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ABSTRACT Using autonomous underwater vehicles (AUVs) for mapping underwater topography of sea-
ice and icebergs, or detecting keels of ice ridges, is foreseen as enabling technology in future arctic marine
operations. Wind, current, and Coriolis forces affect an iceberg’s trajectory, making automated mapping
difficult. This paper presents a method aiming at enabling autonomous iceberg mapping using AUVs
equipped with a multibeam echosounder by estimating the position and orientation of the iceberg. The
method is based on a bathymetric simultaneous localization and mapping (SLAM) algorithm, namely,
the bathymetric distributed particle filter SLAM (BPSLAM) algorithm. The proposed method estimates
the AUV’s pose in an iceberg-fixed coordinate system. The relative states can be used for both guiding the
vehicle to achieve complete coverage, as well as estimation of a consistent iceberg topography. The algorithm
also provides an estimate of the iceberg’s drift velocity – an important parameter for the AUV trajectory
planning as well as any related ice management (IM) operations. Two new weighting algorithms for the
BPSLAMmethod are proposed, enabling batch processing of multibeam echosounder (MBE)measurements
to ensure real-time operation without discarding information. The proposed method is demonstrated using
a real iceberg topography taken from the PERD iceberg sightings database, with simulated AUV and MBE
range measurements. The algorithm is also evaluated on a real world bathymetric dataset, collected using
the HUGIN HUS AUV.

INDEX TERMS Ocean engineering, AUV, SLAM, multibeam, arctic technology, iceberg management, ice
surveillance.

I. INTRODUCTION
In Arctic marine operations, where there may exist a threat of
sea-ice, and/or icebergs, ice management (IM) is often used
to mitigate the risk posed by any ice features. Eik defines
in [1] IM as the sum of all activities where the objective is to
reduce, or avoid, actions from any kind of ice feature. An IM
system includes methods for detecting, tracking, and fore-
casting sea-ice, ridges, and icebergs. The consequences of
failure, especially in the fragile Arctic ecosystem, are severe
and detailed information about the current ice conditions will
be important to reduce the risk.

To develop accurate iceberg drift models for iceberg trajec-
tory forecasting, detailed knowledge of iceberg keel geom-
etry is necessary. Kubat et al. present in [2] an operational
approach to estimate iceberg drift using an empirical model
of the keel cross-sectional area depending on waterline
height. Detailed iceberg surveys would improve the statistical

foundation for the development of such empirical models [3].
Another modelling application that would greatly benefit
from iceberg keel surveys is iceberg deterioration models,
as stated by Murphy and Carriers in [4]. Such models would
require repeated and systematic surveys of the same iceberg.

Autonomous underwater vehicles (AUVs) have been used
in increasingly complex Arctic operations since the first
reported AUV deployment in the Arctic in 1972, presented
by Francois and Nodland in [5]. AUVs are suitable for a wide
array of tasks due to the vehicle’s high spatial and temporal
coverage. AUVs are also unaffected by the potentially harsh
surface conditions in the Arctic during their mission. Forrest
et al. present in [6] an experiment where an AUV equipped
with an interferometric sidescan sonar was used to capture
draft measurements of the underside of a fragment of the
Peterman Ice Island. Forrest et al. state that planning the AUV
mission for mapping the drifting and rotating iceberg was
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the most challenging part of the operation. This motivates
an autonomous mapping scheme, but before the guidance
problem can be solved, the robot must know its location
relative to the environment it is mapping.

Localization is the problem of determining a robot’s posi-
tion and orientation in a reference frame. When perform-
ing mapping of an unknown environment, the robot must
know its location in order to build a map. Conventional
underwater robotic navigation is usually performed using
a combination of acoustic positioning systems and dead-
reckoning by inertial navigation. The common methods for
acoustic positioning are long-baseline (LBL) and ultrashort-
baseline (USBL), and where LBL requires two or more
transponders to be deployed in the operational area, USBL
usually requires a support ship to stay close to the AUV
during the survey. The time between updates is also relatively
long for acoustic systems, depending on range and other
operational factors. Inertial navigation does not require exter-
nal instrumentation, but the navigation uncertainty grows
unbounded unless position fixes are acquired, either by
using global navigation satellite systems (GNSS) or acoustic
positioning.

Simultaneous localization and mapping (SLAM) is a
method that attempts to build a map of the unknown environ-
ment, while using the samemap to determine the robot’s loca-
tion inside the map. Since the robot’s location is also needed
for building the map, SLAM can be considered a chicken-or-
egg problem, making it a hard problem to solve [7]. SLAM
can be used to bound the error when performing inertial navi-
gation without external instrumentation, and therefore SLAM
is considered to be a requirement for truly autonomous opera-
tions [8]. Thus, much work has been conducted in the field of
SLAM the last three decades (see e.g. [8]–[10] and references
therein).

Either solutions to the SLAM problem can consider the
full trajectory of the robot, dubbed the full SLAM prob-
lem, or it can consider only the current pose of the robot. The
latter is called online SLAM. This paper will only consider
online SLAM, since the full SLAM problem is typically
too computationally demanding to be solved online, and a
mapping scheme requires an online solution. Furthermore,
SLAM can be divided into two main groups based on its
map representation. First, feature-based SLAM only store
landmark locations (which may be updated upon reobser-
vation). Detecting a landmark from sensor readings (e.g.
laser, camera, sonar), and perhaps even more important,
determining if it is the correct landmark, require a feature
detector. Featureless approaches, on the other hand, rely on
a sensor model to evaluate observations and update the map
(often a grid map). Featureless approaches are often pre-
ferred in environments where clearly identifiable features are
sparse.

The method presented in this paper is based on the
bathymetric distributed particle SLAM (BPSLAM) algorithm
presented by Barkby et al. in [11]–[13]. The BPSLAM algo-
rithm, which is a featureless, grid-map based approach to the

FIGURE 1. Illustration of an AUV performing under-ice mapping using a
multibeam echosounder looking up at the ice.

online SLAM problem, was chosen as iceberg topography
mapping has many similarities with bathymetric mapping,
such as lacking clearly identifiable features and utilizing
MBE as the main mapping sensor. The BPSLAM algorithm
also has real-time properties. This is an important aspect since
the objective is to autonomously explore and map an iceberg,
requiring the SLAM outputs to be available in real-time.
Preliminary work on the algorithm presented in this paper can
be found in [14].

The contributions in the work outlined in this paper are:
1) development of an AUV/iceberg relative motion model;
2) an online iceberg mapping filter estimating the relative
position and velocity between the iceberg and the AUV
using an extended Kalman filter (EKF) and particle filter
SLAM; 3) development and evaluation of two new weighting
schemes for BPSLAM to enable batch processing of theMBE
measurements and to adapt the update rate of the SLAM
algorithm to ensure real-time operation; 4) development of an
Arctic AUV simulator; and 5) verification of the method on a
real-world dataset collected with the HUGIN HUS AUV [15]
in the Trondheimsfjord.

A. NOTATION
Matrices are written in capital letters and vectors are writ-
ten in small letters. The dimension of each variable will be
defined. A variable in the Euclidean space with dimension
n is denoted Rn, while matrices of dimension n × m are
denoted Rn×m. The total time derivative of a variable x(t) is
denoted ẋ. Superscript denotes the reference frame to which
a given vector is expressed. For example, pn is a position
in the north-east-down (NED) frame. The reference frames
used are: NED (n), BODY (b), ICE (i), and BEAM (m).
A rotation matrix Rba ∈ SO(n) between reference frames uses
a subscript for the frame transformed from, and superscript
for the frame transformed to. For example, rotating from
BODY to NED is denoted Rnb. For horizontal 3 degree-of-
freedom (DOF) motion, with states (x, y, ψ), we use the
simpler notation R(ψ) = Rz, ψ ∈ SO(3), representing a
rotation of a reference frame about the z-axis by an angle ψ .
A 3DOF state with position and heading is also referred to as a
pose.
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II. BACKGROUND
A. AUVs IN ARCTIC OPERATIONS
AUVs have the unique capability of being able to operate
autonomously under the ice for an extended period of time.
One of the first AUVs performing complex tasks in the
Arctic is the cable-laying AUV Theseus, developed by Inter-
national Submarine Engineering (ISE), which successfully
laid 175 km of fiber-optical cable between Jolliffe Bay and
Ice Camp Knossos in Canada, under a 2.7 meter thick ice
cover [16], [17]. Another application of AUVs in the Arctic is
under-ice surveys. Wadhams et al. present in [18] the use of a
Maridan Martin 150 AUV that gathered sidescan imagery of
the underside of the ice in 2002 – the first of its kind acquired
by an AUV. From the sidescan sonar data, the authors were
able to identify first-year, multi-year, brash, and frazil ice.
Similarly, the Autosub-II AUV was used to obtain the first
under-ice multibeam measurements in 2004 [19].

