariant k-functor D = Homk(−, I) : mod k−→mod k that is
a duality. This functor induces a contravariant k-functor from modR to modRop.
Moreover, we have the following result.

Proposition 2.1.2. [4, Theorem II.3.3] If R is an Artin k-algebra, then the con-
travariant k-functor D = Homk(−, I) : modR−→modRop is a duality.

We now consider M in modR and let

P1 P0 M 0
f

be the minimal projective presentation of M . We apply the functor (−)∗ to the
morphism f and get f ∗:
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P ∗0 P ∗1
f∗

We then denote the cokernel of f ∗ in modRop by TrM , and call it the transpose of M.
We have the following result.

Proposition 2.1.3. [4, Proposition IV.1.7] Let M be in modR. Then TrM = (0)
if and only if M is projective.

The transpose Tr does not induce a duality from modR to modRop as we might
have hoped (in general there is not even a functor from modR to modRop that
sends an object M to TrM), but some work will give us the following result.

Proposition 2.1.4. [4, Chapter IV.1] The functor Tr: modR−→modRop is a
duality.

Further investigations give us the following important theorem.

Proposition 2.1.5. [4, Proposition IV.1.9]

(a) The duality D : modR−→modRop induces a duality D : modR−→modRop.

(b) The composition DTr: modR−→modR is an equivalence of categories with
inverse equivalence TrD : modR−→modR.

For simplicity, in some cases we denote DTr with τ and TrD with τ−1.

Irreducible morphisms play an important part of this thesis. They are defined
as follows. A morphism f : M−→N in modR is called irreducible if f is neither
a split monomorphism or a split epimorphism, and if f = st for some t : M−→X
and s : X−→N , then t is a split monomorphism or s is a split epimorphism.

M

X

N
f

t s

The result below is used without reference in later proofs.

Proposition 2.1.6. [4, Lemma V.5.1] If f : M−→N is an irreducible morphism
in modR, then f is either a monomorphism or an epimorphism.

Remark. Recall that if f : M−→N is an irreducible epimorphism, then `(M) >
`(N). We cannot have equality since this would give us an epimorphism between
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modules of equal length, that is, an isomorphism. This contradicts the assumption
that f is irreducible and therefore not split. Similarily, if f is an irreducible
monomorphism, then `(M) < `(N).

We now present the connection between irreducible morphisms and a special type
of exact sequences called almost split sequences. To do this, we first define minimal
right (left) almost split morphisms. A morphism g : B−→C is called right minimal
if every morphism g′ : B−→B such that the following diagram commutes

B
C

B

g

g′

g

is an automorphism. Similarily, we call f : A−→B a left minimal morphism if
every morphism f ′ : B−→B such that the following diagram commutes

B
A

B

f

f

f ′

is an automorphism.

Moreover, a morphism g : B−→C is called right almost split if it is (a) not a split
epimorphism and (b) any morphism X−→C which is not a split epimorphism
factors through g. Dually, a morphism f : A−→B is called left almost split if it is
(a) not a split monomorphism and (b) any morphism A−→Y that is not a split
monomorphism factors through f .

Naturally, a map that is both right (left) minimal and right (left) almost split
is called a minimal right (left) almost split morphism. We now present a con-
nection between the irreducible morphisms and minimal right (left) almost split
morphisms.

Proposition 2.1.7. [4, Theorem V.5.3]

(a) Let C be an indecomposable module. Then a morphism g′ : B′−→C is ir-
reducible if and only if there exists a morphism g′′ : B′′−→C such that the
induced morphism (g′, g′′) : B′⊕B′′−→C is a minimal right almost split mor-
phism.

(b) Let A be an indecomposable module. Then a morphism f ′ : A−→B′ is irre-
ducible if and only if there exists some morphism f ′′ : A−→B′′ such that the
induced morphism

(
f ′

f ′′

)
: A−→B′ ⊕ B′′ is a minimal left almost split mor-

phism.
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We now define almost split sequences. An exact sequence

0 A B C 0
f g

is called an almost split sequence given that f is left almost split and g is right
almost split. The next proposition gives us further knowledge about the structure
of almost split sequences.

Proposition 2.1.8. [4, Proposition V.1.14] The following are equivalent for an
exact sequence

0 A B C 0
f g

(a) The sequence is an almost split sequence.

(b) The morphism g is minimal right almost split.

(c) The morphism f is minimal left almost split.

(d) The module A is indecomposable and g is right almost split.

(e) The module C is indecomposable and f is left almost split.

(f) The module C is isomorphic to TrDA and f is left almost split.

(g) The module A is isomorphic to DTrC and g is right almost split.

We have the following existence theorem for almost split sequences.

Theorem 2.1.9. [4, Theorem V.1.15]

(a) If C is an indecomposable non-projective module, then there is an almost
split sequence

0 A B C 0.
f g

(b) If A is an indecomposable non-injective module, then there is an almost split
sequence

0 A B C 0.
f g
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Further, the almost split sequences are unique in the following sense.

Theorem 2.1.10. [4, Theorem V.1.16] The following are equivalent for two almost
split sequences

0 A B C 0
f g

and

0 A′ B′ C ′ 0.
f ′ g′

(a) C ∼= C ′

(b) A ∼= A′

(c) The sequences are isomorphic in the sense that there is a commutative dia-
gram

0 A′ B′ C ′ 0

0 A B C 0

f ′ g′

f g

∼= ∼= ∼=

with the vertical morphisms isomorphisms.

Before we present the next result we need to introduce some new notation. For a
fixed R-module C we let modR/C be a category with objects the R-morphisms
f : B−→C. Further, a morphism g : f−→f ′ from f : B−→C to f ′ : B′−→C in the
category is an R-morphism g : B−→B′ such that the following diagram commutes.

B
C

B′

f

g

f
′

Similarily, for a fixed R-module A, the category modR\A has objects the R-
morphisms f : A−→B. A morphism g : f−→f ′ from f : A−→B to f ′ : A−→B′ in
the category is an R-morphism g : B−→B′ such that the diagram below commutes.

B
A

B′

f

f ′

g
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Proposition 2.1.11. [4, Corollary V.1.17] We have the following for an Artin
algebra R.

(a) For each indecomposable R-module C there is a unique, up to isomorphism
in modR/C, minimal right almost split morphism f : B−→C.

(b) For each indecomposable R-module A there is a unique, up to isomorphism
in modR\A, minimal left almost split morphism g : A−→E.

Combining the previous results we get that if g′ : B′−→C is an irreducible mor-
phism ending at an indecomposable non-projective module C, and

0 A B C 0
f g

is an almost split sequence ending at C (which we know exists and is unique in the
manner described above), then g′ is a summand of g up to isomorphism. Further,
if g′ : B′−→C is a summand of g : B−→C in the almost split sequence above, then
g′ is irreducible. Similarily, if f ′ : A−→B′ is an irreducible morphism where A is an
indecomposable non-injective module and the sequence above is the almost split
sequence starting at A, then f ′ is a summand of f up to isomorphism. Moreover,
if f ′ : A−→B′ is a summand of f : A−→B in the almost split sequence above, then
f ′ is irreducible. Later in the thesis we dicard writing "up to isomorphism", but
whenever we say that f ′ is a summand of f it is this we mean.

In Subchapter 2.3 our main object of study is so called selfinjective Artin al-
gebras. It turns out that R being selfinjective Artin implies that the projective
and injective modules coincide. Therefore, it is of special interest to study the al-
most split sequences containing a projective-injective summand in the middle term.

Proposition 2.1.12. [4, Proposition V.5.5] Let

δ : 0 A B C 0
f g

be an almost split sequence. If B has an indecomposable projective-injective sum-
mand P , then `(P ) ≥ 2 and δ is isomorphic to the sequence

ε : 0 JP P ⊕ JP/S P/S 0
(−i,p)T (q,j)

where J is the Jacobson radical and S is the socle of P . Further, i : JP−→P and
j : JP/S−→P/S are the natural inclusion morphisms and p : JP−→JP/S and
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q : P−→P/S are the natural quotient morphisms.

We end this subchapter with a notation that is used in later chapters. Let C
be an indecomposable non-projective R-module. We then denote the number of
indecomposable non-projective summands in a chosen decomposition (into inde-
composable modules) of the middle term of an almost split sequence ending at C
by α(C).
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2.2 Auslander-Reiten quivers

In this subchapter we define Auslander-Reiten quivers of Artin algebras. The def-
initions and results in this part of the thesis can be found in [4], [2] and [9], if not
specified otherwise.

Let R be a connected Artin algebra. We now want to define the Auslander-Reiten
quiver ΓR of R. First, we define indR, a full subcategory of modR whose objects
consist of chosen representatives from isomorphism classes of indecomposable mod-
ules in modR. We let ΓR be the quiver with vertices in one to one correspondence
with the objects of indR, denoted [M ] for M in indR. Further, if [M ] and [N ]
are vertices in ΓR we have an arrow [M ]−→[N ] if and only if there exists an ir-
reducible map M−→N . The arrow has valuation (aM,N , a

′
M,N) when we have a

minimal right almost split morphism

MaM,N ⊕X−→N

where M is not a summand of X, and a minimal left almost split morphism

M−→Na′M,N ⊕ Y

where N is not a summand of Y .

Remark. We have here chosen the definition from [4]. In [9], aM,N and a′M,N are
defined oppsite of what is done here.

The vertices corresponding to indecomposable projective modules are called projec-
tive vertices and the vertices corresponding to indecomposable injective modules
are called injective vertices . Moreover, an indecomposable module M is called
preprojective if (DTr)nM = (0) for some n ∈ N. The vertices corresponding to
such modules are called preprojective vertices . Similarily, a module N is said to
be preinjective if there exists an n ∈ N such that (TrD)nN = (0), and vertices
corresponding to these modules are called preinjective vertices . Further, modules
that are neither preprojective or preinjective are called regular modules , and the
corresponding vertices are called regular vertices . Moreover, DTr defines a bijec-
tion from the indecomposable non-projective modules to the indecomposable non-
injective modules with invers TrD. As mentioned earlier, we denote DTr with τ
and TrD with τ−1. Further, τ then induces a map from the non-projective vertices
to the non-injective vertices. For simplicity, we also denote this map by τ . That is,
for all indecomposable non-projective modules X we have that τ [X] = [τX] and
for all indecomposable non-injective modules Y we have that τ−1[Y ] = [τ−1Y ].
We then say that τ is the translation of the quiver ΓR. Now, the valued quiver ΓR
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together with the translation τ is called the Auslander-Reiten quiver of R.

Remark. We note that ΓR cannot have any loops. If it did, we would have
an irreducible morphism from a module, say M , to itself. That is, we have an
epimorphism or a monomorphism from M to M . Since `(M) < ∞ this would
imply the morphism being an automorphism, a contradiction to it being irreducible
and therefore not split.

We now further explore the valuation of ΓR. Assume N is a non-projective
indecomposable R-module. Let [M ]−→[N ] be an arrow in ΓR with valuation
(aM,N , a

′
M,N) and further let [τN ]−→[M ] be the corresponding arrow with valua-

tion (aτN,M , a
′
τN,M). We now let

0 τN Ma ⊕ Y N 0

be an almost split sequence ending at N , whereM is not a summand of Y . By the
previous definition of valuation we then see that a = a′τN,M and a = aM,N , that
is a′τN,M = aM,N . It takes a little more work to show that also aτN,M = a′M,N , for
instance see [4, Section VII.1]. Moreover, if R is an algebra over an algebraically
closed field, then aM,N = a′M,N , see the proof of [4, Corollary VII.2.3]. Now let

0 τN ⊕ki=1M
ai
i N 0

be an almost split sequence ending at N , an indecomposable non-projective R-
module, and the Mi’s are non-isomorphic. Then, we get the following part of the
Auslander-Reiten quiver ΓR:

[τN ]

[M1]

...

[Mk]

[N ]...
...

(b1
,a1

)

(b
k ,a

k )

(a
1 ,b

1 )

(ak
,bk

)

Furthermore, an indecomposable R-module M is called τ -periodic if τnM ∼= M
for some n ∈ N. The vertices corresponding to such modules are called τ -periodic
vertices .

In later chapters we look at parts of the Auslander-Reiten quiver called com-
ponents. It is therefore natural to define them here. We say that two modules
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M and N in indR are related by an irreducible morphism if there exists an ir-
reducible morphism f : M−→N . This relation generates an equivalence relation
if we say that a module M is related to itself by definition. An equivalence class
under this equivalence relation is called a component of indR. So, M and N are
in the same component if and only if there exists an n ∈ N and indecomposable
modules Xi for i ∈ {1, ..., n} where X1 = M and Xn = N and further an irre-
ducible morphism fi : Xi−→Xi+1 or an irreducible morphism gi : Xi+1−→Xi for
each i ∈ {1, ..., n − 1}. By the previous definition of an Auslander-Reiten quiver
ΓR we have a corresponding component of the quiver. If all vertices in a component
are preprojective we call the component a preprojective component . Similarily, if
all vertices are preinjective we call it a preinjective component . If the component
only contains regular vertices we call it a regular component . Such components
containing modules with some special properties is the main object of study in
Chapter 5. Finally, if we let ΓR(S) be the full subquiver of the Auslander-Reiten
quiver of R containing the isomorphism classes of regular modules, we call ΓR(S)
the stable Auslander-Reiten quiver . The components of such a quiver are called
stable components .

We now define valued translation quivers, and it follows that the Auslander-Reiten
quivers of Artin algebras are such quivers. We let Γ be a quiver with vertex set
Γ0 and set of arrows Γ1. Further, we let Γ be locally finite, that is, for each i ∈ Γ0

there is a finite number of arrows entering or leaving i. Now let τ ′ be an injec-
tive map from a subset of Γ0 to Γ0. We denote the set of immediate predecessors
of x ∈ Γ0 by x−, that is x− = {y ∈ Γ0 there exists an arrow y−→x}. Simil-
iarily, the set x+ are the set of immediate successors of x, that is, x+ = {y ∈
Γ0 there exists an arrow x−→y}. If the following three conditions hold we call
Γ = (Γ0,Γ1, τ

′, a), where Γ0, Γ1 and τ ′ is as defined above and a the valuation for
(Γ0,Γ1), a valued translation quiver

(1) Γ has no loops and no multiple arrows.

(2) Whenever x ∈ Γ0 is such that τ ′(x) is defined, then x− = τ ′(x)+.

(3) If x−→y is an arrow with valuation (a, b) and τ ′(y) is defined, then τ ′(y)−→x
has valuation (b, a).

Further, if the following also holds

(4) If x ∈ Γ0 is such that τ ′(x) is defined, then x− is nonempty.

we call the translation quiver a proper translation quiver . The partially de-
fined map τ ′ : Γ0−→Γ0 is called the translation of the valued translation quiver
Γ = (Γ0,Γ1, τ

′, a). A valued translation quiver where the translation and its inverse



14 CHAPTER 2. PRELIMINARIES

is everywhere defined is called a stable valued translation quiver . As mentioned
above, any Auslander-Reiten quiver is a valued translation quiver when we let τ ′ be
τ , and further any stable component is a stable valued translation quiver. We here
note that any Auslander-Reiten quiver is locally finite. As for Auslander-Reiten
quivers we call a vertex x ∈ Γ0 a projective vertex if x is not in the domain of τ ′,
and furthermore if x ∈ Γ0 is not in the image of τ ′ we call it an injective vertex . A
vertex in the quiver is called periodic given τ ′n(x) = x for some n ∈ N. A valued
translation quiver is called a tube if there exists exactly one τ -orbit where every
vertex x in the orbit is such that |x−| = 1 and further |{y | τn(y) = y}| = ∞ for
some n ∈ N.

We now look at an example of a valued translation quiver that will prove use-
ful in deciding the shape of regular components of the Auslander-Reiten quivers
of Artin algebras containing a periodic vertex. We let ∆ be a valued quiver with-
out loops or multiple arrows (possibly infinite), and define Z∆ in the following
manner. We let the vertices in the quiver be (Z × ∆0), where ∆0 is the vertices
in ∆. The translation in the quiver is given by τ ′(n, x) = (n− 1, x). Moreover, if
α : x−→y is an arrow in ∆ we have arrows in Z∆ that is (n, α) : (n, x)−→(n, y) and
σ(n, α) : (n, y)−→(n + 1, x) for all n ∈ Z. Further, given the valuation (ax,y, a

′
x,y)

for α we have valuations (ax,y, a
′
x,y) for (n, α) and (a′x,y, ax,y) for σ(n, α). That is,

Z∆ is a valued translation quiver. Note, if the underlying graph of ∆ is a tree and
it has trivial valuation, then the valued translation quiver, Z∆, is independent of
orientation in ∆. Otherwise, it might depend on this.

Before we illustrate this for a given ∆ we define subadditive and additive functions
for a valued translation quiver, Γ = (Γ0,Γ1, τ

′, a). A subadditive function ` for Γ
is a function ` : Γ0−→N that satisfies:

`(x) + `(τ ′x) ≥
∑
y∈x−

`(y)ay,x (2.1)

for all x ∈ Γ′0, where Γ′0 is the set of vertices where τ ′ is defined. The function ` is
said to be additive if we have equality in (2.1) for all x ∈ Γ′0.

We let ΓR be the Auslander-Reiten quiver of a connected Artin algebra. As pre-
viously mentioned, a component, C, of the full subquiver ΓR(S) is in fact a stable
valued translation quiver where τ ′ is τ . We assume C has a periodic module.
If we let ` be the ordinary length function, we see that it is clearly subadditive
and we note that it is additive if and only if C is a component of the complete
Auslander-Reiten quiver. Now, assume C is a regular component of the complete
Auslander-Reiten quiver, that is, the quiver has a component containing none of
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the projective modules. So, by [4, Theorem VII.2.1], we know that R is not of fi-
nite representation type. Furthermore, by a theorem of Auslander in [11, Chapter
2.3], we have that ` cannot be bounded on C. Moreover, by [9] we then know that
the component is of type ZA∞/G where G is a group of automorphisms of ZA∞.
It is possible to show that the only such group of automorphisms is 〈τn〉. That
is, regular components of the Auslander-Reiten quiver ΓR containing a τ -periodic
module is of type ZA∞/〈τn〉, a tube. We now illustrate A∞ and a part of the tube.

A∞ :
· · · · · ·

Note that A∞ has trivial valuation. An illustration of a part of a component of
type ZA∞/〈τn〉:

· · · [τ 2M1] [τM1] [M1] [τ−1M1] · · ·

[τM2] [M2] [τ−1M2]

[τM3] [M3] [τ−1M3] [τ−2M3] · · ·

[M4] [τ−1M4] [τ−2M4]

...
...

...

· · ·

The dashed arrows indicate the τ -translates. These will be neglected in later figures
for simplicity. For the same reason, we do not write the trivial valuations in the
quiver either. Note that since the valuation is (1,1) we know that the component
illustrates actual almost split sequences. It should also be stressed that what
here looks flat is actually "glued" together at some point, so the component takes
the form of a tube. In Subchapter 5.2 we argue why we know which maps that
are monomorphisms (indicated with a hook arrow) and which are epimorphisms
(indicated with a two headed arrow).
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2.3 Selfinjective Artin algebras

In this section we discuss selfinjective Artin algebras. An Artin algebra R is called
selfinjective if it is injective as well as projective as an R-module. All algebras in
this subchapter are of such kind, if not specified otherwise. First, we present a
characterization of selfinjective Artin algebras.

Proposition 2.3.1. [4, Proposition IV.3.1] The following are equivalent for an
Artin algebra R.

(a) R is selfinjective.

(b) An R-module is projective if and only if it is injective.

(c) Rop is selfinjective.

We now introduce the syzygy functor. It is a functor from modR to modR for an
arbitrary Artin algebra R. We introduce it here because it turns out it is an equiv-
alence when R is selfinjective. The syzygy functor , Ω, is defined in the following
way. For each R-module M we choose a fixed projective cover P (M)−→M and
define Ω(M) to be the kernel of this map. Now assume there is a map f : M−→N
in modR. We then have an exact commutative diagram

0

Ω(M)

P (M)

M

0

0

Ω(N)

P (N)

N

0

t

g

f

where g : P (M)−→P (N) exists since P (M) is projective and the morphism
P (N)−→N is an epimorphism. Further, by [14, Proposition 2.71], we have
t : Ω(M)−→Ω(N) which depends on the choice of g. If we instead of g
chose g′ : P (M)−→P (N) we would get another map t′ : Ω(M)−→Ω(N). It
is then possible to show that t − t′ ∈ P(Ω(M),Ω(N)), that is, t − t′

is a morphism from Ω(M) to Ω(N) that factors through a projective mod-
ule. So, we get a morphism from HomR(M,N)−→HomR(Ω(M),Ω(N)).
Since f ∈ P(M,N) gives t ∈ P(Ω(M),Ω(N)) we obtain the morphism
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Ω: HomR(M,N)−→HomR(Ω(M),Ω(N)). It is now possible to check that Ω is
a functor from modR to modR.

Dually, we can define the cosyzygy functor Ω−1 : modR−→modR. Instead of
choosing a fixed projective cover for the module M , we choose a fixed injective
envelope u : M−→I(M) and let Ω−1(M) be the cokernel of u. For further de-
tails of the definition of Ω−1 see [4, Chapter IV.3]. We can now present the result
that makes the syzygy functor especially important for selfinjective Artin algebras.
Note that modR = modR when R is a selfinjective Artin algebra.

Proposition 2.3.2. [4, Proposition IV.3.5] Let R be a selfinjective Artin algebra.
Then, the functors Ω: modR−→modR and Ω−1 : modR−→modR are inverse
equivalences.

Recall that we assume that R is a selfinjective Artin algebra. We now define
Ωi : modR−→modR by induction. We let Ω0 = 1modR and further Ωi+1 = ΩΩi

for all i ≥ 0. In the same manner, one may define Ω−i for i = 0, 1, .... If we now look
at a minimal projective resolution of an R-module M we see that Ωi(M) = Im δi.

0MP 0P 1· · ·P iP i+1· · ·

Ωi+1M ΩMΩiM

P i−1
δi+1 δi δ1 δ0

Moreover, for each f : M−→N in modR we fix a choice of t representing Ωf in
modR, and abusing notation we write Ωf instead of t. We define Ωnf in a similar
fashion.

Note that we later in the thesis write ΩiM instead of Ωi(M) for i ∈ Z. This is
just to avoid too many parentheses. We also recall that ΩP = (0) if and only if P
is projective.

Now, we look at the connection between the functor Ω2 and DTr. To do this we
need to define an equivalence called the Nakayama functor. The following result
is needed.

Proposition 2.3.3. [4, Proposition IV.3.4] Let R be a selfinjective Artin alge-
bra. Then (−)∗ = HomR(−, R) : modR−→modRop is a duality with dual inverse
HomRop(−, R) : modRop−→modR.

We denote the Nakayama functor by ν and it is the composition of the dualities

modR modRop modR.
(−)∗ D
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That is, ν : modR−→modR is an equivalence when R is selfinjective. We now
investigate some properties of ν.

Proposition 2.3.4. Let R be a selfinjective Artin algebra and ν be the Nakayama
functor. Furthermore, let M and N be R-modules and f : M−→N . We then have
the following

(1) The morphism f is irreducible if and only if νf is irreducible.

(2) `(M) = `(νM). In particular, M is simple if and only if νM is simple.

(3) The morphism f is an epimorphism (monomorphism) if and only if νf is an
epimorphism (monomorphism).

(4) The module M is projective if and only if νM is projective.

(5) The Nakayama functor ν preserves minimal projective resolutions.

(6) The Nakayama functor ν preserves almost split sequences.

Proof. This follows from properties of equivalences between module categories.
For more on such equivalences, see [1, Chapter 6].

The previous result is used frequently in the thesis. We now want to argue that
for an R-module M we have that ΩνM ∼= νΩM . We let M be an R-module and
have the following projective cover of M

0 ΩM P (M) M 0.

We then have the following commutative diagram, where the upper sequence is
the sequence where ν has acted on the projective cover of M and the sequence
below is the projective cover of νM .

0 ΩνM P (νM) νM 0

0 νΩM νP (M) νM 0

k l∼=

The morphism l is an isomorphism. Then, by [14, Proposition 2.71], k is an iso-
morphism. Note that if M is projective, then νΩM = (0) = ΩνM . We now have
the following result.

Proposition 2.3.5. [4, Proposition IV.3.7] Let R be a selfinjective Artin algebra.

(a) The functors DTr, Ω2ν and νΩ2 from modR to modR are isomorphic.
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(b) The functors TrD, Ω−2ν−1 and ν−1Ω−2 from modR to modR are isomor-
phic.

This implies that also τ and Ω commute on objects in modR. That is, ΩτM ∼=
ΩΩ2νM ∼= Ω2ΩνM ∼= Ω2νΩM ∼= τΩM . We collect our findings in the following
proposition.

Proposition 2.3.6. Let R be a selfinjective Artin algebra and let M be an R-
module. Then, we have that

(1) νΩM ∼= ΩνM .

(2) τΩM ∼= ΩτM .

(3) τnM ∼= νnΩ2nM .

Proof.

(1) and (2). These results hold from previous arguments.

(3) The result follows from (1) and the fact that τnM ∼= (νΩ2)nM by 2.3.5.

We further look at a result stating that a module has finite projective dimension
if and only if it is projective. This is obviously an interesting property for selfin-
jective algebras.

Proposition 2.3.7. Let R be a selfinjective Artin algebra and let M be an R-
module. Then, M has finite projective dimension if and only if M is projective.

Proof. If M is projective it has finite projective dimension by definition.

Let M be an R-module with finite projective dimension, say m. Assume m ≥ 1.
Since R is selfinjective, we know that the projective modules are injective. We
have a minimal projective resolution

0MP 0P 1· · ·Pm−2Pm−1Pm0

Ωm−1M

So, as a result of Pm being injective, the following sequence is exact and splits
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0 Pm Pm−1 Ωm−1M 0.