Large scale oceanographic surveys are necessary to assess
how climate change in the Arctic is affected by inflow of
warm Atlantic water to the Fram Strait into the Arctic Ocean,
and the corresponding effects on the global climate. The
Atlantic Layer Tracking Experiment was designed to eluci-
date how Arctic and global climate change are interrelated
by surveying the water column with a custom designed AUV,
capable of ranges between 1500 and 3000 km and with a
depth rating of up to 4500 m. Missions conducted on Arctic
latitudes as high as 82◦ north are presented by Bellingham
et al. in [20].

More recently in 2010, the Explorer AUV, developed by
ISE, was launched fromBoden Island and collected under-ice
bathymetry for 12 days without surfacing; see [21] and [22].
The AUV transited from the main camp to a remote camp
on a drifting ice floe 320 km away, where underwater charg-
ing and data upload were demonstrated. From the remote
camp, several bathymetric surveys were conducted, and a
total of 1000 km of bathymetric data were acquired under ice
during the operation. For a survey on AUVs in Arctic opera-
tions the reader is referred to [23], and references therein.

B. BATHYMETRY SLAM
Several SLAM algorithms for bathymetric mapping have uti-
lized MBE as the main sensor for observing the environment.
Many of the bathymetric SLAM algorithms are featureless
approaches that stem from earlier work on terrain-aided navi-
gation (TAN), which only considers the localization problem
given a predefined map of the environment (see [24] for a
survey on TAN). The reason featureless approaches are often
used for bathymetric surveys is the lack of clearly identifiable
features on the seabed. An interesting TAN algorithm, which
can be seen as a hybrid between TAN and SLAM, is presented
by Hagen et al. in [25], detailing a method for line-to-line
terrain navigation. In this method, the terrain of the previous
survey line in a lawn-movern pattern is used to bound the nav-
igational error using synthetic aperture sonar on the HUGIN
AUV.

A featureless bathymetric SLAM approach using EKF
SLAM is presented by Roman and Singh in [26], where the
point cloud collected from theMBE is stored in submaps, and
the submaps are pair-wise matched using correlation and an
iterative closest point (ICP) algorithm. Othermethods dealing
with featureless bathymetric SLAM and submaps matched
with ICP, extended from 2.5D (2D map with elevation, which
is often used as map representation for bathymetry) to 3D, are
presented in [27]–[30]. An alternative method using factor
graph SLAM and submaps matched with ICP is presented
in [31], which is a full SLAM algorithm providing smoothing
of the full trajectory.

Fairfield et al. propose in [32], [33] a different approach
to handle complex 3D underwater environments. By using an
occupancy grid of cubic volume elements (voxels) as its map,
a complex 3D geometry can be represented. The method uses
a Rao-Blackwellized particle filter (RBPF) at the core of the
SLAM algorithm (see [34], [35] for details on RBPF), and the
evidence of occupancy in a certain voxel is updated by a log-
likelihood update function. Fairfield et al. state in [33] that
the algorithm is robust to noise and that real-time constraints
are achieved by adaptively changing the particle number.

In [36]–[38], Eliazar and Parr introduce the distributed
particle filter SLAM (DPSLAM) algorithm – a feature-
less real-time SLAM algorithm using an ancestry tree to
store relations between particles. The ancestry tree algorithm
makes it possible to use only one map for all particles (RBPF
implementations usually require one map per particle), thus
eliminating costly map-copy operations. While DPSLAM is
intended for laser range sensor, Barkby et al. suggest an
alternative, namely the BPSLAM, which also uses RBPF and
an ancestry tree, but is tailored for use with MBE and bathy-
metric surveys [11]–[13]. Whereas the original BPSLAM is
an online SLAM method, Barkby et al. adopt the method
to solve the full SLAM problem in [39], [40], and eliminate
the requirement for overlap in sensor data by using Gaussian
processes.

C. ICEBERG SLAM
Kimball and Rock report in [41] an extension to TAN
intended for AUVs, that uses data captured from a side-
mounted MBE on a ship to estimate the iceberg-relative ship
track as well as iceberg motion. Kimball and Rock further
extend the proposed method in [42]–[44]. The method pre-
sented in [44] utilizes a sideways-mounted Doppler velocity
log (DVL) and MBE, and it optimizes the estimated ice-
berg trajectory and the measurement positions with respect
to map consistency. The estimates of the iceberg trajectory,
topography, and rotation are computed after a full circum-
navigation of the iceberg, making this an offline SLAM
approach with one loop-closure. An important aspect of the
work presented by Kimball and Rock is that the iceberg is
not instrumented, meaning estimates of iceberg motion must
be calculated by the underwater vehicle itself. Hammond and
Rock build on the work by Kimball and Rock in [45], and
remove the need for external navigation aids in the iceberg
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trajectory estimation problem. The result is a method that
generates a consistent iceberg topography map, not needing
external positioning systems (like a ship with USBL, or LBL
transponders), but without an estimate of the iceberg tra-
jectory. In [46], the same authors present a GraphSLAM
approach to underwater mapping with poor inertial informa-
tion, with the intended application being iceberg mapping.

Kunz presents in [47] a SLAM algorithm for mapping of
ice floes using an AUV with upwards-mounted MBE and
DVL. The presented method is a solution to the full SLAM
problem, utilizing pose graph optimization. In [47, Ch. 5],
Kunz presents an AUV mission conducted under Antarc-
tic sea-ice, and the results show how the proposed method
performed in estimating the ice drift. During the mission,
the AUV guidance system was able to track the translation of
the sea-ice from measurements by the DVL, but the guidance
system could not account for the rotation of the sea-ice, as this
was not estimated before after the mission was completed.

III. PROBLEM FORMULATION
The problem considered is using an AUV equipped with
an MBE to map the underwater topography of an iceberg
using featureless bathymetric SLAM based on a particle filter
estimator. The main challenge to be solved is accurate map-
ping of the underwater iceberg geometry in an iceberg-fixed
coordinate frame that is translating and rotating at an assumed
constant velocity.

SLAM algorithms work by utilizing a map of the environ-
ment to estimate the state of the vehicle. The objective is to
estimate the relative state between the AUV and the iceberg,
and therefore, information about the iceberg is required. If no
a priori information about the iceberg is available, the AUV
must build a map of the iceberg while simultaneously per-
forming localization of the vehicle inside the map. An update
of the estimated iceberg state will therefore only be performed
upon loop-closures, that is, upon re-observation of a previ-
ously mapped area.

Three coordinate reference frames are used to describe
the motions of the iceberg and AUV. These are the Earth-
fixed North-East-Down (NED) frame, assumed inertial and
denoted the ‘‘global’’ frame {n}, the AUV body-fixed frame
denoted {b}, and the iceberg-fixed frame denoted {i}; see
Figure 2.
We make the following assumptions for the development

of our algorithm:

1) Iceberg drift velocity (incl. rotational rate) is constant.
2) An upper bound on the iceberg’s size is known.
3) Drift velocity of the iceberg is much smaller than the

AUV velocity.
4) Iceberg topography does not change during the survey.

The first assumption stems from the inherent inability
of BPSLAM to estimate the drift velocity and rotation
when the AUV is between loop closures. This motivates the
use of an active SLAM approach to optimize performance
by minimizing time between loop closures. In this paper,

FIGURE 2. Iceberg-AUV relative coordinate system.

however, we will not study the development of an active
SLAM guidance scheme. Thus, we assume there exists a
guidance system generating a lawn-mover pattern (in the
iceberg-fixed frame), for which the MBE coverage area over-
laps from leg to leg – resulting in frequent loop-closures after
the first leg is completed. An a priori estimate of the drift
velocity is also assumed known. This will greatly improve
the performance of the estimator, since no update can be
made before the first loop closure, and without any prior
information, this error will propagate throughout the survey.

The BPSLAM algorithm uses a fixed size grid map, with
fixed resolution, thus requiring knowledge of an upper bound
on the iceberg length and width in the survey setup. Knowl-
edge of this size bound is reasonable, since it typically is pro-
vided by other systems, e.g., ship radar, UAVs, or satellites.
However, if the AUVwould be operating as a standalone sys-
tem, without remote intervention, a possible solution would
be to first run the AUV in an ‘‘iceberg size detection’’ mode,
where the boundaries and keel depth of the iceberg are
determined; see e.g. [48], [49]. This could also be the phase
where a priori estimates of the linear drift is made, using
measurements from an upwards-looking DVL. According to
Yulmetov et al. in [50], the rotation of the icebergs is mainly
affected by tidal currents and the Coriolis effect, and in a
given areamultiple icebergs have been observed to exhibit the
same rotational trend. Thus, an a priori rotational rate may be
estimated based on the operational area.

The third assumption is an operational constraint – the
AUV must be able to move faster than the environment
it is mapping. To fulfil the constraint on relatively small
loop closure periods, the AUV must move fast relative to
the iceberg. This is similar to mapping bathymetry in the
presence of ocean currents – the AUV must have a much
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larger velocity than the current to maneuver properly and
obtain good data [51].

The fourth assumption is necessary, since we are utilizing
the shape of the iceberg and loop closures to determine
where the AUV is relative to the iceberg. If we disregard
iceberg calving, this is a reasonable assumption, since other
effects that change the iceberg shape occurs at a much larger
timescale than a mapping survey.

A. AUV/ICEBERG RELATIVE MOTION MODEL
The ice-relative AUV pose in the i-frame, ηirel =[
x irel y

i
rel ψrel

]>, can be expressed in terms of the AUV and
iceberg poses in the n-frame by

ηirel = R>(ψice)(ηnauv − η
n
ice), (1)

where ψice denotes the heading of the iceberg relative to the
NED-frame and R(ψice) ∈ SO(3). By defining the relative
velocity of the AUV in the b-frame as νbrel = ν

b
auv−ν

b
ice ∈ R3,

the relative motion model can be expressed as

η̇irel = R(ψrel)νbrel − S(rice)η
i
rel + ω1, (2)

ν̇brel = ν̇
b
auv + S(rrel)R

>(ψrel)νiice
−R>(ψrel)ν̇iice + ω2, (3)

where S = −S> is a 3 DOF skew-symmetric matrix
[52, Ch.2] with the rotational rate, r , about the z-axis as
input. ψrel = ψauv − ψice is the relative heading between
the AUV and the iceberg, and rrel and rice are the relative
rotational rate and the rotational rate of the iceberg, respec-
tively; see Figure 2. ω1 and ω2 represent process noise, which
is assumed to be zero-mean Gaussian (i.e. no bias). The
AUV acceleration ν̇bauv is typically captured by the kinetic
model [52]

ν̇bauv = M−1
(
τ − C(νbauv)ν

b
auv − D(ν

b
auv)ν

b
auv

)
. (4)

This can be included as part of the filter dynamics, or it
can be taken as a signal from a separate onboard naviga-
tion system. Since a 3 DOF model is used in the estimator,
the depth of the AUV is not estimated. Measurements of the
depth are still used for processing topography measurements,
however.

A pure kinematic model is sufficient for the iceberg, since
we have assumed its velocity νiice to be constant. However,
to account for slow variations in its acceleration, we model
the acceleration as driven by a stochastic process according
to

η̇nice = R(ψice)νiice,

ν̇iice = ω3, (5)

where ω3 ∈ R3 is zero-mean Gaussian white noise. By defin-
ing the state vector

x =
[
ηirel νbrel ηnice νiice

]>
, (6)

the state space representation of the motion model is
described by

ẋ = f (x, u)+ ω

=


R(ψrel)νbrel − S(rice)η

i
rel + ω1

u+ S(rrel)R>(ψrel)νiice − R
>(ψrel)ν̇iice + ω2

R(ψice)νiice
ω3

, (7)

where u = ν̇bauv and ω =
[
ω1 ω2 0 ω3

]>.
B. THE TOPOGRAPHY MAP
The topography map is represented by a grid map M with
fixed size and resolution, where the sizemust be set according
to the size bounds of the iceberg. The resolution depends on
the type of MBE used, the number of beams, and the distance
between the AUV and the mapped environment.
In the framework of a particle filter, let M ⊂ Z2 be the

set of indices belonging to the grid map, and let a topography
estimate be defined by

3pid =
{
pid ξ � t

}
, (8)

where pid is the particle id that made the estimate, ξ is the
information vector of the topography estimate, with corre-
sponding information matrix �, and t is the timestamp when
the estimate was made. From this, the topography map can be
expressed as

M (i, j) =
{
3p1 3p2 . . . 3pk

}
, (9)

where (p1, p2, . . . , pk ) is the set of particles that have made
an update to grid element (i, j) ∈M. If no particle has made
an update to element (i, j), then M (i, j) = ∅.

C. MOTION MODEL MEASUREMENTS
Measurements of a subset of the states of the relative motion
model are required to reduce the dead-reckoning errors.
Wewill assume that the AUV’s orientation is available at each
update, while the position is available sporadically. For sim-
plicity, only the equations for the full position and orientation
update are presented here. This gives the measurement model

ηnauv = R(ψice)ηirel + η
n
ice. (10)

To avoid large errors in the global position, the AUV can get
acoustic positioning fixes (e.g. using LBL or USBL) with
update rate depending on measurement system, availability,
and navigation system accuracy. Further, the relative linear
velocity can be assumed measured using an upwards-looking
DVL when the AUV is below the iceberg. For simplic-
ity, the velocity measurement is assumed available at every
update. The relative rotation rate cannot be measured directly,
but the rotational (yaw) rate of the AUV is assumed measured
using an onboard inertial measurement unit (IMU). This givesurelvrel

rauv

b = νbrel +
0 0 0
0 0 0
0 0 1

R>(ψrel)νiice,
= νbrel + diag

(
0 0 1

)
νiice. (11)

Note that we do not assume that the velocity of the AUV
is measured, since this can be hard to accomplish if acous-
tic position updates are not periodically available (and of
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sufficient quality). If the AUV velocity is available as well,
it is straightforward to include these measurements, and that
would improve the estimation of the iceberg velocity signif-
icantly. Finally, the position and orientation of the iceberg
that are estimated in the SLAM algorithm are used to update
the relative model. Since a particle filter has been chosen
as SLAM implementation, the current pose of the iceberg
will be determined from a weighted average of the particle
poses

ηnice =

Np∑
i=1

wiηnice,i

Np∑
i=1

wi

, (12)

where Np is the number of particles, and wi is the particle
weight of particle i. Thus, we now have the measurement
vector

y =
[
xnauv ynauv ψauv ubrel vbrel rauv xnice ynice ψice

]>
,

(13)

and by combining (10), (11), and the iceberg posi-
tion measurement we get the combined measurement
model

y = hm(x) =

 R(ψice)ηirel + η
n
ice

νbrel + diag
(
0 0 1

)
νiice

ηnice

. (14)