That is, Pm−1 ∼= Pm ⊕ Ωm−1M and furthermore Ωm−1M is projective. This
contradicts the projective dimension being equal to m (≥ 1). So, m = 0 and M is
projective.

It follows from this that if an R-module M is not projective, then it has infinite
projective dimension. That is, ΩnM 6= (0) for n ≥ 0. Further, we know that
τnM ∼= νnΩ2nM from 2.3.6. So, then by properties of ν we know that τnM 6= (0)
for any n ≥ 0. That is, there are no non-projective modules that are prepro-
jective. Dually, one may prove that there are no non-injective modules that are
preinjective. So, for a non-zero, non-projective (and therefore also non-injective)
R-module we know that τnM 6= (0) for all n ∈ Z. This is important in upcoming
proofs. We end this chapter with some results that prove useful later in the thesis.

Proposition 2.3.8. Let R be a selfinjective Artin algebra and

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...gt)

be an almost split sequence of finitely generated R-modules with the Ei’s not nec-
essarily indecomposable and t ≥ 1. Then,

0 ΩτC ΩE1 ⊕ ...⊕ ΩEt ⊕ P ΩC 0
(Ωf1,...,Ωft,f ′)T (Ωg1,...,Ωgt,g′)

is an almost split sequence where P is projective. Furthermore, if P is non-zero,
it is indecomposable.

Proof. Let

0 τC E C 0
f g

be an almost split sequence. Then, by [3, Proposition 5.1] it is easy to see that we
have the following commutative diagram
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0 0 0

0 τC E C 0

0 P (τC) P (τC)⊕ P (C) P (C) 0

ΩτC ΩE ⊕ P ΩC

0 0 0

0 0

f g

(Ωf,f ′)T (Ωg,g′)

where the upper sequence is an almost split sequence, Ωg corresponds to Ωf and
P is projective. Furthermore, assume E decompose, say E ∼= E1 ⊕ E2 ⊕ ... ⊕ Et
where the Ei’s not necessarily indecomposable, and moreover that we have an
almost split sequence

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0.
(f1,f2,...,ft)T (g1,g2,...gt)

So, since Ω(E1 ⊕ E2 ⊕ ... ⊕ ΩEt) = ΩE1 ⊕ ΩE2 ⊕ ... ⊕ ΩEt and furthermore
Ω(f1, f2, ..., ft)

T = (Ωf1,Ωf2, ...,Ωft)
T we have that

δ : 0 ΩτC ΩE1 ⊕ ...⊕ ΩEt ⊕ P ΩC 0
(Ωf1,...,Ωft,f ′)T (Ωg1,...,Ωgt,g′)

is an almost split sequence where the Ωgi’s correspond to the Ωfi’s.

Now, assume P 6= (0) and P ∼= P1 ⊕ P2 ⊕ ... ⊕ Pn where each Pi is non-zero,
indecomposable and n ≥ 2. Then, by 2.1.12, we know that δ is isomorphic to

0 JP1 P1 ⊕ JP1/S1 P1/S1 0

where S1 is the socle of P1 and J is the Jacobson radical. So, P2 is a summand of
JP1/S1 and therefore

`(P2) < `(P1).

But, similarily δ is isomorphic to

0 JP2 P2 ⊕ JP2/S2 P2/S2 0.
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That is, by the same argument as above, `(P1) < `(P2), a contradiction. So, n = 1
and P is indecomposable.

We also have the following consequence of the proposition.

Corollary 2.3.9. Let R be a selfinjective Artin algebra. Then, the number of in-
decomposable non-projective summands appearing in a chosen direct decomposition
(into indecomposable modules) of the middle term of an almost split sequence is
invariant under Ω.

Proof. The result follows from 2.3.8, the fact that ΩP = (0) if and only if P is
projective and that no syzygy of a non-projective module is projective.

Remark. If f : A−→B is an irreducible morphism with either A or B inde-
composable and neither is projective, we know from 2.3.8 and Chapter 2.1 that
Ωf : ΩA−→ΩB is irreducible.

We now let f : A−→B be an irreducible morphism with either A or B indecom-
posable and neither is projective. We have a commutative diagram

0

ΩA

P (A)

A

0

0

ΩB

P (B)

B

0

t

g

f

and recall that we fix a choice t representing Ωf in modR and call it Ωf . We now
know that this is an irreducible morphism. If we chose another t′ representing Ωf
this will also be irreducible. Since either `(ΩA) > `(ΩB) or `(ΩA) < `(ΩB) we
see that t is an epimorphism (monomorphism) if and only if t′ is an epimorphism
(monomorphism). So the property epimorphism/monomorphism is preserved for
whatever choice of Ωf .

In chapter 4 we define Ω-perfect modules. We prove that if an indecomposable
non-projective module C is Ω-perfect, then Ω2C cannot be simple. The following
proposition then gives us information about the almost split sequence ending at
ΩC.
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Proposition 2.3.10. [6, Lemma 2.3] Let R be a selfinjective Artin algebra. If

0 A B C 0

is an almost split sequence of R-modules with

0 ΩA ΩB ⊕ P ΩC 0

an almost split sequence with P a non-zero indecomposable projective-injective R-
module, then Ω2C and τC ∼= A are simple R-modules.

Proof. Assume we have the almost split sequence

0 ΩA ΩB ⊕ P ΩC 0

with P 6= (0). By 2.1.12 we know that the only almost split sequence (up to isomor-
phism) containing a non-zero indecomposable projective-injective as a summand
in the middle term is

0 JP P ⊕ JP/S P/S 0

where J is the Jacobson radical and S is the socle of P . This gives us that ΩC is
isomorphic to P/S, that is ΩC ∼= P/S, and by [4, Theorem IV.3.6] we know that
Ω(P/S) ∼= Ω(ΩC) ∼= Ω2C . Since P is indecomposable, we know that the socle is
simple from [4, Proposition II.4.1]. We want to show that the projective cover of
P/S is

0 S P P/S 0.
f

First, recall that P cannot be simple by 2.1.12. Moreover, since S ⊆ JP we know
that J(P/S) ∼= JP/S. So, (P/S)/J(P/S) ∼= P/JP and then by [4, Proposition
I.4.3] we know that f is a projective cover.

That is, Ω2C ∼= Ω(P/S) ∼= S, so Ω2C is simple. Further, τC ∼= νΩ2C by 2.3.5.
The Nakayama functor preserves simple modules by 2.3.4, so we then know that
τC is simple.

We recall the definition for DTr (τ) and let f : M−→N be in modR. Similarily
as we did for Ωf we fix a choice representing τf in modR and denote it τf also in
modR. With this in mind we continue with another proposition that is important
in the thesis.
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Proposition 2.3.11. Let R be a selfinjective Artin algebra. Let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...gt)

be an almost split sequence of finitely generated R-modules with the Ei’s not nec-
essarily indecomposable and t ≥ 1. Then,

0 τ 2C τE1 ⊕ ...⊕ τEt ⊕ P τC 0
(τf1,...,τft,f ′)T (τg1,...,τgt,g′)

is an almost split sequence with P projective. Furthermore, if P is non-zero, it is
indecomposable.

Proof. The result follows from 2.3.8, 2.3.4 and 2.3.5.

We have the following immediate consequence.

Corollary 2.3.12. Let R be a selfinjective Artin algebra.Then, the number of in-
decomposable non-projective summands appearing in a chosen direct decomposition
(into indecomposable modules) of the middle term of an almost split sequence is
invariant under τ .

Proof. The result follows from 2.3.11, the fact that τP = (0) if and only if P is
projective and that there exists no n ≥ 0 such that τnM is projective where M is
non-projective module.

Remark. If f : A−→B is an irreducible morphism with either A or B indecom-
posable and neither is projective, we know from 2.3.11 and Chapter 2.1 that
τf : τA−→τB is irreducible.

We now look at the correspondence between the modules and the morphisms in
almost split sequences ending at Ω2nC and τnC for n ≥ 0. This is of great impor-
tance in Chapter 4 and 5.

Proposition 2.3.13. Let R be a selfinjective Artin algebra and let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be an almost split sequence ending at C with the Ei’s not necessarily indecomposable
and t ≥ 1. Then, for n ≥ 1 we have that
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(1) The number of indecomposable non-projective modules in a chosen direct
decomposition (into indecomposable modules) of the middle term of an al-
most split sequence ending at Ω2nC is equal to the number of indecomposable
non-projective modules in a chosen direct decomposition (into indecompos-
able modules) of the middle term of an almost split sequence ending at τnC
for n ≥ 1.

(2) An almost split sequence ending at Ω2nC has a non-zero projective mod-
ule in a chosen direct decomposition (into indecomposable modules) of the
middle term if and only if an almost split sequence ending at τnC has a non-
zero projective module in a chosen direct decomposition (into indecomposable
modules) of its middle term.

(3) Ω2nfi is an epimorphism (monomorphism) if and only if τnfi is an epimor-
phism (monomorphism).

(4) Ω2ngi is an epimorphism (monomorphism) if and only if τngi is an epimor-
phism (monomorphism).

Proof. We have an almost split sequence ending at C

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

(2.2)

and then by repeating 2.3.8 we have an almost split sequence ending at Ω2nC

0 Ω2nτC Ω2nE1 ⊕ ...⊕ Ω2nEt ⊕ P Ω2nC 0
(Ω2nf1,...,Ω2nft,f ′)T (Ω2ng1,...,Ω2ngt,g′)

(2.3)

with P indecomposable, projective. Furthermore, by 2.3.4 we know that applying
νn gives another almost split sequence

0 νnΩ2nτC νnΩ2nE1 ⊕ ...⊕ νnP νnΩ2nC 0
(νnΩ2nf1,...,νnf ′)T (νnΩ2ng1,...,νng′)

with νnP indecomposable, projective. We also know from (2.2) and 2.3.11 that
we have an almost split sequence

0 τn+1C τnE1 ⊕ ...⊕ τnEt ⊕ P ′ τnC 0
(τnf1,...,τnft,f ′′)T (τng1,...,τngt,g′′)

(2.4)

with P ′ indecomposable, projective.
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(1) Assume the Ei’s in the almost split sequence (2.2) are indecomposable. If
Ei is projective for some i ∈ {1, ..., t}, then Ω2nEi = (0) and τnEi = (0). If
not, Ω2nEi 6= (0) and τnEi 6= (0) for n ≥ 1 and both are indecomposable by
[4, Proposition IV.3.6]. Furthermore, neither Ω2nEi nor τnEi is projective.
From the almost split sequences (2.3) and (2.4) we have our result.

(2) First, we recall that none of the non-zero Ω2nEi’s, νnΩ2nEi’s and τnEi’s can
be projective and furthermore that Ω2nEi = (0) ⇐⇒ νnΩ2nEi = (0) ⇐⇒
τnEi = (0). By 2.3.6, we know that τnC ∼= νnΩ2nC. Moreover, by 2.1.10, we
know that an almost split sequence ending at τnC ∼= νnΩ2nC is unique up to
isomorphism. So, we therefore know that νnP 6= (0) if and only if P ′ 6= (0).
By 2.3.4, we then have that P 6= (0) if and only if P ′ 6= (0) which is what
we wanted to show.

(3) Let fi : τC−→Ei. If Ei is projective, then Ω2nEi = (0) and τnEi = (0), so
then Ω2nfi = 0 = τnfi.

Now, assume Ei is not projective. We then know that τnfi and Ω2nfi are
irreducible morphisms by respectively 2.3.11 and 2.3.8. Moreover,

`(τnτC) = `(νnΩ2nτC) = `(Ω2nτC)

and

`(τnEi) = `(νnΩ2nEi) = `(Ω2nEi)

by 2.3.4 and 2.3.6. So, therefore `(τnτC) > `(τnEi) if and only if `(Ω2nτC) >
`(Ω2nEi). In other words, τnfi is an epimorphism if and only if Ω2nfi is an
epimorphism. We know that the morphisms are irreducible, so it follows that
τnfi is a monomorphism if and only if Ω2nfi is a monomorphism.

(4) The result follows from a length argument similar as the one in (3).

Remark. In the previous proposition we emphasized that we chose a direct de-
composition into indecomposable modules of the middle term of an almost split
sequence. In the upcoming chapters we may neglect writing this, and only re-
fer to a chosen decomposition of the middle term. However, the reader should
recall that it is a direct decomposition into indecomposable modules we actually
mean. It should also be a well known fact that the number of indecomposable
non-projective summands is equal no matter what decomposition we choose.



Chapter 3

Betti numbers and complexity

The aim of this chapter is to introduce the reader to the concepts of Betti numbers
and of complexity. In the first part we focus on Betti numbers, and in the latter
part we explore complexity and some important properties that we use in later
proofs. We assume R is a connected selfinjective Artin algebra and all R-modules
in the chapter are finitely generated.

3.1 Betti numbers

We now define Betti numbers.

Definition 3.1.1. [6] Assume R is a selfinjective Artin algebra. If M is a finitely
generated R-module, and if

. . . P 2 P 1 P 0 M 0
δ2 δ1 δ0

is a minimal projective resolution ofM , the i-th Betti number of M , βi(M), equals
the number of indecomposable summands in a chosen direct decomposition of P i

into indecomposable modules.

In the following proposition we explore some properties of the Betti numbers of a
finitely generated R-module M .

Proposition 3.1.2. [Properties of Betti numbers] Let R be a selfinjective Artin
algebra and M be an R-module. Then we have the following

(1) βi(M) = βi(νM) for all i ≥ 0.
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(2) If M is a non-projective module, then βi+j(M) = βi(Ω
jM) for all i ≥ 0 and

j ≥ 0.

(3) If M is a non-projective module, then βi+2j(M) = βi(τ
jM) for all i ≥ 0 and

j ≥ 0.

(4) Let d′ = max{`(Rei)}, the maximal length of all the indecomposable projec-
tive R-modules. Then, `(ΩiM) ≤ d′ ·βi(M) for all i ≥ 0. Furthermore, if M
is non-projective the inequality is strict.

Proof.

(1) The Nakayama functor preserves minimal projective resolutions by 2.3.4.
The result then follows.

(2) Let

0MP 0P 1· · ·P j−1P jP j+1· · ·

ΩjM ΩMΩj+1M

be a minimal projective resolution of M . Recall that we know that the pro-
jective dimension of M is infinite by 2.3.7. Since P j � ΩjM is a projective
cover by the definition of minimal projective resolutions, we have a minimal
projective resolution of ΩjM

0.ΩjMP jP j+1· · ·

It then follows that βi+j(M) = βi(Ω
jM) for all i ≥ 0 and j ≥ 0.

(3) By 2.3.6, we know that τ jM ∼= νjΩ2jM . This and the results from (1) and
(2) then give us the following

βi(τ
jM) = βi(ν

jΩ2jM) = βi(Ω
2jM) = βi+2j(M)

which is what we wanted to show.

(4) First, we assume M is projective. Then, ΩiM = (0) and βi(M) = 0 for
i ≥ 1. That is, the inequality holds when i ≥ 1. If i = 0, then P 0 = M and
we know that `(Ω0M) = `(M) ≤ d′ · β0(M).

Now, assume M is not projctive. Given the minimal projective resolution of
M

0MP 0P 1· · ·P i−1P iP i+1· · ·

ΩiM ΩMΩi+1M
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we get that `(Ωi+1M) + `(ΩiM) = `(P i) for i ≥ 0. So, since we know that
Ωi+1M 6= (0) we have that `(ΩiM) < `(P i) ≤ d′ · βi(M).

We now explore some properties of the maximum of all the Betti numbers of a non-
projective R-module M with bounded Betti numbers. We denote this by β(M),
that is β(M) = maxi≥0{βi(M)}.

Proposition 3.1.3. Let R be a selfinjective Artin algebra and let M be a non-
projective R-module with bounded Betti numbers. Then we have the following

(1) β(ΩiM) ≤ β(M) for all i ≥ 0.

(2) β(τnM) ≤ β(M) for all n ≥ 0.

(3) The length of M is bounded by β(M) · d′, where d′ = max{`(Rei)}, the
maximum length of the indecomposable projective R-modules. In particular,
`(M) < β(M) · d′.

Proof.

(1) Let

0MP 0P 1· · ·P i−1P iP i+1· · ·

ΩiM ΩMΩi+1M

be a minimal projective resolution of the non-projective module M . Recall
that we know that the projective dimension of M is infinite by 2.3.7. As
before, we have a minimal projective resolution of ΩiM

0.ΩiMP iP i+1· · ·

for i ≥ 0. If a direct decomposition into indecomposable modules of one (or
more) of the modules {P 0, P 1, ..., P i−1} has more summands than a similar
decomposition of any of the modules P i, P i+1, ..., we know that β(ΩiM) <
β(M). If not, β(ΩiM) = β(M). In total, β(ΩiM) ≤ β(M).

(2) From (1) we know that β(ΩiM) ≤ β(M) for all i ≥ 0. Further, from 3.1.2 we
know that βi(νM) = βi(M) and therefore also β(νM) = β(M). Combining
these results and applying 2.3.6, we are done.
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(3) From the minimal projective resolution ofM we know that `(ΩM)+`(M) =
`(P 0) and ΩM 6= (0). Further, we then have the following

`(M) < `(P 0) ≤ β0(M) · d′ ≤ β(M) · d′

and we are done.

In the next subchapter we present complexity. We then look at how the Betti
numbers of an R-module M is bounded by polynomials.
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3.2 Complexity

We now define complexity and explore some important properties.

Definition 3.2.1. [7] Let n be a nonnegative integer. We say that the complexity
of a finitely generated R-moduleM is at most n if βi(M) ≤ cin−1, for some c ∈ Q>0

and all sufficiently large i, that is, for all i � 0. We denote this by cx(M) ≤ n.
Further, the complexity of M is n, cx(M) = n, if cx(M) ≤ n, but cx(M) � n− 1.
If no such n exists we say that the complexity of M is infinite.

The results in the following proposition concern complexity and are of importance
in later proofs.

Proposition 3.2.2. [Properties of complexity] Let R be a selfinjective Artin alge-
bra, and M and {Mj}kj=1 be R-modules. Then we have the following

(1) cx(M) = 0 is equivalent to M being of finite projective dimension, and as a
consequence projective.

(2) cx(M) = 1 is equivalent to M being of infinite projective dimension and that
there exists a b ∈ Q>0 such that βi(M) ≤ b for all i ≥ 0.

(3) Let M be non-projective, then cx(ΩjM) = cx(M) for all j ≥ 0.

(4) Let M be non-projective, then cx(τM) = cx(M).

(5) cx(⊕kj=1Mj) = max{cx(M1), cx(M2), ..., cx(Mk)}.

(6) [6, Lemma 2.1] If

0 A1 A2 A3 0

is a short exact sequence of R-modules, then for each i, we have cx(Ai) ≤
max{cx(Aj), cx(Ak)}, where {i, j, k} = {1, 2, 3}.

(7) cx(M) ≤ max{cx(S) | S a composition factor of the composition series of M}.

Proof.

(1) Assume cx(M) = 0. Then, for all i � 0, βi(M) ≤ ci−1, where c ∈ Q>0.
Since limi→∞

c
i

= 0, the module M has finite projective dimension and is
projective by 2.3.7.

Now assume the projective dimension is finite, so M is projective, again by
2.3.7. Then obviously for i ≥ 1 we have that 0 = βi(M) ≤ ci−1 for some
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c ∈ Q>0, so cx(M) = 0. Note, we do not have to check that cx(M) � 0− 1
since the complexity always is a nonnegative integer.

(2) Assume cx(M) = 1. Since cx(M) 6= 0, the projective dimension is in-
finite by (1). Moreover, for all i � 0, βi(M) ≤ ci1−1 = c for some
c ∈ Q>0. We have a finite number of Betti numbers of M that are not
neccessarily bounded by c, say {β0(M), β1(M), ...βi−1(M)}. That is, we
choose b = max{c, β0(M), ..., βi−1(M)}. So, there exists a b ∈ Q>0 such
that βi(M) ≤ b for all i ≥ 0.

Now assume that M has infinite projective dimension and that there exists
a b ∈ Q>0 such that βi(M) ≤ b for all i ≥ 0. We have that βi(M) ≤ bi1−1

for all i ≥ 0, and therefore cx(M) ≤ 1. Since the projective dimension is
infinite, cx(M) 6= 0 by (1), hence cx(M) = 1.

(3) We begin by proving that the non-projective moduleM has finite complexity
n if and only if ΩjM has finite complexity n. First, assume M has finite
complexity n. That is, for all i � 0, we have that βi(M) ≤ cM i

n−1 where
cM ∈ Q>0, and we cannot find a c ∈ Q>0, such that βk(M) ≤ ck(n−1)−1 for
all k � 0. By 3.1.2 we have βi+j(M) = βi(Ω

jM), for i ≥ 0 and j ≥ 0. So,
using the Binomial theorem found in [5], for all i� 0, we have that

βi(Ω
jM) = βi+j(M)

≤ cM(i+ j)n−1

= cM
((
n−1

0

)
in−1 +

(
n−1

1

)
in−2j + ...+

(
n−1
n−2

)
ijn−2 +

(
n−1
n−1

)
jn−1

)
≤ cM

((
n−1

0

)
in−1 +

(
n−1

1

)
in−1j + ...+

(
n−1
n−2

)
in−1jn−2 +

(
n−1
n−1

)
in−1jn−1

)
= cM

((
n−1

0

)
+
(
n−1

1

)
j + ...+

(
n−1
n−2

)
jn−2 +

(
n−1
n−1

)
jn−1

)︸ ︷︷ ︸
c
ΩjM

in−1

= cΩjM i
n−1.

We have now found a cΩjM ∈ Q>0 such that βi(ΩjM) ≤ cΩjM i
n−1 for all

i� 0, so cx(ΩjM) ≤ n.

We want to show that cx(ΩjM) � n − 1. Assume cx(ΩjM) ≤ n − 1. Then
βi(Ω

jM) ≤ c′i(n−1)−1, for some c′ ∈ Q>0 and for all i� 0. But then

βi+j(M) = βi(Ω
jM) ≤ c′i(n−1)−1

≤ c′(i+ j)(n−1)−1

for all i � 0, a contradiction to cx(M) = n. So, cx(M) = n < ∞ implies
that cx(ΩjM) = n <∞ for all j ≥ 0.
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Now, assume ΩjM has finite complexity n. That is, for all i � 0 we have
that βi(ΩjM) ≤ ain−1 with a ∈ Q>0 and we cannot find a a′ ∈ Q>0 such
that βl(ΩjM) ≤ a′l(n−1)−1 for all l � 0. By 3.1.2, βi(ΩjM) = βi+j(M) for
all i ≥ 0 and j ≥ 0. That is, for all i� 0 we have that

βi+j(M) = βi(Ω
jM) ≤ ain−1 ≤ a(i+ j)n−1.

That is, cx(M) ≤ n.

We now want to show that cx(M) � n − 1. Assume cx(M) ≤ n − 1. That
is, given j ≥ 0, for all i � 0 we have that βi+j(M) ≤ c′′(i + j)(n−1)−1 with
c′′ ∈ Q>0. Then, we know that for a j ≥ 0 and for all i� 0 we have that

βi(Ω
jM) = βi+j(M)

≤ c′′(i+ j)(n−1)−1.

So, using the Binomial theorem in a similar manner as before, we see that
cx(ΩjM) ≤ n− 1, a contradiction. That is, cx(M) = n.

So, the non-projective module M has finite complexity n if and only if ΩjM
has finite complexity n. So, using the previous we also have that M has
infinite complexity if and only if ΩjM has infinite complexity.

(4) By 3.1.2 we know that βi(νM) = βi(M), so cx(νM) = cx(M). Further,
by (3) we have that cx(Ω2M) = cx(M). In total, using 2.3.5, we have that
cx(τM) = cx(νΩ2M) = cx(Ω2M) = cx(M).

(5) We first assume that Mt has finite complexity nt and furthermore that it is
the maximum of {cx(M1), cx(M2), ..., cx(Mk)}. We prove that this implies
that ⊕kj=1Mj has finite complexity nt as well. Since nt is finite we know that
cx(Mj) is finite for each j ∈ {1, ..., k}, so, cx(Mj) = nj with 0 ≤ nj < ∞.
Then, for all i� 0

βi(⊕kj=1Mj) = βi(M1) + βi(M2) + ...+ βi(Mk)

≤ cM1i
n1−1 + cM2i

n2−1 + ...+ cMk
ink−1

≤ cM1i
nt−1 + cM2i

nt−1 + ...+ cMk
int−1

= (cM1 + cM2 + ...+ cMk
)︸ ︷︷ ︸

cM1⊕...⊕Mk

int−1

where cMj
is in Q>0 for j ∈ {1, ..., k}. So, cx(⊕kj=1Mj) ≤ nt.
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Assume that cx(⊕kj=1Mj) ≤ nt − 1. Then, βs(⊕kj=1Mj) ≤ cs(nt−1)−1 for
some c ∈ Q>0 and for all s� 0. So, for all s� 0 we have that

βs(Mt) ≤ βs(M1) + βs(M2) + ...+ βs(Mk)

= βs(⊕kj=1Mj)

≤ cs(nt−1)−1

a contradiction to cx(Mt) = nt. So, cx(⊕kj=1Mj) = nt.

Now, we assume that cx(⊕kj=1Mj) is finite and equal to n. Furthermore,
let Mt be such that cx(Mt) = max{cx(M1), cx(M2), ..., cx(Mk)}. We now
want to show that n = cx(Mt). For all i� 0 and for some c ∈ Q>0 we have
that

βi(Mt) ≤ βi(M1) + βi(M2) + ...+ βi(Mk)

= βi(⊕kj=1Mj)

≤ cin−1.

So, cx(Mt) ≤ n.