D. TOPOGRAPHY MEASUREMENTS
To perform loop-closures using the SLAM algorithm obser-
vations of the environment must be compared to a measure-
ment model. This paper employs a method similar to the
observation model used in BPSLAM presented in Barkby
et al. [13]. MBE observations are modeled as sets of range (r),
cross-track angle (α), and along-track angle (β), i.e., z =[
r α β

]>. The along-track angle is typically zero, unless the
MBE ismounted with a tilt angle. The across-track angles can
be constant or varying, depending on the MBE used. Adding
the angles to the observation model also provide the possi-
bility to model uncertainty caused by the size of the beam
width (unlike laser range measurements, the MBE beams
have a non-negligible footprint). The observation model for
one beam observation is given by

z = hs(Ei, pirel,2rel)+ ωMBE , (15)

where hs is the SLAM measurement function that uses the
ensonified grid in the map, Ei, and the relative position and
attitude, to calculate an expected observation. We define the
relative position of the AUV in the NED-frame as pnrel =[
xnrel y

n
rel z

n
rel

]>
=
[
xnauv y

n
auv z

n
auv
]>
−
[
xnice y

n
ice 0

]>, and the
relative attitude as 2rel =

[
φauv θauv ψrel

]
. Note that we

cannot use the relative AUV/iceberg state that is input to the
SLAM algorithm directly, since the relative state will differ
from particle to particle. Using (10), the relative state of the

jth particle can be expressed as

ηnrel,j = η̂
n
auv − η

n
ice,j,

= R(ψ̂ice)η̂irel + η̂
n
ice − η

n
ice,j, (16)

where ·̂ denotes the estimated states input to the SLAM algo-
rithm, and ηnice,j is the iceberg position estimated by particle j.
The ensonified grid can now be found with the following
relation

Ei = R>(ψice)pnrel + R
i
b(2rel)Rbm(2beam)Ekrm. (17)

It is assumed that the roll and pitch is measured using the
IMU, and the depth of the AUV is assumed available through
pressure sensor measurements. 2beam =

[
αm βm 0

]> is the
measured beam angles (often fixed), and rm is the beam range
measured by the MBE. Ek is the unit vector in the direction of
the z-axis, and the sign of Ek is positive if the MBE is mounted
downwards, and negative if mounted upwards. It should be
noted that the observations are used to determine what grid is
ensonified in the measurement model. This simplification is
disregarding the data association problem that arises by the
uncertainties in the measurements. However, solutions that
take this into account have been found to be too computa-
tionally complex [13]. The measurement function can now
be expressed as

hs(Ei, pirel,2rel) =

√b2 + a2 + d2arctan
( a
d

)
arctan

( b
d

)
, (18)

ba
d

 = Rbi (2rel)diag
(
1 1 sgn(k)

) (
Ei − pirel

)
. (19)

For upwards-mounted MBE, the sign of the vertical compo-
nent must be reversed, shown by the signum-function in (19).
Note that some MBE models can output processed xyz-
points, that is, they output pmbe =

[
dx dy dz

]>, corrected
for roll, pitch, sound speed, and ray bending. This is the case
for the multibeam used by the HUGIN AUV, the Kongsberg
EM2040. To utilize this processing, (17) can be modified to

Ei = R>(ψice)
(
pnrel + R(ψauv)pmbe

)
. (20)

E. PROBLEM STATEMENT
Suppose that an AUV equipped with an upwards-mounted
MBE is mapping a drifting and rotating iceberg, using
BPSLAM. Let η̂irel and η̂

n
ice be the estimate of the AUV’s

relative pose in the i-frame and the estimate of the pose of the
iceberg in the n-frame, respectively, while ν̂iice is the estimate
of the iceberg drift velocity. The primary objective is to design
an estimator, such that

lim
t→∞
|η̂irel(t)− η

i
rel(t)| = 0, (21)

lim
t→∞
|η̂nice(t)− η

n
ice(t)| = 0. (22)

VOLUME 6, 2018 26323



P. NORGREN, R. SKJETNE: Multibeam-Based SLAM Algorithm for Iceberg Mapping

FIGURE 3. Blockdiagram of the iceberg mapping estimator.

The secondary objective is to estimate the drift velocity νiice
of the iceberg in the i-frame, such that

lim
t→∞
|ν̂iice(t)− ν

i
ice(t)| = 0. (23)

The third objective is to estimate the topography of the ice-
berg in real-time in a fixed size grid map, such that

lim
t→∞
|M̂ (t)−M | = 0, (24)

where M̂ (t) is the map topography estimate.

IV. MOTION ESTIMATOR FOR ICEBERG MAPPING
The iceberg mapping and motion estimator presented in this
paper has two layers. The bottom layer is the SLAM layer,
which estimates the topography of the iceberg, as well as the
iceberg’s position in the NED-frame. The top layer consists of
an EKF estimating the relative position and velocity between
the AUV and the iceberg. The EKF uses the weighted average
state from the SLAM algorithm from (12) as the measured
iceberg pose, while the other measurements are from the
AUV navigation system and the DVL. The velocity of the
iceberg is also estimated in the top layer EKF. A block
diagram of the estimator is shown in Figure 3.

A. RELATIVE MOTION ESTIMATOR
The relative motion estimator is implemented as a standard
discrete EKF. The state of the EKF is defined in (6), and

the state transition is given by (7), while the EKF predict
equations are given by

x̂k|k−1 = x̂k−1|k−1 +1T f (x̂k−1|k−1, uk−1), (25)

Pk|k−1 = Fk−1Pk−1|k−1F>k−1 + Qk−1, (26)

where 1T is the timestep, Q is the model covariance matrix,
and P is the error covariance matrix. F ≈ I +1T

∂f
∂x

∣∣∣
x̂k−1|k−1

is the discretized Jacobian of (7). The EKF update equations
are given by

Kk = Pk|k−1H>m,k
(
Hm,kPk|k−1H>m,k + Rk

)−1
, (27)

x̂k|k = x̂k|k−1 + Kk
(
yk − hm(x̂k|k−1)

)
, (28)

Pk|k = (I − KkHm,k )Pk|k−1, (29)

where hm is the measurement model defined in (14), and
Hm,k =

∂hm
∂x

∣∣∣
x̂k|k−1

is the Jacobian of hm. Rk is the mea-

surement covariance, Kk is the Kalman gain, and yk is the
measurement at timestep k , defined in (13).

B. ICEBERG BPSLAM
The SLAM algorithm chosen for the iceberg mapping prob-
lem is based on the BPSLAM algorithm presented by
Barkby et al. in [11]–[13]. BPSLAM uses a scheme called
distributed particle mapping (DPM) [37] to avoid repeated
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map copy and delete operations, since these have a significant
impact on computational complexity. By storing all particle
estimates in one grid map, and tracking the particle ancestry
in an ancestry tree, one map structure can be used for all
particles. The BPSLAM method is an efficient, featureless
RBPF SLAM algorithm.

Particle filters are especially suitable for featureless
approaches due to its ability to provide multiple hypotheses.
This means that the filter will at all times retain multiple
possible iceberg poses, called particles, and all hypoteses will
be evaluated against the observed environment to find the best
fit. The overall steps in the BPSLAM algorithm is shown in
Algorithm 1. Details of the BPSLAM algorithm can be found
in [11]–[13], and previous work by the authors on the Iceberg
SLAM algorithm can be found in [14]. The following section
provides an overview of the Iceberg BPSLAM algorithm and
details the modifications provided in this paper.

Algorithm 1 Bathymetric Distributed Particle Filter SLAM
1: Initialize each particle from initial distribution and add

any prior information to the map.

2: while running do

3: for Np do

4: Propagate by sampling from motion model.

5: Weight according to map agreement.

6: Update maps of particles.

7: end for

8: if Neff <
Np
2 then

9: Resample based on importance weight.

10: Prune ancestry tree.

11: Update particle set.