Now, assume cx(Mt) ≤ n−1. Then, since cx(Mt) = max{cx(M1), ..., cx(Mk)},
we know that cx(Mj) ≤ n − 1 for j ∈ {1, ..., k}. That is, for all i � 0 we
have that

βi(⊕kj=1Mj) = βi(M1) + βi(M2) + ...+ βi(Mk)

≤ cM1i
(n−1)−1 + cM2i

(n−1)−1 + ...+ cMk
i(n−1)−1

= (cM1 + cM2 + ...+ cMk
)︸ ︷︷ ︸

cM1⊕...⊕Mk

i(n−1)−1

where cMj
is in Q>0 for j ∈ {1, ..., k}. So, cx(⊕kj=1Mj) ≤ n− 1, a contradic-

tion. So, cx(Mt) = n.

Using the previous, we also have that cx(⊕kj=1Mj) is infinite if and only
if max{cx(M1), ..., cx(Mk)} is infinite.

(6) Let
0 A1 A2 A3 0

be an exact sequence. If A1 is projective and therefore injective we know
that cx(A1) = 0 by (1) and furthermore the sequence splits. That is,
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A2
∼= A1 ⊕ A3 and using (5) we have that cx(A2) = cx(A1 ⊕ A3) =

max{cx(A1), cx(A3)} = cx(A3). That is, cx(A2) = cx(A3) and for each i,
we have cx(Ai) ≤ max{cx(Aj), cx(Ak)}, where {i, j, k} = {1, 2, 3}.

By a similar argument, assuming that A3 is projective also implies that
for each i we have that cx(Ai) ≤ max{cx(Aj), cx(Ak)}, where {i, j, k} =
{1, 2, 3}.

So, in the cases where either A1 or A3 is projective we have our result. That
is, we assume A1 and A3 are non-projective in the remaining part of the
proof. We first show that for the given short exact sequence, cx(A2) ≤
max{cx(A1), cx(A3)}. Given minimal projective resolutions of A1 and A3

. . . P1 P0 A1 0

. . . Q1 Q0 A3 0

the following diagram commutes

0 0 0

0 A1 A2 A3 0

0 P0 P0 ⊕Q0 Q0 0

0 P1 P1 ⊕Q1 Q1 0

...
...

...

For details, see Horseshoe Lemma [13, Lemma 6.20]. The diagram gives us
a projective resolution of A2, not necessarily minimal. So, we know that
βi(A2) for i ≥ 0 is less than or equal to the number of summands in a direct
decomposition of Pi ⊕ Qi into indecomposable modules. That is, βi(A2) ≤
βi(A1) + βi(A3).

We may assume that cx(A1) and cx(A3) are finite, or else the inequality
cx(A2) ≤ max{cx(A1), cx(A3)} holds trivially.

Assume cx(A1) = n1 and cx(A3) = n3, where n1 and n3 are nonnegative
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integers. We assume that n1 ≤ n3. Then, for all i� 0, we have that

βi(A2) ≤ βi(A1) + βi(A3)

≤ c1i
n1−1 + c3i

n3−1

≤ c1i
n3−1 + c3i

n3−1

= (c1 + c3)in3−1

for some c1, c3 ∈ Q>0, so cx(A2) ≤ n3. That is, in this case we have that
that cx(A2) ≤ n3 = max{cx(A1), cx(A3)}. The same argument holds in the
other case where n3 ≤ n1.

We now want to show that cx(A3) ≤ max{cx(A1), cx(A2)}. We have the
following commutative diagram

0 0

0 A1 A2 A3 0

0 P (A2) P (A2) 0

0 ΩA2 ΩA3 ⊕ P Cokerα

0 0

0

p
g

α

The construction goes as follows. We start with the exact sequence and
the projective cover of A2. We can then define the map gp : P (A2)−→A3

such that the lower square commutes. Further, gp is an epimorphism, so
Ker gp = ΩA3⊕P , where P is projective. By [14, Proposition 2.71], we then
have a map α : ΩA2−→ΩA3 ⊕ P such that the second square commutes as
well and thus α is a monomorphism. By Snake Lemma [13, Theorem 6.5],
we have that Cokerα ∼= A1, and furthermore we have the following exact
sequence

0 ΩA2 ΩA3 ⊕ P A1 0. (3.1)

Now, if A2 is projective, ΩA2 = (0), so then ΩA3⊕P ∼= A1. That is, by (1),
(3) and (5) we have that cx(A1) = cx(ΩA3 ⊕ P ) = max{cx(ΩA3), cx(P )} =
cx(ΩA3) = cx(A3). So, for each i, we then have that cx(Ai) ≤
max{cx(Aj), cx(Ak)}, where {i, j, k} = {1, 2, 3}.

That is, we assume A2 is non-projective in the remaining part of the
proof. Looking at the short exact sequence (3.1) and using the previ-
ous arguments we get that cx(ΩA3 ⊕ P ) ≤ max{cx(ΩA2), cx(A1)}. By
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(3), we know that cx(ΩA2) = cx(A2) and cx(ΩA3) = cx(A3) and further
cx(ΩA3 ⊕ P ) = max{cx(ΩA3), cx(P )} = cx(ΩA3) by (5). Combining these
results we get that cx(A3) ≤ max{cx(A2), cx(A1)}.

It now remains to show that cx(A1) ≤ max{cx(A2), cx(A3)} with A1, A2 and
A3 all non-projective. We have the exact sequence

0 ΩA2 ΩA3 ⊕ P A1 0

and we can construct the following commutative diagram in the same manner
as we did above

0 0

0 ΩA2 ΩA3 ⊕ P A1 0

0 P (ΩA3)⊕ P P (ΩA3)⊕ P 0

0 Ω(ΩA3) ΩA1 ⊕ P ′ Coker β

0 0

0
β

where P ′ is projective. So, Coker β ∼= ΩA2, and like before from the up-
per exact sequence and the above argument we get that cx(ΩA1 ⊕ P ′) ≤
max{cx(Ω2A3), cx(ΩA2)}. By (1), (3) and (5), we can conclude that cx(A1) ≤
max{cx(A2), cx(A3)}.

(7) Let

(0) = Mn+1 ⊆Mn ⊆Mn−1 ⊆ ... ⊆M2 ⊆M1 ⊆M0 = M

be the composition series of M . We have a short exact sequence

0 Mn Mn−1 Mn−1/Mn 0.

By (6) we have that

cx(Mn−1) ≤ max{cx(Mn), cx(Mn−1/Mn)}.

Moreover, we again have a short exact sequence

0 Mn−1 Mn−2 Mn−2/Mn−1 0



38 CHAPTER 3. BETTI NUMBERS AND COMPLEXITY

and furthermore

cx(Mn−2) ≤ max{cx(Mn−1), cx(Mn−2/Mn−1)}
≤ max{cx(Mn), cx(Mn−1/Mn), cx(Mn−2/Mn−1)}.

So,
0 Mk Mk−1 Mk−1/Mk 0

is a short exact sequence for each k ∈ {1, ..., n} and by induction we have
that

cx(M) ≤ max{cx(Mn), cx(Mn−1/Mn), cx(Mn−2/M), ..., cx(M/M1)}

which is what we wanted to show.

We now want to show that a module of complexity 1 have a common bound for
the lengths of all its syzygies.

Proposition 3.2.3. Let R be a selfinjective Artin algebra and let M be an R-
module of complexity 1. Then, there is a common bound for the lengths of all its
syzygies.

Proof. By 3.2.2 and 2.3.7, M is non-projective and has bounded Betti numbers,
that is βn(M) ≤ b for all n ≥ 0 where b ∈ Q>0. Further, by 3.1.2, we know
that `(ΩnM) < d′ · βn(M) for n ≥ 0 where d′ = max{`(Rei)}. So, `(ΩnM) <
d′ · βn(M) ≤ d′ · b for all n ≥ 0, and we have found a bound for the lengths of the
syzygies of M .

The next result gives us information about the complexity of τ -periodic modules.

Proposition 3.2.4. Let R be a selfinjective Artin algebra, and let M be an R-
module. If M is τ -periodic, then cx(M) = 1.

Proof. By assumption, M is τ -periodic, that is τnM ∼= M for some n ≥ 1. The
module M cannot be projective, because if it was, τM = (0). So, it has infinite
projective dimension by 2.3.7. Further, τnM ∼= νnΩ2nM by 2.3.6 and we then
have that Ω2nM ∼= ν−nM . So, looking at a minimal projective resolution of M

0MP 0P 1· · ·P 2n−1ν−nP 0· · ·

ν−nM ΩM
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we see that b = max{β0(M), ..., β2n−1(M)} gives βi(M) ≤ b for all i ≥ 0 by the
properties of ν. That is, cx(M) = 1 by 3.2.2.

We end this chapter with a proposition in which we investigate the connection
between the complexities of the non-projective modules in a component of the
Auslander-Reiten quiver of a selfinjective Artin algebra. It should be noted that
we say we have a module M in a component of the Auslander-Reiten quiver, but
what is meant is actually that a representative of the isomorphism class of M is
in the corresponding component of indR. This sloppy notation is used in the rest
of the thesis. It should also be noted that whenever we say that a module is in a
component of the Auslander-Reiten quiver, the module is obviously indecompos-
able.

Proposition 3.2.5. [6, Proposition 2.2] If R is a selfinjective Artin algebra and
C is a component of the Auslander-Reiten quiver of R, then all the non-projective
modules in C have the same complexity.

Proof. Let
0 τM ⊕sk=1Bk M 0

be an almost split sequence ending at a non-projective R-moduleM in C where the
Bk’s are indecomposable. Now, assume Bj is non-projective for some j ∈ {1, .., s}.
By 3.2.2, we have that

cx(Bj) ≤ max{cx(B1), ..., cx(Bs)} = cx(⊕sk=1Bk) ≤ max{cx(τM), cx(M)}.

Furthermore, again by 3.2.2, we have that cx(τM) = cx(M), so cx(Bj) ≤ cx(M).
Moreover, since Bj is non-projective by assumption, we have an almost split se-
quence ending at Bj

0 τBj τM ⊕B Bj 0

where B is an R-module, not necessarily indecomposable. Again, using 3.2.2 we
get that

cx(M) = cx(τM) ≤ max{cx(τM), cx(B)} = cx(τM ⊕B) ≤ max{cx(τBj), cx(Bj)}.

The fact that cx(τBj) = cx(Bj) by 3.2.2 then implies that cx(M) ≤ cx(Bj).
That is, cx(M) = cx(Bj). Thus, for all the non-projective Bk’s we have that
cx(Bk) = cx(M).

Repeating this argument, we are done.
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That is, we know that all of the modules in a regular (or stable) component of the
Auslander-Reiten quiver of a selfinjective Artin algebra have the same complexity.
Applying 3.2.2 we then see that if one module in such a component has bounded
Betti numbers, then all modules in the component have bounded Betti numbers.
We are now ready to define Ω-perfect maps and modules. This is the main subject
of Chapter 4.



Chapter 4

Ω-perfect modules

This chapter focuses on Ω-perfect modules. Both [6] and [7] define Ω-perfect
modules, but slightly different. Here, we use the definition found in [7] since this
makes it possible to present the results in a uniform way. We start by presenting
the chosen definition of Ω-perfect modules and some related results. In the second
and last part of the chapter we present eventually Ω-perfect maps and modules.
In the entire chapter, R is assumed to be a connected selfinjective Artin algebra if
we have not specified otherwise and all R-modules are finitely generated.

4.1 Definition and properties

We need to introduce Ω-perfect irreducible maps to be able to define Ω-perfect
modules.

Definition 4.1.1. [7] An irreducible morphism g : B−→C is called an Ω-perfect
morphism if for all n ≥ 0 the induced maps Ωng : ΩnB−→ΩnC are all monomor-
phisms or all epimorphisms.

So, if an irreducible morphism g is Ω-perfect, we know that Ωng is an Ω-perfect
morphism for all n ≥ 0 as well. We now give the definition of Ω-perfect modules.

Definition 4.1.2. [7] An indecomposable R-module C is called an Ω-perfect mod-
ule if it is non-projective and every irreducible map B−→C and every irreducible
map τC−→B is Ω-perfect.

So, whenever we mention Ω-perfect modules they are obviously indecomposable. It
should be noted that B in the chosen definition is not necessarily indecomposable.
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In [6], B is assumed to be indecomposable. The definition of Ω-perfect modules in
[6] also requires that no syzygy of C or C itself is simple. We later prove that our
chosen definition gives us that ΩnC cannot be simple for n ≥ 2. First, we present
a direct consequence of the definition.

Proposition 4.1.3. Let R be a selfinjective Artin algebra and let B be an Ω-perfect
R-module and A an R-module, not necessarily indecomposable.

(1) If an irreducible morphism g : A−→B is an epimorphism (monomorphism),
then so is an irreducible morphism ΩmτnA−→ΩmτnB with n ≥ 0, m ≥ 0.

(2) If an irreducible morphism f : τB−→A is an epimorphism (monomorphism),
then so is an irreducible morphism Ωmτn+1B−→ΩmτnA with n ≥ 0, m ≥ 0.

Proof.

(1) Assume B is Ω-perfect and that g : A−→B is an irreducible epimorphism.
Then, for m ≥ 0, n ≥ 0, by definition Ωm+2ng : Ωm+2nA−→Ωm+2nB is an
epimorphism. That is `(Ωm+2nA) > `(Ωm+2nB). Now, by 2.3.4 and 2.3.6 we
know that

`(ΩmτnA) = `(Ωm+2nA) > `(Ωm+2nB) = `(ΩmτnB).

So, an irreducible morphism ΩmτnA−→ΩmτnB is an epimorphism.

A similar length argument holds in the case where g : A−→B is an irreducible
monomorphism.

(2) Assume B is Ω-perfect and that f : τB−→A is an irreducible epimorphism.
Then, for m ≥ 0, n ≥ 0, by definition Ωm+2nf : Ωm+2nτB−→Ωm+2nA is an
epimorphism. That is `(Ωm+2nτB) > `(Ωm+2nA). Now, by 2.3.4 and 2.3.6
we know that

`(Ωmτn+1B) = `(Ωm+2nτB) > `(Ωm+2nA) = `(ΩmτnA).

So, an irreducible morphism Ωmτn+1B−→ΩmτnA is an epimorphism.

A similar length argument holds in the case where g : A−→B is an irreducible
monomorphism.

As previously mentioned, we want to prove that another consequence of our cho-
sen definition is that ΩnC cannot be simple for n ≥ 2. To do this, we first need
the following four results. Note that the first one holds for all Artin algebras, not
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necessarily selfinjective.

Lemma 4.1.4. [6, Proposition 2.5] Let R be an Artin algebra and

0 A B C 0
g

be a short exact sequence of R-modules with g irreducible and A non-simple. Then

(1) We have a split exact sequence

0 A/JA B/JB C/JC 0.
f̄ ḡ

(2) JA = A ∩ JB, where J is the Jacobson radical of R.

Proof. Let

0 A B C 0
f g

be a short exact sequence of R-modules where g is irreducible. The module A is
indecomposable since it is the kernel of an irreducible epimorphism by [4, Propo-
sition V.5.7]. Then, using [4, Proposition I.3.1], we know that A being non-simple
implies that (0) 6= JA ⊆ A. We can factorize the irreducible morphism g in the
following way

B C

B/f(JA)
s t

g

where s is defined such that for b ∈ B we have b 7→ b + f(JA) and further t is
defined such that for b + f(JA) ∈ B/f(JA) we have b + f(JA) 7→ g(b). The
factorization, g = ts is well-defined since f(JA) ⊆ Im f = Ker g. The map f is a
monomorphism, so since JA 6= (0), we have f(JA) 6= (0). The modules have finite
length, so since `(B/f(JA)) < `(B), the morphism s cannot be a monomorphism.
This implies that t is a split epimorphism by the definition of an irreducible map.

We now want to investigate a short exact sequence containing t. We know that
Im f = Ker g. Let a ∈ A, then

0 = gf(a)

= ts(f(a))

= t(f(a) + f(JA))

= t(f̂(a+ JA))
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where f̂ : A/JA → B/f(JA) is defined by f̂(a + JA) = f(a) + f(JA). So, then
Im f̂ ⊆ Ker t. We now want to show that Ker t ⊆ Im f̂ . Let b+f(JA) ∈ Ker t, that
is, by the definition of t we have 0 = t(b+f(JA)) = g(b). So, b ∈ Ker g = Im f and
we have an a ∈ A such that f(a) = b. Then b+f(JA) = f(a)+f(JA) = f̂(a+JA),
so b+ f(JA) ∈ Im f̂ and Ker t ⊆ Im f̂ . In total, Im f̂ = Ker t.

Further, we show that f̂ is 1-1. Let a+ JA be in A/JA such that f̂(a+ JA) = 0̄.
That is, f(a) + f(JA) = 0̄ and moreover f(a) ∈ f(JA). That is, f(a) = f(x) for
some x ∈ JA. Since f is 1-1 we then know that x = a and therefore a ∈ JA. So,
f̂ is 1-1 and we have the following exact sequence

0 A/JA B/f(JA) C 0
f̂ t

which is exact. Recall that the sequence splits since t splits. The splitting gives
us an f̂ ′ such that f̂ ′f̂ = 1A/JA. We now tensor with R/J ⊗R − and get

0 R/J ⊗R A/JA R/J ⊗R B/f(JA) R/J ⊗R C 0
1⊗Rf̂ 1⊗Rt

where 1 denotes the identity on R/J . In general the tensor product is a right
exact functor, but as a result of the splitting of the sequence containing t we get
exactness on the left as well as on the right. Further, we have the commutative
diagram

0 A/JA B/JB C/JC 0

0 R/J ⊗R A/JA R/J ⊗R B/f(JA) R/J ⊗R C 0

f̄ ḡ

1⊗Rf̂ 1⊗Rt

α∼= β∼= γ∼=

where α, β and γ are all isomorphisms, and f̄ and ḡ are defined as in Subchapter
2.1. Since the upper sequence is split exact we also have that the bottom one is
split exact. We can now construct the commutative diagram

0 0 0

0 A/JA B/JB C/JC 0

0 A B C 0

JA JB JC

0 0 0

f̄ ḡ

f g
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where the maps JX → X are inclusions and the maps X → X/JX are defined
such that x 7→ x+ JX for x ∈ X. It is easy to show that the diagram commutes.
The bottom sequence is exact as a result of the previous argument. By Snake
Lemma, [13, Theorem 6.5], we get that

0 JA JB JC 0

is exact and therefore JA = Ker g ∩ JB = A ∩ JB.

Remark. The reader should recall how f̂ and t are defined in the previous propo-
sition. Furthermore, it should be noted that since g is an epimorphism we know
that t is an epimorphism without any assumption about A. That is, if

0 A B C 0
f g

is a short exact sequence with g irreducible, then

0 A/JA B/f(JA) C 0
f̂ t

is a short exact sequence. This is used in 4.1.7.

The next lemma and its corollary is of importance in several upcoming proofs.

Lemma 4.1.5. Let R be a selfinjective Artin algebra and let

0 A B C 0
g

be a short exact sequence of R-modules. If Ωg : ΩB−→ΩC is an epimorphism,
then we have the following commutative diagram

0 0 0

0 A B C 0

0 P (A) P (B) P (C) 0

ΩA ΩB ΩC

0 0 0

0 0

g

Ωg

pB pC
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In particular,

0 ΩA ΩB ΩC 0
Ωg

is an exact sequence.

Proof. We construct the commutative diagram in the manner described below.

Cokerα 0 0

0 A B C 0

0 Ker β P (B) P (C) 0

Kerα ΩB ΩC

0 0 0

0 0

0

g

β

Ωg

α pB pC

Let pB and pC be the projective covers of B and C, respectively. The module
P (B) is projective, so as a result of pC being an epimorphism we have a map
β : P (B)−→P (C). The composition gpB is an epimorphism, so since pC is an
essential epimorphism, β is an epimorphism, that is, the sequence containing β
splits and P (B) ∼= P (C)⊕Ker β. So, Ker β is projective. By [14, Proposition 2.71]
we have the morphism α. Further, the map Ωg is an epimorphism by assumption.
The Snake Lemma, [13, Theorem 6.5] then gives us that Cokerα = (0) and that
Kerα−→ΩB is a monomorphism. Assume α is not the projective cover of A.
Then Kerα ∼= P ′ ⊕ ΩA, where P ′ is a non-zero projective module. This gives
a contradiction as ΩB cannot have a non-zero projective summand. So Ker β =
P (A), the map α : P (A)−→A is a projective cover and then Kerα = ΩA. So, we
have an exact sequence

0 ΩA ΩB ΩC 0

That is, ΩA = Kerα ∼= Ker Ωg.

If g in the previous lemma is an Ω-perfect irreducible epimorphism we get the
following immediate consequence.

Corollary 4.1.6. Let R be a selfinjective Artin algebra and let

0 A B C 0
g
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be a short exact sequence of R-modules with g an Ω-perfect irreducible epimor-
phism. Then

0 ΩnA ΩnB ΩnC 0
Ωng

is an exact sequence for all n ≥ 0.

Proof. Since g is Ω-perfect we know that Ωg is an epimorphism. By 4.1.5, we have
the following short exact sequence

0 ΩA ΩB ΩC 0.
Ωg

Moreover, since g is Ω-perfect, the morphism Ω2g : Ω2B−→Ω2C is also an epimor-
phism and, again using 4.1.5, we have the following short exact sequence

0 Ω2A Ω2B Ω2C 0
Ω2g

where Ω2g is irreducible. Since g is Ω-perfect we know that Ωng is an epimorphism
for all n ≥ 0 and we proceed by induction and get an exact sequence

0 ΩnA ΩnB ΩnC 0
Ωng

with Ωng irreducible for all n ≥ 0.

We continue with the last result we need before we can prove that most syzygies
of an Ω-perfect module are not simple. The upcoming lemma is also important
later in the thesis. We prove that the only way the syzygy takes an irreducible
epimorphism into an irreducible monomorphism is if the kernel of the epimorphism
is simple.

Lemma 4.1.7. [6, Corollary 2.6] Let R be a selfinjective Artin algebra and let

0 A B C 0
g

be a short exact sequence of R-modules with g irreducible. Then the induced ir-
reducible map Ωg : ΩB−→ΩC is an epimorphism if and only if A is not a simple
module. If A is simple, then Ωg is an irreducible monomorphism and we have an
induced exact sequence

0 ΩB ΩC A 0
Ωg
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Proof. Assume A is not simple. By Horseshoe Lemma [13, Theorem 6.20] we
have the following commutative diagram

0 0 0

0 A B C 0

0 P (A) P (A)⊕ P (C) P (C) 0

ΩA Kerα ΩC

0 0 0

0 0

g

β

pA α pC

where the maps pA and pC are projective covers of A and C, respectively. We want
to show that α is a projective cover as well, so that Kerα = ΩB. Tensoring with
R/J ⊗R − we get the commutative diagram

0 A/JA B/JB C/JC 0

0 P (A)/JP (A) P (A)/JP (A)⊕ P (C)/JP (C) P (C)/JP (C) 0

f̄ ḡ

γ∼= δ∼=

where the bottom sequence is exact by 4.1.4. By [4, Proposition I.4.3] we know
that the induced epimorphisms γ and δ are isomorphisms. Using Snake Lemma,
[13, Theorem 6.5], we get that P (A)/JP (A)⊕ P (C)/JP (C) ∼= B/JB. So, by [4,
Proposition I.4.3], α is projective cover of B, so Kerα = ΩB and Ωg : ΩB−→ΩC
is an epimorphism.

We now assume Ωg : ΩB−→ΩC is an epimorphism. By 4.1.5 we have the fol-
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lowing commutative diagram

0 0 0

0 A B C 0

0 P (A) P (B) P (C) 0

ΩA ΩB ΩC

0 0 0

0 0

g

β

Ωg

pB pC

Tensoring with R/J ⊗R − we get the diagram

0 A/JA B/JB C/JC 0

0 P (A)/JP (A) P (B)/JP (B) P (C)/JP (C) 0

f̄ ḡ

γ∼= ε∼= δ∼=

where γ, ε and δ, the induced epimorpisms, are isomorphisms ([4, Proposition
I.4.3]). The sequence containing β in the previous diagram splits, so we know that
the sequence

0 P (A)/JP (A) P (B)/JP (B) P (C)/JP (C) 0

is left exact and splits. As γ, ε and δ are isomorphisms it is easy to show that the
bottom sequence is left exact and splits as well. Further, we can now construct
the following commutative diagram

0 A/JA B/JB C/JC 0

0 A/JA B/f(JA) C 0

f̄ ḡ

f̂ t

k l m

where f̂ and t are defined as in the proof of 4.1.4. Note that t is actually an
epimorphism since g is an epimorphism, but initially we do not know if t splits,
as we did in 4.1.4. The map k is the identity, l sends b + f(JA) ∈ B + f(JA)
to b + JB and m sends c ∈ C to c + JC. It is easy to check that the diagram
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commutes. Since the bottom sequence splits, the upper sequence splits as well. If
A is simple, then JA = (0) and then upper sequence reduces to

0 A B C 0
f g

by the definition of f̂ and t. That is, g splits, a contradiction to it being irre-
ducible. So A is not simple.

We assume A is simple. We have

0 A B C 0
g

a short exact sequence of R-modules with g irreducible, and an induced irreducible
map Ωg : ΩB−→ΩC. If Ωg is an epimorphism we know by the previous argument
that A is non-simple, so Ωg is a monomorphism. We can construct the following
commutative diagram

0

Coker β 0 0

0 A B C 0

0 Kerα P (B) P (C) 0

0 ΩB ΩC

0 0

Coker Ωg 0

g

α

Ωg

β′

β pB pC

Let pB and pC be the projective covers of B and C, respectively. The map α
exists since pC is an epimorphism and P (B) is projective. Since pC is an essential
epimorphism and the diagram commutes we have that α is an epimorphism. The
morphism Ωg is a monomorphism independent of the choice of α, so the kernel is
zero. By [14, Proposition 2.71] we have β. By the Snake Lemma [13, Theorem
6.5], we get that Coker β ∼= Coker Ωg and Kerα ∼= Ker β′. The module A is
simple by assumption, so Ker β′ is A or (0). If Ker β′ = Im β is equal to A, then
Coker Ωg ∼= Coker β = A/ Im β = (0) and Ωg is an isomorphism, so it splits. This
contradicts the fact that Ωg is irreducible. We conclude that Ker β′ = (0), so
Coker β ∼= A, and we have the exact sequence

0 ΩB ΩC A 0.
Ωg
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We are now able to show our desired result. That is, the requirement that all
syzygies of an Ω-perfect module is not simple given in the definition of Ω-perfect
modules in [6] actually holds for all syzygy powers greater or equal to two when
we use the chosen definition in [7]. In other words, if C is an Ω-perfect module,
then ΩnC is not simple for n ≥ 2.

Proposition 4.1.8. [7, Lemma 2.2] Let R be a selfinjective Artin algebra and C
an Ω-perfect module. Then ΩnC is not a simple module, for n ≥ 2.

Proof. Assume C is Ω-perfect. We now look at an almost split sequence ending at
C

0 τC B C 0
g

where B is not necessarily indecomposable. So, g is an Ω-perfect epimorphism and
by 4.1.6 we know that

0 ΩnτC ΩnB ΩnC 0
Ωng

is an exact sequence for all n ≥ 0. Furthermore, by 4.1.7, we then know that ΩnτC
is not simple for n ≥ 0. That is, using 2.3.5 we have that ΩnτC ∼= ΩnνΩ2C is not
simple for n ≥ 0. Since ν preserves length by 2.3.4 and commutes with Ω by 2.3.6,
we know that Ωn+2C is not simple for n ≥ 0, which is what we wanted to show.

The structure of almost split sequences ending at a syzygy of an Ω-perfect module
is of importance in later proofs. The next result gives us further knowledge of such
almost split sequences.

Proposition 4.1.9. [6, Proposition 2.4] Let R be a selfinjective Artin algebra. Let
C be an Ω-perfect R-module, and let

0 τC E C 0

be an almost split sequence ending at C. Then, for each n ≥ 1,

0 ΩnτC ΩnE ΩnC 0

is also an almost split sequence.
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Proof. By assumption,

0 τC E C 0

is an almost split sequence. From 2.3.8 we then get that

0 ΩτC ΩE ⊕ P ΩC 0

is an almost split sequence where P is indecomposable projective-injective or zero.
Assume P 6= (0). Then, by 2.3.10, Ω2C is simple, and this contradicts 4.1.8 since
C is Ω-perfect. So P = (0). That is

0 ΩτC ΩE ΩC 0

is an almost split sequence.

Since C is Ω-perfect we know that ΩnC is not simple for n ≥ 2 by 4.1.8 and
the result now follows by induction.

As we did for both Betti numbers and complexity, we now present a proposition
with some elementary properties of Ω-perfect modules.

Proposition 4.1.10. [Properties of Ω-perfect modules] Let R be a selfinjective
Artin algebra and C an Ω-perfect module. Then

(1) There are no irreducible morphisms from projective modules to C.

(2) ΩnC is an Ω-perfect module for all n ≥ 0.

(3) τnC is an Ω-perfect module for all n ≥ 0.

(4) νC is an Ω-perfect module for all n ≥ 0.

Proof.

(1) Let P−→C be an irreducible morphism where P is projective. The map
is a monomorphism or an epimorphism since it is irreducible. If it is a
monomorphism it splits since P is injective when R is selfinjective. This
contradicts the definition of irreducible morphisms, so it is an epimorphism.
But then, since C is Ω-perfect, (0) = ΩP−→ΩC 6= (0) is an epimorphism, a
contradiction.
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Before we prove the next three statements separately, we look at an almost split
sequence ending at C

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...gt)

(4.1)

with each Ei indecomposable. By (1) we know that none of the Ei’s are projective.

(2) By (4.1) and 4.1.9 we have an almost split sequence

0 ΩnτC ΩnE1 ⊕ ...⊕ ΩnEt ΩnC 0
(Ωnf1,...,Ωnft)T (Ωng1,...,Ωngt)

(4.2)

ending at ΩnC for all n ≥ 0. Recall that none of the modules in the almost
split sequence are projective. Furthermore, the irreducible morphisms ending
at ΩnC, for some n ≥ 0, are of type ΩnB−→ΩnC, where B is a finite sum
of some of the modules {E1, ..., Et} and each Ei occurs at most once in the
sum. Moreover, the irreducible morphisms starting at τΩnC ∼= ΩnτC are of
type ΩnτC−→ΩnB, with B as before. We now want to show that ΩnC is
Ω-perfect for n ≥ 0.

We know that C is Ω-perfect, so the irreducible morphisms ΩsB−→ΩsC are
epimorphisms for all s ≥ 0 or monomorphisms for all s ≥ 0. That is, for a
chosen n ≥ 0 we know that the irreducible morphisms Ωm(ΩnB)−→Ωm(ΩnC)
are epimorphisms for all m ≥ 0 or monomorphisms for all m ≥ 0.

Similarily, since C is Ω-perfect we know that the irreducible morphisms
ΩsτC−→ΩsB are epimorphisms for all s ≥ 0 or monomorphisms for all
s ≥ 0. That is, for a chosen n ≥ 0 we know that the irreducible morphisms
Ωm(ΩnτC)−→Ωm(ΩnB) are epimorphisms for all m ≥ 0 or monomorphisms
for all m ≥ 0.

So, the irreducible morphisms ΩnB−→ΩnC and ΩnτC−→ΩnB are Ω-perfect.
That is, all irreducible morphisms ending at ΩnC and starting at τΩnC are
Ω-perfect and therefore the non-projective module ΩnC is Ω-perfect.

(3) By 2.3.11, (4.1), (4.2) and 2.3.13 we have that

0 τnτC τnE1 ⊕ ...⊕ τnEt τnC 0
(τnf1,...,τnft)T (τng1,...,τngt)

is an almost split sequence ending at τnC for all n ≥ 0. Recall that none
of the modules in the sequence are projective. Moreover, the irreducible
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morphisms ending at τnC, for some n ≥ 0, are of type τnB−→τnC, where
B is a finite sum of some of the modules {E1, ..., Et} and each Ei occurs
at most once in the sum. Moreover, the irreducible morphisms starting at
τnτC ∼= ττnC are of type τnτC−→τnB, with B as before.

Since C is Ω-perfect, by 4.1.3, we know that for a given n ≥ 0 the irre-
ducible morphisms Ωm(τnB)−→Ωm(τnC) are epimorphisms for all m ≥ 0 or
monomorphisms for all m ≥ 0.

Again, since C is Ω-perfect, by 4.1.3, we know that for a given n ≥ 0 the
irreducible morphisms Ωm(τnτC)−→Ωm(τnB) are epimorphisms for all m ≥
0 or monomorphisms for all m ≥ 0.

That is, for n ≥ 0, all irreducible morphisms ending at τnC and starting
at ττnC are Ω-perfect and therefore the non-projective module τnC is an
Ω-perfect module.

(4) From the almost split sequence (4.1) and 2.3.4 we get the following almost
split sequence ending at νC

0 ντC νE1 ⊕ νE2 ⊕ ...⊕ νEt νC 0.

Furthermore, by 2.3.4, we know that none of the modules in the sequence is
projective. The irreducible morphisms ending at νC are of type νB−→νC
where where B is a finite sum of some of the modules {E1, ..., Et} and each
Ei occurs at most once in the sum. Moreover, the irreducible morphisms
starting at ντC ∼= τνC are of type ντC−→νB, with B as before.

The module C is Ω-perfect, so the irreducible morphisms ΩsB−→ΩsC are
epimorphisms for all s ≥ 0 or monomorphisms for all s ≥ 0. That is,
`(ΩsB) > `(ΩsC) for all s ≥ 0 or `(ΩsB) < `(ΩsC) for all s ≥ 0. So,
by 2.3.4 and 2.3.6, we know that `(Ωs(νB)) > `(Ωs(νC)) for all s ≥ 0 or
`(Ωs(νB)) < `(Ωs(νC)) for all s ≥ 0. That is, the irreducible morphisms
Ωs(νB)−→Ωs(νC) are epimorphisms for all s ≥ 0 or monomorphisms for all
s ≥ 0.

Similarily, since C is Ω-perfect we know that the irreducible morphims
ΩsτC−→ΩsB are epimorphisms for all s ≥ 0 or monomorphisms for all
s ≥ 0. So, `(ΩsτC) > `(ΩsB) for all s ≥ 0 or `(ΩsτC) < `(ΩsB) for all
s ≥ 0. Then, by 2.3.4 and 2.3.6 we know that `(Ωs(ντC)) > `(Ωs(νB))
for all s ≥ 0 or `(Ωs(ντC)) < `(Ωs(νB)) for all s ≥ 0. That is, the irre-
ducible morphisms Ωs(ντC)−→Ωs(νB) are epimorphisms for all s ≥ 0 or a
monomorphisms for all s ≥ 0.
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So, all irreducible morphisms ending at νC and starting at τνC are Ω-perfect.
That is, νC is Ω-perfect.

The next result proves important in later parts of the thesis. Among other things
we look at how the Betti numbers of the modules in an almost split sequence end-
ing at an Ω-perfect module are connected.

Proposition 4.1.11. [6, Proposition 2.8] Let R be a selfinjective Artin algebra
and let

0 A B C 0
g

be a short exact sequence of finitely generated R-modules, where C is an inde-
composable module and the map g is irreducible. Assume further that either (I)
the map g is Ω-perfect, or (II) the sequence is an almost split sequence with C
Ω-perfect. Then

(1) The module A is not simple. Furthermore, if we assume that B is indecom-
posable in the case where g is Ω-perfect, B has no projective summands.

(2) For every n ≥ 0, there is an induced short exact sequence

0 ΩnA ΩnB ΩnC 0
Ωng

and the map Ωng is irreducible. Moreover, for each n ≥ 0, τng is an irre-
ducible epimorphism.

(3) For each n ≥ 0, we have that βn(B) = βn(A) + βn(C).

Proof.

(1) The module A is clearly indecomposable being the kernel of an irreducible
epimorphism by [4, Proposition V.5.7].

(I) Assume that g is Ω-perfect and B is indecomposable. If B has non-
zero projective summands it is itself projective since it is assumed to be
indecomposable. The module C cannot be projective, because if it was, the
map would split, which contradicts it being irreducible. But then if B is
projective, since g is Ω-perfect, we have that (0) = ΩB−→ΩC 6= (0) is an
epimorphism, a contradiction. So, the indecomposable module B is not pro-
jective and hence has no projective summands. Since Ωg : ΩB−→ΩC is an
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irreducible epimorphism, by 4.1.7, A is not simple.

(II) Assume the sequence is almost split and C is Ω-perfect. If B had a non-
zero projective summand we would have an Ω-perfect map from a projective
module to C and this cannot be by 4.1.10. Further, since C is Ω-perfect,
Ω2C is not simple by 4.1.8. The Nakayama functor ν preserves length by
2.3.4, so using this and 2.3.5 we have that A = τC ∼= νΩ2C is not simple.

(2) (I) We assume g is an irreducible Ω-perfect epimorphism. Then the result
follows from 4.1.6. Recall that Ωng is irreducible by Subchapter 2.3.

(II) Now assume the sequence is almost split and C is Ω-perfect. Then,
the result follows from 4.1.9.

In both (I) and (II), using 2.3.13 we know that τng is an irreducible epimor-
phism for all n ≥ 0.

(3) (I) and (II). By (2) for n ≥ 0 we know that

0 ΩnA ΩnB ΩnC 0
Ωng

is a short exact sequence and furthermore that Ωn+1g : Ωn+1B−→Ωn+1C is
an epimorphism. That is, by 4.1.5 we have the commutative diagram

0 0 0

0 ΩnA ΩnB ΩnC 0

0 P (ΩnA) P (ΩnB) P (ΩnC) 0

Ωn+1A Ωn+1B Ωn+1C

0 0 0

0 0

Ωng

α

Ωn+1g

That is, P (ΩnB) ∼= P (ΩnA) ⊕ P (ΩnC) for all n ≥ 0. So, βn(B) = βn(A) +
βn(C) for all n ≥ 0, and we are done.

The structure of almost split sequences ending at modules with different properties
is of interest in this thesis. The following lemma is general, and holds for any short
exact sequence.



4.1. DEFINITION AND PROPERTIES 57

Lemma 4.1.12. Let

0 A B1 ⊕B2 C 0
(f1,f2)T (g1,g2)

be a short exact sequence. Then

(a) f1 (f2) is an epimorphism ⇐⇒ g2 (g1) is an epimorphism.

(b) f1 (f2) is a monomorphism ⇐⇒ g2 (g1) is a monomorphism.

(c) Coker f1
∼= Coker g2 and Coker f2

∼= Coker g1.

(d) Ker f1
∼= Ker g2 and Ker f2

∼= Ker g1.

Proof.

(a) The sequence is exact, so g1f1 + g2f2 = 0 and further g1f1 = (−g2)f2. Then,
the square in the following diagram commutes

YSS

β

ll

α

``

∃!Θ′

COO

−g2

oo g1
B1OO

f1

B2
oo

f2
A

We want to show that for each triple (Y, α, β) with the property that αf1 =
βf2, we have a unique Θ′ : C−→Y such that Θ′g1 = α and Θ′(−g2) = β. We
have the following diagram

0 A B1 ⊕B2 C 0

Y

(f1,f2)T (g1,g2)

(α,−β)

We want to show that there exists a unique Θ′ such that Θ′·(g1, g2) = (α,−β).
For all c ∈ C there exists a b ∈ B1 ⊕ B2 such that (g1, g2)b = c. We define

Θ′ such that Θ′(c) = (α,−β)b. This is well-defined since (α,−β) ·
( f1

f2

)
=
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αf1 − βf2 = 0, that is, Ker(g1, g2) = Im(f1, f2)T ⊆ Ker(α,−β). So, we
have that Θ′ · (g1, g2) = (α,−β). We now want to show that Θ′ is unique.
Assume there exists another Ψ such that Ψ · (g1, g2) = (α,−β). Then
Θ′(g1, g2)(b) = (α,−β)(b) and Ψ(g1, g2)(b) = (α,−β)(b) for all b ∈ B1 ⊕ B2.
Then, since (g1, g2) is an epimorphism we know that Θ′(c) = Ψ(c) for all
c ∈ C. That is, Θ′ = Ψ.

So Θ′ is unique and Θ′g1 = α and Θ′g2 = −β and we have a pushout.
By [13, Exercise 2.30] parallel arrows have isomorphic cokernels, so f2 is
a epimorphism ⇐⇒ g1 is a epimorphism. Similarily, g2 is a epimorphism
⇐⇒ f1 is a epimorphism.

(b) Again, the sequence is exact, so g1f1 + g2f2 = 0 and further g1f1 = g2(−f2).
Using this we know that the square in the following diagram commutes

X

t

��

s

##

∃!Θ

  
A

−f2

��

f1 // B1

g1

��
B2 g2

// C

We now want to show that for each triple (X, s, t) with the property that
g2t = g1s we have a unique Θ: X−→A such that f1Θ = s and −f2Θ = t.
We have the following

0 A B1 ⊕B2 C 0

X

(f1,f2)T (g1,g2)

(s,−t)T

and since (g1, g2) ·
( s
−t
)

= g1s − g2t = 0, we have that Im
( s
−t
)
⊆

Ker(g1, g2) = Im
( f1

f2

)
. Then, by the dual arguments of those in (a) we

know that there exists a unique Θ such that
( f1

f2

)
· Θ =

( s
−t
)
, that is

f1Θ = s and f2Θ = −t. Thus, we have a pullback and by [13, Exer-
cise 2.47] we have that parallel arrows have isomorphic kernels. So, f1 is



4.1. DEFINITION AND PROPERTIES 59

a monomorphism ⇐⇒ g2 is a monomorphism. Similarily, f2 is a monomor-
phism ⇐⇒ g1 is a monomorphism.

(c) Follows from the argument in (a).

(d) Follows from the argument in (b).

We now present a result that proves important in many of the upcoming proofs.

Lemma 4.1.13. Let R be a selfinjective Artin algebra and let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be an almost split sequence of R-modules where the Ei’s are non-zero and not
necessarily indecomposable. Furthermore, we assume that all the fi’s and gi’s are
Ω-perfect. Then, for some i ∈ {1, ..., t}, both fi and gi cannot be monomorphisms.

Proof. We assume both fi and gi are a monomorphisms for some i ∈ {1, ..., t}.
Then, gifi : τC−→C would be a proper monomorphism. Furthermore, since the
morphisms are Ω-perfect by assumption, we know that in particular Ω2nfi and
Ω2ngi are monomorphisms for all n ≥ 0. Then, using 2.3.13, we know that τnfi
and τngi are monomorphisms for all n ≥ 0. That is, we have sequence of proper
monomorphisms

· · · τ 3C τ 2C τC C
τ2giτ

2fi τgiτfi gifi

and `(τmC) > `(τm+1C) for all m ≥ 0. The non-projective module C has finite
length, so then there must exist an integer k such that τ kC = (0), a contradiction.

The last three results in this subchapter further explores Ω-perfect modules and
how having such modules can expand our knowledge of almost split sequences and
irreducible morphisms ending at them.

Lemma 4.1.14. [7, Lemma 2.5] Let R be a selfinjective Artin algebra and let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be an almost split sequence of R-modules where the Ei’s are non-zero and not
necessarily indecomposable.
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(a) Assume that gi is an epimorphism for some 1 ≤ i ≤ t. Then for each j 6= i,
fj is an epimorphism.

(b) Assume that fi is a monomorphism for some 1 ≤ i ≤ t. Then for each j 6= i,
gj is a monomorphism.

(c) In particular, if C is Ω-perfect, and some fi is a monomorphism, then gi is an
epimorphism, all the remaining fj’s are epimorphisms, and all the remaining
gj’s are monomorphims.

Proof.

(a) Since gi is an epimorphism for some 1 ≤ i ≤ t, then (g1, ..., gj−1, gj+1, ..., gt)
where only gj is removed for a j 6= i is an epimorphism (or (g2, ..., gt) in the
case where j = 1 and i 6= 1, or (g1, ..., gt−1) when j = t and i 6= t). By 4.1.12
we then know that fj is an epimorphism. This holds for all j 6= i, so fj is an
epimorphism for all j 6= i.

(b) Since fi is a monomorphism for some 1 ≤ i ≤ t, then (f1, .., fj−1, fj+1, ..., ft)
where only fj is removed for a j 6= i is a monomorphism (or (f2, ..., ft) in the
case where j = 1 and i 6= 1, or (f1, ..., ft−1) when j = t and i 6= t). By 4.1.12
we then know that gj is a monomorphism. This holds for all j 6= i, so gj is
a monomorphism for each j 6= i.

(c) Assume that C is Ω-perfect and fi is a monomorphism for an i ∈ {1, ..., t}.
Then, by 4.1.13, we know that gi is an epimorphism and by (a) and (b) we
are done.

We are now able to prove that if we have an irreducible monomorphism between
indecomposable modules ending at an Ω-perfect module, then the module where
the morphism starts is also Ω-perfect.

Lemma 4.1.15. [7, Lemma 2.6] Let R be a selfinjective Artin algebra. Suppose
that f : A−→B is an irreducible monomorphism between indecomposable modules.
If B is Ω-perfect, then so is A.

Proof. Recall that A cannot be projective by 4.1.10. We begin by arguing that
there cannot be any non-zero indecomposable projective summand of the middle
term of the almost split sequence ending at A. Assume there is such a projective
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summand of the middle term. That is, we have an almost split sequence

0 τA D ⊕ P A 0

where τB is a summand of D. If P 6= (0) we know that the morphism P−→A is
an epimorphism, or else it splits which is a contradiction to it being irreducible.
But then, by 4.1.14 we know that τA−→τB is an epimorphism. This cannot be
by 4.1.3. So, there are no non-zero projective modules in the middle term of the
almost split sequence ending at A.

We now look at an almost split sequence ending at ΩnA for some n ≥ 0. By
repeatedly using 2.3.8 we know that such an almost split sequence is

0 ΩnτA ΩnD ⊕ P ′ ΩnA 0

where P ′ is indecomposable if it is non-zero and ΩnτB is a summand of ΩnD.
If P ′ 6= (0), resuming the previous argument we have that ΩnτA−→ΩnτB is an
epimorphism by 4.1.14, a contradiction to 4.1.3. So, an almost split sequence
ending at ΩnA where n ≥ 0 cannot have any non-zero projective middle terms.

Now, assume α(A) = 1. That is, the almost split sequence ending at A has
only one middle term, τB, since we cannot have any projective summands of the
middle term.

0 τA τB A 0

By assumption, B is Ω-perfect, so since A−→B is a monomorphism we now that
ΩkτA−→ΩkτB is a monomorphism for k ≥ 0 by 4.1.3. The morphism τB−→A is
an epimorphism, and since B is Ω-perfect we know that ΩkτB−→ΩkA is an epi-
morphism for all k ≥ 0. So, in the case where α(A) = 1, the module A is Ω-perfect.

Assume α(A) > 1. We then have the following almost split sequence ending
at A

0 τA τB ⊕ C A 0

where C is non-zero, not necessarily indecomposable and is without projective
summands. From previous arguments we know that an almost split sequence
ending at ΩnA for n ≥ 0 is

0 ΩnτA ΩnτB ⊕ ΩnC ΩnA 0.

That is, ΩnτA−→ΩnτB ⊕ ΩnC is a monomorphism for all n ≥ 0 and ΩnτB ⊕
ΩnC−→ΩnA is an epimorphism for all n ≥ 0. Further, since B is Ω-perfect
we know that ΩnτA−→ΩnτB is a monomorphism for all n ≥ 0 by 4.1.3. By
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4.1.12 we then know that ΩnC−→ΩnA is a monomorphism for all n ≥ 0. If
τB−→A is a monomorphism, then since B is Ω-perfect, both τ k+1A−→τ k+1B and
τ k+1B−→τ kA are monomorphisms for all k ≥ 0 by 4.1.3, and we have an infinite
sequence of proper monomorphisms

· · · τ 2A τA A.

This is not possible, so τB−→A is an epimorphism and moreover ΩnτB−→ΩnA
is an epimorphism for all n ≥ 0 since B is Ω-perfect. Then, again using 4.1.12, we
know that ΩnτA−→ΩnC is an epimorphism for all n ≥ 0. That is, if α(A) = 2 we
are done.

We now write C = D1 ⊕D2 ⊕ ...⊕Dr with r ≥ 2, so

0 τA τB ⊕D1 ⊕ ...⊕Dr A 0

is an almost split sequence ending at A where the Di’s are non-zero, not necessarily
indecomposable and without projective summands. From previous arguments we
know that τA−→τB is a monomorphism and τB−→A is an epimorphism. Then,
by 4.1.14, we know that each map τA−→Di is an epimorphism and each map
Di−→A is a monomorphism for i ∈ {1, ..., r}. Furthermore, we know that

0 ΩnτA ΩnτB ⊕ ΩnD1 ⊕ ...⊕ ΩnDr ΩnA 0

is an almost split sequence for n ≥ 0, where ΩnτB−→ΩnA is an epimorphism, and
ΩnτA−→ΩnτB is a monomorphism. So, by 4.1.14, ΩnτA−→ΩnDi is an epimor-
phism and ΩnDi−→ΩnA is a monomorphism for all n ≥ 0 and i ∈ {1, ..., r}. That
is, the morphisms τA−→Di and Di−→A for i ∈ {1, ..., r} are also Ω-perfect.

It remains to argue that the maps τA−→X and X−→A are Ω-perfect, where
X ∼= τB⊕X ′ and the module X ′ is non-zero, not necessarily indecomposable. We
write the almost split sequence ending at A

0 τA X ⊕D′1 ⊕ ...⊕D′s A 0

where τB is isomorphic to a summand of X, the D′i’s are non-zero, not necessarily
indecomposable without projective summands and s ≥ 1. Since, by a previous
argument, τB−→A is an epimorphism, we know that X−→A is an epimorphism.
Similarily, since we know that τA−→τB is a monomorphism, then τA−→X is a
monomorphism. By 4.1.14 we then know that τA−→D′i is an epimorphism and
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further D′i−→A is a monomorphism for all i ∈ {1, ..., s}. From previous arguments
by applying Ω a certain amount of times we get the almost split sequence

0 ΩnτA ΩnX ⊕ ΩnD′1 ⊕ ...⊕ ΩnD′s ΩnA 0 (4.3)

for all n ≥ 0. From previous arguments we know that ΩnτA−→ΩnτB for n ≥ 0
is a monomorphism, so ΩnτA−→ΩnX is a monomorphism for all n ≥ 0. Further,
ΩnτB−→ΩnA for n ≥ 0 is an epimorphism, so ΩnX−→ΩnA is an epimorphism
for all n ≥ 0. That is, the morphisms τA−→X and X−→A are Ω-perfect. Then,
applying 4.1.14 on the almost split sequence (4.3), we know that τA−→D′i and
D′i−→A for i ∈ {1, ..., s} are Ω-perfect as well.

So, in the case where α(A) > 1 we have also shown that all possible irreducible
morphisms ending at A and starting at τA are Ω-perfect.

In total, A is Ω-perfect.

We end this subchapter with a proposition which further explores irreducible
monomorphisms ending at an Ω-perfect module.

Proposition 4.1.16. [7, Proposition 2.7] Let R be a selfinjective Artin algebra and
let A be Ω-perfect indecomposable module. If there exists an irreducible monomor-
phism to A, then there is a sequence of irreducible monomorphisms

Bn Bn−1 · · · B1 A

such that each Bi is indecomposable and α(Bn) = 1.