12: end if

13: end while

1) PARTICLE PROPAGATION
The particle filter will at all times keep a set of Np active
particles

St =


ηnice,1 . . . ηnice,Np
pid,1 . . . pid,Np
w1 . . . wNp

, (30)

where pid and wk are the particle id and weight of the k th

particle. The set also contains the particle state vector, ηnice,k .
At each timestep, each particle is propagated according to a
proposal distribution

η̇nice,k = R(ψ̂ice)ν̂iice + ω
n
ice, (31)

where ν̂iice is the estimated iceberg velocity from the top
layer estimator (see Figure 3). Equation (31) is similar to
the iceberg motion model in (5), except that the SLAM fil-
ter does not estimate the iceberg velocity. Since the SLAM
algorithm utilizes measurements of the iceberg topography
to estimate the iceberg pose, it was deemed more suitable to
have the velocity estimate in the top level estimator where
measurements of relative velocity could be included. ωnice ∼
N (0, σ 2

νice
) ∈ R3 is driving the particle filter with variance

σ 2
νice
∈ R3. The variance should be on the order of the

expected iceberg velocity variations, plus measurement noise
and dead-reckoning errors.

2) PARTICLE WEIGHTING
To assess whether or not a particle is a good estimate of
the iceberg pose, each particle is evaluated against the map
contained in the particle filter. Obviously it will not be
possible to assess if a particle is good or bad if no prior
map exist. If the observations contain areas overlapping the
previously mapped terrain (either fully or partially), it is
possible to determine how well the observations fit with the
expected results from the map, by using the sensor model
described in (18). Three different methods for weighting the
measurements are discussed - the original BPSLAM method
from [13] (converted to log-space for numerical stability); a
modified version of the BPSLAM method; and an ICP based
method.

a: BPSLAM WEIGHTING
Using the log-likelihood function for normal distributions for
beam j gives

ln
(
P
[(
Êz,j−Ēz,j

)
=0

])
= −

1
2

(
Êz,j − Ēz,j

)2
σ 2
Êz,j
+ σ 2

Ēz,j

− ln

(√
2π
(
σ 2
Êz,j
+ σ 2

Ēz,j

))
,

(32)

where j ∈ Wk ⊂ Z+ is an observation index in the set
of all valid observations for a given particle. Êz,j and σ 2

Êz,j
are the estimated topography and its corresponding variance
estimate, which are stored per grid for all particles that have
made an update to that particular grid. Ēz,j can be found
using (17) and σ 2

Ēz,j
can be estimated through backward trans-

port using [13],

σ 2
Ēz
=

(
H>s,kR

−1
obsHs,k

)−1
, (33)

where Hs,k is the Jacobian of the measurement function
in (18), and Robs = diag

(
σ 2
r σ

2
α σ

2
β

)
is the covariance of

the observations. A weight will only be calculated for a
given observation if it ensonifies a grid already containing
a topography estimate, i.e. it belongs to the set of valid
observationsWk .

VOLUME 6, 2018 26325



P. NORGREN, R. SKJETNE: Multibeam-Based SLAM Algorithm for Iceberg Mapping

The particle weight can be calculated from the joint likeli-
hood of the beam weights

wk = fzk |xk ,M =
∏
∀j∈Ws,k

P
[(
Êz,j − Ēz,j

)
= 0

]
=

∑
∀j∈Ws,k

ln
(
P
[(
Êz,j − Ēz,j

)
= 0

])
. (34)

where Ws,k ⊆ Wk is a subset of the indices of the beam
weights determined by sampling Nmin = min (|Wk |) for k =
1 . . .Np random indices fromWk intoWs,k with equal prob-
ability. The subset Ws,k will be different for each particle,
since the setWk will differ. This means that only Nmin of the
beam weights will be used to determine the particle weight.
The particles will have differing number of valid weights (due
to different number of overlapping observations). We can
define a criterion for including a particle in the resampling
step by setting a minimum overlap, γ . By for instance setting
γ = 50%, a minimum of 50% of the ensonified grids must
contain a previous estimate for the particle to be included in
the resampling step. Note that this is not the same as saying
50% of the MBE beams must produce a valid weight, since
different beams may ensonify the same grid. If a particle is
not included in the resampling process it will not be assigned
a weight, and it cannot be removed or spawn new particles
during resampling.

b: MODIFIED BPSLAM WEIGHTING
The original BPSLAM method process measurements
sequentially, i.e. each new MBE swath initiates a full particle
filter step (see Algorithm 1). Since resampling and prune are
relatively computationally expensive, a method that allows
measurements to be buffered and processed batch wise (mul-
tiple swaths at the time) was desired. Furthermore, batch
processing of swaths will allow adaptive sampling rate in
the SLAM algorithm, which can be important to ensure real-
time operation during run-time transients. Therefore, a new
weighting method for the BPSLAM algorithm is proposed,
based on the work by Hagen et al. in [25]. First, the beam
likelihood is calculated as in (34), but with Ws,k = Wk , and
then modified according to

wk = f
α(xk )
m(xk )

zk |xk ,M
, (35)

where 0 < α(xk ) < 1 is a measure of the actual terrain
information, which depends on terrain variation, map noise,
and sensor noise (see [25] for details). This modifier makes
the algorithm more robust, expecially in segments with little
terrain variations [25]. The modifier m(xk ) represents the
number of grid points supported at xk , allowing use of all
available beam information, rather than only the minimum
number of beams as in the original BPSLAM method. Note
that this will also improve the run-time for the algorithm for
parallel execution, since calculatingNmin requires thread syn-
chronization in a practical implementation, which produces
significant overhead.

c: PARTICLE FILTER ICP WEIGHTING
A method that is frequently used for EKF SLAM is the
iterative closest point method for matching point clouds. This
weighting method is proposed as an alternative to the two
BPSLAM weighting methods, and is also developed with
the intention of batch processing MBE measurements to
allow real-time execution. The details of the ICP algorithm
is outside the scope of this paper, but the ICP implemen-
tation has been taken from the source code provided by
Bouaziz et al. [53], and an overview of the ICP algorithm can
be found in [53] and references therein.

Let E ij,k ∈ Ek be observation j of particle k calcu-
lated from (17), where the set Ek represents the set of all
observations at the current timestep, referred to as the
patch. The output of the ICP algorithm is a rigid body trans-
formation T (d,2) transforming the input data points d (our
observations) to a set of model points M (our map). The
rigid body transformation is calculated by minimizing a cost
function. The particle weight can now be calculated from [54]

fzk |xk ,M = e

∑
∀j∈Ek
‖Ej,k−Tk (Ej,k ,2j)‖

2

, (36)

wk = f
1

m(xk )

zk |xk ,M
, (37)

where the modifier m(xk ) is the same as in the modified
BPSLAM method.

The ICP weighting algorithm does not take the beam and
grid uncertainty into account, like the two former methods,
but provides a best fit betweenmeasurements andmap points.
Altering the ICP method to account for this uncertainty could
be an interesting extension of the algorithm in further work.

3) MAP UPDATE
After weighting each particle, the map must be updated.
Since we assume a static topography, the predict step can be
omitted in the filter estimating the topography. By following
the BPSLAM methodology [13] and by using the dual form
of EKF, the Extended information filter (EIF), the update
equations can be formulated as

Ẽz = �̃−1ξ̃ , (38)

� = �̃+ H>s R
−1
obsHs, (39)

ξ = ξ̃ + H>s R
−1
obs

[
z− hs(Ei, pirel,2rel)+ HsẼz

]
, (40)

where ξ ∈ R is the topography estimate vector in information
form, � ∈ R is the information matrix, and Ez is the topog-
raphy estimate of the selected grid. The notation ·̃ indicates
a priori estimate since time subscript has been omitted.

4) PARTICLE RESAMPLING
In a particle filter, resampling is necessary to achieve conver-
gence, but it can also be dangerous since it limits the memory
of the filter and can potentially lead to situationswhere impor-
tant particles are removed (particle depletion). Since the goal
of resampling is to remove unlikely particles, while keeping
particles that have good correspondence with the map, it only
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makes sense to perform resampling if the particle weights
differ significantly. A method to accomplish this is to define
an effective particle size as presented in [13] and [55],

Neff =
1

Nr∑
i=1

w̄2
i

, (41)

where w̄i is the normalized weight for particle i. Resampling
is only performed when Neff < Nr/2, where Nr represents
the number of particles eligible for resampling.