Proof. Assume A1−→A is an irreducible monomorphism. Then there exists an
indecomposable summand B1 of A1 such that B1−→A is an irreducible monomor-
phism. It then follows that B1 is Ω-perfect by 4.1.15. If α(B1) = 1 we are done,
so assume α(B1) > 1. Since A is Ω-perfect, by 4.1.3, we know that τB1−→τA is
an irreducible monomorphism as well. We have an almost split sequence ending
at B1

0 τB1 τA⊕D1 ⊕D2 ⊕ ...⊕Dt B1 0

where each Di is indecomposable and non-projective by 4.1.10. Further, by 4.1.14,
all the maps Di−→B1 for i ∈ {1, ..., t} are monomorphisms. We may choose
Di = B2 for one i ∈ {1, ..., t}. Note that we know there is at least one such Di
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since α(B1) > 1. Now if α(B2) = 1 we are done, or else we resume in the same
manner. Since the length of the Bi’s are decreasing as a result of us having proper
monomorphisms, the result follows.

The class of Ω-perfect modules of finite complexity play an important part of
Chapter 5. For instance, we investigate almost split sequences ending at such
modules. Before we are ready to present the results in Chapter 5 we need to define
eventually Ω-perfect modules. This is done in the next subchapter.
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4.2 Eventually Ω-perfect modules

We now define eventually Ω-perfect morphisms and modules, and look at some
results concerning this kind of modules. The last result in this subchapter proves
especially important in Subchapter 5.2.

Definition 4.2.1. An irreducible map g : B−→C is an eventually Ω-perfect mor-
phism if there exists an n ≥ 0 such that Ωmg : ΩmB−→ΩmC is an epimorphism
for all m ≥ n or a monomorphism for all m ≥ n.

From this definition we get the following immediate result.

Proposition 4.2.2. An irreducible morphism B−→C is an eventually Ω-perfect
map if and only if the induced morphism ΩnB−→ΩnC do not change from epi-
morphisms to monomorphisms infinitely many times for n ≥ 0.

Proof. This result follows directly from the definition of eventually Ω-perfect mor-
phisms.

We now introduce eventually Ω-perfect modules.

Definition 4.2.3. [7] An indecomposable module C is an eventually Ω-perfect
module if it is non-projective and ΩnC is Ω-perfect for some n ≥ 0.

We have the following result.

Proposition 4.2.4. Let R be a selfinjective Artin algebra and let C be a non-
projective R-module. If ΩnC is Ω-perfect for some n ≥ 0, then τnC is Ω-perfect
as well.

Proof. By assumption ΩnC is Ω-perfect and then, using 4.1.10, so is Ω2nC. Fur-
thermore, again applying 4.1.10, we know that νnΩ2nC is Ω-perfect. By 2.3.6, we
know that νnΩ2nC ∼= τnC, so we have our result.

That is, if a module C is eventually Ω-perfect, we know that there exists an n ≥ 0
such that τnC is Ω-perfect. As previously mentioned we want to look at com-
ponents containing modules with special properties. The following result is the
first of such kind and it gives us information about the structure of a component
of the Auslander-Reiten quiver of an selfinjective Artin algebra containing a non-
projective indecomposable module with complexity less than the complexity of
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each simple R-module.

Proposition 4.2.5. [6, Proposition 2.7] Let R be a selfinjective Artin algebra and
let C be a component of the Auslander-Reiten quiver containing a non-projective
indecomposable module whose complexity is less than the complexity of every simple
R-module. Then the component is a regular component, and every module lying in
C is eventually Ω-perfect.

Proof. By applying 3.2.5 we know that each non-projective module in C have
complexity less than each simple R-module. We now assume P is a non-zero,
projective-injective R-module in C. Then there would exist an irreducible map
f : P−→M , for some indecomposable R-module M in C. If f was a monomor-
phism, then it would split since P is injective, so f is an epimorphism. We also
recall that M cannot be projective. From 2.1.12 we know that the only almost
split sequence (up to isomorphism) with an indecomposable projective-injective
module P in the middle term is

0 JP P ⊕ JP/S P/S 0

where J is the Jacobson radical and S is the socle of P . Then M ∼= P/S, and we
have the exact sequence

0 S P P/S 0.
f

The module P is indecomposable, so by [4, Proposition II.4.1], the socle of P , and
then the kernel of f , is simple.

We now want to show that f is a projective cover. We first recall that P cannot
be simple by 2.1.12. Furthermore, since S ⊆ JP , we know that J

(
P/S) ∼= JP/S.

Then P/S/J(P/S) ∼= P/JP , so by [4, Proposition I.4.3], f is a projective cover.

So, ΩM ∼= S, and by using 3.2.2 we have that cx(M) = cx(ΩM) = cx(S), a
contradiction. That is, we cannot have any non-zero projective-injective modules
in C. That is, C is regular.

Now let

0 τN E1 ⊕ E2 ⊕ ...⊕ Et N 0

be an almost split sequence for an arbitrary R-module N in the component where
the Ei’s are indecomposable. Furthermore, we assume g : B−→C is an irreducible
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morphism either ending at N or starting at τN . That is, the morphism g can be
read such that B is a finite sum of some of the Ei’s, each occurring at most once,
and C = N or B = τN and C is a finite sum of some of the Ei’s, each occurring at
most once. Recall that none of the Ei’s is projective since the component is regular.

We first assume g is an epimorphism. That is, we have the following exact se-
quence

0 Ker g B C 0.
g

Furthermore, we assume that the kernel of g is simple. By 3.2.2 (6), we know
that cx(Ker g) ≤ max{cx(B), cx(C)}. Moreover, by 3.2.2 (5) and the fact that
any module in the regular component has complexity less than the complexity of
each simple R-module, we know that max{cx(B), cx(C)} will be strictly less than
the complexity of each simple R-module. That is, we have a contradiction to the
assumption that Ker g is simple. So, Ker g is not simple and therefore Ωg is an
irreducible epimorphism by 4.1.7. Since cx(ΩjX) = cx(X) for all non-projective
R-modules X and j ≥ 0 by 3.2.2, using the same argument we see that the kernel
of Ωg cannot be simple either, so Ω2g is an epimorphism as well. Repeating the
argument we get that Ωmg is an epimorphism for all m ≥ 0. That is, g is an
Ω-perfect epimorphism.

Now, assume g is a monomorphism. If Ωmg is a monomorphism for all m ≥ 0, we
know that g is eventually Ω-perfect, in particular it is Ω-perfect. So assume there
exists an n ≥ 0 such that Ωng is an irreducible epimorphism. Then, repeating the
argument above, Ωlg is an epimorphism for all l ≥ n, so g is eventually Ω-perfect.

We have shown that if g is an epimorphism, then Ωmg is an epimorphism for
all m ≥ 0. Moreover, if g is a monomorphism, then either Ωmg is a monomor-
phism for all m ≥ 0 or there exists an n ≥ 0 such that Ωlg is an epimorphism
for all l ≥ n. That is, there exists an even integer k ≥ 0 such that applying Ωk

to each of the different irreducible morphisms ending at N and starting at τN
gives Ω-perfect morphisms. By 2.3.8 and 2.3.13 combined with the fact that the
component is regular we know that an almost split sequence ending at ΩkN for
the same even integer k is

0 ΩkτN ΩkE1 ⊕ ΩkE2 ⊕ ...⊕ ΩkEt ΩkN 0.

That is, all the irreducible morphisms ending at the non-projective module ΩkN
and starting at ΩkτN are Ω-perfect. So, ΩkN is Ω-perfect and furthermore, N is
eventually Ω-perfect.
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In the next proposition we also look at some conditions that guarantees us having
Ω-perfect modules.

Proposition 4.2.6. [7, Proposition 2.4] Let R be a selfinjective Artin algebra
having no Ω-periodic simple modules. Then every indecomposable non-projective
R-module is eventually Ω-perfect.

Proof. Let C be an indecomposable non-projective module. We now want to show
that each irreducible morphism g : B−→C, where B is non-projective, not neces-
sarily indecomposable, is eventually Ω-perfect. Note that we neglect the case when
B is projective, because then there would not be a non-zero map ΩnB−→ΩnC or
ΩnτC−→ΩnB for any n ≥ 1. Assume g is not eventually Ω-perfect. Then, the
maps Ωng would have to change from epimorphisms to monomorphisms infinitely
many times by 4.2.2. Furthermore, by 4.1.7 and the fact that we have a finite
number of simple modules, we have a simple module S and two positive integers
m and n with m < n and the following diagram

0 S ΩnB ΩnC 0

0 S ΩmB ΩmC 0

Ωng

Ωmg

Further, we let k = n −m and apply Ωk to the bottom row in the diagram. We
then obtain the following commutative diagram

0 S ΩnB ΩnC 0

0 ΩkS P ⊕ ΩnB ΩnC 0

Ωng

(f,Ωng)

h (0,1)T

Then, by Snake Lemma [13, Theorem 6.5], we have the following exact sequence

0 S ΩkS P 0.

This implies that P = (0), or else the sequence would split and ΩkS would have a
projective summand, a contradiction. So, then ΩkS ∼= S again a contradiction to
S not being Ω-periodic. That is, g is eventually Ω-perfect. In the same manner, we
can show that every irreducible morphisms f : τC−→B, where B is non-projective
and not necessarily indecomposable, is eventually Ω-perfect.

Now, we have an almost split sequence ending at C

0 τC E1 ⊕ ...⊕ Et ⊕ P ′ C 0
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where Ei is non-projective, indecomposable and P ′ is projective. By repeating
2.3.8 we have an almost split sequence

0 ΩmτC ΩmE1 ⊕ ...⊕ ΩmEt ⊕ Pm ΩmC 0

ending at ΩmC for an m ≥ 1 where Pm is indecomposable projective and ΩmEi 6=
(0) for i ∈ {1, ..., t}. From the previous argument we may assume that the irre-
ducible morphisms from a finite sum of the ΩmEi’s, each represented at most once,
to ΩmC are Ω-perfect. Similarily, we may assume that the irreducible morphisms
from ΩmτC to any finite sum of the ΩmEi’s, each represented at most once, are
Ω-perfect. If it was not for the fact that we might have a non-zero projective
middle term, we would know that C is eventually Ω-perfect.

If Pm = (0), then all irreducible morphisms ending at ΩmC and starting at τΩmC
are Ω-perfect and then C is eventually Ω-perfect and we are done. So, we assume
Pm 6= (0). Then, by 2.3.10 we know that Ωm+1C is simple. We now apply Ω to
the previous sequence and we get the almost split sequence

0 Ωm+1τC Ωm+1E1 ⊕ ...⊕ Ωm+1Et ⊕ Pm+1 Ωm+1C 0

where Pm+1 is projective. If Pm+1 = (0), we are done. Or else, Ωm+2C is simple.
We can now repeat this argument. We know that there is only a finite number
of projective modules. That is, if there is no i ≥ m such that Pi = (0) and we
would have been done, there must exist a projective module P ′′ such that it is
a summand in the middle term up to isomorphism in two almost split sequences
ending at ΩrC and ΩsC where r > s > m. But, then ΩrC and ΩsC are both
simple and isomorphic to P ′′/S, where S is the socle of P ′′ by 2.1.12. That is,
they are isomorphic and this contradicts the assumption that no simple modules
are Ω-periodic.

So, there exists an almost split sequence

0 ΩkτC ΩkE1 ⊕ ...⊕ ΩkEt ΩkC 0

for some k ≥ 0 where all the irreducible morphisms from ΩkτC to a finite sum
of the ΩkEi’s where each ΩkEi occurs at most once are Ω-perfect and all the
irreducible morphims from any such sum of ΩkEi’s to ΩkC are Ω-perfect. That is,
C is eventually Ω-perfect.
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The next lemma is known from graph theory. Its proof is fairly simple, but is not
presented here.

Lemma 4.2.7. [6, Lemma 2.9] Let G be a finite directed graph having n vertices,
and assume that there is at least one arrow between any two vertices in G. Then,
there exists a directed path in G of length greater than or equal to n− 1.

Proof. See [8, Theorem 11.7].

As previously mentioned, we conclude this chapter with a proposition that proves
important in Subchapter 5.2 where we look at regular components of Auslander-
Reiten quivers of selfinjective Artin algebras containing a module of complexity
1. Recall that a regular component of a connected (selfinjective) Artin algebra
containing a τ -periodic module is of type ZA∞/〈τn〉, a tube, by Subchapter 2.2.

Proposition 4.2.8. [6, Proposition 2.10] Let R be a selfinjective Artin algebra
and let C be a regular component of the Auslander-Reiten quiver of R that is not a
tube. Let M ∈ C be a module of complexity 1. Then, there exists a positive integer
n such that τnM is Ω-perfect.

Proof. Since C is regular and contains a module of complexity 1 we know that all
modules in the component have complexity 1 by 3.2.5. We let

0 τM E1 ⊕ ...⊕ Ek M 0
(f1,...,fk)T (g1,...,gk)

(4.4)

be an almost split sequence ending at M where each Ei is non-zero and indecom-
posable. The component is regular, so none of the Ei’s are projective. We prove
that any irreducible morphism from τM to a finite sum of the Ei’s, with each Ei
occuring at most once, and any irreducible morphism from a finite sum of the Ei’s,
each occuring at most once, to M is eventually Ω-perfect and argue that this is
enough. We begin by showing that if g : B−→C is an irreducible morphism where
both B and C are indecomposable, then there exists an l ≥ 0 such that Ωlg is
Ω-perfect.

We assume g is not eventually Ω-perfect and B and C are indecomposable. Then,
for an infinite number of positive integers j, Ωjg is an epimorphism, but Ωj+1g is a
monomorphism. Then, by 4.1.7, the kernel of Ωjg is simple. We only have a finite
number of simple R-modules, so we have a strictly increasing sequence of integers,
n1, n2, ... where we for each ni have a short exact sequence

0 S ΩniB ΩniC 0
Ωnig
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for some simpleR-module S. We have the following exact diagram for each ni 6= nj.

0 S ΩniB ΩniC 0

0 S ΩnjB ΩnjC 0

ki Ωnig

kj Ωnj g

f ijfji

We know that the maps Ωnig and Ωnjg are irreducible, so by [4, Proposition
V.5.7] there exists a homomorphism fj

i : ΩnjB−→ΩniB or a homomorphism
fi
j : ΩniB−→ΩnjB such that the left square of the above diagram commutes. Re-

labeling, if needed, we may use 4.2.7 and we can assume there is an arbitrary long
chain of homomorphisms

Ωn1B Ωn2B · · · ΩnmB · · ·
f2
1 f3

2
fmm−1 fm+1

m

The compositions fm+1
m fmm−1...f

2
1 are all non-zero, since composing them with k1

gives (fm+1
m ...f 3

2 f
2
1 )k1 = (fm+1

m ...f 3
2 ) (f 2

1k1)︸ ︷︷ ︸
k2

= ... = km+1 6= 0.

By 3.2.3, we know that there is a common bound of the length of all the syzygies
of B. We have an arbitrary long chain of non-zero composition between indecom-
posable syzygies, and since their lengths have a common bound this cannot be if
each fij is not an isomorphism by [4, Corollary VI.1.3]. Hence, for some i 6= j, we
have that fij is an isomorphism, and ΩniB and ΩnjB are isomorphic. That is, B
is Ω-periodic.

We want to show that B is τ -periodic, since this would imply that C is a tube
by Subchapter 2.2. We first show that there exists a positive integer k such that
νkS ∼= S. Since there is only a finite number of simple modules and ν preserves
simple modules by 2.3.4 there must exist a simple R-module S ′ ∼= νlS for l ≥ 0
such that νkS ′ ∼= S ′ for some k ≥ 1. Then, we have that

νl(S) ∼= νl+k(S)

ν−l(νl(S)) ∼= ν−l(νl+k(S))

S ∼= νk(S).

That is, ν has finite order k when applied to S. We now let n be a positive integer
such that we have a short exact sequence

0 S ΩnB ΩnC 0.
l Ωng
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The Nakayama functor, ν, takes irreducible maps to irreducible maps by 2.3.4,
so for all integer multiples ktj and kti where ti 6= tj we have the following exact
diagram

0 S νktiΩnB νktiΩnC 0

0 S νktjΩnB νktjΩnC 0

νktiΩng

νktj Ωng

lijlji

Again, by [4, Proposition V.5.7], for each ti 6= tj we have homomorphisms lij or lj i

commuting the left square of the diagram. Repeating the previous argument we
get arbitrary long chains of homomorphims with non-zero composition between
modules with the same length as νktiΩnB, since ν preserves length. By [4, Corol-
lary VI.1.3], for some tr 6= ts, we have that νktrΩnB is isomorphic to νktsΩnB.
Then using [4, Proposition IV.3.6] and the fact that Ω and ν commute by 2.3.6,
we know that νktrB ∼= νktsB, so ν has finite order when applied to B. This fact
combined with B being Ω-periodic shows that B is τ -periodic. This contradicts
the fact that C is not a tube.

So, g : B−→C is eventually Ω-perfect. So, the morphims fi and gi for i ∈ {1, ..., k}
in (4.4) are eventually Ω-perfect.

The previous argument also holds in the case where C decompose. That is, any
irreducible morphism from τM to a finite sum of the Ei’s, where each Ei is rep-
resented at most once, is eventually Ω-perfect. For simplicity, we denote such a
morphism by (fh1 , ..., fhn)T . So, for a morphism of that sort, (fh1 , ..., fhn)T , there
exists an even integer 2m′ ≥ 0 such that Ω2m′(fh1 , ..., fhn)T is Ω-perfect. So,

ΩsΩ2m′(fh1 , ..., fhn)T : ΩsΩ2m′τM−→ΩsΩ2m′Eh1 ⊕ ...⊕ ΩsΩ2m′Ehn

is either an epimorphism for all s ≥ 0 or a monomorphism for all s ≥ 0. We
now choose m such that it is the maximum of all the m′’s corresponding to the
morphisms (fh1 , ..., fhn)T . So, applying Ω2m to any of the morphisms (fh1 , ..., fhn)T

gives us an Ω-perfect morphism. Furthermore, since

`(ΩsΩ2mτM) = `(ΩsτmτM)

and

`(ΩsΩ2mEh1) + ...+ `(ΩsΩ2mEhn) = `(ΩsτmEh1) + ...+ `(ΩsτmEhn)

by 2.3.4 and 2.3.6, we know that an irreducible morphism

ΩsτmτM−→ΩsτmEh1 ⊕ ...⊕ ΩsτmEhn
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is either an epimorphism for all s ≥ 0 or a monomorphism for all s ≥ 0. Further-
more, we explore the almost split sequence ending at τmM . By (4.4), 2.3.11 and
the fact that C is regular, we get an almost split sequence ending at τmM

0 τm+1M τmE1 ⊕ ...⊕ τmEk τmM 0.
(τmf1,...,τmfk)T (τmg1,...,τmgk)

By our choice of m and the previous argument, we know that any irreducible mor-
phims from τm+1M to a finite sum of the τmEi’s, with each occuring at most once,
is Ω-perfect. In particular, we know that the morphism Ωτm+1M−→ΩτmE1⊕ ...⊕
ΩτmEk is a monomorphism. By 2.3.8 we get another almost split sequence

0 Ωτm+1M ΩτmE1 ⊕ ...⊕ ΩτmEk ⊕ P ΩτmM 0

where P is projective. If P 6= (0) we know that the irreducible morphism
P−→ΩτmM is an epimorphim, or else it would split. But then, by 4.1.12, the
morphism Ωτm+1M−→ΩτmE1 ⊕ ...⊕ ΩτmEk is an epimorphism, a contradiction.
That is, P = (0). Repeating this argument, for any v ≥ 0 we know that

0 Ωvτm+1M ΩvτmE1 ⊕ ...⊕ ΩvτmEk ΩvτmM 0
(Ωvτmf1,...,Ωvτmfk,f

′)T (Ωvτmg1,...,Ωvτmgk,g
′)

is an almost split sequence. Then, since any irreducible morphism from τm+1M to
a finite sum of the τmEi’s, with each occuring at most once, say (τmfh1 , ..., τ

mfhn),
is Ω-perfect we know that Ωv(τmfh1 , ..., τ

mfhn) is either a monomorphism for all
v ≥ 0 or an epimorphism for all v ≥ 0. Then, by 4.1.12, we know that any
irreducible morphism from a finite sum of τmEi’s, where each is represented at
most once, to τmM , say (τmgk1 , ..., τ

mgku), is such that Ωv(τmgk1 , ..., τ
mgku) is

either a monomorphism for all v ≥ 0 or an epimorphism for all v ≥ 0.

That is, τmM is Ω-perfect.

We are now ready to look at modules of finite complexity.



74 CHAPTER 4. Ω-PERFECT MODULES



Chapter 5

Finite complexity

In this chapter we present some results concerning finite complexity. It is divided
in two parts where the first one concerns general finite complexity and the latter
presents some results for complexity one. As before, R is a connected selfinjective
Artin algebra and all R-modules are finitely generated.

5.1 Finite complexity

In this subchapter we investigate properties of almost split sequences ending at an
Ω-perfect module of finite complexity. The main result of this part of the thesis
is that if C is an Ω-perfect module of finite complexity over a selfinjective Artin
algebra, then α(C) ≤ 4. We begin by looking at the lengths of two indecomposable
modules which are connected by an irreducible morphism. Recall that all modules
are left R-modules unless stated otherwise.

Lemma 5.1.1. [7, Lemma 3.1] Let R be a selfinjective Artin algebra and let
f : M−→N be an irreducible map between indecomposable R-modules. If d′ =
max{`(Rei)}, the maximum length of the indecomposable projective R-modules,
then `(M) ≥ 1

1+d′2
`(N).

Proof. The algebra R is a selfinjective Artin algebra, so `(P ) ≤ d′ for each inde-
composable projective right R-module P as well. The result now follows from [4,
Proposition V.6.6].
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In the upcoming proofs we need that the previous statement also applies when M
decomposes. We therefore state this as a corollary.

Corollary 5.1.2. Let R be a selfinjective Artin algebra and let f : M−→N be an
irreducible map where N is indecomposable and M is not necessarily indecompos-
able. If d′ = max{`(Rei)}, the maximum length of the indecomposable projective
R-modules, then `(M) ≥ 1

1+d′2
`(N)

Proof. The module M is not necessarily indecomposable, so M ∼= M ′⊕M ′′ where
M ′ is indecomposable andM ′′ may or may not be zero. By 2.1.7, we know that the
morphism M ′−→N is irreducible and moreover, by 5.1.1, we have that `(M ′) ≥

1
1+d′2

`(N), where d′ = max{`(Rei)}, the maximum length of the indecomposable
projective R-modules. That is, `(M) ≥ `(M ′) ≥ 1

1+d′2
`(N) which is what we

wanted to show.

The previous corollary is used in the next proposition.

Proposition 5.1.3. [7, Proposition 3.2] Let R be a selfinjective Artin algebra.
Suppose that C is an Ω-perfect module of finite complexity. Let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be an almost split sequence, where the Ei’s are non-zero modules that are not
necessarily indecomposable. Then, if t ≥ 3, at most one of the gi’s can be an
epimorphism.

Proof. Assume both g1 and g2 are epimorphisms and recall that E1, E2 and E3 are
non-zero by assumption. Then (g1, g4, ..., gt) : E1⊕E4⊕ ...⊕Et−→C is an epimor-
phism as well. Further, by 4.1.12, this implies that the map (f2, f3)T : τC−→E2⊕
E3 is an epimorphism. Since (f2, f3)T is an epimorphism we have that `(τC) >
`(E2) + `(E3). The morphism g2 is an epimorphism by assumption, so we have
that `(E2) > `(C).

Using 5.1.2 and the two previous strict inequalities we get that

`(τC) > `(E2) + `(E3) > `(C) +
1

1 + d′2
`(C) =

(
1 +

1

d′2 + 1

)
`(C).

The Nakayama functor ν preserves length by 2.3.4, so this and 2.3.5 give us
that `(τC) = `(Ω2C). For simplicity we denote c =

(
1 + 1

d′2+1

)
, and further

`(Ω2C) > c · `(C), where c > 1.



5.1. FINITE COMPLEXITY 77

The module C is Ω-perfect, so by 4.1.3 we know that τn−1τC−→τn−1E2⊕ τn−1E3

is an epimorphism for all n ≥ 0. And also, τn−1E2−→τn−1C is an epimorphism
for all n ≥ 1. That is, we may repeat the previous argument and get the following

`(Ω2nC) = `(τnC) > c · `(τn−1C) > c2 · (τn−2C) > ... > cn · `(C)

for n ≥ 1. This tells us that the length of the even power syzygies increase
exponentially.

Further, by 3.1.2, `(ΩiC) < d′ · βi(C) for i ≥ 0 where d′ is as before. So, the
growth of the Betti numbers cannot be bounded by a polynomial when the length
of the even power syzygies grows exponentially. This contradicts the fact that C
has finite complexity.

We now want to decide the possible shapes of a component of the Auslander-
Reiten quiver of a selfinjective Artin algebra that contains one module of finite
complexity and where all modules are eventually Ω-perfect and have more than
one indecomposable module in a chosen decomposition of the middle term of an
almost split sequence ending at them. Before we can prove the result we need to
define sectional paths. Given a translation quiver Γ, a path (x0 | α1, ..., αt | xt)
in Γ is said to be a sectional path provided τxi+1 6= xi−1, for all 1 < i < t, where
αi : xi−1−→xi, [12].

Proposition 5.1.4. [7, Corollary 3.3] Let R be a selfinjective Artin algebra, and
let C be a component of the Auslander-Reiten quiver of R such that every module
in C is eventually Ω-perfect and C contains a module having finite complexity. If
every M ∈ C has the property that α(M) > 1, then C is of type ZÃ1,2, ZB∞, ZB̃n,
ZA∞∞, or a quotient of the last two.

Proof. The modules in C are all eventually Ω-perfect, so by definition they are
non-projective. Then, by 3.2.5, all the modules in C have finite complexity. Fur-
thermore, we know that for all C ∈ C there exists an n ≥ 0 such that τnC is
Ω-perfect by 4.2.4. We can therefore assume that C is an Ω-perfect module in
C. Now, assume α(C) ≥ 3. Then, by 5.1.3, we have an irreducible monomor-
phism B−→C. So, by 4.1.16, we know that there exists a sequence of irreducible
monomorphisms

Bn Bn−1 · · · B1 C

such that each Bi is indecomposable and α(Bn) = 1. But then, Bn ∈ C, a con-
tradiction to the assumption that α(M) > 1 for all M ∈ C. So, α(C) = 2 for all
Ω-perfect modules in C. That is, an almost split sequence ending at C is

0 τC E1 ⊕ E2 C 0
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where E1, E2 are non-zero, non-projective, indecomposable, and not necessarily
non-isomorphic. We know that for any module in C we have an n ≥ 0 such that
τnC is Ω-perfect. Therefore, since the function α is invariant under τ by 2.3.12,
we have that α(M) = 2 for all M ∈ C. In fact, since the component is regular, if
M is a module in the component, then an almost split sequence ending at M has
exactly two indecomposable summands in a chosen decomposition of the middle
term.

We now evaluate the possible structures of the component. We have two alter-
natives. Either there is at least one module M ′ ∈ C such that the almost split
sequence ending at M ′ (up to isomorphism) has two indecomposable isomorphic
summands in a chosen decomposition of the middle term or all the modules in the
component have almost split sequences ending at them with two indecomposable
non-isomorphic modules in a chosen decomposition of the middle term. Before we
look at these two cases seperately, we argue that no module in the component is
τ -periodic. If there was a τ -periodic module in the regular component this would
imply that the component was of type ZA∞/〈τn〉 by Subchapter 2.2. This cannot
be the case since this again would imply that there exists a module M in the
component with α(M) = 1, a contradiction to the fact that α(M) = 2 for all
M ∈ C.

Assume there is a module M ′ ∈ C such that the almost split sequence
ending at M ′ (up to isomorphism) has two indecomposable isomorphic
summands in a chosen decomposition of its middle term. Since α(M) = 2
for all M ∈ C and the component is regular, we have an almost split sequence
ending at M ′

0 τM ′ E1 ⊕ E1 M ′ 0. (5.1)

So, the arrow [E1]−→[M ′] has valuation aE1,M ′ = 2. From the almost split sequence
(5.1) we get an almost split sequence

0 τn+1M ′ τnE1 ⊕ τnE1 τnM ′ 0 (5.2)

with τnE1 6= (0) for all n ∈ Z, since the component is regular and by 2.3.11. That
is, aτnE1,τnM ′ = 2 for all n ∈ Z. Since α(τ−1E1) = 2 there are two possibilties for
the value of a′E1,M ′

(= aM ′,τ−1E1
), that is, (1) a′E1,M ′

= 1 or (2) a′E1,M ′
= 2.

(1) Now, assume a′E1,M ′
= 1. Then, we know that a′τnE1,τnM ′

= 1 for all n ∈ Z, by
similar arguments as above. So, then by (5.2) and Subchapter 2.2, we know
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that we have a boundary for the component with valuation as illustrated
below. So, the following is a part of the component.

· · ·

[τ 2M ′] [τM ′] [M ′] [τ−1M ′]

· · ·

[τE1] [E1] [τ−1E1]
(2,1)

(1
,2

) (2,1) (1
,2

) (2,1) (1
,2

) (2,1) (1
,2

)

This cannot be the entire component, because that would imply that the
almost split sequence ending at τnE1 for n ∈ Z has only one indecomposable
middle term. That is, an almost split sequence ending at E1 has an inde-
composable middle term X which is not isomorphic to τM ′ and these two
modules are the only indecomposable summands of the middle term

0 τE1 τM ′ ⊕X E1 0.

So, the arrow [X]−→[E1] has valuation aX,E1 = 1. Again, since α(M) = 2 for
all M ∈ C, we have two possibilities for the value of a′X,E1

, that is, a′X,E1
= 1

or a′X,E1
= 2.

If a′X,E1
= 2, then by previous arguments we have that a′τnX,τnE1

= 2 for
all n ∈ Z and furthermore we have the following

· · · [τ 2M ′] [τM ′] [M ′] [τ−1M ′] · · ·

[τE1] [E1] [τ−1E1]

[τX] [X] [τ−1X] [τ−2X] · · ·· · ·

(2,1)

(1
,2

) (2,1) (1
,2

) (2,1) (1
,2

) (2,1) (1
,2

)

(2
,1
)

(1,2) (2
,1

) (1,2) (2
,1

) (1,2) (2
,1

) (1,2)

Since α(M) = 2 for all M ∈ C and the component is regular we cannot have
anything else. That is, the component is of type ZB̃2 or possibly a quotient
of it.

If a′X,E1
= 1, as before, we know that there must exist an indecomposable Y

such that

0 X E1 ⊕ Y τ−1X 0

is an almost split sequence ending at τ−1X. So, then the arrow [Y ]−→[τ−1X]
has valuation aY,τ−1X = 1. Moreover, we then also have that aτn+1Y,τnX = 1
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for all n ∈ Z. Again, we have two possibilities for the value of a′Y,τ−1X , that
is, either a′Y,τ−1X = 1 or a′Y,τ−1X = 2. Repeating this argument we get a
component of type ZB̃n, a quotient of ZB̃n, or ZB∞. Note, we cannot have
a quotient of ZB∞ since this would imply that a module on the boundary is
identified with another module in the same τ -orbit, not possible.

(2) Now, assume a′E1,M ′
= 2. Then, we have an almost split sequence

0 E1 M ′ ⊕M ′ τ−1E1 0

and using similar arguments as before we get an almost split sequence

0 τnE1 τnM ′ ⊕ τnM ′ τn−1E1 0 (5.3)

for every n ∈ Z. So, we know that aτnE1,τnM ′ = 2 and a′τnE1,τnM ′
= 2 for all

n ∈ Z, by respectively (5.2) and (5.3). Then, from Subchapter 2.2 and the
fact that α(M) = 2 for all modules in the regular component, the valuation
is (2, 2) for any arrow in the quiver and the component cannot contain a
module that is not in the same τ -orbit as either M ′ or E1. That is, we have
the following

· · ·

[τ 2M ′] [τM ′] [M ′] [τ−1M ′]

· · ·

[τE1] [E1] [τ−1E1]
(2,2)

(2
,2

) (2,2) (2
,2

) (2,2) (2
,2

) (2,2) (2
,2

)

So the component is of type ZÃ1,2. If two modules in the component were
identified with each other, we would have a contradiction to the fact that
there are no τ -periodic modules in the component. That is, we have no quo-
tients of ZÃ1,2.

We now assume that all the modules in the component have almost split
sequences ending at them with two indecomposable non-isomorphic
summands in a chosen decomposition of the middle term. That is, every
arrow in the component has valuation (1, 1) since we know that α(M) = 2 for all
M ∈ C. Then, the component is of type ZA∞∞ or a quotient of it. Recall that we
cannot have a τ -periodic module in the regular component. That is, if we have a
module X in the component that is identified with another module X ′ in the com-
ponent, then X and X ′ are not in the same τ -orbit. Such an identification where
X ′ lies on a sectional path of morphisms starting at X gives rise to a component
of type ZÃn. We do not know the structure of other possible quotients.
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Note that the result actually differs a bit from what is stated in [7, Corollary 3.3].
The corollary in [7] only states that we have components of type ZA∞∞, ZÃn, or
ZÃ1,2, but we were not able to prove that the other possibilities listed in 5.1.4 do
not exist. One interesting fact that arises from the previous corollary is that all
modules in such a component have two indecomposable non-projective modules
in a chosen decomposition of the middle term of an almost split sequence ending
at them. Furthermore, since there are no projective modules in such components
they actually have two indecomposable modules in a chosen decomposition of the
middle term of an almost split sequences ending at them. We now present two
lemmas before we prove the main result of this subchapter.

Lemma 5.1.5. [7, Lemma 3.4] Let R be a selfinjective Artin algebra and let C be
an indecomposable module. Let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be an almost split sequence where each Ei is non-zero, but not necessarily inde-
composable. Assume that all the fi’s and gi’s are Ω-perfect. If the map g1 is an
irreducible epimorphism and f1 is an irreducible monomorphism, then t ≤ 2.

Proof. Assume t ≥ 3, and that we have an almost split sequence

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

where each Ei is non-zero, but not necessarily indecomposable. By assumption,
f1 is a monomorphism and since the morphism is Ω-perfect we know that Ω2f1

is a monomorphism. Then, by 2.3.13, we then know that τf1 : τ 2C−→τE1 is a
monomorphism as well. Further, by 2.3.11, we have an almost split sequence

0 τ 2C τE1 ⊕ τE2 ⊕ ...⊕ τEt ⊕ P τC 0
(τf1,τf2,...,τft,f ′)T (τg1,τg2,...,τgt,g′)

ending at τC where P is indecomposable. Assume P 6= (0). Then, the morphism
g′ : P−→τC is an epimorphism, or else it splits which contradicts it being irre-
ducible. So, by 4.1.14, we know that τf1 is an epimorphism, a contradiction. That
is, P = (0) and we have an almost split sequence

0 τ 2C τE1 ⊕ τE2 ⊕ ...⊕ τEt τC 0
(τf1,τf2,...,τft)T (τg1,τg2,...,τgt)
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ending at τC. So, we have that
t∑
i=1

`(Ei) = `(τC) + `(C) and

t∑
i=1

`(τEi) = `(τ 2C) + `(τC).

Adding these equalities we get that
t∑
i=1

`(Ei) +
t∑
i=1

`(τEi) = `(C) + 2 · `(τC) + `(τ 2C). (5.4)

Note that none of the Ei’s are projective. If one of them, say Ei, is projective, then
the Ω-perfect irreducible map fi : τC−→Ei is a monomorphism, or else it splits.
That is, (0) 6= ΩτC−→ΩEi = (0) is a monomorphism, a contradiction. So, none
of the Ei’s are projective and since we know that t ≥ 3 by assumption, we have
the following almost split sequences

0 τE2 A⊕ τC E2 0

0 τE3 A′ ⊕ τC E3 0

and we obtain

`(A) + `(τC) = `(E2) + `(τE2) and
`(A′) + `(τC) = `(E3) + `(τE3).

Further, we get the equation

`(A′) + `(A) + 2 · `(τC) = `(E2) + `(E3) + `(τE2) + `(τE3) (5.5)

by adding the equations as before. By (5.4) and (5.5) we then get the following
equality

`(A′) + `(A) + `(E1) + `(τE1) +
t∑
i=4

`(Ei) +
t∑
i=4

`(τEi) = `(C) + `(τ 2C),

so

`(E1) + `(τE1) ≤ `(C) + `(τ 2C). (5.6)

Since τf1 is a monomorphism we know that `(τ 2C) < `(τE1). But then, by (5.6),
we must have that `(E1) < `(C). This contradicts the fact that g1 : E1−→C is an
epimorphism. So, t ≤ 2.
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Lemma 5.1.6. [7, Lemma 3.5] Let R be a selfinjective Artin algebra and let C be
an Ω-perfect module of finite complexity. Let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be an almost split sequence where each Ei is non-zero, but not necessarily inde-
composable. If g1 is an irreducible epimorphism, then t ≤ 3.

Proof. Assume t ≥ 4 and let B = E4 ⊕ ... ⊕ Et. By assumption B is non-zero.
Moreover, let g′4 : B−→C and f ′4 : τC−→B be the induced irreducible maps. That
is, we have an almost split sequence

0 τC E1 ⊕ E2 ⊕ E3 ⊕B C 0.
(f1,f2,f3,f ′4)T (g1,g2,g3,g′4)

The map (g1, g2) : E1 ⊕ E2−→C is an epimorphism since g1 is an epimorphism
by assumption. We now rewrite the almost split sequence and let k1 = (g1, g2),
h1 = (f1, f2)T and E = E1 ⊕ E2. That is, we have an almost split sequence

0 τC E ⊕ E3 ⊕B C 0
(h1,f3,f ′4)T (k1,g3,g′4)

where h1, f3, f ′4, k1, g3 and g′4 are all Ω-perfect morphisms. Then, by 5.1.5,
the irreducible map h1 = (f1, f2)T cannot be a monomorphism, and thus is an
epimorphism. Referring to 4.1.12 we then know that (g3, g

′
4) is an epimorphism, so

`(C) < `(E3) + `(B). On the other hand, since g1 is an epimorphism, by 4.1.12 we
have that (f2, f3, f

′
4)T is an epimorphism and further `(τC) > `(E2)+`(E3)+`(B).

That is, by 5.1.2 and the previous arguments, we have that

`(τC) > `(E2) + `(E3) + `(B)

> `(E2) + `(C)

≥ 1

1 + d′2
`(C) + `(C)

=
( 1

1 + d′2
+ 1
)
`(C)

where d′ = max{`(Rei)}, the maximal length of the indecomposable projective
R-modules. For notational purposes we write c =

(
1

1+d′2
+ 1
)
, and note that

c > 1.
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Further, C is Ω-perfect, so by 4.1.3 we know that for n ≥ 1 the irreducible mor-
phisms

τn−1(g3, g
′
4) : τn−1E3 ⊕ τn−1B−→τn−1C and

τn−1(f2, f3, f
′
4)T : τnC−→τn−1E2 ⊕ τn−1E3 ⊕ τn−1B

are epimorphisms as well. So, as before we get that

`(τnC) > c · `(τn−1C) for all n ≥ 1.

The Nakayama functor ν preserves length by 2.3.4, so then by 2.3.5 we have that
`(τC) = `(Ω2C) and moreover `(Ω2nC) > c · `(τn−1C) for n ≥ 1. Furthermore, for
n ≥ 1 we have that

cn`(C) < ... < c2 · `(τn−2C) < c · `(τn−1C) < `(Ω2nC).

So, since

cn`(C) < `(Ω2nC) < d′ · β2n(C)

by 3.1.2 where d′ = max{`(Rei)}, the growth of the Betti numbers cannot be
bounded by a polynomial. That is, C does not have finite complexity, a contra-
diction. So, t ≤ 3.

Note that we have removed the assumption that f1 is an epimorphism of the orig-
inal version of the previous lemma. We can now prove the main result in this
subchapter.

Theorem 5.1.7. [7, Lemma 3.6/Theorem 3.7] Let R be a selfinjective Artin alge-
bra. Let C be an Ω-perfect module of finite complexity. Then α(C) ≤ 4.

Proof. Let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be an almost split sequence ending at C where each Ei is non-zero and indecom-
posable. Recall that none of the Ei’s are projective by 4.1.10, so α(C) = t. Assume
t ≥ 5 and let E = ⊕ti=1Ei. In this proof we write E as a sum of R-modules in
different ways and use the former lemmas the get our result.
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Let B1 = E1 ⊕E2 and B2 = E3 ⊕E4 ⊕ ...⊕Et, both are non-zero by assumption,
and we write the almost split sequence as

0 τC B1 ⊕B2 C 0
(h1,h2)T (k1,k2)

where h1 = (f1, f2)T , h2 = (f3, f4, ..., ft)
T , k1 = (g1, g2) and k2 = (g3, g4, ..., gt).

We want to argue that at least one of k1 and k2 is an epimorphism. Now, assume
they are both monomorphisms. Then, by 4.1.12, since k1 is a monomorphism, we
know that h2 is a monomorphism. That is, both k2 and h2 are monomorphism, a
contradiction to 4.1.13. So, at least one of k1 or k2 is an epimorphims.

Assume k1 is an epimorphism. We again rewrite the almost split sequence

0 τC B1 ⊕ E3 ⊕ ...⊕ Et C 0.
(h1,f3,...ft)T (k1,g3,...,gt)

By 5.1.6, we know that we have that t− 1 ≤ 3, that is t ≤ 4. This contradicts the
assumption that t ≥ 5. So, k1 cannot be an epimorphism.

Then k2 is an epimorphism by the former argument. Since k1 is a monomorphism,
by 4.1.12, h2 is a monomorphism. Further, we rewrite the almost split sequence
in the following manner

0 τC E1 ⊕ E2 ⊕B2 C 0
(f1,f2,h2)T (g1,g2,k2)

where all modules are non-zero by assumption. The map k2 is an epimorphism
and h2 is a monomorphism, so by 5.1.5 we have a contradiction.

That is, t cannot be greater or equal to 5. So, α(C) = t ≤ 4 and we are done.

Note that the previous result is actually a combination of Lemma 3.6 and Theorem
3.7 in [7]. We have removed the assumption that all gi’s are monomorphisms of
the original lemma since it is superfluous, and thereby we get the result stated
as Theorem 3.7 in the paper directly. The next result follows from the previous
theorem.

Corollary 5.1.8. [7, Corollary 3.8] Let R be a selfinjective Artin algebra such
that no simple module is Ω-periodic. Let C be an indecomposable non-projective
R-module of finite complexity. Then α(C) ≤ 4.

Proof. By 4.2.6, the module C is eventually Ω-perfect, so it exists an n ≥ 0 such
that ΩnC is Ω-perfect. By 3.2.2, cx(ΩnC) = cx(C), so ΩnC has finite complexity.
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Then, by 5.1.7, α(ΩnC) ≤ 4. Moreover, the function α is invariant under Ω by
2.3.9. That is, α(C) = α(ΩnC) ≤ 4, and we are done.

In this subchapter we have dealt with modules of finite complexity. In the next
subchapter we narrow our focus and look at modules of complexity 1.
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5.2 Complexity 1

In this subchapter we study the special case of finite complexity where the com-
plexity is one. Most of the results in this subchapter are found in [6].

5.2.1 Modules with bounded Betti numbers

As the headline suggests, we look at modules with bounded Betti numbers in this
section. Recall that a non-projective module with bounded Betti numbers has
complexity 1 by 2.3.7 and 3.2.2. By the same results, we also know that a module
of complexity 1 is non-projective and has bounded Betti numbers. In the previous
subchapter we studied almost split sequences ending at an Ω-perfect module of
finite complexity. In the next lemma we look at almost split sequences ending at
an Ω-perfect module of complexity 1.

Lemma 5.2.1. [6, Lemma 2.11] Let R be a selfinjective Artin algebra and let C
be an Ω-perfect module of complexity 1. Let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be an almost split sequence ending at C where the Ei’s are non-zero and not nec-
essarily indecomposable. Then, for each 1 ≤ i ≤ t, one of the maps fi and gi is a
monomorphism, and the other one is an epimorphism.

Proof. We know, by 4.1.13, that both fi and gi for some i ∈ {1, ..., t} cannot be
monomorphisms.

Now, assume that both fi and gi are epimorphisms for some i ∈ {1, ..., t}. Then,
since C is Ω-perfect, we know that the morphisms τnfi and τngi are epimorphisms
for all n ≥ 0 by 4.1.3. So, we have a sequence of proper epimorphisms

· · · τ 3C τ 2C τC C.
τ2giτ

2fi τgiτfi gifi

We want to show that there is an upper bound on the lengths of the τmC’s. By
3.2.3 we have a common bound for the lengths of all syzygies of C, say N . That
is, `(ΩnC) < N for all n ≥ 0. The Nakayama functor ν preserves length by 2.3.4
and commutes with Ω by 2.3.6, so it follows that `(τmC) < N for all m ≥ 0. Since
we have proper epimorphisms in the sequence above, `(τmC) < `(τm+1C) for all
m ≥ 0. This contradicts the fact that `(τmC) < N for all m ≥ 0. So, both fi and
gi cannot be epimorphisms.
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In total, we conclude that for each 1 ≤ i ≤ t, one of the maps fi and gi is a
monomorphism, and the other is an epimorphism.

In the previous subchapter our main aim was to prove a result concerning the
number of indecomposable non-projective modules in a chosen decomposition of
the middle term of an almost split sequence ending at an Ω-perfect module of finite
complexity. We now look at the number of modules in a chosen decomposition
of the middle term of an almost split sequence ending at an Ω-perfect module C
where βn(C) = 1 for an infinite number of n ≥ 0.

Proposition 5.2.2. [6, Proposition 2.12] Let R be a selfinjective Artin algebra and
C an Ω-perfect R-module such that βn(C) = 1 for an infinite number of n ≥ 0.
Then α(C) = 1.

Proof. Let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be the almost split sequence ending at C with each Ei indecomposable. Since
there cannot be any non-zero projective modules in the middle term of an almost
split sequence ending at C by 4.1.10, we know that t = α(C) and that the Ei’s are
non-projective. Assume t > 1.

We assume g1 is a monomorphism and then, by 4.1.13, f1 is an epimorphism. So,
we have a short exact sequence

0 Ker f1 τC E1 0.
f1

Since f1 is Ω-perfect, by 4.1.11 we know that βi(τC) = βi(Ker f1) + βi(E1) for
all i ≥ 0. The module E1 is non-projective, so by 2.3.7, it has infinite projective
dimension and moreover non-zero Betti numbers. From the equality above we
therefore get the strict inequality βi(τC) > βi(Ker f1).

By assumption, βi(C) = 1 for an infinite number of positive integers i ≥ 0, and
since βi+2(C) = βi(τC) by 3.1.2, we have that βn(τC) = 1 for an infinite number
of integers n ≥ 0. But then, by the inequality above, βn(Ker f1) = 0 for the corre-
sponding n’s. The kernel of f1 is non-projective or else f1 splits, which cannot be.
That is, βj(Ker f1) 6= 0 for all j ≥ 0, a contradiction to the previous argument.
So, g1 cannot be a monomorphims.
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Assume g1 is an epimorphism. Then

E1 ⊕ E2 ⊕ ...⊕ Et−1 C
(g1,g2,...,gt−1)

is an epimorphism, and this implies that ft is an epimorphism by 4.1.12. By re-
peating the previous argument we have a contradiction.

So, we cannot have t > 1, and since we know that there exists an almost split
sequence ending at C by 2.1.9, we have that t = 1.

We now turn our attention to regular components of Auslander-Reiten quivers
of selfinjective Artin algebras containing a module C of complexity 1. Before we
present our results, we recall some important properties of such components. In
Chapter 2.2 we argued that a regular component of the Auslander-Reiten quiver
of a connected, Artin algebra containing a τ -periodic module is of type ZA∞/〈τn〉.
Therefore, when we refer to regular components that are tubes in the upcoming
proofs they are of type ZA∞/〈τn〉. In Chapter 2.2 we promised to further explore
the morphisms of regular components of type ZA∞ and ZA∞/〈τn〉. We illustrate
a part of such a component here.

· · · [τ 2M1] [τM1] [M1] [τ−1M1] · · ·

[τM2] [M2] [τ−1M2]

[τM3] [M3] [τ−1M3] [τ−2M3] · · ·

[M4] [τ−1M4] [τ−2M4]

...
...

...

· · ·

Since the valuation of all the edges in A∞ is (1, 1) and no modules are removed
from the component, we know that it is actual almost split sequences that are
illustrated above. If we look at a module on the boundary of the component, M1,
an almost split sequence ending at M1 is

0 τM1 M2 M1 0.
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So, τM1−→M2 is a monomorphism and M2−→M1 is an epimorphism. If we com-
bine this with 4.1.12, we see why some of the morphisms illustrated in the above
quiver are monomorphisms (indicated with a hook arrow) and others are epimor-
phisms (indicated with a two headed arrow).

We now let C be an indecomposable module lying in regular component that
is a tube or of type ZA∞. We further assume the component does not contain any
simple modules. We want to argue that if g : B−→C is an epimorphism in such a
component, then its kernel is on the boundary of the component and is therefore
not simple. If C itself is on the boundary of C, we have an almost split sequence
ending at C

0 τC B C 0
f g

and furthermore the kernel of g is obviously on the boundary and is therefore not
simple. So, we assume C is not on the boundary of C. We illustrate a part of the
component

· [τN ] [N ]

· [E] ·

· ·

· · [D]

· [τC] [C]

· [B]

...
...

· · ·

· · ·

· · ·

· · · · · ·

· · · · · ··[τmN ][τm+1N ]· · ·

·[τmE]

·

· [τmD]

[τmC][τm+1C]

[τmB]

...

· · ·

where we choose to denote the modules that are not of importance with a dot.
This is just to simplify the illustration. From previous arguments we know that
an almost split sequence ending at C is

0 τC B ⊕D C 0
(f,f ′)T (g,g′)

and further, by 4.1.12, we know that Ker g ∼= Ker f ′. Repeating this argument we
get that Ker g ∼= τN . But τN is in the component, so τN is not simple. That is,
the kernel of g is not simple.
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We continue considering the regular component of type ZA∞ or ZA∞/〈τn〉 without
simple modules. We let g : B−→C be an epimorphism in the component and want
to show that g is Ω-perfect. We know that an almost split sequence containing
τmg for m ≥ 0 is either

0 τm+1C τmB τmC 0
τmf τmg

if C is on the boundary of C or

0 τm+1C τmB ⊕ τmD τmC 0
(τmf,τmf ′)T (τmg,τmg′)

if C is not on the boundary of C. Looking at the component and recalling previous
arguments we then know that τmg is an epimorphism with non-simple kernel for
all m ≥ 0. That is, by 2.3.13, we know that Ω2mg is an epimorphism for all m ≥ 0.
We now need to argue that Ω2m+1g is an epimorphism for all m ≥ 0. We have the
following exact sequence

0 Km τmB τmC 0
τmg

for m ≥ 0 where Km is the non-simple kernel of τmg. We then know that

`(Km) + `(τmC) = `(τmB). (5.7)

Furthermore, we look at Ω2mg for m ≥ 0

0 K ′m Ω2mB Ω2mC 0
Ω2mg

and we have that

`(K ′m) + `(Ω2mC) = `(Ω2mB). (5.8)

Now, since ν preserves length by 2.3.4 and by 2.3.6 we have that

`(τmC) = `(Ω2mC)

and

`(τmB) = `(Ω2mB).

So, by (5.7) and (5.8) we have that `(K ′m) = `(Km) > 1 for m ≥ 0. That is, the
kernel of Ω2mg is not simple and moreover by 4.1.7 we know that Ω2m+1g is an
epimorphism for all m ≥ 0. So, g is Ω-perfect.