If the effective particle size is small enough and
resampling is allowed to continue, the resampling step is per-
formed according to the principle of Sequential-Importance-
Resampling (SIR), where the normalized particle weight
defines the probability of a particle being drawn into the new
particle set. If a certain particle with id equal to j is drawn,
it is inserted into the ancestry tree as a child of particle j
and assigned a new particle id. The systematic resampling
algorithm has been selected since this method has been shown
to provide smaller variance and lower computational cost than
the other commonly used resampling strategies [56].

C. SUMMARY OF ESTIMATION ALGORITHM
To wrap up the section describing the developed estima-
tor, a short summary is provided. The reader is referred to
Section III-E providing the problem statement, and Figure 3
providing a graphical overview of the estimator.

The top layer estimator is a standard EKF, running at
high rate to continuously provide updated estimates to e.g.
a guidance system. The top layer provides estimates of the
relative position and velocity between the AUV and the ice-
berg, as well as estimates of iceberg position and velocity (see
state vector in (6)), propagated according to (7). The inputs to
the EKF are the measurements in (13), where the AUV pose
and angular rate, as well as the relative velocity, are external
signals, while the iceberg pose is an output of the bottom layer
SLAM algorithm.

The input to the bottom layer is the relative pose and
velocity from the top layer, which are used to propagate
the particles according to (31). At each SLAM step, Algo-
rithm 1 is executed, before a new SLAMestimate is generated
according to (12), which is used to update the top layer
estimator. In between SLAM steps, all MBE measurements
are timestamped (along with the relative position, attitude,
and velocity) and buffered. This architecture allows adap-
tive SLAM timesteps, which will handle run-time transients,
as long as the average run-time is well below the real-time
constraints.

V. ARCTIC AUV SIMULATOR
Performing AUV operations in the Arctic are expensive and
risky, and all new methods must be thoroughly tested before
being implemented on real systems in the field. Therefore,
a numerical model capable of simulating the desired environ-
ment is required. This section presents part of the simulator
used in conjunction with the work presented in this paper.

FIGURE 4. Simplified blockdiagram of the Arctic AUV simulator.

A block diagram of the simulator can be found in Figure 4.
An earlier version of the simulator has been presented in [49].

A. AUV MODEL
To analyze the behavior of the developedmethod under realis-
tic AUVmotions, a 6 DOF model is used. The measurements
from the MBE sensor are greatly affected by AUV motions
like rolling and pitching, since the sonar head is fixed to the
the AUV body. The targeted AUV during the simulator devel-
opment is the REMUS 100 AUV [57]. The model parameters
have been taken from a REMUS 100model presented in [58].

The general 6 DOF equations of motion of a marine craft
can be written on vectorial form [52]

η̇ = J2(η)ν, (42)

M ν̇r + C(νr )νr + D(νr )νr + g(η) = τ + τenv, (43)

where η =
[
pnauv 2nb

]> is the position and orientation vector
of the AUV. pnauv ∈ R3 denotes the position of the AUV in
the n-frame, while 2nb ∈ S3 is a vector of Euler angles.
ν ∈ R6 contains the linear and angular velocities of the AUV,
expressed in the b-frame, and τ, τenv ∈ R6 are the forces and
moments acting on the AUV in the body-fixed frame from the
control surfaces and the environmental loads, respectively.
νr = ν − νc ∈ R6 is the relative velocity vector, where νc
is the velocity vector of the ocean currents. In the model we
have assumed irrotational ocean currents.

Equation (43) defines the kinetics of the AUV, while the
velocity transformation from the b-frame to the n-frame is
expressed in (42). M = MRB + MA ∈ R6×6 is the rigid-
body inertia and added mass of the AUV, while the cen-
tripetal and Coriolis rigid-body and added mass are denoted
C(ν) = CRB(ν) + CA(νr ) ∈ R6×6. D(νr ) ∈ R6×6 represents
hydrodynamic damping, and restoring forces are given by
g(η) ∈ R6. The coefficients for these matrices can be found
in [58]. For more details about the simulator, the reader is
refered to [49].

B. BEAM RANGE SIMULATOR
The beam range simulator used in conjunction with the AUV
dynamics has been developed by Holsen in [59] and extended
by the authors, and a description of the beam simulator will
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be given in the following. The vector describing the direction
of each beam is given by

rnMBE,i
|rnMBE,i|

= Rnb(2nb)RbMBE,i(2bMBE,i)Ek, (44)

where rnMBE,i ∈ R3 is the position vector of the ith beam.
2bMBE,i ∈ S3 is the angles of the beams expressed relative to
the b-frame, RbMBE,i(2bMBE,i) is the rotation matrix between

the ith beam and the b-frame, and Ek =
[
0 0 1

]>.
The range of each beam is estimated through an iter-

ative procedure. Let ei be the current estimate of the ith

beam range. We calculate the beam-end position, pnMBE,i =[
xMBE,i yMBE,i zMBE,i

]> from

pnMBE,i = pnAUV −
rnMBE,i
|rnMBE,i|

ei. (45)

Since the mapped surface is above the AUV, (45) has a neg-
ative sign. If the AUV is performing bathymetric mapping,
the sign in (45) must be reversed. The surface, which in this
case represents the water surface or the iceberg, is represented
as a 3D digital terrain map, where each entry in the matrix
has a north-, east-, and depth-coordinate. To get the depth at a
given position, bilinear interpolation between the four nearest
neighbours is used, resulting in a depth at a given position,
Zsurface(x, y). The error between the beam-end position and
the surface is

eZ ,MBE = zMBE,i − Zsurface(xMBE,i, yMBE,i). (46)

If the error is positive, the beam range is too small, while
with a negative error the beam range is too large. The beam
range is increased by a constant increment until the error
becomes negative, then binary search is used to reduce the
error to a sufficient accuracy. Binary search could have been
used for the whole search; however, this has shown to cause
the beams to hit the wrong surface (beams hitting the water
surface when they should have been hitting the iceberg) under
some conditions.

VI. RESULTS
The following section presents an assessment of the perfor-
mance of the iceberg mapping estimator detailed throughout
this paper. A real iceberg topography, from the PERD iceberg
database [60] is used in a simulation study. The selected
iceberg, no. R11i01, is a wedged iceberg with dimension
160 by 135 meters, a sail height of 31 meters, and a draft
of 110 meters. The results highlights the estimators perfor-
mance with regard to the problem statement in Section III-E.
A run-time analysis is also presented to evaluate the algo-
rithms real-time potential, to assess the feasibility of using
it in closed-loop with an active guidance algorithm.

In order to verify the performance of the algorithm, we first
test it on a static seabed dataset. This is acquired by the
HUGIN HUS AUV equipped with an EM2040 MBE [15]
in November 2017 in the Trondheimsfjord in Norway. The

EM2040 has 400 beams spread out over a varying swath sec-
tor, and can output processed xyz-points, corrected for AUV
roll and pitch, sound speed, and ray bending. The objective
of this preliminary test is to verify that the SLAM algorithm
works well on a standard seabed bathymetry test case. The
processed dataset is depicted in Figure 5(c). The bathymetry
is collected from an area with large variations in topography
to be comparable with mapping of an iceberg.