We now want to argue that any module C in the component is Ω-perfect. We first
assume α(C) = 2, that is, we have
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0 τC B ⊕D C 0
(f,f ′)T (g,g′)

an almost split sequence ending at a module C in the component, with g an epimor-
phism and B and D indecomposable. By the above we know that g is Ω-perfect.
Further, by 4.1.12, f ′ is also an epimorphism in the component and is therefore also
Ω-perfect. We need to show that also (g, g′) is an Ω-perfect epimorphism. That is,
we need to show that the morphism Ωm(g, g′)(= (Ωmg,Ωmg′)) from ΩmB ⊕ ΩmD
to ΩmC is an epimorphism for all m ≥ 0. But we know that Ωmg : ΩmB−→ΩmC
is an epimorphism for all m ≥ 0 by the previous argument, so therefore Ωm(g, g′)
is an epimorphism for all m ≥ 0.

From the previous discussion we know that f and g′ are monomorphisms. We now
need to show that f , g′ and (f, f ′) are Ω-perfect monomorphisms. By the dual re-
sult of 4.1.7 we know that given an irreducible monomorphism h : A−→B′, the irre-
ducible morphism Ωh : ΩA−→ΩB′ is a monomorphism if and only if the cokernel of
h is non-simple. Moreover, by a similar argument as above, if h : A−→B′ is an irre-
ducible monomorphism in the component, then the cokernel of h is on the boundary
of the component and is therefore non-simple. Further, τmh is a monomorphism
for all m ≥ 0 and by 2.3.13, we know that Ω2mA−→Ω2mB′ is a monomorphism for
all m ≥ 0. Since the cokernels of the monomorphisms in the component are non-
simple, we know that Ω2m+1A−→Ω2m+1B′ is a monomorphism for all m ≥ 0 by a
simple length argument and the dual of 4.1.7. That is, the irreducible monomor-
phisms f and g′ in C are Ω-perfect. Further, since Ωm(f, f ′)(= (Ωmf,Ωmf ′)) is a
morphism from ΩmτC to ΩmB ⊕ ΩmD and Ωmf : ΩmτC−→ΩmB is a monomor-
phism for all m ≥ 0, we know that Ωm(f, f ′) is a monomorphism for all m ≥ 0.
That is, (f, f ′) is Ω-perfect as well.

In total, C is Ω-perfect. Now, if α(C) = 1, we have an almost split sequence

0 τC B C 0
f g

and by the previous arguments we know that f and g are Ω-perfect. That is, C is
Ω-perfect in this case as well. That is, all modules in the component are Ω-perfect
and we have the following proposition.

Proposition 5.2.3. Let R be a selfinjective Artin algebra. Let C be a regular com-
ponent of the Auslander-Reiten quiver that is a tube or of type ZA∞. Furthermore,
assume that C does not contain any simple modules. Then, all modules in C are
Ω-perfect.

Proof. See the previous argument.
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In the next proposition we, among other things, look at how a module C with
complexity 1 and minimal β(C) among the modules in such a regular tube with-
out simple modules actually has to lie on the boundary of the tube.

Proposition 5.2.4. [6, Proposition 3.1] Let R be a selfinjective Artin algebra, and
let C be an indecomposable module with complexity 1, lying in a regular component
C of the Auslander-Reiten quiver and such that β(C) is minimal among the modules
in C. Assume further that C is either not a tube, or, that if a tube, then C contains
no simple modules. Then α(C) = 1.

Proof. Assume the component is not a tube. Then, by 4.2.8, we know that τnC
is Ω-perfect for some n ≥ 0. Further, since β(τnC) ≤ β(C) by 3.1.3 and β(C) is
minimal among the modules in C, we know that β(τnC) = β(C) is minimal. Since
the component is regular, by 3.2.5, all modules have complexity 1, so cx(τnC) = 1.
Furthermore, we know that the function α is invariant under τ by 2.3.12. So, we
may assume, without loss of generality, that C is Ω-perfect. If C is a tube without
simple modules, it follows immediately from 5.2.3 that C is Ω-perfect.

So, we assume C is Ω-perfect and let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be an almost split sequence ending at C with each Ei indecomposable. The compo-
nent is regular, so we know that none of the Ei’s are projective. That is, α(C) = t.
We assume that t > 1.

If g1 is a monomorphism, then f1 cannot be a monomorphism as well by 4.1.13.
So, f1 is an Ω-perfect epimorphism and furthermore, by 4.1.11, we know that
βi(τC) = βi(Ker f1) + βi(E1) for all i ≥ 0. Then, since Ker f1 cannot be pro-
jective as f1 does not split, βi(Ker f1) 6= 0. That is, we have a strict inequality
βi(E1) < βi(τC) for all i ≥ 0.

If g1 is an epimorphism, then since (g1, g2, ..., gt−1) is also an epimorphism we
know that ft is an epimorphism by 4.1.12. This implies that βi(Et) < βi(τC) for
all i ≥ 0 again using the argument above.

So, recalling that β(τC) = β(C) by the minimality of β(C) we have that

βi(Ek) < βi(τC) ≤ β(τC) = β(C)
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for all i ≥ 0 where k is either 1 (g1 a monomorphism) or t (g1 an epimorphism).
That is, β(Ek) = maxi≥0{βi(Ek)} < β(C) for either k = 1 or k = t, a contradiction
to β(C) being minimal among the modules in C. So, t = 1.

The next two results concern non-zero maps between indecomposable modules.

Lemma 5.2.5. [10] Let X and C be indecomposable modules and f : X−→C a
non-zero map which is not an isomorphism. Then either

(1) there is a finite chain of irreducible maps between indecomposable modules
X−→ ... −→C with non-zero composition or

(2) there are chains of irreducible maps Y−→ ... −→C, between indecomposable
modules, with non-zero composition, of arbitrary length.

Proof. Let g : E1 ⊕E2 ⊕ ...⊕Ek−→C be a right minimal almost split map where
each Ei is indecomposable. The map f : X−→C is not an isomorphism and we
want to show that this implies that is not a split epimorphism. If it was, then
X ∼= C ⊕ Y , with Y ∈ modR. But then, since X 6= (0) is indecomposable and C
is non-zero, we know that Y = (0), so X ∼= C. That is, `(X) = `(C) and since f
is an epimorphism we the have that f is an isomorphism, a contradiction. So, f
is not a split epimorphism and there exists a map s : X−→E1⊕E2⊕ ...⊕Ek such
that gs = f .

X

E1 ⊕ E2 ⊕ ...⊕ Ek C

s=(sj)T

g=(gj)

f

The diagram commutes and since f is non-zero we know that there exists an i such
that gisi 6= 0. Moreover, we know that gi : Ei−→C is irreducible, so we choose gi
as our first map. If si : X−→Ei is an isomorphism, we have case (1). If not, we
repeat the argument on si and continue until we get our result.

Lemma 5.2.6. [6, Lemma 3.3] Let R be an Artin algebra and let C be a compo-
nent of the Auslander-Reiten quiver of R. Let M ∈ C and assume that all the
predecessors of M in C have length bounded by some positive integer b. Then, if
X is an indecomposable R-module such that HomR(X,M) 6= (0), then X ∈ C and
X is a predecessor of M .



5.2. COMPLEXITY 1 95

Proof. Let X be an indecomposable R-module such that HomR(X,M) 6= (0). If
X ∼= M , then X ∈ C and X is trivially a predecessor ofM . So, we assume X �M .

By 5.2.5, we either have a chain of irreducible maps from X to M passing through
indecomposable modules with non-zero composition, or there exists an arbitrary
long chain of irreducible maps through indecomposable modules with non-zero
composition that ends in M . If we were in the latter case, since the length of
the predecessors of M is bounded by b, we know by [4, Corollary VI.1.3] that at
least one of the maps in the chain needs to be an isomorphism. This contradicts it
being irreducible. That is, we have a finite chain of irreducible maps with non-zero
composition from X to M through indecomposable modules. So, X ∈ C and X is
a predecessor of M .

We can now further explore the structure of almost split sequences ending at an
Ω-perfect module C of complexity 1. Here, we let the module C be in a regular
component of the Auslander-Reiten quiver of a selfinjective Artin algebra.

Proposition 5.2.7. [6, Proposition 3.5] Let R be a selfinjective Artin algebra and
let C be an Ω-perfect module of complexity 1, belonging to a regular component of
the Auslander-Reiten quiver. Let

0 τC E1 ⊕ E2 ⊕ ...⊕ Et C 0
(f1,f2,...,ft)T (g1,g2,...,gt)

be an almost split sequence ending at C where the Ei’s are indecomposable. Then
precisely one of the maps gi is an epimorphism and all the other ones are monomor-
phisms.

Proof. By 3.2.5, every module in the regular component has complexity 1. First,
assume two gi’s are epimorphisms, say, g1 and g2. Then, the morphism (g2, ..., gt)
is an epimorphism, so using 4.1.12 we know that f1 is an epimorphism. This con-
tradicts 5.2.1.

Now assume all the gi’s are monomorphisms. Then, by 5.2.1, all the fi’s are
epimorphisms. We now want to show that all predecessors of C in the component
have length bounded by β(C) · d′, where d′ = max{`(Rei)}. We already know
that `(X) < β(X) · d′ for all X ∈ C by 3.1.3. That is, we only need to prove
that β(X) ≤ β(C) for all predecessors X of C. Again, by 3.1.3 we also know that
β(τnM) ≤ β(M) for n ≥ 0 for M ∈ C. That is, it is enough to show that if we
have a path

Dk Dk−1 · · · D1 C
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where the modules are in different τ -orbits, then β(Dk) ≤ β(C). We assume

Dk Dk−1 · · · D1 C

is such a path where k ≥ 1, and let D0 = C. That is, D1 = Er for a r ∈ {1, 2, ..., t}.
We know that fr : τC−→D1 is an irreducible epimorphism. Moreover, we know
that fr is Ω-perfect, and by 4.1.11 we then know that

βi(τC) = βi(Ker fr) + βi(D
1).

Furthermore, Ker fr cannot be projective as this would imply that fr splits, which
is not possible. So, βi(Ker fr) 6= 0 and

βi(D
1) < βi(τC) for all i ≥ 0 and furthermore

β(D1) < β(τC) ≤ β(C).

So, β(D1) < β(C). That is, if k = 1, we are done.

We assume k > 1 and continue. We consider an almost split sequence ending
at D1

0 τD1 D2 ⊕ L1 ⊕ τC D1 0
(h1,h2,h3)T (k1,k2,fr)

where L1 may decompose. We know that fr is an epimorphism, so (k2, fr) is an
epimorphism. Then, by 4.1.12, h1 is an epimorphism. Further, by repeating 2.3.8
we have an almost split sequence

0 ΩnτD1 ΩnD2 ⊕ ΩnL1 ⊕ ΩnτC ⊕ Pn ΩnD1 0

for n ≥ 0 with Pn projective. Since Ωnfr : ΩnτC−→ΩnD1 is an epimorphism for
each n ≥ 0, by a similar argument as above, we know that Ωnh1 : ΩnτD1−→ΩnD2

is an epimorphism for n ≥ 0. That is, h1 : τD1−→D2 is an Ω-perfect irreducible
epimorphism, so

βi(τD
1) = βi(Kerh1) + βi(D

2)

by 4.1.11. Again, since βi(Kerh1) cannot be zero, we have that βi(τD1) > βi(D
2)

for all i ≥ 0 and furthermore β(D2) < β(τD1) ≤ β(D1). We now consider an
almost split sequence ending at Dj

0 τDj Dj+1 ⊕ Lj ⊕ τDj−1
Dj 0
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where Lj may decompose and j ∈ {1, ..., k−1}. Resuming the previous argument,
we can show that each map τDj−→Dj+1 is Ω-perfect, and using 4.1.11 we have
that βi(τDj) > βi(D

j+1) for all i ≥ 0. That is, we have that

β(Dk) < β(τDk−1) ≤ β(Dk−1) < ... < β(D1) < β(C), and

`(Dk) < β(Dk) · d′ < β(C) · d′

for k ≥ 1 by 3.1.3. By the above and the previous argument we know that each
predecessor of C is bounded by β(C) · d′. Then, all indecomposable R-modules X
such that HomR(X,C) 6= (0) is in C, by 5.2.6.

We now look at the composition series of C

... ⊆ C2 ⊆ C1 ⊆ C

We know that C/C1
∼= S, where S is a simple R-module. The projective cover of a

simple module is an indecomposable projective. That is, we have the commutative
diagram

P

C C/C1
∼= S

h

with P indecomposable projective. In particular, we have a morphism h : P−→C,
so HomR(P,C) 6= (0). That is, P ∈ C, a contradiction to C being regular. So gi is
not a monomorphism for all i ∈ {1, ..., t}.

In total, precisely one of the gi’s is an epimorphism, and all the others are monomor-
phisms.

The reader may confuse this result with 5.1.3. It should therefore be noted that
the assumptions are different in these results and moreover, while we in 5.1.3 just
show that at most one gi is an epimorphism, we here show that precisely one gi
is an epimorphism. We now prove a theorem stating that a module of complexity
1 belonging to a regular component cannot have more than two indecomposable
modules in a chosen decomposition of the middle term of an almost split sequence
ending at the module.

Theorem 5.2.8. [6, Theorem 3.6] Let R be a selfinjective Artin algebra and let M
be a module of complexity 1 belonging to a regular component. Then α(M) ≤ 2.
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Proof. If there is a τ -periodic module in the component, by previous arguments,
we know that the component is of type ZA∞/〈τn〉. That is, α(M) ≤ 2 for all
M ∈ C.

So, we assume that the component is not a tube. By 4.2.8 we know that there
exists an n ≥ 0 such that τnM is Ω-perfect. Further, all the modules in the regular
component have complexity 1 by 3.2.5, in particular cx(τnM) = 1. For simplicity,
we denote τnM by M ′. We assume that

0 τM ′ E1 ⊕ E2 ⊕ ...⊕ Et M ′ 0
(g1,g2,...,gt)

is an almost split sequence ending atM ′, where the Ei’s are non-zero, indecompos-
able and that t ≥ 3. The component is regular, so none of the Ei’s is projective.
Moreover, we get that

t∑
i=1

`(Ei) = `(τM ′) + `(M ′). (5.9)

By applying 5.2.7 we may assume that g1 is an epimorphism. Since the component
is regular, by 2.3.11, we have the almost split sequence

0 τ 2M ′ τE1 ⊕ τE2 ⊕ ...⊕ τEt τM ′ 0

where τEi 6= (0) for i ∈ {1, ..., t}. Furthermore, we get that

t∑
i=1

`(τEi) = `(τ 2M ′) + `(τM ′). (5.10)

By adding (5.9) and (5.10) we get

t∑
i=1

`(Ei) +
t∑
i=1

`(τEi) = `(M ′) + 2 · `(τM ′) + `(τ 2M ′). (5.11)

Since t ≥ 3 and E2 and E3 are not projective, we have almost split sequences

0 τE2 τM ′ ⊕ C E2 0

and
0 τE3 τM ′ ⊕D E3 0
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where C and D are not necessariliy indecomposable. Moreover, we have that

`(τM ′) + `(C) = `(τE2) + `(E2) (5.12)

and

`(τM ′) + `(D) = `(τE3) + `(E3) (5.13)

So, by adding (5.12) and (5.13) we get

`(C) + `(D) + 2 · `(τM ′) = `(E2) + `(E3) + `(τE2) + `(τE3). (5.14)

Now, adding (5.11) and (5.14) we get

`(C) + `(D) + `(E1) + `(τE1) +
t∑
i=4

`(Ei) +
t∑
i=4

`(τEi) = `(τ 2M ′) + `(M ′),

that is, we have the inequality

`(E1) + `(τE1) ≤ `(τ 2M ′) + `(M ′). (5.15)

Further, we know that the morphism τE1−→τM ′ is an epimorphism by 4.1.3 since
g1 is an epimorphism andM ′ is Ω-perfect. That is, both E1−→M ′ and τE1−→τM ′

are epimorphisms, so

`(M ′) < `(E1) and
`(τM ′) < `(τE1).

That is,

`(M ′) + `(τM ′) < `(E1) + `(τE1),

and further, combining this with (5.15) we have that

`(M ′) + `(τM ′) < `(τ 2M ′) + `(M ′).

Moreover, we then have that

`(τM ′) < `(τ 2M ′).

Since the component is regular we have that

0 τ j+1M ′ τ jE1 ⊕ τ jE2 ⊕ ...⊕ τ jEt τ jM ′ 0
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is an almost split sequence ending at τ jM ′ for all j ≥ 0 by 2.3.11. The Ei’s
are not projective, so then from Subchapter 2.3 we know that τ jEi 6= (0) for
i ∈ {1, ..., t} and j ≥ 0. Furthermore, since M ′ is an Ω-perfect module and g1 is
an epimorphism, we know that τ jg1 is an epimorphism by 4.1.3. Recall that τ jM ′

is Ω-perfect by 4.1.10 and has complexity 1 by 3.2.5. Repeating the argument for
τ jM ′ for j ≥ 1, we get

`(τM ′) < `(τ 2M ′) < `(τ 3M ′) < ...

But we know, by 3.1.3, that

`(τ kM ′) < β(τ kM ′) · d′ ≤ β(M ′) · d′ for all k ≥ 0

where d′ = maxi≥0{`(Rei)}. Recall that β(M ′) is finite by 3.2.2. That is, we have
a contradiction to the sequence of strict inequalities above. So, we cannot have
t ≥ 3. Therefore, for the Ω-perfect moduleM ′ = τnM we have that t = α(M ′) ≤ 2.
Since the function α is invariant under τ by 2.3.12, we know that α(M) ≤ 2.

Since the component in the previous proposition is regular, the theorem actually
states that we cannot have more than two indecomposable summands appearing
in a chosen decomposition of the middle term of an almost split sequence ending at
C. Furthermore, since all the modules in C have complexity 1 the statement holds
for all modules in C. Now, we prove the main result in this section. Combining
previous arguments we are able to determine the structure of a regular component
containing a module of complexity 1. Recall that a regular component that is a
tube is of type ZA∞/〈τn〉.

Theorem 5.2.9. [6, Theorem 3.7] Let R be a selfinjective Artin algebra and C a
regular component of the Auslander-Reiten quiver containing a module of complex-
ity 1. Then C is a tube or a component of type ZA∞.

Proof. If the component contains a τ -periodic module, we know from previous
arguments that it is of type ZA∞/〈τn〉.

So, we assume C does not contain a τ -periodic module. By 3.2.5 we know that all
modules in the component have complexity 1 and further by 5.2.8 we then know
that α(C) ≤ 2 for all C ∈ C. Since all modules have complexity 1 in the regu-
lar component we know that β(C) is finite for all C ∈ C by 3.2.2. Moreover, by
5.2.4 we know that there exists a module M in C such that α(M) = 1. We want
argue that this implies that C has a boundary. Now assume there is an n ∈ Z
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such that the almost split sequence ending at τnM (up to isomorphism) has two
non-isomorphic summands in a chosen decomposition of the middle term.

...
...

...
...

...

[τnM ′] [M ′] [τ−1M ′]

· · · [τn+1M ] [τnM ] · · · [τM ] [M ] [τ−1M ] · · ·

[Y ]

This cannot be since the function α is invariant under τ by 2.3.12 and α(M) = 1.
That is, we have a boundary. Moreover, by the same arguments, we cannot have an
n ∈ Z such that an almost split sequence ending at τnM has two indecomposable
isomorphic middle terms. That is, the valuation of every arrow [τnM ′]−→[τnM ]
is aτnM ′,τnM = 1 and moreover, the valuation is a′τn+1M,τnM ′ = 1 for every arrow
[τn+1M ]−→[τnM ′], where n ∈ Z.

We now let

0 τM M ′ M 0

be an almost split sequence ending at M , and want to explore the almost split
sequence ending at M ′. As τM ′−→τM is an epimorphism and τM−→M ′ is a
monomorphism, the almost split sequence ending at M ′ has to have at least two
summands in a chosen decomposition of the middle term. Since α(M ′) ≤ 2 we
know that it has two indecomposable summands in a chosen decomposition of the
middle term. That is, there exists an indecomposable M ′′ such that

0 τM ′ τM ⊕M ′′ M ′ 0

is the almost split sequence ending at M ′ and by 4.1.12, M ′′−→M ′ is an epi-
morphism and τM ′−→M ′′ is a monomorphism. Note that M ′′ � τM because
τM−→M ′ is a monomorphism and therefore if they were isomorphic `(M ′′) =
`(τM) < `(M ′) and we could not have an epimorphism M ′′−→M ′. That is, we
recall the previous arguments and get that aτn+1M,τnM ′ = 1 and a′τnM ′,τnM = 1 for
all n ∈ Z. So, all the arrows on the boundary have valuation (1, 1). Furthermore,
for n ∈ Z, we know that aτnM ′′,τnM ′ = 1 and a′τn+1M ′,τnM ′′ = 1 as well. So, we now
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have the following part of the component

· · · [τ 2M ] [τM ] [M ] [τ−1M ] · · ·

[τM ′] [M ′] [τ−1M ′]

[τM ′′] [M ′′] [τ−1M ′′] [τ−2M ′′] · · ·· · ·

(1,1)

(1
,1

) (1,1) (1
,1

) (1,1) (1
,1

) (1,1) (1
,1

)

(?
,1
)

(1,?) (?
,1

) (1,?) (?
,1

) (1,?) (?
,1

) (1,?)

where the question mark indicates that we do not know the valuation of a′τnM ′′,τnM ′
for n ∈ Z yet. We have also illustrated which morphisms that are epimorphisms
(indicated by a two headed arrow arrow) and which are monomorphisms (indicated
by a hook arrow). We get this information by applying 4.1.12 in a similar manner
as above.

The morphism τM ′′−→τM ′ is an epimorphism and τM ′−→M ′′ is a monomor-
phism. So, an almost split sequence ending at M ′′ has two indecomposable non-
isomorphic summands in a chosen decomposition of the middle term by the pre-
vious and furthermore aτn+1M ′,τnM ′′ = 1 for n ∈ Z. Continuing this argument we
get that we cannot have an upper boundary and the valuation of every arrow is
(1, 1). That is, the component is of type ZA∞. We illustrate the component

· · · [τ 2M ] [τM ] [M ] [τ−1M ] · · ·

[τM ′] [M ′] [τ−1M ′]

[τM ′′] [M ′′] [τ−1M ′′] [τ−2M ′′] · · ·

[M ′′′] [τ−1M ′′′] [τ−2M ′′′]

...
...

...

· · ·

and as usual we neglect the valuation of the arrows since it is trivial.

This result prove important in the next section.
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5.2.2 Modules with eventually constant Betti numbers

In this section we investigate regular components of the Auslander-Reiten quiver
of a selfinjective Artin algebra containing modules with eventually constant Betti
numbers. Such a module is non-projective as a result of it being in a regular com-
ponent and its Betti numbers are bounded. That is, it has complexity 1 by 2.3.7
and 3.2.2. By 3.2.5, we then know that all the modules in the regular component
have complexity 1. This argument is not repeated in the upcoming proofs. Fur-
thermore, by 5.2.9, we know that a regular component of the Auslander-Reiten
quiver of a selfinjective Artin algebra containing modules of complexity 1 is of type
ZA∞ or a tube, that is, of type ZA∞/〈τn〉. Since the valuation of A∞ is trivial,
we know that the component illustrates actual almost split sequences. Also, re-
call from 5.2.3 that all modules in a component of type ZA∞/〈τn〉 that does not
contain any simple modules are Ω-perfect. By now, this should be well known
facts and we use these results without reference in the proofs. Before we introduce
the first result we need to define quasi-length for components of type ZA∞ and
ZA∞/〈τn〉.

Recall from Subchapter 2.2 that since A∞ has trivial valuation, the valued transla-
tion quiver, ZA∞, is independent of orientation in A∞. We enumerate the vertices
in A∞ by the natural numbers and have orientation as shown below.

1 2 3 · · · n n+ 1 · · ·

We illustrate a part of ZA∞.

· · · (−1, 1) (0, 1) (1, 1) (2, 1) · · ·

(−1, 2) (0, 2) (1, 2)

(−2, 3) (−1, 3) (0, 3) (1, 3) · · ·

(−2, 4) (−1, 4) (0, 4)

...
...

...

· · ·

That is, the vertices of ZA∞ are of the form (z, i) with z ∈ Z and i ∈ N and
the vertices of ZA∞/〈τn〉 are of form (z̄, i), with z̄ ∈ Z/(n) and i ∈ N. Then,
we say that the element (z, i) in ZA∞ or (z̄, i) in ZA∞/〈τn〉 is of quasi-length i,
[12]. That is, a module in vertex (z, i) in a component of type ZA∞ or (z̄, i) in
a component of type ZA∞/〈τn〉 has quasi-length i. It follows that all modules in
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the same τ -orbit have equal quasi-length. We denote the quasi-length of a module
M by ql(M). Further, we note that the modules in a component of type ZA∞ or
ZA∞/〈τn〉 of quasi-length 1 lie on the boundary of the component. We now study
the case where there is a module with eventually constant Betti numbers lying on
the boundary of such a component. In the case where the component is a tube we
assume that it does not contain any simple modules.

Proposition 5.2.10. [6, Proposition 4.1] Let R be a selfinjective Artin algebra
and let C be a regular component of the Auslander-Reiten quiver of R containing
a module M whose Betti numbers are eventually equal to b and with α(M) = 1.
Assume also that if C is a tube, then it contains no simple R-modules. Then every
module B in C has eventually constant Betti numbers equal to ql(B)b.