A. CASE STUDY: STATIC REAL-WORLD BATHYMETRY
The first results presented are the bathymetric field tests.
Figure 5(d) shows the AUV navigation system trajectory
(real-time solution) in solid black and the processed offline
NavLab-solution in solid red. NavLab is a post-processing
tool developed by the Norwegian Defence Research Estab-
lishment and provides a good estimate of the ground
truth [61]. The NavLab estimate of the AUV trajectory is
deduced by merging all available information from sensor
measurements andmathematical error models through a com-
plex post-processing estimator [61]. Optimal smoothing is
also applied to the estimates, since all data, both before and
after the current timestep, are available. If we compare the
AUV navigation with the NavLab-trajectory in Figure 5(d)
and look at the AUV navigation error in Figure 5(b) we
see that the AUV navigation has been quite poor during the
survey, with a maximum error norm e =

√
p2x + p2y of 36.40

meters, even with the aid of ship-mounted USBL. The large
changes in the AUV navigation (especially on the left side
of the figure) are caused by new USBL position fixes (noisy)
entering the navigation solution. In the results presented here,
we only study the SLAM algorithm, and thus, the AUV
navigation has not been included in the SLAM results (i.e.,
pure dead-reckoning).

The SLAM trajectories are shown in Figure 5(d), and its
corresponding error when compared to the NavLab-trajectory
is shown in Figure 5(b). The errors for the SLAM meth-
ods are all greater than 10 meters, but the trajectories for
the BPSLAM and the modified BPSLAM are similar, with
maximum errors of 13.32 and 12.93 meters, respectively.
The BPSLAMmethod suffers from particle depletion, as can
be seen from Figure 5(a). This happens when the particle
standard deviation in both directions are reduced to zero. The
standard deviation tells us about the spread of the particles in
a given direction, but a low standard deviation is not always
desirable since this also reflects the available hypotheses of
the particle filter. Particle depletion is when all particles stem
from one or very few particles after a resampling, i.e. a low
number of hypotheses. If neither of these particles reflect
the correct state, it will be hard for the particle filter to
recover. The 3σ -bound shown in Figure 5(a) should therefore
ideally reduce to a limit defined by the measurement and map
uncertainty, and map resolution. This seems to be the case for
the ICP and the modified version. A sudden decrease in the
3σ -bound happens upon resampling, where unlikely particles
are resampled frommore likely ones. ThemodifiedBPSLAM
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FIGURE 5. HUGIN dataset: SLAM pose estimation results. a) Particle cloud 3σ -bound for SLAM estimate of HUGIN north position. Black line shows
particle cloud 3σ -bound with no resampling. b) Shows the error norm of the north and east position for the average HUGIN pose from the particle cloud
compared to the NavLab solution. c) Processed bathymetry from the HUGIN AUV. d) HUGIN trajectory plot with particle cloud snapshots from the
modified BPSLAM algorithm and trajectories from all SLAM methods and the AUV navigation system (including the NavLab-solution in solid red color).

method is more robust to the particle depletion problem.
The error for the ICP method is larger, which is believed to
stem from convergence problems in the ICP algorithm (this
method aborts after a given number of iterations). Due to the
inaccurate AUV navigation, we cannot say anything about
the expected error using the SLAM method, but all methods
show significant improvement when compared to the real-
time solution aided by USBL.

B. CASE STUDY: ICEBERG MAPPING
In the simulations presented in this section, the iceberg
is drifting with a constant speed and a constant rotational
velocity. Yulmetov et al. [50] study the drift of multiple
icebergs using trackers, and report a mean iceberg speed in
the range 0.08− 0.28 m/s, and a maximum iceberg speed of

0.41− 1.66 m/s. Further, the authors report a mean iceberg
rotational rate of 1 − 2 revolutions per 24 hours, which
is about 15 − 30 degrees/hour. They also report extreme
rotational rates (of short durations) in the order of more than
200 degrees/hour. Based on this information the drift speed
of the iceberg was set to 0.3 m/s with a course angle of
45 degrees (relative to north). The standard deviations for the
noise driving the particle filter in (31) was set to 1.0 m/s for
the linear velocity and to 200 degrees/hour for the rotational
velocity.

The multibeam is configured with the Imagenex DeltaT
multibeam in mind, with 120 beams spread equally over
a sector of 120 degrees, and 3 degrees beamwidth. The
range resolution for the DeltaT multibeam is 0.02% [62],
but to account for uncertainties in beam angle, and iceberg

VOLUME 6, 2018 26329



P. NORGREN, R. SKJETNE: Multibeam-Based SLAM Algorithm for Iceberg Mapping

FIGURE 6. Case 1: SLAM and EKF iceberg pose estimation results. a) Particle cloud 3σ -bound for SLAM estimate of iceberg north position. Black line
shows particle cloud 3σ -bound with no resampling. b) Particle cloud 3σ -bound for SLAM estimate of iceberg east position. c) Shows the error norm
of the north and east position for the iceberg pose estimate in the top level EKF estimator.

roll and pitch, a higher noise level of 0.5% was chosen for
the range measurements. Therefore, the standard deviation
for the multibeam is set to σr = 0.5 meters (a range
of 100 meters is assumed), and the standard deviation for the
multibeam cross-track and along-track error is set to half of
the beamwidth. In the SLAM algorithm, the map size was set
to 225meters, and the resolution was set to 1.0meter. Further,
the patch size is set to 15 seconds, which means that at each
SLAM timestep, a total of 150MBE swaths will be processed
(the MBE is running at 10 Hz). The number of particles used
is 200, unless otherwise specified.

1) CASE 1 - ICEBERG WITH LINEAR DRIFT
This case serves as a baseline for the estimator, and no
rotation has been applied. The intial linear velocity is also

assumed to be known. The results from this case is shown
in Figure 6. From Figure 6(c), it is clear that the ICP ver-
sion of BPSLAM outperforms the other methods in term of
relative position error, which in the ICP SLAM case has a
maximum error norm of 1.46 meters, while the original and
the modified version has 6.67 and 2.83 meters, respectively.
The improvement does come at a cost, which is discussed
in Section VI-C. The error of the modified BPSLAM con-
verges to about the same error as the ICP method at the end
of the simulation, but is shown to consistently result in a
larger maximum error compared to the ICP method through
multiple simulations. From the particle cloud 3σ -bound,
shown in Figure 6(a) and 6(b), it can be seen that the original
BPSLAM method has the largest variations in particle cloud
standard deviation. We can also see that the particle cloud
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FIGURE 7. Case 2: SLAM and EKF iceberg pose estimation results. a) Particle cloud 3σ -bound for SLAM estimate of iceberg north position. Black line
shows particle cloud 3σ -bound with no resampling. b) Particle cloud 3σ -bound for SLAM estimate of iceberg east position. c) Shows the error norm
of the north and east position for the iceberg pose estimate in the top level EKF estimator. d) and e) Iceberg velocity error in the north and east
direction, respectively.
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FIGURE 8. Iceberg topography map extracted from the SLAM algorithm. a) Shows the topography extracted from the particle with the highest weight at
the end of the simulation. b) Topography error map showing the error when compared to the real topography.

standard deviation goes to zero, or close to zero, multiple
times. This is particle depletion, and if we look at the error at
the time of depletion, we see that the estimate is not correct
– resulting in a situation that is hard to recover from. The
reason for the particle depletion is that some observations
are unjustly weighted much lower than others. Since beam
weights are selected by random sampling when only partial
overlap is achieved, this can lead to a larger variation in
particle weights than it should be. In the modified BPSLAM,
this effect is reduced by including all beams and adjusting the
weight with the modifier 1/m(x). It is believed that the effect
seen with the original BPSLAM method will be reduced for
applications where full overlap is required. It should also
be noted that the original BPSLAM is only utilizing 1 out
of 150 swaths for determining resampling since the SLAM
algorithm is running once every 15 seconds. Running the
algorithm on every MBE swath amplified the problem, lead-
ing to severe particle depletion and estimator divergence.

Figure 8(a) illustrates the estimated iceberg topography
collected from the particle with the highest weight at the
end of the simulation. Figure 8(b) shows the observation
map error when compared to the actual map. The error is
larger in areas with high topography gradient, due to the fixed
resolution of the map and since the topography estimation
is sensitive to small position errors in these areas. The over-
all root-mean-squared error (RMSE) over all the grids that
contain a measurement is 1.89 meters for the simulation in
Case 1 with the ICP method.

2) CASE 2 - ICEBERG WITH LINEAR DRIFT AND UNCERTAIN
INITIAL VELOCITY
In Case 2 the simulation parameters were the same as in
Case 1, but initial drift speed and direction were assumed
to be uncertain and were set to be 10% off from the actual
values. Figure 7(d) and 7(e) illustrate the velocity estimate
errors. The estimates converge, but rather slowly, since the
states have been assumed to be constant. We can also see that
the velocity estimate converges faster for the north-direction

than for the east-direction. This is believed to stem from
the AUVs survey direction, which is mainly in the east-west
during the first 650 seconds, and north-south during the rest
of the simulation (see trajectory plot in Figure 10).

In Figure 7(c) we can see that the maximum error is larger
for all methods, but the position estimates in the ICP and the
modified version converge to within a few meters once the
velocity estimates have converged.

3) CASE 3 - ICEBERG WITH LINEAR AND ROTATIONAL DRIFT
AND UNCERTAIN INITIAL VELOCITY
Case 3 studies how iceberg rotation affects the estimates,
and the results are depicted in Figure 9. A rotational rate
of 30 degrees/hour was applied to the iceberg, with initial
uncertainty of 10%. Figures 9(a) - 9(c) show similar results as
seen in Case 2, but again with slightly larger maximum errors.
Figures 9(d) - 9(e) display particle cloud heading 3σ -bound
and the rotational rate estimate error, respectively. From the
plot of the heading 3σ -bound it is clear that it is difficult to
estimate the rotation of the iceberg. The estimate of the rota-
tional rate further supports this claim, since the estimates have
troubles with converging. It looks like the original BPSLAM
estimate converges, but multiple simulations have shown this
to be a coincidence. The rotation estimate for the ICP SLAM
is better, but from Figure 9(d) we see that the 3σ -bound is not
significantly reduced.

Figure 10 shows the relative trajectory and the
NED-trajectory during the simulation of Case 3. Figure 10(a)
illustrates snapshots of the particle cloud (projected from the
iceberg origin to the relative AUV position for the illustra-
tion). We see that the state estimate get a steady state error,
which is due to the inaccurate velocity estimates at the start
of the simulation.

C. RUN-TIME ANALYSIS
The run-time of a SLAM algorithm is always an impor-
tant criteria, and especially important when the algorithm
is intended for use with a guidance algorithm. Figure 11
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FIGURE 9. Case 3: SLAM and EKF iceberg pose estimation results. a) Particle cloud 3σ -bound for SLAM estimate of iceberg north position. Black line
shows particle cloud 3σ -bound with no resampling. b) Particle cloud 3σ -bound for SLAM estimate of iceberg east position. c) Shows the error norm
of the north and east position for the iceberg position estimate in the top level EKF estimator. d) Particle cloud 3σ -bound for SLAM estimates of
iceberg heading. e) Absolute heading error for iceberg orientation estimate in the top level EKF estimator.

VOLUME 6, 2018 26333



P. NORGREN, R. SKJETNE: Multibeam-Based SLAM Algorithm for Iceberg Mapping

FIGURE 10. Relative and global AUV and iceberg trajectory for Case 3. a) Shows the true and estimated relative AUV trajectory with snapshots of
projected iceberg origin point cloud (older clouds are more yellow, newer clouds are more red). b) Global AUV and iceberg trajectory showing the real
and estimated iceberg outline at end of simulation.

FIGURE 11. Comparison of execution time for the different weighting methods.

shows a run-time comparisonwith the three different methods
studied in this paper, for two different number of particles.
The execution time of a particle filter clearly depends on
the number of particles, as can be seen from Figure 11. The
run-time also depends on several other parameters, such as
number of measurements and number of grids covered by the
measurements, map size, and map resolution (see [36], [37]
for a more detailed analysis of computational complexity for
the distributed particle mapping algorithm). From the run-
time results shown in Figure 11 we see that the run-time of the

original BPSLAM algorithm is several times faster than the
other two methods. This is misleading since the BPSLAM
only uses 1

150 of the measurements in the simulations pre-
sented here. The original and the modified version will have
similar run-time complexities for the same amount of infor-
mation. The modified BPSLAM method has an average run-
time of 4.45 and 11.99 seconds for 200 and 500 particles,
respectively. Both are below the limit of 15 seconds (which is
the execution period of the SLAM algorithm in our simula-
tions). The maximum execution time is above 20 seconds for
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the run using 500 particles, so adaptive execution time would
have to be employed in this case for real-time constraints to
be met.

The situation is different for the ICP method, which is sig-
nificantly more computationally expensive. For 200 particles,
the mean run-time is just above 11 seconds, and maximum
run-time of above 20 seconds, making this comparable to the
modified version’s run-time with 500 particles. Using 500
particles and the ICP method gives us an average run-time
of almost the double of the target run-time. It should be noted
that the focus of this study has been on the overall concept,
rather than the ICP method itself. A custom designed ICP
method for the BPSLAM method could potentially improve
both speed and convergence properties. For example by lim-
iting the ICP method to search for 3 DOF transformations,
the performance would likely be improved.

The simulations presented have been performed on a PC
with Intel Core i7 3770 @ 3.4 GHz using 8 logical proces-
sor cores in parallel execution. The algorithm presented in
Algorithm 1 is suitable for parallel execution, especially the
first for-loop (line 3-7), since each particle is independent.
The use of modern graphical processing units (GPUs) with
several thousand of cores could ease the load on the processor
and speed up the algorithm. In recent years, single board com-
puters with more than 250 GPU cores have been developed,
which is suitable for use in unmanned vehicles (e.g. NVIDIA
Jetson TX2).

VII. CONCLUSION AND FUTURE WORK
Through this paper we have detailed an estimator designed
for mapping of drifting and rotating icebergs. The estimator
consists of a top level EKF estimating the relative position
and orientation between the AUV and the iceberg, as well
as the relative velocity. The iceberg position, orientation,
and velocity is also estimated, using inputs from a bottom-
level estimator. The bottom-level estimator is based on the
BPSLAM algorithm, and two new methods for weighting of
multibeam range measurements are proposed. An additional
output of the SLAM algorithm is a gridded map containing
the topography of the iceberg, which can be extracted in
real-time or upon completion of the survey. This can be an
important input to the decision-making process in an IM
operation.

The results show particle depletion when using the origi-
nal BPSLAM algorithm, believed to stem from using MBE
swaths with partial overlap. The modified version of the
BPSLAM weighting scheme is more robust with respect to
areas with less information, and can better handle multiple
measurements. This opens the possibility for adaptive sample
time for the SLAM algorithm – which can help to ensure
real-time execution as long as the average execution time
is faster than real-time. The third method that is discussed
in this paper is an ICP method for BPSLAM, and it shows
improved accuracy in the simulated cases, with the cost of
significantly increased computational complexity. For the
actual bathymetry, on the other hand, the ICP perform worse.

This is believed to stem from ICP convergence problems due
to a more complex optimization problem in the bathymetric
case, due to more than three times the number of beams.

Further work include development of a custom ICPmethod
for the BPSLAM, testing the iceberg SLAM algorithm using
real iceberg drift data, and evaluation of the algorithm using
real under ice data. Further, the use of GPU programming
should be investigated to improve real-time performance, and
to reduce the load on the CPU.

The MBE is set to have a constant sample rate of 10 Hz,
which may be optimistic, depending on the range. Reduced
MBE sample rate will reduce the computational complexity,
but will also reduce the amount of information available to
the SLAM algorithm. This is not believed to be a problem,
since the original BPSLAM method performed similar to the
modified version in the bathymetric case, using only 1

150 of
the measurements for resampling. The map will, however,
be more sparsely populated, which may require the resolution
of the map to be decreased. Regardless, extending the MBE
simulator to be range dependent and investigating how this
affects the SLAM estimation are interesting points of future
work. Similarly, how DVL drop-outs affect the algorithm
should be investigated, since this may occur frequently in
challenging acoustic environments like under the ice.

To extend the algorithm towards complete iceberg map-
ping, the realm of active SLAM in conjunction with the
iceberg SLAM method should be considered.
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