Proof. By previous arguments we know that all modules in the component have
complexity 1 and moreover that C is of type ZA∞ or ZA∞/〈τn〉. If C is of type
ZA∞/〈τn〉 and does not contain any simple modules we know that all modules in
the component are Ω-perfect. If C is of type ZA∞, by 4.2.8, we know that there
exists an m ≥ 0 such that τmM is Ω-perfect. Since βi+2j(X) = βi(τ

jX) for all
i ≥ 0 and j ≥ 0 for any X ∈ C by 3.1.2, we know that modules in the same
τ -orbit as a module with Betti numbers eventually equal to some constant a also
have Betti numbers that are eventually equal to a. Furthermore, we know that all
modules in the same τ -orbit have equal quasi-length. So, we may assume that M
is Ω-perfect. From the previous arguments we know that if M ′ is a module on the
boundary of C, that is, in the same τ -orbit as M , it has eventually constant Betti
numbers equal to b. In other words, equal to ql(M ′)b. We illustrate a part of C.

· · · [τ 2M ] [τM ] [M ] [τ−1M ] · · ·

[τB2] [B2] [τ−1B2]

[τB3] [B3] [τ−1B3] [τ−2B3] · · ·

[B4] [τ−1B4] [τ−2B4]

...
...

...

· · ·

We use induction on the quasi-length n of Bn and we let B1 = M . We start by
looking at n = 2. An almost split sequence ending at M is

0 τM B2 M 0
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and by 4.1.11 we know that βi(B2) = βi(M) + βi(τM) for i ≥ 0 since M is
Ω-perfect by assumption. Further, since the Betti numbers of M and τM are
eventually equal to b it follows that the Betti numbers of B2 are eventually equal
to 2b, that is, eventually equal to ql(B2)b. So, all the modules in the same τ -orbit
as B2, that is, the modules with quasi-length 2, have Betti numbers eventually
equal to 2b.

Now, let n ≥ 3 and assume we have shown that Bj, and therefore also all the
modules in the same τ -orbit as Bj, has eventually constant Betti numbers equal
to jb for j ∈ {1, 2, .., n − 1}. We may assume that Bn−1 is Ω-perfect. Since C is
of type ZA∞ or ZA∞/〈τn〉 we know by previous arguments that an almost split
sequence ending at Bn−1 is

0 τBn−1 τBn−2 ⊕Bn Bn−1 0.

Since Bn−1 and τBn−1 have Betti numbers eventually equal to (n− 1)b and τBn−2

has Betti numbers eventually equal to (n− 2)b by assumption, and further

βi(Bn) = βi(Bn−1) + βi(τBn−1)− βi(τBn−2)

for i ≥ 0 by 4.1.11, we know that Bn has Betti numbers eventually equal to nb.
Of course, this is also the case for the modules in the same τ -orbit as Bn. That is,
all modules with quasi-length n have eventually constant Betti numbers equal to
nb.

We let R be a selfinjective Artin algebra and C be a regular component of the
Auslander-Reiten quiver of R that does not contain any simple modules if it is a
tube. Then, from the previous argument, we conclude that ifM is on the boundary
of the component and has eventually constant Betti numbers, then all modules in
the component have eventually constant Betti numbers. In the next proposition
we see that if we have two modulesM and N in such a component with eventually
constant Betti numbers and we have an irreducible morphism between them, we
know that each module in the component has eventually constant Betti numbers.

Proposition 5.2.11. [6, Proposition 4.2] Let R be a selfinjective Artin algebra and
M and N indecomposable R-modules whose Betti numbers are eventually constant.
Assume that M lies in a regular component C of the Auslander-Reiten quiver of
R that, if a tube, contains no simple modules. If there is an irreducible homomor-
phism M−→N , then every module in C has eventually constant Betti numbers.
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Proof. By previous arguments we know that all modules in the component have
complexity 1 and further that C is of type ZA∞ or ZA∞/〈τn〉. If C is a tube
without simple modules, then all modules in C are Ω-perfect. Moreover, if C is of
type ZA∞ we know that there exists an m ≥ 0 such that both τmM and τmN
are Ω-perfect by 4.2.8 and 4.1.10. Furthermore, since βi+2j(X) = βi(τ

jX) for all
i ≥ 0 and j ≥ 0 for any module X in C, we know that all modules in the same
τ -orbit as M (N) have Betti numbers eventually equal to the same constant the
Betti numbers of M (N) are eventually equal to. That is, we can assume both M
and N are Ω-perfect. If either M or N is on the boundary of C, we are done by
5.2.10. If not, since we know the structure of the component we have an almost
split sequence ending at N

0 τN M ⊕M ′ N 0

where M and M ′ are indecomposable. By 4.1.11 we know that

βi(M
′) = βi(N) + βi(τN)− βi(M)

for i ≥ 0 and moreover we know that N , τN and M have eventually constant
Betti numbers. That is, the module M ′, and therefore also all modules in the
same τ -orbit as M ′, has eventually constant Betti numbers.

Now let X be an arbitrary module in the component. Then we can assume that
τ kX lies on a sectional path of Ω-perfect modules ending at an Ω-perfect module
in the τ -orbit of N or in the τ -orbit of M for some k ∈ Z. That is, we may
repeatedly use 4.1.11 and the arguments above to argue that τ kX, and therefore
also X, has eventually constant Betti numbers.

Remark. In the two previous proofs we let R be a selfinjective Artin algebra and
investigate regular components of type ZA∞ or ZA∞/〈τn〉. We argue that a mod-
ule in the same τ -orbit as a module with eventually constant Betti numbers equal
to some constant a also has Betti numbers eventually equal to a. The argument
for this is not repeated in the upcoming proofs.

We again let R be a selfinjective Artin algebra and C be a regular component of
the Auslander-Reiten quiver of R that does not contain any simple modules if it is
a tube. From the two previous results we know the following. If there is a module
on the boundary of C with eventually constant Betti numbers, then every module
in the component has eventually constant Betti numbers. Furthermore, we know
that if there are two modules with eventually constant Betti numbers connected
with an irreducible morphism in C, then all modules in C have eventually constant



5.2. COMPLEXITY 1 107

Betti numbers. It would be of interest to investigate if C containing a module
with eventually constant Betti numbers would imply that all modules in C have
eventually constant Betti numbers. Unfortunately, in the nonlocal case this need
not be true. It is not known if it is true in the local case [6]. We can however say
something about the Betti numbers of an arbitrary module in the regular compo-
nent containing a module with eventually constant Betti numbers. Before we are
able to present this result we need to define periodic and eventually periodic Betti
numbers. We say that an R-module M has periodic Betti numbers if there is some
positive integer n such that βi(M) = βi+n(M), for all i ≥ 0. Moreover, we say
that M has eventually periodic Betti numbers if there are some positive integers n
and k such that βi(M) = βi+n(M) for all i ≥ k. We now present a useful lemma
before we explore properties of an arbitrary module in a regular component, that,
if a tube does not contain simple modules, containing a module with eventually
constant Betti numbers.

Lemma 5.2.12. Let R be a selfinjective Artin algebra. Assume that C is a regular
component of the Auslander-Reiten quiver of type ZA∞ or ZA∞/〈τn〉 and that C
is an Ω-perfect module on the boundary of C. If

Mn Mn−1 · · · M1 C
fn fn−1 f2 f1

is a sectional path of irreducible epimorphisms in C with n ≥ 1, then each irre-
ducible epimorphism fk : Mk−→Mk−1 is Ω-perfect for k ∈ {1, ..., n} whereM0 = C.
In particular, βi(Mk) = βi(Mk−1) + βi(τ

kC) for i ≥ 0.

Proof. We illustrate a part of the component.

· · · [τ 2C] [τC] [C] [τ−1C] · · ·

[τM1] [M1] [τ−1M1]

[τM2] [M2] [τ−1M2] [τ−2M2] · · ·

[M3] [τ−1M3] [τ−2M3]

...
...

...

· · ·

For f1 : M1−→C the result follows from the fact that C is Ω-perfect and 4.1.11.
Now, look at fk : Mk−→Mk−1 with k ∈ {2, ..., n}. By previous arguments we
know that τmfk is an epimorphism for all m ≥ 0. Moreover, by applying 4.1.12
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in the same manner as in Section 5.2.1, we know that its kernel is isomorphic to
τm+kC. We know that C is Ω-perfect, so Ω2(m+k)C is not simple for m ≥ 0 and
k ∈ {2, ..., n} by 4.1.8. That is, by 2.3.4 and 2.3.6 we know that τm+kC is not
simple for m ≥ 0 and k ∈ {2, ..., n}. Furthermore, we have that

`(τm+kC) + `(τmMk−1) = `(τmMk). (5.16)

We now want to show that fk is Ω-perfect. Since τmfk is an epimorphism for all
m ≥ 0, by 2.3.13, we know that Ω2mfk is an epimorphism for all m ≥ 0. That is,
we have an exact sequence

0 Km Ω2mMk Ω2mMk−1 0
Ω2mfk

for m ≥ 0. That is, we know that

`(Km) + `(Ω2mMk−1) = `(Ω2mMk). (5.17)

Now, by 2.3.4 and 2.3.6 we have that

`(Ω2mMk−1) = `(τmMk−1) and
`(Ω2mMk) = `(τmMk).

So, by (5.16) and (5.17) we know that `(Km) = `(τm+kC) > 1 for all m ≥ 0. That
is, the kernel of Ω2mfk is not simple for m ≥ 0 and by 4.1.7 we know that Ω2m+1fk
is an epimorphism for all m ≥ 0. That is, fk : Mk−→Mk−1 is Ω-perfect.

Then, applying 4.1.11 we know that βi(Mk) = βi(Mk−1) + βi(τ
kC) for all i ≥ 0

and k ∈ {2, ..., n}.

The previous lemma is used in the next proposition where we investigate properties
of Betti numbers of an arbitrary module in a regular component of the Auslander-
Reiten quiver of a selfinjective Artin algebra containing a module with eventually
constant Betti numbers. Again, we assume the component does not contain any
simple modules if it is a tube.

Proposition 5.2.13. [6, Proposition 4.3] Let R be a selfinjective Artin algebra,
and let Mn be an indecomposable R-module with eventually constant Betti numbers
lying in a regular component C of the Auslander-Reiten quiver, that, if a tube
contains no simple modules. Then every module in C has eventually periodic Betti
numbers. Furthermore, the eventual period of the Betti numbers of a module in C
divides 2 ql(Mn).
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Proof. Again, we know that all modules in the component have complexity 1 and
that C is of type ZA∞ or ZA∞/〈τn〉 . Further, we know that all modules in the same
τ -orbit asMn have eventually constant Betti numbers. IfMn is on the boundary of
C, then by 5.2.10, every module in the component have eventually constant Betti
numbers, that is eventually period 1, which obviously divides 2 ql(Mn).

Now assume Mn is not on the boundary of C and have quasi-length n + 1. By
applying τ a certain number of times, since βi(τ jMn) = βi+2j(Mn) for all i ≥ 0 and
j ≥ 0 by 3.1.2, we can assume that Mn has constant Betti numbers. We illustrate
a part of the component

· · · [τnC] [τn−1C] · · · [τC] [C] · · ·

· · · [τn−1M1] [M1] · · ·

· · · · · ·

...

[τ 2Mn−2] [τMn−2] [Mn−2]

[τMn−1] [Mn−1]

[Mn]

· · ·

· · ·

· · · · · ·

· · ·

· · ·

...
...

So, we have a sectional path of n irreducible epimorphisms

Mn Mn−1 Mn−2 · · · M1 C

where C is on the boundary of C, and a sectional path of n irreducible monomor-
phisms

τnC τn−1M1 τn−2M2 · · · τMn−1 Mn.

We can assume that all of the modules {Mk}nk=1 and C are Ω-perfect, because
either all modules in C are Ω-perfect or for each module M ∈ C there exists an
l ≥ 0 such that applying τ l to M gives an Ω-perfect module by respectively 5.2.3
and 4.2.8. Furthermore, if this assumption gives us that the Ω-perfect modules
have eventually periodic Betti numbers, since βi+2j(X) = βi(τ

jX) for all X ∈ C
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with j ≥ 0 and i ≥ 0, every module in the same τ -orbit also have eventual periodic
Betti numbers with equal eventual period.

We first argue that every module on the boundary has eventually periodic Betti
numbers. Note that we in this part of the proof only need that C is Ω-perfect. By
5.2.12 we know that

βi(τ
jC) + βi(Mj−1) = βi(Mj)

for all j ∈ {1, ..., n} and i ≥ 0 where M0 = C. Using this we get that

βi(Mn) =
n∑
j=0

βi(τ
jC) (5.18)

for all i ≥ 0 and in a similar manner, since τC is Ω-perfect by 4.1.10, we have that

βi(τMn) =
n+1∑
j=1

βi(τ
jC) (5.19)

for all i ≥ 0. The module Mn has constant Betti numbers and then since
βi+2(Mn) = βi(τMn) for i ≥ 0 by 3.1.2, we know that βi(Mn) = βi(τMn) for
all i ≥ 0. So, by (5.18) and (5.19) we know that βi(τn+1C) = βi(C) for i ≥ 0.
Further, by 3.1.2, we then know that βi+2(n+1)(C) = βi(C) for i ≥ 0. In other
words, C has periodic Betti numbers with a period that divides 2(n + 1). This
implies that every module on the boundary has eventually periodic Betti numbers
with period dividing 2(n+ 1).

We know that

0 τC M1 C 0

is an almost split sequence ending at the Ω-perfect module C and that

βi(M1) = βi(τC) + βi(C) (5.20)

for i ≥ 0. Further,

0 τn+2C τn+1M1 τn+1C 0

is an almost split sequence ending at τn+1C, an Ω-perfect module by 4.1.10. So,
by 4.1.11 we have that

βi(τ
n+1M1) = βi(τ

n+2C) + βi(τ
n+1C) (5.21)
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for i ≥ 0. Since C has periodic Betti numbers with a period that divides 2(n+ 1)
we know by 3.1.2 that

βi(τ
n+1C) = βi+2(n+1)(C) = βi(C)

for i ≥ 0 and

βi(τ
n+2C) = βi+2(n+1)(τC) = βi(τC)

for i ≥ 0. So, then by (5.20) and (5.21) we have that

βi(M1) = βi(τ
n+1M1) = βi+2(n+1)(M1)

for i ≥ 0 using 3.1.2. That is, M1 has periodic Betti-numbers with a period divid-
ing 2(n+ 1). Then all modules in the same τ -orbit as M1 have eventually periodic
Betti numbers with period dividing 2(n+ 1).

We recall that we may assume that all the modules {Mk}nk=1 are Ω-perfect and
now look at the almost split sequences ending at the Ω-perfect modules M1 and
τn+1M1

0 τM1 τC ⊕M2 M1 0

and

0 τn+2M1 τn+2C ⊕ τn+1M2 τn+1M1 0.

So, by 4.1.11 we know that

βi(τM1) + βi(M1) = βi(τC) + βi(M2) (5.22)

for i ≥ 0 and

βi(τ
n+2M1) + βi(τ

n+1M1) = βi(τ
n+2C) + βi(τ

n+1M2) (5.23)

for i ≥ 0. We know that M1 and C have periodic Betti numbers with a period
dividing 2(n+1), so then by (5.22) and (5.23) we know that βi(M2) = βi(τ

n+1M2)
for i ≥ 0. That is, M2 has periodic Betti numbers with a period dividing 2(n+ 1).
Furthermore, all modules in the same τ -orbit asM2 have eventually periodic Betti
numbers with period dividing 2(n+ 1).

Continuing this argument, we have that all the modules {Mk}nk=1 have periodic
Betti numbers with a period dividing 2(n+1). So, all modules in the their τ -orbits
have eventually periodic Betti numbers with period dividing 2(n+ 1).
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Now, assume X is an arbitrary module in C that is not in the τ -orbit of any of
the Mi’s. We can assume that τmX for some m ≥ 0 lies on a sectional path of Ω-
perfect modules containing an Ω-perfect module in the τ -orbit ofMn with constant
Betti numbers and ending at a module in the τ -orbit of Mn−1 with periodic Betti
numbers with period dividing 2(n + 1). Then repeating the previous argument,
we see that τmX has periodic Betti numbers with period dividing 2(n + 1) and
moreover X has eventually periodic Betti numbers with period dividing 2(n+ 1).

Remark. We let R be a selfinjective Artin algebra and investigate regular com-
ponents of type ZA∞ or ZA∞/〈τn〉. Then, from the previous proof we see that a
module in the same τ -orbit as a module with eventually periodic Betti numbers
with period a also has eventually periodic Betti numbers with period a. We do
not repeat the argument for this in later proofs.

Furthermore, we have two immediate corollaries.

Corollary 5.2.14. Let R be a selfinjective Artin algebra and let C be a regular
component of the Auslander-Reiten quiver of type ZA∞ or ZA∞/〈τn〉. Let

Mn Mn−1 · · · M1 C

be a sectional path of irreducible epimorphisms in C with C an Ω-perfect R-module
on the boundary of the component. Then βi(Mn) =

∑n
j=0 βi(τ

jC) for all i ≥ 0 and
n ≥ 1.

�

Corollary 5.2.15. Let R be a selfinjective Artin algebra and let C be a regular
component of the Auslander-Reiten quiver containing a module Mn with constant
Betti numbers. Furthermore, assume we have a sectional path of irreducible epi-
morphisms in C

Mn Mn−1 · · · M1 C

with C an Ω-perfect R-module on the boundary of the component. Then, the module
C has periodic Betti numbers with period dividing 2 ql(Mn).

�

We now present two lemmas that we need to prove the last two main results
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in this chapter.

Lemma 5.2.16. [6, Lemma 4.4] Suppose that C is a regular component of the
Auslander-Reiten quiver of a selfinjective Artin algebra R of type ZA∞ or ZA∞/〈τn〉
and that C is an Ω-perfect R-module on the boundary of C. If

Mn Mn−1 · · · M1 C

is a sectional path of irreducible epimorphisms in C, then βi(Mn) =
∑n

j=0 βi+2j(C),
for all i ≥ 0 and n ≥ 1.

Proof. By 5.2.14 we know that

βi(Mn) =
n∑
j=0

βi(τ
jC) for all i ≥ 0 and n ≥ 1.

So, then by 3.1.2 we have that

βi(Mn) =
n∑
j=0

βi+2j(C) for all i ≥ 0 and n ≥ 1.

Note that we have made some changes in the assumptions in the previous lemma
compared to how it is presented in [6]. A combination of the lemma and 5.2.15
gives us the following.

Lemma 5.2.17. Let R be a selfinjective Artin algebra and let Mn be an indecom-
posable R-module with constant Betti numbers lying in a regular component C of
the Auslander-Reiten quiver. Furthermore, assume that

Mn Mn−1 · · · M1 C

is sectional path of irreducible epimorphisms in C with C an Ω-perfect module on
the boundary of the component. Then, C has periodic Betti numbers with period
dividing 2 ql(Mn). Furthermore,

∑n
j=0 β2j(C) =

∑n
j=0 β2j+1(C) for all i ≥ 0 and

n ≥ 1.

Proof. Recall that the component is of type ZA∞ or ZA∞/〈τn〉. By 5.2.15 we
know that C has periodic Betti numbers with period dividing 2 ql(Mn) = 2(n+1).
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Further, by 5.2.16 we know that

β0(Mn) =
n∑
j=0

β2j(C)

and

β1(Mn) =
n∑
j=0

β2j+1(C).

So, since Mn has constant Betti numbers we have that β0(Mn) = β1(Mn) and
therefore

n∑
j=0

β2j(C) =
n∑
j=0

β2j+1(C)

and we are done.

From the two previous lemmas we get the following result.

Proposition 5.2.18. [6, Proposition 4.5] Let R be a selfinjective Artin algebra
and let M be an indecomposable R-module with cx(M) = 1 lying in a regular
component C of the Auslander-Reiten quiver, that, if a tube, contains no simple
modules. Assume the length of a sectional path from M to a module C on the
boundary of the component is n; that is, the quasi-length of M is n + 1. Then
M has eventually constant Betti numbers if and only if C has eventually peri-
odic Betti numbers with period dividing 2 ql(M), and, for sufficiently large m,∑n

j=0 β2j(τ
mC) =

∑n
j=0 β2j+1(τmC).

Proof. Recall that the component is of type ZA∞ or ZA∞/〈τn〉. We may assume
that C is Ω-perfect, as argued earlier. By applying τ sufficiently many times and
recalling the previous remarks, it is enough to show that M has constant Betti
numbers if and only if C has periodic Betti numbers with a period dividing 2 ql(M)
and

∑n
j=0 β2j(C) =

∑n
j=0 β2j+1(C).

⇒ If we first assume M has constant Betti numbers, the result follows from 5.2.17
since C is Ω-perfect.

⇐We now assume C has periodic Betti numbers with a period dividing 2 ql(M) =
2(n+ 1). That is, βk(C) = βk+2(n+1)(C) for all k ≥ 0 and therefore

n∑
j=0

β2j+i(C) =
n∑
j=0

β2j+s(C)



5.2. COMPLEXITY 1 115

where s = 0 if i is even and s = 1 if i is odd. By assumption we also have that

n∑
j=0

β2j(C) =
n∑
j=0

β2j+1(C)

and by 5.2.16 we know that

βi(M) =
n∑
j=0

β2j+i(C)

for i ≥ 0. Using the three equalities above we want to show that M has constant
Betti numbers. Now, if i is even, we get that

βi(M) =
n∑
j=0

β2j+i(C) =
n∑
j=0

β2j(C) =
n∑
j=0

β2j+1(C) =
n∑
j=0

β2j+(i+1)(C) = βi+1(M).

If i is odd, we get that

βi(M) =
n∑
j=0

β2j+i(C) =
n∑
j=0

β2j+1(C) =
n∑
j=0

β2j(C) =
n∑
j=0

β2j+(i+1)(C) = βi+1(M).

That is, M has constant Betti numbers which is what we wanted to show.

We now present the last result in this thesis.

Theorem 5.2.19. [6, Theorem 4.6] Let R be a selfinjective Artin algebra and let
C be a regular component of the Auslander-Reiten quiver of R containing a module
having eventually constant Betti numbers. Assume also that, if a tube, C contains
no simple R-modules. Then

(1) There is an infinite family {Mn}∞n=1 of modules in C having constant Betti
numbers {bn}∞n=1; that is, βi(Mn) = bn, for all i ≥ 0.

(2) The sequence {bn} is strictly increasing.

(3) The R-modules Mn lie on distinct τ -orbits.

(4) There is a positive integer d, such that, for each t ≥ 1, M t can be chosen
having constant Betti numbers bt = td.
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Proof. Recall that the component is of type ZA∞ or ZA∞/〈τn〉. If M is a module
with Betti numbers eventually equal to some constant a on the boundary of C,
then, by 5.2.10, we know that each module B in the component have eventually
constant Betti numbers equal to ql(B)a. That is, we can find an infinite family of
modules {Mn}∞n=1 with constant Betti numbers satisfying the four statements.

Now, assume we have a module that is not on the boundary of C with eventually
constant Betti numbers. By applying τ a sufficiently number of times we know
that there is a module, not on the boundary, with constant Betti numbers with a
sectional path to an Ω-perfect module C on the boundary. So, by 5.2.17 we know
that C has periodic Betti numbers with period dividing 2(n+ 1), for an integer n.
Moreover, we know that

n∑
j=0

β2j(C) =
n∑
j=0

β2j+1(C). (5.24)

Since C has periodic Betti numbers with a period dividing 2(n + 1), they are
also periodic with a period dividing 2l(n + 1) for l ≥ 1. That is, we know that
βk(C) = βk+2l(n+1)(C) for all l ≥ 1 and k ≥ 0. So, for some t ≥ 1, we have that

t(n+1)−1∑
j=0

β2j+i(C) =

t(n+1)−1∑
j=0

β2j+s(C) (5.25)

where s = 0 if i is even, and s = 1 if i is odd. Furthermore, we know that

t(n+1)−1∑
j=0

β2j(C) = t

(
n∑
j=0

β2j(C)

)
and

t(n+1)−1∑
j=0

β2j+1(C) = t

(
n∑
j=0

β2j+1(C)

)
.

This and (5.24) give us that

t(n+1)−1∑
j=0

β2j(C) =

t(n+1)−1∑
j=0

β2j+1(C) (5.26)

Further, for t ≥ 1 we let

Mt(n+1)−1 Mt(n+1)−2 · · · M2 M1 C
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be a sectional path of irreducible epimorphisms. By 5.2.16 we know that

βi(Mt(n+1)−1) =

t(n+1)−1∑
j=0

β2j+i(C) for all i ≥ 0 and t(n+ 1)− 1 ≥ 1 (5.27)

The following argument is similar as the one in 5.2.18, but we choose to show it
here to avoid confusion. Using (5.25), (5.26) and (5.27) we get the following. Let
i be even, then

βi(Mt(n+1)−1) =

t(n+1)−1∑
j=0

β2j+i(C)

=

t(n+1)−1∑
j=0

β2j(C)

=

t(n+1)−1∑
j=0

β2j+1(C)

=

t(n+1)−1∑
j=0

β2j+(i+1)(C)

= βi+1(Mt(n+1)−1).

If i is odd, we get that

βi(Mt(n+1)−1) =

t(n+1)−1∑
j=0

β2j+i(C)

=

t(n+1)−1∑
j=0

β2j+1(C)

=

t(n+1)−1∑
j=0

β2j(C)

=

t(n+1)−1∑
j=0

β2j+(i+1)(C)

= βi+1(Mt(n+1)−1).

That is, for t ≥ 1 the module Mt(n+1)−1 has constant Betti numbers equal to

βi(Mt(n+1)−1) =

t(n+1)−1∑
j=0

β2j(C) = t

(
n∑
j=0

β2j(C)

)
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for all i ≥ 0. We now let d =
∑n

j=0 β2j(C) and we are done.
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5.3 Closing remarks

Due to limited time available, we have not been able to look at specific examples
in this thesis. Given more time, it would also be interesting to look at regular
components of the Auslander-Reiten quiver of a local selfinjective Artin algebra
containing a module with eventually constant Betti numbers. As previously men-
tioned it is not known if this implies that every module in the component has
eventually constant Betti numbers. Moreover, we would have explored the possi-
ble components in 5.1.4 even further.
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